WO2018087990A1 - ジアミン化合物、それを用いた耐熱性樹脂および樹脂組成物 - Google Patents

ジアミン化合物、それを用いた耐熱性樹脂および樹脂組成物 Download PDF

Info

Publication number
WO2018087990A1
WO2018087990A1 PCT/JP2017/030746 JP2017030746W WO2018087990A1 WO 2018087990 A1 WO2018087990 A1 WO 2018087990A1 JP 2017030746 W JP2017030746 W JP 2017030746W WO 2018087990 A1 WO2018087990 A1 WO 2018087990A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin
general formula
acid
aromatic
Prior art date
Application number
PCT/JP2017/030746
Other languages
English (en)
French (fr)
Inventor
増田有希
奥田良治
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to SG11201903455QA priority Critical patent/SG11201903455QA/en
Priority to CN201780068576.3A priority patent/CN109906217B/zh
Priority to JP2017545773A priority patent/JP7073717B2/ja
Priority to KR1020197012175A priority patent/KR102460973B1/ko
Priority to US16/343,957 priority patent/US11802181B2/en
Publication of WO2018087990A1 publication Critical patent/WO2018087990A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/28Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton
    • C07C237/40Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton having the nitrogen atom of the carboxamide group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C235/18Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated having at least one of the singly-bound oxygen atoms further bound to a carbon atom of a six-membered aromatic ring, e.g. phenoxyacetamides
    • C07C235/24Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated having at least one of the singly-bound oxygen atoms further bound to a carbon atom of a six-membered aromatic ring, e.g. phenoxyacetamides having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/08Polyhydrazides; Polytriazoles; Polyaminotriazoles; Polyoxadiazoles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0751Silicon-containing compounds used as adhesion-promoting additives or as means to improve adhesion
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05569Disposition the external layer being disposed on a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05571Disposition the external layer being disposed in a recess of the surface
    • H01L2224/05572Disposition the external layer being disposed in a recess of the surface the external layer extending out of an opening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16238Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/81005Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/20Structure, shape, material or disposition of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Definitions

  • the present invention relates to a novel diamine compound, a heat resistant resin using the same, and a resin composition using the heat resistant resin. More specifically, the present invention relates to a photosensitive resin composition suitable for a surface protective film of a semiconductor element, an interlayer insulating film, an insulating layer or a flat layer of an organic electroluminescent element (organic EL).
  • organic EL organic electroluminescent element
  • Patent Document 1 polyimide resins, polybenzoxazole resins, and the like that are excellent in heat resistance, mechanical properties, and the like have been widely used for surface protective films and interlayer insulating films of semiconductor elements of electronic devices.
  • Patent Document 2 polyimide resins, polybenzoxazole resins, and the like that are excellent in heat resistance, mechanical properties, and the like have been widely used for surface protective films and interlayer insulating films of semiconductor elements of electronic devices.
  • Patent Document 2 one method for forming a through hole or the like is etching using a positive photoresist.
  • this method has a problem that it requires a step of applying and removing a photoresist and is complicated. Therefore, studies have been made on heat-resistant materials imparted with photosensitivity for the purpose of rationalizing work processes.
  • polyimide and polybenzoxazole thermally dehydrate and cyclize their precursor coating film to obtain a thin film having excellent heat resistance and mechanical properties. In that case, firing at a high temperature of about 350 ° C. is usually required.
  • MRAM Magnetic Resistive Random Access Memory
  • a sealing resin are vulnerable to high temperatures. Therefore, it is cured by firing at a low temperature of about 200 ° C. or lower for use as a surface protective film of such an element or an interlayer insulating film of a fan-out wafer level package for forming a rewiring structure on a sealing resin.
  • a polyimide resin or a polybenzoxazole resin that can provide characteristics comparable to those obtained when a conventional material is fired at a high temperature of about 350 ° C.
  • the film after heat-curing remains as a permanent film in the device, so the physical properties of the cured film, particularly the elongation, is very important.
  • chemical processing is repeatedly performed at the time of forming metal wiring, so that chemical resistance that can withstand the processing is required.
  • Patent Document 3 a method using a polybenzoxazole precursor having an aliphatic group (Patent Document 3) and a photosensitive resin composition containing a novolak resin having a crosslinkable group has been proposed (Patent Document). 4).
  • JP-A-11-199557 Japanese Patent Laid-Open No. 11-24271 JP 2008-224984 A JP 2011-197362 A
  • the polybenzoxazole precursor having an aliphatic group has a problem that the lower the curing temperature, the lower the chemical resistance.
  • the photosensitive resin composition containing the novolak resin which has a crosslinkable group had a problem inferior in elongation.
  • the present invention has been made in view of the problems associated with the prior art as described above, and a resin composition capable of obtaining a cured film having excellent chemical resistance and film characteristics even at a low-temperature heat treatment of 200 ° C. or lower. And a heat resistant resin used in the resin composition, and further, a diamine compound as a raw material thereof.
  • a diamine compound represented by the general formula (1) A diamine compound represented by the general formula (1).
  • R 1 and R 2 represent a divalent aliphatic group.
  • R 3 and R 4 are divalent aliphatic groups, alicyclic groups, aromatic groups, and aromatic groups are —O—, —CO—, —SO 2 —, —CH 2 —, —C (CH 3 ).
  • 2- or -C (CF 3 ) 2- (where F is fluorine), a divalent organic group in which a plurality of aromatic groups are bonded by a single bond, or a plurality An aromatic group is —O—, —CO—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 —, or —C (CF 3 ) 2 —: (where F is fluorine)
  • a bonded divalent organic group In the case of a bonded divalent organic group,
  • R 5 and R 6 are any one of a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, a cyano group, an aliphatic group, an aromatic group, an acetyl group, a carboxyl group, an ester group, an amide group, an imide group, and a urea group. Represents an organic group.
  • A is a divalent aliphatic group, alicyclic group, aromatic group, a divalent organic group in which a plurality of aromatic groups are bonded by a single bond, or a plurality of aromatic groups are —O—, —S Divalent organic bonded with —, —CO—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 —, or —C (CF 3 ) 2 — (where F is fluorine). When it is a group, is shown.
  • p and q are each independently an integer in the range of 0 to 3.
  • R 1 and R 2 in the general formula (1) are each independently a divalent aliphatic group represented by the general formula (2) or the general formula (3).
  • R 3 and R 4 are divalent aliphatic groups, alicyclic groups, aromatic groups, and aromatic groups are —O—, —CO—, —SO 2 —, —CH 2. -, -C (CH 3 ) 2- , or -C (CF 3 ) 2- : (where F is fluorine), a divalent organic group bonded, and a plurality of aromatic groups bonded by a single bond A divalent organic group or a plurality of aromatic groups are —O—, —CO—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 —, or —C (CF 3 ) 2 —: In the case where it is a divalent organic group bonded by (wherein F is fluorine).
  • R 5 and R 6 are any one of a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, a cyano group, an aliphatic group, an aromatic group, an acetyl group, a carboxyl group, an ester group, an amide group, an imide group, and a urea group. Represents an organic group.
  • A is a divalent aliphatic group, alicyclic group, aromatic group, a divalent organic group in which a plurality of aromatic groups are bonded by a single bond, or a plurality of aromatic groups are —O—, —S Divalent organic bonded with —, —CO—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 —, or —C (CF 3 ) 2 — (where F is fluorine). When it is a group, is shown. p and q are each independently an integer in the range of 0 to 3. )
  • R 7 to R 10 each independently represents an alkylene group having 1 to 10 carbon atoms, and a, b, and c are 1 ⁇ a ⁇ 20, 0 ⁇ b ⁇ 20, 0, respectively.
  • R 11 and R 12 are each independently hydrogen, fluorine or an alkyl group having 1 to 6 carbon atoms, n is an integer of 1 to 20, and * is a chemical bond (ie, , Terminal portion of a divalent group).
  • R 3 in the general formula (1) is a divalent organic group represented by the formula (4)
  • R 4 in the general formula (1) is represented by the formula ( The diamine compound according to [1] or [2], which is a divalent organic group represented by 5).
  • R 1 and R 2 represent a divalent aliphatic group.
  • R 5 and R 6 are any one of a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, a cyano group, an aliphatic group, an aromatic group, an acetyl group, a carboxyl group, an ester group, an amide group, an imide group, and a urea group. Represents an organic group.
  • A is a divalent aliphatic group, alicyclic group, aromatic group, a divalent organic group in which a plurality of aromatic groups are bonded by a single bond, or a plurality of aromatic groups are —O—, —S Divalent organic bonded with —, —CO—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 —, or —C (CF 3 ) 2 — (where F is fluorine). When it is a group, is shown. p and q are each independently an integer in the range of 0 to 3. )
  • the heat resistant resin according to [4] including at least one selected from polyimide, polyamide, polybenzoxazole, polybenzimidazole, polybenzothiazole, a precursor thereof, and a copolymer thereof.
  • a resin composition comprising the heat-resistant resin according to [4] or [5], (b) a photosensitive compound, and (c) a solvent.
  • the relief pattern of the cured film according to [11], wherein the step of applying the resin composition onto a substrate and drying to form a resin film includes a step of applying the resin composition onto the substrate using a slit nozzle. Manufacturing method.
  • a resin composition capable of obtaining a cured film having excellent chemical resistance and film characteristics even at a low-temperature heat treatment of 200 ° C. or lower, a heat-resistant resin used in the resin composition, and these raw materials A diamine compound is provided.
  • the present invention is a diamine compound represented by the general formula (1).
  • R 1 and R 2 represent a divalent aliphatic group.
  • R 3 and R 4 are divalent aliphatic groups, alicyclic groups, aromatic groups, and aromatic groups are —O—, —CO—, —SO 2 —, —CH 2 —, —C (CH 3 ).
  • 2- or -C (CF 3 ) 2- (where F is fluorine), a divalent organic group in which a plurality of aromatic groups are bonded by a single bond, or a plurality An aromatic group is —O—, —CO—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 —, or —C (CF 3 ) 2 —: (where F is fluorine)
  • a bonded divalent organic group In the case of a bonded divalent organic group,
  • R 5 and R 6 are any one of a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, a cyano group, an aliphatic group, an aromatic group, an acetyl group, a carboxyl group, an ester group, an amide group, an imide group, and a urea group. Represents an organic group.
  • R 5 and R 6 are preferably a hydrogen atom or an aliphatic group from the viewpoint of easy dehydration and ring closure at a low temperature.
  • A is a divalent aliphatic group, alicyclic group, aromatic group, a divalent organic group in which a plurality of aromatic groups are bonded by a single bond, or a plurality of aromatic groups are —O—, —S Divalent organic bonded with —, —CO—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 —, or —C (CF 3 ) 2 —: (where F is fluorine) When it is a group, is shown.
  • R 3 to R 6 and A are organic groups having an aromatic group, they may contain a hydroxyl group, and some or all of the hydrogen on the aromatic ring may be substituted with a hydroxyl group.
  • p and q are each independently an integer in the range of 0 to 3.
  • the present invention does not exclude the case where R 1 and R 3 or R 2 and R 4 are the same group. That is, in such a case, it is understood that there is a group having the minimum number of carbon atoms (for example, a methylene group in the case of an aliphatic group) and a group other than the group (for example, ⁇ When a portion corresponding to R 3 —R 1 — has a propylene group, it is understood as a combination of a methylene group and an ethylene group).
  • R 1 and R 2 have an aliphatic group
  • the diamine compound itself can be dehydrated and ring-closed at 200 ° C. or lower and have an oxazole part, so that high chemical resistance can be obtained even at low temperature curing, Further, a highly stretched cured film can be obtained due to the flexibility of the aliphatic group.
  • R 1 and R 2 in the general formula (1) are each independently a divalent aliphatic group represented by the general formula (2) or the general formula (3).
  • the divalent aliphatic group represented by the general formula (2) or the general formula (3) is preferable because it has high flexibility and thus has a high effect of improving elongation.
  • R 7 to R 10 each independently represents an alkylene group having 1 to 10 carbon atoms, and a, b, and c are 1 ⁇ a ⁇ 20, 0 ⁇ b ⁇ 20, 0 ⁇ , respectively. It represents an integer in the range of c ⁇ 20, and the arrangement of repeating units may be block or random. * Indicates a chemical bond (that is, a terminal part of a divalent group). 1 ⁇ a + b + c ⁇ 10 is preferable from the viewpoints of heat resistance, dehydration ring closure temperature, and elongation.
  • R 11 and R 12 are each independently hydrogen, fluorine or an alkyl group having 1 to 6 carbon atoms, and n is an integer of 1 to 20. * Indicates a chemical bond (that is, a terminal part of a divalent group). From the viewpoint of flexibility, R 11 and R 12 are preferably hydrogen or an alkyl group having 1 to 2 carbon atoms.
  • N is preferably 3 or more from the viewpoint of stretchability, and preferably 10 or less from the viewpoint of the heat resistance of the resulting compound.
  • R 3 in the general formula (1) is a divalent organic group represented by the formula (4), and R 4 in the general formula (1) is a formula (5). It is more preferably a divalent organic group represented.
  • the phenoxy group represented by the formula (4) or the formula (5) is directly connected to the amino group and the aliphatic group and suppresses the solubility of the diamine compound, it is preferable in terms of obtaining high chemical resistance.
  • the phenyl group is preferably formed by forming an ether bond with the aliphatic group, so that stretchability is obtained and an effect of high elongation is obtained.
  • a part or all of hydrogen on the benzene ring is preferably substituted with an alkyl group having 5 or less carbon atoms or a monovalent aromatic group having preferably 10 or less carbon atoms.
  • the manufacturing method of the diamine compound represented by General formula (1) can be produced by following a known method for producing a diamine compound. Although not particularly limited, the following method can be employed.
  • a tertiary amine such as triethylamine, an epoxy compound such as propylene oxide, an unsaturated cyclic ether such as dihydropyran, and an unsaturated bond such as ethyl methacrylate are dissolved in a solution in which the following hydroxydiamine compound is dissolved.
  • a phthalimidic chloride derivative is added dropwise in the presence of the containing compound.
  • the dehydrochlorination reaction is carried out in the presence of an epoxy compound and an unsaturated cyclic ether compound.
  • the diamine represented by the general formula (1) can be obtained by removing phthalic acid from the diphthalimide body.
  • a phthalic acid elimination method hydrazine, methyl hydrazine, or the like can be used. Alcohol can be used as the solvent.
  • This deprotection step can be performed under heating and reflux.
  • R 1 and R 2 represent a divalent aliphatic group.
  • R 3 and R 4 are divalent aliphatic groups, alicyclic groups, aromatic groups, and aromatic groups are —O—, —CO—, —SO 2 —, —CH 2 —, —C (CH 3 ).
  • 2- or -C (CF 3 ) 2- (where F is fluorine), a divalent organic group in which a plurality of aromatic groups are bonded by a single bond, or a plurality An aromatic group is —O—, —CO—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 —, or —C (CF 3 ) 2 —: (where F is fluorine)
  • a bonded divalent organic group In the case of a bonded divalent organic group,
  • R 5 and R 6 are any one of a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, a cyano group, an aliphatic group, an aromatic group, an acetyl group, a carboxyl group, an ester group, an amide group, an imide group, and a urea group. Represents an organic group.
  • A is a divalent aliphatic group, alicyclic group, aromatic group, a divalent organic group in which a plurality of aromatic groups are bonded by a single bond, or a plurality of aromatic groups are —O—, —S Divalent organic bonded with —, —CO—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 —, or —C (CF 3 ) 2 — (where F is fluorine).
  • p and q are each independently an integer in the range of 0 to 3.
  • R 3 is a divalent organic group represented by the formula (4) and R 4 in the general formula (1) is represented by the formula (5), it is preferably produced by the following method. .
  • a tertiary amine such as triethylamine, an epoxy compound such as propylene oxide, an unsaturated cyclic ether such as dihydropyran, and an unsaturated bond such as ethyl methacrylate are dissolved in a solution in which the following hydroxydiamine compound is dissolved.
  • the nitrocarboxylic acid chloride derivative is added dropwise.
  • the dehydrochlorination reaction is carried out in the presence of an epoxy compound and an unsaturated cyclic ether compound.
  • the diamine represented by the general formula (1) can be obtained by reducing the dinitro compound.
  • This reduction method includes a method in which hydrogen gas is allowed to act in the presence of a metal catalyst such as palladium / carbon and Raney nickel, a method in which ammonium formate is allowed to act in the presence of a metal catalyst such as palladium / carbon and Raney nickel, stannous chloride And a method using hydrochloric acid, a method using iron and hydrochloric acid, a method using hydrazine, and the like.
  • R 1 and R 2 represent a divalent aliphatic group.
  • R 5 and R 6 are any one of a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, a cyano group, an aliphatic group, an aromatic group, an acetyl group, a carboxyl group, an ester group, an amide group, an imide group, and a urea group. Represents an organic group.
  • A is a divalent aliphatic group, alicyclic group, aromatic group, a divalent organic group in which a plurality of aromatic groups are bonded by a single bond, or a plurality of aromatic groups are —O—, —S Divalent organic bonded with —, —CO—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 —, or —C (CF 3 ) 2 — (where F is fluorine). When it is a group, is shown. p and q are integers in the range of 0 to 3.
  • reaction solvent examples include ketones such as methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, methyl ethyl ketone, and acetone, esters such as ethyl acetate, butyl acetate, and isobutyl acetate, tetrahydrofuran, dimethoxyethane, diethoxyethane, dibutyl ether, and diethylene glycol dimethyl ether. And ethers.
  • acetone from the viewpoint of solubility and versatility. These may be used alone or in combination of two or more.
  • the reaction solvent is preferably used in an amount of 100 to 5000 parts by mass with respect to 100 parts by mass of the diamine compound from the viewpoint of solubility.
  • diamine compounds include bis (3-amino-4-hydroxyphenyl) hexafluoropropane (BAHF), bis (3-amino-4-hydroxyphenyl) sulfone, bis (3-amino-4-hydroxyphenyl) propane, bis (3-amino-4-hydroxyphenyl) methylene, bis (3-amino-4-hydroxyphenyl) ether, bis (3-amino-4-hydroxy) biphenyl, bis (3-amino-4-hydroxyphenyl) fluorene, etc.
  • BAHF bis (3-amino-4-hydroxyphenyl) hexafluoropropane
  • bis (3-amino-4-hydroxyphenyl) sulfone bis (3-amino-4-hydroxyphenyl) propane
  • bis (3-amino-4-hydroxyphenyl) methylene bis (3-amino-4-hydroxyphenyl) ether
  • bis (3-amino-4-hydroxy) biphenyl bis (3-amino-4-hydroxypheny
  • the heat resistant resin of the present invention is a heat resistant resin having a structure derived from the diamine compound described in the general formula (1), and may be a precursor of the heat resistant resin.
  • the heat-resistant resin of the present invention may contain a diamine residue other than the diamine residue derived from the general formula (1), but the ratio of the diamine residue derived from the general formula (1) is the total diamine residue. It is desirable that it is 50 mol% or more and 100 mol% or less. Even if it is low-temperature heat processing by setting it as the content rate more than this lower limit, since the cured film which is excellent in chemical-resistance and a film characteristic is obtained, it is preferable.
  • At least one of polyimide, polyamide, polybenzoxazole, polybenzimidazole, polybenzothiazole, precursors thereof, and copolymers thereof contained in the heat resistant resin of the present invention is derived from the diamine compound of the present invention. It is preferable to have a structure.
  • the heat-resistant resin of the present invention has a structure in which the polyamide is represented by the general formula (6), and the polyimide precursor and the polyimide are selected from structures represented by the general formula (7) and the general formula (8).
  • the polybenzoxazole is a resin having a structure represented by the general formula (9).
  • Y 1 to Y 4 are organic groups derived from the general formula (1), Y 1 to Y 3 each independently represents a tetravalent to hexavalent organic group, Y 4 represents a 6 to 8 valent organic group, X 1 represents a 2 to 6 valent organic group, X 2 and X 3 each independently represents a 4 to 10 valent organic group, and X 4 represents 2 to Represents a hexavalent organic group, R represents hydrogen or an organic group having 1 to 20 carbon atoms, q, s, u, and w are each independently an integer of 2 to 4, p, r, t, v Are each independently an integer of 0 to 4.)
  • X 1 and X 4 represent a divalent to hexavalent organic group having 2 or more carbon atoms and represent an acid structural component.
  • X 1 and X 4 are terephthalic acid, isophthalic acid, diphenyl ether dicarboxylic acid, naphthalenedicarboxylic acid, aromatic dicarboxylic acid such as bis (carboxyphenyl) propane, cyclobutanedicarboxylic acid, cyclohexanedicarboxylic acid, malonic acid, dimethylmalonic acid, ethyl Malonic acid, isopropylmalonic acid, di-n-butylmalonic acid, succinic acid, tetrafluorosuccinic acid, methylsuccinic acid, 2,2-dimethylsuccinic acid, 2,3-dimethylsuccinic acid, dimethylmethylsuccinic acid Glutaric acid, hexafluoroglutaric acid, 2-methylglutaric acid, 3-methylglutaric acid, 2,2-dimethylglutaric acid, 3,3-dimethylglutaric acid, 3-ethyl-3-methylglutaric acid, a
  • a structure derived from one containing a bond such as-, -COO-, -CONH-, -OCONH-, or -NHCONH-.
  • X 1 and X 4 are derived from an aromatic dicarboxylic acid is preferable because ring closure hardly occurs at the time of thermosetting, thereby suppressing an increase in stress due to film shrinkage and improving adhesion.
  • the carboxylic acid groups of the raw material compounds of X 1 and X 4 are activated for the reactivity of the carboxylic acid groups as shown in the following general formula.
  • a compound modified with a group is used.
  • B and C are each independently a hydrogen atom, methyl group, ethyl group, propyl group, isopropyl group, t-butyl group, trifluoromethyl group, halogen group, phenoxy group, nitro group and the like. However, it is not limited to these.
  • an active group other than the chloride compound By using an active group other than the chloride compound, chlorine ions in the obtained resin can be reduced, and peeling from the metal substrate due to the presence of chlorine ions can be prevented. Further, it is more preferable to use a diimidazolide compound as the active group. Since the leaving group of the diimidazolide compound becomes water-soluble imidazole, reprecipitation and washing of the obtained resin can be performed with water. Furthermore, since the detached imidazole is basic, it acts as a ring closure accelerator for the polyimide precursor structure during polymerization, and at the stage of producing the polyamide resin, it is possible to increase the ring closure rate of imidization. . As a result, the ring closure rate when a cured film is produced by heat treatment can be lowered.
  • Y 1 to Y 3 represent tetravalent to hexavalent organic groups
  • Y 4 represents a 6 to 8 valent organic group
  • Y 1 to Y 4 in the general formulas (6) to (8) contain a phenolic hydroxyl group. Become. By including a diamine residue having a phenolic hydroxyl group, moderate solubility of the resin in an alkaline developer can be obtained, so that a high contrast between the exposed area and the unexposed area can be obtained, and a desired pattern can be formed.
  • the heat resistant resin used in the present invention may have a structure derived from a diamine compound having a phenolic hydroxyl group other than the diamine compound represented by the general formula (1).
  • Specific examples include, for example, bis (3-amino-4-hydroxyphenyl) hexafluoropropane, bis (3-amino-4-hydroxyphenyl) sulfone, bis (3-amino-4-hydroxyphenyl) propane, Bis (3-amino-4-hydroxyphenyl) methylene, bis (3-amino-4-hydroxyphenyl) ether, bis (3-amino-4-hydroxy) biphenyl, 2,2′-ditrifluoromethyl-5,5 Aromatic diamines such as' -dihydroxyl-4,4'-diaminobiphenyl, bis (3-amino-4-hydroxyphenyl) fluorene, 2,2'-bis (trifluoromethyl) -5,5'-dihydroxybenzidine Or some of these aromatic rings and hydrocarbon hydrogen atoms may be substituted with alkyl groups having 1 to 10 carbon atoms or fluoro Kill group, compounds substituted with a halogen atom, and the like can be given.
  • Other diamine to be copolymerized can be used as it is or as a corresponding diisocyanate compound or trimethylsilylated diamine.
  • the heat-resistant resin of the present invention may contain a diamine residue other than a diamine having a phenolic hydroxyl group. By copolymerizing these, heat resistance can be improved.
  • Specific examples of the aromatic diamine residue include 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,4 '-Diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfide, 4,4'-diaminodiphenylsulfide, 1,4-bis (4-aminophenoxy) benzene, benzine, m- Phenylenediamine, p-phenylenediamine, 1,5-naphthalenediamine, 2,6-naphthalenedi
  • the heat resistant resin of the present invention preferably contains a diamine residue having an aliphatic group in addition to the residue derived from the diamine compound represented by the general formula (1). Since the diamine residue having an aliphatic group has high affinity with a metal, it can be a resin having high metal adhesion. In addition, since aliphatic diamine has high basicity, it acts as a ring closure accelerator during polymerization, so that the ring closure rate of the imide skeleton can be increased at the stage of producing the polyamide resin. As a result, it is possible to reduce the ring closure rate during thermosetting, and to suppress the shrinkage of the cured film and the resulting increase in the stress of the cured film.
  • the diamine having an aliphatic group used in the heat resistant resin of the present invention preferably has an organic group of at least one of an alkylene group and an alkyl ether group. Specifically, it is a diamine selected from at least one of an alkylene group, a cycloalkyl group, an alkyl ether group, and a cycloalkyl ether group, wherein some of the hydrogen atoms of these hydrocarbons are substituted with alkyl having 1 to 10 carbon atoms.
  • diamine having an aliphatic group examples include ethylenediamine, 1,3-diaminopropane, 2-methyl-1,3-propanediamine, 1,4-diaminobutane, 1,5-diaminopentane, 2- Methyl-1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane, 1,2-cyclohexanediamine, 1,3-cyclohexanediamine, 1,4-cyclohexanediamine, 1,2-bis (aminomethyl) cyclohexane, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cycloo
  • the diamine having an aliphatic group is an organic group having at least one selected from an alkylene group and an alkyl ether group, and these have an acyclic structure in which the main chain is a straight chain. Some have better flexibility and stretchability, and can achieve low stress and high elongation when used as a cured film.
  • the alkyl ethers the tetramethylene ether group is superior in heat resistance, so it is reliable. Since metal adhesion after evaluation can be provided, it is preferable. Examples include, but are not limited to, RT-1000, HE-1000, HT-1100, HT-1700, (trade name, manufactured by HUNTSMAN Co., Ltd.) and the like.
  • the content of the diamine residue having an aliphatic group is preferably 5 to 40 mol% in the total diamine residues.
  • the content of the diamine residue having an aliphatic group is preferably 5 to 40 mol% in the total diamine residues.
  • the arrangement of the repeating unit of the diamine residue having an aliphatic group may be block-like or random, but in addition to being able to impart high metal adhesion and low stress to the polyamide structure, the elongation is improved. It is preferably included in the structure.
  • the heat-resistant resin of the present invention may copolymerize an aliphatic group having a siloxane structure.
  • the diamine component include those obtained by copolymerizing 1 to 10 mol% of bis (3-aminopropyl) tetramethyldisiloxane, bis (p-amino-phenyl) octamethylpentasiloxane, and the like.
  • X 2 to X 3 represent an acid dianhydride residue, Organic group.
  • acid dianhydride examples include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic acid.
  • R 16 represents an oxygen atom, C (CF 3 ) 2 , C (CH 3 ) 2 or SO 2
  • R 17 and R 18 represent a hydrogen atom, a hydroxyl group or a thiol group.
  • R represents hydrogen or a monovalent organic group having 1 to 20 carbon atoms. From the viewpoint of solubility in an alkaline developer and the solution stability of the resulting photosensitive resin composition, it is preferable that 10 mol% to 90 mol% of R is hydrogen. Further, it is more preferable that R contains at least one monovalent hydrocarbon group having 1 to 16 carbon atoms, and the others are hydrogen atoms.
  • the molar ratio of the structures represented by the general formulas (6) to (9) in the present invention can be obtained by a method of calculating from the molar ratio of monomers used for polymerization or a nuclear magnetic resonance apparatus (NMR). It can be confirmed by a method for detecting a peak of a polyamide structure, an imide precursor structure, or an imide structure in a cured resin, a photosensitive resin composition, or a cured film.
  • NMR nuclear magnetic resonance apparatus
  • the heat-resistant resin of the present invention preferably has a weight average molecular weight in the range of 3,000 to 200,000. In this range, moderate solubility in an alkali developer can be obtained, so that a high contrast between the exposed area and the unexposed area can be obtained, and a desired pattern can be formed. In terms of solubility in an alkali developer, 100,000 or less is more preferable, and 50,000 or less is more preferable. Moreover, 1.000 or more is preferable from the surface of an elongation improvement.
  • the molecular weight can be measured by gel permeation chromatography (GPC) and converted from a standard polystyrene calibration curve.
  • the heat-resistant resin is sealed with other end-capping agents such as monoamine, monocarboxylic acid, acid anhydride, monoactive ester compound at the main chain end. May be.
  • the introduction ratio of the end-capping agent is preferably 0.1 mol% with respect to the total amine component in order to suppress the increase in the weight average molecular weight of the heat-resistant resin of the present invention and the decrease in solubility in an alkaline solution. As mentioned above, More preferably, it is 5 mol% or more. Moreover, in order to suppress that the mechanical characteristic of the cured film obtained when the weight average molecular weight of a polyamide resin becomes low is suppressed, Preferably it is 60 mol% or less, More preferably, it is 50 mol% or less. Further, a plurality of terminal blocking agents may be reacted to introduce a plurality of different terminal groups.
  • monoamines used as end-capping agents include M-600, M-1000, M-2005, and M-2070 (trade names, manufactured by HUNTSMAN Co., Ltd.), aniline, 2-ethynylaniline, and 3-ethynyl.
  • Monocarboxylic acids and monoactive ester compounds as end-capping agents include 3-carboxyphenol, 4-carboxyphenol, 3-carboxythiophenol, 4-carboxythiophenol, 1-hydroxy-7-carboxynaphthalene, 1-hydroxy -6-carboxynaphthalene, 1-hydroxy-5-carboxynaphthalene, 1-mercapto-7-carboxynaphthalene, 1-mercapto-6-carboxynaphthalene, 1-mercapto-5-carboxynaphthalene, 3-carboxybenzenesulfonic acid, 4 -Monocarboxylic acids such as carboxybenzene sulfonic acid and active ester compounds in which these carboxyl groups are esterified, phthalic anhydride, maleic anhydride, nadic anhydride, cyclohexanedicarboxylic anhydride, 3-hydroxy Acid anhydrides such as loxyphthalic anhydride, phthalic acid which is a dicarboxylic acid,
  • the resin end of the heat resistant resin and the resin side chain in the present invention preferably have a structure sealed with an imide precursor or imide such as amide acid or amide acid ester.
  • an imide precursor or imide such as amide acid or amide acid ester.
  • the resin terminal has more parts that are in contact with other components and the substrate than the main chain of the resin, it is possible to enhance the adhesion and improve the storage stability of the resin composition.
  • the structure in which the resin terminal and the resin side chain of the heat resistant resin of the present invention are sealed with an imide precursor or imide such as amide acid or amide acid ester are phthalic anhydride, maleic anhydride, nadic acid anhydride, cyclohexanedicarboxylic acid.
  • Acid anhydrides acid anhydrides such as 3-hydroxyphthalic acid anhydride, dicarboxylic acid phthalic acid, maleic acid, nadic acid, cyclohexanedicarboxylic acid, 3-hydroxyphthalic acid, 5-norbornene-2,3-dicarboxylic acid
  • trimellitic acids such as trimellitic acid, trimesic acid, diphenyl ether tricarboxylic acid, terephthalic acid, phthalic acid, maleic acid, cyclohexanedicarboxylic acid, 1,5-dicarboxynaphthalene, 1,6-dicarboxynaphthalene, 1,7 -Dicarboxynaphthalene, 2,6-dicarboxynaphthalene
  • Active ester compounds obtained by reacting one carboxyl group of any dicarboxylic acid with N-hydroxybenzotriazole, imidazole, N-hydroxy-5-norbornene-2,3-dicarboximide, their aromatic rings or hydro
  • the end capping agent that can be used in the present invention can be easily detected by the following method.
  • an alkali-soluble resin into which a terminal blocking agent has been introduced is dissolved in an acidic solution and decomposed into an amine component and an acid anhydride component, which are structural units, which are analyzed by gas chromatography (GC) or NMR.
  • GC gas chromatography
  • NMR nuclear magnetic resonance
  • the end capping agent used in the invention can be easily detected. Apart from this, it can also be easily detected by directly measuring the alkali-soluble resin component into which the end-capping agent has been introduced, by pyrolysis gas chromatography (PGC), infrared spectrum and 13 C-NMR spectrum.
  • PPC pyrolysis gas chromatography
  • the heat resistant resin of the present invention is synthesized, for example, by the following method, but is not limited thereto.
  • the reaction is preferably performed at 70 to 200 ° C.
  • the polyimide precursor structure is a structure derived from an acid anhydride in the polymerization method.
  • the polyimide precursor structure is obtained by reacting a carboxylic acid with an esterifying agent after the polymerization.
  • the heat-resistant resin of the present invention includes a case where it is a polyimide.
  • the polyimide obtains an imide precursor using a method for producing a structure represented by the general formula (7).
  • a method of polymerizing at 200 ° C. a method of closing all imide rings of the imide precursor using a known imidization reaction method, a method of stopping the imidation reaction in the middle and introducing a part of the imide structure, And a method of partially introducing an imide structure by mixing the polyimide precursor with a closed ring imide polymer in which all imide rings of the imide precursor are closed.
  • the benzoxazole used in the present invention can be synthesized using, for example, a method of obtaining polyamide and polymerizing it at 150 to 250 ° C., or a method of adding an acidic catalyst to cyclize.
  • the organic solvent used for resin polymerization include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, N, N ′.
  • the heat-resistant resin of the present invention is preferably isolated after being polymerized by the above-described method, and then poured into a large amount of water or a mixed solution of methanol and water, precipitated, filtered and dried.
  • the drying temperature is preferably 40 to 100 ° C., more preferably 50 to 80 ° C.
  • the imidation ratio in the heat resistant resin of the present invention can be easily determined by, for example, the following method. First, measuring the infrared absorption spectrum of the polymer, absorption peaks of an imide structure caused by a polyimide (1780 cm around -1, 1377 cm around -1) to confirm the presence of. Next, the polymer was heat-treated at 350 ° C. for 1 hour, an infrared absorption spectrum was measured using a sample having an imidization rate of 100%, and the peak intensity around 1377 cm ⁇ 1 of the resin before and after the heat treatment was compared, whereby the heat treatment was performed. The content of imide groups in the pre-resin is calculated to determine the imidization rate. The imidation rate is preferably 50% or more, and more preferably 80% or more, because the change in the ring closure rate during thermosetting is suppressed and the effect of reducing the stress is obtained.
  • the heat resistant resin obtained by the method of the present invention can be used as a resin composition.
  • the heat-resistant resin obtained by the method of the present invention and (b) a resin composition using a photoacid generator as a photosensitive compound can be used as a positive photosensitive resin composition (positive photosensitive varnish). .
  • the resin obtained by the method of the present invention and the resin composition using a photopolymerizable compound as a photosensitizer can be made as a negative photosensitive resin composition (negative photosensitive varnish).
  • the positive photosensitive composition is superior to the negative photosensitive resin composition in terms of resolution, it is suitable for use in forming a fine processing pattern.
  • a quinonediazide compound is preferably used as the photoacid generator of the positive photosensitive resin composition.
  • quinonediazide sulfonic acid is ester-bonded to a polyhydroxy compound
  • quinonediazide sulfonic acid is sulfonamide-bonded to a polyamino compound
  • quinonediazide sulfonic acid is ester-bonded and / or sulfonamide to a polyhydroxypolyamino compound. Examples include those that are combined. Although all the functional groups of these polyhydroxy compounds, polyamino compounds, and polyhydroxypolyamino compounds may not be substituted with quinonediazide, it is preferable that 40 mol% or more of the entire functional groups are substituted with quinonediazide on average. .
  • a positive photosensitive resin composition that is sensitive to i-line (wavelength 365 nm), h-line (wavelength 405 nm), and g-line (wavelength 436 nm) of a mercury lamp, which is a general ultraviolet ray. Obtainable.
  • polyhydroxy compound examples include Bis-Z, BisP-EZ, TekP-4HBPA, TrisP-HAP, TrisP-PA, TrisP-SA, TrisOCR-PA, BisOCHP-Z, BisP-MZ, BisP-PZ, BisP -IPZ, BisOCP-IPZ, BisP-CP, BisRS-2P, BisRS-3P, BisP-OCHP, Methylenetris-FR-CR, BisRS-26X, DML-MBPC, DML-MBOC, DML-OCHP, DML-PCHP, DML-PC, DML-PTBP, DML-34X, DML-EP, DML-POP, dimethylol-BisOC-P, DML-PFP, DML-PSBP, DML-MTrisPC, TriML-P, TriML-35XL, TML-B , TML-HQ, TML-pp-BPF, TML-BPA, TMOM-BP, HML-TPPHBA, HML-T
  • polyamino compound examples include 1,4-phenylenediamine, 1,3-phenylenediamine, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, 4,4 Examples thereof include, but are not limited to, '-diaminodiphenyl sulfide.
  • polyhydroxypolyamino compound examples include 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane and 3,3′-dihydroxybenzidine, but are not limited thereto. .
  • the quinonediazide compound preferably contains an ester with a phenol compound and a 4-naphthoquinonediazidesulfonyl group.
  • the content of the quinonediazide compound used in the photosensitive resin composition of the present invention is preferably 1 to 50 parts by mass and more preferably 10 to 40 parts by mass with respect to 100 parts by mass of the resin.
  • the resin composition of the present invention contains a compound represented by the following general formula (10), thereby improving the elongation characteristics of the cured film after reliability evaluation and the adhesion to a metal material.
  • the compound represented by the general formula (10) acts as an antioxidant to suppress oxidative degradation of aliphatic groups and phenolic hydroxyl groups of the heat resistant resin. Moreover, metal oxidation can be suppressed by the antirust effect
  • R 13 represents a hydrogen atom or an alkyl group having 2 or more carbon atoms
  • R 14 represents an alkylene group having 2 or more carbon atoms
  • R 15 represents a monovalent to tetravalent organic group containing at least one of an alkylene group having 2 or more carbon atoms, an O atom, and an N atom.
  • k is an integer of 1 to 4 and can act on the heat resistant resin and the metal material at the same time. Therefore, k is more preferably 2 to 4.
  • an alkyl group, a cycloalkyl group, an alkoxy group, an alkyl ether group, an alkylsilyl group, an alkoxysilyl group, an aryl group, an aryl ether group, a carboxyl group, a carbonyl group, an allyl group, a vinyl group, a heterocyclic group, —O—, —NH—, —NHNH—, a combination thereof, and the like may be included, and a substituent may be further included.
  • alkyl ethers and —NH— are preferable from the viewpoint of solubility in a developer and metal adhesion, and —NH from the viewpoint of interaction with a heat-resistant resin and metal complex formation. -Is more preferable.
  • Examples of the compound represented by the following general formula (10) include the following, but are not limited to the following structures.
  • the amount of the compound represented by the general formula (10) is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass with respect to the heat resistant resin.
  • the added amount is less than 0.1 parts by mass, it is difficult to obtain the effect of improving the elongation properties after reliability and the adhesion to the metal material. There is a risk of lowering the sensitivity of the resin composition.
  • the resin composition of the present invention preferably contains a thermal crosslinking agent.
  • a compound having two or more groups of at least any one of an alkoxymethyl group and a methylol group (hereinafter sometimes referred to as (d) compound) is preferable.
  • the compound may have two or more alkoxymethyl groups, may have two or more methylol groups, or may have one or more alkoxymethyl groups and one methylol group. You may have it above. By having two or more of these groups, it is possible to obtain a strong crosslinked structure by a condensation reaction with the resin and the same type of molecule. By using in combination with a photoacid generator or a photopolymerization initiator, a wider range of designs is possible to improve sensitivity and mechanical properties of the cured film.
  • Preferred examples of such a compound include, for example, DML-PC, DML-PEP, DML-OC, DML-OEP, DML-34X, DML-PTBP, DML-PCHP, DML-OCHP, DML-PFP, DML- PSBP, DML-POP, DML-MBOC, DML-MBPC, DML-MTrisPC, DML-BisOC-Z, DMLBisOCHP-Z, DML-BPC, DML-BisOC-P, DMOM-PC, DMOM-PTBP, DMOM-MBPC, TriML-P, TriML-35XL, TML-HQ, TML-BP, TML-pp-BPF, TML-BPE, TML-BPA, TML-BPAF, TML-BPAP, TMOM-BP, TMOM-BPE, TMOM-BPA, TMOM-BPAF, TM M-BPAP, HML-TPPHBA, HML-TPPHAP, HM
  • the addition amount of the compound having at least two of at least any one of an alkoxymethyl group and a methylol group is preferably 10 to 60 parts by mass with respect to 100 parts by mass of the heat-resistant resin of the present invention, More preferred is 40 parts by weight.
  • the addition amount is more than 10 parts by mass, the crosslink density by the thermal crosslinking agent is high, so that the chemical resistance of the cured film is improved, and when it is less than 60 parts by mass, sufficient flexibility is obtained. This is preferable because high elongation can be obtained.
  • the resin composition of the present invention can further improve elongation and reduce stress by containing a thermal crosslinking agent having a structural unit represented by the following general formula (11).
  • R 17 and R 18 each independently represent a hydrogen atom or a methyl group.
  • R 16 is a divalent organic group having an alkylene group having 2 or more carbon atoms, and may be linear, branched, or cyclic.
  • R 16 includes an alkylene group, a cycloalkylene group, an alkyl ether group, an alkylsilyl group, an alkoxysilyl group, an arylene group, an aryl ether group, an ester group, a carbonyl group, a heterocyclic group, a combination thereof, and the like. It may have a substituent.
  • the thermal crosslinking agent itself has a flexible alkylene group and a rigid aromatic group, it is possible to improve the elongation and reduce the stress while having heat resistance.
  • the crosslinkable group include, but are not limited to, an acrylic group, a methylol group, an alkoxymethyl group, and an epoxy group.
  • an epoxy group is preferable because it can react with the phenolic hydroxyl group of the heat-resistant resin to improve the heat resistance of the cured film and can react without dehydration.
  • Examples of the compound containing the structural unit represented by the following general formula (11) include, but are not limited to, the following structures.
  • n is an integer of 1 to 5
  • m is an integer of 1 to 20.
  • n is preferably 1 to 2 and m is preferably 3 to 7 from the viewpoint of achieving both heat resistance and improvement in elongation.
  • a low molecular compound having a phenolic hydroxyl group may be contained within a range that does not reduce the shrinkage residual film ratio after curing. Thereby, the development time can be shortened.
  • Examples of these compounds include Bis-Z, BisP-EZ, TekP-4HBPA, TrisP-HAP, TrisP-PA, BisOCHP-Z, BisP-MZ, BisP-PZ, BisP-IPZ, BisOCP-IPZ, BisP- CP, BisRS-2P, BisRS-3P, BisP-OCHP, Methylenetris-FR-CR, BisRS-26X (trade name, manufactured by Honshu Chemical Industry Co., Ltd.), BIP-PC, BIR-PC, BIR-PTBP BIR-BIPC-F (trade name, manufactured by Asahi Organic Materials Co., Ltd.) and the like. Two or more of these may be contained.
  • the content of the low molecular compound having a phenolic hydroxyl group is preferably 1 to 40 parts by mass with respect to 100 parts by mass of the heat resistant resin.
  • the resin composition of the present invention preferably contains (c) a solvent.
  • Solvents include N-methyl-2-pyrrolidone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl-2 -Polar aprotic solvents such as imidazolidinone, N, N'-dimethylpropyleneurea, N, N-dimethylisobutyramide, methoxy-N, N-dimethylpropionamide, tetrahydrofuran, dioxane, propylene glycol monomethyl ether, propylene Ethers such as glycol monoethyl ether, ketones such as acetone, methyl ethyl ketone, diisobutyl ketone, ethyl acetate, butyl acetate, isobutyl a
  • the content of the solvent is preferably 100 parts by mass or more in order to dissolve the composition with respect to 100 parts by mass of the heat resistant resin, and 1,500 parts by mass to form a coating film having a thickness of 1 ⁇ m or more. It is preferable to contain below.
  • the resin composition of the present invention is a surfactant, esters such as ethyl lactate and propylene glycol monomethyl ether acetate, alcohols such as ethanol, ketones such as cyclohexanone and methyl isobutyl ketone for the purpose of improving the wettability with the substrate. And ethers such as tetrahydrofuran and dioxane.
  • the resin composition of the present invention includes, as a silicon component, trimethoxyaminopropylsilane, trimethoxyepoxysilane, trimethoxyvinylsilane, trimethoxythiolpropyl as long as storage stability is not impaired.
  • a silane coupling agent such as silane may be contained.
  • a preferable content of the silane coupling agent is 0.01 to 5 parts by mass with respect to 100 parts by mass of the heat resistant resin.
  • the resin composition of the present invention preferably has another alkali-soluble resin in addition to the heat-resistant resin of the present invention.
  • a siloxane resin an acrylic polymer copolymerized with acrylic acid, a novolac resin, a resole resin, a polyhydroxystyrene resin, and a modified product in which a crosslinking group such as a methylol group, an alkoxymethyl group or an epoxy group is introduced
  • Examples thereof include copolymer polymers thereof.
  • Such a resin is soluble in an alkaline solution such as tetramethylammonium hydroxide, choline, triethylamine, dimethylaminopyridine, monoethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, and sodium carbonate.
  • an alkaline solution such as tetramethylammonium hydroxide, choline, triethylamine, dimethylaminopyridine, monoethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, and sodium carbonate.
  • the preferred content of these resins is 5 to 200 parts by mass, and more preferably 15 to 150 parts by mass with respect to 100 parts by mass of the heat-resistant resin of the present invention.
  • the resin composition of the present invention may contain a dissolution regulator within a range that does not increase the shrinkage after curing.
  • a dissolution regulator any compound can be preferably used as long as it is a compound generally used as a solubility regulator in a positive resist, such as a polyhydroxy compound, a sulfonamide compound, and a urea compound.
  • a polyhydroxy compound which is a raw material for synthesizing a quinonediazide compound is preferably used.
  • the resin composition of the present invention is a negative photosensitive resin composition that is insolubilized by light when a photopolymerizable compound is blended.
  • a photopolymerizable compound contains a polymerizable unsaturated functional group.
  • the polymerizable unsaturated functional group include unsaturated double bond functional groups such as vinyl group, allyl group, acryloyl group and methacryloyl group, and unsaturated triple bond functional groups such as propargyl.
  • a group selected from a conjugated vinyl group, an acryloyl group, and a methacryloyl group is preferable in terms of polymerizability.
  • the number of functional groups contained is preferably 1 to 4 from the viewpoint of stability, and the groups may not be the same.
  • the photopolymerizable compound preferably has a number average molecular weight of 30 to 800. When the number average molecular weight is in the range of 30 to 800, the compatibility with the polyamide is good and the stability of the resin composition solution is good.
  • Preferred photopolymerizable compounds include, for example, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, trimethylolpropane diacrylate, trimethylol.
  • 1,9-nonanediol dimethacrylate 1,10-decanediol dimethacrylate, dimethylol-tricyclodecane diacrylate, isobornyl acrylate, isobornyl methacrylate, pentaerythritol tris.
  • the content of the photopolymerizable compound in the resin composition of the present invention is preferably 5 to 200 parts by mass with respect to 100 parts by mass of the heat resistant resin, and 5 to 150 parts by mass from the viewpoint of compatibility. Is more preferable.
  • the viscosity of the resin composition of the present invention is preferably 2 to 5,000 mPa ⁇ s.
  • the viscosity can be measured using an E-type rotary viscometer. By adjusting the solid content concentration so that the viscosity is 2 mPa ⁇ s or more, it becomes easy to obtain a desired film thickness. On the other hand, if the viscosity is 5,000 mPa ⁇ s or less, it becomes easy to obtain a highly uniform coating film. A resin composition having such a viscosity can be easily obtained, for example, by setting the solid content concentration to 5 to 60% by mass.
  • the resin composition of the present invention is applied to a substrate.
  • substrates silicon wafers, ceramics, gallium arsenide, organic circuit boards, inorganic circuit boards, composite substrates of silicon wafers and sealing resins such as epoxy resins, and circuit constituent materials are arranged on these boards
  • examples include, but are not limited to:
  • organic circuit boards include: glass substrate copper-clad laminates such as glass cloth and epoxy copper-clad laminates, composite copper-clad laminates such as glass nonwoven fabrics and epoxy copper-clad laminates, temporary carrier substrates, polyetherimide Examples thereof include heat-resistant / thermoplastic substrates such as resin substrates, polyetherketone resin substrates and polysulfone resin substrates, polyester copper-clad film substrates, and polyimide copper-clad film substrates.
  • Examples of inorganic circuit boards include glass substrates, alumina substrates, aluminum nitride substrates, ceramic substrates such as silicon carbide substrates, and metal substrates such as aluminum base substrates and iron base substrates.
  • Examples of circuit components include conductors containing metals such as silver, gold and copper, resistors containing inorganic oxides, low dielectrics containing glass materials and / or resins, resins and high Examples thereof include high dielectric materials containing dielectric constant inorganic particles, insulators containing glass-based materials, and the like.
  • Application methods include spin coating using spinner, spray coating, roll coating, screen printing, blade coater, die coater, calendar coater, meniscus coater, bar coater, roll coater, comma roll coater, gravure coater, screen coater, slit die coater. Or the like.
  • the coating film thickness varies depending on the coating method, the solid content concentration of the composition, the viscosity, and the like, but is usually applied so that the film thickness after drying is 0.1 to 150 ⁇ m. When it is set as a photosensitive uncured sheet, it is then dried and peeled off.
  • the substrate can be pretreated with the aforementioned silane coupling agent.
  • Surface treatment is performed by spin coating, dipping, spray coating, steam treatment or the like. In some cases, a heat treatment is subsequently performed at 50 ° C. to 300 ° C. to advance the reaction between the substrate and the silane coupling agent.
  • the substrate obtained by applying or laminating the resin composition or the uncured sheet on the substrate is dried to obtain a photosensitive resin composition film. Drying is preferably performed using an oven, a hot plate, infrared rays, or the like in the range of 50 ° C. to 150 ° C. for 1 minute to several hours.
  • the resin composition film is exposed to actinic radiation through a mask having a desired pattern.
  • actinic radiation there are ultraviolet rays, visible rays, electron beams, X-rays and the like.
  • a developer is used to remove the exposed portion in the case of the positive type and the unexposed portion in the case of the negative type.
  • Developers include tetramethylammonium hydroxide, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, dimethylaminoethyl acetate, dimethylaminoethanol, dimethyl
  • an alkaline compound such as aminoethyl methacrylate, cyclohexylamine, ethylenediamine or hexamethylenediamine is preferred.
  • these alkaline solutions may contain polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, ⁇ -butyrolactone, dimethylacrylamide, methanol, ethanol, Alcohols such as isopropanol, esters such as ethyl lactate and propylene glycol monomethyl ether acetate, ketones such as cyclopentanone, cyclohexanone, isobutyl ketone, and methyl isobutyl ketone may be added singly or in combination. Good.
  • polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, ⁇ -butyrolactone, dimethylacrylamide, methanol, ethanol, Alcohols such as isopropanol, esters such as ethyl lactate and propy
  • Development can be performed by spraying the developer onto the coating surface, immersing in the developer, applying ultrasonic waves while immersing, or spraying the developer while rotating the substrate. After development, it is preferable to rinse with water.
  • alcohols such as ethanol and isopropyl alcohol
  • esters such as ethyl lactate and propylene glycol monomethyl ether acetate may be added to water for rinsing treatment.
  • a temperature of 150 ° C. to 500 ° C. is applied to advance the thermal crosslinking reaction.
  • Crosslinking can improve heat resistance and chemical resistance.
  • a method of selecting a temperature and increasing the temperature stepwise, or a method of selecting a certain temperature range and continuously increasing the temperature for 5 minutes to 5 hours can be selected.
  • the former there is a method of performing heat treatment at 130 ° C. and 200 ° C. for 30 minutes each.
  • An example of the latter is a method of linearly raising the temperature from room temperature to 400 ° C. over 2 hours.
  • the curing condition in the present invention is preferably 150 ° C. or higher and 350 ° C. or lower.
  • the present invention provides a cured film particularly excellent in low-temperature curability, 160 ° C. or higher and 250 ° C. or lower is more preferable. 160 ° C. or more and 190 ° C. or less is more preferable in view of the influence on
  • the heat resistant resin film formed from the resin composition of the present invention can be used for electronic devices such as semiconductor devices and multilayer wiring boards, and organic EL display devices.
  • a semiconductor passivation film, a surface protection film of a semiconductor element, an interlayer insulating film, an interlayer insulating film of a multilayer wiring for high-density mounting, an interlayer insulating film of an electronic component such as an inductor or a SAW filter, an organic electroluminescent element Although it is suitably used for applications such as an insulating layer or a flat layer of organic EL), it is not limited to this and can have various structures.
  • FIG. 1 is an enlarged cross-sectional view of a pad portion of a semiconductor device having a bump according to the present invention.
  • a passivation film 3 is formed on an input / output aluminum (hereinafter, Al) pad 2 in a silicon wafer 1, and a via hole is formed in the passivation film 3.
  • an insulating film 4 is formed thereon as a pattern made of the resin composition of the present invention, and further, a metal (Cr, Ti, etc.) film 5 is formed so as to be connected to the Al pad 2 and the metal is formed by electrolytic plating or the like.
  • Wiring (Al, Cu, etc.) 6 is formed.
  • the metal film 5 etches the periphery of the solder bump 10 to insulate between the pads.
  • a barrier metal 8 and a solder bump 10 are formed on the insulated pad.
  • the resin composition of the insulating film 7 can be processed with a thick film in the scribe line 9. When a flexible component is introduced into the resin composition, since the wafer warpage is small, exposure and wafer transportation can be performed with high accuracy.
  • the resin of the present invention is also excellent in high extensibility, the resin itself is deformed, so that stress from the sealing resin can be relieved even during mounting, resulting in damage to bumps, wiring, and low-k layers. And a highly reliable semiconductor device can be provided.
  • FIG. 2a of FIG. 2 an input / output Al pad 2 and a passivation film 3 are formed on the silicon wafer 1, and an insulating film 4 is formed as a pattern of the resin composition of the present invention.
  • a metal (Cr, Ti, etc.) film 5 is formed so as to be connected to the Al pad 2, and as shown in 2c of FIG. 2, the metal wiring 6 is formed by a plating method. Form a film.
  • the resin composition of the present invention is applied, and the insulating film 7 is formed in a pattern as shown in 2d of FIG.
  • a wiring can be further formed on the insulating film 7.
  • a structure can be formed. At this time, the formed insulating film comes into contact with various chemicals a plurality of times, but the insulating film obtained from the resin composition of the present invention is excellent in adhesion and chemical resistance.
  • a multilayer wiring structure can be formed. There is no upper limit to the number of layers in the multilayer wiring structure, but 10 or fewer layers are often used.
  • a barrier metal 8 and a solder bump 10 are formed. Then, the wafer is diced along the last scribe line 9 and cut into chips.
  • FIG. 3 is an enlarged cross-sectional view of a pad portion of a semiconductor device having an insulating film of the present invention, which has a structure called a fan-out wafer level package (fan-out WLP).
  • the silicon wafer 1 on which the Al pad 2 and the passivation film 3 are formed is diced and cut into chips, and then sealed with a resin 11.
  • an insulating film 4 is formed as a pattern of the resin composition of the present invention, and further, a metal (Cr, Ti, etc.) film 5 and a metal wiring 6 are formed.
  • the fan-out WLP is provided with an extended portion using a sealing resin such as epoxy resin around the semiconductor chip, rewiring from the electrode on the semiconductor chip to the extended portion, and mounting a solder ball on the extended portion.
  • a sealing resin such as epoxy resin around the semiconductor chip
  • wiring is installed so as to straddle the boundary line formed by the main surface of the semiconductor chip and the main surface of the sealing resin. That is, an interlayer insulating film is formed on a base material made of two or more materials such as a semiconductor chip provided with metal wiring and a sealing resin, and wiring is formed on the interlayer insulating film.
  • the fan-out WLP is disposed as an interlayer insulating film between rewirings on a support substrate on which a temporary bonding material is disposed, and after a silicon chip and a sealing resin are disposed on the support substrate, the temporary bonding material is disposed on the support substrate.
  • RDL-first a type of package created by a process called RDL-first that peels off the substrate and the rewiring.
  • a glass substrate or the like that is more likely to warp than a silicon wafer is often used as a support substrate, and therefore it is preferable that the insulating film has low stress.
  • a barrier metal such as Ti is formed on the support substrate 20 by sputtering, and a Cu seed (seed layer) is further formed thereon by sputtering, and then an electrode pad 21 is formed by plating.
  • the photosensitive resin composition of the present invention is applied, and a patterned insulating film 22 is formed through a photolithography process.
  • a seed layer is formed again by a sputtering method, and a metal wiring 23 (rewiring layer) is formed by a plating method. Thereafter, the steps 3b and 3c are repeated in order to match the pitch of the conductive portion of the semiconductor chip and the pitch of the metal wiring to form a multilayer wiring structure as shown in 3d.
  • step 3e the photosensitive resin composition of the present invention is applied again, and after a photolithography process, a patterned insulating film is formed, and then a Cu post 24 is formed by a plating method.
  • the pitch of the Cu posts is equal to the pitch of the conductive portions of the semiconductor chip. That is, in order to make the rewiring layer multilayer while narrowing the metal wiring pitch, as shown in 3e of FIG. 3, the thickness of the interlayer insulating film is as follows: interlayer insulating film 1> interlayer insulating film 2> interlayer insulating film 3> Interlayer insulating film 4>.
  • the semiconductor chip 26 is connected through the solder bumps 25, and an RDL first semiconductor device having a multilayer wiring structure can be obtained.
  • wiring is installed so as to straddle the boundary line between the main surface of the semiconductor chip and the main surface of the printed circuit board.
  • an interlayer insulating film is formed on a base material made of two or more materials, and wiring is formed on the interlayer insulating film.
  • the cured film formed by curing the resin composition of the present invention has high elongation and high adhesion to a semiconductor chip provided with metal wiring, and also has high adhesion to the sealing resin to an epoxy resin or the like. Therefore, it is suitably used as an interlayer insulating film provided on a substrate made of two or more materials.
  • the cured film of the resin composition of the present invention is suitable for fine rewiring because it has a high metal adhesion even for a wiring in which the width of the metal wiring and the distance between adjacent wirings are 5 ⁇ m or less.
  • the width of the metal wiring and the distance between adjacent wirings become narrower, and the thickness of the interlayer insulating film becomes thinner as it approaches the semiconductor chip. Therefore, it corresponds to high integration of chips. For this reason, along with higher resolution, in-plane uniformity on a rewiring with a step becomes an important issue.
  • FIG. 4 is a cross-sectional view of a coil component having an insulating film of the present invention.
  • an insulating film 13 is formed on the substrate 12, and an insulating film 14 is formed thereon as a pattern.
  • the resin composition of the present invention may be used for either the insulating film 13 or the insulating film 14.
  • a metal (Cr, Ti, etc.) film 15 is formed in the opening of this pattern, and a metal wiring (Ag, Cu, etc.) 16 is formed thereon by plating.
  • the metal wiring 16 (Ag, Cu, etc.) is formed on the spiral. By repeating the steps 13 to 16 a plurality of times and laminating, the function as a coil can be provided. Finally, the metal wiring 16 (Ag, Cu, etc.) is connected to the electrode 18 by the metal wiring 17 (Ag, Cu, etc.) and sealed with the sealing resin 19.
  • the resin composition of the present invention is also suitably used for organic EL display devices.
  • the organic EL display device has a driving circuit, a planarizing layer, a first electrode, an insulating layer, a light emitting layer, and a second electrode on a substrate, and the planarizing layer and / or the insulating layer is made of the cured film of the present invention. Become.
  • Organic EL light-emitting materials are susceptible to deterioration due to moisture and may adversely affect the area ratio of the light-emitting portion relative to the area of the light-emitting pixels, but the cured film of the present invention has a low water absorption rate, so stable driving and light emission Characteristics are obtained.
  • an active matrix display device it has a TFT on a substrate made of glass, various plastics, etc., and a wiring located on a side portion of the TFT and connected to the TFT, and covers unevenness thereon.
  • the planarization layer is provided, and the display element is provided on the planarization layer.
  • the display element and the wiring are connected through a contact hole formed in the planarization layer.
  • FIG. 6 shows a cross-sectional view of an example of a TFT substrate.
  • bottom gate type or top gate type TFTs thin film transistors
  • an insulating layer 29 is formed so as to cover the TFTs 27.
  • a wiring 28 connected to the TFT 27 is provided on the insulating layer 29.
  • a planarizing layer 30 is provided on the insulating layer 29 in a state where the wiring 28 is embedded.
  • a contact hole 33 reaching the wiring 28 is provided in the planarization layer 30.
  • An ITO (transparent electrode) 31 is formed on the planarizing layer 30 while being connected to the wiring 28 through the contact hole 33.
  • the ITO 31 serves as an electrode of a display element (for example, an organic EL element).
  • the organic EL element may be a top emission type that emits emitted light from the side opposite to the substrate 32 or a bottom emission type that extracts light from the substrate 32 side.
  • an active matrix type organic EL display device in which the TFT 27 for driving the organic EL element is connected to each organic EL element is obtained.
  • the insulating layer 29, the planarization layer 30, and / or the insulating layer 34 are a step of forming a photosensitive resin film made of the resin composition or resin sheet of the present invention, a step of exposing the photosensitive resin film, It can form by the process of developing the exposed photosensitive resin film, and the process of heat-processing the developed photosensitive resin film.
  • An organic EL display device can be obtained from the manufacturing method having these steps.
  • varnish a resin composition (hereinafter referred to as varnish) filtered in advance with a 1 ⁇ m polytetrafluoroethylene filter (manufactured by Sumitomo Electric Industries, Ltd.) was used.
  • the molecular weight of the heat-resistant resin was measured using a GPC (gel permeation chromatography) apparatus Waters 2690-996 (manufactured by Nihon Waters Co., Ltd.), and the developing solvent was N-methyl-2-pyrrolidone (hereinafter NMP).
  • NMP N-methyl-2-pyrrolidone
  • the ring closure rate and polyimidization rate of the polyhydroxyamide were calculated by spin-coating varnish on a silicon wafer and drying at 120 ° C. for 3 minutes to obtain a coating film having a thickness of 5 ⁇ m. Further, this coating film is heated at 180 ° C. for 10 minutes or at 300 to 350 ° C. for 10 minutes to obtain a cured film (cured film (A) heated at 180 ° C., cured film (B) heated at 300 to 350 ° C.). Obtained. The infrared absorption spectra of these cured film (A) and cured film (B) were measured, and the absorbance of the peak due to CO stretching vibration near 1050 cm ⁇ 1 was determined. The ring closure rate of the cured film (A) was calculated with the ring closure rate of the polyhydroxyamide of the cured film (B) as 100%.
  • the ring closure rate of polyhydroxyamide is preferably 30% or more.
  • the absorbance of C near the absorption peak (1377 cm ⁇ 1 ) of the imide structure attributed to polyimide was determined.
  • the imidization rate of the cured film (A) was calculated with the imidization rate of the cured film (B) as 100%.
  • the imidation ratio is preferably 50% or more, and more preferably 80% or more, because the solubility during thermosetting is suppressed and the effect of high chemical resistance is obtained.
  • the wafer was taken out, measured for film thickness, and then immersed in a solvent of resist stripping solution ST-120 (manufactured by Tokyo Ohka Kogyo Co., Ltd.) at 60 ° C. for 30 minutes. After the wafer taken out from the solvent is washed with pure water, the film thickness is measured again. If the absolute value of the change rate exceeds 20% or the cured film is peeled off (C), within 20% Thus, a value exceeding 10% was acceptable (B), and a value within 10% was regarded as better (A).
  • resist stripping solution ST-120 manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • the wafer was taken out and immersed in 45% by mass of hydrofluoric acid for 5 minutes to peel off the resin composition film from the wafer.
  • This film was cut into strips having a width of 1 cm and a length of 9 cm, and using Tensilon RTM-100 (manufactured by Orientec Co., Ltd.) at a room temperature of 23.0 ° C. and a humidity of 45.0% RH, a tensile rate of 50 mm /
  • the sample was pulled in minutes and the elongation at break was measured. The measurement was performed on 10 strips per specimen, and the average value of the top 5 points was obtained from the results.
  • the elongation at break value is very good when the elongation at break is 90% or more (A), good when 70% or more and less than 90% (B), 40% or more and less than 70% Things were acceptable (C), and less than 40% were insufficient (D).
  • the diamines (A-1), (A-2), (A-3), HFHA, and acid A used in the synthesis examples are as follows.
  • Examples 1 to 8 Comparative Examples 1 to 3
  • a varnish was prepared by adding 2.0 g of a photosensitive compound, 3.0 g of a thermal crosslinking agent, and 20 g of ⁇ -butyrolactone as a solvent to 10 g of the resins (I) to (XI).
  • the photosensitive compounds and thermal crosslinking agents used in the examples are as follows.
  • Table 1 shows the raw materials and blending of resins in each Example and Comparative Example, and Table 2 shows the evaluation results of the obtained resin compositions.
  • the present invention can be preferably used for applications of electronic components such as semiconductor devices and multilayer wiring boards, and organic EL display devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Ceramic Engineering (AREA)
  • Optics & Photonics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Materials For Photolithography (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyamides (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

本発明は、新規なジアミン化合物、および、それを用いた耐熱性樹脂および前記耐熱性樹脂を用いた樹脂組成物に関し、これにより200℃以下の低温の加熱処理であっても、耐薬品性と膜特性に優れる硬化膜を得ることができる。該新規なジアミンは下記一般式(1)で表される。本発明の耐熱性樹脂あるいは樹脂組成物は半導体素子の表面保護膜、層間絶縁膜、有機電界発光素子(有機EL)の絶縁層や平坦層などに好適に用いることができる。

Description

ジアミン化合物、それを用いた耐熱性樹脂および樹脂組成物
 本発明は、新規なジアミン化合物、および、それを用いた耐熱性樹脂および前記耐熱性樹脂を用いた樹脂組成物に関する。より詳しくは、半導体素子の表面保護膜、層間絶縁膜、有機電界発光素子(有機EL)の絶縁層や平坦層などに適した感光性樹脂組成物に関する。
 従来、電子機器の半導体素子の表面保護膜や層間絶縁膜等には、耐熱性や機械特性等に優れたポリイミド樹脂、ポリベンゾオキサゾール樹脂などが広く使用されている(特許文献1)。ポリイミドやポリベンゾオキサゾールを表面保護膜または層間絶縁膜として使用する場合、スルーホール等の形成方法の1つは、ポジ型のフォトレジストを用いるエッチングである。しかし、この方法では、フォトレジストの塗布や剥離の工程が必要であり、煩雑であるという問題がある。そこで作業工程の合理化を目的に感光性が付与された耐熱性材料の検討がなされてきた(特許文献2)。
 通常、ポリイミドやポリベンゾオキサゾールは、それらの前駆体の塗膜を熱的に脱水閉環させて優れた耐熱性および機械特性を有する薄膜を得る。その場合、通常350℃前後の高い温度での焼成を必要とする。ところが、例えば次世代メモリとして有望なMRAM(Magnetoresistive Random Access Memory;磁気抵抗メモリ)や、封止樹脂は、高温に弱い。そのため、このような素子の表面保護膜や、封止樹脂上に再配線構造を形成するファンアウトウエハレベルパッケージの層間絶縁膜に用いるために、約200℃以下の低い温度での焼成で硬化し、従来の材料を350℃前後の高温で焼成した場合と遜色ない特性性が得られるポリイミド樹脂またはポリベンゾオキサゾール樹脂が求められている。
 樹脂組成物を半導体等の用途に用いる場合、加熱硬化後の膜はデバイス内に永久膜として残るため、硬化膜の物性、特に伸度は非常に重要である。また、ウエハレベルパッケージの配線層間の絶縁膜などの用途として用いる場合は、金属配線形成時に繰り返し薬液処理を行うため、処理に耐えうる耐薬品性が必要となる。
 これらの課題に対して、脂肪族基を有するポリベンゾオキサゾール前駆体(特許文献3)や、架橋性基を有するノボラック樹脂を含有する感光性樹脂組成物を用いる方法が提案されている(特許文献4)。
特開平11-199557号公報 特開平11-24271号公報 特開2008-224984号公報 特開2011-197362号公報
 しかしながら、脂肪族基を有するポリベンゾオキサゾール前駆体は、硬化温度が低温になるものほど、耐薬品性に劣る問題があった。また、架橋性基を有するノボラック樹脂を含有する感光性樹脂組成物は、伸度に劣る問題があった。
 本発明は上記のような従来技術に伴う課題を鑑みてなされたものであり、200℃以下の低温の加熱処理であっても、耐薬品性と膜特性に優れる硬化膜が得られる樹脂組成物、およびその樹脂組成物に用いられる耐熱性樹脂、さらには、これらの原料であるジアミン化合物を提供するものである。
 上記課題を解決するため、本発明のジアミン化合物、耐熱性樹脂、および樹脂組成物、またその応用は下記の構成を有する。
[1]一般式(1)で表される、ジアミン化合物。
Figure JPOXMLDOC01-appb-C000008
(一般式(1)中、R、Rは2価の脂肪族基を示す。
 R、Rは、2価の脂肪族基、脂環基、芳香族基、芳香族基が-O-、-CO-、-SO-、-CH-、-C(CH-、もしくは-C(CF-:(ここでFはフッ素)で結合された2価の有機基、複数ある芳香族基が単結合で結合された2価の有機基、または複数ある芳香族基が-O-、-CO-、-SO-、-CH-、-C(CH-、もしくは-C(CF-:(ここでFはフッ素)で結合された2価の有機基である場合、を示す。
 R、Rは、水素原子、ハロゲン原子、水酸基、ニトロ基、シアノ基、脂肪族基、芳香族基、アセチル基、カルボキシル基、エステル基、アミド基、イミド基、ウレア基のいずれかを有する有機基を表す。
 Aは、2価の脂肪族基、脂環式基、芳香族基、複数ある芳香族基が単結合で結合された2価の有機基、または複数ある芳香族基が-O-、-S-、-CO-、-SO-、-CH-、-C(CH-、もしくは-C(CF-:(ここでFはフッ素)で結合された2価の有機基である場合、を示す。
p、qはそれぞれ独立に0~3の範囲内の整数である。)
[2]一般式(1)で表され、前記一般式(1)におけるR、Rがそれぞれ独立に一般式(2)または一般式(3)で表される2価の脂肪族基である、[1]に記載のジアミン化合物。
Figure JPOXMLDOC01-appb-C000009
(一般式(1)中、 R、Rは、2価の脂肪族基、脂環基、芳香族基、芳香族基が-O-、-CO-、-SO-、-CH-、-C(CH-、もしくは-C(CF-:(ここでFはフッ素)で結合された2価の有機基、複数ある芳香族基が単結合で結合された2価の有機基、または複数ある芳香族基が-O-、-CO-、-SO-、-CH-、-C(CH-、もしくは-C(CF-:(ここでFはフッ素)で結合された2価の有機基である場合、を示す。
 R、Rは、水素原子、ハロゲン原子、水酸基、ニトロ基、シアノ基、脂肪族基、芳香族基、アセチル基、カルボキシル基、エステル基、アミド基、イミド基、ウレア基のいずれかを有する有機基を表す。
 Aは、2価の脂肪族基、脂環式基、芳香族基、複数ある芳香族基が単結合で結合された2価の有機基、または複数ある芳香族基が-O-、-S-、-CO-、-SO-、-CH-、-C(CH-、もしくは-C(CF-:(ここでFはフッ素)で結合された2価の有機基である場合、を示す。
p、qはそれぞれ独立に0~3の範囲内の整数である。)
Figure JPOXMLDOC01-appb-C000010
(一般式(2)中、R~R10はそれぞれ独立に炭素数1~10のアルキレン基を示し、a、b、およびcはそれぞれ、1≦a≦20、0≦b≦20、0≦c≦20の範囲内の整数を表し、繰り返し単位の配列はブロック的でもランダム的でもよい。また、*は化学結合(すなわち、二価の基の末端部)を示す。)
Figure JPOXMLDOC01-appb-C000011
(一般式(3)中、R11、R12はそれぞれ独立に水素、フッ素または炭素数1~6のアルキル基であり、nは1~20の整数を示す。また、*は化学結合(すなわち、二価の基の末端部)を示す。)
[3]一般式(1)で表され、前記一般式(1)におけるRが式(4)で表される二価の有機基であり、前記一般式(1)におけるRが式(5)で表される二価の有機基である、[1]または[2]に記載のジアミン化合物。
Figure JPOXMLDOC01-appb-C000012
(一般式(1)中、R、Rは2価の脂肪族基を示す。
 R、Rは、水素原子、ハロゲン原子、水酸基、ニトロ基、シアノ基、脂肪族基、芳香族基、アセチル基、カルボキシル基、エステル基、アミド基、イミド基、ウレア基のいずれかを有する有機基を表す。
 Aは、2価の脂肪族基、脂環式基、芳香族基、複数ある芳香族基が単結合で結合された2価の有機基、または複数ある芳香族基が-O-、-S-、-CO-、-SO-、-CH-、-C(CH-、もしくは-C(CF-:(ここでFはフッ素)で結合された2価の有機基である場合、を示す。
p、qはそれぞれ独立に0~3の範囲内の整数である。)
Figure JPOXMLDOC01-appb-C000013
(式(4)中、*は化学結合(すなわち、二価の基の末端部)を示す。)
Figure JPOXMLDOC01-appb-C000014
(式(5)中、*は化学結合(すなわち、二価の基の末端部)を示す。)
[4][1]~[3]のいずれかに記載のジアミン化合物に由来する構造を有する耐熱性樹脂。
[5]ポリイミド、ポリアミド、ポリベンゾオキサゾール、ポリベンゾイミダゾール、ポリベンゾチアゾール、それらの前駆体、およびそれらの共重合体、から選ばれる少なくとも1種類を含む、[4]に記載の耐熱性樹脂。
[6][4]または[5]に記載の耐熱性樹脂と、(b)感光性化合物および(c)溶剤を含有することを特徴とする樹脂組成物。
[7]さらに、(d)アルコキシメチル基およびメチロール基のうち少なくともいずれか1つの基を2つ以上有する化合物を含有する、[6]に記載の樹脂組成物。
[8][6]または[7]に記載の樹脂組成物から形成された樹脂シート。
[9][6]または[7]に記載の樹脂組成物を硬化した硬化膜。
[10][8]に記載の樹脂シートを硬化した硬化膜。
[11][6]または[7]に記載の樹脂組成物を基板上に塗布し、または[8]に記載の樹脂シートを基板上にラミネートし、乾燥して樹脂膜を形成する工程と、
マスクを介して露光する工程と、
照射部をアルカリ溶液で溶出または除去して現像する工程と、
および現像後の樹脂膜を加熱処理する工程を含む、硬化膜のレリーフパターンの製造方法。
[12]前記樹脂組成物を基板上に塗布し、乾燥して樹脂膜を形成する工程が、スリットノズルを用いて基板上に塗布する工程を含む、[11]に記載の硬化膜のレリーフパターンの製造方法。
[13][9]または[10]に記載の硬化膜が、パターン化されまたはされないで、駆動回路上の平坦化層および第1電極上の絶縁層のいずれかまたは両方に配置された有機EL表示装置。
[14][9]または[10]に記載の硬化膜が、パターン化されまたはされないで、再配線間の層間絶縁膜として配置された、電子部品または半導体装置。
[15]前記再配線が銅金属配線であり、前記銅金属配線の幅と隣り合う配線同士の間隔が5μm以下である、[14]に記載の電子部品または半導体装置。
[16][9]または[10]に記載の硬化膜が、パターン化されまたはされないで、シリコンチップが配置された封止樹脂基板上に、再配線間の層間絶縁膜として配置された、電子部品または半導体装置。
[17] 前記再配線が銅金属配線であって、更にバンプを介して半導体チップと銅金属配線とを接続している[14]~[16]の何れかに記載の半導体電子部品または半導体装置。
[18]再配線層が、半導体チップに近づくにつれ、金属配線の幅と隣り合う配線同士の間隔が狭くなる[14]~[17]の何れかに記載の半導体電子部品または半導体装置。
[19]再配線間に配置された層間絶縁膜の厚みが、半導体チップに対して近づくにつれ、薄くなる[14]~[18]の何れかに記載の半導体電子部品または半導体装置。
[20][9]または[10]に記載の硬化膜を、仮貼り材料が配置された支持基板上に再配線間の層間絶縁膜として配置する工程と、
その上にシリコンチップと封止樹脂を配置する工程と、
その後、仮貼り材料が配置された支持基板と再配線を剥離する工程を含む、
電子部品または半導体装置の製造方法。
 200℃以下の低温の加熱処理であっても、耐薬品性と膜特性に優れる硬化膜が得られる樹脂組成物、およびその樹脂組成物に用いられる耐熱性樹脂、さらには、これらの原料であるジアミン化合物を提供する。
バンプを有する半導体装置のパット部分の拡大断面を示した模式図である。 バンプを有する半導体装置の詳細な作製方法を示した図である。 本発明の実施例を示す半導体装置の製造工程断面図である。 本発明の実施例を示すインダクタ装置のコイル部品の断面図である。 RDLファーストにおける半導体装置作製方法を示した図である。 TFT基板の一例の断面図である。
 以下、本発明を詳細に説明する。
 <一般式(1)で表される、ジアミン化合物>
 本発明は上記一般式(1)で表されるジアミン化合物である。一般式(1)で表される、ジアミン化合物において、R、Rは2価の脂肪族基を示す。
 R、Rは、2価の脂肪族基、脂環基、芳香族基、芳香族基が-O-、-CO-、-SO-、-CH-、-C(CH-、もしくは-C(CF-:(ここでFはフッ素)で結合された2価の有機基、複数ある芳香族基が単結合で結合された2価の有機基、または複数ある芳香族基が-O-、-CO-、-SO-、-CH-、-C(CH-、もしくは-C(CF-:(ここでFはフッ素)で結合された2価の有機基である場合、を示す。
 R、Rは、水素原子、ハロゲン原子、水酸基、ニトロ基、シアノ基、脂肪族基、芳香族基、アセチル基、カルボキシル基、エステル基、アミド基、イミド基、ウレア基のいずれかを有する有機基を表す。これらの中では、低温での脱水閉環のしやすさから、R、Rは、水素原子または脂肪族基が好ましい。
 Aは、2価の脂肪族基、脂環式基、芳香族基、複数ある芳香族基が単結合で結合された2価の有機基、または複数ある芳香族基が-O-、-S-、-CO-、-SO-、-CH-、-C(CH-、もしくは-C(CF-:(ここでFはフッ素)で結合された 2価の有機基である場合、を示す。
~R、Aは芳香族基を有する有機基である場合、水酸基を含み、芳香族環上の水素の一部または全部が水酸基で置換されていても差し支えない。p、qはそれぞれ独立に0~3の範囲内の整数である。
 なお、本発明はRとRあるいはRとRとが同種の基である場合を排除するものではない。すなわち、そのような場合は、その種の基の炭素数が最低数の基(例えば、脂肪族基であればメチレン基)とそれを除いた部分の基とが存在すると解する(例えば、-R-R-に対応する部分にプロピレン基があった場合、メチレン基とエチレン基との組み合わせとして解される)。 
Figure JPOXMLDOC01-appb-C000015
 R、Rが脂肪族基を有することで、ジアミン化合物自身が、200℃以下で脱水閉環し、オキサゾール部を有することができるため、低温硬化時にも高耐薬品性を得ることができ、また、脂肪族基のもつ柔軟性により、高伸度の硬化膜が得られる。
 前記一般式(1)におけるR、Rがそれぞれ独立に一般式(2)または一般式(3)で表される2価の脂肪族基であることが好ましい。一般式(2)または一般式(3)で表される2価の脂肪族基は、高い柔軟性を有するため伸度向上の効果が高いため好ましい。
Figure JPOXMLDOC01-appb-C000016
 一般式(2)中、R~R10はそれぞれ独立に炭素数1~10のアルキレン基を示し、a、b、およびcはそれぞれ、1≦a≦20、0≦b≦20、0≦c≦20の範囲内の整数を表し、繰り返し単位の配列はブロック的でもランダム的でもよい。また、*は化学結合(すなわち、二価の基の末端部であること)を示す。耐熱性と脱水閉環温度、伸度への影響から、1≦a+b+c≦10が好ましい。
Figure JPOXMLDOC01-appb-C000017
 一般式(3)中、R11、R12はそれぞれ独立に水素、フッ素または炭素数1~6のアルキル基であり、nは1~20の整数を示す。また、*は化学結合(すなわち、二価の基の末端部であること)を示す。
柔軟性の観点から、R11、R12は、水素、または炭素数1~2のアルキル基であることが好ましい。
 nは、伸縮性の点から3以上が好ましく、得られる化合物の耐熱性の観点から10以下が好ましい。
 一般式(1)で表され、前記一般式(1)におけるRが式(4)で表される二価の有機基であり、前記一般式(1)におけるRが式(5)で表される二価の有機基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000018
(式(4)中、*は化学結合(すなわち、二価の基の末端部であること)を示す。)
Figure JPOXMLDOC01-appb-C000019
(式(5)中、*は化学結合(すなわち、二価の基の末端部であること)を示す。)
 ここで、式(4)の酸素はRの側に、式(5)の酸素はRの側に好ましく結合する。
 式(4)や式(5)で表されるフェノキシ基がアミノ基と脂肪族基と直結し、ジアミン化合物の溶解性を抑制するため、高耐薬品性を得られる点で好ましい。また、フェニル基が脂肪族基とエーテル結合を形成することで伸縮性が得られ、高伸度の効果も得られるため好ましい。また、ベンゼン環上の水素の一部または全部が好ましく炭素数5以下のアルキル基や一価の好ましく炭素数10以下の芳香族基で置換されていても差し支えない。
 <一般式(1)で表されるジアミン化合物の製造方法>
 一般式(1)で表されるジアミン化合物は、公知のジアミン化合物の製造方法に倣って製造することができる。特に限定はされないが、下記方法をとることができる。
 第一工程として、まず下記ヒドロキシジアミン化合物を溶解させた溶液に、トリエチルアミンなどの三級アミン、プロピレンオキサイドのようなエポキシ化合物、ジヒドロピランなどの不飽和環状エーテル、メタクリル酸エチルのような不飽和結合含有化合物の存在下に、フタルイミド酸クロリド誘導体を滴下する。反応後のジフタルイミド体の精製を容易にするため、エポキシ化合物、不飽和環状エーテル化合物、不飽和結合含有化合物の存在下に脱塩酸反応を行うことが好ましい。特に好ましくはエポキシ化合物、不飽和環状エーテル化合物の存在下に脱塩酸反応を行う。
 第二工程として、ジフタルイミド体からフタル酸を脱離することで、上記一般式(1)で示されるジアミンを得ることができる。フタル酸の脱離方法としては、ヒドラジンやメチルヒドラジン等を用いることができる。溶媒としては、アルコールを用いることができる。本脱保護工程は、加熱還流下で行うことができる。
Figure JPOXMLDOC01-appb-C000020
(R、Rは2価の脂肪族基を示す。
 R、Rは、2価の脂肪族基、脂環基、芳香族基、芳香族基が-O-、-CO-、-SO-、-CH-、-C(CH-、もしくは-C(CF-:(ここでFはフッ素)で結合された2価の有機基、複数ある芳香族基が単結合で結合された2価の有機基、または複数ある芳香族基が-O-、-CO-、-SO-、-CH-、-C(CH-、もしくは-C(CF-:(ここでFはフッ素)で結合された2価の有機基である場合、を示す。
 R、Rは、水素原子、ハロゲン原子、水酸基、ニトロ基、シアノ基、脂肪族基、芳香族基、アセチル基、カルボキシル基、エステル基、アミド基、イミド基、ウレア基のいずれかを有する有機基を表す。
 Aは、2価の脂肪族基、脂環式基、芳香族基、複数ある芳香族基が単結合で結合された2価の有機基、または複数ある芳香族基が-O-、-S-、-CO-、-SO-、-CH-、-C(CH-、もしくは-C(CF-:(ここでFはフッ素)で結合された2価の有機基である場合、を示す。
p、qはそれぞれ独立に0~3の範囲内の整数である。)
 Rが式(4)で表される二価の有機基であり、前記一般式(1)におけるRが式(5)で表される場合については、以下の方法により製造することが好ましい。
 第一工程として、まず下記ヒドロキシジアミン化合物を溶解させた溶液に、トリエチルアミンなどの三級アミン、プロピレンオキサイドのようなエポキシ化合物、ジヒドロピランなどの不飽和環状エーテル、メタクリル酸エチルのような不飽和結合含有化合物の存在下に、ニトロカルボン酸クロリド誘導体を滴下する。反応後のジニトロ体の精製を容易にするため、エポキシ化合物、不飽和環状エーテル化合物、不飽和結合含有化合物の存在下に脱塩酸反応を行うことが好ましい。特に好ましくはエポキシ化合物、不飽和環状エーテル化合物の存在下に脱塩酸反応を行う。
 第二工程として、ジニトロ体を還元することで上記一般式(1)で示されるジアミンを得ることができる。この還元方法としては、パラジウム/炭素、ラネーニッケルなどの金属触媒の存在下に水素ガスを作用させる方法、パラジウム/炭素、ラネーニッケルなどの金属触媒の存在下にギ酸アンモニウムを作用させる方法、塩化第一スズと塩酸による方法、鉄と塩酸による方法、ヒドラジンを使用する方法などを用いることができる。
Figure JPOXMLDOC01-appb-C000021
(一般式(1)中、R、Rは2価の脂肪族基を示す。
 R、Rは、水素原子、ハロゲン原子、水酸基、ニトロ基、シアノ基、脂肪族基、芳香族基、アセチル基、カルボキシル基、エステル基、アミド基、イミド基、ウレア基のいずれかを有する有機基を表す。
 Aは、2価の脂肪族基、脂環式基、芳香族基、複数ある芳香族基が単結合で結合された2価の有機基、または複数ある芳香族基が-O-、-S-、-CO-、-SO-、-CH-、-C(CH-、もしくは-C(CF-:(ここでFはフッ素)で結合された2価の有機基である場合、を示す。
p、qは0~3の範囲内の整数である。)
 反応溶媒としては、例えばメチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、メチルエチルケトン、アセトンなどのケトン類、酢酸エチル、酢酸ブチル、酢酸イソブチルなどのエステル類、テトラヒドロフラン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル、ジエチレングリコールジメチルエーテルなどのエーテル類を挙げることができる。このうち溶解性と汎用性の点から、アセトンを使用することがより好ましい。これらは単独でも2種類以上を混合して使用することもできる。反応溶媒の使用量はジアミン化合物100質量部に対して、溶解性の点から、100~5000質量部の範囲で使用することが好ましい。
 ジアミン化合物としては、ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(BAHF)、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)メチレン、ビス(3-アミノ-4-ヒドロキシフェニル)エーテル、ビス(3-アミノ-4-ヒドロキシ)ビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)フルオレンなどのヒドロキシル基含有ジアミン、3,5-ジアミノ安息香酸、3-カルボキシ-4,4’-ジアミノジフェニルエーテルなどのカルボキシル基含有ジアミン、3-スルホン酸-4,4’-ジアミノジフェニルエーテルなどのスルホン酸含有ジアミン、ジチオヒドロキシフェニレンジアミンなどを挙げることができる。
 <本発明に用いられる耐熱性樹脂>
 本発明の耐熱性樹脂は、一般式(1)に記載のジアミン化合物に由来する構造を有する、耐熱性樹脂であり、また耐熱性樹脂の前駆体であってもよい。
 後述するように本発明の耐熱性樹脂は一般式(1)に由来するジアミン残基以外のジアミン残基を含みうるが、一般式(1)に由来するジアミン残基の割合は全ジアミン残基に対して50モル%以上100モル%以下であることが望ましい。係る下限値以上の含有率とすることで低温の加熱処理であっても、耐薬品性と膜特性に優れる硬化膜が得られるため好ましい。
 本発明の耐熱性樹脂に含まれる、ポリイミド、ポリアミド、ポリベンゾオキサゾール、ポリベンゾイミダゾール、ポリベンゾチアゾール、それらの前駆体、およびそれらの共重合体の少なくともいずれかが、本発明のジアミン化合物に由来する構造を有することが好ましい。
 本発明の耐熱性樹脂は、前記ポリアミドが一般式(6)で表される構造であって、前記ポリイミド前駆体およびポリイミドが一般式(7)および一般式(8)で表される構造から選ばれる1種類以上の構造、前記ポリベンゾオキサゾールが一般式(9)で表される構造を有する樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000022
(一般式(6)~(9)中、Y~Yは前記一般式(1)由来の有機基であり、Y~Yはそれぞれ独立に4~6価の有機基を示し、Yは6~8価の有機基を示す。Xは2~6価の有機基を示し、XおよびXはそれぞれ独立に4~10価の有機基を示し、Xは2~6価の有機基を示す。Rは水素または炭素数1~20の有機基を示す。q,s,u,wはそれぞれ独立には2~4の整数である、p,r,t,vはそれぞれ独立には0~4の整数である。)
 上記一般式(6)中、X、Xは炭素数2以上の2価~6価の有機基を示し、酸の構造成分を表している。X、Xは、テレフタル酸、イソフタル酸、ジフェニルエーテルジカルボン酸、ナフタレンジカルボン酸、ビス(カルボキシフェニル)プロパンなどの芳香族ジカルボン酸、シクロブタンジカルボン酸、シクロヘキサンジカルボン酸、マロン酸、ジメチルマロン酸、エチルマロン酸、イソプロピルマロン酸、ジ-n-ブチルマロン酸、スクシン酸、テトラフルオロスクシン酸、メチルスクシン酸、2,2-ジメチルスクシン酸、2,3-ジメチルスクシン酸、ジメチルメチルスクシン酸、グルタル酸、ヘキサフルオログルタル酸、2-メチルグルタル酸、3-メチルグルタル酸、2,2-ジメチルグルタル酸、3,3-ジメチルグルタル酸、3-エチル-3-メチルグルタル酸、アジピン酸、オクタフルオロアジピン酸、3-メチルアジピン酸、オクタフルオロアジピン酸、ピメリン酸、2,2,6,6-テトラメチルピメリン酸、スベリン酸、ドデカフルオロスベリン酸、アゼライン酸、セバシン酸、ヘキサデカフルオロセバシン酸、1,9-ノナン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、ヘキサデカン二酸、ヘプタデカン二酸、オクタデカン二酸、ノナデカン二酸、エイコサン二酸、ヘンエイコサン二酸、ドコサン二酸、トリコサン二酸、テトラコサン二酸、ペンタコサン二酸、ヘキサコサン二酸、ヘプタコサン二酸、オクタコサン二酸、ノナコサン二酸、トリアコンタン二酸、ヘントリアコンタン二酸、ドトリアコンタン二酸、ジグリコール酸などの脂肪族ジカルボン酸や、さらに下記一般式で示されるジカルボン酸や、トリメリット酸、トリメシン酸などのトリカルボン酸、これらの芳香族環や炭化水素の水素原子の一部を、炭素数1~10のアルキル基やフルオロアルキル基、ハロゲン原子などで置換されているものや、―S―、―SO―、―SO―、―NH―、―NCH―、―N(CHCH)―、―N(CHCHCH)―、―N(CH(CH)―、―COO―、―CONH―、―OCONH―、または―NHCONH―などの結合を含んでいるものを由来とする構造である。
Figure JPOXMLDOC01-appb-C000023
(ここで、アスタリスクはカルボキシル基の結合部位を表す。)
 この中でも、X、Xが、芳香族を有するジカルボン酸を由来とする構造は、熱硬化時に閉環が起こりにくいため、膜収縮による応力上昇を抑え、密着性を高められるため好ましい。
 本発明の耐熱性樹脂を製造するにあたり、重縮合を行う際には、たとえばX、Xの原材料化合物のカルボン酸基を下記一般式に示すようなカルボン酸基の反応性を活性化する基で修飾した化合物が用いられる。
Figure JPOXMLDOC01-appb-C000024
 式中、B及びCは、それぞれ独立に、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、t-ブチル基、トリフルオロメチル基、ハロゲン基、フェノキシ基、ニトロ基などが挙げられるが、これらに限定されない。
 この中でも、クロライド化合物以外の活性基を用いることが好ましい。クロライド化合物以外の活性基を用いることで、得られる樹脂中の塩素イオンを低減し、塩素イオンの存在に起因する金属基板からの剥離を防ぐことができる。また、活性基としては、ジイミダゾリド化合物を用いることがさらに好ましい。ジイミダゾリド化合物の脱離基は、水溶性のイミダゾールとなることから、得られた樹脂の再沈殿や洗浄を水で行うことができる。さらには、脱離したイミダゾールは塩基性であることから、重合時にポリイミド前駆体構造の閉環促進剤として作用し、ポリアミド樹脂を製造した段階で、イミド化の閉環率を高くすることが可能である。その結果、熱処理により硬化膜を作製するときの閉環率を低くすることができる。
 一般式(6)~(8)中のY~Yは4価~6価の有機基を示し、Yは6~8価の有機基を示し、ジアミン由来の有機基を表している。
 耐熱性樹脂は、一般式(1)で表されるジアミン化合物に由来する構造を有するため、一般式(6)~(8)中のY~Yは、フェノール性水酸基を含有することとなる。フェノール性水酸基を有するジアミン残基を含有させることで、樹脂のアルカリ現像液への適度な溶解性が得られるため、露光部と未露光部の高いコントラストが得られ、所望のパターンが形成できる。
 本発明に用いられる耐熱性樹脂は、一般式(1)で表されるジアミン化合物以外のフェノール性水酸基を有するジアミン化合物に由来する構造を有しても良い。
 具体的な例としては、例えば、ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)メチレン、ビス(3-アミノ-4-ヒドロキシフェニル)エーテル、ビス(3-アミノ-4-ヒドロキシ)ビフェニル、2,2’-ジトリフルオロメチル-5,5’-ジヒドロキシル-4,4’-ジアミノビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)フルオレン、2,2’-ビス(トリフルオロメチル)-5,5’-ジヒドロキシベンジジンなどの芳香族ジアミンや、これらの芳香族環や炭化水素の水素原子の一部を、炭素数1~10のアルキル基やフルオロアルキル基、ハロゲン原子などで置換した化合物、また、下記に示す構造を有するジアミンなどを挙げることができるが、これらに限定されない。共重合させる他のジアミンは、そのまま、あるいは対応するジイソシアネート化合物、トリメチルシリル化ジアミンとして用いることができる。また、これら2種以上のジアミン成分を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 本発明の耐熱性樹脂は、フェノール性水酸基を有するジアミン以外のジアミンの残基を含んでもよい。これらを共重合することで、耐熱性が向上できる。芳香族を有するジアミン残基の具体的な例としては、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジン、m-フェニレンジアミン、p-フェニレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、ビス(4-アミノフェノキシフェニル)スルホン、ビス(3-アミノフェノキシフェニル)スルホン、ビス(4-アミノフェノキシ)ビフェニル、ビス{4-(4-アミノフェノキシ)フェニル}エーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジエチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジエチル-4,4’-ジアミノビフェニル、2,2’,3,3’-テトラメチル-4,4’-ジアミノビフェニル、3,3’,4,4’-テトラメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニルなどの芳香族ジアミンや、これらの芳香族環や炭化水素の水素原子の一部を、炭素数1~10のアルキル基やフルオロアルキル基、ハロゲン原子などで置換した化合物などを挙げることができるが、これらに限定されない。共重合させる他のジアミンは、そのまま、あるいは対応するジイソシアネート化合物、トリメチルシリル化ジアミンとして用いることができる。また、これら2種以上のジアミン成分を組み合わせて用いてもよい。
 また、本発明の耐熱性樹脂は、一般式(1)で表されるジアミン化合物に由来する残基以外にも、脂肪族基を有するジアミン残基を含むことが好ましい。脂肪族基を有するジアミン残基は、金属と親和性が高いため、金属密着性が高い樹脂とすることができる。また、脂肪族ジアミンは塩基性が高いことから、重合時に閉環促進剤として作用することで、ポリアミド樹脂を製造した段階で、イミド骨格の閉環率を高くすることが可能である。その結果、熱硬化時の閉環率を下げることができ、硬化膜の収縮とそれによって生じる硬化膜の応力の上昇を抑えることが可能となる。これより、応力起因の密着力低下が抑制できる。さらに、柔軟な脂肪族ジアミン残基がポリアミドの高伸度化に寄与することから、金属との密着性を高め、低応力性、高伸度性を有する硬化膜を得ることができる。
 本発明の耐熱性樹脂に用いられる脂肪族基を有するジアミンは、アルキレン基およびアルキルエーテル基の少なくともいずれかの有機基を有することが好ましい。具体的には、アルキレン基、シクロアルキル基、アルキルエーテル基、シクロアルキルエーテル基の少なくともひとつから選ばれるジアミンであって、これらの炭化水素の水素原子の一部を、炭素数1~10のアルキル基やフルオロアルキル基、ハロゲン原子などで置換されていてもよく、―S―、―SO―、―SO―、―NH―、―NCH―、―N(CHCH)―、―N(CHCHCH)―、―N(CH(CH)―、―COO―、―CONH―、―OCONH―、または―NHCONH―などの結合を含んでいてもよく、またこれらの有機基は不飽和結合や脂環構造を有していてもよい。
 脂肪族基を有するジアミンの具体的な化合物としては、エチレンジアミン、1,3-ジアミノプロパン、2-メチル-1,3-プロパンジアミン、1,4-ジアミノブタン、1,5-ジアミノペンタン、2-メチル-1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカン、1,2-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、1,2-ビス(アミノメチル)シクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)、1,2-ビス(2-アミノエトキシ)エタン、KH-511、ED-600、ED-900、ED-2003、EDR-148、EDR-176、D-200、D-400、D-2000、THF-100、THF-140、THF-170、RE-600、RE-900、RE-2000、RP-405、RP-409、RP-2005、RP-2009、RT-1000、HE-1000、HT-1100、HT-1700、(以上商品名、HUNTSMAN(株)製)、さらに、以下の化合物が挙げられ、これらの芳香族環や炭化水素の水素原子の一部を、炭素数1~10のアルキル基やフルオロアルキル基、ハロゲン原子などで置換されていてもよく、―S―、―SO―、―SO―、―NH―、―NCH―、―N(CHCH)―、―N(CHCHCH)―、―N(CH(CH)―、―COO―、―CONH―、―OCONH―、または―NHCONH―などの結合を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000027
(ここで、nはそれぞれ独立に1~10、好ましく1~5の整数である。)
 本発明において、肪族基を有するジアミンは、アルキレン基、およびアルキルエーテル基から選ばれる少なくとも1つを有する有機基であって、これらは、主鎖が直鎖となっている非環化構造である方が、柔軟性および伸縮性が得られ、硬化膜としたときに低応力化、高伸度化を達成できるため好ましい
 アルキルエーテルの中でも、テトラメチレンエーテル基は耐熱性に優れるため、信頼性評価後の金属密着性を付与できるため好ましい。例としては、RT-1000、HE-1000、HT-1100、HT-1700、(以上商品名、HUNTSMAN(株)製)などがあげられるが、これに限定されない。
 このような脂肪族基を有するジアミンを用いることで、アルカリ溶液への溶解性を維持しながら、得られる硬化膜に、低応力性、高伸度性、および高金属密着性を付与することができる。
 本発明において、脂肪族基を有するジアミン残基の含有量は、全ジアミン残基中5~40モル%であることが好ましい。5モル%以上含有することで脂肪族基を有するジアミン残基による高金属密着の効果が得られ、また、40モル%以下含有することで、樹脂の吸湿性が低くなるため、金属基板からの剥離を防ぎ、高い信頼性をもつ硬化膜を得ることができるため好ましい。
 脂肪族基を有するジアミン残基の繰り返し単位の配列は、ブロック的でもランダム的でもよいが、ポリアミド構造に高金属密着性と低応力化を付与できることに加えて、伸度が向上するため、ポリアミド構造に含まれることが好ましい。
 さらに、シリコン基板との密着性を向上させるために、本発明の耐熱性樹脂は、シロキサン構造を有する脂肪族の基を共重合してもよい。具体的には、ジアミン成分として、ビス(3-アミノプロピル)テトラメチルジシロキサン、ビス(p-アミノ-フェニル)オクタメチルペンタシロキサンなどを1~10モル%共重合したものなどが挙げられる。 
 また、ポリイミド前駆体構造である上記一般式(7)やポリイミド構造である一般式(8)中、X~Xは酸二無水物の残基を表しており、4価~10価の有機基である。
 前記酸二無水物として具体的には、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン酸二無水物、9,9-ビス{4-(3,4-ジカルボキシフェノキシ)フェニル}フルオレン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物などの芳香族テトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸二無水物、2,3,5-トリカルボキシ-2-シクロペンタン酢酸二無水物、ビシクロ[2.2.2] オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、3,5,6-トリカルボキシ-2-ノルボルナン酢酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5(テトラヒドロ-2,5-ジオキソ-3-フラニル)ナフト[1,2-c]フラン-1,3-ジオンおよび下記式に示した構造の酸二無水物や、これらの芳香族環や炭化水素の水素原子の一部を、炭素数1~10のアルキル基やフルオロアルキル基、ハロゲン原子などで置換した化合物などを挙げることができるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000028
 R16は酸素原子、C(CF、C(CHまたはSOを、R17およびR18は水素原子、水酸基またはチオール基を表す。
 これらのうち、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-
ジカルボキシフェニル)エーテル二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン酸二無水物、9,9-ビス{4-(3,4-ジカルボキシフェノキシ)フェニル}フルオレン酸二無水物、ブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5(テトラヒドロ-2,5-ジオキソ-3-フラニル)ナフト[1,2-c]フラン-1,3-ジオンが好ましい。これらは単独でまたは2種以上を組み合わせて使用される。
 一般式(7)のRは、水素または炭素数1~20の1価の有機基を示す。アルカリ現像液に対する溶解性と、得られる感光性樹脂組成物の溶液安定性の点から、Rの10モル%~90モル%が水素であることが好ましい。さらに、Rが炭素数1~16の1価の炭化水素基を少なくとも1つ以上含有し、その他は水素原子であることがより好ましい。
 本発明における一般式(6)~(9)で表される構造のモル比は、重合する際に用いるモノマーのモル比から算出する方法や、核磁気共鳴装置(NMR)を用いて、得られた樹脂、感光性樹脂組成物、硬化膜におけるポリアミド構造やイミド前駆体構造、イミド構造のピークを検出する方法において確認できる。
 本発明の耐熱性樹脂は、重量平均分子量で3,000~200,000の範囲内であることが好ましい。この範囲では、アルカリ現像液への適度な溶解性が得られるため、露光部と未露光部の高いコントラストが得られ、所望のパターンが形成できる。アルカリ現像液への溶解性の面から、100,000以下がより好ましく、50,000以下がより好ましい。また、伸度向上の面から、1.0000以上が好ましい。ここで分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)により測定し、標準ポリスチレン検量線より換算して得ることができる。
 本発明の樹脂組成物の保存安定性を向上させるため、耐熱性樹脂は、は主鎖末端をモノアミン、モノカルボン酸、酸無水物、モノ活性エステル化合物などの他の末端封止剤で封止してもよい。
 末端封止剤の導入割合は、本発明の耐熱性樹脂の重量平均分子量が高くなりアルカリ溶液への溶解性が低下することを抑制するため、全アミン成分に対して好ましくは0.1モル%以上、より好ましくは5モル%以上である。また、ポリアミド樹脂の重量平均分子量が低くなることで得られる硬化膜の機械特性が低下することを抑制するため、好ましくは60モル%以下、より好ましくは50モル%以下である。また、複数の末端封止剤を反応させ、複数の異なる末端基を導入してもよい。
 末端封止剤としてのモノアミンとして具体的には、M-600,M-1000,M-2005,M-2070(以上商品名、HUNTSMAN(株)製)、アニリン、2-エチニルアニリン、3-エチニルアニリン、4-エチニルアニリン、5-アミノ-8-ヒドロキシキノリン、1-ヒドロキシ-7-アミノナフタレン、1-ヒドロキシ-6-アミノナフタレン、1-ヒドロキシ-5-アミノナフタレン、1-ヒドロキシ-4-アミノナフタレン、2-ヒドロキシ-7-アミノナフタレン、2-ヒドロキシ-6-アミノナフタレン、2-ヒドロキシ-5-アミノナフタレン、1-カルボキシ-7-アミノナフタレン、1-カルボキシ-6-アミノナフタレン、1-カルボキシ-5-アミノナフタレン、2-カルボキシ-7-アミノナフタレン、2-カルボキシ-6-アミノナフタレン、2-カルボキシ-5-アミノナフタレン、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノベンゼンスルホン酸、3-アミノベンゼンスルホン酸、4-アミノベンゼンスルホン酸、3-アミノ-4,6-ジヒドロキシピリミジン、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、2-アミノチオフェノール、3-アミノチオフェノール、4-アミノチオフェノールなどを用いることができる。これらを2種以上用いてもよい。
 末端封止剤としてのモノカルボン酸、モノ活性エステル化合物は、3-カルボキシフェノール、4-カルボキシフェノール、3-カルボキシチオフェノール、4-カルボキシチオフェノール、1-ヒドロキシ-7-カルボキシナフタレン、1-ヒドロキシ-6-カルボキシナフタレン、1-ヒドロキシ-5-カルボキシナフタレン、1-メルカプト-7-カルボキシナフタレン、1-メルカプト-6-カルボキシナフタレン、1-メルカプト-5-カルボキシナフタレン、3-カルボキシベンゼンスルホン酸、4-カルボキシベンゼンスルホン酸などのモノカルボン酸類およびこれらのカルボキシル基がエステル化した活性エステル化合物、無水フタル酸、無水マレイン酸、ナジック酸無水物、シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物などの酸無水物、ジカルボン酸であるフタル酸、マレイン酸、ナジック酸、シクロヘキサンジカルボン酸、3-ヒドロキシフタル酸、5-ノルボルネン-2,3-ジカルボン酸や、トリカルボン酸である、トリメリット酸、トリメシン酸、ジフェニルエーテルトリカルボン酸、テレフタル酸、フタル酸、マレイン酸、シクロヘキサンジカルボン酸、1,5-ジカルボキシナフタレン、1,6-ジカルボキシナフタレン、1,7-ジカルボキシナフタレン、2,6-ジカルボキシナフタレンなどのジカルボン酸類の一方のカルボキシル基とN-ヒドロキシベンゾトリアゾールやイミダゾール、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドとの反応により得られる活性エステル化合物、これらの芳香族環や炭化水素の水素原子の一部を、炭素数1~10のアルキル基やフルオロアルキル基、ハロゲン原子などで置換した化合物などを用いることができる。これらを2種以上用いてもよい。
 また、本発明における耐熱性樹脂の樹脂末端や樹脂側鎖はアミド酸またはアミド酸エステルなどのイミド前駆体やイミドで封止された構造が好ましい。樹脂末端は、樹脂の主鎖よりも他成分や基板に接する部位が多いため、密着性を高め、樹脂組成物の保存安定性を向上させることができる。このため、イミド前駆体構造やイミド前駆体構造を有することが好ましく、ポリイミド前駆体構造である上記一般式(7)やポリイミド構造である一般式(8)が、耐熱性樹脂の末端付近に存在することがより好ましい。これにより、密着性を高め、アルカリ可溶性樹脂の保存安定性をさらに高めることができる。このためには、前記ポリアミド構造を重合後、ポリイミド前駆体構造およびポリイミド構造の少なくともいずれかの構造と共重合することが好ましい。
 本発明の耐熱性樹脂の樹脂末端や樹脂側鎖がアミド酸またはアミド酸エステルなどのイミド前駆体やイミドで封止された構造は、無水フタル酸、無水マレイン酸、ナジック酸無水物、シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物などの酸無水物、ジカルボン酸であるフタル酸、マレイン酸、ナジック酸、シクロヘキサンジカルボン酸、3-ヒドロキシフタル酸、5-ノルボルネン-2,3-ジカルボン酸や、トリカルボン酸である、トリメリット酸、トリメシン酸、ジフェニルエーテルトリカルボン酸、テレフタル酸、フタル酸、マレイン酸、シクロヘキサンジカルボン酸、1,5-ジカルボキシナフタレン、1,6-ジカルボキシナフタレン、1,7-ジカルボキシナフタレン、2,6-ジカルボキシナフタレンなどのジカルボン酸類の一方のカルボキシル基とN-ヒドロキシベンゾトリアゾールやイミダゾール、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドとの反応により得られる活性エステル化合物、これらの芳香族環や炭化水素の水素原子の一部を、炭素数1~10のアルキル基やフルオロアルキル基、ハロゲン原子などで置換した化合物などから得られるが、これらに限定されない。
 本発明で用いることのできる末端封止剤は、以下の方法で容易に検出できる。例えば、末端封止剤が導入されたアルカリ可溶性樹脂を、酸性溶液に溶解し、構成単位であるアミン成分と酸無水物成分に分解し、これをガスクロマトグラフィー(GC)や、NMRにより、本発明に使用された末端封止剤を容易に検出できる。これとは別に、末端封止剤が導入されたアルカリ可溶性樹脂成分を直接、熱分解ガスクロマトグラフ(PGC)や赤外スペクトルおよび13C-NMRスペクトルで測定することによっても、容易に検出できる。
 本発明の耐熱性樹脂は、たとえば、次の方法により合成されるがこれに限定はされない。
 まず、ジカルボン酸を活性カルボン酸基で置換した化合物、または酸二無水物、一般式(1)で表されるジアミン化合物、他の共重合成分を室温で、場合によっては高めた温度で、有機溶剤中に溶解し、次いで加熱して重合させる。反応時の溶液の安定性の観点から、溶解させる順番は溶解性の高いジアミン化合物を先に行うことが好ましい。その後、場合によっては他の共重合成分を加え、末端封止剤となる酸、または酸無水物を加えて重合させる。
 一般式(1)で表されるジアミン化合物以外の脂肪族基を有するジアミンを導入する際、反応は70~200℃で行うことが好ましい。
 ポリイミド前駆体構造は、上記重合法において、酸無水物に由来する構造であり、アミド酸エステルの場合は、上記の重合後、カルボン酸をエステル化剤で反応させることなどによって得られる。
 本発明の耐熱性樹脂は、ポリイミドである場合を含み、該ポリイミドは、例えば、一般式(7)で表される構造を作製する方法を利用してイミド前駆体を得て、これを70~200℃で重合する方法、公知のイミド化反応法を用いてイミド前駆体のイミド環を全て閉環させる方法、また、途中でイミド化反応を停止し、イミド構造を一部導入する方法、さらには、イミド前駆体のイミド環を全て閉環させた既閉環のイミドポリマーと前記ポリイミド前駆体を混合することによってイミド構造を一部導入する方法、を利用して合成することができる。
 本発明に用いられるベンゾオキサゾールは、例えば、ポリアミドを得て、これを150~250℃で重合する方法、酸性触媒を加えて閉環させる方法、を利用して合成することができる。樹脂の重合に用いる有機溶剤としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N,N’-ジメチルプロピレン尿素、N,N-ジメチルイソ酪酸アミド、メトキシ-N,N-ジメチルプロピオンアミドのアミド類、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトンなどの環状エステル類、エチレンカーボネート、プロピレンカーボネートなどのカーボネート類、トリエチレングリコールなどのグリコール類、m-クレゾール、p-クレゾールなどのフェノール類、アセトフェノン、1,3-ジメチル-2-イミダゾリジノン、スルホラン、ジメチルスルホキシド、テトラヒドロフラン、ジメチルスルホキシド、プロピレングリコールモノメチルエーテルアセテート、乳酸エチルなどが挙げられるがこれらに限定されない。
 本発明の耐熱性樹脂は、上記の方法で重合させた後、多量の水またはメタノールおよび水の混合液などに投入し、沈殿させて濾別乾燥し、単離することが好ましい。乾燥温度は40~100℃が好ましく、より好ましくは50~80℃である。この操作によって未反応のモノマーや、2量体や3量体などのオリゴマー成分が除去され、熱硬化後の膜特性を向上させることができる。
 本発明の耐熱性樹脂における、イミド化率は、例えば以下の方法で容易に求めることができる。まず、ポリマーの赤外吸収スペクトルを測定し、ポリイミドに起因するイミド構造の吸収ピーク(1780cm-1付近、1377cm-1付近)の存在を確認する。次に、そのポリマーを350℃で1時間熱処理したもののイミド化率を100%のサンプルとして赤外吸収スペクトルを測定し、熱処理前後の樹脂の1377cm-1付近のピーク強度を比較することによって、熱処理前樹脂中のイミド基の含量を算出し、イミド化率を求める。熱硬化時の閉環率の変化を抑制し、低応力化の効果が得られるため、イミド化率は50%以上が好ましく、80%以上がさらに好ましい。
 本発明の方法により得られる耐熱性樹脂は、樹脂組成物として用いることができる。本発明の方法により得られる耐熱性樹脂、(b)感光性化合物として光酸発生剤を用いた樹脂組成物は、ポジ型感光性樹脂組成物(ポジ型感光性ワニス)として使用することができる。
 また、本発明の方法により得られる樹脂、感光剤として光重合性化合物を用いた樹脂組成物は、ネガ型感光性樹脂組成物(ネガ型感光性ワニス)としてすることができる。
 ネガ型感光性樹脂組成物よりも、ポジ型感光性組成物の方が、解像度に優れるため、微細な加工パターンを形成する用途には適している。
 ポジ型感光性樹脂組成物の光酸発生剤としては、キノンジアジド化合物が好ましく用いられる。
 キノンジアジド化合物としては、ポリヒドロキシ化合物にキノンジアジドのスルホン酸がエステル結合したもの、ポリアミノ化合物にキノンジアジドのスルホン酸がスルホンアミド結合したもの、ポリヒドロキシポリアミノ化合物にキノンジアジドのスルホン酸がエステル結合および/またはスルホンアミド結合したものなどが挙げられる。これらポリヒドロキシ化合物、ポリアミノ化合物、ポリヒドロキシポリアミノ化合物の全ての官能基がキノンジアジドで置換されていなくてもよいが、平均して官能基全体の40モル%以上がキノンジアジドで置換されていることが好ましい。このようなキノンジアジド化合物を用いることで、一般的な紫外線である水銀灯のi線(波長365nm)、h線(波長405nm)、g線(波長436nm)に感光するポジ型の感光性樹脂組成物を得ることができる。
 ポリヒドロキシ化合物として具体的には、Bis-Z、BisP-EZ、TekP-4HBPA、TrisP-HAP、TrisP-PA、TrisP-SA、TrisOCR-PA、BisOCHP-Z、BisP-MZ、BisP-PZ、BisP-IPZ、BisOCP-IPZ、BisP-CP、BisRS-2P、BisRS-3P、BisP-OCHP、メチレントリス-FR-CR、BisRS-26X、DML-MBPC、DML-MBOC、DML-OCHP、DML-PCHP、DML-PC、DML-PTBP、DML-34X、DML-EP、DML-POP、ジメチロール-BisOC-P、DML-PFP、DML-PSBP、DML-MTrisPC、TriML-P、TriML-35XL、TML-BP、TML-HQ、TML-pp-BPF、TML-BPA、TMOM-BP、HML-TPPHBA、HML-TPHAP(以上、商品名、本州化学工業製)、BIR-OC、BIP-PC、BIR-PC、BIR-PTBP、BIR-PCHP、BIP-BIOC-F、4PC、BIR-BIPC-F、TEP-BIP-A、46DMOC、46DMOEP、TM-BIP-A(以上、商品名、旭有機材工業製)、2,6-ジメトキシメチル-4-t-ブチルフェノール、2,6-ジメトキシメチル-p-クレゾール、2,6-ジアセトキシメチル-p-クレゾール、ナフトール、テトラヒドロキシベンゾフェノン、没食子酸メチルエステル、ビスフェノールA、ビスフェノールE、メチレンビスフェノール、BisP-AP(商品名、本州化学工業製)、ノボラック樹脂などを挙げることができるが、これらに限定されない。
 ポリアミノ化合物として具体的には、1,4-フェニレンジアミン、1,3-フェニレンジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィドなどを挙げることができるが、これらに限定されない。
 また、ポリヒドロキシポリアミノ化合物として具体的には、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、3,3’-ジヒドロキシベンジジンなどを挙げることができるが、これらに限定されない。
 これらの中でも、キノンジアジド化合物が、フェノール化合物および4-ナフトキノンジアジドスルホニル基とのエステルを含むことが好ましい。これによりi線露光で高い感度と、より高い解像度を得ることができる。
 本発明の感光性樹脂組成物に用いるキノンジアジド化合物の含有量は、樹脂100質量部に対して、1~50質量部が好ましく、10~40質量部がより好ましい。キノンジアジド化合物の含有量をこの範囲とすることにより、露光部と未露光部のコントラストが得られることでより高感度化を図ることができ、含有量が多い際に発生する残渣がみられないため好ましい。さらに増感剤などを必要に応じて添加してもよい。
 本発明の樹脂組成物は、下記一般式(10)で表される化合物を含有することで、信頼性評価後の硬化後の膜の伸度特性や、金属材料との密着性を向上させる。
Figure JPOXMLDOC01-appb-C000029
 一般式(10)で表される化合物は、酸化防止剤として作用することで、耐熱性樹脂の脂肪族基やフェノール性水酸基の酸化劣化を抑制する。また、金属材料への防錆作用により、金属酸化を抑制することができる。
 一般式(10)中、R13は水素原子または炭素数2以上のアルキル基を表し、R14は炭素数2以上のアルキレン基を表す。R15は、炭素数2以上のアルキレン基、O原子、およびN原子のうち少なくともいずれかを含む1~4価の有機基を示す。kは1~4の整数を示し、耐熱性樹脂と金属材料に同時に作用できることができるため、kは2~4であることがより好ましい。R15としては、アルキル基、シクロアルキル基、アルコキシ基、アルキルエーテル基、アルキルシリル基、アルコキシシリル基、アリール基、アリールエーテル基、カルボキシル基、カルボニル基、アリル基、ビニル基、複素環基、―O―、-NH-、-NHNH-、それらを組み合わせたものなど挙げられ、さらに置換基を有していてもよい。この中でも、現像液への溶解性や金属密着性の点から、アルキルエーテル、-NH-を有することが好ましく、耐熱性樹脂のとの相互作用と金属錯形成による金属密着性の点から-NH-がより好ましい。
 下記一般式(10)で表される化合物は、例としては以下のものが挙げられるが、下記構造に限られない。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
 また、一般式(10)で表される化合物の添加量は、耐熱性樹脂に対し、0.1~10質量部が好ましく、0.5~5質量部がより好ましい。添加量が0.1質量部より少ない場合は、信頼性後の伸度特性や金属材料に対する密着性向上の効果が得られにくく、また10質量部より多い場合は、感光剤との相互作用により、樹脂組成物の感度低下を招く恐れがある。
 本発明の樹脂組成物は、熱架橋剤を含有することが好ましい。具体的には、(d)アルコキシメチル基およびメチロール基のうち少なくともいずれか1つの基を2つ以上有する化合物(以下、(d)化合物と呼称する場合がある)が好ましい。(d)化合物は、アルコキシメチル基を2つ以上有するものであってもよいし、メチロール基を2つ以上有するものであってもよいし、アルコキシメチル基を1つ以上とメチロール基を1つ以上有するものであってもよい。これらの基を2つ以上有することで、樹脂および同種分子と縮合反応して強固な架橋構造体とすることができる。光酸発生剤、または光重合開始剤と併用することで、感度や硬化膜の機械特性の向上のためにより幅広い設計が可能になる。
 このような化合物の好ましい例としては、例えば、DML-PC、DML-PEP、DML-OC、DML-OEP、DML-34X、DML-PTBP、DML-PCHP、DML-OCHP、DML-PFP、DML-PSBP、DML-POP、DML-MBOC、DML-MBPC、DML-MTrisPC、DML-BisOC-Z、DMLBisOCHP-Z、DML-BPC、DML-BisOC-P、DMOM-PC、DMOM-PTBP、DMOM-MBPC、TriML-P、TriML-35XL、TML-HQ、TML-BP、TML-pp-BPF、TML-BPE、TML-BPA、TML-BPAF、TML-BPAP、TMOM-BP、TMOM-BPE、TMOM-BPA、TMOM-BPAF、TMOM-BPAP、HML-TPPHBA、HML-TPHAP、HMOM-TPPHBA、HMOM-TPHAP(以上、商品名、本州化学工業(株)製)、NIKALAC(登録商標) MX-290、NIKALAC MX-280、NIKALAC MX-270、NIKALAC MX-279、NIKALAC MW-100LM、NIKALAC MX-750LM(以上、商品名、(株)三和ケミカル製)が挙げられる。これらを2種以上含有してもよい。この中でも、HMOM-TPHAP、MW-100LMを添加した場合、キュア時のリフローが起こりにくくなり、パターンが高矩形になるためより好ましい。
 (d)アルコキシメチル基およびメチロール基のうち少なくともいずれか1つの基を2つ以上有する化合物の添加量は、本発明の耐熱性樹脂100質量部に対し、10~60質量部が好ましく、20~40質量部がより好ましい。添加量が10質量部より多い場合は、熱架橋剤による架橋密度が高いため、硬化膜の耐薬品性の向上が得られ、また60質量部より少ない場合は、充分な柔軟性を得られるため高い伸度が得られるため好ましい。
 また、本発明の樹脂組成物は、下記一般式(11)で表される構造単位を有する熱架橋剤を含有することで、さらに伸度向上と低応力化が可能である。
Figure JPOXMLDOC01-appb-C000034
 一般式(11)中、R17およびR18は、各々独立に、水素原子またはメチル基を示す。R16は炭素数2以上のアルキレン基を有する2価の有機基であり、直鎖状、分岐状、および環状のいずれでも良い。
 R16は、アルキレン基、シクロアルキレン基、アルキルエーテル基、アルキルシリル基、アルコキシシリル基、アリーレン基、アリールエーテル基、エステル基、カルボニル基、複素環基、それらを組み合わせたものなど挙げられ、さらに置換基を有していてもよい。
 熱架橋剤自体に、柔軟なアルキレン基と剛直な芳香族基を有するため、耐熱性を有しながら、伸度向上と低応力化が可能である。架橋性基としては、アクリル基やメチロール基、アルコキシメチル基、エポキシ基が上げられるがこれに限定されない。この中でも、耐熱性樹脂のフェノール性水酸基と反応し、硬化膜の耐熱性を向上することができる点と、脱水せずに反応することができる点から、エポキシ基が好ましい。
 下記一般式(11)で表される構造単位を含む化合物は、例えば、例としては以下のものが挙げられるが、下記構造に限られない。
Figure JPOXMLDOC01-appb-C000035
(式中nは1~5の整数、mは1~20の整数である。)
 上記構造の中でも、耐熱性と伸度向上を両立する点から、nは1~2、mは3~7であることが好ましい。
 また、必要に応じて、キュア後の収縮残膜率を小さくしない範囲でフェノール性水酸基を有する低分子化合物を含有してもよい。これにより、現像時間を短縮することができる。
 これらの化合物としては、例えば、Bis-Z、BisP-EZ、TekP-4HBPA、TrisP-HAP、TrisP-PA、BisOCHP-Z、BisP-MZ、BisP-PZ、BisP-IPZ、BisOCP-IPZ、BisP-CP、BisRS-2P、BisRS-3P、BisP-OCHP、メチレントリス-FR-CR、BisRS-26X(以上、商品名、本州化学工業(株)製)、BIP-PC、BIR-PC、BIR-PTBP、BIR-BIPC-F(以上、商品名、旭有機材工業(株)製)等が挙げられる。これらを2種以上含有してもよい。
 フェノール性水酸基を有する低分子化合物の含有量は、耐熱性樹脂100質量部に対して、1~40質量部含有することが好ましい。
 本発明の樹脂組成物は、(c)溶剤を含有することが好ましい。溶剤としては、N-メチル-2-ピロリドン、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノン、N,N’-ジメチルプロピレン尿素、N,N-ジメチルイソ酪酸アミド、メトキシ-N,N-ジメチルプロピオンアミドなどの極性の非プロトン性溶媒、テトラヒドロフラン、ジオキサン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテルなどのエーテル類、アセトン、メチルエチルケトン、ジイソブチルケトンなどのケトン類、酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸プロピル、プロピレングリコールモノメチルエーテルアセテート、3-メチル-3-メトキシブチルアセテートなどのエステル類、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メチル-3-メトキシブタノールなどのアルコール類、トルエン、キシレンなどの芳香族炭化水素類等が挙げられる。これらを2種以上含有してもよい。
 溶剤の含有量は(耐熱性樹脂100質量部に対して、組成物を溶解させるため、100質量部以上含有することが好ましく、膜厚1μm以上の塗膜を形成させるため、1,500質量部以下含有することが好ましい。
 本発明の樹脂組成物は、基板との濡れ性を向上させる目的で、界面活性剤、乳酸エチルやプロピレングリコールモノメチルエーテルアセテートなどのエステル類、エタノールなどのアルコール類、シクロヘキサノン、メチルイソブチルケトンなどのケトン類、テトラヒドロフラン、ジオキサンなどのエ-テル類を含有してもよい。
 また、基板との接着性を高めるために、保存安定性を損なわない範囲で本発明の樹脂組成物にシリコン成分として、トリメトキシアミノプロピルシラン、トリメトキシエポキシシラン、トリメトキシビニルシラン、トリメトキシチオールプロピルシランなどのシランカップリング剤を含有してもよい。シランカップリング剤の好ましい含有量は、耐熱性樹脂100質量部に対して0.01~5質量部である。
 本発明の樹脂組成物は、本発明の耐熱性樹脂の以外に、他のアルカリ可溶性樹脂を有することが好ましい。具体的には、シロキサン樹脂、アクリル酸を共重合したアクリルポリマー、ノボラック樹脂、レゾール樹脂、ポリヒドロキシスチレン樹脂、またそれらにメチロール基、アルコキシメチル基やエポキシ基などの架橋基を導入した変性体、それらの共重合ポリマーなどが挙げられる。このような樹脂は、テトラメチルアンモニウムヒドロキシド、コリン、トリエチルアミン、ジメチルアミノピリジン、モノエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムなどのアルカリの溶液に溶解するものである。これらのアルカリ可溶性樹脂を含有することにより、硬化膜の密着性や優れた感度を保ちながら、各アルカリ可溶性樹脂の特性を付与することができる。
 この中でも、感度を向上させる点に加えて、硬化前後の収縮変化率が低いことから低応力化が可能であるため、ノボラック樹脂、レゾール樹脂、ポリヒドロキシスチレン樹脂、またそれらにメチロール基、アルコキシメチル基やエポキシ基などの架橋基を導入した変性体などのフェノール樹脂が好ましい。
 これらの樹脂の好ましい含有量としては、本発明の耐熱性樹脂100質量部に対して、5~200質量部であり、より好ましくは15~150質量部である。
 さらに、本発明の樹脂組成物には、キュア後の収縮率を大きくしない範囲で溶解調整剤を含有してもよい。溶解調整剤としては、ポリヒドロキシ化合物、スルホンアミド化合物、ウレア化合物など、一般にポジ型レジストに溶解調整剤として用いられる化合物であれば、いずれの化合物でも好ましく用いることができる。特に、キノンジアジド化合物を合成する際の原料であるポリヒドロキシ化合物が好ましく用いられる。 
 また本発明の樹脂組成物は、光重合性化合物が配合される場合は、光によって不可溶化するネガ型の感光性を有する樹脂組成物となる。光重合性化合物は、重合性不飽和官能基を含有するものである。重合性不飽和官能基としては例えば、ビニル基、アリル基、アクリロイル基、メタクリロイル基等の不飽和二重結合官能基やプロパルギル等の不飽和三重結合官能基が挙げられる。これらの中でも共役型のビニル基、アクリロイル基およびメタクリロイル基から選ばれた基が重合性の面で好ましい。
 またその官能基が含有される数としては安定性の点から1~4であることが好ましく、それぞれの基は同一でなくとも構わない。また、光重合性化合物は、数平均分子量が30~800のものが好ましい。数平均分子量が30~800の範囲であれば、ポリアミドとの相溶性がよく、樹脂組成物溶液の安定性がよい。
 好ましい光重合性化合物としては、例えば、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジメタクリレート、トリメチロールプロパントリメタクリレート、スチレン、α-メチルスチレン、1,2-ジヒドロナフタレン、1,3-ジイソプロペニルベンゼン、3-メチルスチレン、4-メチルスチレン、2-ビニルナフタレン、ブチルアクリレート、ブチルメタクリレート、イソブチルアクリレート、ヘキシルアクリレート、イソオクチルアクリレート、イソボルニルアクリレート、イソボルニルメタクリレート、シクロヘキシルメタクリレート、1,3-ブタンジオールジアクリレート、1,3-ブタンジオールジメタクリレート、ネオペンチルグリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジアクリレート、1,6-ヘキサンジオールジメタクリレート、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、1,3-ジアクリロイルオキシ-2-ヒドロキシプロパン、1,3-ジメタクリロイルオキシ-2-ヒドロキシプロパン、メチレンビスアクリルアミド、N,N-ジメチルアクリルアミド、N-メチロールアクリルアミド、 2,2,6,6-テトラメチルピペリジニルメタクリレート、2,2,6,6-テトラメチルピペリジニルアクリレート、N-メチル-2,2,6,6-テトラメチルピペリジニルメタクリレート、N-メチル-2,2,6,6-テトラメチルピペリジニルアクリレート、エチレンオキシド変性ビスフェノールAジアクリレート、エチレンオキシド変性ビスフェノールAジメタクリレート、N-ビニルピロリドン、N-ビニルカプロラクタム等が挙げられる。これらは単独でまたは2種類以上を組み合わせて使用される。
 これらのうち、特に好ましく使用できるものとして、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、イソボルニルアクリレート、イソボルニルメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート、メチレンビスアクリルアミド、N,N-ジメチルアクリルアミド、N-メチロールアクリルアミド、 2,2,6,6-テトラメチルピペリジニルメタクリレート、2,2,6,6-テトラメチルピペリジニルアクリレート、N-メチル-2,2,6,6-テトラメチルピペリジニルメタクリレート、N-メチル-2,2,6,6-テトラメチルピペリジニルアクリレート、エチレンオキシド変性ビスフェノールAジアクリレート、エチレンオキシド変性ビスフェノールAジメタクリレート、N-ビニルピロリドン、N-ビニルカプロラクタム等が挙げられる。
 本発明の樹脂組成物における光重合性化合物の含有量は、耐熱性樹脂100質量部に対して、5~200質量部とすることが好ましく、相溶性の点から5~150質量部とすることがより好ましい。光重合性化合物の含有量を5質量部以上とすることで、現像時の露光部の溶出を防ぎ、現像後の残膜率の高い樹脂組成物を得ることができる。また、光重合性化合物の含有量を200質量部以下とすることで、膜形成時の膜の白化を抑えることができる。
 本発明の樹脂組成物の粘度は、2~5,000mPa・sが好ましい。粘度は、E 型回転粘度計を用いて測定することができる。粘度が2mPa・s以上となるように固形分濃度を調整することにより、所望の膜厚を得ることが容易になる。一方、粘度が5,000mPa・s以下であれば、均一性の高い塗布膜を得ることが容易になる。このような粘度を有する樹脂組成物は、例えば固形分濃度を5~60質量%にすることで容易に得ることができる。
 次に、本発明の樹脂組成物を用いた硬化膜としての耐熱性樹脂パターンを形成する方法について説明する。
 まず、本発明の樹脂組成物を基板に塗布する。基板としては、シリコンウエハ、セラミックス類、ガリウムヒ素、有機系回路基板、無機系回路基板、シリコンウエハとエポキシ樹脂などの封止樹脂の複合基板、およびこれらの基板に回路の構成材料が配置されたものなどが挙げられるが、これらに限定されない。有機系回路基板の例としては、ガラス布・エポキシ銅張積層板などのガラス基板銅張積層板、ガラス不織布・エポキシ銅張積層板などのコンポジット銅張積層板、仮張りキャリア基板、ポリエーテルイミド樹脂基板、ポリエーテルケトン樹脂基板、ポリサルフォン系樹脂基板などの耐熱・熱可塑性基板、ポリエステル銅張フィルム基板、ポリイミド銅張フィルム基板などのフレキシブル基板が挙げられる。また、無機系回路基板の例は、ガラス基板、アルミナ基板、窒化アルミニウム基板、炭化ケイ素基板などのセラミック基板、アルミニウムベース基板、鉄ベース基板などの金属系基板が挙げられる。回路の構成材料の例は、銀、金、銅などの金属を含有する導体、無機系酸化物などを含有する抵抗体、ガラス系材料および/または樹脂などを含有する低誘電体、樹脂や高誘電率無機粒子などを含有する高誘電体、ガラス系材料などを含有する絶縁体などが挙げられる。塗布方法としてはスピナーを用いた回転塗布、スプレー塗布、ロールコーティング、スクリーン印刷、ブレードコーター、ダイコーター、カレンダーコーター、メニスカスコーター、バーコーター、ロールコーター、コンマロールコーター、グラビアコーター、スクリーンコーター、スリットダイコーターなどの方法が挙げられる。また、塗布膜厚は、塗布手法、組成物の固形分濃度、粘度などによって異なるが、通常、乾燥後の膜厚が0.1~150μmになるように塗布される。感光性未硬化シートとする場合は、その後乾燥させて剥離する。
 シリコンウエハなどの基板と樹脂組成物との接着性を高めるために、基板を前述のシランカップリング剤で前処理することもできる。例えば、シランカップリング剤をイソプロパノール、エタノール、メタノール、水、テトラヒドロフラン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、乳酸エチル、アジピン酸ジエチルなどの溶媒に0.5~20質量%溶解させた溶液を、スピンコート、浸漬、スプレー塗布、蒸気処理などにより表面処理をする。場合によっては、その後50℃~300℃までの熱処理を行い、基板とシランカップリング剤との反応を進行させる。   
 次に樹脂組成物または未硬化シートを基板上に塗布またはラミネートした基板を乾燥して、感光性樹脂組成物被膜を得る。乾燥はオーブン、ホットプレート、赤外線などを使用し、50℃~150℃の範囲で1分間~数時間行うことが好ましい。
 次に、この樹脂組成物被膜上に所望のパターンを有するマスクを通して化学線を照射し、露光する。露光に用いられる化学線としては紫外線、可視光線、電子線、X線などがあるが、本発明では水銀灯のi線(365nm)、h線(405nm)、g線(436nm)を用いることが好ましい。
 パターンを形成するには、露光後、現像液を用いて、ポジ型の場合は露光部を、ネガ型の場合は未露光部を除去する。現像液としては、テトラメチルアンモニウムヒドロキシド、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミンなどのアルカリ性を示す化合物の溶液が好ましい。また場合によっては、これらのアルカリ溶液にN-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトン、ジメチルアクリルアミドなどの極性溶媒、メタノール、エタノール、イソプロパノールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトンなどのケトン類などを単独あるいは数種を組み合わせたものを添加してもよい。現像は上記の現像液を被膜面にスプレーする、現像液中に浸漬する、あるいは浸漬しながら超音波をかける、基板を回転させながら現像液をスプレーするなどの方法によって行うことができる。現像後は水にてリンス処理をすることが好ましい。ここでもエタノール、イソプロピルアルコールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類などを水に加えてリンス処理をしてもよい。
 現像後、150℃~500℃の温度を加えて熱架橋反応を進行させる。架橋により、耐熱性および耐薬品性を向上することができる。この加熱処理の方法は、温度を選び、段階的に昇温する方法や、ある温度範囲を選び連続的に昇温しながら5分間~5時間実施する方法を選択できる。前者の一例として、130℃、200℃で各30分ずつ熱処理する方法が挙げられる。後者の一例として室温より400℃まで2時間かけて直線的に昇温するなどの方法が挙げられる。本発明においてのキュア条件としては150℃以上350℃以下が好ましいが、本発明は特に低温硬化性において優れた硬化膜を提供するものであるため、160℃以上250℃以下がより好ましく、半導体装置への影響から160℃以上190℃以下がさらに好ましい。
 本発明の樹脂組成物により形成した耐熱性樹脂被膜は、半導体装置や多層配線板等の電子部品、有機EL表示装置に使用することができる。具体的には、半導体のパッシベーション膜、半導体素子の表面保護膜、層間絶縁膜、高密度実装用多層配線の層間絶縁膜、インダクタやSAWフィルターなどの電子部品の層間絶縁膜、有機電界発光素子(有機EL)の絶縁層や平坦層などの用途に好適に用いられるが、これに制限されず、様々な構造をとることができる。
 次に、本発明の樹脂組成物を用いた、バンプを有する半導体装置への応用例について図面を用いて説明する(応用例1)。図1は、本発明のバンプを有する半導体装置のパット部分の拡大断面図である。図1に示すように、シリコンウエハ1には入出力用のアルミニウム(以下、Al)パッド2上にパッシベーション膜3が形成され、そのパッシベーション膜3にビアホールが形成されている。更に、この上に本発明の樹脂組成物によるパターンとして絶縁膜4が形成され、更に、金属(Cr、Ti等)膜5がAlパッド2と接続されるように形成され、電解めっき等で金属配線(Al、Cu等)6が形成されている。金属膜5はハンダバンプ10の周辺をエッチングして、各パッド間を絶縁する。絶縁されたパッドにはバリアメタル8とハンダバンプ10が形成されている。絶縁膜7の樹脂組成物はスクライブライン9において、厚膜加工を行うことができる。樹脂組成物に柔軟成分を導入した場合は、ウエハの反りが小さいため、露光やウエハの運搬を高精度に行うことができる。また、本発明の樹脂は高伸度性にも優れるため、樹脂自体が変形することで、実装時も封止樹脂からの応力を緩和することできるため、バンプや配線、low-k層のダメージを防ぎ、高信頼性の半導体装置を提供できる。
 次に、半導体装置の詳細な作製方法について図2に記す。図2の2aに示すように、シリコンウエハ1に入出力用のAlパッド2、さらにパッシベーション膜3を形成させ、本発明の樹脂組成物によるパターンとして絶縁膜4を形成させる。続いて、図2の2bに示すように、金属(Cr、Ti等)膜5をAlパッド2と接続されるように形成させ、図2の2cに示すように、金属配線6をメッキ法で成膜する。次に、図2の2d’に示すように、本発明の樹脂組成物を塗布し、フォトリソ工程を経て図2の2dに示すようなパターンとして絶縁膜7を形成する。絶縁膜7の上にさらに配線(いわゆる再配線)を形成することができる。2層以上の多層配線構造を形成する場合は、上記の工程を繰り返して行うことにより、2層以上の再配線が、本発明の樹脂組成物から得られた層間絶縁膜により分離された多層配線構造を形成することができる。この際、形成された絶縁膜は複数回にわたり各種薬液と接触することになるが、本発明の樹脂組成物から得られた絶縁膜は密着性と耐薬品性に優れているために、良好な多層配線構造を形成することができる。多層配線構造の層数には上限はないが、10層以下のものが多く用いられる。
 次いで、図2の2eおよび2fに示すように、バリアメタル8、ハンダバンプ10を形成する。そして、最後のスクライブライン9に沿ってダイシングしてチップ毎に切り分ける。
 次に、本発明の樹脂組成物を用いた、バンプを有する半導体装置への応用例2について図面を用いて説明する。図3、本発明の絶縁膜を有する半導体装置のパット部分の拡大断面図であり、ファンアウトウエハレベルパッケージ(ファンアウトWLP)とよばれる構造である。上記の応用例1と同様にAlパッド2、パッシベーション膜3が形成されたシリコンウエハ1はダイシングされチップごとに切り分けられた後、樹脂11で封止される。この封止樹脂11とチップ上に渡り、本発明の樹脂組成物によるパターンとして絶縁膜4が形成され、更に、金属(Cr、Ti等)膜5、金属配線6が形成される。その後、チップ外の封止樹脂上に形成された絶縁膜7の開口部にバリアメタル8とハンダバンプ10が形成される。ファンアウトWLPは、半導体チップの周辺にエポキシ樹脂等の封止樹脂を用いて拡張部分を設け、半導体チップ上の電極から該拡張部分まで再配線を施し、拡張部分にもはんだボールを搭載することで必要な端子数を確保した半導体パッケージである。ファンアウトWLPにおいては、半導体チップの主面と封止樹脂の主面とが形成する境界線を跨ぐように配線が設置される。すなわち、金属配線が施された半導体チップおよび封止樹脂という2種以上の材料からなる基材の上に層間絶縁膜が形成され、該層間絶縁膜の上に配線が形成される。
 また、ファンアウトWLPは、仮貼り材料が配置された支持基板上に再配線間の層間絶縁膜として配置し、その上にシリコンチップと封止樹脂を配置後、仮貼り材料が配置された支持基板と再配線を剥離するRDL-ファーストと呼ばれる工程で作成されるタイプのパッケージが存在する。このタイプのパッケージでは、支持基板として、シリコンウエハよりも反りやすいガラス基板などが使用されることが多いため、絶縁膜が低応力であることが好ましい。 RDLファーストにおける半導体装置の作製法について図5を用いて記載する。図5の3aにおいて支持基板20上にTiなどのバリアメタルをスパッタリング法で形成し、更にその上にCuシード(シード層)をスパッタリング法で形成後、メッキ法によって電極パッド21を形成する。ついでの3bの工程において本発明の感光性樹脂組成物を塗布し、フォトリソ工程を経て、パターン形成された絶縁膜22を形成する。ついで3cの工程において再びシード層をスパッタリング法で形成し、メッキ法によって金属配線23(再配線層)を形成する。以降半導体チップの導通部ピッチと金属配線のピッチを合わせるため、3bおよび3cの工程を繰り返し行い、3dに示すような多層配線構造を形成する。ついで3eの工程において再び本発明の感光性樹脂組成物を塗布し、フォトリソ工程を経て、パターン形成された絶縁膜を形成後、Cuポスト24をメッキ法にて形成する。ここでCuポストのピッチと半導体チップの導通部ピッチは等しくなる。すなわち、金属配線ピッチを狭化しながら再配線層を多層化するため、図3の3eに示すように、層間絶縁膜の膜厚は、層間絶縁膜1>層間絶縁膜2>層間絶縁膜3>層間絶縁膜4>となる。ついで3fの工程においてハンダバンプ25を介して半導体チップ26を接続し、多層配線構造を有するRDLファーストでの半導体装置を得ることができる。
 これ以外にも、半導体チップをガラスエポキシ樹脂基板に形成された凹部に埋め込んだタイプの半導体パッケージでは、半導体チップの主面とプリント基板の主面との境界線を跨ぐように配線が設置される。この態様においても、2種以上の材料からなる基材の上に層間絶縁膜が形成され、該層間絶縁膜の上に配線が形成される。本発明の樹脂組成物を硬化してなる硬化膜は、高伸度と、金属配線が施された半導体チップに高い密着力を有するとともに、エポキシ樹脂等へ封止樹脂にも高い密着力を有するため、2種以上の材料からなる基材の上に設ける層間絶縁膜として好適に用いられる。
 また、ファンアウトWLPにおいては、再配線の微細化が進んでいる。本発明の樹脂組成物の硬化膜は、金属配線の幅と隣り合う配線同士の間隔が5μm以下の配線にも高い金属密着性を有するため、微細な再配線にも好適に用いられる。 この構造では、再配線層が、半導体チップに近づくにつれ、金属配線の幅と隣り合う配線同士の間隔が狭くなり、また、層間絶縁膜の厚みが、半導体チップに対して近づくにつれ、薄くなることで、チップの高集積化に対応している。このため、高解像度化とともに、段差のある再配線上での面内均一性は重要な課題となっている。 
次に、本発明の樹脂組成物を用いた、インダクタ装置のコイル部品への応用例3について図面を用いて説明する。図4本発明の絶縁膜を有するコイル部品の断面図である。図3に示すように、基板12には絶縁膜13、その上にパターンとして絶縁膜14が形成される。基板12としてはフェライト等が用いられる。本発明の樹脂組成物は絶縁膜13と絶縁膜14のどちらに使用してもよい。このパターンの開口部に金属(Cr、Ti等)膜15が形成され、この上に金属配線(Ag、Cu等)16がめっき形成される。金属配線16(Ag、Cu等)はスパイラル上に形成されている。13~16の工程を複数回繰り返し、積層させることでコイルとしての機能を持たせることができる。最後に金属配線16(Ag、Cu等)は金属配線17(Ag、Cu等)によって電極18に接続され、封止樹脂19により封止される。
本発明の樹脂組成物は有機EL表示装置にも好適に用いられる。該有機EL表示装置は、基板上に、駆動回路、平坦化層、第1電極、絶縁層、発光層および第2電極を有し、平坦化層および/または絶縁層が本発明の硬化膜からなる。有機EL発光材料は水分による劣化を受けやすく、発光画素の面積に対する発光部の面積率低下など、悪影響を与える場合があるが、本発明の硬化膜は吸水率が低いため、安定した駆動および発光特性が得られる。アクティブマトリックス型の表示装置を例に挙げると、ガラスや各種プラスチックなどの基板上に、TFTと、TFTの側方部に位置しTFTと接続された配線とを有し、その上に凹凸を覆うようにして平坦化層を有し、さらに平坦化層上に表示素子が設けられている。表示素子と配線とは、平坦化層に形成されたコンタクトホールを介して接続される。
 図6にTFT基板の一例の断面図を示す。基板32上に、ボトムゲート型またはトップゲート型のTFT(薄膜トランジスタ)が行列状に設けられており、このTFT27を覆う状態で絶縁層29が形成されている。また、この絶縁層29上にTFT27に接続された配線28が設けられている。さらに絶縁層29上には、配線28を埋め込む状態で平坦化層30が設けられている。平坦化層30には、配線28に達するコンタクトホール33が設けられている。そして、このコンタクトホール33を介して、配線28に接続された状態で、平坦化層30上にITO(透明電極)31が形成されている。ここで、ITO31は、表示素子(例えば有機EL素子)の電極となる。そしてITO31の周縁を覆うように絶縁層34が形成される。有機EL素子は、基板32と反対側から発光光を放出するトップエミッション型でもよいし、基板32側から光を取り出すボトムエミッション型でもよい。このようにして、各有機EL素子にこれを駆動するためのTFT27を接続したアクティブマトリックス型の有機EL表示装置が得られる。
かかる絶縁層29、平坦化層30および/または絶縁層34は、前述の通り本発明の樹脂組成物または樹脂シートからなる感光性樹脂膜を形成する工程、前記感光性樹脂膜を露光する工程、露光した感光性樹脂膜を現像する工程および現像した感光性樹脂膜を加熱処理する工程により形成することができる。これらの工程を有する製造方法より、有機EL表示装置を得ることができる。
 以下、実施例を挙げて本発明を説明するが、本発明はこれらの例によって限定されるものではない。まず、各実施例および比較例における評価方法について説明する。評価には、あらかじめ1μmのポリテトラフルオロエチレン製のフィルター(住友電気工業(株)製)でろ過した樹脂組成物(以下ワニスと呼ぶ)を用いた。
 (1)重量平均分子量測定
 耐熱性樹脂の分子量は、GPC(ゲルパーミエーションクロマトグラフィー)装置Waters2690-996(日本ウォーターズ(株)製)を用い、展開溶媒をN-メチル-2-ピロリドン(以降NMPと呼ぶ)として測定し、ポリスチレン換算で重量平均分子量(Mw)を計算した。
 (2)ポリヒドロキシアミドの閉環率、ポリイミド化率
閉環率の算出は、ワニスをシリコンウエハ上にスピンコートして、120℃で3分間乾燥し、膜厚5μmの塗布膜を得た。さらにこの塗布膜を180℃で10分、または300~350℃で10分加熱して硬化膜(180℃で加熱した硬化膜(A)、300~350℃で加熱した硬化膜(B))を得た。これらの硬化膜(A)、および硬化膜(B)の赤外吸収スペクトルを測定し、1050cm-1付近のC-O伸縮振動に起因するピークの吸光度を求めた。硬化膜(B)のポリヒドロキシアミドの閉環率を100%として、硬化膜(A)の閉環率を算出した。
 熱硬化時の溶解性を抑制し、高耐薬品性の効果が得られるため、ポリヒドロキシアミドの閉環率は30%以上が好ましい。
 また、イミド化率については、ポリイミドに起因するイミド構造の吸収ピーク(1377cm-1)付近のCの吸光度を求めた。硬化膜(B)のイミド化率を100%として、硬化膜(A)のイミド化率を算出した。
 熱硬化時の溶解性を抑制し、高耐薬品性の効果が得られるため、イミド化率は50%以上が好ましく、80%以上がより好ましい。
 (3)耐薬品性の評価
 ワニスを6インチのシリコンウエハ上に塗布した。塗布現像装置Mark-7を用い、120℃で3分間プリベークした後の膜厚が11μmとなるようにした。塗布方法はスピンコート法を用いた。プリベークした後、イナートオーブンCLH-21CD-S(光洋サーモシステム(株)製)を用いて、酸素濃度20ppm以下で3.5℃/分で180℃まで昇温し、180℃で1時間加熱処理を行なった。温度が50℃以下になったところでウエハを取り出し、膜厚を測定後、60℃でレジスト剥離液ST-120(東京応化工業製)の溶剤にそれぞれウエハを30分浸漬した。溶剤から取り出したウエハを純水で洗浄した後、再度膜厚を測定し、その変化率の絶対値が20%を超えるものや硬化膜が剥離したものを不十分(C)、20%以内であって10%を超えるものを可(B)、10%以内であるものをより良好(A)とした。
 (4)伸度性評価(高伸度性)
 ワニスを8インチのシリコンウエハ上に、120℃で3分間のプリベーク後の膜厚が11μmとなるように塗布現像装置ACT-8を用いてスピンコート法で塗布およびプリベークした後、イナートオーブンCLH-21CD-S(光洋サーモシステム(株)製)を用いて、酸素濃度20ppm以下で3.5℃/分で190℃まで昇温し、180℃で1時間加熱処理を行なった。温度が50℃以下になったところでウエハを取り出し、45質量%のフッ化水素酸に5分間浸漬することで、ウエハより樹脂組成物の膜を剥がした。この膜を幅1cm、長さ9cmの短冊状に切断し、テンシロンRTM-100((株)オリエンテック製)を用いて、室温23.0℃、湿度45.0%RH下で引張速度50mm/分で引っ張り、破断点伸度の測定を行なった。測定は1検体につき10枚の短冊について行ない、結果から上位5点の平均値を求めた。破断点伸度の値が、破断点伸度の値が、90%以上のものを非常に良好(A)、70%以上90%未満のものを良好(B)、40%以上70%未満のものを可(C)、40%未満のものを不十分(D)とした。
 <合成例1 一般式(1)で表される、ジアミン化合物(A-1)の合成>
 ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン18.3g(0.05モル)をアセトン100ml、プロピレンオキシド17.4g(0.3モル)に溶解させ、-15℃に冷却した。ここに2-(4―ニトロフェノキシ)アセチルクロライド20.41g(0.11モル)をアセトン100mlに溶解させた溶液を滴下した。滴下終了後、-15℃で4時間反応させ、その後室温に戻した。溶液をロータリーエバポレーターで濃縮し、得られた固体をテトラヒドロフランとエタノールの溶液で再結晶した。
 再結晶して集めた固体をエタノール100mlとテトラヒドロフラン300mlに溶解させて、5%パラジウム-炭素を2g加えて、激しく撹拌させた。ここに水素を風船で導入して、還元反応を室温で行った。約2時間後、風船がこれ以上しぼまないことを確認して反応を終了させた。反応終了後、ろ過して触媒であるパラジウム化合物を除き、ロータリーエバポレーターで濃縮し、ジアミン(A-1)を得た。
FT-IR/cm-1:3350~3005、2938、2875、1650、1604,1550、1501、1420、1299、1130、820。
H-NMR(DMSO):δ ( p p m ):10.3(s、2H)、9.2(s、2H)、8.0(s、2H)、6.5-6.9(m、12H)、4.6(s、4H)、4.2(s、4H)。
 <合成例2 一般式(1)で表される、ジアミン化合物(A-2)の合成>
 ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン18.3g(0.05モル)をアセトン100ml、プロピレンオキシド17.4g(0.3モル)に溶解させ、-15℃に冷却した。ここに6-(4―ニトロフェノキシ)ヘキサノイルクロライド26.6g(0.11モル)をアセトン100mlに溶解させた溶液を滴下した。滴下終了後、-15℃で4時間反応させ、その後室温に戻した。溶液をロータリーエバポレーターで濃縮し、得られた固体をテトラヒドロフランとエタノールの溶液で再結晶した。
 再結晶して集めた固体をエタノール100mlとテトラヒドロフラン300mlに溶解させて、5%パラジウム-炭素を2g加えて、激しく撹拌させた。ここに水素を風船で導入して、還元反応を室温で行った。約2時間後、風船がこれ以上しぼまないことを確認して反応を終了させた。反応終了後、ろ過して触媒であるパラジウム化合物を除き、ロータリーエバポレーターで濃縮し、ジアミン(A-2)を得た。
FT-IR/cm-1:3350~3005、2940、2880、1650、1604,1550、1501、1420、1299、1130、820。
H-NMR(DMSO):δ ( p p m ):10.3(s、2H)、9.2(s、2H)、8.0(s、2H)、6.5-6.9(m、12H)、4.6(s、4H)、3.8(t、4H)、2.5(t、4H)、1.4-1.7(m、12H)。
 <合成例3 一般式(1)で表される、ジアミン化合物(A-3)の合成>
 ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン18.3g(0.05モル)をアセトン100ml、プロピレンオキシド17.4g(0.3モル)に溶解させ、-15℃に冷却した。ここに3-(1、3―ジオキソイソインドリンー2-イル)プロパノイルクロライド26.1g(0.11モル)をアセトン100mlに溶解させた溶液を滴下した。滴下終了後、-15℃で4時間反応させ、その後室温に戻した。溶液をロータリーエバポレーターで濃縮し、得られた固体をテトラヒドロフランとエタノールの溶液で再結晶した。
 再結晶して集めた固体をエタノール400mlに溶解させて、窒素雰囲気下で還流した。この懸濁物に、80%ヒドラジン一水和物3.76g(0.06ミリモル)のエタノール10ml溶液を15分で滴下した後、4時間還流した。反応液を室温まで冷却後、濾過し、濾過物(白色粉体、フタル酸ヒドラジドが主成分)をエタノール25mlで1回、50mlで2回リンス洗浄し、濾液とリンス液を合わせた。この液に若干の濁りが認められたので濾過して清浄液を得た。この濾液を、ロータリーエバポレーターで濃縮し、ジアミン(A-3)を得た。
FT-IR/cm-1:3350~3005、2943、2900、1650、1604,1550、1501、1420、1299、1130、820。
H-NMR(DMSO):δ ( p p m ):10.3(s、2H)、9.2(s、2H)、8.0(s、2H)、6.5-6.9(m、4H)、4.6(s、4H)、4.0(m、4H)、2.5(t、4H)。
 <合成例4 ポリイミド前駆体(I)の合成>
 乾燥窒素気流下、合成例1で得られた(A-1)33.21g(0.05モル)をN-メチル-2-ピロリドン(NMP)80gに溶解させた。ここに3,3’,4,4’-ジフェニルエーテルテトラカルボン酸無水物(ODPA)13.95g(0.045モル)をNMP10gとともに加えて、40℃で1時間反応させた。その後、末端封止剤として5-ノルボルネン-2,3-ジカルボン酸無水物(NA)1.64g(0.01モル)を加え、さらに40℃で1時間反応させた。その後、N,N’-ジメチルホルムアミドジメチルアセタール12.50g(0.11モル)をNMP15gで希釈した溶液を10分かけて滴下した。滴下後、40℃で2時間撹拌した。反応終了後、溶液を水2Lに投入して、ポリマー固体の沈殿をろ過で集めた。ポリマー固体を50℃の真空乾燥機で72時間乾燥しポリイミド前駆体の(I)を得た。重量平均分子量は32,300であった。
 <合成例5 ポリイミド前駆体(II)の合成>
 乾燥窒素気流下、合成例2で得られた(A-2)34.63g(0.05モル)をN-メチル-2-ピロリドン(NMP)80gに溶解させた。ここに3,3’,4,4’-ジフェニルエーテルテトラカルボン酸無水物(ODPA)13.95g(0.045モル)をNMP10gとともに加えて、40℃で1時間反応させた。その後、末端封止剤として、5-ノルボルネン-2,3-ジカルボン酸無水物(NA)1.64g(0.01モル)を加え、さらに40℃で1時間反応させた。その後、N,N’-ジメチルホルムアミドジメチルアセタール12.50g(0.11モル)をNMP15gで希釈した溶液を10分かけて滴下した。滴下後、40℃で2時間撹拌した。反応終了後、溶液を水2Lに投入して、ポリマー固体の沈殿をろ過で集めた。ポリマー固体を50℃の真空乾燥機で72時間乾燥しポリイミド前駆体の(II)を得た。重量平均分子量は35,300であった。
 <合成例6 ポリイミド前駆体(III)の合成>
 乾燥窒素気流下、合成例3で得られた(A-3)25.41g(0.05モル)をN-メチル-2-ピロリドン(NMP)80gに溶解させた。ここに3,3’,4,4’-ジフェニルエーテルテトラカルボン酸無水物(ODPA)13.95g(0.045モル)をNMP10gとともに加えて、40℃で1時間反応させた。その後、末端封止剤として、5-ノルボルネン-2,3-ジカルボン酸無水物(NA)1.64g(0.01モル)を加え、さらに40℃で1時間反応させた。その後、N,N’-ジメチルホルムアミドジメチルアセタール12.50g(0.11モル)をNMP15gで希釈した溶液を10分かけて滴下した。滴下後、40℃で2時間撹拌した。反応終了後、溶液を水2Lに投入して、ポリマー固体の沈殿をろ過で集めた。ポリマー固体を50℃の真空乾燥機で72時間乾燥しポリイミド前駆体の(III)を得た。重量平均分子量は29,400であった。
 <合成例7 ポリヒドロキシアミド(IV)の合成>
 乾燥窒素気流下、合成例2で得られた(A-2)34.63g(0.05モル)、をNMP100gに溶解させた。ここに、酸A(13.51g、0.045モル)、5-ノルボルネン-2,3-ジカルボン酸無水物(NA)1.64g(0.01モル)をNMP25gとともに加えて、85℃で3時間反応させた。反応終了後、室温まで冷却し、酢酸(13.20g、0.25モル)をNMP25gとともに加えて、室温で1時間撹拌した。撹拌終了後、溶液を水1.5Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の通風乾燥機で3日間乾燥し、ポリヒドロキシアミドの(IV)を得た。重量平均分子量は37,400であった。
 <合成例8 ポリヒドロキシアミドーポリイミド共重合体(V)の合成>
 乾燥窒素気流下、合成例2で得られた(A-2)34.63g(0.05モル)、をNMP100gに溶解させた。ここに、酸A(6.76g、0.023モル)、ODPA6.98g(0.023モル)、5-ノルボルネン-2,3-ジカルボン酸無水物(NA)1.64g(0.01モル)をNMP25gとともに加えて、85℃で3時間反応させた。反応終了後、室温まで冷却し、酢酸(13.20g、0.25モル)をNMP25gとともに加えて、室温で1時間撹拌した。撹拌終了後、溶液を水1.5Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の通風乾燥機で3日間乾燥し、ポリヒドロキシアミドーポリイミド共重合体(V)を得た。重量平均分子量は35,500であった。
 <合成例9 ポリヒドロキシアミドーポリイミド共重合体(VI)の合成>
 乾燥窒素気流下、合成例2で得られた(A-2)17.32g(0.025モル)、BAHF9.16g(0.025モル)をNMP100gに溶解させた。ここに、酸A(6.76g、0.023モル)、ODPA6.98g(0.023モル)、5-ノルボルネン-2,3-ジカルボン酸無水物(NA)1.64g(0.01モル)をNMP25gとともに加えて、85℃で3時間反応させた。反応終了後、室温まで冷却し、酢酸(13.20g、0.25モル)をNMP25gとともに加えて、室温で1時間撹拌した。撹拌終了後、溶液を水1.5Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の通風乾燥機で3日間乾燥し、ポリヒドロキシアミドーポリイミド共重合体(VI)を得た。重量平均分子量は37,200は.1.9であった。
 <合成例10 ポリヒドロキシアミドーポリイミド共重合体(VII)の合成>
 乾燥窒素気流下、合成例2で得られた(A-2)17.32g(0.025モル)、BAHF7.33g(0.020モル)、RT-1000(5.0g、0.005モル)をNMP100gに溶解させた。ここに、酸A(6.76g、0.023モル)、ODPA6.98g(0.023モル)、5-ノルボルネン-2,3-ジカルボン酸無水物(NA)1.64g(0.01モル)をNMP25gとともに加えて、85℃で3時間反応させた。反応終了後、室温まで冷却し、酢酸(13.20g、0.25モル)をNMP25gとともに加えて、室温で1時間撹拌した。撹拌終了後、溶液を水1.5Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の通風乾燥機で3日間乾燥し、ポリヒドロキシアミドーポリイミド共重合体(VII)を得た。重量平均分子量は39,200であった。
 <合成例11 ポリイミド前駆体(VIII)の合成>
 乾燥窒素気流下、BAHF18.31g(0.05モル)をN-メチル-2-ピロリドン(NMP)80gに溶解させた。ここに3,3’,4,4’-ジフェニルエーテルテトラカルボン酸無水物(ODPA)13.95g(0.045モル)をNMP10gとともに加えて、40℃で1時間反応させた。その後、末端封止剤として、5-ノルボルネン-2,3-ジカルボン酸無水物(NA)1.64g(0.01モル)を加え、さらに40℃で1時間反応させた。その後、N,N’-ジメチルホルムアミドジメチルアセタール12.50g(0.11モル)をNMP15gで希釈した溶液を10分かけて滴下した。滴下後、40℃で2時間撹拌した。反応終了後、溶液を水2Lに投入して、ポリマー固体の沈殿をろ過で集めた。ポリマー固体を50℃の真空乾燥機で72時間乾燥しポリイミド前駆体(VIII)を得た。重量平均分子量は29,500であった。
 <合成例12 ポリイミド前駆体(IX)の合成>
 乾燥窒素気流下、HFHA30.23g(0.05モル)をN-メチル-2-ピロリドン(NMP)80gに溶解させた。ここに3,3’,4,4’-ジフェニルエーテルテトラカルボン酸無水物(ODPA)13.95g(0.045モル)をNMP10gとともに加えて、40℃で1時間反応させた。その後、末端封止剤として、5-ノルボルネン-2,3-ジカルボン酸無水物(NA)1.64g(0.01モル)を加え、さらに40℃で1時間反応させた。その後、N,N’-ジメチルホルムアミドジメチルアセタール12.50g(0.11モル)をNMP15gで希釈した溶液を10分かけて滴下した。滴下後、40℃で2時間撹拌した。反応終了後、溶液を水2Lに投入して、ポリマー固体の沈殿をろ過で集めた。ポリマー固体を50℃の真空乾燥機で72時間乾燥しポリイミド前駆体(IX)を得た。重量平均分子量は29,500であった。
 <合成例13 ポリヒドロキシアミド(X)の合成>
 乾燥窒素気流下、BAHF18.31g(0.05モル)をNMP100gに溶解させた。ここに、ドデカン二酸ジクロリド(酸B)14.67g(0.045モル)をNMP25gとともに加えて、85℃で3時間反応させた。反応終了後、室温まで冷却し、酢酸(13.20g、0.25モル)をNMP25gとともに加えて、室温で1時間撹拌した。撹拌終了後、溶液を水1.5Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の通風乾燥機で3日間乾燥し、ポリヒドロキシアミド(X)を得た。重量平均分子量は31,400であった。
 合成例で使用したジアミン(A-1)、(A-2)、(A-3)、HFHA、酸Aは以下のとおりである。
 <合成例14 一般式(1)で表される、ジアミン化合物(A-4)の合成>
 ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン18.3g(0.05モル)をアセトン100ml、プロピレンオキシド17.4g(0.3モル)に溶解させ、-15℃に冷却した。ここに3-(2-(2-(2-(1,3-ジオキソイソインドリン-2-イル)エトキシ)エトキシ)エトキシ)プロピルクロライド 40.6g(0.11モル)をアセトン100mlに溶解させた溶液を滴下した。滴下終了後、-15℃で4時間反応させ、その後室温に戻した。溶液をロータリーエバポレーターで濃縮し、得られた固体をテトラヒドロフランとエタノールの溶液で再結晶した。
 再結晶して集めた固体をエタノール400mlに溶解させて、窒素雰囲気下で還流した。この懸濁物に、80%ヒドラジン一水和物3.76g(0.06ミリモル)のエタノール10ml溶液を15分で滴下した後、4時間還流した。反応液を室温まで冷却後、濾過し、濾過物(白色粉体、フタル酸ヒドラジドが主成分)をエタノール25mlで1回、50mlで2回リンス洗浄し、濾液とリンス液を合わせた。この液に若干の濁りが認められたので濾過して清浄液を得た。この濾液を、ロータリーエバポレーターで濃縮し、ジアミン(A-4)を得た。
FT-IR/cm-1:3350~3005、2943、2900、1650、1604,1550、1501、1420、1299、1130、820。
H-NMR(DMSO): δ ( p p m ):10.3(s、2H)、9.2(s、2H)、8.0(s、2H)、6.5-6.9(m、4H)、4.6(s、4H)、4.3-4.5(4.0(m、24H)、2.3(t、4H)。
 <合成例15 ポリイミド前駆体(XI)の合成>
 乾燥窒素気流下、合成例14で得られた(A-4)38.61g(0.05モル)をN-メチル-2-ピロリドン(NMP)80gに溶解させた。ここに3,3’,4,4’-ジフェニルエーテルテトラカルボン酸無水物(ODPA)13.95g(0.045モル)をNMP10gとともに加えて、40℃で1時間反応させた。その後、末端封止剤として、5-ノルボルネン-2,3-ジカルボン酸無水物(NA)1.64g(0.01モル)を加え、さらに40℃で1時間反応させた。その後、N,N’-ジメチルホルムアミドジメチルアセタール12.50g(0.11モル)をNMP15gで希釈した溶液を10分かけて滴下した。滴下後、40℃で2時間撹拌した。反応終了後、溶液を水2Lに投入して、ポリマー固体の沈殿をろ過で集めた。ポリマー固体を50℃の真空乾燥機で72時間乾燥しポリイミド前駆体の(III)を得た。重量平均分子量は45,300であった。
Figure JPOXMLDOC01-appb-C000036
 [実施例1~8、比較例1~3]
 上記樹脂(I)~(XI)10gに対し、感光性化合物2.0g、熱架橋剤3.0g、溶剤としてγ-ブチロラクトンを20g加えてワニスを作製した。
 実施例で使用した感光性化合物、熱架橋剤は以下のとおりである。
Figure JPOXMLDOC01-appb-C000037
 各実施例、比較例における樹脂の原材料および配合を表1に、得られた樹脂組成物の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
 本出願は、2016年11月10日出願の日本特許出願、特願2016-219464に基づくものであり、その内容はここに参照として取り込まれる。
 本発明は、半導体装置や多層配線板等の電子部品、有機EL表示装置の用途に好ましく使用することができる。具体的には、半導体のパッシベーション膜、半導体素子の表面保護膜、層間絶縁膜、高密度実装用多層配線の層間絶縁膜、インダクタやSAWフィルターなどの電子部品の層間絶縁膜、有機電界発光素子(有機EL)の絶縁層の用途などに用いることができる。
1 シリコンウエハ
2 Alパッド
3 パッシベーション膜
4 絶縁膜
5 金属(Cr、Ti等)膜
6 金属配線(Al、Cu等)
7 絶縁膜
8 バリアメタル
9 スクライブライン
10 ハンダバンプ 
11 封止樹脂
12 基板
13 絶縁膜
14 絶縁膜
15 金属(Cr、Ti等)膜
16 金属配線(Ag、Cu等)
17 金属配線(Ag、Cu等)
18 電極
19 封止樹脂
20 支持基板(ガラス基板、シリコンウェハ)
21 電極バッド(Cu)
22 絶縁膜
23 金属配線(Cu)
24 Cuポスト
25 ハンダバンプ
26 半導体チップ
27 TFT(薄膜トランジスタ)
28 配線
29 TFT絶縁層
30 平坦化層
31 ITO(透明電極)
32 基板
33 コンタクトホール
34 絶縁層

Claims (20)

  1. 一般式(1)で表される、ジアミン化合物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、R、Rは2価の脂肪族基を示す。
     R、Rは、2価の脂肪族基、脂環基、芳香族基、
    芳香族基が-O-、-CO-、-SO-、-CH-、-C(CH-、もしくは-C(CF-:(ここでFはフッ素)で結合された2価の有機基、
    複数ある芳香族基が単結合で結合された2価の有機基、
    または複数ある芳香族基が-O-、-CO-、-SO-、-CH-、-C(CH-、もしくは-C(CF-:(ここでFはフッ素)で結合された2価の有機基を示す。
     R、Rは、水素原子、ハロゲン原子、水酸基、ニトロ基、シアノ基、脂肪族基、芳香族基、アセチル基、カルボキシル基、エステル基、アミド基、イミド基、ウレア基のいずれかを有する有機基を表す。
     Aは、2価の脂肪族基、脂環式基、芳香族基、複数ある芳香族基が単結合で結合された2価の有機基、
    または複数ある芳香族基が-O-、-S-、-CO-、-SO-、-CH-、-C(CH-、もしくは-C(CF-:(ここでFはフッ素)で結合された2価の有機基を示す。
    p、qは0~3の範囲内の整数である。)
  2. 一般式(1)で表され、前記一般式(1)におけるR、Rがそれぞれ独立に一般式(2)または一般式(3)で表される2価の脂肪族基である、請求項1に記載のジアミン化合物。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(1)中、 R、Rは、2価の脂肪族基、脂環基、芳香族基、
    芳香族基が-O-、-CO-、-SO-、-CH-、-C(CH-、もしくは-C(CF-:(ここでFはフッ素)で結合された2価の有機基、
    複数ある芳香族基が単結合で結合された2価の有機基、
    または複数ある芳香族基が-O-、-CO-、-SO-、-CH-、-C(CH-、もしくは-C(CF-:(ここでFはフッ素)で結合された2価の有機基を示す。
     R、Rは、水素原子、ハロゲン原子、水酸基、ニトロ基、シアノ基、脂肪族基、芳香族基、アセチル基、カルボキシル基、エステル基、アミド基、イミド基、ウレア基のいずれかを有する有機基を表す。
     Aは、2価の脂肪族基、脂環式基、芳香族基、複数ある芳香族基が単結合で結合された2価の有機基、
    または複数ある芳香族基が-O-、-S-、-CO-、-SO-、-CH-、-C(CH-、もしくは-C(CF-:(ここでFはフッ素)で結合された2価の有機基を示す。
    p、qは0~3の範囲内の整数である。)
    Figure JPOXMLDOC01-appb-C000003
    (一般式(2)中、R~R10はそれぞれ独立に炭素数1~10のアルキレン基を示し、a、b、およびcはそれぞれ、1≦a≦20、0≦b≦20、0≦c≦20の範囲内の整数を表し、繰り返し単位の配列はブロック的でもランダム的でもよい。また、*は化学結合を示す。)
    Figure JPOXMLDOC01-appb-C000004
    (一般式(3)中、R11、R12はそれぞれ独立に水素、フッ素または炭素数1~6のアルキル基であり、nは1~20の整数を示す。また、*は化学結合を示す。)
  3. 一般式(1)で表され、前記一般式(1)におけるRが式(4)で表される二価の有機基であり、前記一般式(1)におけるRが式(5)で表される二価の有機基である、請求項1または2に記載のジアミン化合物。
    Figure JPOXMLDOC01-appb-C000005
    (一般式(1)中、R、Rは2価の脂肪族基を示す。
     R、Rは、水素原子、ハロゲン原子、水酸基、ニトロ基、シアノ基、脂肪族基、芳香族基、アセチル基、カルボキシル基、エステル基、アミド基、イミド基、ウレア基のいずれかを有する有機基を表す。
     Aは、2価の脂肪族基、脂環式基、芳香族基、複数ある芳香族基が単結合で結合された2価の有機基、
    または複数ある芳香族基が-O-、-S-、-CO-、-SO-、-CH-、-C(CH-、もしくは-C(CF-:(ここでFはフッ素)で結合された2価の有機基である場合、を示す。
    p、qは0~3の範囲内の整数である。)
    Figure JPOXMLDOC01-appb-C000006
    (式(4)中、*は化学結合を示す。)
    Figure JPOXMLDOC01-appb-C000007
    (式(5)中、*は化学結合を示す。)
  4. 請求項1~3のいずれかに記載のジアミン化合物に由来する構造を有する耐熱性樹脂。
  5. ポリイミド、ポリアミド、ポリベンゾオキサゾール、ポリベンゾイミダゾール、ポリベンゾチアゾール、それらの前駆体、およびそれらの共重合体、からなる群から選ばれる少なくとも1種類を含む、請求項4に記載の耐熱性樹脂。
  6. 請求項4または5に記載の耐熱性樹脂と、(b)感光性化合物および(c)溶剤を含有する樹脂組成物。
  7. さらに、(d)アルコキシメチル基およびメチロール基のうち少なくともいずれか1つの基を2つ以上有する化合物を含有する、請求項6に記載の樹脂組成物。
  8. 請求項6または7に記載の樹脂組成物から形成された樹脂シート。
  9. 請求項6または7に記載の樹脂組成物を硬化した硬化膜。
  10. 請求項8に記載の樹脂シートを硬化した硬化膜。
  11. 請求項6または7に記載の樹脂組成物を基板上に塗布し、または、請求項8に記載の樹脂シートを基板上にラミネートし、乾燥して樹脂膜を形成する工程と、
    マスクを介して露光する工程と、
    照射部をアルカリ溶液で溶出または除去して現像する工程と、
    現像後の樹脂膜を加熱処理する工程とを含む、硬化膜のレリーフパターンの製造方法。
  12. 前記樹脂組成物を基板上に塗布し、乾燥して樹脂膜を形成する工程が、スリットノズルを用いて基板上に塗布する工程を含む、請求項11に記載の硬化膜のレリーフパターンの製造方法。
  13. 請求項9または10に記載の硬化膜が、パターン化されまたはされないで、駆動回路上の平坦化層および第1電極上の絶縁層のいずれかまたは両方に配置された有機EL表示装置。
  14. 請求項9または10に記載の硬化膜が、パターン化されまたはされないで、再配線間の層間絶縁膜として配置された、電子部品または半導体装置。
  15. 前記再配線が銅金属配線であり、前記銅金属配線の幅と隣り合う配線同士の間隔が5μm以下である、請求項14に記載の電子部品または半導体装置。
  16. 請求項9または10に記載の硬化膜が、パターン化されまたはされないで、シリコンチップが配置された封止樹脂基板上に、再配線間の層間絶縁膜として配置された、電子部品または半導体装置。
  17.  前記再配線が銅金属配線であって、更にバンプを介して半導体チップと銅金属配線とを接続している請求項14~16の何れかに記載の半導体電子部品または半導体装置。
  18.  再配線層が、半導体チップに近づくにつれ、金属配線の幅と隣り合う配線同士の間隔が狭くなる請求項14~17の何れかに記載の半導体電子部品または半導体装置。
  19.  再配線間に配置された層間絶縁膜の厚みが、半導体チップに対して近づくにつれ、薄くなる請求項14~18の何れかに記載の半導体電子部品または半導体装置。
  20. 請求項9または10に記載の硬化膜を、仮貼り材料が配置された支持基板上に再配線間の層間絶縁膜として配置する工程と、
    その上にシリコンチップと封止樹脂を配置する工程と、
    その後、仮貼り材料が配置された支持基板と再配線を剥離する工程を含む、
    電子部品または半導体装置の製造方法。
PCT/JP2017/030746 2016-11-10 2017-08-28 ジアミン化合物、それを用いた耐熱性樹脂および樹脂組成物 WO2018087990A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11201903455QA SG11201903455QA (en) 2016-11-10 2017-08-28 Di-Amine Compound, And Heat Resistant Resin And Resin Composition Using The Same
CN201780068576.3A CN109906217B (zh) 2016-11-10 2017-08-28 二胺化合物、使用其的耐热性树脂及树脂组合物
JP2017545773A JP7073717B2 (ja) 2016-11-10 2017-08-28 ジアミン化合物、それを用いた耐熱性樹脂および樹脂組成物
KR1020197012175A KR102460973B1 (ko) 2016-11-10 2017-08-28 디아민 화합물, 그것을 사용한 내열성 수지 및 수지 조성물
US16/343,957 US11802181B2 (en) 2016-11-10 2017-08-28 Di-amine compound, and heat-resistant resin and resin composition using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016219464 2016-11-10
JP2016-219464 2016-11-10

Publications (1)

Publication Number Publication Date
WO2018087990A1 true WO2018087990A1 (ja) 2018-05-17

Family

ID=62109205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030746 WO2018087990A1 (ja) 2016-11-10 2017-08-28 ジアミン化合物、それを用いた耐熱性樹脂および樹脂組成物

Country Status (7)

Country Link
US (1) US11802181B2 (ja)
JP (1) JP7073717B2 (ja)
KR (1) KR102460973B1 (ja)
CN (1) CN109906217B (ja)
SG (1) SG11201903455QA (ja)
TW (1) TWI726165B (ja)
WO (1) WO2018087990A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109061155A (zh) * 2018-09-21 2018-12-21 中国烟草总公司郑州烟草研究院 一种检测甲霜灵的试纸条及其制备方法和应用
JP2020524820A (ja) * 2018-02-28 2020-08-20 エルジー・ケム・リミテッド 感光性樹脂組成物および硬化膜
TWI710551B (zh) * 2019-01-25 2020-11-21 南韓商Lg化學股份有限公司 二胺化合物以及使用其製備之聚醯亞胺前驅物、聚醯亞胺膜和可撓性設備

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018081705A1 (en) * 2016-10-31 2018-05-03 The Regents Of The University Of California Flexible fan-out wafer level process and structure
US11572442B2 (en) 2020-04-14 2023-02-07 International Business Machines Corporation Compound, polyimide resin and method of producing the same, photosensitive resin composition, patterning method and method of forming cured film, interlayer insulating film, surface protective film, and electronic component
US11333975B2 (en) 2020-04-14 2022-05-17 International Business Machines Corporation Polymer, photosensitive resin composition, patterning method, method of forming cured film, interlayer insulating film, surface protective film, and electronic component
US11980046B2 (en) * 2020-05-27 2024-05-07 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming an isolation structure having multiple thicknesses to mitigate damage to a display device
CN113527875B (zh) * 2021-08-23 2022-05-13 安徽农业大学 一种生物基尼龙复合材料及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1124271A (ja) * 1997-06-30 1999-01-29 Kurarianto Japan Kk 高耐熱性放射線感応性レジスト組成物
JPH11199557A (ja) * 1998-01-05 1999-07-27 Toray Ind Inc 樹脂原料用ジアミン
JP2008106083A (ja) * 2006-10-23 2008-05-08 Toray Ind Inc 耐熱樹脂前駆体組成物およびそれを用いた半導体装置
JP2008224984A (ja) * 2007-03-12 2008-09-25 Hitachi Chemical Dupont Microsystems Ltd 感光性樹脂組成物、該樹脂組成物を用いたパターン硬化膜の製造方法及び電子部品
JP2011197362A (ja) * 2010-03-19 2011-10-06 Toray Ind Inc ポジ型感光性樹脂組成物
JP2014181311A (ja) * 2013-03-21 2014-09-29 Toray Ind Inc 樹脂組成物
JP2015168739A (ja) * 2014-03-06 2015-09-28 東レ株式会社 樹脂組成物の製造方法
JP2016117688A (ja) * 2014-12-22 2016-06-30 東レ・ファインケミカル株式会社 ジアミン化合物の製造方法
WO2016152794A1 (ja) * 2015-03-24 2016-09-29 東レ株式会社 感光性樹脂組成物
WO2016158674A1 (ja) * 2015-03-27 2016-10-06 東レ株式会社 ジアミン化合物、それを用いた耐熱性樹脂または耐熱性樹脂前駆体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199667A (ja) * 1998-01-14 1999-07-27 Arakawa Chem Ind Co Ltd ポリエーテルエステルアミド、帯電防止剤および熱可塑性樹脂組成物
KR101942150B1 (ko) * 2012-12-20 2019-01-24 도레이 카부시키가이샤 감광성 수지 조성물, 내열성 수지막의 제조 방법 및 표시 장치
JP6234870B2 (ja) * 2014-04-01 2017-11-22 エア・ウォーター株式会社 ポリアミドイミド樹脂および当該ポリアミドイミド樹脂の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1124271A (ja) * 1997-06-30 1999-01-29 Kurarianto Japan Kk 高耐熱性放射線感応性レジスト組成物
JPH11199557A (ja) * 1998-01-05 1999-07-27 Toray Ind Inc 樹脂原料用ジアミン
JP2008106083A (ja) * 2006-10-23 2008-05-08 Toray Ind Inc 耐熱樹脂前駆体組成物およびそれを用いた半導体装置
JP2008224984A (ja) * 2007-03-12 2008-09-25 Hitachi Chemical Dupont Microsystems Ltd 感光性樹脂組成物、該樹脂組成物を用いたパターン硬化膜の製造方法及び電子部品
JP2011197362A (ja) * 2010-03-19 2011-10-06 Toray Ind Inc ポジ型感光性樹脂組成物
JP2014181311A (ja) * 2013-03-21 2014-09-29 Toray Ind Inc 樹脂組成物
JP2015168739A (ja) * 2014-03-06 2015-09-28 東レ株式会社 樹脂組成物の製造方法
JP2016117688A (ja) * 2014-12-22 2016-06-30 東レ・ファインケミカル株式会社 ジアミン化合物の製造方法
WO2016152794A1 (ja) * 2015-03-24 2016-09-29 東レ株式会社 感光性樹脂組成物
WO2016158674A1 (ja) * 2015-03-27 2016-10-06 東レ株式会社 ジアミン化合物、それを用いた耐熱性樹脂または耐熱性樹脂前駆体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE Registry 19 July 2006 (2006-07-19), retrieved from STN Database accession no. 894347-90-1 *
DATABASE Registry 19 July 2006 (2006-07-19), retrieved from STN Database accession no. 894348-30-2 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020524820A (ja) * 2018-02-28 2020-08-20 エルジー・ケム・リミテッド 感光性樹脂組成物および硬化膜
US11624982B2 (en) 2018-02-28 2023-04-11 Lg Chem, Ltd. Photosensitive resin composition and cured film
CN109061155A (zh) * 2018-09-21 2018-12-21 中国烟草总公司郑州烟草研究院 一种检测甲霜灵的试纸条及其制备方法和应用
CN109061155B (zh) * 2018-09-21 2021-05-11 中国烟草总公司郑州烟草研究院 一种检测甲霜灵的试纸条及其制备方法和应用
TWI710551B (zh) * 2019-01-25 2020-11-21 南韓商Lg化學股份有限公司 二胺化合物以及使用其製備之聚醯亞胺前驅物、聚醯亞胺膜和可撓性設備

Also Published As

Publication number Publication date
JP7073717B2 (ja) 2022-05-24
CN109906217B (zh) 2022-05-10
TW201829372A (zh) 2018-08-16
CN109906217A (zh) 2019-06-18
TWI726165B (zh) 2021-05-01
KR102460973B1 (ko) 2022-11-02
US20190256655A1 (en) 2019-08-22
US11802181B2 (en) 2023-10-31
JPWO2018087990A1 (ja) 2019-10-03
SG11201903455QA (en) 2019-05-30
KR20190083329A (ko) 2019-07-11

Similar Documents

Publication Publication Date Title
JP7073717B2 (ja) ジアミン化合物、それを用いた耐熱性樹脂および樹脂組成物
JP6848434B2 (ja) 樹脂および感光性樹脂組成物
JP7059632B2 (ja) 樹脂組成物
JP6848491B2 (ja) ジアミン化合物、それを用いた耐熱性樹脂および樹脂組成物
JP7062953B2 (ja) 感光性樹脂組成物、硬化膜、有機el表示装置、半導体電子部品、半導体装置
JP6801452B2 (ja) 感光性樹脂組成物
WO2017204165A1 (ja) 樹脂組成物
JP2020033277A (ja) 化合物、それを用いた樹脂、樹脂組成物、硬化膜、有機el表示装置装置、電子部品、半導体装置、電子部品または半導体装置の製造方法
TWI714703B (zh) 硬化膜及其製造方法
JP7131133B2 (ja) 樹脂組成物
WO2019181782A1 (ja) アルカリ可溶性樹脂、感光性樹脂組成物、感光性シート、硬化膜、層間絶縁膜または半導体保護膜、硬化膜のレリーフパターンの製造方法、電子部品または半導体装置
JP2017179364A (ja) ポリアミド樹脂の製造方法およびそれを用いた感光性樹脂組成物の製造方法
TW201728621A (zh) 硬化膜及其製造方法
KR102666710B1 (ko) 수지 및 감광성 수지 조성물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017545773

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197012175

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17868644

Country of ref document: EP

Kind code of ref document: A1