WO2013146524A1 - ポリエステル組成物およびポリエステルフィルム - Google Patents

ポリエステル組成物およびポリエステルフィルム Download PDF

Info

Publication number
WO2013146524A1
WO2013146524A1 PCT/JP2013/058053 JP2013058053W WO2013146524A1 WO 2013146524 A1 WO2013146524 A1 WO 2013146524A1 JP 2013058053 W JP2013058053 W JP 2013058053W WO 2013146524 A1 WO2013146524 A1 WO 2013146524A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
acid
film
inorganic particles
polyester composition
Prior art date
Application number
PCT/JP2013/058053
Other languages
English (en)
French (fr)
Inventor
悟 中川
大橋 英人
邦浩 前田
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to US14/387,624 priority Critical patent/US9475911B2/en
Priority to KR1020147030015A priority patent/KR101889136B1/ko
Priority to IN2367KON2014 priority patent/IN2014KN02367A/en
Priority to ES13768106.0T priority patent/ES2689295T3/es
Priority to JP2013514260A priority patent/JP6083378B2/ja
Priority to CN201380016909.XA priority patent/CN104204089B/zh
Priority to EP13768106.0A priority patent/EP2832793B1/en
Publication of WO2013146524A1 publication Critical patent/WO2013146524A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/84Boron, aluminium, gallium, indium, thallium, rare-earth metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/87Non-metals or inter-compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Definitions

  • the present invention relates to a polyester composition containing inorganic particles and a polyester film obtained using the same, and more specifically, a masterbatch polyester composition polymerized using an aluminum-based polycondensation catalyst and the polyester composition.
  • the present invention relates to a polyester film as a main component.
  • Polyesters typified by polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), etc. are excellent in mechanical properties and chemical properties. Depending on the properties of each polyester, for example, It is widely used in various fields such as fibers for clothing and industrial materials, various films and sheets for packaging and industrial use, and molded products such as bottles and engineering plastics.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • a polyester mainly composed of aromatic dicarboxylic acid and alkylene glycol which is a typical polyester, is obtained by esterification or transesterification of terephthalic acid or dimethyl terephthalate and ethylene glycol.
  • Bis (2-hydroxyethyl) terephthalate is produced and industrially produced by a polycondensation method in which this is polycondensed using a catalyst at high temperature and under vacuum.
  • Patent Documents 1, 2, 3, 4, and 5 disclose a technique for improving the color tone by adding a nitride, boride, or carbide of a specific transition metal element in addition to the high catalytic activity of polyester.
  • Patent Document 4 discloses a technique for improving the color tone by adding a phosphorus compound in addition to aluminum and an alkaline earth metal or alkali metal.
  • Patent Document 5 discloses a technique for improving color tone by adding a magnesium compound or a specific organic phosphorus compound in addition to aluminum and an alkali metal compound.
  • Polyesters for film adhere to each other when the films are overlapped, causing so-called blocking, and defects such as scratches occur due to poor sliding properties with guide rolls when processing roll films. There is a problem.
  • a technique of incorporating inert particles such as inorganic particles inside the polyester is used.
  • As a method of incorporating inorganic particles and the like inside the polyester there are a method of adding inorganic particles and the like at an arbitrary stage during polyester polymerization, and a method of adding inorganic particles and the like to the finished polyester resin later by melt kneading. From the viewpoint of dispersibility of the inorganic particles, addition during polymerization is preferable.
  • the present inventors have disclosed a polymerization technique of polyester containing inorganic particles used for the films described in Patent Documents 8, 9, and 10, and a polymerization catalyst described in Patent Documents 1, 2, 6, and 7.
  • a polymerization catalyst described in Patent Documents 1, 2, 6, and 7.
  • polyesters other than heavy metals such as antimony compounds, germanium compounds, or tin compounds. Titanium compounds have been proposed as an alternative to these heavy metal polycondensation catalysts. Polyesters produced using these compounds are susceptible to thermal degradation during melt molding, and the polyesters are remarkably colored. Have.
  • polyester composition using a polycondensation catalyst for polyesters mainly composed of metal components other than antimony compounds, germanium compounds, titanium compounds, and tin compounds, and has excellent polymerization activity and inorganic particles.
  • a polyester composition suitable for high-quality film use which, when incorporated, causes little coloration or heat resistance degradation and produces less coarse particles due to aggregation of inorganic particles.
  • the object of the present invention is to produce a polyester polycondensation catalyst that does not contain a polycondensation catalyst such as an antimony compound or a germanium compound as a main component, has a sufficient degree of polymerization and thermal stability, and suppresses aggregation of inorganic particles.
  • this invention consists of the following structures.
  • the inorganic particles are at least one kind of inert inorganic particles selected from titanium dioxide, alumina, aluminosilicate, silicon dioxide, calcium oxide, calcium carbonate, barium sulfate, talc, mica, kaolinite, and zeolite.
  • the polyester composition for a film according to (1) or (2) characterized in that it is characterized.
  • a polyester composition for a masterbatch comprising a polycondensation catalyst containing an aluminum compound and a phosphorus compound.
  • the inorganic particles are at least one kind of inert inorganic particles selected from titanium dioxide, alumina, aluminosilicate, silicon dioxide, calcium oxide, calcium carbonate, barium sulfate, talc, mica, kaolinite, and zeolite.
  • a polyester film comprising the polyester composition for film according to any one of (1) to (3).
  • the polyester composition for a masterbatch of the present invention is manufactured using an aluminum compound having a component other than an antimony compound or a germanium compound as a main component and having excellent catalytic activity, and the dispersibility of the inorganic particles added at the time of manufacture is high. Since it is good, the film using the polyester composition for a masterbatch of the present invention is excellent in running property, abrasion resistance, optical properties, etc., and can be used for a wide range of applications such as packaging films and industrial films.
  • the masterbatch polyester composition of the present invention has a masterbatch polyester for forming irregularities on the surface during film formation and improving handling properties such as slipping property, running property, wear resistance, and winding property.
  • Inactive inorganic particles are added in the polymerization step.
  • an external particle addition method in which inorganic and / or heat-resistant polymer resin particles are added in a polymerization process of the polyester, a catalyst residue and a polyester component are reacted in the polymerization process.
  • An internal particle method for precipitating insoluble particles a method for containing the particles in the coating layer, a method for embossing with a roll having irregularities on the surface of the thin film layer, a method for patterning surface irregularities with a laser beam,
  • the method of adding inert particles in the polyester polymerization step as in the present invention is most preferable.
  • the inorganic particles exemplified below are preferable in that the effect of preventing aggregation of the inert particles described later can be effectively exhibited.
  • the polycondensation catalyst used when polymerizing the polyester composition for masterbatch of the present invention is a catalyst containing an aluminum compound and a phosphorus compound.
  • the aluminum compound, the phosphorus compound, and the inorganic particles according to the present invention will be described, and the form of the best polymerization method will be described.
  • the aluminum compound according to the present invention a known aluminum compound can be used.
  • the aluminum compound according to the present invention include carboxylates such as aluminum formate, aluminum acetate, basic aluminum acetate, aluminum propionate, and aluminum oxalate, aluminum chloride, aluminum hydroxide, and aluminum hydroxide chloride.
  • carboxylates such as aluminum formate, aluminum acetate, basic aluminum acetate, aluminum propionate, and aluminum oxalate
  • aluminum chloride aluminum hydroxide
  • aluminum hydroxide chloride aluminum hydroxide chloride.
  • Inorganic acid salts aluminum methoxide, aluminum ethoxide, aluminum iso-propoxide, aluminum n-butoxide, aluminum t-butoxide and other aluminum alkoxides, aluminum acetylacetonate, aluminum ethyl acetoacetate and other aluminum chelate compounds, trimethylaluminum , Organoaluminum compounds such as triethylaluminum, partial hydrolysates thereof, aluminum oxide, etc. That.
  • carboxylates, inorganic acid salts and chelate compounds are preferred, and among these, aluminum acetate, basic aluminum acetate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride and aluminum acetylacetonate are particularly preferred.
  • the amount of the aluminum compound added is preferably 0.001 to 0.05 mol%, more preferably, based on the number of moles of all constituent units of the carboxylic acid component such as dicarboxylic acid or polycarboxylic acid of the polyester obtained. 0.005 to 0.043 mol%, and more preferably 0.005 to 0.036 mol%. If the addition amount is less than 0.001 mol%, the catalytic activity may not be sufficiently exerted. If the addition amount exceeds 0.05 mol%, the thermal stability or thermal oxidation stability is lowered, resulting from aluminum. Occurrence of foreign matters or increased coloring may be a problem.
  • the polymerization catalyst of the present invention has a great feature in that it exhibits a sufficient catalytic activity even when the addition amount of the aluminum component is small. As a result, thermal stability and thermal oxidation stability are excellent, and foreign matters and coloring caused by aluminum can be reduced.
  • the phosphorus compound according to the present invention is not particularly limited, but the use of a phosphonic acid compound or a phosphinic acid compound is highly preferable for improving the catalytic activity. Among these, the use of a phosphonic acid compound improves the catalytic activity. The effect is particularly large and preferable.
  • phosphorus compounds having a phenol moiety in the same molecule are preferred. It is not particularly limited as long as it is a phosphorus compound having a phenol structure, but it is a catalyst if one or more compounds selected from the group consisting of phosphonic acid compounds and phosphinic acid compounds having a phenol moiety in the same molecule are used.
  • the effect of improving the activity is large and preferable.
  • the use of a phosphonic acid compound having a phenol moiety in one or two or more of the same molecules is particularly preferable because the effect of improving the catalytic activity is particularly large.
  • examples of the phosphorus compound having a phenol moiety in the same molecule include compounds represented by the following general formulas (1) and (2).
  • R 1 is a hydrocarbon group having 1 to 50 carbon atoms including a phenol part, a hydroxyl group, a halogen group, an alkoxyl group, an amino group or the like, and a carbon number 1 including a phenol part.
  • R 4 represents a hydrocarbon group having 1 to 50 carbon atoms, including a substituent such as hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group, a halogen group, an alkoxyl group, or an amino group.
  • R 2 and R 3 each independently represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon group having 1 to 50 carbon atoms including a substituent such as a hydroxyl group or an alkoxyl group.
  • the group may contain a branched structure, an alicyclic structure such as cyclohexyl, or an aromatic ring structure such as phenyl or naphthyl, and the ends of R 2 and R 4 may be bonded to each other.
  • Examples of the phosphorus compound having a phenol moiety in the same molecule include p-hydroxyphenylphosphonic acid, dimethyl p-hydroxyphenylphosphonate, diethyl p-hydroxyphenylphosphonate, diphenyl p-hydroxyphenylphosphonate, bis ( p-hydroxyphenyl) phosphinic acid, methyl bis (p-hydroxyphenyl) phosphinate, phenyl bis (p-hydroxyphenyl) phosphinate, p-hydroxyphenylphenylphosphinic acid, methyl p-hydroxyphenylphenylphosphinate, p-hydroxy Examples include phenyl phenylphenylphosphinate, p-hydroxyphenylphosphinic acid, methyl p-hydroxyphenylphosphinate, and phenyl p-hydroxyphenylphosphinate.
  • Other examples include phosphorus compounds represented by the following general formula (3).
  • X 1 and X 2 each represent hydrogen, an alkyl group having 1 to 4 carbon atoms, or a monovalent or higher metal. Moreover, X 1 is metal be two or more valences, X 2 may be absent. Furthermore, an anion corresponding to the surplus valence of the metal may be arranged with respect to the phosphorus compound.
  • the metal Li, Na, K, Ca, Mg, and Al are preferable.
  • the catalytic activity of the aluminum compound is improved and the thermal stability of the polymerized polyester is also improved.
  • the phosphorus compound preferably used as the polycondensation catalyst is at least one phosphorus compound selected from the compounds represented by the chemical formula (4) and the chemical formula (5).
  • Irganox 1222 (manufactured by BASF) is commercially available.
  • Irganox 1425 (manufactured by BASF) is commercially available.
  • the amount of the phosphorus compound added is preferably 0.0001 to 0.1 mol%, preferably 0.005 to 0.08 mol%, based on the number of moles of all the structural units of the dicarboxylic acid component constituting the polyester. More preferably. When the addition amount of the phosphorus compound is less than 0.0001 mol%, the addition effect may not be exhibited. On the other hand, if added over 0.1 mol%, the catalytic activity as a polyester polymerization catalyst may be reduced. Further, the tendency of the change varies depending on the amount of aluminum added.
  • polycondensation does not cause problems such as deterioration of thermal stability and generation of foreign matter, and has a sufficient catalytic effect even if the addition amount of the metal-containing component as aluminum is small.
  • a catalyst is obtained, and the thermal stability of the polyester film after melt molding is improved by using the polyester polymerized by the polycondensation catalyst.
  • a metal-containing polyester polycondensation catalyst such as a conventional antimony compound, titanium compound, tin compound or germanium compound within the range of the preferred addition amount, the effect of promoting the melt polymerization reaction is unacceptable.
  • a metal-containing polyester polycondensation catalyst such as an antimony compound, a titanium compound, a tin compound, or a germanium compound may be used in combination in order to further improve the catalytic activity within a range that does not impair the effects of the present invention. good.
  • the antimony compound is preferably 30 ppm or less as the antimony atom with respect to the mass of the obtained polyester
  • the germanium compound is preferably 10 ppm or less as the germanium atom with respect to the mass of the obtained polyester
  • the titanium compound is obtained. It is preferable that it is 3 ppm or less as a titanium atom with respect to the mass of the polyester obtained, and 3 ppm or less is preferable as a tin atom with respect to the mass of the polyester obtained.
  • it is preferable not to use these metal-containing polyester polycondensation catalysts such as antimony compounds, titanium compounds, tin compounds, and germanium compounds.
  • a small amount of alkali metal, alkaline earth metal and at least one selected from the compound may coexist as the second metal-containing component.
  • the coexistence of such a second metal-containing component in the catalyst system is effective in improving productivity by obtaining a catalyst component having an increased reaction rate in addition to an effect of suppressing the formation of diethylene glycol, and thus a higher reaction rate. .
  • the addition amount M (mol%) is preferably 1 with respect to the number of moles of all the polycarboxylic acid units constituting the polyester. ⁇ 10 ⁇ 5 to 0.01 mol%.
  • the amount of alkali metal or alkaline earth metal added is small, so that the reaction rate is increased without causing problems such as thermal stability degradation, generation of foreign matter, and coloring. It is possible. In addition, problems such as degradation of hydrolysis resistance do not occur.
  • the alkali metal or alkaline earth metal constituting the second metal-containing component preferably used in addition to the aluminum or a compound thereof includes Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba Is preferably at least one selected from the group consisting of alkali metals and compounds thereof.
  • Li, Na, and K are particularly preferable as the alkali metal.
  • the alkali metal and alkaline earth metal compounds include saturated aliphatic carboxylates such as formic acid, acetic acid, propionic acid, butyric acid, and succinic acid, and unsaturated aliphatic carboxylates such as acrylic acid and methacrylic acid.
  • Aromatic carboxylates such as benzoic acid, halogen-containing carboxylates such as trichloroacetic acid, hydroxycarboxylates such as lactic acid, citric acid and salicylic acid, carbonic acid, sulfuric acid, nitric acid, phosphoric acid, phosphonic acid, hydrogen carbonate, phosphorus Inorganic acid salts such as acid hydrogen, hydrogen sulfide, sulfurous acid, thiosulfuric acid, hydrochloric acid, hydrobromic acid, chloric acid and bromic acid, organic sulfonates such as 1-propanesulfonic acid, 1-pentanesulfonic acid and naphthalenesulfonic acid , Organic sulfates such as lauryl sulfate, methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, tert-butyl Alkoxides such as alkoxy, chelate compounds and the like acetylaceton
  • alkali metals alkaline earth metals, or compounds thereof, from the viewpoint of ease of handling, availability, etc., the use of saturated aliphatic carboxylates of alkali metals or alkaline earth metals, particularly acetates, is preferred. preferable.
  • the polyester according to the present invention can be produced by a conventionally known method. For example, either a method of polycondensation after esterification of terephthalic acid and ethylene glycol, or a method of polycondensation after transesterification of an alkyl ester of terephthalic acid such as dimethyl terephthalate with ethylene glycol It can also be done by the method.
  • the polymerization apparatus may be a batch type or a continuous type.
  • the catalyst according to the present invention has catalytic activity not only in the polycondensation reaction but also in the esterification reaction and transesterification reaction.
  • the transesterification reaction between an alkyl ester of a dicarboxylic acid such as dimethyl terephthalate and a glycol such as ethylene glycol is usually carried out in the presence of a transesterification catalyst such as zinc.
  • the catalyst of the present invention is used in place of these catalysts. You can also.
  • the catalyst of the present invention has catalytic activity not only in melt polymerization but also in solid phase polymerization or solution polymerization.
  • the polyester polymerization catalyst used in the present invention can be added to the reaction system at any stage of the polymerization reaction.
  • it can be added to the reaction system at any stage before and during the esterification reaction or transesterification reaction, immediately before the start of the polycondensation reaction, or at any stage during the polycondensation reaction.
  • the aluminum compound and the phosphorus compound used in the present invention are preferably added immediately before the start of the polycondensation reaction.
  • the polyester according to the present invention comprises one or more selected from polycarboxylic acids containing dicarboxylic acids and ester-forming derivatives thereof and one or more selected from polyhydric alcohols containing glycol. Or those composed of hydroxycarboxylic acids and their ester-forming derivatives, or those composed of cyclic esters.
  • Preferred polyesters are those in which the main acid component is terephthalic acid or an ester-forming derivative thereof, or naphthalene dicarboxylic acid or an ester-forming derivative thereof, and the main glycol component is alkylene glycol.
  • the polyester whose main acid component is terephthalic acid or its ester-forming derivative or naphthalene dicarboxylic acid or its ester-forming derivative is terephthalic acid or its ester-forming derivative and naphthalene dicarboxylic acid or its ester formation with respect to all acid components It is preferable that it is polyester containing 70 mol% or more in total of the functional derivatives, more preferably polyester containing 80 mol% or more, and still more preferably polyester containing 90 mol% or more.
  • the polyester whose main glycol component is an alkylene glycol is preferably a polyester containing 70 mol% or more of the total amount of alkylene glycol with respect to all glycol components, more preferably a polyester containing 80 mol% or more, More preferably, it is a polyester containing 90 mol% or more.
  • Dicarboxylic acids include succinic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, dodecanedicarboxylic acid, tetradecanedicarboxylic acid, hexadecanedicarboxylic acid, 1,3 -For cyclobutanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2,5-norbornanedicarboxylic acid, dimer acid, etc.
  • dicarboxylic acids terephthalic acid, naphthalenedicarboxylic acid, or ester-forming derivatives thereof are preferred.
  • Naphthalenedicarboxylic acid or its ester-forming derivatives include 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 2,7-naphthalenedicarboxylic acid. Examples include acids, or ester-forming derivatives thereof.
  • terephthalic acid 2,6-naphthalenedicarboxylic acid or ester-forming derivatives thereof. If necessary, other dicarboxylic acids may be used as components.
  • carboxylic acids other than these dicarboxylic acids ethanetricarboxylic acid, propanetricarboxylic acid, butanetetracarboxylic acid, pyromellitic acid, trimellitic acid, trimesic acid, 3,4,3 ′, 4′-biphenyltetracarboxylic acid, And ester-forming derivatives thereof.
  • glycol examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, diethylene glycol, triethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 1, 4-butylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanedi Alkylene glycols such as methanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediethanol, 1,10-decamethylene glycol, 1,12-dodecanediol, Aliphatic glycols exemplified by ethylene glycol, polytrimethylene glycol, polyty
  • alkylene glycol is preferable, and ethylene glycol, 1,3-propylene glycol, 1,4-butylene glycol, and 1,4-cyclohexanedimethanol are more preferable.
  • the alkylene glycol may contain a substituent or an alicyclic structure in the molecular chain, and two or more kinds may be used at the same time.
  • polyhydric alcohols other than these glycols include trimethylolmethane, trimethylolethane, trimethylolpropane, pentaerythritol, glycerol, and hexanetriol.
  • Hydroxycarboxylic acids include lactic acid, citric acid, malic acid, tartaric acid, hydroxyacetic acid, 3-hydroxybutyric acid, p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid, 4-hydroxycyclohexanecarboxylic acid, or these And ester-forming derivatives thereof.
  • cyclic ester examples include ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -methyl- ⁇ -propiolactone, ⁇ -valerolactone, glycolide, and lactide.
  • ester-forming derivatives of polyvalent carboxylic acids or hydroxycarboxylic acids include these alkyl esters, acid chlorides, acid anhydrides, and the like.
  • polyester used in the present invention polyethylene terephthalate, polybutylene terephthalate, polypropylene terephthalate, poly (1,4-cyclohexanedimethylene terephthalate), polyethylene naphthalate, polybutylene naphthalate, polypropylene naphthalate and copolymers thereof are preferable. Particularly preferred are polyethylene terephthalate and copolymers thereof.
  • the intrinsic viscosity of the masterbatch polyester composition used in the present invention is preferably 0.4 to 1.0 dl / g, more preferably 0.5 to 0.75 dl / g.
  • the intrinsic viscosity is measured as a polyester composition containing inorganic particles, it is expressed as the intrinsic viscosity of the polyester composition.
  • the inorganic particles added to the masterbatch polyester in the present invention have an average particle size of 0.5 to 3.0 ⁇ m, more preferably 0.8 to 2.5 ⁇ m, and still more preferably 2.0 to 2.5 ⁇ m. If it is less than 0.5 ⁇ m, the effect of forming irregularities on the surface and imparting handling properties such as slipperiness and running properties is unfavorable. On the other hand, if the thickness exceeds 3.0 ⁇ m, the quality of the film may be impaired by the formation of coarse protrusions, which is not preferable.
  • the average particle diameter referred to in the present invention is determined from a particle size distribution measured by a laser light scattering method using water or ethylene glycol as a medium.
  • the amount of the inorganic particles added to the masterbatch polyester is 1.0 to 2.0% by mass in the masterbatch polyester composition.
  • the amount of inorganic particles added to the masterbatch polyester is preferably in the range of 1.2 to 1.8% by mass. If it is less than 1.0% by mass, generation of coarse particles due to aggregation of inorganic particles after dilution of the blend increases, which is not preferable. Moreover, when it exceeds 2.0 mass%, the prevention effect of a coarse particle is not enough, and generation
  • particles made of metal oxides such as titanium, aluminum, silicon, calcium, magnesium, barium, carbonates, silicates, sulfates, and aluminates can be used.
  • titanium dioxide alumina, aluminosilicate, silicon dioxide, calcium oxide, calcium carbonate, barium sulfate, and other natural particles such as talc, mica, kaolinite, and zeolite.
  • inorganic particles are slurried with glycols to prevent agglomeration, and then mechanically dispersed with a media agitation disperser such as a sand grinder, attritor, or ultrasonic wave, and alkali metal compounds, ammonium compounds, and phosphorus compounds are added. It is more preferable to add after improving the dispersion efficiency.
  • the addition time of the above-mentioned inorganic particles is not particularly limited.
  • inert particles such as heat-resistant polymer particles and crosslinked polymer particles, fluorescent whitening agents, UV inhibitors, depending on the purpose of use
  • one or more various additives such as an infrared absorbing dye, a heat stabilizer, a surfactant, and an antioxidant can be contained.
  • antioxidants aromatic amines, phenols and other antioxidants can be used, and as stabilizers, phosphoric acid and phosphoric acid ester-based phosphorous, sulfur-based, amine-based stabilizers, etc. Can be used.
  • Additives other than these inorganic particles can be added to the polyester composition for a masterbatch in a proportion of preferably 10% by mass or less, more preferably 5% by mass or less. That is, the polyester composition for masterbatch of the present invention preferably occupies 90% by mass or more, more preferably 95% by mass or more, in total of the polyester and inorganic particles.
  • the polyester resin which does not contain the inorganic particles according to the present invention may use the polyester of the masterbatch polyester composition described above except that it does not contain inorganic particles.
  • the polycondensation catalyst is not limited to the polycondensation catalyst containing the above aluminum compound and phosphorus compound, but the above polycondensation catalyst used in the masterbatch polyester composition is preferable in consideration of the environment.
  • the intrinsic viscosity of the polyester resin is preferably 0.4 to 1.0 dl / g, more preferably 0.5 to 0.75 dl / g.
  • the polyester composition for a film of the present invention is obtained by mixing the polyester composition for a master batch and the polyester resin not containing the inorganic particles in a mass ratio of 1:15 to 35. That is, the polyester composition for masterbatch is diluted with a polyester resin containing 15 to 35 times mass of inorganic particles.
  • the mass ratio of the masterbatch polyester composition and the polyester resin not containing inorganic particles is preferably 1:18 to 32.
  • the measurement of the number of coarse particles in the polyester composition for a film of the present invention uses a method of measuring the size and number of particles by image analysis from the image of particles in the polymer observed using a phase contrast optical microscope.
  • a phase-contrast optical microscope can convert a slight delay (phase difference) in the wavelength of light transmitted through an object with a different refractive index into light and dark contrast using light diffraction and refraction. Suitable for observing inorganic particles that appear colorless and transparent in the polymer.
  • the observed image can be taken into an image analysis apparatus as electronic data, and the particle diameter (area circle equivalent diameter) and number can be measured.
  • the field of view and the depth of focus are determined by the magnification and aperture of the lens used.
  • the brightness of the obtained image is dark, and there are cases where sufficient observation cannot be performed with a lens having a large magnification.
  • the thickness of the sample to be observed needs to be sufficiently thick with respect to the focal depth of the objective lens.
  • the phase contrast objective lens of the phase contrast microscope is observed using a lens having a magnification of 10 times and an aperture of 0.5.
  • Measurement by the image analysis apparatus is performed according to the following procedure.
  • the obtained image is converted into an electronic signal.
  • the converted image data is a monochrome image, and the contrast of the image is composed of 256 gradations from 0 (black) to 255 (white).
  • a binarization process that clearly separates the boundary between the object of the image (coarse inorganic particles) and the background (polymer), the particles are white, the background is black (or vice versa, the particles are black, the background Is white).
  • the particle diameter (area circle equivalent diameter) and number are calculated from the number of dots (dots) constituting the image.
  • the obtained results are data in which the unit area is converted according to the actual scale of the image and the number is divided for each particle size.
  • the measurement is usually performed for 20 to 40 fields of view, and the measurement result is converted into a field area of 1 mm 2 for use.
  • the polyester composition for a film of the present invention a masterbatch polyester composition and a polyester resin not containing inorganic particles are mixed so that the content of inorganic particles is 0.06% by mass, and melt-extruded to form a chip.
  • the number of coarse particles having a particle diameter of 10 ⁇ m or more measured by the above method is 100 or less per 1 mm 2 . If the number of coarse particles exceeds 100, not only the appearance of the film becomes a foreign object and the appearance and quality are impaired, but also the back pressure of the filter rises or the filter is clogged during the melting process when manufacturing polymers and films. Or stable production for a long time.
  • the polyester composition for a film of the present invention In order to provide a film with sufficient slipperiness and processing handleability, and to have a good appearance and quality when used in the above film, and to satisfy stable productivity, the polyester composition for a film of the present invention.
  • the number of coarse particles is preferably 10 to 100 particles / mm 2 . Since the aluminum compound has an effect of aggregating the inorganic particles, when the content of the inorganic particles in the polyester is increased, the aggregated foreign matter is increased and the number of coarse particles is increased. When a phosphorus compound is added here, the aluminum compound and the phosphorus compound interact, whereby the affinity between the molecular chain of the polyester intermediate reaction product and the inorganic particles is improved, and the aggregation of the inorganic particles is less likely to occur.
  • the concentration of the inorganic particles When the concentration of the inorganic particles is increased, the effect of improving the affinity between the molecular chain of the polyester intermediate reactant and the inorganic particles is increased, whereby aggregated foreign matters contained in the polyester can be reduced and the number of coarse particles can be reduced.
  • this polyester composition for master batch By mixing and diluting this polyester composition for master batch with a polyester resin not containing inorganic particles, the number of coarse particles can be further reduced. Therefore, by producing a polyester composition for a masterbatch containing inorganic particles at a high concentration in advance and mixing with a polyester resin not containing inorganic particles, the effect of reducing the aggregated foreign matter of inorganic particles, which becomes a defect when formed into a film, is achieved. As a result, the present invention has been reached.
  • the manufacturing method of a polyester film is not limited to the following.
  • the above-mentioned polyester composition for film is melt-extruded and formed into a sheet shape from a T-die on a cooling rotary roll to produce an unstretched sheet.
  • high-speed film formation is possible.
  • the oriented polyester film can be obtained by stretching 1.1 to 6 times at least in the uniaxial direction at a temperature not less than the glass transition temperature of the polyester and less than the crystallization temperature using a known method.
  • a sequential biaxial stretching method in which uniaxial stretching is performed in the longitudinal direction or the transverse direction, and then stretching in the orthogonal direction
  • a simultaneous biaxial stretching method in which stretching is performed simultaneously in the longitudinal direction and the transverse direction.
  • a linear motor as the driving method for simultaneous biaxial stretching
  • several times in the same direction such as horizontal / longitudinal / longitudinal stretching, longitudinal / horizontal / longitudinal stretching, and longitudinal / vertical / horizontal stretching
  • a heat setting treatment is performed at a temperature of (melting point ⁇ 50 ° C.) to less than the melting point within 30 seconds, preferably within 10 seconds.
  • % Longitudinal relaxation treatment, lateral relaxation treatment, etc. are preferably performed.
  • the thickness of the obtained oriented polyester film is preferably 1 to 1000 ⁇ m, more preferably 5 to 500 ⁇ m, and still more preferably 10 to 200 ⁇ m. If it is less than 1 ⁇ m, it is difficult to handle because there is no waist. On the other hand, if it exceeds 1000 ⁇ m, it is too hard to handle.
  • the surface of the oriented polyester film may be coated with a polymer resin by a coating method. Good. Moreover, it is good also as a slippery highly transparent polyester film by making an inorganic and / or organic particle
  • a chip of a polyester composition for a film composed of a polyester composition for a masterbatch and a polyester resin not containing inorganic particles is prepared, and one chip of the chip is made of two cover glasses (Matsunami micro cover glass, 25 mm ⁇ 25 mm, thickness 0) .2 mm), heated and melted on a hot plate at about 300 ° C., pressed to a thickness of 0.8 to 0.9 mm, and immediately quenched to prepare a sample for observation. The central part of the thickness of the sample was observed using a phase-contrast microscope (manufactured by Nikon) and an objective lens (manufactured by Nikon, magnification 10 ⁇ , aperture 0.5).
  • the image was taken into an image analysis device (manufactured by Nireco, Luzex-FS) via a CCD camera, image analysis was performed, and the number of particles of 10 ⁇ m or more was measured. The same measurement was performed 20 times while changing the field of view to obtain the total number of particles, and the number of particles of 10 ⁇ m or more per 1 mm 2 of the field of view area was calculated to obtain the coarse particle number.
  • image analysis device manufactured by Nireco, Luzex-FS
  • Hydrolysis resistance of film As an evaluation of hydrolysis resistance, HAST (Highly Accelerated Temperature and Humidity Stress Test) standardized in JIS-60068-2-66 was performed. The equipment was EHS-221 manufactured by ESPEC CORP. Under the conditions of 105 ° C., 100% RH and 0.03 MPa. The film was cut into 70 mm ⁇ 190 mm, and the film was placed using a jig. Each film was placed at a distance where it did not touch. The treatment was performed at 105 ° C., 100% RH, 0.03 MPa for 200 hours and 300 hours.
  • HAST Highly Accelerated Temperature and Humidity Stress Test
  • Breaking elongation retention (%) [(breaking elongation after treatment (MPa)) / (breaking elongation before treatment (MPa))] ⁇ 100 The determination was made based on the following criteria. ⁇ : Break elongation retention is 80% or more ⁇ : Break elongation retention is 60% or more and less than 80% ⁇ : Break elongation retention is less than 60%
  • Example 1 Preparation of polycondensation catalyst solution (preparation of aqueous solution of aluminum compound) After adding 5.0 liters of pure water to a flask equipped with a cooling tube at room temperature and normal pressure, 200 g of basic aluminum acetate was added as a slurry with pure water while stirring at 200 rpm. Further, pure water was added so as to be 10.0 liters as a whole, and the mixture was stirred at room temperature and normal pressure for 12 hours. Thereafter, the jacket temperature was changed to 100.5 ° C., the temperature was raised, and the mixture was stirred under reflux for 3 hours from the time when the internal temperature reached 95 ° C. or higher. Stirring was stopped and the mixture was allowed to cool to room temperature to obtain an aqueous solution.
  • the ethylene glycol solution of the aluminum compound and the ethylene glycol solution of the phosphorus compound prepared by the above method are 0.021 mol% and 0.037 mol% as aluminum atoms and phosphorus atoms, respectively, with respect to the acid component in the polyester.
  • the temperature of the system is raised to 280 ° C. in 1 hour, and the pressure of the system is gradually reduced to 150 Pa during this time, and a polycondensation reaction is performed for 1 hour under these conditions to obtain a polyester composition for a masterbatch A product (A) was obtained.
  • the inherent viscosity of the obtained masterbatch polyester composition (A) was 0.59 dl / g.
  • polyester resin not containing inorganic particles 2594 parts of terephthalic acid and 1938 parts of ethylene glycol were charged into a stainless steel autoclave equipped with a stirrer, distillation tower and pressure regulator, and 11 parts of triethylamine was further added to 240 ° C. Then, the esterification reaction was carried out for 2 hours while successively removing the water produced in the esterification at a gauge pressure of 3.5 MPa. Subsequently, the ethylene glycol solution of the aluminum compound and the ethylene glycol solution of the phosphorus compound prepared by the above methods are respectively 0.014 mol% and 0.025 mol% as aluminum atoms and phosphorus atoms with respect to the acid component in the polyester.
  • polyester (X) was obtained.
  • the intrinsic viscosity of the obtained polyester resin (X) containing no inorganic particles was 0.61 dl / g.
  • Example 2 In the polymerization method of Example 1, 1.8 mass% as SiO 2 molecules with respect to the mass of the polyester composition from which an ethylene glycol slurry of silica particles can be obtained, and the addition amount of the aluminum compound and the phosphorus compound respectively in the acid in the polyester
  • a masterbatch polyester composition (B) having an intrinsic viscosity of 0.58 dl / g by the same method as in Example 1 except that the aluminum atom and the phosphorus atom are 0.028 mol% and 0.050 mol%, respectively.
  • Example 1 except that the pellet of the obtained polyester composition for master batch (B) and the pellet of the polyester resin (X) not containing inorganic particles were mixed at a mass ratio of 1:29.
  • a polyester film was obtained in the same manner as described above. The properties of the obtained film are shown in Table 1.
  • Example 1 In the polymerization method of Example 1, instead of an ethylene glycol solution of an aluminum compound and an ethylene glycol solution of a phosphorus compound, 0.020 mol% of an antimony trioxide ethylene glycol solution was used as an antimony metal with respect to the acid component in the polyester.
  • a masterbatch polyester composition (C) having an intrinsic viscosity of 0.58 dl / g was obtained in the same manner as in Example 1 except for the addition.
  • Example 2 In the polymerization method of Example 1, Example 1 was used except that 0.017 mol% of sodium acetate in an ethylene glycol solution was added as sodium metal to the acid component in the polyester instead of the phosphorus compound in ethylene glycol.
  • a masterbatch polyester composition (D) having an intrinsic viscosity of 0.58 dl / g was obtained by the same method as described above. Using the obtained pellet of the polyester composition for masterbatch (D), it formed into a film by the method similar to Example 1, and the polyester film was obtained. The properties of the obtained film are shown in Table 1.
  • Example 3 In the polymerization method of Example 1, an intrinsic viscosity of 0 was obtained in the same manner as in Example 1 except that 0.06% by mass as SiO 2 molecules was used relative to the mass of the polyester composition from which an ethylene glycol slurry of silica particles was obtained. A polyester composition (E) for master batch of .61 dl / g was obtained. A polyester film was obtained by forming a film in the same manner as in Example 1 except that 100% of the pellets of the obtained polyester composition for masterbatch (E) were used. The properties of the obtained film are shown in Table 1.
  • Example 4 In the polymerization method of Example 1, an intrinsic viscosity of 0 was obtained in the same manner as in Example 1 except that the amount of SiO 2 molecules was 0.6% by mass with respect to the mass of the polyester composition from which an ethylene glycol slurry of silica particles was obtained. A polyester composition (F) for master batch of .58 dl / g was obtained. Example 1 except that the obtained polyester composition for masterbatch (F) and the pellet of polyester resin (X) containing no inorganic particles were mixed at a mass ratio of 1: 9. A film was formed in the same manner to obtain a polyester film. The properties of the obtained film are shown in Table 1.
  • Example 5 In the polymerization method of Example 1, 2.4% by mass as SiO 2 molecules with respect to the mass of the polyester composition from which an ethylene glycol slurry of silica particles can be obtained, and the addition amount of the aluminum compound and the phosphorus compound are acid in the polyester.
  • Example 1 except that the pellet of the obtained polyester composition for masterbatch (G) and the pellet of the polyester resin (X) not containing inorganic particles were mixed at a mass ratio of 1:39.
  • a polyester film was obtained in the same manner as described above. The properties of the obtained film are shown in Table 1.
  • the polyester composition for a masterbatch of the present invention is manufactured using an aluminum compound having a component other than an antimony compound or a germanium compound as a main component and having excellent catalytic activity, and the dispersibility of the inorganic particles added at the time of manufacture is high. Since it is good, the film using the polyester for masterbatch of the present invention has an effect that it is excellent in running property, abrasion property and optical property.
  • the film using the polyester composition for masterbatch of the present invention is, for example, an antistatic film, an easily adhesive film, a card, a dummy can, an agricultural, a building material, a cosmetic material, a wallpaper, an OHP Near infrared absorption for film, printing, inkjet recording, sublimation transfer recording, laser beam printer recording, electrophotographic recording, thermal transfer recording, thermal transfer recording, printed circuit board wiring, membrane switch, plasma display Transparent conductive film for film, touch panel and electroluminescence, masking film, photoengraving, X-ray film, photographic negative film, retardation film, polarizing film, polarizing film protection (TAC), polarizing plate, Protection film and / or separator film for retardation plate inspection It can be used for the photosensitive resin film, for field expansion film, diffusion sheets, reflection films, antireflection films, ultraviolet ray prevention, for example, for back grinding tape, a wide range of applications.

Abstract

 本発明は、平均粒子径が0.5~3.0μmの無機粒子を1.0~2.0質量%含有し、アルミニウム化合物及びリン化合物を含有する重縮合触媒を用いたマスターバッチ用ポリエステル組成物と、無機粒子を含まないポリエステル樹脂を、質量比で1:15~35の割合で含有することを特徴とするフィルム用ポリエステル組成物であり、フィルターの詰りが少なく、滑り性や走行性、耐摩耗性に優れ、フィルム上の欠点や異物による品質の低下の少ないポリエステルフィルムを提供することができる。

Description

ポリエステル組成物およびポリエステルフィルム
 本発明は、無機粒子を含有するポリエステル組成物及びそれを用いて得られるポリエステルフィルムに関するものであり、さらに詳しくは、アルミニウム系重縮合触媒を用いて重合されたマスターバッチ用ポリエステル組成物及びそれを主たる構成成分とするポリエステルフィルムに関するものである。
 ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等に代表されるポリエステルは、機械的特性、及び化学的特性に優れており、それぞれのポリエステルの特性に応じて、例えば、衣料用や産業資材用の繊維、包装用や工業用などの各種フィルムやシート、ボトルやエンジニアリングプラスチックなどの成型物など、各種分野において広範囲に使用されている。
 代表的なポリエステルである芳香族ジカルボン酸とアルキレングリコールを主構成成分とするポリエステルは、例えばポリエチレンテレフタレート(PET)の場合には、テレフタル酸もしくはテレフタル酸ジメチルとエチレングリコールとのエステル化もしくはエステル交換によってビス(2-ヒドロキシエチル)テレフタレートを製造し、これを高温、真空下で触媒を用いて重縮合する重縮合法等により、工業的に製造されている。
 ポリエステルの重縮合時に用いられるポリエステル重合触媒として、アルミニウム化合物にアルカリ金属化合物を併用する技術が開示されている(例えば、特許文献1、2、3、4、5参照)。上記の重縮合触媒を使用すると十分に満足できる重合度をもったポリエステルを比較的効率良く重合することができ、経済的にも有利な方法といえる。特許文献3には、ポリエステルの高い触媒活性に加え特定の遷移金属元素の窒化物、ホウ化物、炭化物を加えることにより色調を改善する技術が開示されている。また、特許文献4には、アルミニウムおよびアルカリ土類金属またはアルカリ金属に加えて、リン化合物を添加することにより色調を改善する技術が開示されている。また、特許文献5には、アルミニウムおよびアルカリ金属化合物に加え、マグネシウム化合物または特定の有機リン化合物を添加することにより色調を改善する技術が開示されている。
 一方では、アルミニウム化合物に特定のリン化合物を添加して十分な触媒活性を有するポリエステル重縮合触媒とする技術も公知である(例えば、特許文献6、7参照)。上記のポリエステル重縮合触媒を使用すると熱安定性に優れたポリエステルが得られることが報告されている。
 フィルム用のポリエステルには、フィルムを重ね合わせたときにフィルムが密着し、いわゆるブロッキングを起こしたり、ロール状のフィルムを加工する際にガイドロール等との滑り性の不良により傷などの欠陥が生じたりする問題がある。このようなフィルムの取り扱い上の問題を解決するために、ポリエステル内部に無機粒子等の不活性粒子を含有させる技術が用いられている。ポリエステル内部に無機粒子等を含有させる方法としては、ポリエステル重合時の任意の段階で無機粒子等を添加する方法と、出来上がったポリエステル樹脂に無機粒子等を後から溶融混練により含有させる方法があるが、無機粒子の分散性の点では重合時添加が好ましい。しかし、重合時添加の場合においてさえ、無機粒子の凝集は避けられない問題である。そのため、無機粒子の特性や、重合時の粒子の添加方法などに様々な工夫がなされてきた(例えば、特許文献8、9、10参照)。上記公報によれば、無機粒子の凝集を防ぐための最善の方法としては、無機粒子に表面処理を施したうえで、さらに重縮合触媒と無機粒子を別々に分けて添加、さらに粒子自体も細かく分けて添加することが有効であると報告されている。
 本発明者らは、上記特許文献8、9、10に記載されたフィルム用に用いる無機粒子を含有したポリエステルの重合技術、および、上記特許文献1、2、6、7に記載された重合触媒技術を用いて、フィルム用に適した無機粒子の凝集に由来する粗大粒子の少ないポリエステルの重合を試みたところ、従来の課題に対しては一定レベルの改善効果を得ることができたが、更に高付加価値のフィルムを得るためには不十分であることを認識した。すなわち、アルミニウム化合物からなる重合触媒を用いてポリエステルを重合する際、無機粒子をフィルムの滑り性付与に必要な所定量を加えて重合すると、無機粒子の凝集が発生し、高品位フィルムとしては無視できないレベルの欠点が発生することがわかった。加えて、無機粒子の添加による重合活性の低下、耐熱性の低下、色調の変化が無視できない問題であることを認識した。
 加えて、環境への配慮から、ポリエステル用重縮合触媒としては、アンチモン化合物、ゲルマニウム化合物、またはスズ化合物といった重金属の以外の使用が望まれている。また、これら重金属の重縮合触媒に代わるものとして、チタン化合物が提案されているが、これを用いて製造されたポリエステルは溶融成形時に熱劣化を受けやすく、またポリエステルが著しく着色するという問題点を有する。
 以上のような経緯で、アンチモン化合物、ゲルマニウム化合物、チタン化合物、及びスズ化合物以外の金属成分を主成分とするポリエステル用重縮合触媒を用いたポリエステル組成物であり、重合活性に優れ、無機粒子を含有させた場合に着色や耐熱性の低下が少なく、かつ、無機粒子の凝集による粗大粒子の生成が少ない、高品位フィルム用途に適したポリエステル組成物が望まれている。
特開2000-302854号公報 特開2001-26639号公報 国際公開第07/035250号パンフレット 国際公開第07/035256号パンフレット 国際公開第07/012731号パンフレット 国際公開第02/022707号 特開2001-131276号公報 特公昭59-46254号公報 特開昭59-179555号公報 特公昭63-30335号公報
 本発明の目的は、アンチモン化合物、ゲルマニウム化合物などの重縮合触媒を主成分としないポリエステル重縮合触媒を用いて製造された、十分な重合度と熱安定性を有し、無機粒子の凝集が抑制されたポリエステル組成物であり、ポリエステルフィルム等に用いた場合に、フィルターの詰りが少なく、滑り性や走行性、耐摩耗性に優れ、さらにフィルム上の欠点や異物による品質の低下の少ないポリエステルフィルムを提供するものである。
 本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。
 すなわち、本発明は、以下の構成からなる。
(1) 平均粒子径が0.5~3.0μmの無機粒子を1.0~2.0質量%含有し、アルミニウム化合物及びリン化合物を含有する重縮合触媒を用いたマスターバッチ用ポリエステル組成物と、無機粒子を含まないポリエステル樹脂を、質量比で1:15~35の割合で含有することを特徴とするフィルム用ポリエステル組成物。
(2) リン化合物が、同一分子内にフェノール部を有することを特徴とする、(1)に記載のフィルム用ポリエステル組成物。
(3) 無機粒子が、二酸化チタン、アルミナ、アルミノシリケート、二酸化ケイ素、酸化カルシウム、炭酸カルシウム、硫酸バリウム、タルク、マイカ、カオリナイト、およびゼオライトから選ばれる少なくとも一種の不活性無機粒子であることを特徴とする、(1)または(2)に記載のフィルム用ポリエステル組成物。
(4) (1)に記載のフィルム用ポリエステル組成物に用いるマスターバッチ用ポリエステル組成物であって、平均粒子径が0.5~3.0μmの無機粒子を1.0~2.0質量%含有し、アルミニウム化合物及びリン化合物を含有する重縮合触媒を用いることを特徴とするマスターバッチ用ポリエステル組成物。
(5) リン化合物が、同一分子内にフェノール部を有することを特徴とする、(4)に記載のマスターバッチ用ポリエステル組成物。
(6) 無機粒子が、二酸化チタン、アルミナ、アルミノシリケート、二酸化ケイ素、酸化カルシウム、炭酸カルシウム、硫酸バリウム、タルク、マイカ、カオリナイト、およびゼオライトから選ばれる少なくとも一種の不活性無機粒子であることを特徴とする、(4)または(5)に記載のマスターバッチ用ポリエステル組成物。
(7) (1)~(3)のいずれかに記載のフィルム用ポリエステル組成物を用いてなることを特徴とする、ポリエステルフィルム。
 本発明のマスターバッチ用ポリエステル組成物は、アンチモン化合物またはゲルマニウム化合物以外の成分を主成分とし、かつ触媒活性に優れたアルミニウム化合物を用いて製造され、その製造時に添加された無機粒子の分散性が良好であるため、本発明のマスターバッチ用ポリエステル組成物を用いたフィルムは走行性、耐摩耗性、光学特性などに優れ、包装用フィルム、工業用フィルムなど、幅広い用途に使用することができる。
[マスターバッチ用ポリエステル組成物]
 本発明のマスターバッチ用ポリエステル組成物には、フィルム製膜時に表面に凹凸を形成させ、滑り性、走行性、耐摩耗性、巻き取り性などのハンドリング特性を向上させるために、マスターバッチ用ポリエステルの重合工程で不活性無機粒子を添加している。一般にポリエステルフィルムの表面に凹凸を形成させる技術としては、ポリエステルの重合工程で無機及び/又は耐熱性高分子樹脂粒子を添加する外部粒子添加法、重合工程で触媒残渣とポリエステルの構成成分とを反応させて不溶性の粒子を析出させる内部粒子法、被覆層に前記粒子を含有させる方法、薄膜層表面に凹凸が付与されたロールなどでエンボス加工する方法、レーザービームなどで表面凹凸をパターニングする方法、などが挙げられるが、生産効率や品質の安定性の点で、本発明のようにポリエステル重合工程で不活性粒子を添加する方法が最も好ましい。
 本発明に係るマスターバッチ用ポリエステルに添加する不活性粒子としては、以下に例示する無機粒子が、後述する不活性粒子の凝集防止の効果を有効に発揮できるという点で好ましい。
 本発明のマスターバッチ用ポリエステル組成物を重合する際に使用する重縮合触媒は、アルミニウム化合物およびリン化合物を含有する触媒である。
 以下に、本発明に係るアルミニウム化合物、リン化合物、無機粒子について説明し、最良の重合方法の形態について説明する。
 本発明に係るアルミニウム化合物としては、公知のアルミニウム化合物を使用することができる。
 本発明に係るアルミニウム化合物としては、具体的には、ギ酸アルミニウム、酢酸アルミニウム、塩基性酢酸アルミニウム、プロピオン酸アルミニウム、蓚酸アルミニウムなどのカルボン酸塩、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウムなどの無機酸塩、アルミニウムメトキサイド、アルミニウムエトキサイド、アルミニウムiso-プロポキサイド、アルミニウムn-ブトキサイド、アルミニウムt-ブトキサイドなどアルミニウムアルコキサイド、アルミニウムアセチルアセトネート、アルミニウムエチルアセトアセテート、などのアルミニウムキレート化合物、トリメチルアルミニウム、トリエチルアルミニウムなどの有機アルミニウム化合物およびこれらの部分加水分解物、酸化アルミニウムなどが挙げられる。これらのうちカルボン酸塩、無機酸塩およびキレート化合物が好ましく、これらの中でもさらに酢酸アルミニウム、塩基性酢酸アルミニウム、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウムおよびアルミニウムアセチルアセトネートが特に好ましい。
 前記アルミニウム化合物の添加量としては、得られるポリエステルのジカルボン酸や多価カルボン酸などのカルボン酸成分の全構成ユニットのモル数に対して0.001~0.05モル%が好ましく、より好ましくは、0.005~0.043モル%であり、さらに好ましくは、0.005~0.036モル%である。添加量が0.001モル%未満であると触媒活性が十分に発揮されない場合があり、添加量が0.05モル%超になると、熱安定性や熱酸化安定性の低下、アルミニウムに起因する異物の発生や着色の増加が問題になる場合が発生する。この様にアルミニウム成分の添加量が少なくても本発明の重合触媒は十分な触媒活性を示す点に大きな特徴を有する。その結果、熱安定性や熱酸化安定性が優れ、アルミニウムに起因する異物や着色を低減することができる。
 本発明に係るリン化合物としては、特に限定はされないが、ホスホン酸系化合物、ホスフィン酸系化合物を用いると触媒活性の向上効果が大きく好ましく、これらの中でもホスホン酸系化合物を用いると触媒活性の向上効果が特に大きく好ましい。
 これらのリン化合物のうち、同一分子内にフェノール部を有するリン化合物が好ましい。フェノール構造を有するリン化合物であれば特に限定はされないが、同一分子内にフェノール部を有する、ホスホン酸系化合物、ホスフィン酸系化合物からなる群より選ばれる一種または二種以上の化合物を用いると触媒活性の向上効果が大きく好ましい。これらの中でも、一種または二種以上の同一分子内にフェノール部を有するホスホン酸系化合物を用いると触媒活性の向上効果が特に大きく好ましい。
 また、同一分子内にフェノール部を有するリン化合物としては、下記一般式(1)、(2)で表される化合物などが挙げられる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 (式(1)~(2)中、Rはフェノール部を含む炭素数1~50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基などの置換基およびフェノール部を含む炭素数1~50の炭化水素基を表す。Rは、水素、炭素数1~50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基などの置換基を含む炭素数1~50の炭化水素基を表す。R、Rはそれぞれ独立に水素、炭素数1~50の炭化水素基、水酸基またはアルコキシル基などの置換基を含む炭素数1~50の炭化水素基を表す。ただし、炭化水素基は分岐構造やシクロヘキシル等の脂環構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。RとRの末端どうしは結合していてもよい。)
 前記の同一分子内にフェノール部を有するリン化合物としては、例えば、p-ヒドロキシフェニルホスホン酸、p-ヒドロキシフェニルホスホン酸ジメチル、p-ヒドロキシフェニルホスホン酸ジエチル、p-ヒドロキシフェニルホスホン酸ジフェニル、ビス(p-ヒドロキシフェニル)ホスフィン酸、ビス(p-ヒドロキシフェニル)ホスフィン酸メチル、ビス(p-ヒドロキシフェニル)ホスフィン酸フェニル、p-ヒドロキシフェニルフェニルホスフィン酸、p-ヒドロキシフェニルフェニルホスフィン酸メチル、p-ヒドロキシフェニルフェニルホスフィン酸フェニル、p-ヒドロキシフェニルホスフィン酸、p-ヒドロキシフェニルホスフィン酸メチル、p-ヒドロキシフェニルホスフィン酸フェニルなどが挙げられる。その他、下記一般式(3)で表されるリン化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000003
 式(3)中、X、Xは、それぞれ、水素、炭素数1~4のアルキル基、または1価以上の金属を表す。
 また、Xは、金属が2価以上であって、Xが存在しなくても良い。さらには、リン化合物に対して金属の余剰の価数に相当するアニオンが配置されていても良い。
 金属としては、Li、Na、K、Ca、Mg、Alが好ましい。
 これらの同一分子内にフェノール部を有するリン化合物をポリエステルの重合時に添加することによってアルミニウム化合物の触媒活性が向上するとともに、重合したポリエステルの熱安定性も向上する。
 上記の中でも、重縮合触媒として使用することが好ましいリン化合物は、化学式(4)、化学式(5)で表される化合物から選ばれる少なくとも一種のリン化合物である。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 上記の化学式(4)で示される化合物としては、Irganox1222(ビーエーエスエフ社製)が市販されている。また、化学式(5)にて示される化合物としては、Irganox1425(ビーエーエスエフ社製)が市販されている。
 前記のリン化合物の添加量は、ポリエステルを構成するジカルボン酸成分の全構成ユニットのモル数に対して、0.0001~0.1モル%が好ましく、0.005~0.08モル%であることがさらに好ましい。リン化合物の添加量が0.0001モル%未満の場合には添加効果が発揮されない場合がある。一方、0.1モル%を超えて添加すると、逆にポリエステル重合触媒としての触媒活性が低下する場合がある。また、その低下の傾向は、アルミニウムの添加量等により変化する。
 前記の特定の化学構造を有するリン化合物の使用により、熱安定性の低下、異物発生等の問題を起こさず、しかも金属含有成分のアルミニウムとしての添加量が少量でも十分な触媒効果を有する重縮合触媒が得られ、この重縮合触媒により重合したポリエステルを使用することにより、溶融成形後のポリエステルフィルムの熱安定性が改善される。
 前記のリン化合物を前記好ましい添加量の範囲で、従来のアンチモン化合物、チタン化合物、スズ化合物、ゲルマニウム化合物等の金属含有ポリエステル重縮合触媒と組み合わせて使用しても、溶融重合反応を促進する効果は認められない。
 一方、本発明において、本発明の効果を損なわない範囲で、触媒活性をさらに向上させるために、これらアンチモン化合物、チタン化合物、スズ化合物、ゲルマニウム化合物等の金属含有ポリエステル重縮合触媒を併用しても良い。その場合、アンチモン化合物は、得られるポリエステルの質量に対して、アンチモン原子として30ppm以下が好ましく、ゲルマニウム化合物は、得られるポリエステルの質量に対して、ゲルマニウム原子として10ppm以下が好ましく、チタン化合物は、得られるポリエステルの質量に対して、チタン原子として3ppm以下であることが好ましく、スズ化合物は、得られるポリエステルの質量に対して、スズ原子として3ppm以下が好ましい。本発明の目的からは、これらアンチモン化合物、チタン化合物、スズ化合物、ゲルマニウム化合物等の金属含有ポリエステル重縮合触媒は使用しないことが好ましい。
 本発明においてアルミニウム化合物に加えて少量のアルカリ金属、アルカリ土類金属並びにその化合物から選択される少なくとも1種を第2金属含有成分として共存させても良い。かかる第2金属含有成分を触媒系に共存させることは、ジエチレングリコールの生成を抑制する効果に加えて触媒活性を高め、従って反応速度をより高めた触媒成分が得られ、生産性向上に有効である。
 なお、アルカリ金属化合物を用いた場合、それに起因する異物量が多くなり、フィルム製造時の溶融押出し工程でフィルター交換頻度が短くなったり、フィルム欠点が増加する傾向がある。
 また、アルカリ土類金属化合物を用いた場合には、実用的な活性を得ようとすると、得られたポリエステルの熱安定性や熱酸化安定性が低下し、加熱による着色が大きく、異物の発生量も多くなる。
 したがって、アルカリ金属、アルカリ土類金属、またはそれらの化合物を併用添加する場合、その添加量M(モル%)は、ポリエステルを構成する全ポリカルボン酸ユニットのモル数に対して、好ましくは、1×10-5~0.01モル%である。
 本発明においては、併用添加する場合でも、アルカリ金属やアルカリ土類金属の添加量が少量であるため、熱安定性低下、異物の発生、着色等の問題を発生させることなく、反応速度を高めることが可能である。また、耐加水分解性の低下等の問題を発生させることもない。
 前記アルミニウムもしくはその化合物に加えて使用することが好ましい第2金属含有成分を構成するアルカリ金属、アルカリ土類金属としては、Li、Na、K、Rb、Cs、Be、Mg、Ca、Sr、Baから選択される少なくとも1種であることが好ましく、アルカリ金属ないしその化合物の使用がより好ましい。
 アルカリ金属ないしその化合物を使用する場合、アルカリ金属としては、特にLi、Na、Kが好ましい。アルカリ金属やアルカリ土類金属の化合物としては、例えば、これら金属のギ酸、酢酸、プロピオン酸、酪酸、蓚酸などの飽和脂肪族カルボン酸塩、アクリル酸、メタクリル酸などの不飽和脂肪族カルボン酸塩、安息香酸などの芳香族カルボン酸塩、トリクロロ酢酸などのハロゲン含有カルボン酸塩、乳酸、クエン酸、サリチル酸などのヒドロキシカルボン酸塩、炭酸、硫酸、硝酸、リン酸、ホスホン酸、炭酸水素、リン酸水素、硫化水素、亜硫酸、チオ硫酸、塩酸、臭化水素酸、塩素酸、臭素酸などの無機酸塩、1-プロパンスルホン酸、1-ペンタンスルホン酸、ナフタレンスルホン酸などの有機スルホン酸塩、ラウリル硫酸などの有機硫酸塩、メトキシ、エトキシ、n-プロポキシ、iso-プロポキシ、n-ブトキシ、tert-ブトキシなどのアルコキサイド、アセチルアセトネートなどとのキレート化合物、水素化物、酸化物、水酸化物などが挙げられる。
 これらのアルカリ金属、アルカリ土類金属またはそれらの化合物のうち、取り扱い易さや入手のし易さ等の観点から、アルカリ金属あるいはアルカリ土類金属の飽和脂肪族カルボン酸塩、特に酢酸塩の使用が好ましい。
 本発明によるポリエステルの製造は、従来公知の方法で行うことができる。例えば、テレフタル酸とエチレングリコールとのエステル化後、重縮合する方法、もしくは、テレフタル酸ジメチルなどのテレフタル酸のアルキルエステルとエチレングリコールとのエステル交換反応を行った後、重縮合する方法のいずれの方法でも行うことができる。また、重合の装置は、回分式であっても、連続式であってもよい。
 本発明に係る触媒は、重縮合反応のみならずエステル化反応およびエステル交換反応にも触媒活性を有する。テレフタル酸ジメチルなどのジカルボン酸のアルキルエステルとエチレングリコールなどのグリコールとのエステル交換反応は、通常亜鉛などのエステル交換触媒の存在下で行われるが、これらの触媒の代わりに本発明の触媒を用いることもできる。また、本発明の触媒は、溶融重合のみならず固相重合や溶液重合においても触媒活性を有する。
 本発明で用いるポリエステルの重合触媒は、重合反応の任意の段階で反応系に添加することができる。例えば、エステル化反応もしくはエステル交換反応の開始前および反応途中の任意の段階、重縮合反応の開始直前、あるいは重縮合反応途中の任意の段階で、反応系への添加することができる。特に、本発明で用いるアルミニウム化合物およびリン化合物の添加は重縮合反応の開始直前に添加することが好ましい。
 本発明に係るポリエステルとは、ジカルボン酸を含む多価カルボン酸およびこれらのエステル形成性誘導体から選ばれる一種または二種以上とグリコールを含む多価アルコールから選ばれる一種または二種以上とから成るもの、またはヒドロキシカルボン酸およびこれらのエステル形成性誘導体からなるもの、または環状エステルからなるものをいう。
 好ましいポリエステルとしては、主たる酸成分がテレフタル酸またはそのエステル形成性誘導体、もしくはナフタレンジカルボン酸またはそのエステル形成性誘導体であり、主たるグリコール成分がアルキレングリコールであるポリエステルである。
 主たる酸成分がテレフタル酸またはそのエステル形成性誘導体もしくはナフタレンジカルボン酸またはそのエステル形成性誘導体であるポリエステルとは、全酸成分に対してテレフタル酸またはそのエステル形成性誘導体とナフタレンジカルボン酸またはそのエステル形成性誘導体を合計して70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。
 主たるグリコール成分がアルキレングリコールであるポリエステルとは、全グリコール成分に対してアルキレングリコールを合計して70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。
 ジカルボン酸としては、蓚酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ドデカンジカルボン酸、テトラデカンジカルボン酸、ヘキサデカンジカルボン酸、1,3-シクロブタンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、2,5-ノルボルナンジカルボン酸、ダイマー酸などに例示される飽和脂肪族ジカルボン酸またはこれらのエステル形成性誘導体、フマル酸、マレイン酸、イタコン酸などに例示される不飽和脂肪族ジカルボン酸またはこれらのエステル形成性誘導体、オルソフタル酸、イソフタル酸、テレフタル酸、5-(アルカリ金属)スルホイソフタル酸、ジフェニン酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、4,4’-ビフェニルジカルボン酸、4,4’-ビフェニルスルホンジカルボン酸、4,4’-ビフェニルエーテルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸、パモイン酸、アントラセンジカルボン酸などに例示される芳香族ジカルボン酸、またはこれらのエステル形成性誘導体が挙げられる。
 これらのジカルボン酸のうち、テレフタル酸、ナフタレンジカルボン酸、またはこれらのエステル形成性誘導体が好ましい。
 ナフタレンジカルボン酸またはそのエステル形成性誘導体としては、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、またはこれらのエステル形成性誘導体が挙げられる。
 特に好ましくは、テレフタル酸、2,6-ナフタレンジカルボン酸またはこれらのエステル形成性誘導体である。必要に応じて、他のジカルボン酸を構成成分としてもよい。
 これらジカルボン酸以外の多価カルボン酸として、エタントリカルボン酸、プロパントリカルボン酸、ブタンテトラカルボン酸、ピロメリット酸、トリメリット酸、トリメシン酸、3,4,3’,4’-ビフェニルテトラカルボン酸、およびこれらのエステル形成性誘導体などが挙げられる。
 グリコールとしては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、2,3-ブチレングリコール、1,4-ブチレングリコール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジエタノール、1,10-デカメチレングリコール、1,12-ドデカンジオールなどのアルキレングリコール、ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコールなどに例示される脂肪族グリコール、ヒドロキノン、4,4’-ジヒドロキシビスフェノール、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、1,4-ビス(β-ヒドロキシエトキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)エーテル、ビス(p-ヒドロキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)メタン、1,2-ビス(p-ヒドロキシフェニル)エタン、ビスフェノールA、ビスフェノールC、2,5-ナフタレンジオール、これらのグリコールにエチレンオキシドが付加したグリコール、などに例示される芳香族グリコールが挙げられる。
 これらのグリコールのうち、アルキレングリコールが好ましく、さらに好ましくは、エチレングリコール、1,3-プロピレングリコール、1,4-ブチレングリコール、1,4-シクロヘキサンジメタノールである。また、前記アルキレングリコールは、分子鎖中に置換基や脂環構造を含んでいても良く、同時に2種以上を使用しても良い。
 これらグリコール以外の多価アルコールとして、トリメチロールメタン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、グリセロール、ヘキサントリオールなどが挙げられる。
 ヒドロキシカルボン酸としては、乳酸、クエン酸、リンゴ酸、酒石酸、ヒドロキシ酢酸、3-ヒドロキシ酪酸、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸、4-ヒドロキシシクロヘキサンカルボン酸、またはこれらのエステル形成性誘導体などが挙げられる。
 環状エステルとしては、ε-カプロラクトン、β-プロピオラクトン、β-メチル-β-プロピオラクトン、δ-バレロラクトン、グリコリド、ラクチドなどが挙げられる。
 多価カルボン酸もしくはヒドロキシカルボン酸のエステル形成性誘導体としては、これらのアルキルエステル、酸クロライド、酸無水物などが挙げられる。
 本発明で用いるポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフタレート、ポリ(1,4-シクロヘキサンジメチレンテレフタレート)、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリプロピレンナフタレートおよびこれらの共重合体が好ましく、特に好ましくはポリエチレンテレフタレートおよびこの共重合体である。
 本発明で用いるマスターバッチ用ポリエステル組成物の固有粘度は、0.4~1.0dl/gが好ましく、より好ましくは0.5~0.75dl/gである。本発明においては、無機粒子を含んだポリエステル組成物として固有粘度を測定するため、ポリエステル組成物の固有粘度と表す。
 本発明でマスターバッチ用ポリエステルに添加される無機粒子とは、平均粒子径は0.5~3.0μmであり、より好ましくは0.8~2.5μmであり、さらに好ましくは2.0~2.5μmである。0.5μm未満では、表面に凹凸を形成し滑り性、走行性などのハンドリング性を付与する効果が低下するので好ましくない。一方、3.0μmを超えた場合は、粗大突起の形成によりフィルムの品質を損なう場合があるので好ましくない。
 本発明でいう平均粒子径は、水あるいはエチレングリコールを媒質とし、レーザー光散乱法で測定した粒度分布から求めたものを使用する。
 本発明で、上述の無機粒子のマスターバッチ用ポリエステルへの添加量は、マスターバッチ用ポリエステル組成物中に、1.0~2.0質量%の範囲である。無機粒子のマスターバッチ用ポリエステルへの添加量は、好ましくは1.2~1.8質量%の範囲である。1.0質量%未満では、ブレンド希釈後の無機粒子の凝集による粗大粒子の生成が増えるため、好ましくない。また、2.0質量%を超えた場合には、粗大粒子の防止効果が十分ではなく、フィルムとしたときの異物の発生が問題となり好ましくない。
 本発明で用いる無機粒子としては、チタン、アルミニウム、ケイ素、カルシウム、マグネシウム、バリウムなどの金属の酸化物、炭酸塩、ケイ酸塩、硫酸塩、アルミン酸塩からなる粒子を使用することが出来る。
 具体的には、二酸化チタン、アルミナ、アルミノシリケート、二酸化ケイ素、酸化カルシウム、炭酸カルシウム、硫酸バリウムなどのほか、天然由来のタルク、マイカ、カオリナイト、ゼオライトなどの粒子があげられるが、これらに限定されない。
 これらの無機粒子は凝集防止のため、グリコール類でスラリー化した後、サンドグラインダー、アトライター、超音波などの媒体攪拌型分散機による機械的分散およびアルカリ金属化合物、アンモニウム化合物、リン化合物を添加して分散効率を向上させた後、添加するとさらに好ましい。上述の無機粒子の添加時期は、特に制限されない。
 本発明のマスターバッチ用ポリエステル組成物中には、使用する目的に応じて、無機粒子以外に、耐熱性高分子粒子、架橋高分子粒子などの不活性粒子、蛍光増白剤、紫外線防止剤、赤外線吸収色素、熱安定剤、界面活性剤、酸化防止剤などの各種添加剤を1種もしくは2種以上含有させることができる。酸化防止剤としては、芳香族アミン系、フェノール系などの酸化防止剤が使用可能であり、安定剤としては、リン酸やリン酸エステル系等のリン系、イオウ系、アミン系などの安定剤が使用可能である。
 これら無機粒子以外の添加剤は、合計で、マスターバッチ用ポリエステル組成物中に、好ましくは10質量%以下の割合で添加することができ、より好ましくは5質量%以下の割合である。すなわち、本発明のマスターバッチ用ポリエステル組成物は、上記ポリエステルと無機粒子の合計で、90質量%以上占めることが好ましく、95質量%以上占めることがより好ましい。
[無機粒子を含まないポリエステル樹脂]
 本発明に係る無機粒子を含まないポリエステル樹脂は、無機粒子を含まないこと以外は、上記で説明したマスターバッチ用ポリエステル組成物のポリエステルを用いることができる。
 重縮合触媒としては、上記のアルミニウム化合物とリン化合物を含有する重縮合触媒に限定されないが、環境への配慮等から、マスターバッチ用ポリエステル組成物で用いる上記重縮合触媒が好ましい。
 また、ポリエステル樹脂の固有粘度は、0.4~1.0dl/gが好ましく、より好ましくは0.5~0.75dl/gである。
[フィルム用ポリエステル組成物]
 本発明のフィルム用ポリエステル組成物は、上記マスターバッチ用ポリエステル組成物と、上記無機粒子を含まないポリエステル樹脂を質量比で1:15~35の割合で混合したものである。すなわち、マスターバッチ用ポリエステル組成物を15~35倍質量の無機粒子を含まないポリエステル樹脂で希釈したものである。マスターバッチ用ポリエステル組成物と、無機粒子を含まないポリエステル樹脂の質量比は、1:18~32が好ましい。
 本発明のフィルム用ポリエステル組成物中の無機粒子の凝集による粗大粒子数の測定方法について、以下に説明する。
 本発明のフィルム用ポリエステル組成物中の粗大粒子数の測定は、位相差光学顕微鏡を用いて観察したポリマー中の粒子の画像から画像解析により粒子の大きさと個数を計測する方法を用いる。位相差光学顕微鏡は屈折率が異なる物体を透過する光の波長のわずかの遅れ(位相差)を光の回折・屈折を利用して明暗のコントラストに変換することができるので、通常の顕微鏡観察ではポリマー中で無色透明に見える無機粒子の観察に適している。観察された画像は電子データとして画像解析装置に取り込み、粒子径(面積円相当径)と個数を計測することができる。
 位相差顕微鏡による粗大粒子の観察では、用いるレンズの倍率や開口度によって、視野面積や焦点深度が決まってくるので、これらが異なると計測結果のずれを引き起こす。また、無機粒子の含有量が大きく、光線透過率の小さい試料の場合には得られる画像の明度が暗く、倍率の大きなレンズでは十分な観測ができない場合がある。また、観察する試料の厚みは、対物レンズの焦点深度に対して十分に厚みが大きいことが必要である。これらの条件を満たすため、本発明では位相差顕微鏡の位相差対物レンズの倍率は10倍、開口度は0.5のレンズを用いて観察する。
 画像解析装置による計測は、以下の手順で行われる。
(1)得られた画像を電子信号に変換する。変換した画像データはモノクロ画像であり、画像のコントラストは0(真っ黒)から255(真っ白)の256階調から構成されている。
(2)画像の対象物(粗大無機粒子)と背景(ポリマー)の境界線を明確に仕切る、2値化処理を行い、粒子が白、背景が黒(またはその逆に、粒子が黒、背景が白)の2値化画像を得る。
(3)画像を構成する点(ドット)数から粒子の径(面積円相当径)と個数を計算する。
 得られた結果は、実際の画像の縮尺に応じて単位面積換算し、粒子径の大きさごとに個数を区分したデータである。
 測定は通常20~40視野行い、計測結果は視野面積1mm当たりに換算して用いる。
 観察および測定の際には粒子径、粒子数が既知な標準試料を用いて画像の濃淡や解像度、2値化の際の閾値を適宜調整することが好ましい。
 本発明のフィルム用ポリエステル組成物において、マスターバッチ用ポリエステル組成物と無機粒子を含まないポリエステル樹脂とを無機粒子の含有量が0.06質量%となるように混合し、溶融押出ししてチップ化したとき、上記の方法で測定した粒子径10μm以上の粗大粒子数が1mm当たり100個以下であることが重要な尺度となる。粗大粒子数が100個を超えると、フィルムの表面に異物となって外観や品質を損なうだけでなく、ポリマーやフィルムを製造する際の溶融工程でフィルターの背圧が上昇したり、フィルターが詰まったりして、長期間安定した生産ができない。
 フィルムに十分な滑り性、加工取扱性を付与した上、なおかつ上記のフィルムにしたときの良好な外観や品質を有し、安定生産性を満足するためには、本発明のフィルム用ポリエステル組成物の粗大粒子数は10~100個/mmであることが好ましい。
 アルミニウム化合物には無機粒子を凝集させる効果があるため、ポリエステル中の無機粒子含有量が増えると、凝集異物が増えてしまい、粗大粒子数が増える。ここに、リン化合物を加えると、アルミニウム化合物とリン化合物が相互作用することで、ポリエステル中間反応物の分子鎖と無機粒子の親和性が向上し、無機粒子の凝集が起こりにくくなる。
 無機粒子を高濃度化すると、ポリエステル中間反応物の分子鎖と無機粒子の親和性向上効果が大きくなることで、ポリエステル中に含まれる凝集異物を低減でき、粗大粒子数を減らすことが出来る。このマスターバッチ用ポリエステル組成物を、無機粒子を含まないポリエステル樹脂と混合希釈することによって、更に粗大粒子数を減らすことが可能となる。
 そこで、予め高濃度の無機粒子を含むマスターバッチ用ポリエステル組成物を製造し、無機粒子を含まないポリエステル樹脂と混合することにより、フィルムにした時の欠点となる無機粒子の凝集異物を低減させる効果があることを見出し、本発明に到達した。
 次に、本発明のフィルム用ポリエステル組成物を用いたフィルムの製造方法の一例を以下に説明する。ポリエステルフィルムの製造方法は下記に限定されるものではない。前記のフィルム用ポリエステル組成物を溶融押出しし、T-ダイスより冷却回転ロール上にシート状に成型し、未延伸シートを作成する。この際、例えば特公平6-39521号公報、特公平6-45175号公報に記載の技術を適用することにより、高速製膜性が可能となる。また、複数の押出し機を用い、コア層、スキン層に各種機能を分担させ、共押出し法により積層フィルムとしても良い。
 配向ポリエステルフィルムは、公知の方法を用いて、ポリエステルのガラス転移温度以上結晶化温度未満で、少なくとも一軸方向に1.1~6倍に延伸することにより得ることができる。
 例えば、二軸配向ポリエステルフィルムを製造する場合、縦方向または横方向に一軸延伸を行い、次いで直交方向に延伸する逐次二軸延伸方法、縦方向及び横方向に同時に延伸する同時二軸延伸する方法、さらに同時二軸延伸する際の駆動方法としてリニアモーターを用いる方法のほか、横・縦・縦延伸法、縦・横・縦延伸法、縦・縦・横延伸法な、同一方向に数回に分けて延伸する多段延伸方法を採用することができる。
 さらに、延伸終了後、フィルムの熱収縮率を低減させるために、(融点-50℃)~融点未満の温度で30秒以内、好ましくは10秒以内で熱固定処理を行い、0.5~10%の縦弛緩処理、横弛緩処理などを施すことが好ましい。
 得られた配向ポリエステルフィルムの厚みは、1~1000μmであることが好ましく、より好ましくは5~500μmであり、さらに好ましくは10~200μmである。1μm未満では腰が無く取り扱いが困難である。また1000μmを超えると硬すぎて取り扱いが困難となる。
 また、接着性、離型性、制電性、赤外線吸収性、抗菌性、耐擦り傷性、などの各種機能を付与するために、配向ポリエステルフィルム表面にコーティング法により高分子樹脂を被覆してもよい。また、被覆層にのみ無機及び/又は有機粒子を含有させて、易滑高透明ポリエステルフィルムとしてもよい。さらに、無機蒸着層を設け、酸素、水、オリゴマーなどの各種バリア機能を付与したり、スパッタリング法などで導電層を設け、導電性を付与することもできる。
 以下、本発明を実施例により説明するが、本発明はもとよりこれらの実施例に限定されるものではない。なお、各実施例および比較例において用いた評価方法を以下に説明する。
 以下の説明において、単に「ポリエステル」と記載しているが、実際は触媒成分、無機粒子を含む「ポリエステル組成物」である。
〔評価方法〕
(1)ポリエステルの固有粘度(IV)
 ポリエステルをフェノール/1,1,2,2-テトラクロロエタンの6/4(重量比)混合溶媒を使用して溶解し、温度30℃にて測定した。
(2)無機粒子の平均粒子径
 レーザー光散乱方式の粒度分布計(Leeds&Northrup社製、Microtrac HRA model9320-X100)を用いて、無機粒子のエチレングリコールスラリーを水で希釈して実質的に水系で測定した。測定結果の体積累計50%径を平均粒子径とした。
(3)ポリエステル中の粗大粒子数
(IMAの粗大粒子測定法)
 マスターバッチ用ポリエステル組成物と無機粒子を含まないポリエステル樹脂からなるフィルム用ポリエステル組成物のチップを作製し、そのチップ1粒を2枚のカバーガラス(マツナミマイクロカバーグラス、25mm×25mm、厚さ0.2mm)に挟んで、約300℃のホットプレート上で加熱溶融し、0.8~0.9mmの厚さにプレス、直に急冷して観察用試料とした。位相差顕微鏡(Nikon社製、)、対物レンズ(同社製、倍率10倍、開口度0.5)を用いて試料の厚さの中心部分を観察した。画像はCCDカメラを経由して画像解析装置(Nireco製、Luzex-FS)に取り込み、画像解析を行い、10μm以上の粒子数を計測した。視野を変えながら同様の計測を20回行い合計の粒子数を求め、視野面積1mm当たりの10μm以上の粒子数を計算し、粗大粒子数とした。
(4)ポリエステルの着色判定
 色差計(日本電色工業(株)製、ZE-2000)を用いて、ポリエステルチップの色差(L、a、b)を測定した。比較用レジンとして無機粒子を含有しないポリエステルの色差を測定し、b値の差(Δb)を計算した。
(5)フィルムの異物判定
 フィルムを200mm×300mmにカットしたシートの反対方向から蛍光灯の光を当てて、目視で観察される輝点の数を異物として計測した。シート10枚について合計の異物数を算出し、以下の基準に基づいて判定した。
 ○:異物数が100個以下
 △:異物数が101個~500個
 ×:異物数が501個以上
(6)フィルムの耐加水分解性
 耐加水分解性評価として、JIS-60068-2-66で規格化されているHAST(Highly Accelerated temperature and humidity Stress Test)を行った。機器はエスペック社製EHS-221を用い、105℃、100%RH、0.03MPa下の条件で行った。
 フィルムを70mm×190mmにカットし、治具を用いてフィルムを設置した。各フィルムは各々が接触しない距離を保ち設置した。105℃、100%RH、0.03MPaの条件下で200時間および300時間処理を行った。処理前、処理後の破断伸度をJIS-C-2318-1997 5.3.31(引張強さ及び伸び率)に準拠して測定し、下記式に従い破断伸度保持率を算出した。
破断伸度保持率(%)=[(処理後の破断伸度(MPa))/(処理前の破断伸度(MPa))]×100
 以下の基準に基づいて判定した。
 ○:破断伸度保持率が80%以上
 △:破断伸度保持率が60%以上80%未満
 ×:破断伸度保持率が60%未満
(実施例1)
(1)重縮合触媒溶液の調製
(アルミニウム化合物の水溶液の調製)
 冷却管を備えたフラスコに、常温常圧下、純水5.0リットルを加えた後、200rpmで攪拌しながら、塩基性酢酸アルミニウム200gを純水とのスラリーとして加えた。さらに全体として10.0リットルとなるよう純水を追加して常温常圧で12時間攪拌した。その後、ジャケット温度の設定を100.5℃に変更して昇温し、内温が95℃以上になった時点から3時間還流下で攪拌した。攪拌を止め、室温まで放冷し水溶液を得た。(アルミニウム化合物のエチレングリコール混合溶液の調製)
 上記方法で得たアルミニウム化合物水溶液に等容量のエチレングリコールを加え、室温で30分間攪拌した後、内温80~90℃にコントロールし、徐々に減圧して、到達2.7kPaとして、数時間攪拌しながら系から水を留去し、20g/lのアルミニウム化合物のエチレングリコール溶液を得た。
(リン化合物のエチレングリコール溶液の調製)
 窒素導入管、冷却管を備えたフラスコに、常温常圧下、エチレングリコール2.0リットルを加えた後、窒素雰囲気下200rpmで攪拌しながら、リン化合物としてIrganox1222(ビーエーエスエフ社製)を200g加えた。さらに2.0リットルのエチレングリコールを追加した後、ジャケット温度の設定を196℃に変更して昇温し、内温が185℃以上になった時点から60分間還流下で攪拌した。その後加熱を止め、直ちに溶液を熱源から取り去り、窒素雰囲気下を保ったまま、30分以内に120℃以下まで冷却した。
(2)無機粒子含有エチレングリコールスラリーの調製
 ホモジナイザー付きの分散槽にエチレングリコール5リットルと、無機粒子として平均粒子径2.4μmのシリカ粒子(富士シリシア化学製、サイリシア310)600gを入れて、8000rpmで2時間攪拌分散し、120g/lのスラリーとした。
(3)マスターバッチ用ポリエステル組成物の製造方法
 撹拌機、蒸留塔、圧力調整器を備えたステンレス製オートクレーブにテレフタル酸2594部、エチレングリコール1938部、上記方法で調製したシリカ粒子のエチレングリコールスラリーを得られるポリエステル組成物の質量に対してSiO分子として1.2質量%となるように仕込み、更にトリエチルアミン11部を加えて240℃、ゲージ圧3.5MPaでエステル化に生成する水を逐次除去しながら2時間エステル化反応を行った。
 続いて、上記方法で調製したアルミニウム化合物のエチレングリコール溶液およびリン化合物のエチレングリコール溶液をそれぞれポリエステル中の酸成分に対してアルミニウム原子およびリン原子として0.021モル%および0.037モル%となるように添加し、1時間で系の温度を280℃まで昇温して、この間に系の圧力を徐々に減じて150Paとし、この条件下で1時間重縮合反応を行い、マスターバッチ用ポリエステル組成物(A)を得た。得られたマスターバッチ用ポリエステル組成物(A)の固有粘度は0.59dl/gであった。
(4)無機粒子を含まないポリエステル樹脂の製造方法
 撹拌機、蒸留塔、圧力調整器を備えたステンレス製オートクレーブにテレフタル酸2594部、エチレングリコール1938部を仕込み、更にトリエチルアミン11部を加えて240℃、ゲージ圧3.5MPaでエステル化に生成する水を逐次除去しながら2時間エステル化反応を行った。
 続いて、上記方法で調製したアルミニウム化合物のエチレングリコール溶液およびリン化合物のエチレングリコール溶液をそれぞれポリエステル中の酸成分に対してアルミニウム原子およびリン原子として0.014モル%および0.025モル%となるように添加し、1時間で系の温度を280℃まで昇温して、この間に系の圧力を徐々に減じて150Paとし、この条件下で1時間重縮合反応を行い、無機粒子を含まないポリエステル(X)を得た。得られた無機粒子を含まないポリエステル樹脂(X)の固有粘度は0.61dl/gであった。
(5)ポリエステルフィルムの製膜
 上記で製造したマスターバッチ用ポリエステル組成物(A)のペレットと、無機粒子を含まないポリエステル樹脂(X)のペレットを質量比で1:19の割合で混合し、135℃で10時間真空乾燥した。次いで、二軸押出機に定量供給し、280℃でシート状に溶融押し出しして、表面温度20℃に保った金属ロール上で急冷固化し、厚さ1400μmのキャストフィルムを得た。
 次に、このキャストフィルムを加熱されたロール群及び赤外線ヒーターで100℃に加熱し、その後周速差のあるロール群で長手方向に3.5倍延伸して一軸配向フィルムを得た。引き続いて、テンターで、120℃で幅方向に4.0倍に延伸し、フィルム幅長を固定した状態で、260℃、0.5秒間赤外線ヒーターで加熱し、さらに200℃で23秒間3%の弛緩処理をし、厚さ100μmの二軸配向ポリエステルフィルムを得た。得られたフィルムの特性を表1に示す。
(実施例2)
 実施例1の重合方法において、シリカ粒子のエチレングリコールスラリーを得られるポリエステル組成物の質量に対してSiO分子として1.8質量%とし、アルミニウム化合物、リン化合物の添加量をそれぞれポリエステル中の酸成分に対してアルミニウム原子、リン原子として0.028モル%、0.050モル%とした以外は、実施例1と同様な方法によって固有粘度0.58dl/gのマスターバッチ用ポリエステル組成物(B)を得た。次に、得られたマスターバッチ用ポリエステル組成物(B)のペレットと無機粒子を含まないポリエステル樹脂(X)のペレットを、質量比で1:29の割合で混合したこと以外は、実施例1と同様な方法で製膜しポリエステルフィルムを得た。得られたフィルムの特性を表1に示す。
(比較例1)
 実施例1の重合方法において、アルミニウム化合物のエチレングリコール溶液およびリン化合物のエチレングリコール溶液に変えて、三酸化アンチモンのエチレングリコール溶液をポリエステル中の酸成分に対してアンチモン金属として0.020モル%を添加した以外は、実施例1と同様な方法によって固有粘度0.58dl/gのマスターバッチ用ポリエステル組成物(C)を得た。得られたマスターバッチ用ポリエステル組成物(C)のペレットを用いて、実施例1と同様な方法で製膜しポリエステルフィルムを得た。得られたフィルムの特性を表1に示す。
(比較例2)
 実施例1の重合方法において、リン化合物のエチレングリコール溶液に変えて、酢酸ナトリウムのエチレングリコール溶液をポリエステル中の酸成分に対してナトリウム金属として0.017モル%を添加した以外は、実施例1と同様な方法によって固有粘度0.58dl/gのマスターバッチ用ポリエステル組成物(D)を得た。得られたマスターバッチ用ポリエステル組成物(D)のペレットを用いて、実施例1と同様な方法で製膜しポリエステルフィルムを得た。得られたフィルムの特性を表1に示す。
(比較例3)
 実施例1の重合方法において、シリカ粒子のエチレングリコールスラリーを得られるポリエステル組成物の質量に対してSiO分子として0.06質量%とした以外は、実施例1と同様な方法によって固有粘度0.61dl/gのマスターバッチ用ポリエステル組成物(E)を得た。得られたマスターバッチ用ポリエステル組成物(E)のペレットを100%使用した以外は、実施例1と同様な方法で製膜しポリエステルフィルムを得た。得られたフィルムの特性を表1に示す。
(比較例4)
 実施例1の重合方法において、シリカ粒子のエチレングリコールスラリーを得られるポリエステル組成物の質量に対してSiO分子として0.6質量%とした以外は、実施例1と同様な方法によって固有粘度0.58dl/gのマスターバッチ用ポリエステル組成物(F)を得た。得られたマスターバッチ用ポリエステル組成物(F)のペレットと無機粒子を含まないポリエステル樹脂(X)のペレットを、質量比で1:9の割合で混合して用いた以外は、実施例1と同様な方法で製膜しポリエステルフィルムを得た。得られたフィルムの特性を表1に示す。
(比較例5)
 実施例1の重合方法において、シリカ粒子のエチレングリコールスラリーを得られるポリエステル組成物の質量に対してSiO分子として2.4質量%とし、アルミニウム化合物、リン化合物の添加量をそれぞれポリエステル中の酸成分に対してアルミニウム原子、リン原子として0.028モル%、0.050モル%とした以外は、実施例1と同様な方法によって固有粘度0.58dl/gのマスターバッチ用ポリエステル組成物(G)を得た。次に、得られたマスターバッチ用ポリエステル組成物(G)のペレットと無機粒子を含まないポリエステル樹脂(X)のペレットを、質量比で1:39の割合で混合したこと以外は、実施例1と同様な方法で製膜しポリエステルフィルムを得た。得られたフィルムの特性を表1に示す。
Figure JPOXMLDOC01-appb-T000006
 本発明のマスターバッチ用ポリエステル組成物は、アンチモン化合物またはゲルマニウム化合物以外の成分を主成分とし、かつ触媒活性に優れたアルミニウム化合物を用いて製造され、その製造時に添加された無機粒子の分散性が良好であるため、本発明のマスターバッチ用ポリエステルを用いたフィルムは走行性、磨耗性、光学特性に優れるという効果がある。したがって、本発明のマスターバッチ用ポリエステル組成物を用いたフィルムは、例えば、帯電防止性フィルム、易接着性フィルム、カード用、ダミー缶用、農業用、建材用、化粧材用、壁紙用、OHPフィルム用、印刷用、インクジェット記録用、昇華転写記録用、レーザービームプリンタ記録用、電子写真記録用、熱転写記録用、感熱転写記録用、プリント基板配線用、メンブレンスイッチ用、プラズマディスプレイ用近赤外線吸収フィルム、タッチパネルやエレクトロルミネッセンス用の透明導電性フィルム、マスキングフィルム用、写真製版用、レントゲンフィルム用、写真ネガフィルム用、位相差フィルム用、偏光フィルム用、偏光膜保護(TAC)用、偏向板や位相差板の検査用プロテクトフィルム及び/又はセパレータフィルム、感光性樹脂フィルム用、視野拡大フィルム用、拡散シート用、反射フィルム用、反射防止フィルム用、紫外線防止用、バックグラインドテープ用など、幅広い用途に使用することができる。

Claims (7)

  1.  平均粒子径が0.5~3.0μmの無機粒子を1.0~2.0質量%含有し、アルミニウム化合物及びリン化合物を含有する重縮合触媒を用いたマスターバッチ用ポリエステル組成物と、無機粒子を含まないポリエステル樹脂を、質量比で1:15~35の割合で含有することを特徴とするフィルム用ポリエステル組成物。
  2.  リン化合物が、同一分子内にフェノール部を有することを特徴とする、請求項1に記載のフィルム用ポリエステル組成物。
  3.  無機粒子が、二酸化チタン、アルミナ、アルミノシリケート、二酸化ケイ素、酸化カルシウム、炭酸カルシウム、硫酸バリウム、タルク、マイカ、カオリナイト、およびゼオライトから選ばれる少なくとも一種の不活性無機粒子であることを特徴とする、請求項1または2に記載のフィルム用ポリエステル組成物。
  4.  請求項1に記載のフィルム用ポリエステル組成物に用いるマスターバッチ用ポリエステル組成物であって、平均粒子径が0.5~3.0μmの無機粒子を1.0~2.0質量%含有し、アルミニウム化合物及びリン化合物を含有する重縮合触媒を用いることを特徴とするマスターバッチ用ポリエステル組成物。
  5.  リン化合物が、同一分子内にフェノール部を有することを特徴とする、請求項4に記載のマスターバッチ用ポリエステル組成物。
  6.  無機粒子が、二酸化チタン、アルミナ、アルミノシリケート、二酸化ケイ素、酸化カルシウム、炭酸カルシウム、硫酸バリウム、タルク、マイカ、カオリナイト、およびゼオライトから選ばれる少なくとも一種の不活性無機粒子であることを特徴とする、請求項4または5に記載のマスターバッチ用ポリエステル組成物。
  7.  請求項1~3のいずれかに記載のフィルム用ポリエステル組成物を用いてなることを特徴とする、ポリエステルフィルム。
     
PCT/JP2013/058053 2012-03-29 2013-03-21 ポリエステル組成物およびポリエステルフィルム WO2013146524A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/387,624 US9475911B2 (en) 2012-03-29 2013-03-21 Polyester composition and polyester film
KR1020147030015A KR101889136B1 (ko) 2012-03-29 2013-03-21 폴리에스테르 조성물 및 폴리에스테르 필름
IN2367KON2014 IN2014KN02367A (ja) 2012-03-29 2013-03-21
ES13768106.0T ES2689295T3 (es) 2012-03-29 2013-03-21 Composición de poliéster y película de poliéster
JP2013514260A JP6083378B2 (ja) 2012-03-29 2013-03-21 ポリエステル組成物およびポリエステルフィルム
CN201380016909.XA CN104204089B (zh) 2012-03-29 2013-03-21 一种聚酯组合物及聚酯薄膜
EP13768106.0A EP2832793B1 (en) 2012-03-29 2013-03-21 Polyester composition and polyester film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012076608 2012-03-29
JP2012-076608 2012-03-29

Publications (1)

Publication Number Publication Date
WO2013146524A1 true WO2013146524A1 (ja) 2013-10-03

Family

ID=49259780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058053 WO2013146524A1 (ja) 2012-03-29 2013-03-21 ポリエステル組成物およびポリエステルフィルム

Country Status (9)

Country Link
US (1) US9475911B2 (ja)
EP (1) EP2832793B1 (ja)
JP (1) JP6083378B2 (ja)
KR (1) KR101889136B1 (ja)
CN (1) CN104204089B (ja)
ES (1) ES2689295T3 (ja)
IN (1) IN2014KN02367A (ja)
TW (1) TWI558765B (ja)
WO (1) WO2013146524A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016132721A (ja) * 2015-01-19 2016-07-25 三菱化学株式会社 フィルム用ポリブチレンテレフタレートペレット及びその製造方法
JP2016188496A (ja) * 2015-03-30 2016-11-04 凸版印刷株式会社 床材及びその製造方法
CN106232672A (zh) * 2014-04-14 2016-12-14 东洋纺株式会社 母料用聚酯组合物
WO2020095725A1 (ja) 2018-11-07 2020-05-14 東洋紡株式会社 二軸配向ポリエステルフィルム及びその製造方法
WO2020166353A1 (ja) * 2019-02-14 2020-08-20 東洋紡株式会社 二軸延伸ポリエステルフィルム
WO2022054669A1 (ja) * 2020-09-11 2022-03-17 東洋紡株式会社 ポリエステル樹脂組成物の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102594469B1 (ko) * 2022-12-23 2023-10-26 (주)삼양패키징 Pet 수지 및 무기입자를 포함하는 마스터배치 조성물, 이 마스터배치 조성물을 포함하는 pet 수지 조성물, 및 이 수지 조성물을 포함하는 성형품

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179555A (ja) 1983-03-30 1984-10-12 Teijin Ltd 二軸延伸ポリエステルフイルム
JPS5946254B2 (ja) 1976-10-06 1984-11-12 東レ株式会社 粒子分散性の優れたポリエステルの製造法
JPS6330335B2 (ja) 1980-02-18 1988-06-17 Toray Industries
JPH0639521B2 (ja) 1984-04-27 1994-05-25 東洋紡績株式会社 ポリエステルの製造法
JPH0645175B2 (ja) 1986-04-15 1994-06-15 東洋紡績株式会社 ポリエステルフイルムの製造方法
JPH08302031A (ja) * 1995-03-06 1996-11-19 Nippon Ester Co Ltd ポリエステルフイルムの製造法
JP2000302854A (ja) 1999-04-20 2000-10-31 Toyobo Co Ltd ポリエステル重合触媒、これを用いて製造されたポリエステルおよびポリエステルの製造方法
JP2001026639A (ja) 1999-07-16 2001-01-30 Toyobo Co Ltd ポリエステル重合触媒およびこれを用いて製造されたポリエステルならびにポリエステルの製造方法
JP2001131276A (ja) 1999-08-24 2001-05-15 Toyobo Co Ltd ポリエステル重合触媒およびこれを用いて製造されたポリエステルならびにポリエステルの製造方法
WO2002022707A1 (fr) 2000-09-12 2002-03-21 Toyo Boseki Kabushiki Kaisha Catalyseur de polymerisation pour polyester, polyester ainsi obtenu, et procede de production de polyester
JP2002322259A (ja) * 2001-02-23 2002-11-08 Toyobo Co Ltd ポリエステル、中空成形体、およびシート状物質
JP2005186555A (ja) * 2003-12-26 2005-07-14 Toyobo Co Ltd 加工用二軸延伸ポリエステルフィルム
JP2006282800A (ja) * 2005-03-31 2006-10-19 Toyobo Co Ltd ポリエステルフィルム
WO2007012731A1 (fr) 2005-07-25 2007-02-01 Tergal Fibres Systeme catalytique pour la fabrication de polyester par polycondensation, procede de fabrication de polyester
WO2007035250A2 (en) 2005-09-16 2007-03-29 Eastman Chemical Company Polyester composition containing aluminum and lithium catalysts and titanium nitride particles and having improved reheat
WO2007035256A2 (en) 2005-09-16 2007-03-29 Eastman Chemical Company Aluminum containing polyester polymers having low acetaldehyde generation rates

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4427661A (en) 1982-07-30 1984-01-24 Merck & Co., Inc. Fluorinated cyclic hexapeptide somatostatin analogs
JPS6330335A (ja) 1986-07-21 1988-02-09 Seiko Epson Corp 石英ガラスの製造方法
US5705601A (en) * 1995-07-07 1998-01-06 Nippon Ester Co., Ltd. Process for producing polyester film
MXPA02001863A (es) 1999-08-24 2003-07-14 Toyo Boseki Catalizador de polimerizacion de poliester, poliester producido usando el mismo y proceso para producir poliester.
ES2237478T3 (es) * 1999-12-10 2005-08-01 Equipolymers Gmbh Sistemas cataliticos para reacciones de policondensacion.
JP4947194B2 (ja) 2009-09-30 2012-06-06 東洋紡績株式会社 太陽電池裏面保護膜用ポリエステルフィルム

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946254B2 (ja) 1976-10-06 1984-11-12 東レ株式会社 粒子分散性の優れたポリエステルの製造法
JPS6330335B2 (ja) 1980-02-18 1988-06-17 Toray Industries
JPS59179555A (ja) 1983-03-30 1984-10-12 Teijin Ltd 二軸延伸ポリエステルフイルム
JPH0639521B2 (ja) 1984-04-27 1994-05-25 東洋紡績株式会社 ポリエステルの製造法
JPH0645175B2 (ja) 1986-04-15 1994-06-15 東洋紡績株式会社 ポリエステルフイルムの製造方法
JPH08302031A (ja) * 1995-03-06 1996-11-19 Nippon Ester Co Ltd ポリエステルフイルムの製造法
JP2000302854A (ja) 1999-04-20 2000-10-31 Toyobo Co Ltd ポリエステル重合触媒、これを用いて製造されたポリエステルおよびポリエステルの製造方法
JP2001026639A (ja) 1999-07-16 2001-01-30 Toyobo Co Ltd ポリエステル重合触媒およびこれを用いて製造されたポリエステルならびにポリエステルの製造方法
JP2001131276A (ja) 1999-08-24 2001-05-15 Toyobo Co Ltd ポリエステル重合触媒およびこれを用いて製造されたポリエステルならびにポリエステルの製造方法
WO2002022707A1 (fr) 2000-09-12 2002-03-21 Toyo Boseki Kabushiki Kaisha Catalyseur de polymerisation pour polyester, polyester ainsi obtenu, et procede de production de polyester
JP2002322259A (ja) * 2001-02-23 2002-11-08 Toyobo Co Ltd ポリエステル、中空成形体、およびシート状物質
JP2005186555A (ja) * 2003-12-26 2005-07-14 Toyobo Co Ltd 加工用二軸延伸ポリエステルフィルム
JP2006282800A (ja) * 2005-03-31 2006-10-19 Toyobo Co Ltd ポリエステルフィルム
WO2007012731A1 (fr) 2005-07-25 2007-02-01 Tergal Fibres Systeme catalytique pour la fabrication de polyester par polycondensation, procede de fabrication de polyester
WO2007035250A2 (en) 2005-09-16 2007-03-29 Eastman Chemical Company Polyester composition containing aluminum and lithium catalysts and titanium nitride particles and having improved reheat
WO2007035256A2 (en) 2005-09-16 2007-03-29 Eastman Chemical Company Aluminum containing polyester polymers having low acetaldehyde generation rates

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2832793A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9932451B2 (en) * 2014-04-14 2018-04-03 Toyobo Co., Ltd. Polyester composition for masterbatch
EP3133102A4 (en) * 2014-04-14 2018-02-28 Toyobo Co., Ltd. Polyester composition for master batch
CN106232672A (zh) * 2014-04-14 2016-12-14 东洋纺株式会社 母料用聚酯组合物
US20170029575A1 (en) * 2014-04-14 2017-02-02 Toyobo Co., Ltd. Polyester composition for masterbatch
JPWO2015159771A1 (ja) * 2014-04-14 2017-04-13 東洋紡株式会社 マスターバッチ用ポリエステル組成物
JP2016132721A (ja) * 2015-01-19 2016-07-25 三菱化学株式会社 フィルム用ポリブチレンテレフタレートペレット及びその製造方法
JP2016188496A (ja) * 2015-03-30 2016-11-04 凸版印刷株式会社 床材及びその製造方法
WO2020095725A1 (ja) 2018-11-07 2020-05-14 東洋紡株式会社 二軸配向ポリエステルフィルム及びその製造方法
JPWO2020095725A1 (ja) * 2018-11-07 2021-09-02 東洋紡株式会社 二軸配向ポリエステルフィルム及びその製造方法
KR20210088586A (ko) 2018-11-07 2021-07-14 도요보 가부시키가이샤 2축 배향 폴리에스테르 필름 및 그의 제조 방법
JP7103430B2 (ja) 2018-11-07 2022-07-20 東洋紡株式会社 二軸配向ポリエステルフィルム及びその製造方法
WO2020166353A1 (ja) * 2019-02-14 2020-08-20 東洋紡株式会社 二軸延伸ポリエステルフィルム
JP7380601B2 (ja) 2019-02-14 2023-11-15 東洋紡株式会社 二軸延伸ポリエステルフィルム
WO2022054669A1 (ja) * 2020-09-11 2022-03-17 東洋紡株式会社 ポリエステル樹脂組成物の製造方法

Also Published As

Publication number Publication date
CN104204089A (zh) 2014-12-10
US9475911B2 (en) 2016-10-25
IN2014KN02367A (ja) 2015-05-01
JP6083378B2 (ja) 2017-02-22
TWI558765B (zh) 2016-11-21
EP2832793A4 (en) 2015-12-16
EP2832793A1 (en) 2015-02-04
EP2832793B1 (en) 2018-07-25
US20150087762A1 (en) 2015-03-26
KR101889136B1 (ko) 2018-08-16
ES2689295T3 (es) 2018-11-13
CN104204089B (zh) 2017-05-17
TW201341463A (zh) 2013-10-16
KR20140147866A (ko) 2014-12-30
JPWO2013146524A1 (ja) 2015-12-14

Similar Documents

Publication Publication Date Title
JP6083378B2 (ja) ポリエステル組成物およびポリエステルフィルム
JP6500440B2 (ja) 共重合ポリエステル樹脂
JP2008030370A (ja) 積層ポリエステルフィルム
KR20080048025A (ko) 폴리에스테르, 폴리에스테르의 제조방법, 및 폴리에스테르성형체
JP4507131B1 (ja) ポリエステル組成物およびポリエステルフィルム
JP2002249565A (ja) 配向ポリエステルフィルム
JP5028712B2 (ja) 白色配向ポリエステルフィルム
JP2005187558A (ja) ポリエステルならびにポリエステルの製造方法
JP2005187556A (ja) ポリエステルならびにポリエステルの製造方法
JP2005187557A (ja) ポリエステルならびにポリエステルの製造方法
WO2022054669A1 (ja) ポリエステル樹脂組成物の製造方法
JP5181409B2 (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステル並びにポリエステルの製造方法
JP2008266360A (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステル並びにポリエステルの製造方法
JP2003268095A (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステルならびにポリエステルの製造方法
JP4524572B2 (ja) ポリエステルならびにポリエステルの製造方法
JP2006152139A (ja) ポリエステル組成物およびそれからなる成形品
JP2006169431A (ja) ポリエステルならびにポリエステルの製造方法
JP2008063477A (ja) ポリエステルの製造方法及びそれから得られるポリエステル
JP2006225585A (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステル並びにポリエステルの製造方法
JP2006096791A (ja) ポリエステルならびにポリエステルの製造方法
JP2006176572A (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステル並びにポリエステルの製造方法
JP2008063479A (ja) ポリエステルの製造方法及びそれから得られるポリエステル
JP2007204557A (ja) ポリエステル重合触媒、これを用いたポリエステルの製造方法、およびポリエステル並びにその用途
JP2005325205A (ja) ポリエステルの製造方法及びポリエステルならびに成形体
JP2005272681A (ja) ポリエステルならびにポリエステルの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013514260

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768106

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14387624

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013768106

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147030015

Country of ref document: KR

Kind code of ref document: A