JP6907519B2 - 二軸配向ポリエステルフィルム - Google Patents
二軸配向ポリエステルフィルム Download PDFInfo
- Publication number
- JP6907519B2 JP6907519B2 JP2016237301A JP2016237301A JP6907519B2 JP 6907519 B2 JP6907519 B2 JP 6907519B2 JP 2016237301 A JP2016237301 A JP 2016237301A JP 2016237301 A JP2016237301 A JP 2016237301A JP 6907519 B2 JP6907519 B2 JP 6907519B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- polyester film
- biaxially oriented
- cop
- oriented polyester
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Laminated Bodies (AREA)
Description
[I]フィルム主配向軸方向と、それと直角をなす方向の、25℃から150℃までの昇温過程でのフィルム膨張測定において、150℃におけるフィルム膨張率が、それぞれ0.5%以上1.5%以下であり、140℃90分熱処理前後のヘイズ変化量が、5.0%以下である二軸配向ポリエステルフィルム。
[II]フィルム主配向軸方向と、それと直角をなす方向の、150℃から50℃までの降温過程での寸法変化率が、それぞれ70ppm/℃以上140ppm/℃以下である[I]に記載の二軸配向ポリエステルフィルム。
[III]フィルム主配向軸方向と、それと直角をなす方向の、ヤング率を平均した値をYave(MPa)、フィルム主配向軸方向と、それと直角をなす方向の、150℃から50℃の降温過程での寸法変化率を平均した値をαave(ppm/℃)としたとき、下記(i)式を満たす[I]または[II]に記載の二軸配向ポリエステルフィルム。
(i)20≦Yave/αave≦50
[IV]フィルム主配向軸方向と、それと直角をなす方向の、ヤング率を平均した値をYave(MPa)、フィルム主配向軸方向と、それと直角をなす方向の、150℃から50℃の降温過程での寸法変化率を平均した値をαave(ppm/℃)としたとき、下記(ii)式を満たす[I]〜[III]に記載の二軸配向ポリエステルフィルム。
(ii)20≦Yave/αave≦40
[V]少なくとも3層を有する積層ポリエステルフィルムであって、前記ポリエステルフィルムの両側の表層の固有粘度がいずれも0.67dl/g以上0.9dl/g以下であり、かつ、前記積層ポリエステルフィルムの両側の表層の固有粘度の平均した値をIVa(dl/g)、前記積層ポリエステルフィルムの両側の表層以外の層の固有粘度を平均した値をIVb(dl/g)としたとき、下記(ii)式を満たす[I]〜[IV]のいずれかに記載の二軸配向ポリエステルフィルム。
(iii)0.01≦IVa−IVb≦0.3
[VI]前記ポリエステルフィルムの両側の表層の融点を平均した値TmAが250℃以上280℃以下の範囲であり、前記ポリエステルフィルムの両側の表層以外の層の融点を平均した値TmBが250℃以下である[V]に記載の二軸配向ポリエステルフィルム。
[VII]前記ポリエステルフィルムの両側の表層の厚みの和と、表層以外の層の厚みの和の比(両側の表層の厚みの和/表層以外の層の厚みの和)が、1/9〜1/2である[V]または[VI]に記載の二軸配向ポリエステルフィルム。
[VIII]少なくとも一方の表面が、140℃90分熱処理後のポリエステルフィルムの表面におけるエステル環状三量体量が0mg/m2以上1.5mg/m2以下である[I]〜[VII]のいずれかに記載の二軸配向ポリエステルフィルム。
[IX]少なくとも一方の表面粗さRaが1nm以上200nm以下、最大高さ粗さRzが100nm以上2000nm以下である[I]〜[VIII]のいずれかに記載の二軸配向ポリエステルフィルム。
一般的に、透明導電膜は、室温よりも温度が高い状態で基板上に製膜され、その後室温よりも温度が高い状態まで加熱され、キュアする工程を経て、室温まで徐々に除冷される降温過程を経る。ここで、透明導電膜に用いられるCOPフィルムは、COPは非晶性樹脂のため、加熱した際に分子鎖が動きやすく、室温から温度が高い状態にすると熱膨張する傾向にある(フィルムの膨張率は正の値となる)。一方、二軸配向ポリエステルフィルムは、ポリエステルフィルムを二軸に配向させる工程で受ける応力が残留しているため、室温から温度が高い状態に加熱すると製膜工程で受けた残留応力が開放された結果、熱収縮が発生する(フィルムの膨張率は負の値となる)。そのため、従来の二軸配向ポリエステルフィルムをCOPの保護フィルムとして用いると、フィルムの膨張率の差によって、透明導電膜の製膜基板の平面性が悪化したり、保護フィルムに剥がれが発生するという問題が発生していた。
そこで、透明導電膜を保護するPETフィルムのフィルム膨張率をCOPフィルムの膨張率に近しい値にすることで、室温より高い状態で行う工程で、透明導電膜にしわや剥がれといった問題が発生するのを抑制することができる。上述した点を踏まえ、ポリエステルフィルムのフィルム主配向軸方向と、それと直角をなす方向の、25℃から150℃までの昇温過程でのフィルム膨張測定において、150℃におけるフィルム膨張率が、それぞれ0.5%以上1.5%以下にすることで、透明導電膜を保護するPETフィルムとして使用する際に、しわや剥がれを抑制でき、COPとの貼り合せ性に優れ、導電膜の製膜加工後に透明導電膜の製膜基板の平面性を損なうことなく、導電性を良好に保つことができる。
ここでいうフィルムの主配向軸方向とは、フィルムにおいて最大の屈折率を有する方向を主配向軸とする。また、フィルムにおける最大の屈折率の方向は、フィルムの全ての方向の屈折率を屈折率計で測定して求めてもよく、位相差測定装置(複屈折測定装置)などにより遅相軸方向を決定することで求めてもよい。
フィルム膨張率の測定方法は、熱機械測定装置TMA/SS6000(セイコーインスツルメンツ社製)を用い、試料幅4mmとして、試料長さ(チャック間距離)20mmのサンプルに対し、荷重3gを負荷する。室温から160℃まで昇温速度10℃/分で昇温させ、各温度(℃)における試料の寸法の値を得る。そして、25℃における試料の寸法L(25℃)(mm)と150℃における寸法L(150℃)(mm)から、下記(iii)式から算出する。なお、フィルム膨張率はフィルム主配向軸方向と、それと直角をなす方向それぞれについて、n=5で実施し、その平均値として算出する。
(iv)フィルム膨張率(%)=L(150℃)/L(25℃)×100
本発明の二軸配向ポリエステルフィルムのフィルム膨張率を上述の範囲とする方法は、特に限られるものではないが、例えば、以下の(I)、(II)の方法をとることができる。
(I)ポリエステルフィルムを少なくとも3層を有する積層ポリエステルフィルムとし、ポリエステルフィルムの両側の表層の融点を平均した値TmAが250℃以上280℃以下の範囲であり、前記ポリエステルフィルムの両側の表層以外の層の融点を平均した値TmBが250℃以下とすること。
(II)二軸延伸した後のポリエステルフィルムをオフアニール又は、製膜における熱固定工程のテンター内で長手方向に寸法を戻し、長手方向リラックスすること。
また、TmAが280℃を超えると、結晶性が高すぎるため、製膜性、機械特性に劣る。
また、TmBが250℃を超えると、結晶性に近いため、フィルムの分子鎖が熱によって自由に動くことができない結果、機械特性に劣り、フィルム膨張率やフィルム寸法変化率も低下する。
本発明の二軸配向ポリエステルフィルムは、フィルム主配向軸方向と、それと直角をなす方向の、150℃から50℃までの降温過程での寸法変化率が、それぞれ70ppm/℃以上140ppm/℃以下であることが、COPと貼り合せた際の、しわや剥がれを抑制でき、COPとの貼り合せ性の点から好ましい。
(vi)20≦Yave/αave≦50
ヤング率はフィルムの剛直性を示しており、ヤング率が高いほどフィルムの剛性が高く、寸法変化に伴う変形応力が高くなる。そのため、COPとPETフィルムのYave/αaveに差があると、COPと貼り合せて透明導電膜として使用する場合に、キュア工程後に常温まで徐冷したとき、寸法変化の応力差によってフィルムがカールし、加工性が損なわれる。Yave/αaveを20以上40以下にすることで、COPとPETの寸法変化の応力差が小さくなるため、カールを抑制でき、加工性が良化するため好ましい。さらに好ましくは、30以上40以下である。Yave/αaveが20未満であると、フィルムの剛性がCOPより大幅に低くなるので、カール量がポリエステルフィルム側に大きくなり、加工時に傷が入りやすく、加工性に劣る場合がある。また、Yave/αaveが50を超えると、フィルムの剛性がCOPより高くなるので、カール量がCOP側に極度に大きくなり、加工性に劣る場合がある。
(ii)0.01≦IVa−IVb≦0.3
IVa−IVbを上記範囲にすることで、極度なヤング率の低下を抑制し、機械特性、加工性を良好に保つことができる。
異物発生やフィルムの白化を抑制できるだけでなく、熱処理前後でポリエステルフィルムの表面に析出する環状三量体の析出量を減らすことができることに加え、貼り合せ工程での部材の汚染を抑制が可能となる。具体的には、ポリエステルフィルムに、非晶領域を明確に形成させる方法が挙げられる。この非晶領域は、非晶性のポリエステル樹脂からなるため、熱処理を受けてもほとんど結晶化しない。そのため、環状三量体を中心としたオリゴマー成分を、該非晶領域にて十分にトラップすることが可能になり、ポリエステルフィルムの表層からのオリゴマーの析出を防ぐことができる。
(1)溶融したポリエステルを口金から吐出して未延伸シートを作製する際に、表面温度10℃以上40℃以下に冷却されたドラム上で静電気により密着冷却固化し、未延伸シートを作製する。
(2)(1)で得られた未延伸シートを、下記(v)式を満たす温度T1n(℃)にて、フィルムの長手方向(MD)とフィルムの幅方向(TD)に面積倍率8.5倍以上16.0倍以下に二軸延伸する。
(vii)Tg(℃)≦T1n(℃)≦Tg+40(℃)
Tg:ポリエステルフィルムを構成する樹脂のガラス転移温度(℃)
(3)(2)で得られた二軸延伸フィルムを、下記(vi)式を満足する温度(Th0(℃))で、1秒間以上30秒間以下の熱固定処理を行ない、均一に徐冷後、室温まで冷却することによって、ポリエステルフィルムを得る。
(viii)Tm−60(℃)≦Th0(℃)≦Tm−10(℃)
Tm:フィルムを構成する樹脂の融点(℃)
(1)を満たす条件によって未延伸シートを得ることにより実質的に非晶のポリエステルフィルムを得ることができ、(2)以降の工程においてフィルムに配向を付与せしめ易くし、機械特性に良好なフィルムを得やすくすることができる。
(2)を満たす条件によって二軸延伸フィルムを得ることにより、フィルムに適度な配向を付与せしめ、機械特性の良好なフィルムとすることができる。
(3)を満たす条件によって融点の低い層の結晶構造が崩れ、配向が不規則な非晶構造になることにより、フィルムの非晶性が上がり、フィルム膨張率を上げることが可能となる。加えて、ポリエステルフィルムの両側の表層は、結晶配向するので、配向が形成されたポリエステル分子鎖の構造が安定し、機械特性、熱収縮率が良好なフィルムとすることができる。
A.25℃から150℃までの昇温過程のフィルム膨張率
熱機械測定装置TMA/SS6000(セイコーインスツルメンツ社製)を用い、試料幅4mmとして、試料長さ(チャック間距離)20mmのサンプルに対し、荷重3gを負荷する。室温から160℃まで昇温速度10℃/分で昇温させ、各温度(℃)における試料の寸法の値を得る。そして、25℃における試料の寸法L(25℃)(mm)と150℃における寸法L(150℃)(mm)から、下記(iii)式から算出する。なお、フィルム膨張率はフィルム主配向軸方向と、それと直角をなす方向それぞれについて、n=5で実施し、その平均値として算出する。
(iii)フィルム膨張率(%)=L(150℃)/L(25℃)×100
B.150℃から50℃までの降温過程の寸法変化率(CTE)(ppm/℃)
JIS K7197(1991)に準じて、熱機械測定装置TMA/SS6000(セイコーインスツルメンツ社製)を用い、試料幅4mmとして、試料長さ(チャック間距離)20mmのサンプルに対し、荷重3gを負荷する。室温から160℃まで昇温速度10℃/分で昇温させ、10分間保持し、その後、20℃まで10℃/分で降温させ、各温度(℃)における試料の寸法の値を得る。150℃における試料の寸法L(150℃)(mm)と、50℃における試料の寸法L(50℃)(mm)から、下記(vii)式から算出する。なお、寸法変化率は、フィルム主配向軸方向と、それと直角をなす方向それぞれについて、n=5で実施し、その平均値として算出する。
(ix)CTE(ppm/℃)=106×(L(150℃)−L(50℃)))/{20×(150−50)}
C.フィルム、各層を構成する樹脂の融点(Tm、TmA、TmB)(℃)
試料を、JIS K 7121(1999)に基づいた方法により、セイコー電子工業(株)製示差走査熱量測定装置“ロボットDSC−RDC220”を、データ解析にはディスクセッション“SSC/5200”を用いて、下記の要領にて、測定を実施する。
サンプルパンに試料を5mgずつ秤量し、試料を25℃から300℃まで20℃/分の昇温速度で加熱し(1stRUN)、その状態で5分間保持し、次いで25℃以下となるよう急冷する。直ちに引き続いて、再度25℃から20℃/分の昇温速度で300℃まで昇温を行って測定を行い、2ndRUNの示差走査熱量測定チャート(縦軸を熱エネルギー、横軸を温度とする)を得る。当該2ndRUNの示差走査熱量測定チャートにおいて、吸熱ピークである結晶融解ピークにおけるピークトップの温度を求め、これを融点(℃)とする。2以上の結晶融解ピークが観測される場合は、最もピーク面積の大きいピークトップの温度を融点とする。
積層ポリエステルフィルムの各層を構成する樹脂の融点を測定する場合は、積層ポリエステルフィルムからミクロトームを用いて各層を構成する樹脂のみ削りだし、測定に供する。
JIS K7121(1999)に準じて、セイコー電子工業(株)製示差走査熱量測定装置”ロボットDSC−RDC220”を、データ解析にはディスクセッション”SSC/5200”を用いて、下記の要領にて、測定を実施する。
サンプルパンに試料を5mg秤量し、試料を25℃から300℃まで20℃/分の昇温速度で加熱し(1stRUN)、その状態で5分間保持し、次いで25℃以下となるよう急冷する。直ちに引き続いて、再度25℃から20℃/分の昇温速度で300℃まで昇温を行って測定を行い、2ndRUNの示差走査熱量測定チャート(縦軸を熱エネルギー、横軸を温度とする)を得る。当該2ndRUNの示差走査熱量測定チャートにおいて、ガラス転移の階段状の変化部分において、各ベースラインの延長した直線から縦軸方向に等距離にある直線とガラス転移の階段状の変化部分の曲線とが交わる点から求める。2以上のガラス転移の階段状の変化部分が観測される場合は、それぞれについて、ガラス転移温度を求め、それらの温度を平均した値を試料のガラス転移温度(Tg)(℃)とする。積層ポリエステルフィルムの各層を構成する樹脂のガラス転移温度を測定する場合は、積層ポリエステルフィルムからミクロトームを用いて各層を構成する樹脂のみ削りだし、測定に供する。
JIS K7121(1999)に準じて、セイコー電子工業(株)製示差走査熱量測定装置”ロボットDSC−RDC220”を、データ解析にはディスクセッション”SSC/5200”を用いて、下記の要領にて、測定を実施する。
サンプルパンに試料を5mg秤量し、試料を25℃から300℃まで20℃/分の昇温速度で加熱し(1stRUN)、その状態で5分間保持し、次いで25℃以下となるよう急冷する。直ちに引き続いて、再度25℃から20℃/分の昇温速度で300℃まで昇温を行い、2ndRUNの示差走査熱量測定チャート(縦軸を熱エネルギー、横軸を温度とする)を得る。当該2ndRUNの示差走査熱量測定チャートから、昇温時の発熱ピークである結晶化ピークのピークトップの温度として求め、これを結晶化温度(Tc)(℃)とする。2以上の結晶化ピークが観測される場合は、それぞれのピークのピークトップ温度から結晶化温度を求め、それらの温度を平均した値を試料の結晶化温度(Tc)(℃)とする。
前記の方法で求められるTgとTcを用いて、以下の式からΔTcg(℃)を求める。
ΔTcg=Tc−Tg。
積層ポリエステルフィルムの各層を構成する樹脂の結晶化温度を測定する場合は、積層ポリエステルフィルムからミクロトームを用いて各層を構成する樹脂のみ削りだし、測定に供する。
オリエンテック(株)製フィルム強伸度自動測定装置“テンシロンAMF/RTA−100”を用いて、幅10mm、長さ150mmに切断したフィルムをチャック間距離50mmの装置にセットして、引張速度300mm/分、温度25℃、相対湿度65%の条件下で引張試験を行い、得られた荷重−伸び曲線の立ち上がり部の接線からヤング率を求めた。なお、ヤング率は、フィルム主配向軸方向と、それと直角をなす方向それぞれについてn=5で実施し、その平均値として算出する。
ポリエステルフィルムを、オルトクロロフェノール100mlに溶解させ(溶液濃度C=1.2g/dl)、その溶液の25℃での粘度を、オストワルド粘度計を用いて測定する。また、同様に溶媒の粘度を測定する。得られた溶液粘度、溶媒粘度を用いて、下記式(viii)により、[η](dl/g)を算出し、得られた値でもって固有粘度(IV)とする。
(x)ηsp/C=[η]+K[η]2・C(ここで、ηsp=(溶液粘度(dl/g)/溶媒粘度(dl/g))―1、Kはハギンス定数(0.343とする)である。)。
積層ポリエステルフィルムの各層を構成する樹脂の融点を測定する場合は、積層ポリエステルフィルムからカッター等の刃物を用いて各層を構成する樹脂のみ削りだし、測定に供する。
フィルムを1辺10cmの正方形状に切り出し、日本電色(株)製ヘイズメーターNDH−5000を用い、ランダムに3カ所のヘイズを測定して平均値を算出し、試験前のヘイズH0(%)とする。該サンプルを23℃相対湿度65%RHに保たれた部屋に静置したタバイエスペック(株)製オーブンにて、試料の4辺を固定して140℃相対湿度0%RH以下の乾熱条件下90分間熱処理する。熱処理した後のフィルムのヘイズを同様に測定し、H1(%)を求める。Δヘイズ(ΔH)を下記式(ix)により求める。
(xi)Δヘイズ(%)=H1−H0
Δヘイズの値で、以下のように判定する。
A;Δヘイズ1.0%以下
B;Δヘイズ1.0%を超えて3.0%以下
C;Δヘイズ3.0%を超えて5.0%以下
D;Δヘイズ5.0%を超える
Aが最も優れ、Dが最も劣る。
本発明のフィルムを20cm×20cmの大きさに切り出し、COPフィルムと貼り合わせた後、120℃のオーブン内に入れ、1時間静置した。その後、オーブンの温度を20℃/分の速度で室温まで冷却した。その後、本発明のフィルムとCOPフィルムを貼り合わせたシートの、3cm以上の長さを持つシワの数を計測し、以下のように判定する。
4本未満;A
4本以上9本以下;B
10本以上15本以下;C
16本以上;D
Aが最も優れ、Dが最も劣る。
COPフィルムとして、日本ゼオン社製“ゼオノアZF14”、厚み40μmのフィルムを用いる。貼り合わせには、粘着剤として東レコーテックス社製“レオコート”R5000を、粘着剤含有量が15%となるように調整したトルエン溶液に、該トルエン溶液100質量部に対して、東レコーテックス社製架橋剤“コロネートL”を3質量部添加したものを、乾燥後の塗布厚みが10μmとなるように塗布したものを用いる。
本発明のフィルムを20cm×20cmの大きさに切り出し、COPフィルムと貼り合わせた。その後、本発明のフィルムとCOPフィルムを貼り合わせたシートの、1mm以上10mm以下の大きさを持つ気泡の数を計測し、以下のように判定する。
5個未満;A
6個以上10個以下;B
11個以上15個以下;C
16個以上;D
Aが最も優れ、Dが最も劣る。
COPフィルムとして、日本ゼオン社製“ゼオノアZF14”、厚み40μmのフィルムを用いる。貼り合わせには、粘着剤として東レコーテックス社製“レオコート”R5000を、粘着剤含有量が15%となるように調整したトルエン溶液に、該トルエン溶液100質量部に対して、東レコーテックス社製架橋剤“コロネートL”を3質量部添加したものを、乾燥後の塗布厚みが10μmとなるように塗布したものを用いる。
本発明のフィルムを20cm×20cmの大きさに切り出し、COPフィルムと貼り合わせた後、120℃のオーブン内に入れ、1時間静置した。その後、オーブンの温度を20℃/分の速度で室温まで冷却した。その後、本発明のフィルムとCOPフィルムを貼り合わせたシートの、1mm以上10mm以下の大きさを持つ気泡の数を計測し、以下のように判定する。
10個未満;A
11個以上20個以下;B
21個以上30個以下;C
31個以上;D
Aが最も優れ、Dが最も劣る。
COPフィルムとして、日本ゼオン社製“ゼオノアZF14”、厚み40μmのフィルムを用いる。貼り合わせには、粘着剤として東レコーテックス社製“レオコート”R5000を、粘着剤含有量が15%となるように調整したトルエン溶液に、該トルエン溶液100質量部に対して、東レコーテックス社製架橋剤“コロネートL”を3質量部添加したものを、乾燥後の塗布厚みが10μmとなるように塗布したものを用いる。
M.項で作製した積層体を、120℃のオーブン内に入れ、1時間静置した。その後、オーブンの温度を20℃/分の速度で室温まで冷却し、1時間放置した。その後、フィルムを水平な面の上に、COPフィルムが上側となるように置き、積層体の4隅の水平な面からの浮きの量を測定し、平均値を求め、カール量(mm)として以下のように判定する。上述の方法で水平な面から積層体の隅が浮かない場合、PETフィルムが上側になるように置き、負の値としてカール量を求める。
0mm以上20mm未満;A
20mm以上40mm未満又は、0mmを超え−5mm未満;B
40mm以上55mm未満又は、−5mm以上−10mm未満;C
55mm以上又は、−10mm以上;D
N.製膜性
製膜中にフィルムが1時間に破れる回数を数え、1回未満であるものをA、1回以上5回未満であるものをB、5回以上であるものをCとして評価する。Aが最も製膜性がよく、Cが最も劣る。
ポリエステルフィルムを空気中、140℃で90分間加熱する。その後、熱処理をした当該フィルムを上部が開いている縦横10cm、高さ3cmになるように、測定面(塗布層)を内面として箱形の形状を作成する。次いで、上記の方法で作成した箱の中にDMF(ジメチルスルホアミド)4mlを入れて3分間放置した後、DMFを回収し、液体クロマトグラフィー(株式会社島津製作所製:LC−7A 移動相A:アセトニトリル、移動相B:2%酢酸水溶液、カラム:三菱化学株式会社製『MCI GEL ODS 1HU』、カラム温度:40℃、流速:1ml/分、検出波長:254nm)に供給して、DMF中の環状三量体量を求め、この値を、DMFを接触させたフィルム面積で割って、フィルム表面環状三量体量(mg/m2)とした。DMF中のエステル環状三量体は、標準試料ピーク面積と測定試料ピーク面積のピーク面積比より求めた(絶対検量線法)。なお、標準試料の作成は、予め分取したエステル環状三量体を正確に秤量し、正確に秤量したDMFに溶解し、作成した。また、熱処理前の表面環状三量体量を同様に測定し、初期の表面環状三量体量(mg/m2)を求める。熱処理前後の表面環状三量体析出量(mg/m2)を下記式(x)により求める。
(x)熱処理前後の表面環状三量体析出量=熱処理後の表面環状三量体量−初期の表面環状三量体量
P.フィルムの環状三量体含有量
フィルム0.05gにヘキサフルオロイソプロパノール/クロロホルムの混合溶媒を加え、溶解させ、次いでこの溶液をアセトニトリルに投入し、ポリマー成分を沈殿させる。沈殿物をろ過し、上澄み液を乾固する。該乾固物をアセトニトリル2mlに溶解させて、液体クロマトグラム用サンプル溶液を得た。 株式会社島津製作所製液体クロマトグラムLC20Aを用い、野村化学株式会社製Develosil ODS−MG3をカラムとして使用し、展開液として水−アセトニトリル混合溶液を用いて波長254nmのUV光によりクロマトグラムを得、環状環状三量体はテレフタル酸ジメチルで作製した検量線を代用して定量した。
触針法の高精細微細形状測定器(3次元表面粗さ計)を用いてJIS−B0601(1994年)に準拠して、下記条件にてポリエステルフィルムの表面形態を測定する。
・測定装置 :3次元微細形状測定器(型式ET−4000A)(株)小坂研究所製
・解析機器 :3次元表面粗さ解析システム(型式TDA−31)
・触針 :先端半径0.5μmR、径2μm、ダイヤモンド製
・針圧 :100μN
・測定方向 :フィルム長手方向、フィルム幅方向を各1回測定後平均
・X測定長さ:1.0mm
・X送り速さ:0.1mm/s(測定速度)
・Y送りピッチ:5μm(測定間隔)
・Yライン数:81本(測定本数)
・Z倍率 :2000倍(縦倍率)
・低域カットオフ:0.20mm(うねりカットオフ値)
・高域カットオフ:R+Wmm(粗さカットオフ値)R+Wとはカットオフしないことを
意味する。
・フィルタ方式:ガウシアン空間型
・レベリング:あり(傾斜補正)
・基準面積 :1mm2。
一方の面の表面粗さRaをRaA、最大高さ粗さRzAとし、もう一方の面の表面粗さRaをRaB、最大高さ粗さRzBとした。
[PET−1の製造]テレフタル酸およびエチレングリコールから、三酸化アンチモンを触媒として、常法により重合を行い、溶融重合PETを得た。得られた溶融重合PETのガラス転移温度は80℃、融点は255℃、固有粘度は0.62であった。
[PET−2の製造]PET−1を常法により固相重合せしめ、PET−2を得た。得られたPET−2のガラス転移温度は82℃、融点は255℃、固有粘度は0.85であった。
[PET−3の製造]
PET−1を常法により固相重合せしめ、PET−3を得た。得られたPET−3のガラス転移温度は82℃、融点は255℃、固有粘度は0.96であった。
[PET−4の製造]
PET−1を常法により固相重合せしめ、PET−4を得た。得られたPET−4のガラス転移温度は82℃、融点は255℃、固有粘度は0.80であった。
[PET−Aの製造]テレフタル酸、イソフタル酸およびエチレングリコールから、三酸化アンチモンを触媒として、イソフタル酸共重合量がジガルボン酸成分全量に対して5mol%となるように常法により重合を行い、共重合PETを得た。得られた共重合PETのガラス転移温度は78℃、融点は245℃、固有粘度は0.74であった。
[PET−Bの製造]テレフタル酸、イソフタル酸およびエチレングリコールから、三酸化アンチモンを触媒として、イソフタル酸共重合量がジガルボン酸成分全量に対して10mol%となるように常法により重合を行い、共重合PETを得た。得られた共重合PETのガラス転移温度は76℃、融点は235℃、固有粘度は0.74であった。
[PET−Cの製造]テレフタル酸、イソフタル酸およびエチレングリコールから、三酸化アンチモンを触媒として、イソフタル酸共重合量がジガルボン酸成分全量に対して15mol%となるように常法により重合を行い、共重合PETを得た。得られた共重合PETのガラス転移温度は74℃、融点は230℃、固有粘度は0.74であった。
[PET−Dの製造]テレフタル酸、イソフタル酸およびエチレングリコールから、三酸化アンチモンを触媒として、イソフタル酸共重合量がジガルボン酸成分全量に対して20mol%となるように常法により重合を行い、共重合PETを得た。得られた共重合PETのガラス転移温度は73℃、融点は220℃、固有粘度は0.74であった。
[PET−Eの製造]テレフタル酸、イソフタル酸およびエチレングリコールから、三酸化アンチモンを触媒として、イソフタル酸共重合量がジガルボン酸成分全量に対して25mol%となるように常法により重合を行い、共重合PETを得た。得られた共重合PETのガラス転移温度は70℃、融点は観察されなかった。固有粘度は0.74であった。
[PET−Fの製造]テレフタル酸、シクロヘキサンジメタノール(CHDM)およびエチレングリコールから、三酸化アンチモンを触媒として、シクロヘキサンジメタノール共重合量がジオール成分全量に対して10mol%となるように常法により重合を行い、共重合PETを得た。得られた共重合PETのガラス転移温度は72℃、融点は235℃、固有粘度は0.74であった。
[PET−Gの製造]テレフタル酸、シクロヘキサンジメタノール(CHDM)およびエチレングリコールから、三酸化アンチモンを触媒として、シクロヘキサンジメタノール共重合量がジオール成分全量に対して20mol%となるように常法により重合を行い、共重合PETを得た。得られた共重合PETのガラス転移温度は70℃、融点は221℃、固有粘度は0.74であった。
[粒子マスターバッチAの製造]ポリエステル樹脂99質量部、炭酸カルシウム粒子(粒径1.1μm)1質量部をベントした押出機に投入し、280℃にて該押出機内で溶融混練せしめ、ポリエステル組成粒子マスターバッチAを作製した。
[粒子マスターバッチBの製造]ポリエステル樹脂50質量部、炭酸カルシウム粒子(粒径1.1μm)50質量部をベントした押出機に投入し、280℃にて該押出機内で溶融混練せしめ、ポリエステル組成粒子マスターバッチBを作製した。
A/B/Aの3層構成とし、表層を構成する樹脂として、PET−2を100質量部とし、160℃で2時間真空乾燥した後、押出機1に投入した。また、内層を構成する樹脂としてPET−B100質量部を160℃で2時間真空乾燥した後、押出機2に投入した。押出機内でそれぞれの原料を溶融させ、合流装置で押出機1に投入した樹脂がフィルムの両表層となるように合流させ、表面温度25℃のキャスティングドラム上に押し出し、3層構造をもつ積層シートを作製した。続いて該シートを加熱したロール群で予熱した後、90℃の温度で長手方向(MD方向)に3.2倍延伸を行った後、25℃の温度のロール群で冷却して一軸延伸フィルムを得た。得られた一軸延伸フィルムの両端をクリップで把持しながらテンター内の100℃の温度の加熱ゾーンで長手方向に直角な幅方向(TD方向)に3.8倍延伸した。さらに引き続いて、テンター内の熱処理ゾーンで220℃の温度で10秒間の熱固定を施した。次いで、冷却ゾーンで均一に徐冷後、巻き取って、二軸配向ポリエステルフィルムを得た。得られたフィルムをフィルム巻きだしロールとフィルム巻き取りロールの間に設置された熱風オーブンにて、180℃の温度で張力50Nかけながら、フィルムが熱処理される時間が5分となるようにアニール処理を施し、厚み125μmの二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの各特性を表に示す。実施例1のフィルムは、MD方向、TD方向いずれもフィルム膨張率が0.5%以上であり、フィルム寸法変化率も好適な範囲のため、COPとの貼り合わせ性に非常に優れるフィルムであった。さらに、Yave/αaveが好適な範囲のため加工性に非常に優れ、加熱によるヘイズ変化も非常に小さく、COPと貼り合せて透明導電膜として使用する場合に、非常に優れた性能を有するフィルムであった。さらに、表面粗さと最大高さ粗さが好適な範囲のため、COPと貼り合せた際の気泡の発生が少なく、加熱処理後のフィルム表面に存在する環状三量体の量も好適な範囲のため、加熱後の気泡の発生がかなり少ないフィルムであった。
内層を構成する樹脂をPET−A100質量部に変更した以外は、実施例1と同様の方法にて二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの各特性を表に示す。実施例2のフィルムは、MD方向、TD方向いずれもフィルム膨張率が0.5%以上であり、COPとの貼り合わせ性に優れるフィルムであった。さらに、Yave/αaveが好適な範囲のため加工性に優れ、加熱によるヘイズ変化も非常に小さいフィルムであった。さらに、表面粗さと最大高さ粗さが好適な範囲のため、COPと貼り合せた際の気泡の発生が少なく、加熱処理後のフィルム表面に存在する環状三量体の量も好適な範囲のため、加熱後の気泡の発生が少ないフィルムであった。
内層を構成する樹脂をPET−C100質量部に変更した以外は、実施例1と同様の方法にて二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの各特性を表に示す。実施例3のフィルムは、MD方向、TD方向いずれもフィルム膨張率が0.5%以上であり、フィルム寸法変化率も好適な範囲のため、COPとの貼り合わせ性にかなり優れるフィルムであった。さらに、Yave/αaveが好適な範囲のため加工性にかなり優れ、加熱によるヘイズ変化も小さいフィルムであった。さらに、表面粗さと最大高さ粗さが好適な範囲のため、COPと貼り合せた際の気泡の発生が少なく、加熱処理後のフィルム表面に存在する環状三量体の量も好適な範囲のため、加熱後の気泡の発生が少ないフィルムであった。
内層を構成する樹脂をPET−D100質量部に変更した以外は、実施例1と同様の方法にて二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの各特性を表に示す。実施例4のフィルムは、MD方向、TD方向いずれもフィルム膨張率が0.5%以上であり、フィルム寸法変化率も好適な範囲のため、COPとの貼り合わせ性に優れるフィルムであった。さらに、Yave/αaveが好適な範囲のため加工性にかなり優れ、加熱によるヘイズ変化も小さいフィルムであった。さらに、表面粗さと最大高さ粗さが好適な範囲のため、COPと貼り合せた際の気泡の発生が少ないフィルムであった。ただ、加熱処理後のフィルム表面に存在する環状三量体の量が多いため、加熱後の気泡の発生が多いフィルムであった。
積層比を変更した以外は、実施例1と同様の方法にて二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの各特性を表に示す。実施例5のフィルムは、MD方向、TD方向いずれもフィルム膨張率が0.5%以上であり、フィルム寸法変化率も好適な範囲のため、COPとの貼り合わせ性にかなり優れるフィルムであった。さらに、Yave/αaveが好適な範囲のため加工性にかなり優れ、加熱によるヘイズ変化も非常に小さいフィルムであった。さらに、表面粗さと最大高さ粗さが好適な範囲のため、COPと貼り合せた際の気泡の発生が少なく、加熱処理後のフィルム表面に存在する環状三量体の量も好適な範囲のため、加熱後の気泡の発生がかなり少ないフィルムであった。
積層比を変更した以外は、実施例1と同様の方法にて二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの各特性を表に示す。実施例6のフィルムは、MD方向、TD方向いずれもフィルム膨張率が0.5%以上であり、フィルム寸法変化率も好適な範囲のため、COPとの貼り合わせ性に非常に優れるフィルムであった。さらに、Yave/αaveが好適な範囲のため加工性に非常に優れ、加熱によるヘイズ変化も非常に小さく、COPと貼り合せて透明導電膜として使用する場合に、非常に優れた性能を有するフィルムであった。さらに、表面粗さと最大高さ粗さが好適な範囲のため、COPと貼り合せた際の気泡の発生が少なく、加熱処理後のフィルム表面に存在する環状三量体の量も好適な範囲のため、加熱後の気泡の発生がかなり少ないフィルムであった。
アニール処理の際の、熱風オーブン温度を200℃に変更した以外は、実施例1と同様の方法にて二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの各特性を表に示す。実施例7のフィルムは、MD方向、TD方向いずれもフィルム膨張率が0.5%以上であり、フィルム寸法変化率も好適な範囲のため、COPとの貼り合わせ性に非常に優れるフィルムであった。さらに、Yave/αaveが好適な範囲のため加工性に非常に優れ、加熱によるヘイズ変化も非常に小さく、COPと貼り合せて透明導電膜として使用する場合に、非常に優れた性能を有するフィルムであった。さらに、表面粗さと最大高さ粗さが好適な範囲のため、COPと貼り合せた際の気泡の発生が少なく、加熱処理後のフィルム表面に存在する環状三量体の量も好適な範囲のため、加熱後の気泡の発生がかなり少ないフィルムであった。
アニール処理の際の、熱風オーブン温度を160℃に変更した以外は、実施例1と同様の方法にて二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの各特性を表に示す。実施例8のフィルムは、MD方向、TD方向いずれもフィルム膨張率が0.5%以上であり、フィルム寸法変化率も好適な範囲のため、COPとの貼り合わせ性に非常に優れるフィルムであった。さらに、Yave/αaveが好適な範囲のため加工性に非常に優れ、加熱によるヘイズ変化も非常に小さく、COPと貼り合せて透明導電膜として使用する場合に、非常に優れた性能を有するフィルムであった。さらに、表面粗さと最大高さ粗さが好適な範囲のため、COPと貼り合せた際の気泡の発生が少なく、加熱処理後のフィルム表面に存在する環状三量体の量も好適な範囲のため、加熱後の気泡の発生がかなり少ないフィルムであった。
表層を構成する樹脂としてPET−3を100質量部と、内層を構成する樹脂をPET−A100質量部に変更し、積層比、製膜条件、アニール温度を表に記載の通りに変更した以外は、実施例1と同様の方法にて二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの各特性を表に示す。実施例9のフィルムは、MD方向、TD方向いずれもフィルム膨張率が0.5%以上であり、COPとの貼り合わせ性に優れるフィルムであった。さらに、Yave/αaveが好適な範囲のため加工性に優れ、加熱によるヘイズ変化も非常に小さいフィルムであった。さらに、表面粗さと最大高さ粗さが好適な範囲のため、COPと貼り合せた際の気泡の発生が少なく、加熱処理後のフィルム表面に存在する環状三量体の量も好適な範囲のため、加熱後の気泡の発生が少ないフィルムであった。
表層を構成する樹脂としてPET−4を100質量部に変更し、積層比、製膜条件、アニール温度を表に記載の通りに変更した以外は、実施例1と同様の方法にて二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの各特性を表に示す。実施例10のフィルムは、MD方向、TD方向いずれもフィルム膨張率が0.5%以上であり、フィルム寸法変化率も好適な範囲のため、COPとの貼り合わせ性に優れるフィルムであった。さらに、Yave/αaveが好適な範囲のため加工性に優れ、加熱によるヘイズ変化も小さいフィルムであった。さらに、表面粗さと最大高さ粗さが好適な範囲のため、COPと貼り合せた際の気泡の発生が少なく、加熱処理後のフィルム表面に存在する環状三量体の量も好適な範囲のため、加熱後の気泡の発生がかなり少ないフィルムであった。
内層を構成する樹脂をPET−F100質量部に変更した以外は、実施例1と同様の方法にて二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの各特性を表に示す。実施例11のフィルムは、MD方向、TD方向いずれもフィルム膨張率が0.5%以上であり、フィルム寸法変化率も好適な範囲のため、COPとの貼り合わせ性にかなり優れるフィルムであった。さらに、Yave/αaveが好適な範囲のため加工性にかなり優れ、加熱によるヘイズ変化も非常に小さいフィルムであった。さらに、表面粗さと最大高さ粗さが好適な範囲のため、COPと貼り合せた際の気泡の発生が少なく、加熱処理後のフィルム表面に存在する環状三量体の量も好適な範囲のため、加熱後の気泡の発生がかなり少ないフィルムであった。
内層を構成する樹脂をPET−G100質量部に変更した以外は、実施例1と同様の方法にて二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの各特性を表に示す。実施例12のフィルムは、MD方向、TD方向いずれもフィルム膨張率が0.5%以上であり、COPとの貼り合わせ性に優れるフィルムであった。さらに、Yave/αaveが好適な範囲のため加工性に優れ、加熱によるヘイズ変化も小さいフィルムであった。さらに、表面粗さと最大高さ粗さが好適な範囲のため、COPと貼り合せた際の気泡の発生が少ないフィルムであった。ただ、加熱処理後のフィルム表面に存在する環状三量体の量が多いため、加熱後の気泡の発生が多いフィルムであった。
PET−Bを、160℃で2時間真空乾燥した後押出機に投入し、押出機内で溶融させ、表面温度25℃のキャスティングドラム上に押し出し、3層構造をもつ積層シートを作製した。続いて該シートを加熱したロール群で予熱した後、90℃の温度で長手方向(MD方向)に3.2倍延伸を行った後、25℃の温度のロール群で冷却して一軸延伸フィルムを得た。得られた一軸延伸フィルムの両端をクリップで把持しながらテンター内の100℃の温度の加熱ゾーンで長手方向に直角な幅方向(TD方向)に3.8倍延伸した。さらに引き続いて、テンター内の熱処理ゾーンで220℃の温度で10秒間の熱固定を施した。次いで、冷却ゾーンで均一に徐冷後、巻き取って、二軸配向ポリエステルフィルムを得た。得られたフィルムをフィルム巻きだしロールとフィルム巻き取りロールの間に設置された熱風オーブンにて、180℃の温度で張力50Nかけながら、フィルムが熱処理される時間が5分となるようにアニール処理を施し、厚み125μmの二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの各特性を表に示す。実施例13のフィルムは、MD方向、TD方向いずれもフィルム膨張率が0.5%以上であり、フィルム寸法変化率も好適な範囲のため、COPとの貼り合わせ性に優れるフィルムであった。さらに、Yave/αaveが好適な範囲のため加工性に優れるフィルムであった。だが、加熱によるヘイズ変化が大きいフィルムであった。さらに、表面粗さと最大高さ粗さが好適な範囲のため、COPと貼り合せた際の気泡の発生が少なく、加熱処理後のフィルム表面に存在する環状三量体の量も好適な範囲のため、加熱後の気泡の発生がかなり少ないフィルムであった。
表層を構成する樹脂としてPET−2を97.5質量部と粒子マスターバッチAを2.5質量部と、内層を構成する樹脂をPET−Aを50質量部とPET−C50質量部に変更した以外は、実施例1と同様の方法にて二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの各特性を表に示す。実施例14のフィルムは、MD方向、TD方向いずれもフィルム膨張率が0.5%以上であり、フィルム寸法変化率も好適な範囲のため、COPとの貼り合わせ性に非常に優れるフィルムであった。さらに、Yave/αaveが好適な範囲のため加工性に非常に優れ、加熱によるヘイズ変化も非常に小さく、COPと貼り合せて透明導電膜として使用する場合に、非常に優れた性能を有するフィルムであった。さらに、表面粗さと最大高さ粗さが好適な範囲のため、COPと貼り合せた際の気泡の発生が非常に少なく、加熱処理後のフィルム表面に存在する環状三量体の量も好適な範囲のため、加熱後の気泡の発生が非常に少ないフィルムであった。
表層を構成する樹脂としてPET−2を97.5質量部と粒子マスターバッチAを2.5質量部に変更した以外は、実施例1と同様の方法にて二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの各特性を表に示す。実施例15のフィルムは、MD方向、TD方向いずれもフィルム膨張率が0.5%以上であり、フィルム寸法変化率も好適な範囲のため、COPとの貼り合わせ性に非常に優れるフィルムであった。さらに、Yave/αaveが好適な範囲のため加工性に非常に優れ、加熱によるヘイズ変化も非常に小さく、COPと貼り合せて透明導電膜として使用する場合に、非常に優れた性能を有するフィルムであった。さらに、表面粗さと最大高さ粗さが好適な範囲のため、COPと貼り合せた際の気泡の発生が非常に少なく、加熱処理後のフィルム表面に存在する環状三量体の量も好適な範囲のため、加熱後の気泡の発生がかなり少ないフィルムであった。
表層を構成する樹脂としてPET−2を97.5質量部と粒子マスターバッチAを2.5質量部と、内層を構成する樹脂をPET−A100質量部に変更した以外は、実施例1と同様の方法にて二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの各特性を表に示す。実施例16のフィルムは、MD方向、TD方向いずれもフィルム膨張率が0.5%以上であり、フィルム寸法変化率も好適な範囲のため、COPとの貼り合わせ性にかなり優れるフィルムであった。さらに、Yave/αaveが好適な範囲のため加工性に非常に優れ、加熱によるヘイズ変化も非常に小さく、COPと貼り合せて透明導電膜として使用する場合に、非常に優れた性能を有するフィルムであった。さらに、表面粗さと最大高さ粗さが好適な範囲のため、COPと貼り合せた際の気泡の発生が非常に少なく、加熱処理後のフィルム表面に存在する環状三量体の量も好適な範囲のため、加熱後の気泡の発生が少ないフィルムであった。
表層を構成する樹脂としてPET−2を97.5質量部と粒子マスターバッチAを2.5質量部と、内層を構成する樹脂をPET−D100質量部に変更した以外は、実施例1と同様の方法にて二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの各特性を表に示す。実施例17のフィルムは、MD方向、TD方向いずれもフィルム膨張率が0.5%以上であり、フィルム寸法変化率も好適な範囲であり、表面粗さと最大高さも粗さも好適な範囲のため、COPとの貼り合わせ性に優れるフィルムであった。さらに、Yave/αaveが好適な範囲のため加工性に非常に優れ、加熱によるヘイズ変化も非常に小さく、COPと貼り合せて透明導電膜として使用する場合に、非常に優れた性能を有するフィルムであった。さらに、表面粗さと最大高さ粗さが好適な範囲のため、COPと貼り合せた際の気泡の発生がかなり少ないフィルムであった。ただ、加熱処理後のフィルム表面に存在する環状三量体の量が多いため、加熱後の気泡の発生が多いフィルムであった。
表層を構成する樹脂としてPET−2を88質量部と粒子マスターバッチBを12質量部と、内層を構成する樹脂をPET−A100質量部に変更した以外は、実施例1と同様の方法にて二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの各特性を表に示す。実施例18のフィルムは、表面粗さと最大高さも粗さも好適な範囲に劣るが、MD方向、TD方向いずれもフィルム膨張率が0.5%以上であり、フィルム寸法変化率も好適な範囲であり、140℃90分熱処理前後のポリエステルフィルムの表面におけるエステル環状三量体析出量も好適な範囲のため、COPとの貼り合わせ性に優れるフィルムであった。さらに、Yave/αaveが好適な範囲のため加工性に非常に優れ、加熱によるヘイズ変化も非常に小さく、COPと貼り合せて透明導電膜として使用する場合に、非常に優れた性能を有するフィルムであった。ただ、表面粗さと最大高さ粗さが大きいため、COPと貼り合せた際の気泡の発生が多く、加熱処理後のフィルム表面に存在する環状三量体の量が多いため、加熱後の気泡の発生が多いフィルムであった。
PET−Bを97.5質量部と粒子マスターバッチAを2.5質量部に変更した以外は、実施例13と同様の方法にて二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの各特性を表に示す。実施例19のフィルムは、140℃90分熱処理前後のポリエステルフィルムの表面におけるエステル環状三量体析出量に劣るが、MD方向、TD方向いずれもフィルム膨張率が0.5%以上であり、フィルム寸法変化率も好適な範囲であり、表面粗さと最大高さも粗さも好適な範囲のため、COPとの貼り合わせ性に優れるフィルムであった。さらに、Yave/αaveが好適な範囲のため加工性に優れるフィルムであった。さらに、表面粗さと最大高さ粗さが好適な範囲のため、COPと貼り合せた際の気泡の発生が非常に少なく、加熱処理後のフィルム表面に存在する環状三量体の量も好適な範囲のため、加熱後の気泡の発生がかなり少ないフィルムであった。だが、加熱によるヘイズ変化が大きいフィルムであった。
内層を構成する樹脂としてPET−Aを80質量部とPET−2を20質量部に変更した以外は、実施例1と同様の方法にて二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの各特性を表に示す。比較例1のフィルムは、加熱によるヘイズ変化が非常に小さいフィルムであった。さらに、表面粗さと最大高さ粗さが好適な範囲のため、COPと貼り合せた際の気泡の発生が少ないフィルムであった。だが、MD方向、TD方向いずれもフィルム膨張率が0.5%以下であり、COPとの貼り合わせ性に劣るフィルムであった。さらに、Yave/αaveが大きいため、カール性が悪く、加工性に劣るので、COPと貼り合せて透明導電膜として使用する場合には、適していないフィルムであった。さらに、加熱処理後のフィルム表面に存在する環状三量体の量が多いため、加熱後の気泡の発生が多いフィルムであった。
内層を構成する樹脂をPET−E100質量部に変更した以外は、実施例1と同様の方法にて二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの各特性を表に示す。比較例2のフィルムは、Yave/αaveが好適な範囲のため加工性に優れたフィルムであった。さらに、表面粗さと最大高さ粗さが好適な範囲のため、COPと貼り合せた際の気泡の発生が少ないフィルムであった。だが、MD方向、TD方向いずれもフィルム膨張率が0.5%以下であり、COPとの貼り合わせ性に劣るフィルムであった。さらに、加熱によるヘイズ変化が大きいフィルムであるので、COPと貼り合せて透明導電膜として使用する場合には、適していないフィルムであった。さらに、加熱処理後のフィルム表面に存在する環状三量体の量が多いため、加熱後の気泡の発生が多いフィルムであった。
アニール処理を実施していない以外は、実施例1と同様の方法にて二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの各特性を表に示す。比較例2のフィルムは、加熱によるヘイズ変化は非常に小さいフィルムであった。さらに、表面粗さと最大高さ粗さが好適な範囲のため、COPと貼り合せた際の気泡の発生が少ないフィルムであった。だが、MD方向、TD方向いずれもフィルム膨張率が0.5%以下であり、COPとの貼り合わせ性に劣るフィルムであった。さらに、アニール処理を実施していないため、カール性テストの加熱時に熱収縮するため、カール性が悪く加工性に劣るので、COPと貼り合せて透明導電膜として使用する場合には、適していないフィルムであった。さらに、加熱処理後のフィルム表面に存在する環状三量体の量が多いため、加熱後の気泡の発生が多いフィルムであった。
内層を構成する樹脂としてPET−Aを80質量部とPET−2を20質量部に変更した以外は、実施例13と同様の方法にて二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの各特性を表に示す。比較例4のフィルムは、表面粗さと最大高さ粗さが好適な範囲のため、COPと貼り合せた際の気泡の発生が少ないフィルムであった。ただ、MD方向、TD方向いずれもフィルム膨張率が0.5%以下であり、COPとの貼り合わせ性に劣るフィルムであった。さらに、Yave/αaveが大きいため、カール性が悪く、加工性に劣り、加熱によるヘイズ変化が大きいフィルムであるので、COPと貼り合せて透明導電膜として使用する場合には、適していないフィルムであった。さらに、加熱処理後のフィルム表面に存在する環状三量体の量が多いため、加熱後の気泡の発生が多いフィルムであった。
フィルムを構成する樹脂をPET−E100質量部に変更した以外は、実施例13と同様の方法にて二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの各特性を表に示す。比較例5のフィルムは、Yave/αaveが好適な範囲のため加工性に優れたフィルムであった。だが、MD方向、TD方向いずれもフィルム膨張率が0.5%以下であり、COPとの貼り合わせ性に劣るフィルムであった。さらに、加熱によるヘイズ変化が大きいフィルムであるので、COPと貼り合せて透明導電膜として使用する場合には、適していないフィルムであった。さらに、表面粗さと最大高さ粗さが好適な範囲のため、COPと貼り合せた際の気泡の発生が少ないフィルムであった。ただ、加熱処理後のフィルム表面に存在する環状三量体の量が多いため、加熱後の気泡の発生が多いフィルムであった。
フィルムを構成する樹脂としてPET−2を100質量部に変更した以外は、実施例13と同様の方法にて二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの各特性を表に示す。比較例6のフィルムは、加熱によるヘイズ変化が小さいフィルムであった。だが、MD方向、TD方向いずれもフィルム膨張率が0.5%以下であり、COPとの貼り合わせ性に劣るフィルムであった。さらに、Yave/αaveが大きいため、カール性が悪く、加工性に劣るフィルムであるので、COPと貼り合せて透明導電膜として使用する場合には、適していないフィルムであった。さらに、表面粗さと最大高さ粗さが好適な範囲のため、COPと貼り合せた際の気泡の発生が少ないフィルムであった。ただ、加熱処理後のフィルム表面に存在する環状三量体の量が多いため、加熱後の気泡の発生が多いフィルムであった。
アニール処理を実施していない以外は、実施例13と同様の方法にて二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの各特性を表に示す。比較例7のフィルムは、MD方向、TD方向いずれもフィルム膨張率が0.5%以下であり、COPとの貼り合わせ性に劣るフィルムであった。さらに、アニール処理を実施していないため、カール性テストの加熱時に熱収縮するため、カール性が悪く加工性に劣り、加熱によるヘイズ変化が大きいフィルムであるので、COPと貼り合せて透明導電膜として使用する場合には、適していないフィルムであった。さらに、表面粗さと最大高さ粗さが好適な範囲のため、COPと貼り合せた際の気泡の発生が少なく、加熱処理後のフィルム表面に存在する環状三量体の量も好適な範囲のため、加熱後の気泡の発生がかなり少ないフィルムであった。
フィルムを構成する樹脂としてPET−2を97.5質量部と粒子マスターバッチAを2.5質量部に変更した以外は、実施例13と同様の方法にて二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの各特性を表に示す。比較例6のフィルムは、加熱によるヘイズ変化も小さいフィルムであり、表面粗さと最大高さ粗さが好適な範囲のため、COPと貼り合せた際の気泡の発生が非常に少ないフィルムであった。だが、MD方向、TD方向いずれもフィルム膨張率が0.5%以下であり、COPとの貼り合わせ性に劣るフィルムであった。さらに、Yave/αaveが大きいため、カール性が悪く、加工性に劣るフィルムであるので、COPと貼り合せて透明導電膜として使用する場合には、適していないフィルムであった。さらに、加熱処理後のフィルム表面に存在する環状三量体の量が多いため、加熱後の気泡の発生が多いフィルムであった。
Claims (9)
- フィルム主配向軸方向と、それと直角をなす方向の、25℃から150℃までの昇温過程でのフィルム膨張率測定において、150℃におけるフィルム膨張率が、それぞれ0.5%以上1.5%以下であり、140℃90分熱処理前後のヘイズ変化量が、5.0%以下である二軸配向ポリエステルフィルム。
- フィルム主配向軸方向と、それと直角をなす方向の、150℃から50℃までの降温過程での寸法変化率が、それぞれ70ppm/℃以上140ppm/℃以下である請求項1に記載の二軸配向ポリエステルフィルム。
- フィルム主配向軸方向と、それと直角をなす方向の、ヤング率を平均した値をYave(MPa)、
フィルム主配向軸方向と、それと直角をなす方向の、150℃から50℃の降温過程での寸法変化率を平均した値をαave(ppm/℃)としたとき、
下記(1)式を満たす請求項1または請求項2に記載の二軸配向ポリエステルフィルム。
(1)20≦Yave/αave≦50 - フィルム主配向軸方向と、それと直角をなす方向の、ヤング率を平均した値をYave(MPa)、フィルム主配向軸方向と、それと直角をなす方向の、150℃から50℃の降温過程での寸法変化率を平均した値をαave(ppm/℃)としたとき、下記(2)式を満たす請求項1〜3に記載の二軸配向ポリエステルフィルム。
(2)20≦Yave/αave≦40 - 少なくとも3層を有する積層ポリエステルフィルムであって、前記ポリエステルフィルムの両側の表層の固有粘度がいずれも0.67dl/g以上0.9dl/g以下であり、かつ、前記積層ポリエステルフィルムの両側の表層の固有粘度の平均した値をIVa(dl/g)、前記積層ポリエステルフィルムの両側の表層以外の層の固有粘度を平均した値をIVb(dl/g)としたとき、下記(3)式を満たす請求項1〜4のいずれかに記載の二軸配向ポリエステルフィルム。
(3)0.01≦IVa−IVb≦0.3 - 前記ポリエステルフィルムの両側の表層の融点を平均した値TmAが250℃以上280℃以下の範囲であり、前記ポリエステルフィルムの両側の表層以外の層の融点を平均した値TmBが250℃以下である請求項5に記載の二軸配向ポリエステルフィルム。
- 前記ポリエステルフィルムの両側の表層の厚みの和と、表層以外の層の厚みの和の比(両側の表層の厚みの和/表層以外の層の厚みの和)が、1/9〜1/2である請求項5または請求項6に記載の二軸配向ポリエステルフィルム。
- 少なくとも一方の表面が、140℃90分熱処理後のポリエステルフィルムの表面におけるエステル環状三量体量が0mg/m2以上1.5mg/m2以下である請求項1〜7のいずれかに記載の二軸配向ポリエステルフィルム。
- 少なくとも一方の表面粗さRaが1nm以上200nm以下、最大高さ粗さRzが100nm以上2000nm以下である請求項1〜8のいずれかに記載の二軸配向ポリエステルフィルム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016146035 | 2016-07-26 | ||
JP2016146035 | 2016-07-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018021168A JP2018021168A (ja) | 2018-02-08 |
JP6907519B2 true JP6907519B2 (ja) | 2021-07-21 |
Family
ID=61165288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016237301A Active JP6907519B2 (ja) | 2016-07-26 | 2016-12-07 | 二軸配向ポリエステルフィルム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6907519B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020095725A1 (ja) * | 2018-11-07 | 2020-05-14 | 東洋紡株式会社 | 二軸配向ポリエステルフィルム及びその製造方法 |
CN114258347B (zh) * | 2019-08-22 | 2024-07-23 | 三菱化学株式会社 | 聚酯薄膜卷 |
JP7192739B2 (ja) * | 2019-10-11 | 2022-12-20 | 株式会社村田製作所 | 電子部品の製造方法及び電子部品製造装置 |
JP2023519251A (ja) * | 2020-03-23 | 2023-05-10 | スリーエム イノベイティブ プロパティズ カンパニー | オーバーラミネートフィルム層及び取り外し可能なスキン層を有するフィルムスタック |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7147927B2 (en) * | 2002-06-26 | 2006-12-12 | Eastman Chemical Company | Biaxially oriented polyester film and laminates thereof with copper |
JP2016001305A (ja) * | 2014-05-23 | 2016-01-07 | 東レ株式会社 | 光学用ポリエステルフィルム及びそれを用いた偏光板、透明導電性フィルム |
-
2016
- 2016-12-07 JP JP2016237301A patent/JP6907519B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018021168A (ja) | 2018-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6907519B2 (ja) | 二軸配向ポリエステルフィルム | |
JP4839012B2 (ja) | インモールド成形用ポリエステルフィルム | |
JP6627218B2 (ja) | 二軸配向ポリエステルフィルム | |
JP6672819B2 (ja) | ポリエステルフィルム | |
JP2000141568A (ja) | 離型フィルム | |
JP5363176B2 (ja) | 離型フィルム | |
JPWO2018101230A1 (ja) | 多層積層フィルムおよびそれを用いた加工品 | |
TWI700307B (zh) | 二軸配向聚酯薄膜 | |
JP5346679B2 (ja) | 離型フィルム | |
KR20160038539A (ko) | 폴리에스테르 다층필름 | |
JP4216962B2 (ja) | 離型フィルム | |
JP2020063399A (ja) | 二軸配向ポリエステルフィルム | |
KR101920098B1 (ko) | 플렉시블 일렉트로닉스 디바이스 제조용 적층체, 및 그것에 사용하는 2 축 배향 폴리에스테르 필름, 및 그것을 사용한 플렉시블 일렉트로닉스 디바이스와 그 제조 방법 | |
JP2015071277A (ja) | 積層フィルム | |
JP6361159B2 (ja) | 二軸配向ポリエステルフィルム | |
JP2013237171A (ja) | 積層ポリエステルフィルム | |
JP3908098B2 (ja) | 光学フィルム製造用キャリアフィルム | |
JP6374214B2 (ja) | 塗布層付積層フィルム | |
JP2015016677A (ja) | 離型ポリエステルフィルム | |
JP7505508B2 (ja) | 共重合ポリエステルフィルム、積層フィルムおよびこれらの使用方法 | |
WO2013136875A1 (ja) | 二軸配向ポリエステルフィルム | |
JP2010046898A (ja) | 耐熱性複合フィルムおよびそれからなるフレキシブルエレクトロニクスデバイス用基板フィルム | |
JP2018127605A (ja) | ポリエステルフィルム | |
JP6787080B2 (ja) | 積層体 | |
JP6379674B2 (ja) | 積層体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191002 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201110 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210601 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210614 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6907519 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |