WO2020095725A1 - 二軸配向ポリエステルフィルム及びその製造方法 - Google Patents

二軸配向ポリエステルフィルム及びその製造方法 Download PDF

Info

Publication number
WO2020095725A1
WO2020095725A1 PCT/JP2019/041983 JP2019041983W WO2020095725A1 WO 2020095725 A1 WO2020095725 A1 WO 2020095725A1 JP 2019041983 W JP2019041983 W JP 2019041983W WO 2020095725 A1 WO2020095725 A1 WO 2020095725A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
inorganic particles
polyethylene terephthalate
biaxially oriented
oriented polyester
Prior art date
Application number
PCT/JP2019/041983
Other languages
English (en)
French (fr)
Inventor
麻洋 中野
雅幸 春田
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=70612405&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020095725(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2020555961A priority Critical patent/JP7103430B2/ja
Priority to KR1020217014577A priority patent/KR20210088586A/ko
Priority to CN201980071802.2A priority patent/CN112969743B/zh
Priority to EP19881695.1A priority patent/EP3878895A4/en
Priority to US17/291,372 priority patent/US20220024111A1/en
Publication of WO2020095725A1 publication Critical patent/WO2020095725A1/ja
Priority to JP2022103624A priority patent/JP2022153374A/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/003PET, i.e. poylethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/005Oriented
    • B29K2995/0053Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3475Displays, monitors, TV-sets, computer screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/044 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/244All polymers belonging to those covered by group B32B27/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/101Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/12Mixture of at least two particles made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2272/00Resin or rubber layer comprising scrap, waste or recycling material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties

Definitions

  • the present invention relates to a biaxially oriented polyester film, and more specifically to a biaxially oriented polyester film having excellent mechanical properties, transparency and heat resistance, as well as excellent secondary processing suitability and printed appearance.
  • Polyester resins such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), which are thermoplastic resins with excellent heat resistance and mechanical properties, are used in a wide variety of fields such as plastic films, electronics, energy, packaging materials, and automobiles. It's being used.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • plastic films biaxially stretched PET film is widely used in industrial and packaging fields because of its excellent balance of mechanical strength, heat resistance, dimensional stability, chemical resistance, optical characteristics and cost. There is.
  • the PET film imparted with hydrolysis resistance is also used as a film for a solar cell backsheet, and is used for various purposes as a functional film and a base film.
  • a film having an excellent gas barrier property is used as a packaging material that is required to be airtight for foods, pharmaceuticals, electronic parts, or the like, or a gas barrier material, and the demand for the film is increasing in recent years.
  • polyester for film when the film surface is smooth, wrinkles occur when the produced film is wound into a roll, or when the films are stacked, the films adhere to each other, so-called blocking. Or a defect such as a scratch may occur due to poor slipperiness with a guide roll or the like when processing a roll-shaped film, resulting in poor handleability of the film.
  • a method of forming fine projections on the surface of the polyester film is used.
  • a technique for containing the surface of a polyester film in a certain surface roughness a technique of containing inert particles such as inorganic particles inside the polyester film is used.
  • the polyester resin (masterbatch) added at a concentration higher than the concentration of inorganic particles in the final film is melted into a polyester resin that does not substantially contain inorganic particles.
  • the method of kneading is common.
  • print omission occurs after the film is printed, and the printed appearance is deteriorated. Therefore, it has been proposed to keep the surface of the polyester film in a certain surface roughness.
  • Patent Document 2 a method of improving the insulation resistance of a film capacitor by using inorganic particles (for example, see Patent Document 2) is disclosed. However, it still has problems in mechanical properties, transparency and heat resistance, and in printing and appearance.
  • the present invention is to provide a method for producing a biaxially oriented polyester film, which has excellent mechanical properties, transparency, and heat resistance, as well as excellent secondary processing suitability and printing appearance.
  • the present invention has the following configurations.
  • a biaxially oriented polyester film in which at least one film surface satisfies the following (1) and (2), and the film also satisfies the following (3) and (4).
  • the maximum protrusion height (SRp) is 1.2 to 1.6 ⁇ m.
  • the arithmetic average roughness (SRa) is 0.024 to 0.045 ⁇ m.
  • the tensile strength in the longitudinal and width directions is 180 to 300 MPa.
  • (4) Haze is 7% or less.
  • the present invention further has the following configurations.
  • the polyethylene terephthalate-based resin containing the first inorganic particles in the range of 7,000 mass ppm or more and 22,000 mass ppm or less and the polyethylene terephthalate-based resin in which the second inorganic particles are contained in the range of 0 to 50 mass ppm are mixed to obtain inorganic particles of 500 to 1500.
  • a method for producing a biaxially oriented polyester film which comprises the step of giving 2 to 10% relaxation in the width direction while lowering the temperature to 200 ° C. or lower after heat setting at a temperature of °C or less.
  • the polyethylene terephthalate-based resin containing the first inorganic particles in the range of 7,000 mass ppm or more and 22,000 mass ppm or less and the polyethylene terephthalate-based resin in which the second inorganic particles are contained in the range of 0 to 50 mass ppm are mixed to obtain inorganic particles of 500 to 1500.
  • the first polyester resin composition and the second polyester resin composition each containing ppm by mass are melted to form a layer composed of the first polyester resin composition / a layer composed of the second polyester resin composition.
  • a step of extruding through a die to obtain an unstretched sheet a step of biaxially stretching the unstretched sheet to obtain a biaxially stretched film
  • the biaxially stretched film is 200 ° C. or higher and 250 ° C. or lower. After heat fixing at temperature, while relaxing the temperature below 200 degrees, give 2-10% relaxation in the width direction.
  • biaxial method for producing oriented polyester film is 200 ° C. or higher and 250 ° C. or lower.
  • the polyethylene terephthalate-based resin containing the first inorganic particles in the range of 7,000 mass ppm or more and 22,000 mass ppm or less and the polyethylene terephthalate-based resin in which the second inorganic particles are contained in the range of 0 to 50 mass ppm are mixed to obtain inorganic particles of 500 to 1500.
  • the polyethylene terephthalate-based resin containing the first inorganic particles in the range of 7,000 mass ppm or more and 22,000 mass ppm or less and the polyethylene terephthalate-based resin in which the second inorganic particles are contained in the range of 0 to 50 mass ppm are mixed to obtain inorganic particles of 500 to 1500.
  • the first polyester resin composition, the second polyester resin composition, and the third polyester resin composition, each containing ppm by mass, are melted to form a layer composed of the first polyester resin composition / the second polyester resin composition.
  • the step of biaxially stretching the unstretched sheet to obtain a biaxially stretched polyester film is a step of stretching the unstretched sheet in two stages in the longitudinal direction and then transversely stretching to obtain a biaxially stretched polyester film,
  • the method for producing the biaxially oriented polyester film according to any one of [7] to [10].
  • the biaxially oriented polyester film of the present invention contains a polyethylene terephthalate resin as a constituent component.
  • the polyethylene terephthalate-based resin contains an ethylene glycol-derived component and a terephthalic acid-derived component as main constituent components.
  • "Mainly” means that terephthalic acid is 80 mol% or more in 100 mol% of all dicarboxylic acid components, and ethylene glycol is 80 mol% or more in 100 mol% of all glycol components.
  • Other dicarboxylic acid components and glycol components may be copolymerized as long as the object of the present invention is not impaired.
  • the copolymerization amount of the other dicarboxylic acid component and the glycol component is less than 20 mol%, preferably 10 mol% or less, and preferably 5 mol% or less with respect to the total dicarboxylic acid component or the total glycol component. Is particularly preferable.
  • dicarboxylic acid components examples include terephthalic acid, isophthalic acid, phthalic acid, nafurenedicarboxylic acid, 4,4′-dicarboxybiphenyl, 5-sodium sulfoisophthalic acid and other aromatic dicarboxylic acids, 1,4- Alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 2,5-norbornenedicarboxylic acid and tetrahydrophthalic acid, oxalic acid, malonic acid, succinic acid, adipine Examples thereof include acids, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, octadecanedioic acid, fumaric acid, maleic acid, itaconic acid, me
  • glycol components examples include 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2-methyl-1, 3-propanediol, 2-amino-2-ethyl-1,3-propanediol, 2-amino-2-methyl-1,3-propanediol, 1,10-decanediol, dimethyloltricyclodecane, diethylene glycol, Aliphatic glycols such as triethylene glycol, bisphenol A, bisphenol S, bisphenol C, bisphenol Z, bisphenol AP, 4,4'-biphenol ethylene oxide adduct or propylene oxide adduct, 1,2-cyclohexanedimethanol, 1 , 3-cyclohexanedimethanol, Alicyclic glycols such as 4-cyclohexane dimethanol, polyethylene glycol, polypropylene glycol
  • Polymerization methods for such polyethylene terephthalate-based resin include direct polymerization method in which terephthalic acid and ethylene glycol, and optionally other dicarboxylic acid component and glycol component are directly reacted, and dimethyl ester of terephthalic acid (as necessary. And other dicarboxylic acid (including methyl ester) and ethylene glycol (including other glycol component as necessary) are subjected to transesterification reaction.
  • the intrinsic viscosity of the polyethylene terephthalate resin is preferably in the range of 0.30 to 1.20 dl / g, more preferably 0.50 to 1.00 dl / g, still more preferably 0.55 to 0. 90 dl / g.
  • the intrinsic viscosity is lower than 0.30 dl / g, the polyester film is easy to tear, and when higher than 1.20 dl / g, the filtration pressure rises so much that it becomes difficult to perform high precision filtration, and the resin is extruded through the filter. It is easy to become difficult.
  • the intrinsic viscosity of the resin of the polyester film is preferably in the range of 0.30 to 1.20 dl / g, more preferably 0.45 to 0.95 dl / g, and further preferably 0.50 to 0. It is 85 dl / g.
  • the intrinsic viscosity is lower than 0.30 dl / g, the polyester film is likely to tear, and when the intrinsic viscosity is higher than 1.20 dl / g, the effect of increasing the mechanical properties is likely to be saturated.
  • the polyethylene terephthalate resin may be solution-polymerized into chips, which may be further subjected to solid-state polymerization under heating under reduced pressure or in an inert gas stream such as nitrogen.
  • polyester resin it is also possible to use a polyester resin that is a recycled PET bottle product made of the above polyethylene terephthalate resin or a polyethylene terephthalate resin that uses a biomass-derived raw material.
  • polyamide, polystyrene, polyolefin may contain other resins such as polyesters other than the above, in terms of mechanical properties of the biaxially oriented polyester film, heat resistance,
  • the content of other resins is preferably 30% by mass or less, more preferably 20% by mass or less, still more preferably 10% by mass or less, and particularly preferably 5% by mass or less, based on the total resin components of the polyester film, and 0% by mass.
  • % All resin components constituting the polyester film are substantially polyethylene terephthalate resin) are most preferable.
  • Inorganic particles are contained as a constituent of the biaxially oriented polyester film of the present invention.
  • the inorganic particles calcium carbonate, calcium phosphate, amorphous silica, crystalline glass filler, kaolin, talc, titanium dioxide, alumina, silica-alumina composite oxide particles, barium sulfate, calcium fluoride, lithium fluoride, zeolite Inorganic particles such as molybdenum sulfide and mica can be used. These 1 type (s) or 2 or more types are selected and used.
  • amorphous silica particles are preferable because they have a refractive index relatively close to that of the resin component and it is difficult to form voids around the particles, so that a highly transparent film can be easily obtained.
  • the inorganic particles are only amorphous silica particles.
  • the average particle diameter of the main inorganic particles is 0.5 to 3.0 ⁇ m, more preferably 0.8 to 2.8 ⁇ m, More preferably, it is 1.5 to 2.5 ⁇ m.
  • the arithmetic average roughness (SRa) of the film surface is easily 0.024 ⁇ m or more, and the slipperiness of the film is less likely to decrease.
  • the maximum protrusion height (SRp) on the film surface is more likely to be 1.6 ⁇ m or less.
  • the average particle size of the inorganic particles is a value measured by a laser diffraction particle size distribution analyzer SALD-2200 manufactured by Shimadzu Corporation. Further, the shape of the inorganic particles is not particularly limited, but from the viewpoint of imparting slipperiness, the inorganic particles having a substantially spherical shape are preferable.
  • the inorganic particles are amorphous silica particles
  • an aggregate of particles having an average primary particle size of 20 to 60 nm is preferable in terms of transparency. It is presumed that this is because the surface layer can be formed into a flat and stable shape by undergoing the stretching step and the heat setting step in the film forming step.
  • the pore volume of the aggregate of the particles is preferably 0.6 to 2.0 ml / g, more preferably 1.0 to 1.9 ml / g, and further preferably 1.2 to 1.8 ml / g. is there.
  • the maximum protrusion height (SRp) on the film surface is likely to be 1.6 ⁇ m or less.
  • the first inorganic particles and the second inorganic particles in the present invention may be the same or different.
  • the composition may be the same, but one or more characteristics of the particle size, the particle size distribution, and the pore volume may be different.
  • additives As a constituent component of the biaxially oriented polyester film of the present invention, in addition to inorganic particles, heat-resistant polymer particles, inactive particles such as cross-linked polymer particles, optical brighteners, UV inhibitors, infrared absorbing dyes, heat stabilizers.
  • various additives such as an electrostatic adhesive (pinning agent), a surfactant and an antioxidant can be contained.
  • aromatic amine-based or phenol-based antioxidants can be used, and as the stabilizer, phosphoric acid or phosphoric acid ester-based phosphorus-based, sulfur-based, amine-based, etc. stabilizers can be used.
  • Additives other than these inorganic particles can be added to the polyester resin forming the film in a proportion of preferably 3% by weight or less, more preferably 2% by weight or less, and further preferably 1% by weight or less. It is a ratio.
  • the biaxially oriented polyester film of the present invention comprises a polyethylene terephthalate-based resin containing the first inorganic particles in the range of 7,000 mass ppm to 22,000 mass ppm, and a polyethylene terephthalate-based resin containing the second inorganic particles in the range of 0 to 50 mass ppm. It is important that the content of the first inorganic particles is 7,000 to 19000 ppm, more preferably 8,000 to 17,000 ppm, and particularly preferably 9000 to 15,000 ppm.
  • the concentration of the first inorganic particles is less than 7000 ppm, the addition ratio of the polyethylene terephthalate-based resin containing the first inorganic particles becomes large, of course, but the arithmetic mean roughness (SRa) of the surface of the film is also increased. ),
  • the maximum projection height (SRp) on the film surface is easily set to 1.2 ⁇ m or more.
  • the proportion of the polyethylene terephthalate resin containing the second inorganic particles in the range of 0 to 50 mass ppm is small.
  • the concentration of the first inorganic particles is higher than 22000 ppm, the maximum protrusion height (SRp) on the film surface tends to exceed 1.6 ⁇ m.
  • the content of the inorganic particles in the biaxially oriented polyester film of the present invention is preferably 500 ppm or more and 1500 ppm or less, more preferably 700 ppm or more and 1200 ppm or less, and particularly preferably 850 ppm or more and 1000 ppm or less.
  • SRp maximum protrusion height
  • the arithmetic mean roughness (SRa) of the film surface tends to be smaller than 0.024, and the handling property and roll appearance such as slipperiness decrease and wrinkles increase due to defective air release on the roll are observed. Is easy to get worse.
  • a polyethylene terephthalate-based resin containing the first inorganic particles in the range of 7,000 mass ppm to 22000 mass ppm and a polyethylene terephthalate-based resin containing the second inorganic particles in the range of 0 to 50 mass ppm In the biaxially oriented polyester film of the present invention, a polyethylene terephthalate-based resin containing the first inorganic particles in the range of 7,000 mass ppm to 22000 mass ppm and a polyethylene terephthalate-based resin containing the second inorganic particles in the range of 0 to 50 mass ppm.
  • the mixing ratio of the polyethylene terephthalate-based resin containing the second inorganic particles of 0 to 50 mass ppm and the polyethylene terephthalate-based resin containing the first inorganic particles of 7000 mass ppm or more and 22000 mass ppm or less and the second It is preferably 65% by weight or more, more preferably 75% by weight or more, further preferably 85% by weight or more, based on the total amount of the mixture with the polyethylene terephthalate resin containing 0 to 50 mass ppm of inorganic particles. It is particularly preferably 90% by weight or more.
  • the polyethylene terephthalate-based resin containing the second inorganic particles in an amount of 0 to 50 mass ppm is a polyethylene terephthalate-based resin recycled from PET bottle products, a polyethylene terephthalate-based resin obtained by using a biomass-derived raw material, and if necessary.
  • a large amount of polyethylene terephthalate system containing an additive can be contained in the film, and these resins can be used to the maximum extent.
  • the biaxially oriented polyester film of the present invention may have a laminated structure of two layers, three layers, or four or more layers in addition to the above-mentioned single layer.
  • one layer has a polyethylene terephthalate resin containing the first inorganic particles of 7,000 mass ppm or more and 22000 mass ppm or less and the second inorganic particles of 0.
  • the first polyester resin composition is a mixture of a polyethylene terephthalate-based resin with a content of up to 50 mass ppm, and the content of the first inorganic particles is preferably 7,000 to 19000 ppm, more preferably 8,000 to 17,000 ppm. Is more preferable, and 9000 to 15000 ppm is particularly preferable.
  • the content of the inorganic particles in the one outermost layer is 500 ppm or more and 1500 ppm or less, preferably 700 ppm or more and 1200 ppm or less, and particularly preferably 850 ppm or more 1000 ppm or less.
  • the content of the inorganic particles exceeds 1500 ppm, the aggregate of particles increases, the maximum protrusion height (SRp) on the surface of the one layer tends to exceed 1.6 ⁇ m, and printing defects are likely to occur.
  • the other layer has polyethylene terephthalate-based resin, inorganic particles and, if necessary, an additive and a resin other than the polyethylene terephthalate-based resin as constituent components, but it is not required to be exactly the same as the one layer.
  • one outermost layer contains a polyethylene terephthalate-based resin containing the first inorganic particles of 7,000 mass ppm or more and 22000 mass ppm or less, and the second inorganic particles.
  • the first polyester resin composition is a mixture with a polyethylene terephthalate resin containing 0 to 50 mass ppm, and the content of the first inorganic particles is preferably 7,000 to 19000 ppm, and 8,000 to 17,000 ppm is more preferable, and 9000 to 15,000 ppm is particularly preferable.
  • the content of the inorganic particles in the one outermost layer is 500 ppm or more and 1500 ppm or less, preferably 700 ppm or more and 1200 ppm or less, and particularly preferably 850 ppm or more 1000 ppm or less.
  • the content of the inorganic particles exceeds 1500 ppm, the aggregate of particles increases, the maximum protrusion height (SRp) on the surface of the one layer tends to exceed 1.6 ⁇ m, and printing defects are likely to occur.
  • the other outermost layer has polyethylene terephthalate-based resin, inorganic particles and, if necessary, an additive and a resin other than the polyethylene terephthalate-based resin as constituent components, but may be exactly the same as the one layer. , May be different.
  • the intermediate layer contains polyethylene terephthalate-based resin, inorganic particles and, if necessary, an additive and a resin other than the polyethylene terephthalate-based resin as constituent components, but it is not required to be exactly the same as the one outermost layer.
  • it is possible to control the surface roughness of the film by controlling the amount of inorganic particles added particles in only one outermost layer, and it is possible to further reduce the content of inorganic particles in the entire film. It is possible and preferable. This is because the odor component escapes through the voids (voids) formed at the boundary between the inorganic particles and the polyester resin, which also leads to improvement in the point that the fragrance retaining property is lowered.
  • the other outermost layer has the same composition as that of the one outermost layer because the production is easy.
  • one outermost layer contains a polyethylene terephthalate-based resin containing the first inorganic particles of 7,000 mass ppm or more and 22,000 mass ppm or less, and the second inorganic particles.
  • the first polyester resin composition is a mixture with a polyethylene terephthalate resin containing 0 to 50 mass ppm, and the content of the first inorganic particles is preferably 7,000 to 19000 ppm, and 8,000 to 17,000 ppm is more preferable, and 9000 to 15,000 ppm is particularly preferable.
  • the content of the inorganic particles in the one outermost layer is 500 ppm or more and 1500 ppm or less, preferably 700 ppm or more and 1200 ppm or less, and particularly preferably 850 ppm or more 1000 ppm or less.
  • the content of the inorganic particles exceeds 1500 ppm, the aggregate of particles increases, the maximum protrusion height (SRp) on the surface of the one layer tends to exceed 1.6 ⁇ m, and printing defects are likely to occur.
  • the other outermost layer has polyethylene terephthalate-based resin, inorganic particles and, if necessary, an additive and a resin other than the polyethylene terephthalate-based resin as constituent components, but may be exactly the same as the one layer. , May be different.
  • the two intermediate layers contain polyethylene terephthalate-based resin, inorganic particles and, if necessary, an additive and a resin other than the polyethylene terephthalate-based resin as constituent components, but they need not be exactly the same as the one outermost layer.
  • it is possible to control the surface roughness of the film by controlling the amount of inorganic particles added particles in only one outermost layer, and it is possible to further reduce the content of inorganic particles in the entire film. It is possible and preferable. This is because the odor component escapes through the voids (voids) formed at the boundary between the inorganic particles and the polyester resin, which also leads to improvement in the point that the fragrance retaining property is lowered.
  • the other outermost layer has the same composition as that of the one outermost layer because the production is easy.
  • a polyethylene terephthalate-based resin containing the first inorganic particles of 7,000 mass ppm or more and 22000 mass ppm or less and a polyethylene terephthalate-based resin containing the second inorganic particles of 0 to 50 mass ppm.
  • the proportion of the polyethylene terephthalate resin containing the second inorganic particles in the mixture of 0 to 50 mass ppm is preferably 65% by weight or more, more preferably 75% by weight or more, further preferably 85% by weight or more, and particularly It is preferably 90% by weight or more.
  • the present invention a large amount of inexpensive resin, recycled resin such as PET bottle, resin derived from biomass, and the like can be contained in the film, and the characteristics of the resin can be maximized.
  • the inorganic particles tend to agglomerate, and the inorganic particle agglomerates having a large particle diameter tend to form.
  • the inorganic particles are dispersed in the form of slurry in a predetermined ratio in ethylene glycol which is a diol component, and the ethylene glycol slurry is added at any stage before completion of polyester polymerization. It may be added.
  • the particles when the particles are added, for example, it is preferable to add the water sol or alcohol sol obtained during the synthesis of the particles without once drying, because the dispersibility of the particles is good and the generation of coarse projections can be suppressed.
  • Polyethylene terephthalate-based resin containing the first inorganic particles of 7,000 mass ppm or more and 22000 mass ppm or less and respective pellets of the polyethylene terephthalate-based resin containing the second inorganic particles of 0 to 50 mass ppm are mixed at a predetermined ratio. It is supplied to a vent type twin-screw extruder and melt-extruded. At this time, the resin temperature is preferably controlled to 265 ° C. to 295 ° C. under a nitrogen atmosphere flowing in the extruder.
  • a multi-layering device such as a multi-layer feed block, static mixer or multi-layer multi-manifold can be used.
  • the mixed resin composition is melted and filtered through a filter while being extruded. Since coarse foreign matters such as gels and aggregates of inorganic particles produced by the oxidation of polyethylene terephthalate resin cause defects in the obtained film, for example, the accuracy of collecting 95% or more foreign matters of 25 ⁇ m or more in the filter. It is effective to use the ones. Depending on the use of the film, even a small foreign matter may be a problem, so it is desirable to use a high-precision filter that traps 95% or more of a foreign matter of 10 ⁇ m or more.
  • the filter is not particularly limited, but in the case of a stainless sintered body, in addition to foreign matter such as so-called gel, removal of aggregates containing Si, Ti, Sb, Ge, Cu as a main component derived from additives such as a catalyst Excellent in performance and suitable.
  • the filtration accuracy is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and particularly preferably 70 ⁇ m or less.
  • the melted mixed resin composition is extruded in a sheet form from a slit-shaped slit die onto a cooling roll and cooled and solidified on the cooling roll to prepare an unstretched sheet.
  • a high voltage is applied to the cooling roll to electrostatically apply an unstretched sheet of the mixed resin composition to electrostatically apply the mixed resin composition.
  • the stretched sheet is brought into close contact with the surface of the cooling roll and cooled and solidified to obtain an unstretched sheet.
  • the biaxially oriented polyester film of the present invention is a biaxially oriented film from the viewpoint of mechanical strength of the film, uneven thickness, and proper processing.
  • the stretching method for the unstretched sheet include a simultaneous biaxial stretching method and a sequential biaxial stretching method, but the sequential biaxial stretching method is preferable from the cost of equipment and productivity.
  • the arithmetic mean roughness of the film surface can be adjusted by adjusting the content of the inorganic particles in the film so as not to become too high, but in order to prevent the maximum projection roughness of the film surface from becoming too high, it is unstretched. When the sheet is stretched, it is effective to loosen the inorganic particle aggregates by the stress inside the film.
  • the temperature is lowered, and the multi-stage stretching is effective for increasing the stress inside the film and for loosening the particle aggregates.
  • the stress inside the film is too high, the inorganic particles sink inside the film, the arithmetic average roughness becomes small, and the slip property of the film deteriorates. Further, if the maximum protrusion roughness becomes too small, it is difficult for air to escape between the films in the film roll, and wrinkles may occur in the film roll.
  • void formation due to stress from the inorganic particles increases, and haze and odor removal also increase, so that appropriate adjustment is necessary.
  • the obtained unstretched sheet was guided to longitudinal stretching and heated to 40 to 140 ° C. in the preheating step. At this time, it is desirable to gradually raise the temperature, because if heated rapidly, it will stick to the cooling roll. After that, a longitudinal stretching step is performed.
  • the longitudinal stretching method include a roll stretching method and an IR stretching method, but are not particularly limited. By heating to 100 to 140 ° C. between two pairs of rolls having different speeds, 3.6 to 5.0 times, more preferably 3.8 to 4.7 times, and particularly preferably 4.0 to 4.7 times.
  • a longitudinally stretched film is obtained by stretching in the longitudinal direction.
  • infrared heating heaters may be installed on both sides of the film in the middle part of the nip roll, and the film may be heated as necessary to adjust the stretching temperature in the longitudinal direction.
  • the longitudinal stretching may be multistage stretching such as one stage, two stages or three stages.
  • the first stage is in the range of 1.1 to 3.2 times and the second stage is in the range of 1.1 to 3.2 times.
  • the first stage is 1.1 to 1.5 times, the second stage is 1.2 to 1.8 times, and the third stage is 2.0 to 3.0 times. It is preferably within the range.
  • the obtained longitudinally stretched film is subjected to a surface treatment such as corona treatment or plasma treatment, if necessary, and then coated on one side by a coating method to impart functions such as slipperiness, adhesion, and antistatic property.
  • a coating solution can also be applied.
  • both ends of the obtained longitudinally stretched film are gripped with clips, and at 100 to 160 ° C., the width direction is 3.9 to 5.0 times, more preferably 4.0 to 4.7 times, and particularly preferably.
  • a biaxially stretched film is obtained by stretching in the transverse direction in the range of 4.1 to 4.7 times.
  • the transverse stretching temperature is low, the stretching ratio is high, and the effect of loosening the particles can be effectively obtained by multi-stage stretching.
  • the stretching ratio is too high, the arithmetic average roughness is too high. Becomes smaller and the slipperiness of the film decreases.
  • the draw ratio is increased, the mechanical strength is improved, but the tensile strength in the width direction of the obtained biaxially oriented polyester film is preferably 300 MPa or less.
  • the biaxially stretched film is heat treated.
  • the heat treatment can be performed by running the biaxially stretched film on a heated roll in an oven. This heat treatment is performed within a temperature range of 120 ° C. or higher and the crystal melting peak temperature of the polyethylene terephthalate resin or lower.
  • the heat treatment time is preferably in the range of 1.6 to 20 seconds.
  • the highest temperature among the heat treatment temperatures is preferably a specific temperature within the temperature range of 200 to 250 ° C., more preferably 210 to 245 ° C., and particularly preferably 220 ° C. to 245 ° C.
  • the treatment time at the highest temperature is preferably 0.8 to 10 seconds, more preferably 1 to 5 seconds.
  • the film is laterally relaxed in the cooling process from the high temperature to the crystallization peak temperature, which also has the effect of loosening the aggregates of the inorganic particles due to the stress inside the film.
  • the biaxially stretched film may be treated at the highest temperature in the first half of the heat treatment step, and the relaxation treatment may be performed while lowering the temperature in the latter half, or the highest temperature in the first step of the heat treatment step of the biaxially stretched film.
  • the relaxation treatment may be performed in the second step while lowering the temperature, and the heat treatment may be performed at a low temperature in the third step without relaxing. When lowering from the maximum temperature, it is desirable to gradually lower the temperature.
  • the relaxation treatment is preferably 0.5 to 6.5% in the width direction, and more preferably 1.0 to 6.0%.
  • the relaxation treatment time is preferably 0.8 to 10 seconds, more preferably 1 to 5 seconds. When the relaxation treatment time is less than 0.8 seconds, the film is likely to be broken.
  • the thickness of the layer composed of the resin composition which is mixed to contain the inorganic particles in an amount of 500 to 1500 mass ppm is preferably 0.5 to 30 ⁇ m, more preferably 0.5 to 20 ⁇ m, and further preferably 0.5. ⁇ 10 ⁇ m, more preferably 0.5 ⁇ 8 ⁇ m. When the layer thickness is 30 ⁇ m or less, the arithmetic average roughness (SRa) of the film surface is likely to be 0.024 ⁇ m or more.
  • the total thickness of the biaxially oriented polyester film of the present invention is preferably 9 to 75 ⁇ m, more preferably 9 to 50 ⁇ m, and further preferably 9 to 25 ⁇ m.
  • the total thickness of the film is 9 ⁇ m or more, the rigidity of the film is easily increased and the film is easily processed. Also, wrinkles on the roll are difficult to enter.
  • the total thickness of the film is 75 ⁇ m or less, the rigidity of the film does not become too high, and wrinkles on the roll hardly occur. ..
  • the surface of the layer made of the polyester resin composition mixed with the polyethylene terephthalate-based resin containing ppm by mass to contain the inorganic particles in an amount of 500 to 1500 ppm by mass must satisfy the following characteristics (1) and (2). is important.
  • the maximum protrusion height (SRp) is 1.2 to 1.6 ⁇ m or less.
  • the arithmetic average roughness (SRa) is 0.024 to 0.045 ⁇ m.
  • the maximum protrusion height (SRp) When the maximum protrusion height (SRp) is 1.2 ⁇ m or less, air between the films is easily released when the film is wound on a film roll, and wrinkles and stripes are less likely to occur on the film roll. Further, the slipperiness of the film is improved, and secondary processing such as printing is easily performed, which is advantageous in terms of quality and processing cost. If the maximum protrusion height (SRp) is 1.6 ⁇ m or less, print omissions and the like will be reduced, the print appearance will be good, and it will be advantageous in terms of designability, and it will be less likely to cause misalignment when formed into a roll shape, and it will be stored. Easy to improve production efficiency.
  • the maximum protrusion height (SRp) is more preferably 1.2 to 1.5 ⁇ m or less, still more preferably 1.2 to 1.4 ⁇ m.
  • SRa arithmetic average roughness
  • the arithmetic average roughness (SRa) is more preferably 0.024 to 0.040 ⁇ m, and the arithmetic average roughness (SRa) is further preferably 0.024 to 0.035 ⁇ m.
  • the biaxially oriented polyester film in the present invention satisfies the following characteristics (3) and (4) in addition to the above (1) and (2).
  • (3) Tensile strength in the longitudinal and width directions is 180 to 300 MPa.
  • (4) Haze is 7% or less.
  • the lower limit of the tensile strength in the longitudinal direction and width direction of the film is preferably 190 MPa or more, more preferably 200 MPa or more, and particularly preferably 210 MPa or more.
  • the tensile strength is 300 MPa or less, it is easy to prevent the stress during stretching of an unstretched sheet or a longitudinally stretched film from becoming too high, and it is difficult for inorganic particles to sink inside the film, resulting in a rough film surface.
  • the tensile strength is preferably 290 MPa or less, more preferably 280 MPa or less, and particularly preferably 270 MPa or less.
  • the haze of the film is 7% or less, the print appearance is improved, and even in high-speed processing, it is easy to detect foreign matter by X-rays, etc., and it is easy to obtain sufficient quality.
  • the haze of the film is preferably 6% or less, more preferably 5% or less, and particularly preferably 4% or less.
  • the film was dissolved using a 6/4 (weight ratio) mixed solvent of phenol / 1,1,2,2-tetrachloroethane, and the intrinsic viscosity (IV) when measured at a temperature of 30 ° C. was 0.5.
  • the range of up to 0.7 (g / dl) is preferred.
  • the contact angle of the film surface was measured by using "DropMaster 500" manufactured by Kyowa Interface Science Co., Ltd., and extruding 2 ⁇ L of diiodomethane from the needle having an outer diameter of 0.7 mm to the measuring surface of the film under the environment of 20 ° C. and 50% RH. (The measurement was performed 10 times at different positions, and the average value was determined.) Is preferably 29 ° or less, more preferably 28 ° or less, and further preferably 27 ° or less. When the contact angle on the film surface is 29 ° or less, printing ink loss tends to be reduced under the condition of halftone dot 5%.
  • the air bleeding time measured by the method described in the examples is preferably 14 seconds or less, more preferably 13 seconds or less, and further preferably 12 seconds or less.
  • the air bleeding time is 14 seconds or less, when the film is wound into a film roll, the speed of air bleeding is high, wrinkles are hard to occur, and winding misalignment is reduced.
  • 95% or more, and more preferably 98% or more, of the beautiful printing dots are preferably coated with respect to the total number of printing ink dots.
  • the proportion of polyethylene terephthalate-based resin containing 0 to 50 mass ppm of inorganic particles is 80% by weight or more, environmentally-friendly effects when recycled polyester resin from PET bottle products or polyester resin using biomass-derived raw materials are used Is high, which is preferable.
  • the use ratio is more preferably 80% by weight or more, further preferably 85% by weight or more, and particularly preferably 90% by weight or more.
  • composition of polyethylene terephthalate resin The polyethylene terephthalate resin and film are dissolved in hexafluoroisopropanol (HFIP), and the content of each monomer residue component and by-product diethylene glycol is quantified using 1H-NMR and 13C-NMR. can do.
  • HFIP hexafluoroisopropanol
  • each layer of the film can be scraped off according to the laminated thickness to collect and evaluate components constituting each layer alone.
  • IV Intrinsic viscosity of polyethylene terephthalate resin
  • the polyethylene terephthalate resin was dissolved using a 6/4 (weight ratio) mixed solvent of phenol / 1,1,2,2-tetrachloroethane, and the temperature was measured at 30 ° C.
  • the polyester film was determined by a fluorescent X-ray analyzer (Supermini 200, manufactured by Rigaku Corporation) according to a calibration curve determined in advance.
  • Tensile strength of film Measured according to JIS K 7127. A sample having a width of 10 mm and a length of 180 mm in the longitudinal direction and the width direction of the film was cut out with a razor to obtain a sample. After standing for 12 hours in an atmosphere of 23 ° C. and 65% RH, measurement was performed in an atmosphere of 23 ° C. and 65% RH under conditions of a chuck distance of 100 mm and a pulling speed of 200 mm / min. Values were used. As a measuring device, Autograph AG5000A manufactured by Shimadzu Corporation was used.
  • the static friction coefficient of the film is preferably 0.15 to 0.8, more preferably 0.2 to 0.7, and further preferably 0.25 to 0.7.
  • the coefficient of friction is less than 0.15, the film is too slippery to maintain the roll state, and a deviation occurs at the time of feeding in the printing process, so that the processability is likely to deteriorate.
  • the coefficient of static friction is higher than 0.8, defects such as wrinkles on the roll and scratches on the metal roll are likely to occur.
  • the film 4 is placed on the base 1.
  • the film retainer 2 is placed on the film 4 and fixed, thereby fixing the film 4 while applying tension.
  • the film 5 is placed on the film retainer 2 with the surface opposite to the upper surface of the film 4 placed on the base 1 as the film 5.
  • the film retainer 8 is placed on the film 5, and the film retainers 8 and 2 and the base 1 are fixed using the screws 3.
  • the cavity 2 a provided in the film retainer 2 and the vacuum pump 6 are connected via the pores 2 c provided in the film retainer 2 and the pipe 7. When the vacuum pump 6 is driven, tension is applied to the film 5 by being sucked into the cavity 2a.
  • the overlapping surfaces of the films 4 and 5 are also decompressed via the pores 2d provided in the film retainer 2 in a circumferential shape, and the films 4 and 5 are closely contacted from the outer peripheral portion on the overlapping surfaces. start.
  • the state of close contact can be easily known by observing interference fringes from the upper part of the overlapping surfaces.
  • the time (seconds) from the occurrence of the interference fringes on the outer peripheral portions of the overlapping surfaces of the films 4 and 5 to the spread of the interference fringes on the front surface of the overlapping surfaces and the stop of the movement (seconds) is measured. Is the air bleeding time. It should be noted that the measurement is repeated 5 times with the two films replaced, and the average value is used. That is, the shorter the time (second), the better the winding property of the film.
  • Ratio of polyethylene terephthalate-based resin containing 0 to 50 mass ppm of inorganic particles Polyethylene terephthalate-based resin containing 0 to 50 mass ppm of inorganic particles used recycled polyester resin from a PET bottle product and a biomass-derived raw material. The higher the ratio of polyester resin used, the higher the environmental impact. Environmental suitability was evaluated by the usage ratio.
  • the polyethylene terephthalate resin used for film formation was prepared as follows.
  • (Polyethylene terephthalate resin 1) Magnesium acetate tetrahydrate was added to a mixture of terephthalic acid and ethylene glycol to carry out an esterification reaction at a temperature of 255 ° C. under normal pressure. Thereafter, antimony trioxide and trimethyl phosphate were added and the reaction was further carried out at a temperature of 260 ° C. Subsequently, the reaction product was transferred to a polycondensation reaction tank and the reaction system was gradually decompressed while heating and heating to perform polycondensation at 280 ° C.
  • polyethylene terephthalate resin containing inorganic particles Polyethylene terephthalate resin 1 containing inorganic particles
  • the amorphous silica particles (trade name: Sylysia 310, manufactured by Fuji Silysia Chemical Ltd.) having an average particle size of 2.4 ⁇ m and a pore volume of 1.6 ml / g are prepared in a polycondensation reaction tank.
  • esterification reaction product was transferred to a polycondensation reaction vessel and gradually heated from 260 ° C. to 280 ° C. under reduced pressure, and then subjected to a polycondensation reaction at 285 ° C.
  • the polycondensation reaction product thus obtained was pelletized by filtration with a filter made of a stainless steel sintered body having a pore size of 5 ⁇ m (initial filtration efficiency: 95%).
  • This is a polyethylene terephthalate resin 1 containing an additive.
  • the respective raw material resins are surface layer (A) formed by the first extruder, the mixed resin is melt extruded at a resin temperature of 285 ° C., and the base layer (B) is formed by the second extruder.
  • the mixed resin was melt extruded at a resin temperature of 285 ° C.
  • a filter that collects 95% or more of foreign matter of 25 ⁇ m or more was used.
  • surface layer (A) / base layer (B) / surface layer (A) from the contact side of the cooling roll they are combined and laminated in the T die so that the thickness ratio becomes 1/10/1 ( ⁇ m).
  • the sheet was discharged on a cooling roll whose temperature was controlled at °C. At that time, static electricity was applied using a wire-shaped electrode having a diameter of 0.15 mm, and it was brought into close contact with a cooling roll to obtain a three-layer unstretched film.
  • the obtained unstretched film was led to the longitudinal stretching preheating step.
  • preheating was performed by a roll group in which the roll temperature was gradually raised to 70 to 134 ° C. Then, it was stretched 1.2 times in the longitudinal direction between two pairs of nip rolls heated to 134 ° C. and having different speeds.
  • the film was stretched in the longitudinal direction by 1.5 times in the second step and 2.5 times in the third step, for a total of 4.5 times. Then, it was stretched 4.3 times in a zone where the temperature was gradually raised to 143 to 154 ° C. with a tenter type transverse stretching machine. After that, heat treatment by heat fixation was performed in the first half and the second half.
  • the temperature was 245 ° C., and the heat treatment was performed for 1.5 seconds.
  • the heat treatment was performed for 2.3 seconds using a plurality of zones in which the temperature was gradually lowered to 227 to 150 ° C.
  • 4.4% relaxation treatment was performed in the width direction.
  • the room temperature was cooled to about 23 ° C.
  • a biaxially oriented polyester film having a film thickness of 12 ⁇ m was obtained. The film was evaluated on the layer A on the side in contact with the cooling roll.
  • a biaxially oriented polyester film having a film thickness of 12 ⁇ m was obtained in the same manner as in Example 1 except that the following mixture was used. Evaluation was performed in the same manner as in Example 1.
  • a biaxially oriented polyester film having a film thickness of 12 ⁇ m was obtained in the same manner as in Example 1 except that the following mixture was used. Evaluation was performed in the same manner as in Example 1.
  • Example 4 A biaxial film having a film thickness of 16 ⁇ m was obtained in the same manner as in Example 1 except that the thickness of the base layer (B) was 14 ⁇ m, the heat treatment temperature in the first half of heat setting was 242 ° C., and the treatment time was changed to 2 seconds in the first half and 3 seconds in the second half. An oriented polyester film was obtained. Evaluation was performed in the same manner as in Example 1.
  • a biaxially oriented polyester film having a film thickness of 12 ⁇ m was obtained in the same manner as in Example 1 except that the above was used. Evaluation was performed in the same manner as in Example 1.
  • a biaxially oriented polyester film having a film thickness of 12 ⁇ m was obtained in the same manner as in Example 1 except that 0.7% (mass%) was used to form a single-layered three-layer structure and the film forming conditions were changed as shown in Table 1.
  • the preheating before the longitudinal stretching was constant at 75 ° C., and the longitudinal stretching was a two-stage stretching by IR. Evaluation was performed in the same manner as in Example 1.
  • polyethylene terephthalate resin 3 / polyethylene terephthalate resin 1 containing inorganic particles 1 / polyethylene terephthalate resin 1 containing additive 1 93.6 / 1.4 / 5.0 (mass%)
  • Example 1 was used except that the film was mixed and laminated in a T-die so that the thickness ratio was 3/6/3 ( ⁇ m), and the film forming conditions were changed as shown in Table 1. Similarly, a biaxially oriented polyester film having a film thickness of 12 ⁇ m was obtained. In the longitudinal stretching, two-stage stretching with rolls was performed. Evaluation was performed in the same manner as in Example 1.
  • a biaxially oriented polyester film having a film thickness of 12 ⁇ m was obtained in the same manner as in Example 1 except that the film forming conditions of was changed as shown in Table 1.
  • the preheating before the longitudinal stretching was constant at 78 ° C., and the longitudinal stretching was a one-stage stretching by IR. Evaluation was performed in the same manner as in Example 1.
  • Comparative Examples 1 to 8 are as shown in Table 2.
  • Comparative Example 1 since the concentration of the inorganic particles in the layer A was low, both SRa and SRp were low, the air bleeding time was long, and strong wrinkles were generated on the rolls.
  • Comparative Example 4 the concentration of inorganic particles in the masterbatch was too high, and SRp increased due to coarse protrusions, and the printing evaluation was poor.
  • Comparative Example 6 the concentration of inorganic particles in the masterbatch was lowered, the longitudinal stretching was increased by one step, and the temperature of the relaxation treatment was increased to reduce the loosening effect of the particles, but there were few coarse protrusions and SRp was low. Therefore, it is considered that the air bleeding time was bad and the wrinkle evaluation on the roll was poor. In addition, the proportion of the polyethylene terephthalate resin, which is the main raw material, is low, and the resin characteristics cannot be effectively obtained.
  • Comparative Example 7 the concentration of the inorganic particles in the masterbatch was high, and the longitudinal stretching was performed at a relatively low draw ratio by one-stage roll stretching. Therefore, the loosening effect of the inorganic particles was insufficient and the printing evaluation was poor due to the coarse protrusions. Think In addition, probably because of the large thickness, the haze also increased.
  • a biaxially oriented polyester film having excellent mechanical properties, transparency, and heat resistance, as well as excellent secondary processing suitability and printing appearance, a method for producing the same, and a film obtained by winding the biaxially oriented polyester film Rolls can be provided. It is useful in the field of industrial films, especially in the field of packaging films for food packaging and gas barrier film applications, and it is possible to increase the blending ratio of resins such as inexpensive resins, recycled resins, biomass resins, etc. Can be effectively obtained. In particular, since it is strongly desired to reduce the environmental load these days, it is speculated that the present invention is one of the effective means to meet the needs and its value is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Laminated Bodies (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

優れた機械物性、透明性、耐熱性を有するとともに、二次加工適正及び印刷外観に優れる二軸配向ポリエステルフィルム及びその製造方法を提供すること。 少なくとも一方のフィルム表面が下記(1)及び(2)を満たし、かつフィルムが下記(3)、(4)を満たす二軸配向ポリエステルフィルム。 (1)最大突起高さ(SRp)が1.2~1.6μmである。 (2)算術平均粗さ(SRa)が0.024~0.045μmである。 (3)長手方向及び幅方向の引張強さが180~300MPaである。 (4)ヘイズが7%以下である。

Description

二軸配向ポリエステルフィルム及びその製造方法
 本発明は二軸配向ポリエステルフィルムに関するものであり、さらに詳しくは、優れた機械物性、透明性、耐熱性を有するとともに、二次加工適正及び印刷外観に優れる二軸配向ポリエステルフィルムに関するものである。
 耐熱性や機械物性に優れた熱可塑性樹脂であるポリエチレンテレフタレート(PET)やポリブチレンテレフタレート(PBT)などのポリエステル樹脂は、プラスチックフィルム、エレクトロニクス、エネルギー、包装材料、自動車等の非常に多岐な分野で利用されている。プラスチックフィルムのなかでも、二軸延伸PETフィルムは機械特性強度、耐熱性、寸法安定性、耐薬品性、光学特性などとコストのバランスに優れることから,工業用,包装用分野において幅広く用いられている。
 工業用フィルムの分野では、優れた透明性を有することから液晶ディスプレイやプラズマディスプレイなどのフラットパネルディスプレイ(FPD)向けの機能フィルムとして用いることができる。また耐加水分解性を付与したPETフィルムは太陽電池バックシート用フィルムとしても利用されており、機能性フィルム、ベースフィルムとして様々な目的で使われている。
 包装用フィルムの分野では、食品包装用、ガスバリアフィルム用途として利用されている。特に、ガスバリア性に優れるフィルムは、食品、医薬品、電子部品等の気密性を要求される包装材料、または、ガス遮断材料として使用され、近年需要が高まっている。
 しかしながら、フィルム用のポリエステルには、フィルム表面が平滑な場合には、製造されたフィルムを巻き取ってロール状にした際にしわが生じたり、フィルムを重ね合わせたときにフィルムが密着し、いわゆるブロッキングを起こしたり、ロール状のフィルムを加工する際にガイドロール等との滑り性の不良により傷などの欠陥が生じたりする問題があり、フィルムの取り扱い性が悪くなる。
 このようなフィルムの取り扱い上の問題を解決するために、ポリエステルフィルムの表面に微細な突起を形成させる方法が用いられている。
 ポリエステルフィルムの表面をある一定の表面粗さに収める方法として、ポリエステルフィルム内部に無機粒子等の不活性粒子を含有させる技術が用いられている。ポリエステルフィルム内部に無機粒子等を含有させる方法としては、最終的なフィルム中の無機粒子の濃度よりも高い濃度で添加したポリエステル樹脂(マスターバッチ)を無機粒子を実質的に含まないポリエステル樹脂に溶融混練する方法が一般的である。
 一方、フィルム表面が粗い場合には、フィルムの印刷後にいわゆる印刷抜けが生じ、印刷外観が悪くなる。
 このため、ポリエステルフィルムの表面をある一定の表面粗さに収めることが提案されている。
 一方、環境配慮型または環境持続型材料として、ペットボトルからなるリサイクル樹脂やバイオマス由来の原料を用いたポリエステル樹脂が開発され、当該樹脂が多く含有したフィルムが求められている。前述する樹脂を多く含有させるために、無機粒子の含有濃度が高いマスターバッチを用いる方法があるが、一般に無機粒子濃度が高くなると、粒子の凝集が起こり、印刷抜けなどをより引き起こすという問題があった。
 これまで、無機粒子の凝集を抑えるために、粒子サイズやマスターバッチ中の無機粒子濃度、マスターバッチの添加量を特定の範囲とする方法(例えば、特許文献1等参照。)が報告されているが、粗大粒子も10μm以上と大きく、印刷抜けが起こる可能性が高く不十分である。
 また、無機粒子を用い、フィルムコンデンサーの絶縁抵抗を改善する方法(例えば、特許文献2等参照。)が開示されている。
 しかしながら、依然として機械物性、透明性及び耐熱性並びに印刷加工及び外観に問題を有するものであった。
 別の報告では、無機粒子を含むマスターバッチを用い、フィルムの表面粗さと濡れ性を制御し、セラミックスラリーとの密着性と剥離性を両立させる方法(例えば、特許文献3等参照。)が開示されている。
 しかしながら、依然として印刷抜けなどを引き起こす問題を有するものであった。
国際公開WO13/146524号公報 特開平11-40453号公報 特開2018-83874公報
 本発明は、優れた機械物性、透明性、耐熱性を有するとともに、二次加工適正及び印刷外観に優れる二軸配向ポリエステルフィルムの製造方法を提供することである。
 上記課題を解決するために、本発明は、以下の構成を有する。
[1]
 少なくとも一方のフィルム表面が下記(1)及び(2)を満たし、かつフィルムが下記(3)(4)を満たす二軸配向ポリエステルフィルム。
(1)最大突起高さ(SRp)が1.2~1.6μmである。
(2)算術平均粗さ(SRa)が0.024~0.045μmである。
(3)長手方向及び幅方向の引張強さが180~300MPaである。
(4)ヘイズが7%以下である。
[2]
 前記(1)及び(2)を満たすフィルム表面のジヨードメタン接触角が29°以下である、[1]に記載の二軸配向ポリエステルフィルム。
[3]
前記二軸配向ポリエステルフィルム中に無機粒子を500~1500質量ppm含む、[1]又は[2]に記載の二軸配向ポリエステルフィルム。
[4]
前記無機粒子がシリカ粒子である[1]~[3]のいずれかに記載の二軸配向ポリエステルフィルム。
[5]
前記シリカ粒子の細孔容積が0.6~2.0ml/gである、[4]に記載の二軸配向ポリエステルフィルム。
[6]
 前記[1]~[5]のいずれかに記載の二軸配向ポリエステルフィルムを巻き取ってなるフィルムロール。
 上記課題を解決するために、本発明は、さらに以下の構成を有する。
[7]
 第1の無機粒子を7000質量ppm以上22000質量ppm以下含有するポリエチレンテレフタレート系樹脂と、第2の無機粒子を0~50質量ppm含有するポリエチレンテレフタレート系樹脂とを混合させ、無機粒子を500~1500質量ppm含有するようにしたポリエステル樹脂組成物を溶融押出しし未延伸シートを得る工程、前記未延伸シートを二軸延伸し二軸延伸フィルムを得る工程、前記二軸延伸フィルムを、200℃以上250℃以下の温度で熱固定した後に、200度以下に温度を低下させながら、幅方向に2~10%の弛緩を与える工程を含む、二軸配向ポリエステルフィルムの製造方法。
[8]
 第1の無機粒子を7000質量ppm以上22000質量ppm以下含有するポリエチレンテレフタレート系樹脂と、第2の無機粒子を0~50質量ppm含有するポリエチレンテレフタレート系樹脂とを混合させ、無機粒子を500~1500質量ppm含有するようにした第1のポリエステル樹脂組成物、第2のポリエステル樹脂組成物を、それぞれ溶融させ、第1のポリエステル樹脂組成物からなる層/第2のポリエステル樹脂組成物からなる層の構成となるように、ダイスを介して押出しし未延伸シートを得る工程、前記未延伸シートを二軸延伸し二軸延伸フィルムを得る工程、前記二軸延伸フィルムを、200℃以上250℃以下の温度で熱固定した後に、200度以下に温度を低下させながら、幅方向に2~10%の弛緩を与える工程を含む、二軸配向ポリエステルフィルムの製造方法。
[9]
 第1の無機粒子を7000質量ppm以上22000質量ppm以下含有するポリエチレンテレフタレート系樹脂と、第2の無機粒子を0~50質量ppm含有するポリエチレンテレフタレート系樹脂とを混合させ、無機粒子を500~1500質量ppm含有するようにした第1のポリエステル樹脂組成物、第2のポリエステル樹脂組成物を、それぞれ溶融させ、第1のポリエステル樹脂組成物からなる層/第2のポリエステル樹脂組成物からなる層/第1のポリエステル樹脂組成物からなる層の構成となるように、ダイスを介して共押出しし未延伸シートを得る工程、前記未延伸シートを二軸延伸し二軸延伸フィルムを得る工程、前記二軸延伸フィルムを、200℃以上250℃以下の温度で熱固定した後に、200度以下に温度を低下させながら、幅方向に2~10%の弛緩を与える工程を含む、二軸配向ポリエステルフィルムの製造方法。
[10]
 第1の無機粒子を7000質量ppm以上22000質量ppm以下含有するポリエチレンテレフタレート系樹脂と、第2の無機粒子を0~50質量ppm含有するポリエチレンテレフタレート系樹脂とを混合させ、無機粒子を500~1500質量ppm含有するようにした第1のポリエステル樹脂組成物、第2のポリエステル樹脂組成物、第3のポリエステル樹脂組成物を、それぞれ溶融させ、第1のポリエステル樹脂組成物からなる層/第2のポリエステル樹脂組成物からなる層/第3のポリエステル樹脂組成物からなる層の構成となるように、ダイスを介して共押出しし未延伸シートを得る工程、前記未延伸シートを二軸延伸し二軸延伸フィルムを得る工程、前記二軸延伸フィルムを、200℃以上250℃以下の温度で熱固定した後に、200度以下に温度を低下させながら、幅方向に2~10%の弛緩を与える工程を含む、二軸配向ポリエステルフィルムの製造方法。
[11]
 前記未延伸シートを二軸延伸し二軸延伸ポリエステルフィルムを得る工程が、前記未延伸シートを縦方向に2段階で延伸した後に、横延伸をして二軸延伸ポリエステルフィルムを得る工程である、[7]~[10]のいずれかに記載の二軸配向ポリエステルフィルムの製造方法。
[12]
 前記第1の無機粒子及び第2の無機粒子がシリカ粒子である[7]~[11]のいずれかに記載の二軸配向ポリエステルフィルムの製造方法。
[13]
 前記シリカ粒子の細孔容積が0.6~2.0ml/gである[12]に記載の二軸配向ポリエステルフィルムの製造方法。
 本発明により、優れた機械物性、透明性、耐熱性を有するとともに、二次加工適正及び印刷外観に優れる二軸配向ポリエステルフィルを提供することができる。
 以下に本発明の実施の形態について述べるが、本発明は以下の実施例を含む実施の形態に限定して解釈されるものではなく、発明の目的を達成できて、かつ、発明の要旨を逸脱しない範囲においての種々の変更は当然あり得る。
(ポリエチレンテレフタレート系樹脂)
 本発明の二軸配向ポリエステルフィルムは、ポリエチレンテレフタレート系樹脂を構成成分とする。ここで、ポリエチレンテレフタレート系樹脂は、エチレングリコール由来成分およびテレフタル酸由来成分を主な構成成分として含有する。「主に」とは、ジカルボン酸全成分100モル%中、テレフタル酸が80モル%以上であり、グリコール全成分100モル%中、エチレングリコールが80モル%以上である。
 本発明の目的を阻害しない範囲であれば、他のジカルボン酸成分およびグリコール成分を共重合させても良い。他のジカルボン酸成分およびグリコール成分の共重合量は、全ジカルボン酸成分あるいは全グリコール成分に対して、それぞれ20モル%未満であり、10モル%以下であることが好ましく、5モル%以下であることが特に好ましい。
 上記の他のジカルボン酸成分としては、テレフタル酸やイソフタル酸、フタル酸、ナフレンジカルボン酸、4、4’-ジカルボキシビフェニル、5-ナトリウムスルホイソフタル酸等の芳香族ジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、2,5-ノルボルネンジカルボン酸、テトラヒドロフタル酸等の脂環族ジカルボン酸や、シュウ酸、マロン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、オクタデカン二酸、フマル酸、マレイン酸、イタコン酸、メサコン酸、シトラコン酸、ダイマー酸等の脂肪族ジカルボン酸等が挙げられる。40021
 上記の他のグリコール成分としては、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2-メチル-1,3-プロパンジオール、2-アミノ-2-エチル-1,3-プロパンジオール、2-アミノ-2-メチル-1,3-プロパンジオール、1,10-デカンジオール、ジメチロールトリシクロデカン、ジエチレングリコール、トリエチレングリコール等の脂肪族グリコール、ビスフェノールA、ビスフェノールS、ビスフェノールC、ビスフェノールZ、ビスフェノールAP、4,4’-ビフェノールのエチレンオキサイド付加体またはプロピレンオキサイド付加体、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール等の脂環族グリコール、ポリエチレングリコール、ポリプロピレングリコール等が挙げられる。
 このようなポリエチレンテレフタレート系樹脂の重合法としては、テレフタル酸とエチレングリコール、および必要に応じて他のジカルボン酸成分およびグリコール成分を直接反応させる直接重合法、およびテレフタル酸のジメチルエステル(必要に応じて他のジカルボン酸のメチルエステルを含む)とエチレングリコール(必要に応じて他のグリコール成分を含む)とをエステル交換反応させるエステル交換法等の任意の製造方法が利用され得る。
 また、前記ポリエチレンテレフタレート系樹脂の固有粘度は、0.30~1.20dl/gの範囲が好ましく、より好ましくは0.50~1.00dl/gであり、さらに好ましくは0.55~0.90dl/gである。固有粘度が0.30dl/gよりも低いと、ポリエステルフィルムが裂けやすくなり、1.20dl/gより高いと濾圧上昇が大きくなって高精度濾過が困難となり、フィルタを介して樹脂を押出すことが困難となりやすい。 また、前記ポリエステルフィルムの樹脂の固有粘度は、0.30~1.20dl/gの範囲が好ましく、より好ましくは0.45~0.95dl/gであり、さらに好ましくは0.50~0.85dl/gである。固有粘度が0.30dl/gよりも低いと、ポリエステルフィルムが裂けやすくなり、固有粘度が1.20dl/gより高いと、機械的特性を高くする効果が飽和状態になりやすい。
 なお、前記ポリエチレンテレフタレート系樹脂は、溶液重合後これをチップ化し、加熱減圧下または窒素等不活性気流中で必要に応じてさらに固相重合を施してもよい。
 ポリエステル樹脂として上記のポリエチレンテレフタレート系樹脂からなるペットボトル製品をリサイクルしたポリエステル樹脂やバイオマス由来の原料を使用したポリエチレンテレフタレート系樹脂も使用することが可能である。
 本発明の二軸配向ポリエステルフィルムの構成成分として、ポリアミド、ポリスチレン、ポリオレフィン、及び上記以外のポリエステルなどの他の樹脂を含んでも良いが、二軸配向ポリエステルフィルムの機械特性、耐熱性の点で、他の樹脂の含有量はポリエステルフィルムの全樹脂成分に対して30質量%以下、さらには20質量%以下、またさらには10質量%以下、特には5質量%以下であることが好ましく、0質量%(ポリエステルフィルムを構成する全樹脂成分が実質的にポリエチレンテレフタレート系樹脂)であることが最も好ましい。
(無機粒子)
 本発明の二軸配向ポリエステルフィルムの構成成分として、無機粒子を含む。無機粒子としては、炭酸カルシウム、リン酸カルシウム、非晶性シリカ、結晶性のガラスフィラー、カオリン、タルク、二酸化チタン、アルミナ、シリカ-アルミナ複合酸化物粒子、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン、マイカなどの無機粒子が挙げられる。これらの1種もしくは2種以上を選択して用いる。
 これらの粒子の中でも、樹脂成分と屈折率が比較的近く、また粒子の周りに空隙をつくりにくいため、高透明のフィルムを得やすいという点で非晶性シリカ粒子が好適である。特に、無機粒子が非晶性シリカ粒子のみであることが好ましい。
 また、無機粒子が1種の場合、または2種以上の場合の主体とする無機粒子の平均粒径は0.5~3.0μmであり、より好ましくは0.8~2.8μmであり、さらに好ましくは1.5~2.5μmである。0.5μm以上では、表面の凹凸形成がしやくすく、フィルムの表面の算術平均粗さ(SRa)を0.024μ以上としやすく、フィルムの滑り性が低下しにくい。一方、3.0μm以下の場合は、よりフィルム表面の最大突起高さ(SRp)を1.6μm以下としやすい。無機粒子の平均粒径は、島津製作所製のレーザ回折式粒度分布測定装置 SALD-2200にて測定した値である。また、無機粒子の形状は特に限定されないが、易滑性を付与する点からは、球状に近い無機粒子が好ましい。
 また、無機粒子が非晶性シリカ粒子である場合、平均一次粒径20~60nmの粒子の凝集体が透明性の点で好ましい。これは製膜工程において、表面層が延伸工程、熱固定工程を経ることによって平たく、安定した形状にできるためと推察される。
 この粒子の凝集体の細孔容積は0.6~2.0ml/gが好ましく、より好ましくは1.0~1.9ml/gであり、さらに好ましくは1.2~1.8ml/gである。細孔容積が0.6ml/g以上では、フィルム表面の最大突起高さ(SRp)を1.6μm以下としやすい。一方で、細孔容積が2.0ml/g以下の場合、無機粒子が崩れすぎず、フィルム表面の最大突起高さ(SRp)を1.2μm以上としやすい。また粒子の周りに空隙をつくりにくいため、高透明のフィルムを得やすい。
 本発明における第1の無機粒子と第2の無機粒子は同じものでも良く、異なるものでも良い。例えば、組成同じであるが、その粒径、粒度分布、及び細孔容積のうちいずれか1つ以上の特性が異なるものでも良い。
(添加剤)
 本発明の二軸配向ポリエステルフィルムの構成成分として、無機粒子以外に、耐熱性高分子粒子、架橋高分子粒子などの不活性粒子、蛍光増白剤、紫外線防止剤、赤外線吸収色素、熱安定剤、静電密着剤(ピニング剤)、界面活性剤、酸化防止剤などの各種添加剤を1種もしくは2種以上含有させることができる。酸化防止剤としては、芳香族アミン系、フェノール系などの酸化防止剤が使用可能であり、安定剤としては、リン酸やリン酸エステル系等のリン系、イオウ系、アミン系などの安定剤が使用可能である。
 これら無機粒子以外の添加剤は、フィルムを製膜するポリエステル樹脂中に、好ましくは3重量%以下の割合で添加することができ、より好ましくは2重量%以下、さらに好ましくは1重量%以下の割合である。
(フィルム製造方法)
 本発明の二軸配向ポリエステルフィルムの具体的な構成の例について記載するが、本発明はかかる例に限定して解釈されるものではない。
 本発明の二軸配向ポリエステルフィルムは、第1の無機粒子を7000質量ppm以上22000質量ppm以下含有するポリエチレンテレフタレート系樹脂と、第2の無機粒子を0~50質量ppm含有するポリエチレンテレフタレート系樹脂とを混合させたものからなることが重要で、第1の無機粒子の含有量は7000~19000ppmが好ましく、8000~17000ppmがより好ましく、9000~15000ppmが特に好ましい。第1の無機粒子の濃度が7000ppmより小さい場合は、第1の無機粒子を含有するポリエチレンテレフタレート系樹脂の添加比率が大きくなることは、もちろんであるが、フィルムの表面の算術平均粗さ(SRa)を上げ過ぎずに、フィルム表面の最大突起高さ(SRp)を1.2μm以上としやすい。第2の無機粒子を0~50質量ppm含有するポリエチレンテレフタレート系樹脂の添加割合が少なる。第1の無機粒子の濃度が22000ppmより大きいと、フィルム表面の最大突起高さ(SRp)が1.6μmを超えやすい。
 本発明の二軸配向ポリエステルフィルムにおける、無機粒子の含有量は500ppm以上1500ppm以下であることが好ましく、700ppm以上1200ppm以下が好ましく、850ppm以上1000ppm以下が特に好ましい。無機粒子の含有量が1500ppmを超えると、粒子の凝集体が増加し、フィルム表面の最大突起高さ(SRp)が1.6μmを超えやすく、印刷不良が発生しやすい。一方、粒子の含有量が500ppm未満では、フィルムの表面の算術平均粗さ(SRa)が0.024より小さくなりやすく、滑り性低下やロールでの空気抜け不良によるシワ増加などハンドリング性やロール外観が悪化しやすい。
 本発明の二軸配向ポリエステルフィルム中における、第1の無機粒子を7000質量ppm以上22000質量ppm以下含有するポリエチレンテレフタレート系樹脂と、第2の無機粒子を0~50質量ppm含有するポリエチレンテレフタレート系樹脂との混合の比率は、第2の無機粒子を0~50質量ppm含有するポリエチレンテレフタレート系樹脂の、第1の無機粒子を7000質量ppm以上22000質量ppm以下含有するポリエチレンテレフタレート系樹脂と第2の無機粒子を0~50質量ppm含有するポリエチレンテレフタレート系樹脂との混合物の合計量に対して、65重量%以上であることが好ましく、より好ましくは75重量%以上、さらに好ましくは85重量%以上、特に好ましくは90重量%以上である。
 第2の無機粒子を0~50質量ppm含有するポリエチレンテレフタレート系樹脂が、ペットボトル製品をリサイクルしたポリエチレンテレフタレート系樹脂、バイオマス由来の原料を使用して得られたポリエチレンテレフタレート系樹脂、必要に応じて添加剤を含むポリエチレンテレフタレート系をフィルム中に多く含有することができ、これらの樹脂を最大限に使用することが可能となる。
 本発明の二軸配向ポリエステルフィルムは、上述のような単層の場合に加えて、2層、3層、あるいは4層以上の積層構造であってもよい。
 本発明の二軸配向ポリエステルフィルムが2層構造の場合においては、一方の層は第1の無機粒子を7000質量ppm以上22000質量ppm以下含有するポリエチレンテレフタレート系樹脂と、第2の無機粒子を0~50質量ppm含有するポリエチレンテレフタレート系樹脂とを混合させたものからなる第1のポリエステル樹脂組成物であることが重要で、第1の無機粒子の含有量は7000~19000ppmが好ましく、8000~17000ppmがより好ましく、9000~15000ppmが特に好ましい。
 また、前記の一方の最外層における、無機粒子の含有量は500ppm以上1500ppm以下であることが重要で、700ppm以上1200ppm以下が好ましく、850ppm以上1000ppm以下が特に好ましい。無機粒子の含有量が1500ppmを超えると、粒子の凝集体が増加し、前記の一方の層の表面の最大突起高さ(SRp)が1.6μmを超えやすく、印刷不良が発生しやすい。一方、粒子の含有量が500ppm未満では、フィルムの表面の算術平均粗さ(SRa)が0.024より小さくなりやすく、滑り性低下やロールでの空気抜け不良によるシワ増加などハンドリング性やロール外観が悪化しやすい。
 他方の層は、ポリエチレンテレフタレート系樹脂、無機粒子さらには必要に応じて添加剤、ポリエチレンテレフタレート系樹脂以外の樹脂を構成成分とするが、前記の一方の層と全く同じでなければ良い。
 本発明の二軸配向ポリエステルフィルムが3層構造の場合においては、一方の最外層は第1の無機粒子を7000質量ppm以上22000質量ppm以下含有するポリエチレンテレフタレート系樹脂と、第2の無機粒子を0~50質量ppm含有するポリエチレンテレフタレート系樹脂とを混合させたものからなる第1のポリエステル樹脂組成物であることが重要で、第1の無機粒子の含有量は7000~19000ppmが好ましく、8000~17000ppmがより好ましく、9000~15000ppmが特に好ましい。
 また、前記の一方の最外層における、無機粒子の含有量は500ppm以上1500ppm以下であることが重要で、700ppm以上1200ppm以下が好ましく、850ppm以上1000ppm以下が特に好ましい。無機粒子の含有量が1500ppmを超えると、粒子の凝集体が増加し、前記の一方の層の表面の最大突起高さ(SRp)が1.6μmを超えやすく、印刷不良が発生しやすい。一方、粒子の含有量が500ppm未満では、フィルムの表面の算術平均粗さ(SRa)が0.028より小さくなりやすく、滑り性低下やロールでの空気抜け不良によるシワ増加などハンドリング性やロール外観が悪化しやすい。
 他方の最外層は、ポリエチレンテレフタレート系樹脂、無機粒子さらには必要に応じて添加剤、ポリエチレンテレフタレート系樹脂以外の樹脂を構成成分とするが、前記の一方の層と全く同じであっても良いし、異なっていても良い。
 中間層はポリエチレンテレフタレート系樹脂、無機粒子さらには必要に応じて添加剤、ポリエチレンテレフタレート系樹脂以外の樹脂を構成成分とするが、前記の一方の最外層と全く同じでなければ良い。しかし無機粒子がなくても、一方の最外層のみの無機粒子添加粒子量を制御することでフィルムの表面粗さを制御することができ、フィルム全体における無機粒子の含有量をより少なくすることができ、好ましい。これは、無機粒子とポリエステル樹脂との境界に出来るボイド(空隙)を介して、におい成分が抜け、保香性が低下する点を改善することにもつながるためである。
 さらに中間層にフィルム表面の特性に悪影響を与えない範囲で、製膜工程で発生するエッジ部分の回収原料、あるいは他の製膜工程のリサイクル原料などを適時混合して使用することが容易となり、コスト的にも優位である。
 他方の最外層は前記の一方の最外層と同じ組成とする方が、製造が容易であり好ましい。
 本発明の二軸配向ポリエステルフィルムが4層構造の場合においては、一方の最外層は第1の無機粒子を7000質量ppm以上22000質量ppm以下含有するポリエチレンテレフタレート系樹脂と、第2の無機粒子を0~50質量ppm含有するポリエチレンテレフタレート系樹脂とを混合させたものからなる第1のポリエステル樹脂組成物であることが重要で、第1の無機粒子の含有量は7000~19000ppmが好ましく、8000~17000ppmがより好ましく、9000~15000ppmが特に好ましい。
 また、前記の一方の最外層における、無機粒子の含有量は500ppm以上1500ppm以下であることが重要で、700ppm以上1200ppm以下が好ましく、850ppm以上1000ppm以下が特に好ましい。無機粒子の含有量が1500ppmを超えると、粒子の凝集体が増加し、前記の一方の層の表面の最大突起高さ(SRp)が1.6μmを超えやすく、印刷不良が発生しやすい。一方、粒子の含有量が500ppm未満では、フィルムの表面の算術平均粗さ(SRa)が0.024より小さくなりやすく、滑り性低下やロールでの空気抜け不良によるシワ増加などハンドリング性やロール外観が悪化しやすい。
 他方の最外層は、ポリエチレンテレフタレート系樹脂、無機粒子さらには必要に応じて添加剤、ポリエチレンテレフタレート系樹脂以外の樹脂を構成成分とするが、前記の一方の層と全く同じであっても良いが、異なっていても良い。
 2つの中間層はポリエチレンテレフタレート系樹脂、無機粒子さらには必要に応じて添加剤、ポリエチレンテレフタレート系樹脂以外の樹脂を構成成分とするが、前記の一方の最外層と全く同じでなければ良い。しかし無機粒子がなくても、一方の最外層のみの無機粒子添加粒子量を制御することでフィルムの表面粗さを制御することができ、フィルム全体における無機粒子の含有量をより少なくすることができ、好ましい。これは、無機粒子とポリエステル樹脂との境界に出来るボイド(空隙)を介して、におい成分が抜け、保香性が低下する点を改善することにもつながるためである。
 さらに中間層にフィルム表面の特性に悪影響を与えない範囲で、製膜工程で発生するエッジ部分の回収原料、あるいは他の製膜工程のリサイクル原料などを適時混合して使用することが容易となり、コスト的にも優位である。
 他方の最外層は前記の一方の最外層と同じ組成とする方が、製造が容易であり好ましい。
 本発明の二軸配向ポリエステルフィルムにおける、第1の無機粒子を7000質量ppm以上22000質量ppm以下含有するポリエチレンテレフタレート系樹脂と、第2の無機粒子を0~50質量ppm含有するポリエチレンテレフタレート系樹脂の混合物に対する第2の無機粒子を0~50質量ppm含有するポリエチレンテレフタレート系樹脂の占割合は65重量%以上であることが好ましく、より好ましくは75重量%以上、さらに好ましくは85重量%以上、特に好ましくは90重量%以上である。これにより、本発明では、安価な樹脂、ペットボトルからなるリサイクル樹脂やバイオマス由来の樹脂等をフィルム中に多く含有することができ、樹脂の特性を最大限に生かすことが可能となる。
 しかしながら、高濃度の無機粒子を含有するポリエチレンテレフタレート系樹脂を用いて溶融押出しする際に無機粒子が凝集しやすくなり、粒径の大きな無機粒子凝集体が生成性しやすくなる。
 ポリエチレンテレフタレート系樹脂に無機粒子を含有せしめる方法としては、例えばジオール成分であるエチレングリコールに無機粒子を所定の割合にてスラリーの形で分散せしめ、このエチレングリコールスラリーをポリエステル重合完結前の任意段階で添加することが挙げられる。
 ここで、粒子を添加する際には、例えば、粒子の合成時に得られる水ゾルやアルコールゾルを一旦乾燥させることなく添加すると粒子の分散性が良好であり、粗大突起の発生を抑制でき好ましい。
 次に本発明の二軸配向ポリエステルフィルムの具体的なフィルムへの加工方法の例について記載するが、本発明はかかる例に限定して解釈されるものではない。
 第1の無機粒子を7000質量ppm以上22000質量ppm以下含有するポリエチレンテレフタレート系樹脂、第2の無機粒子を0~50質量ppm含有するポリエチレンテレフタレート系樹脂のそれぞれのペレットを所定の割合で混合し、ベント式二軸押出機に供給し溶融押出しする。この際、押出機内を流通窒素雰囲気下で、樹脂温度は265℃~295℃に制御することが好ましい。
 本発明の二軸配向ポリエステルフィルムが2層、3層、あるいは4層以上の積層構造である場合は、多層フィードブロック、スタティックミキサー、多層マルチマニホールドなどの多層化装置を用いることができる。
 例えば、二台以上の押出機を用いて異なる流路から送り出された熱可塑性樹脂をフィードブロックやスタティックミキサー、マルチマニホールドダイ等を用いて多層に積層する方法等を使用することができる。また、一台の押出機のみを用いて、押出機からT型ダイまでのメルトラインに上述の多層化装置を導入することも可能である。
 背圧の安定化および厚み変動の抑制の観点からポリマー流路にスタティックミキサー、ギヤポンプを設置する方法が好ましい。
 ついで、混合した樹脂組成物を溶融し押出しながらフィルターによりろ過する。ポリエチレンテレフタレート系樹脂が酸化して生成したゲルや無機粒子の凝集体といった粗大な異物は得られたフィルムの欠陥の原因となるため、フィルターには例えば25μm以上の異物を95%以上捕集する精度のものを用いることが有効である。フィルムを使用する用途によっては、小さな異物も問題となりうるため、好ましくは10μm以上の異物を95%以上捕集する高精度のフィルターを用いることが望ましい。これ以上の高精度のフィルターを用いると、溶融した混合樹脂組成物の押出しの際、フィルターの昇圧が著しく、フィルター交換頻度が増え、生産性やコスト面で不利となりやすい。
 フィルターは、特に限定はされないが、ステンレス焼結体の場合、いわゆるゲルなどの異物に加え、触媒などの添加物に由来するSi、Ti、Sb、Ge、Cuを主成分とする凝集物の除去性能に優れ好適である。また、その濾過精度は100μm以下であることが好ましく、さらに好ましくは80μm以下であり、特に好ましくは70μm以下である。
 続いて、溶融した混合樹脂組成物をスリット状のスリットダイから冷却ロール上にシート状に押し出し、冷却ロール上で冷却固化せしめて未延伸シートを作る。
 また、冷却ロールで冷却する際、高電圧を掛けた電極を使用して静電気で冷却ロールと混合樹脂組成物の未延伸シートを密着させる静電印加法などの方法により、混合樹脂組成物の未延伸シートを冷却ロール表面に密着させ、冷却固化し、未延伸シートを得る。
 本発明の二軸配向ポリエステルフィルムは、フィルムの機械的強度、厚みムラ、加工適正の観点から二軸配向フィルムとしている。未延伸シートの延伸方法としては同時二軸延伸方式や逐次二軸延伸方式などが挙げられるが、設備などのコストや生産性などから逐次二軸延伸方式が好ましい。
 フィルム表面の算術平均粗さはフィルム中の無機粒子含有量を調整し高くなりすぎないようにすることができるが、フィルム表面の最大突起粗さを高くなりすぎないようにするには、未延伸シートを延伸する際に無機粒子凝集体にフィルム内部の応力によりほぐすことが有効である。
 未延伸シートを延伸する時には温度を低くしたり、多段延伸することはフィルム内部の応力を高くすることは粒子凝集体をほぐすのには効果的である。
 フィルム内部の応力を高くしすぎると、無機粒子がフィルム内部に沈み込み、算術平均粗さが小さくなり、フィルムのすべり性が低下する。
 さらに、最大突起粗さが小さくなりすぎると、フィルムロール中のフィルム間の空気が抜けにくく、フィルムロールにシワが発生することがある。更には、応力による無機粒子を起点としたボイド形成が増え、ヘイズや匂い抜けも高くなるため、適切な調整が必要である。
 得られた未延伸シートを縦延伸へ導き、予熱工程において40~140℃に加熱した。この際、急激に加熱すると冷却ロールへ貼りつくため、徐々に温度を上げていくことが望ましい。
 その後、縦延伸工程となるが、縦延伸の方式はロール延伸方式、IR延伸方式などが挙げられるが、特に限定するものではない。速度の異なる2対のロール間で100~140℃に加熱し、3.6~5.0倍、さらに好ましくは3.8~4.7倍、特に好ましくは4.0~4.7倍に長手方向に延伸して縦延伸フィルムを得る。このとき、フィルムの補助加熱装置として、ニップロール中間部に赤外線加熱ヒーターをフィルムの両面に設置し、必要に応じてフィルムを加熱し、長手方向の延伸温度を調節してもよい。また、縦延伸は、1段でも2段、3段などの多段延伸でも良い。
 2段延伸の場合は、1段目を1.1~3.2倍の範囲に2段目を1.1~3.2倍の範囲とするのが好ましい。3段延伸の場合は、1段目を1.1~1.5倍の範囲に2段目を1.2~1.8倍の範囲に3段目を2.0~3.0倍の範囲にするのが好ましい。
 縦延伸の予熱工程と延伸工程でフィルムへの加熱温度を低くし、高倍率で延伸することで、フィルム内部の高い応力による無機粒子凝集体をほぐすことが出来る。また、多段延伸で配向結晶化を促しながら延伸することで、よりフィルム内部を高めることが可能となる。ただ、延伸倍率を高くしすぎると、算術平均粗さが小さくなり、フィルムのすべり性が低下する。延伸倍率を高くすると、機械強度は向上するが、得られた二軸配向ポリステルフィルムの長手方向の引張強度を300MPa以下とするのが好ましい。
 得られた縦延伸フィルムに、必要に応じてコロナ処理やプラズマ処理などの表面処理を施した後、易滑性、易接着性、帯電防止性などの機能を付与するために片面にコーティング法により塗布液を塗布することもできる。
 次いで、得られた縦延伸フィルムの両端部をクリップで把持して、100~160℃で幅方向に3.9~5.0倍、さらに好ましくは4.0~4.7倍、特に好ましくは4.1~4.7倍の範囲で横方向に延伸し、二軸延伸フィルムを得る。この際、縦延伸同様に、横延伸温度を低く、延伸倍率を高く、多段延伸することで粒子のほぐし効果を効果的に得られることが出来るが、延伸倍率を高くしすぎると算術平均粗さが小さくなり、フィルムのすべり性が低下する。延伸倍率を高くすると、機械強度は向上するが、得られた二軸配向ポリステルフィルムの幅方向の引張強度を300MPa以下とするのが好ましい。
 横延伸後、二軸延伸フィルムの熱処理を行う。熱処理はオーブン中、加熱したロール上に二軸延伸フィルムを走行させることより行うことができる。この熱処理は120℃以上、ポリエチレンテレフタレート系樹脂の結晶融解ピーク温度以下の温度範囲内で行われる。熱処理時間は1.6~20秒の範囲であるのが好ましい。
 熱処理温度の中で最も高温となる温度は、好ましくは200~250℃の温度範囲内の特定の温度であり、さらに好ましくは210~245℃であり、特に好ましくは220℃~245℃である。最も高温となる温度での処理時間は好ましくは0.8~10秒、より好ましくは1~5秒で行うのがよい。
 最高温度での熱処理に続いて、高温からの結晶化ピーク温度までの冷却過程においてフィルムを横方向に弛緩することでも、フィルム内部の応力による無機粒子の凝集体をほぐす効果が得られる。
 例えば、二軸延伸フィルムの熱処理工程の前半で最も高い温度で処理し、後半で温度を下げながら弛緩処理を実施しても良いし、二軸延伸フィルムの熱処理工程の1段目で最も高い温度で処理し、2段目で温度を下げながら弛緩処理を行い、3段目で弛緩せずにより低温で熱処を実施しても良い。
 最高温度から下げる場合、徐々に温度を下げることが望ましく、最高温度から120~210℃の温度範囲内の特定温度に徐々に温度を下げることが好ましく、130~200℃に徐々に温度を下げることがより好ましく、150~200℃に徐々に温度を下げることが特に好ましい。
 弛緩処理は幅方向に0.5~6.5%が好ましく、より好ましくは1.0~6.0%である。弛緩処理が巾方向で0.5%未満の場合、熱収縮率などの熱寸法安定性が悪く、加工時のズレや縮みとなりやすい。また上述している粒子のほぐし効果がなくなりやすい。一方で6.5%を超える場合、たるみなどが生じて厚みムラの発生となりやすい。弛緩処理の処理時間は0.8~10秒が好ましく、より好ましくは1~5秒である。弛緩処理の処理時間が0.8秒未満の場合、フィルムの破断が起こりやすい。一方で処理時間が10秒を超えるとたるみなどが生じて厚みムラが発生しやすい。
 熱処理温度が最高温度となった以降、徐々に温度を下げることで、急激な冷却での変形も抑えられ、厚みムラや熱歪み低減にも有効である。
 本発明の二軸配向ポリエステルフィルムの第1の無機粒子を7000質量ppm以上2200質量ppm以下含有するポリエチレンテレフタレート系樹脂と、第2の無機粒子を0~50質量ppm含有するポリエチレンテレフタレート系樹脂とを混合させ、無機粒子を500~1500質量ppm含有するようにした樹脂組成物からなる層の厚み好ましくは0.5~30μmであり、より好ましくは0.5~20μmであり、さらに好ましく0.5~10μmであり、より好ましくは0.5~8μmである。層厚みが30μm以下であるとフィルムの表面の算術平均粗さ(SRa)を0.024μm以上としやすい。
 本発明の二軸配向ポリエステルフィルムの全体の厚みは好ましくは9~75μmであり、より好ましくは9~50μmであり、さらに好ましくは9~25μmである。フィルムの全体の厚みが9μm以上の場合、フィルムの剛性を高くしやすく、加工しやすい。また、ロールでのシワも入りにくい。フィルムの全体の厚みが75μm以下の場合、フィルムの剛性が高くなりすぎず、ロールでのシワも入りにくくなる。 
(フィルム特性)
 本発明における二軸配向ポリエステルフィルム、及び本発明における二軸配向ポリエステルフィルムの第1の無機粒子を7000質量ppm以上22000質量ppm以下含有するポリエチレンテレフタレート系樹脂と、第2の無機粒子を0~50質量ppm含有するポリエチレンテレフタレート系樹脂とを混合させ、無機粒子を500~1500質量ppm含有するようにしたポリエステル樹脂組成物からなる層の表面は、下記(1)、(2)の特性を満たすことが重要である。
(1)最大突起高さ(SRp)が1.2~1.6μm以下である。
(2)算術平均粗さ(SRa)が0.024~0.045μmである。
 最大突起高さ(SRp)が1.2μm以下であると、フィルムをフィルムロールに巻き取る際のフィルム間の空気が抜けやすく、フィルムロールにシワやスジが発生しにくい。更にフィルムの滑り性が向上し、印刷加工などの二次加工が行いやすく、品質と加工コストの点で有利となりやすい。最大突起高さ(SRp)が1.6μm以下であると、印刷抜けなどが少なくなり印刷外観が良く、意匠性の点で有利であるとともに、ロール形状にしたときにズレが生じにくく、保管しやすく生産効率も向上しやすい。最大突起高さ(SRp)は1.2~1.5μm以下がより好ましく、1.2~1.4μmがさらに好ましい。
 算術平均粗さ(SRa)が0.024μm以上であると、フィルムの滑り性が向上し、印刷加工などの二次加工が行いやすく、品質と加工コストの点で有利となりやすい。 算術平均粗さ(SRa)が0.045μm以下であると、印刷抜けなどが少なくなり印刷外観が良く、意匠性の点で有利である。算術平均粗さ(SRa)は0.024~0.040μmがより好ましく、算術平均粗さ(SRa)は0.024~0.035μmがさらに好ましい。
 本発明における二軸配向ポリエステルフィルムは、上記(1)、(2)に加えて、下記(3)、(4)の特性を満たすことが重要である。
(3)長手方向及び幅方向の引張強さが180~300MPaであること。
(4)ヘイズが7%以下であること。
 引張強度、ヘイズを適切に制御することにより、さらに印刷加工適正や及び印刷外観を優れたものとすることができる。
 長手方向及び幅方向の引張強さが180MPa以上の場合、印刷加工に限らず、フィルムに張力が加わる際変形しにくく、破断しにくい。フィルムの長手方向及び幅方向の引張強さの下限は、好ましくは190MPa以上、さらに好ましくは200MPa以上、特に好ましくは210MPa以上である。
 引張強さが 引張強さが300MPa以下の場合、未延伸シート又は縦延伸フィルムの延伸時の応力を高くなり過ぎることがないようにしやすく、無機粒子がフィルム内部に沈み込みにくく、フィルム表面の粗さを高めやすく、またフィルム中の無機粒子の周りに空隙(ボイド)が生成しにくく、ヘイズを低下させやすい。引張強さは好ましくは290MPa以下、さらに好ましくは280MPa以下、特に好ましくは270MPa以下である。
 フィルムのヘイズが7%以下場合、印刷外観が向上し、また高速での加工においても、X線などによる異物検知がしやすくなり、十分な品質を得ること容易になりやすい。フィルムのヘイズは好ましくは6%以下、さらに好ましくは5%以下、特に好ましくは4%以下である。
 フィルムをフェノール/1,1,2,2-テトラクロロエタンの6/4(重量比)混合溶媒を使用して溶解し、温度30℃にて測定したときの、固有粘度(IV)は0.5~0・7(g/dl)の範囲が好ましい。
 フィルム表面を協和界面科学株式会社製「DropMaster500」を使用し、20℃、50%RHの環境下で、外径0.7mmの針から2μLのジヨードメタンをフィルムの測定面に押し出して測定した接触角(測定では異なる位置で10回行い、その平均値を求めた。)は好ましくは29°以下であり、より好ましくは28°以下であり、さらに好ましくは27°以下である。フィルム表面の接触角が29°以下の場合、網点5%の条件での印刷インキ抜けが少なくなりやすい。
 実施例に記載した方法で測定した空気抜け時間は好ましくは14秒以下であり、より好ましくは13秒以下であり、更に好ましくは12秒以下である。空気抜け時間が14秒を以下の場合、フィルムを巻き取ってフィルムロールにする際に空気が抜ける速度早く、シワが入りにくく、巻ズレも少なくなる。
 製膜した2軸配向ポリエステルフィルムを幅800mm、巻長12000mで巻き取ったときのロール表層を目視で評価したときに、弱いシワがあるが、引き出したフィルムに張力20N/m程度をかけるとシワが消えるのが好ましく、シワがないのが好ましい。
 実施例に記載した方法で評価した印刷評価では、全体の印刷インキドット数に対し、綺麗な印刷ドットが95%以上塗られていることが好ましく、98%以上塗られていることがより好ましい。
 無機粒子を0~50質量ppm含有するポリエチレンテレフタレート系樹脂比率が80重量%以上であると、ペットボトル製品からのリサイクルポリエステル樹脂、バイオマス由来原料を使用したポリエステル樹脂を使用した時の環境適正の効果が高くなり、好ましい。使用比率は80重量%以上がより好ましく、85重量%以上がさらに好ましく90重量%以上が特に好ましい。
(1)ポリエチレンテレフタレート系樹脂の組成
 ポリエチレンテレフタレート系樹脂およびフィルムをヘキサフルオロイソプロパノール(HFIP)に溶解し、1H-NMRおよび13C-NMRを用いて各モノマー残基成分や副生ジエチレングリコールについて含有量を定量することができる。積層フィルムの場合は、積層厚みに応じて、フィルムの各層を削り取ることで、各層単体を構成する成分を採取し、評価することができる。
(2)ポリエチレンテレフタレート系樹脂の固有粘度(IV)
 ポリエチレンテレフタレート系樹脂をフェノール/1,1,2,2-テトラクロロエタンの6/4(重量比)混合溶媒を使用して溶解し、温度30℃にて測定した。
(3)ポリエチレンテレフタレート系樹脂のガラス転移温度(Tg)、融点(Tm)
 SII製示差走査型熱量計(DSC)を用い、サンプル量10mg、昇温速度20℃/分で測定した。DSC曲線から得られたガラス転移開始温度をガラス転移温度とし、融解吸熱ピーク温度を融点とした。
(4)フィルム厚み、層厚み
 フィルムをエポキシ樹脂に包埋し、フィルム断面をミクロトームで切り出した。該断面を透過型電子顕微鏡(日本電子製 JEM2100)で観察し、フィルム厚みおよびポリエステル層の厚みを求めた。
(5)フィルム各層中の無機粒子含有量
 フィルムから測定したい層を削り取り、0.9gに0-クロルフェノール1.0リットルを加え120℃で3時間加熱した後、30,000rpmで40分間遠心分離を行ない、得られた粒子を100℃で真空乾燥した。微粒子をDSCにて測定した時、ポリマーに相当する溶解ピークが認められる場合には微粒子に0-クロロフェノールを加え、加熱冷却後再び遠心分離操作を行なった。溶解ピークが認められなくなった時、微粒子を粒子とした。通常遠心分離操作は2回で足りる。得られた粒子の全体重量に対する比率(ppm)を無機粒子の含有量とした。
(6)フィルム全層中の無機粒子の含有量
 ポリエステルフィルムを蛍光X線分析装置(リガク社製、Supermini200型)で、予め求めた検量線により求めた。
(7)ヘイズ
 JIS K 7105に準じて23℃で測定した。ヘイズメータ(日本電色工業株式会社製、300A)を用いて測定した。なお、測定は2回行い、その平均値を求めた。
(8)フィルムの引張強さ
JIS K 7127に準じて測定した。フィルムの長手方向および幅方向に幅10mm、長さ180mmの試料を、剃刀を用いて切り出して試料とした。23℃、65%RHの雰囲気下で12時間放置したあと、測定は23℃、65%RHの雰囲気下、チャック間距離100mm、引っ張り速度200mm/分の条件で行い、5回の測定結果の平均値を用いた。測定装置としては島津製作所社製オートグラフAG5000Aを用いた。
(9)静摩擦係数(μs)
得られたフィルムから縦方向400mm×横方向100mmの面積に切り出し、試料フィルムを作成した。これを23℃、65%RHの雰囲気下で12時間エージングした。試料サンプルを滑走台用として縦方向300mm×横方向100mm、荷重用に縦方向100mm×横方向100mmに分けた。滑走台用サンプルは滑走台にセットし、荷重用サンプルは、金属荷重1.5Kgの面にテープで貼りつけ、それぞれの面が反対となって接するようにした。引張りスピード200mm/分、23℃、65%RH条件下で静摩擦係数(μs)を測定し、3回の測定の平均を求めた。測定にはAND社製、テンシロンRTG-1210を用い、JIS-7125に準拠して算出した。
 フィルムの静摩擦係数は好ましくは0.15~0.8であり、より好ましくは0.2~0.7であり、さらに好ましくは0.25~0.7である。摩擦係数が0.15未満の場合、フィルムが滑りすぎてロール状態を維持できないことや、印刷加工での繰り出し時にズレが発生し、加工性が低下しやすい。静摩擦係数が0.8より高い場合、ロールでのシワ発生や、金属ロール上で傷が入るなど不良が起こりやすい。
(10)フィルム表面のSRa、SRp
 フィルムの表面粗さ測定は、以下の方法で行った。
共焦点観察・装置:走査型共焦点レーザー顕微鏡(オリンパスLEXT)
・レーザー種:405nm半導体レーザー・対物レンズ:50倍
・撮影モード:高精度
 上記装置・条件にて測定面の共焦点画像を取り込んだ。
表面粗さ解析
・測定範囲:縦256μm×横256μm
・解析ソフト:OLS4100
・カットオフなし
 上記条件で面粗さ解析を実施し、算術平均粗さ(SRa)と最大突起高さ(SRp)を測定した。測定は測定位置を変えて10回行い、平均値を求めた。但し、画像から明らかに傷や異物など部分的な異常が認められた場合、測定値には入れず、異常部を避けて再度測定し直した。
(11)フィルム表面のぬれ張力
 協和界面科学株式会社製「DropMaster500」を使用し、20℃、50%RHの環境下で、外径0.7mmの針から2μLのジヨードメタンをフィルムの測定面に押し出して接触角を測定した。測定では異なる位置で10回行い、その平均値を求めた。
(12)空気抜け時間
 図1に示すように、台盤1の上にフィルム4を載せる。次いで、フィルム押え2をフィルム4の上から載せ、固定することによって張力を与えながらフィルム4を固定する。次いで、フィルム押え2の上に、フィルム5として台盤1の上に載せたフィルム4の上面とは反対の面を下にして載せる。次いでフィルム5の上にフィルム押え8を載せ、更にネジ3を用いてフィルム押え8,2および台盤1を固定する。
 次に、フィルム押え2に設けられた空洞2aと真空ポンプ6とを、フィルム押え2に設けられた細孔2cおよびパイプ7を介して接続する。そして、真空ポンプ6を駆動すると、フィルム5には、空洞2aに吸い付けられることによって張力が加わる。また、同時にフィルム4とフィルム5の重なり合った面もフィルム押え2に円周状に設けられた細孔2dを介して減圧され、フィルム4とフィルム5はその重なり合った面において、外周部から密着し始める。
 密着する様子は、重なり合った面の上部から干渉縞を観察することによって容易に知ることができる。そして、フィルム4とフィルム5の重合面の外周部に干渉縞が生じてから重なり合った面の前面に干渉縞が拡がり、その動きが止まるまでの時間(秒)を測定し、この時間(秒)を空気抜け時間とする。なお、測定は2枚のフィルムを取り替えて5回繰り返し行い、その平均値を用いる。つまり時間(秒)が短いほどフィルムの巻き特性は良好となる。
(13)フィルムロールのシワ評価
 製膜した2軸配向ポリエステルフィルムを幅800mm、巻長12000mで巻き取り、下記基準でロール表層にあるシワの評価を目視で行った。判定○、△を合格とした。
○:シワがない
△:弱いシワがあるが、引き出したフィルムに張力20N/m程度をかけるとシワが消える
×:強いシワがあり、引き出したフィルムに張力20N/m程度をかけてもシワが消えない
(14)印刷評価
 フィルム上に、グラビア印刷機(東谷鉄工所社製)を使用して速度100m/minで網点5%でグラビア印刷を実施した。このときのインキは、グラビア印刷インキ(東洋インキ社製:商品名ファインスターR92墨)であり、希釈溶剤(東洋インキ社製:商品名SL302)で77:23の比率で混合したものを用いた。得られた印刷サンプルを光学顕微鏡にて観察し、縦2cm×横2cmの範囲において、以下のような基準で評価した。尚、評価は異なる位置5点の結果の平均で判断した。判定○、△を合格とした。
○:全体のインキドット数に対し、綺麗なドットが95%以上塗られている
△:全体のインキドット数に対し、綺麗なドットが90~95%未満塗られている
×:全体のインキドット数に対し、綺麗なドットが90%未満塗られている
(15)無機粒子を0~50質量ppm含有するポリエチレンテレフタレート系樹脂の比率
 無機粒子を0~50質量ppm含有するポリエチレンテレフタレート系樹脂に、ペットボトル製品からのリサイクルポリエステル樹脂、バイオマス由来原料を使用したポリエステル樹脂の使用比率が高いことで環境適正の効果が高くなる。使用比率により、環境適性を評価した。
1:使用比率90重量%以上、秀
2:使用比率85重量%以上、優
3:使用比率80重量%以上、良
4:使用比率70重量%以上、可
5:使用比率65重量%以上、不可
6:使用比率65重量%未満、不良
(ポリエチレンテレフタレート系樹脂の製造)
 製膜に供したポリエチレンテレフタレート系樹脂は以下のように準備した。
(ポリエチレンテレフタレート系樹脂1)
 テレフタル酸とエチレングリコールの混合物中に酢酸マグネシウム四水塩を加え常圧化にて温度255℃でエステル化反応させた。その後三酸化アンチモンおよびリン酸トリメチルを加えさらに温度260℃で反応させた。引き続いて、反応生成物を重縮合反応槽に移し加熱昇温しながら反応系を徐々に減圧して133Pa(1mmHg)の減圧下、280℃で常法により重縮合を行い、IV=0.62dl/gのポリエステルチップを得た。これをポリエチレンテレフタレート系樹脂1とする。得られたポリエチレンテレフタレート系樹脂1の組成はテレフタル酸成分/イソフタル酸成分//エチレングリコール成分/ジエチレングリコール成分=100/0//98/2(モル%)、ガラス転移温度は80℃ 、融点は255℃であった。
(ポリエチレンテレフタレート系樹脂2)
 飲料用ペットボトルから残りの飲料などの異物を洗い流した後、粉砕して得たフレークを押出機で溶融し、順次目開きサイズの細かなものにフィルタを変えて2回更に細かな異物を濾別し、3回目に50μmの最も小さな目開きサイズのフィルタで濾別して、IV=0.70dl/gのポリエステル再生原料を得た。これをポリエチレンテレフタレート系樹脂2とする。得られたポリエチレンテレフタレート系樹脂2の組成はテレフタル酸成分/イソフタル酸成分//エチレングリコール成分/ジエチレングリコール成分=98/2//98/2(モル%)、ガラス転移温度は76℃ 、融点は252℃であった。
(ポリエチレンテレフタレート系樹脂3)
 ポリエチレンテレフタレート系樹脂1において、エチレングリコールを植物由来から抽出したものを用いた以外は同様の方法でIV=0.62dl/gのポリエステルチップを得た。これをポリエチレンテレフタレート系樹脂3とする。得られたポリエチレンテレフタレート系樹脂3の組成はテレフタル酸成分/イソフタル酸成分//エチレングリコール成分/ジエチレングリコール成分=100/0//98/2(モル%)、ガラス転移温度は80℃ 、融点は255℃であった。このポリエステル3のバイオマス度をASTMD6866により測定したところ、バイオマス度は17%であった。 
(無機粒子を含むポリエチレンテレフタレート系樹脂)
(無機粒子を含むポリエチレンテレフタレート系樹脂1)
 上記ポリエチレンテレフタレート系樹脂1を調整する際、重縮合反応槽で平均粒径2.4μm、細孔容積1.6ml/gの非晶性シリカ粒子(富士シリシア化学社製、商品名サイリシア310)のエチレングリコールスラリーをシリカとしてポリエチレンテレフタレート系樹脂1中に7200ppmとなるように添加した後、重縮合を行い、IV=0.62のポリエステルチップを得た。これを無機粒子を含むポリエチレンテレフタレート系樹脂1とする。
(無機粒子を含むポリエチレンテレフタレート系樹脂2)
 無機粒子を含むポリエチレンテレフタレート系樹脂1において、シリカがポリエステル中に1500ppmとなるように添加した以外は同条件で行い、IV=0.62のポリエステルチップを得た。これを無機粒子を含むポリエチレンテレフタレート系樹脂2とする。
(無機粒子を含むポリエチレンテレフタレート系樹脂3)
 無機粒子を含むポリエチレンテレフタレート系樹脂1において、シリカがポリエチレンテレフタレート系樹脂1中に12000ppmとなるように添加した以外は同条件で行い、IV=0.62のポリエステルチップを得た。これを無機粒子を含むポリエチレンテレフタレート系樹脂3とする。
(無機粒子を含むポリエチレンテレフタレート系樹脂4)
 無機粒子を含むポリエチレンテレフタレート系樹脂1において、シリカがポリエチレンテレフタレート系樹脂1中に20000ppmとなるように添加した以外は同条件で行い、IV=0.62のポリエステルチップを得た。これを無機粒子を含むポリエチレンテレフタレート系樹脂4とする。
(無機粒子を含むポリエチレンテレフタレート系樹脂5)
 無機粒子を含むポリエチレンテレフタレート系樹脂1において、シリカがポリエチレンテレフタレート系樹脂1中に23000ppmとなるように添加した以外は同条件で行い、IV=0.62のポリエステルチップを得た。これを無機粒子を含むポリエチレンテレフタレート系樹脂5とする。
(添加剤を含むポリエステル樹脂)
(添加剤を含むポリエチレンテレフタレート系樹脂1)
 エステル化反応缶を昇温して200℃に到達した時点で、テレフタル酸[86.4質量部]及びエチレングリコール[64.4質量部]からなるスラリーを仕込み、撹拌しながら、触媒として三酸化アンチモン[0.025質量部]及びトリエチルアミン[0.16質量部]を添加した。次いで加熱昇温を行い、ゲージ圧0.34MPa、240℃の条件で加圧エステル化反応を行った。その後、エステル化反応缶内を常圧に戻し、静電密着剤として酢酸マグネシウム4水塩[0.34質量部]、次いでリン酸トリメチル[0.042質量部]を添加した。さらに、15分かけて260℃に昇温した後、リン酸トリメチル[0.036質量部]、次いで酢酸ナトリウム[0.0036質量部]を添加した。得られたエステル化反応生成物を重縮合反応缶に移送し、減圧下で260℃から280℃へ徐々に昇温した後、285℃で重縮合反応を行った。重縮合反応終了後、孔径5μm(初期濾過効率95%)のステンレススチール焼結体製フィルターで濾過処理を行い、得られた重縮合反応生成物をペレット化した。これを添加剤を含むポリエチレンテレフタレート系樹脂1とする。
(実施例1)
 原料として、表面層(A)にポリエチレンテレフタレート系樹脂1/無機粒子を含むポリエチレンテレフタレート系樹脂1/添加剤を含むポリエチレンテレフタレート系樹脂1=76.5/12.5/11.0(質量%)、基層(B)にポリエチレンテレフタレート系樹脂1/無機粒子を含むポリエチレンテレフタレート系樹脂1/添加剤を含むポリエチレンテレフタレート系樹脂1=84.1/4.9/11.0(質量%)となるように混合して用いた。2台の溶融押出機を用い、それぞれの原料樹脂を第1の押出機より表面層(A)形成混合樹脂を285℃の樹脂温度で溶融押出しし、第2の押出機により基層(B)形成混合樹脂を285℃の樹脂温度にて溶融押出しした。それぞれの押出機では、25μm以上の異物を95%以上捕集するフィルターを用いた。冷却ロール接触側から表面層(A)/基層(B)/表面層(A)の順番に、Tダイ内にて厚み比が1/10/1(μm)になるように合流積層し、35℃に温度制御した冷却ロール上にシート状に吐出した。その際、直径0.15mmのワイヤー状電極を使用して静電印加し、冷却ロールに密着させて3層未延伸フィルムを得た。
 得られた未延伸フィルムを縦延伸予熱工程へ導いた。縦延伸予熱工程では70~134℃へと徐々にロール温度を上げたロール群にて予熱を行った。その後134℃に加熱した速度の異なる2対のニップロール間で1.2倍長手方向に延伸した。同様の方法で2段目で1.5倍、3段目で2.5倍長手方向に延伸し、合計4.5倍の延伸を行った。
 次いでテンター式横延伸機にて、温度143~154℃へと徐々に温度を上げたゾーンで4.3倍延伸した。その後、熱固定での熱処理を前半と後半に分けて行った。前半では温度を245℃とし、1.5秒熱処理を行い、後半では温度が227~150℃へと徐々に下がるような複数のゾーンを用い、2.3秒熱処理を行った。この後半の熱処理において、幅方向に4.4%弛緩処理を行った。引き続いて、室温23℃程度まで冷却した。こうして、フィルム厚み12μmの二軸配向ポリエステルフィルムを得た。
 尚、フィルムの評価は、冷却ロールに接触した側のA層で行った。
(実施例2)
 原料として、表面層(A)にポリエチレンテレフタレート系樹脂1/無機粒子を含むポリエチレンテレフタレート系樹脂1/添加剤を含むポリエチレンテレフタレート系樹脂1=80.7/8.3/11.0(質量%)となるように混合して用いた以外は、実施例1と同様にしてフィルム厚み12μmの二軸配向ポリエステルフィルムを得た。実施例1と同様に評価した。
(実施例3)
 原料として、表面層(A)にポリエチレンテレフタレート系樹脂1/無機粒子を含むポリエチレンテレフタレート系樹脂1/添加剤を含むポリエチレンテレフタレート系樹脂1=72.3/16.7/11.0(質量%)となるように混合して用いた以外は、実施例1と同様にしてフィルム厚み12μmの二軸配向ポリエステルフィルムを得た。実施例1と同様に評価した。
(実施例4)
 基層(B)厚みを14μmにし、熱固定での前半の熱処理温度を242℃、処理時間を前半2秒、後半3秒に変更した以外は、実施例1と同様にしてフィルム厚み16μmの二軸配向ポリエステルフィルムを得た。実施例1と同様に評価した。
(実施例5)
 原料として、表面層(A)にポリエチレンテレフタレート系樹脂1/無機粒子を含むポリエチレンテレフタレート系樹脂3/添加剤を含むポリエチレンテレフタレート系樹脂181.5/7.5/11.0(質量%)、基層(B)にポリエチレンテレフタレート系樹脂1/無機粒子を含むポリエチレンテレフタレート系樹脂3/添加剤を含むポリエチレンテレフタレート系樹脂1=86.1/2.9/11.0(質量%)となるように混合して用いた以外は、実施例1と同様にしてフィルム厚み12μmの二軸配向ポリエステルフィルムを得た。実施例1と同様に評価した。
(実施例6)
 原料として、基層(B)に表面層(A)と同じポリエチレンテレフタレート系樹脂2/無機粒子を含むポリエチレンテレフタレート系樹脂1/添加剤を含むポリエチレンテレフタレート系樹脂1=86.3/10.0/3.7(質量%)を用い、1種3層構成とし、製膜条件を表1のように変更した以外は、実施例1と同様にしてフィルム厚み12μmの二軸配向ポリエステルフィルムを得た。尚、縦延伸前の予熱では75℃一定とし、縦延伸ではIRによる2段延伸とした。実施例1と同様に評価した。
(実施例7)
 原料として、表面層(A)にポリエチレンテレフタレート系樹脂3/無機粒子を含むポリエチレンテレフタレート系樹脂1/添加剤を含むポリエチレンテレフタレート系樹脂1=85.0/10.4/4.6(質量%)、基層(B)にポリエチレンテレフタレート系樹脂3/無機粒子を含むポリエチレンテレフタレート系樹脂1/添加剤を含むポリエチレンテレフタレート系樹脂1=93.6/1.4/5.0(質量%)となるように混合して用い、Tダイ内にて厚み比が3/6/3(μm)になるように合流積層し、フィルムの製膜条件を表1のように変更した以外は、実施例1と同様にしてフィルム厚み12μmの二軸配向ポリエステルフィルムを得た。尚、縦延伸ではロールでの2段延伸で行った。実施例1と同様に評価した。
(比較例1)
 原料として、表面層(A)にポリエチレンテレフタレート系樹脂1/無機粒子を含むポリエチレンテレフタレート系樹脂1/添加剤を含むポリエチレンテレフタレート系樹脂1=82.7/6.3/11.0(質量%)となるように混合して用いた以外は、実施例1と同様にしてフィルム厚み12μmの二軸配向ポリエステルフィルムを得た。実施例1と同様に評価した。
(比較例2)
 原料として、表面層(A)にポリエチレンテレフタレート系樹脂1/無機粒子を含むポリエチレンテレフタレート系樹脂1/添加剤を含むポリエチレンテレフタレート系樹脂1=66.8/22.2/11.0(質量%)となるように混合して用いた以外は、実施例1と同様にしてフィルム厚み12μmの二軸配向ポリエステルフィルムを得た。実施例1と同様に評価した。
(比較例3)
 原料として、表面層(A)にポリエチレンテレフタレート系樹脂3/無機粒子を含むポリエチレンテレフタレート系樹脂1/添加剤を含むポリエチレンテレフタレート系樹脂1=84.6/10.4/5.0(質量%)、基層(B)にポリエチレンテレフタレート系樹脂3/無機粒子を含むポリエチレンテレフタレート系樹脂1/添加剤を含むポリエチレンテレフタレート系樹脂1=84.5/12.5/5.0(質量%)となるように混合して用い、チルロール接触側から表面層(A)/基層(A’)の2種2層でTダイ内にて厚み比が11/1(μm)になるように合流積層し、フィルムの製膜条件を表1のように変更した以外は、実施例1と同様にしてフィルム厚み12μmの二軸配向ポリエステルフィルムを得た。縦延伸前の予熱では78℃一定とし、縦延伸ではIRによる1段延伸とした。実施例1と同様に評価した。
(比較例4)
 原料として、表面層(A)にポリエチレンテレフタレート系樹脂1/無機粒子を含むポリエチレンテレフタレート系樹脂5/添加剤を含むポリエチレンテレフタレート系樹脂1=85.1/3.9/11.0(質量%)、基層(B)にポリエチレンテレフタレート系樹脂1/無機粒子を含むポリエチレンテレフタレート系樹脂5/添加剤を含むポリエチレンテレフタレート系樹脂1=87.5/1.5/11.0(質量%)となるように混合して用いた以外は、実施例1と同様にしてフィルム厚み12μmの二軸配向ポリエステルフィルムを得た。実施例1と同様に評価した。
(比較例5)
 フィルムの製膜条件を表1のように変更した以外は、実施例1と同様にしてフィルム厚み12μmの二軸配向ポリエステルフィルムを得た。
(比較例6)
 原料として、表面層(A)にポリエチレンテレフタレート系樹脂1/無機粒子を含むポリエチレンテレフタレート系樹脂2/添加剤を含むポリエチレンテレフタレート系樹脂1=29.0/60.0/11.0(質量%)、基層(B)にポリエチレンテレフタレート系樹脂1/無機粒子を含むポリエチレンテレフタレート系樹脂2/添加剤を含むポリエチレンテレフタレート系樹脂1=65.7/23.3/11.0(質量%)となるように混合し、さらに製膜条件を表1のように変更した以外は、実施例1と同様にしてフィルム厚み12μmの二軸配向ポリエステルフィルムを得た。尚、縦延伸前の予熱では78℃一定とし、縦延伸ではIRによる1段延伸とした。実施例1と同様に評価した。
(比較例7)
 原料として、基層(B)に表面層(A)と同じポリエチレンテレフタレート系樹脂1/無機粒子を含むポリエチレンテレフタレート系樹脂3=95.0/5.0(質量%)を用い、1種3層構成とし、製膜条件を表1のように変更した以外は、実施例1と同様にしてフィルム厚み100μmの二軸配向ポリエステルフィルムを得た。尚、縦延伸前の予熱では100℃一定とし、縦延伸ではロールによる1段延伸、熱固定での後半の熱処理は200℃一定で行った。実施例1と同様に評価した。
(比較例8)
 原料として、表面層(A)にポリエチレンテレフタレート系樹脂1/無機粒子を含むポリエチレンテレフタレート系樹脂4=96.0/4.0(質量%)となるように混合して用い、Tダイ内にて厚み比が2/16/2(μm)になるように合流積層し、フィルムの製膜条件を表1のように変更した以外は、実施例1と同様にしてフィルム厚み20μmの二軸配向ポリエステルフィルムを得た。尚、縦延伸前の予熱では100℃で一定とし、縦延伸ではロールによる1段延伸、熱固定での熱処理は前半200℃、後半220℃一定とし、弛緩処理は熱処理前半と後半で行った。実施例1と同様に評価した。
 実施例1~7は表1の結果のように、ロールでのシワ評価や印刷評価は良好であり、主原料であるポリエステル樹脂は80%以上と樹脂特性を効果的に示す割合を添加できていた。
 比較例1~8は表2の結果の通りである。比較例1はA層の無機粒子濃度が低いため、SRaとSRpが共に低く、空気抜け時間が長くなり、ロールで強いシワが発生した。
 比較例2は表面A層の無機粒子濃度が高いため、SRaとSRp共に高くなり、接触角が高く印刷評価で不良であった。
 比較例3は無機粒子濃度は範囲内にも関わらずSRaとSRp共に高くなり、接触角が高く印刷評価で不良であった。この要因は推察ではあるが、表面A層の層厚みが厚いことでフィルム内部の粒子が表面凹凸に影響し、粗くなりやすかった点と、縦延伸を1段で行ったことや弛緩処理の温度が高いことで粒子のほぐし効果が不十分だった点によるものと考える。
 比較例4はマスターバッチ中の無機粒子濃度が高すぎることで粗大突起によりSRpが増加し、印刷評価は不良であった。
 比較例5は、縦・横延伸温度が低く、倍率が高いため応力が高くなりすぎて、表面の無機粒子がフィルム内部に沈み込み、SRaとSRp共に低くなった。そのため、フィルム同士での空気抜けが不良となり、ロールでシワが発生した。また、フィルム内部で無機粒子を起点にしたボイドが多く形成され、ヘイズも大きくなった。
 比較例6は、マスターバッチの無機粒子濃度を低くし、縦延伸を1段、弛緩処理の温度を高くするなどして、粒子のほぐし効果を少なくしたが、粗大な突起が少なく、SRpが低めとなり、空気抜け時間が悪くロールでのシワ評価が不良となったと考える。また、主原料であるポリエチレンテレフタレート系樹脂の比率が低く、樹脂特性を効果的に得られるものではなかった。
 比較例7はマスターバッチの無機粒子濃度が高めであり、縦延伸をロール1段延伸で比較的低倍率で延伸したため、無機粒子のほぐし効果が不十分で、粗大突起により印刷評価が不良だったと考える。また、厚みが厚いためか、ヘイズも高くなってしまった。
 比較例8は、縦と横の延伸倍率が低く、縦延伸をロール1段で行い、弛緩処理の温度が高いためか、ほぐし効果が不十分で粗大突起により印刷評価が不良であった。また、縦方向の引張強さが不十分となった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明により、優れた機械物性、透明性、耐熱性を有するとともに、二次加工適正及び印刷外観に優れる二軸配向ポリエステルフィルムおよびその製造方法、並びにこの二軸配向ポリエステルフィルムを巻き取ってなるフィルムロールを提供することができる。
 工業用フィルムの分野や、特に食品包装用、ガスバリアフィルム用途の包装用フィルムの分野において有用であり、安価な樹脂やリサイクル樹脂、バイオマス樹脂など樹脂の配合比率を上げることが出来るため、樹脂の特性を効果的に得ることが可能となる。特に昨今環境負荷低減が強く望まれるため、本発明はそのニーズに答える有効な手段の一つとなり、その価値は高いものと推察する。

Claims (13)

  1.  少なくとも一方のフィルム表面が下記(1)及び(2)を満たし、かつフィルムが下記(3)、(4)を満たす二軸配向ポリエステルフィルム。
    (1)最大突起高さ(SRp)が1.2~1.6μmである。
    (2)算術平均粗さ(SRa)が0.024~0.045μmである。
    (3)長手方向及び幅方向の引張強さが180~300MPaである。
    (4)ヘイズが7%以下である。
  2.  前記(1)及び(2)を満たすフィルム表面のジヨードメタン接触角が29°以下である、請求項1に記載の二軸配向ポリエステルフィルム。
  3.  前記二軸配向ポリエステルフィルム中に無機粒子を500~1500質量ppm含む、請求項1又は2記載の二軸配向ポリエステルフィルム。
  4.  前記無機粒子がシリカ粒子である請求項1~3のいずれかに記載の二軸配向ポリエステルフィルム。
  5.  前記シリカ粒子の細孔容積が0.6~2.0ml/gである、請求項4に記載の二軸配向ポリエステルフィルム。
  6.  前記請求項1~5のいずれかに記載の二軸配向ポリエステルフィルムを巻き取ってなるフィルムロール。
  7.  第1の無機粒子を7000質量ppm以上22000質量ppm以下含有するポリエチレンテレフタレート系樹脂と、第2の無機粒子を0~50質量ppm含有するポリエチレンテレフタレート系樹脂とを混合させ、無機粒子を500~1500質量ppm含有するようにしたポリエステル樹脂組成物を溶融押出しし未延伸シートを得る工程、前記未延伸シートを二軸延伸し二軸延伸フィルムを得る工程、前記二軸延伸フィルムを、200℃以上250℃以下の温度で熱固定した後に、200度以下に温度を低下させながら、幅方向に2~10%の弛緩を与える工程を含む、二軸配向ポリエステルフィルムの製造方法。
  8.  第1の無機粒子を7000質量ppm以上22000質量ppm以下含有するポリエチレンテレフタレート系樹脂と、第2の無機粒子を0~50質量ppm含有するポリエチレンテレフタレート系樹脂とを混合させ、無機粒子を500~1500質量ppm含有するようにした第1のポリエステル樹脂組成物、第2のポリエステル樹脂組成物を、それぞれ溶融させ、第1のポリエステル樹脂組成物からなる層/第2のポリエステル樹脂組成物からなる層の構成となるように、ダイスを介して押出しし未延伸シートを得る工程、前記未延伸シートを二軸延伸し二軸延伸フィルムを得る工程、前記二軸延伸フィルムを、200℃以上250℃以下の温度で熱固定した後に、200度以下に温度を低下させながら、幅方向に2~10%の弛緩を与える工程を含む、二軸配向ポリエステルフィルムの製造方法。
  9.  第1の無機粒子を7000質量ppm以上22000質量ppm以下含有するポリエチレンテレフタレート系樹脂と、第2の無機粒子を0~50質量ppm含有するポリエチレンテレフタレート系樹脂とを混合させ、無機粒子を500~1500質量ppm含有するようにした第1のポリエステル樹脂組成物、第2のポリエステル樹脂組成物を、それぞれ溶融させ、第1のポリエステル樹脂組成物からなる層/第2のポリエステル樹脂組成物からなる層/第1のポリエステル樹脂組成物からなる層の構成となるように、ダイスを介して共押出しし未延伸シートを得る工程、前記未延伸シートを二軸延伸し二軸延伸フィルムを得る工程、前記二軸延伸フィルムを、200℃以上250℃以下の温度で熱固定した後に、200度以下に温度を低下させながら、幅方向に2~10%の弛緩を与える工程を含む、二軸配向ポリエステルフィルムの製造方法。
  10.  第1の無機粒子を7000質量ppm以上22000質量ppm以下含有するポリエチレンテレフタレート系樹脂と、第2の無機粒子を0~50質量ppm含有するポリエチレンテレフタレート系樹脂とを混合させ、無機粒子を500~1500質量ppm含有するようにした第1のポリエステル樹脂組成物、第2のポリエステル樹脂組成物、第3のポリエステル樹脂組成物層を、それぞれ溶融させ、第1のポリエステル樹脂組成物からなる層/第2のポリエステル樹脂組成物からなる層/第3のポリエステル樹脂組成物からなる層の構成となるように、ダイスを介して共押出しし未延伸シートを得る工程、前記未延伸シートを二軸延伸し二軸延伸フィルムを得る工程、前記二軸延伸フィルムを、200℃以上250℃以下の温度で熱固定した後に、200度以下に温度を低下させながら、幅方向に2~10%の弛緩を与える工程を含む、二軸配向ポリエステルフィルムの製造方法。
  11.  前記未延伸シートを二軸延伸し二軸延伸ポリエステルフィルムを得る工程が、前記未延伸シートを縦方向に2段階で延伸した後に、横延伸をして二軸延伸ポリエステルフィルムを得る工程である、請求項7~10のいずれかに記載の二軸配向ポリエステルフィルムの製造方法。
  12.  前記第1の無機粒子及び第2の無機粒子がシリカ粒子である請求項7~11のいずれかに記載の二軸配向ポリエステルフィルムの製造方法。
  13.  前記シリカ粒子の細孔容積が0.6~2.0ml/gである請求項12に記載の二軸配向ポリエステルフィルムの製造方法。
PCT/JP2019/041983 2018-11-07 2019-10-25 二軸配向ポリエステルフィルム及びその製造方法 WO2020095725A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020555961A JP7103430B2 (ja) 2018-11-07 2019-10-25 二軸配向ポリエステルフィルム及びその製造方法
KR1020217014577A KR20210088586A (ko) 2018-11-07 2019-10-25 2축 배향 폴리에스테르 필름 및 그의 제조 방법
CN201980071802.2A CN112969743B (zh) 2018-11-07 2019-10-25 双轴取向聚酯薄膜和其制造方法
EP19881695.1A EP3878895A4 (en) 2018-11-07 2019-10-25 BIAXIALLY ORIENTATED POLYESTER FILM AND METHOD FOR MAKING IT
US17/291,372 US20220024111A1 (en) 2018-11-07 2019-10-25 Biaxially oriented polyester film and method for producing same
JP2022103624A JP2022153374A (ja) 2018-11-07 2022-06-28 二軸配向ポリエステルフィルム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-209701 2018-11-07
JP2018209701 2018-11-07
JP2018209700 2018-11-07
JP2018-209700 2018-11-07

Publications (1)

Publication Number Publication Date
WO2020095725A1 true WO2020095725A1 (ja) 2020-05-14

Family

ID=70612405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041983 WO2020095725A1 (ja) 2018-11-07 2019-10-25 二軸配向ポリエステルフィルム及びその製造方法

Country Status (6)

Country Link
US (1) US20220024111A1 (ja)
EP (1) EP3878895A4 (ja)
JP (2) JP7103430B2 (ja)
KR (1) KR20210088586A (ja)
CN (1) CN112969743B (ja)
WO (1) WO2020095725A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113843999A (zh) * 2021-09-26 2021-12-28 中国科学技术大学先进技术研究院 一种聚己二酸/对苯二甲酸丁二醇酯薄膜的制备方法
WO2022049998A1 (ja) * 2020-09-03 2022-03-10 東洋紡株式会社 二軸配向ポリエステルフィルムロール及びその製造方法
EP4019572A1 (en) * 2020-12-22 2022-06-29 Nan Ya Plastics Corporation Biaxially oriented polyester film and manufacturing method thereof
WO2022168703A1 (ja) * 2021-02-03 2022-08-11 東洋紡株式会社 二軸配向ポリエステルフィルム及びその製造方法
WO2022168702A1 (ja) * 2021-02-03 2022-08-11 東洋紡株式会社 二軸配向ポリエステルフィルム及びその製造方法
WO2022245022A1 (ko) * 2021-05-18 2022-11-24 도레이첨단소재 주식회사 이축 연신 폴리에스테르 필름 및 이를 포함하는 이차전지 분리막
WO2023095709A1 (ja) * 2021-11-26 2023-06-01 東洋紡株式会社 2軸延伸ポリエステルフィルム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115447248B (zh) * 2022-09-06 2024-02-06 扬州纳力新材料科技有限公司 复合聚合物膜、其制造方法、金属化复合聚合物膜与应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140453A (ja) 1997-07-22 1999-02-12 Toray Ind Inc コンデンサ用ポリエステルフィルムおよびフィルムコンデンサ
JP2000109576A (ja) * 1998-10-02 2000-04-18 Mitsubishi Polyester Film Copp 二軸配向ポリエステルフィルム
JP2001171060A (ja) * 1999-12-17 2001-06-26 Mitsubishi Polyester Film Copp 窓貼り用二軸配向ポリエステルフィルム
JP2001310434A (ja) * 2000-05-01 2001-11-06 Mitsubishi Polyester Film Copp 窓貼り用二軸配向ポリエステルフィルム
JP2003175577A (ja) * 2001-08-28 2003-06-24 Mitsubishi Polyester Film Copp 窓貼り用二軸配向ポリエステルフィルム
JP2003236926A (ja) * 2002-02-20 2003-08-26 Mitsubishi Polyester Film Copp 二軸配向ポリエステルフィルムの製造方法
WO2013146524A1 (ja) 2012-03-29 2013-10-03 東洋紡株式会社 ポリエステル組成物およびポリエステルフィルム
JP2014008720A (ja) * 2012-07-02 2014-01-20 Mitsubishi Plastics Inc 離型フィルム
JP2015174356A (ja) * 2014-03-17 2015-10-05 三菱樹脂株式会社 基材レス両面粘着シート用離型フィルム
JP2015199265A (ja) * 2014-04-08 2015-11-12 三菱樹脂株式会社 基材レス両面粘着シート用離型フィルム
JP2017013387A (ja) * 2015-07-02 2017-01-19 三菱樹脂株式会社 基材レス両面粘着シート用離型フィルム
JP2018083874A (ja) 2016-11-22 2018-05-31 東レ株式会社 ポリエステルフィルム
JP2018090740A (ja) * 2016-12-07 2018-06-14 東レ株式会社 ポリエステルフィルム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100789687B1 (ko) * 2000-08-18 2008-01-02 데이진 가부시키가이샤 드라이 필름 레지스트의 지지체로서의 폴리에스테르 필름
DE10231594A1 (de) * 2002-07-12 2004-01-22 Mitsubishi Polyester Film Gmbh Mehrschichtige, metallisierte oder keramisch beschichtete, siegelfähige, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung
JP2008095084A (ja) * 2006-09-13 2008-04-24 Toyobo Co Ltd 成型用ポリエステルフィルム
JP2011110718A (ja) * 2009-11-24 2011-06-09 Toyobo Co Ltd 二軸配向ポリエチレンテレフタレートフィルム
EP3242909B1 (en) * 2015-01-06 2021-08-04 Flex Films (USA) Inc. Thermoplastic films having asymmetric properties and method
JP6588720B2 (ja) * 2015-03-31 2019-10-09 興人フィルム&ケミカルズ株式会社 易引裂性二軸延伸ポリブチレンテレフタレートフィルム
JP6756330B2 (ja) * 2015-04-24 2020-09-16 東洋紡株式会社 二軸延伸ポリエステルフィルムおよびその製造方法
JP6907519B2 (ja) * 2016-07-26 2021-07-21 東レ株式会社 二軸配向ポリエステルフィルム
WO2018095515A1 (en) * 2016-11-22 2018-05-31 Omya International Ag Surface-treated fillers for biaxially oriented polyester films

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140453A (ja) 1997-07-22 1999-02-12 Toray Ind Inc コンデンサ用ポリエステルフィルムおよびフィルムコンデンサ
JP2000109576A (ja) * 1998-10-02 2000-04-18 Mitsubishi Polyester Film Copp 二軸配向ポリエステルフィルム
JP2001171060A (ja) * 1999-12-17 2001-06-26 Mitsubishi Polyester Film Copp 窓貼り用二軸配向ポリエステルフィルム
JP2001310434A (ja) * 2000-05-01 2001-11-06 Mitsubishi Polyester Film Copp 窓貼り用二軸配向ポリエステルフィルム
JP2003175577A (ja) * 2001-08-28 2003-06-24 Mitsubishi Polyester Film Copp 窓貼り用二軸配向ポリエステルフィルム
JP2003236926A (ja) * 2002-02-20 2003-08-26 Mitsubishi Polyester Film Copp 二軸配向ポリエステルフィルムの製造方法
WO2013146524A1 (ja) 2012-03-29 2013-10-03 東洋紡株式会社 ポリエステル組成物およびポリエステルフィルム
JP2014008720A (ja) * 2012-07-02 2014-01-20 Mitsubishi Plastics Inc 離型フィルム
JP2015174356A (ja) * 2014-03-17 2015-10-05 三菱樹脂株式会社 基材レス両面粘着シート用離型フィルム
JP2015199265A (ja) * 2014-04-08 2015-11-12 三菱樹脂株式会社 基材レス両面粘着シート用離型フィルム
JP2017013387A (ja) * 2015-07-02 2017-01-19 三菱樹脂株式会社 基材レス両面粘着シート用離型フィルム
JP2018083874A (ja) 2016-11-22 2018-05-31 東レ株式会社 ポリエステルフィルム
JP2018090740A (ja) * 2016-12-07 2018-06-14 東レ株式会社 ポリエステルフィルム

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4209330A1 (en) * 2020-09-03 2023-07-12 Toyobo Co., Ltd. Biaxially-oriented polyester film roll and production method therefor
WO2022049998A1 (ja) * 2020-09-03 2022-03-10 東洋紡株式会社 二軸配向ポリエステルフィルムロール及びその製造方法
JPWO2022049998A1 (ja) * 2020-09-03 2022-03-10
EP4209330A4 (en) * 2020-09-03 2024-05-22 Toyobo Co., Ltd. ROLL OF BIAXIALLY ORIENTED POLYESTER FILM AND MANUFACTURING METHOD THEREFOR
JP7226661B2 (ja) 2020-09-03 2023-02-21 東洋紡株式会社 二軸配向ポリエステルフィルムロール及びその製造方法
JP2023049051A (ja) * 2020-09-03 2023-04-07 東洋紡株式会社 二軸配向ポリエステルフィルムロール及びその製造方法
JP7359323B2 (ja) 2020-09-03 2023-10-11 東洋紡株式会社 二軸配向ポリエステルフィルムロール及びその製造方法
EP4019572A1 (en) * 2020-12-22 2022-06-29 Nan Ya Plastics Corporation Biaxially oriented polyester film and manufacturing method thereof
US11806909B2 (en) 2020-12-22 2023-11-07 Nan Ya Plastics Corporation Biaxially oriented polyester film and manufacturing method thereof
WO2022168703A1 (ja) * 2021-02-03 2022-08-11 東洋紡株式会社 二軸配向ポリエステルフィルム及びその製造方法
WO2022168702A1 (ja) * 2021-02-03 2022-08-11 東洋紡株式会社 二軸配向ポリエステルフィルム及びその製造方法
WO2022245022A1 (ko) * 2021-05-18 2022-11-24 도레이첨단소재 주식회사 이축 연신 폴리에스테르 필름 및 이를 포함하는 이차전지 분리막
CN113843999B (zh) * 2021-09-26 2023-07-04 中国科学技术大学先进技术研究院 一种聚己二酸/对苯二甲酸丁二醇酯薄膜的制备方法
CN113843999A (zh) * 2021-09-26 2021-12-28 中国科学技术大学先进技术研究院 一种聚己二酸/对苯二甲酸丁二醇酯薄膜的制备方法
WO2023095709A1 (ja) * 2021-11-26 2023-06-01 東洋紡株式会社 2軸延伸ポリエステルフィルム

Also Published As

Publication number Publication date
TW202024198A (zh) 2020-07-01
US20220024111A1 (en) 2022-01-27
EP3878895A4 (en) 2022-08-03
JP7103430B2 (ja) 2022-07-20
CN112969743A (zh) 2021-06-15
JP2022153374A (ja) 2022-10-12
JPWO2020095725A1 (ja) 2021-09-02
KR20210088586A (ko) 2021-07-14
CN112969743B (zh) 2024-01-26
EP3878895A1 (en) 2021-09-15

Similar Documents

Publication Publication Date Title
JP7103430B2 (ja) 二軸配向ポリエステルフィルム及びその製造方法
JP5127296B2 (ja) 深絞り成型同時転写箔用ポリエステルフィルム
JP5674227B2 (ja) インモールド転写用ポリエステルフィルム
JP5887824B2 (ja) 成型用ポリエステルフィルム
KR100529482B1 (ko) 금속판접합성형가공용백색적층폴리에스테르필름및이를사용한적층체의제조방법
JP2010138261A (ja) 合わせガラス用ポリエステルフィルムおよびその積層体
JP7124283B2 (ja) ポリエステルフィルム
JP5997996B2 (ja) 偏光板部材用二軸延伸ポリエステルフィルム
JP2010138024A (ja) 合わせガラス用ポリエステルフィルムおよび合わせガラス
JP2010138262A (ja) 合わせガラス用ポリエステルフィルムおよびその積層体
JP2009220283A (ja) 転写箔用積層ポリエステルフィルム
JP6154626B2 (ja) 軟質化ポリエステルフィルム
JP2018001422A (ja) 積層フィルム、積層体及び包装体
JP5147470B2 (ja) 積層二軸延伸ポリエテルフィルム
TWI839401B (zh) 雙軸配向聚酯膜及其製造方法、以及膜捲筒
JP2007111877A (ja) 成形部材用二軸配向ポリエステルフィルム
JP4799066B2 (ja) 積層ポリエステルフィルム
JP2012162586A (ja) 成型用延伸ポリエステルフィルム
JP2018062105A (ja) 易接着性積層ポリエステルフィルム
JP2006187910A (ja) 二軸配向積層フィルム
JP2008163275A (ja) 成型同時転写用ポリエステルフィルム
JP2005146112A (ja) 板紙用貼合せフィルム
JP5072032B2 (ja) 転写箔用積層ポリエステルフィルム
JP6167628B2 (ja) ガラス貼り合わせ用ポリエステルフィルム
JP5225828B2 (ja) インモールド転写箔用ポリエステルフィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881695

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020555961

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019881695

Country of ref document: EP

Effective date: 20210607