WO2013105556A1 - コーティング用組成物、多孔質膜、光散乱膜及び有機電界発光素子 - Google Patents

コーティング用組成物、多孔質膜、光散乱膜及び有機電界発光素子 Download PDF

Info

Publication number
WO2013105556A1
WO2013105556A1 PCT/JP2013/050135 JP2013050135W WO2013105556A1 WO 2013105556 A1 WO2013105556 A1 WO 2013105556A1 JP 2013050135 W JP2013050135 W JP 2013050135W WO 2013105556 A1 WO2013105556 A1 WO 2013105556A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
scattering
light
oxide
Prior art date
Application number
PCT/JP2013/050135
Other languages
English (en)
French (fr)
Inventor
友和 梅基
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to CN201380005067.8A priority Critical patent/CN104039905B/zh
Priority to KR1020147018983A priority patent/KR102193808B1/ko
Priority to EP13736153.1A priority patent/EP2803707B1/en
Publication of WO2013105556A1 publication Critical patent/WO2013105556A1/ja
Priority to US14/328,178 priority patent/US20140319502A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/60Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/004Reflecting paints; Signal paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0247Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of voids or pores
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/107Porous materials, e.g. for reducing the refractive index
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED

Definitions

  • the present invention relates to a coating composition, a porous film obtained by applying the coating composition, a light scattering film, and an organic electroluminescence device having the light scattering film.
  • organic electroluminescent element (hereinafter sometimes referred to as “organic EL”) includes an anode and a cathode on a glass substrate, and a light emitting layer formed between both electrodes.
  • the light generated in the light emitting layer by energizing both electrodes passes through the anode (for example, a transparent electrode such as ITO) and the glass substrate and is extracted outside.
  • ITO transparent electrode
  • the anode for example, a transparent electrode such as ITO
  • reflection caused by the difference in refractive index occurs at the interface between ITO and glass substrate and between the glass substrate and the atmosphere, most of the emitted light cannot be extracted outside, and the light extracted outside emits light. It is known to be about 20% of light.
  • Patent Document 2 reports a scattering layer obtained by spin coating an acrylic resin solution containing zinc oxide as scattering particles. Further, in Patent Document 3, a mixture of a sol-gel solution, which is a hydrolyzate of tetraethoxysilane, and a silica sol solution having a particle size of 80 nm is applied by spin coating, and a cured film obtained by heating at 300 ° C. is used as a scattering layer. It has been reported to be used.
  • the scattering layer described in Patent Document 1 is formed by melting glass frit, it is necessary to fire at a temperature of 500 ° C. or higher. There is a problem in productivity in that a firing furnace is necessary. Further, since firing at a high temperature is necessary, there is a problem that a plastic material cannot be applied as a substrate, and the versatility is poor. Further, since this scattering film is made of an inorganic glass material, it is considered that the scattering film has low flexibility. As a flexible substrate material represented by ultra-thin glass or plastic film (hereinafter referred to as “flexible substrate material”). There is a problem that cannot be applied.
  • the scattering layer described in Patent Document 2 is formed by applying a resin solution by spin coating. Since the scattering layer can be formed by drying at a temperature of about the boiling point of the solvent after coating, it is preferable because the heat energy consumption is small. However, the formed scattering film has a low heat-resistant temperature because the main component is an organic resin. Therefore, a problem arises when used as an electronic device substrate that undergoes a process with a large temperature change. Further, the refractive index of organic resin is generally as low as 1.5 to 1.6. For example, when used as an organic EL substrate, at the interface with the adjacent high refractive ITO film (refractive index 1.9). The total reflection of the emitted light is still large, and the improvement of the light extraction efficiency is insufficient.
  • the scattering layer described in Patent Document 3 is formed by applying a sol-gel solution of a metal alkoxide. Similar to Patent Document 2, it is an easy formation method by coating, and can be said to be a preferable method in that a film having higher heat resistance can be obtained. However, in a cured film formed from a sol-gel solution of metal alkoxide, cracks occur due to shrinkage stress during curing when the film thickness increases.
  • the effective film thickness without cracks is 200 nm or less (Sakuo Sakuo, Surface Technology No. 57, 2006), and scattering particles with a particle size of several tens of nm or more effective for visible light scattering are introduced into the effective film thickness. In order to do so, the amount is limited, so that the function as a light scattering film may be inferior. Further, since this scattering film is made of an inorganic glass material, it has a low flexibility and cannot be applied to a flexible substrate material.
  • the present invention provides a coating composition that can be easily formed by coating and the like, and is excellent in heat resistance, surface smoothness, flexibility, and has a high refractive index, light scattering property, and light transmittance.
  • An object is to provide a film, a light scattering film, and an organic electroluminescent element.
  • voids are formed inside a cured product obtained by curing a composition containing polysilane, a metal oxide, and a solvent.
  • the porous cured product in which voids are formed has a light scattering property, and thus has been found to be applicable as a light scattering film, thereby completing the present invention.
  • the present invention is as follows. [1] A coating composition comprising a polysilane compound, a metal oxide, and a solvent. [2] The coating composition according to the above [1], further comprising a compound having a carbamate structure. [3] The coating composition according to the above [2], wherein the compound having a carbamate structure is a dispersant. [4] The above [1], wherein the metal oxide is at least one selected from zinc oxide, titanium oxide, barium titanate, tantalum oxide, silicon oxide, aluminum oxide, zirconium oxide, cerium oxide, and tin oxide. ] To [3] The coating composition according to any one of [3].
  • R 2 is the same or different and represents a hydrogen atom, an alkyl group, an alkenyl group, an arylalkyl group, an aryl group, an alkoxy group, a hydroxyl group, a phenolic hydroxyl group, or an amino group. It is an integer from 4 to 10,000.
  • R 2 is the same or different and represents a hydrogen atom, an alkyl group, an alkenyl group, an arylalkyl group, an aryl group, an alkoxy group, a hydroxyl group, a phenolic hydroxyl group, or an amino group. It is an integer from 4 to 10,000.
  • a light scattering film obtained by curing the coating composition according to any one of [1] to [7].
  • An organic electroluminescence device comprising the light scattering film according to [9].
  • the light scattering layer can be formed by a simple method such as coating. Moreover, the obtained light-scattering layer is excellent in heat resistance, has a high refractive index, is excellent in surface smoothness, has a high light-scattering property and a high light transmittance.
  • FIG. 1 is a photograph showing an SEM image (10,000 times) of the surface of the scattering layer 1.
  • FIG. 2 is a photograph showing an SEM image (30,000 times) of the cross section of the scattering layer 1.
  • FIG. 3 is a photograph showing an SEM image (10,000 times) of the surface of the scattering layer 16.
  • FIG. 4 is a photograph showing an SEM image (10,000 times) of the surface of the scattering layer 17.
  • FIG. 5 is a schematic view showing an example of the configuration of the organic electroluminescent element.
  • FIG. 6 is a schematic diagram illustrating an example of the configuration of the organic electroluminescent element.
  • the coating composition of the present invention comprises a polysilane compound, a metal oxide and a solvent.
  • the polysilane compound is a general term for compounds having a silicon (Si) -silicon (Si) bond as shown below, and the ⁇ bond is delocalized on the Si-Si bond main chain. Therefore, it has a high refractive index and excellent visible light transparency.
  • the polysilane compound used in the present invention is not particularly limited as long as it is a linear, cyclic, or network compound having a Si—Si bond exemplified below.
  • (1) -1 Linear polysilane compound and cyclic polysilane compound (R 1 2 Si) m (1)
  • R 1 is .R 1 representing a hydrogen atom, an alkyl group, an alkenyl group, an arylalkyl group, an aryl group, an alkoxy group, a hydroxyl group, a phenolic hydroxyl group or amino group are all the same or a Any combination of the described substituents may be used, and m is an integer of 2 to 10,000.
  • (1) -2 Silicon network polymer (R 2 Si) n (2)
  • R 2 is the same or different and represents a hydrogen atom, an alkyl group, an alkenyl group, an arylalkyl group, an aryl group, an alkoxy group, a hydroxyl group, a phenolic hydroxyl group, or an amino group.
  • R 3 is a hydrogen atom, an alkyl group, an alkenyl group, an arylalkyl group, an aryl group, .R 3 which represents an alkoxy group, a hydroxyl group, a phenolic hydroxyl group or amino group, or all even identical Any combination of the above-described substituents may be used, where x, y, and z are integers of 0 or more, and the sum of x, y, and z is 5 to 10,000, and any of x, y, and z Except when two of them are 0.)
  • the above polymer is obtained by using a monomer having each structural unit as a raw material, for example, a method of dehalogenating polycondensation of halosilanes in the presence of an alkali metal (“Kipping method” J. Am. Chem. Soc., 110, 124 ( 1988), Macromolecules, 23, 3423 (1990)), a method of dehalogenating polycondensation of halosilanes by electrode reduction (J. Chem. Soc., Chem. (Commun., 1161 (1990), J. Chem. Soc., Chem.
  • R 1 s are the same or different, and a hydrogen atom, an alkyl group, an alkenyl group, an arylalkyl group, an aryl group, an alkoxy group, A hydroxyl group is preferable, and a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, and a hydroxyl group are particularly preferable.
  • m is preferably 2 to 300, particularly preferably 4 to 150.
  • methylphenyl polysilane having an average degree of polymerization of 4 to 150 is preferable.
  • R 2 is the same or different and is preferably a hydrogen atom, an alkyl group, an alkenyl group, an arylalkyl group, an aryl group, an alkoxy group, or a hydroxyl group, and a hydrogen atom
  • An alkyl group, an aryl group, an alkoxy group, and a hydroxyl group are more preferable.
  • R 2 is composed of an alkyl group and a phenyl group, and the alkyl group is a methyl group and the aryl group is a phenyl group.
  • N is preferably from 4 to 300, particularly preferably from 4 to 150.
  • phenyl network polysilane having an average degree of polymerization of 4 to 150 is preferable.
  • R 3 s are the same or different and are a hydrogen atom, an alkyl group, an alkenyl group, an arylalkyl group, an aryl group, an alkoxy group.
  • a group and a hydroxyl group are preferable, and a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, and a hydroxyl group are more preferable.
  • R 3 is an aryl group, and the aryl group is a phenyl group.
  • x, y and z are preferably 1 to 300, 1 to 300 and 1 to 50, respectively.
  • polysilane compounds include, for example, Ogsol SI-10-10, SI-10-20, SI-20-10, SI-20-10 (revised), SI-30-10, etc., manufactured by Osaka Gas Chemical Co., Ltd. It is done. Of these, SI-20-10 (modified) is more preferably used.
  • the methyl group: phenyl group (molar ratio) of the methylphenyl polysilane compound is 1: 9 or less, preferably 1: 5 or less, more preferably 1: 3 or less.
  • the above polysilane compounds may be used alone or in combination of two or more. Moreover, even if it is a case where 2 or more types of polysilane compounds are used together, those mixing ratios are not specifically limited, It can select arbitrarily.
  • Metal oxide-Kind of metal oxide contains metal oxide particles as a metal oxide.
  • Metal oxide particles are preferably used because of their high heat resistance.
  • metal oxide particles include zinc oxide, titanium oxide, silicon oxide, aluminum oxide, zirconium oxide, cerium oxide, tin oxide, tantalum oxide, copper oxide, silver oxide, iron oxide, bismuth oxide, tungsten oxide, and oxidation.
  • examples thereof include indium, manganese oxide, vanadium oxide, niobium oxide, strontium titanate, barium titanate, indium-tin oxide (ITO), aluminum-zinc oxide (AZO), and gallium-zinc oxide (GZO). These are all known substances and can be easily obtained.
  • the raw material, a manufacturing method, etc. are not specifically limited.
  • the metal oxide particles may be surface-treated.
  • a surface treatment agent is added to the metal oxide particle powder, and the mixture is uniformly mixed using a ball mill, a bead mill, a kneader or the like, or a heat treatment is used in combination. Examples include a method of adsorbing a surface treatment agent on oxide particles or chemically bonding the surface treatment agent.
  • Examples of the chemical species introduced by the surface treatment include inorganic oxides such as aluminum hydroxide, silica and zirconium oxide, organic acids such as stearic acid, inorganic acids such as phosphoric acid, and basic chemical species such as ammonia and amines. And silicone.
  • the metal oxide particles may be mixed alone in the composition, or two or more kinds may be mixed.
  • the mixing ratio is not particularly limited and can be arbitrarily selected.
  • the metal oxide particles may be mixed as a powder, or may be previously dispersed in a suitable solvent and then mixed as a dispersion.
  • the metal oxide particles are preferably zinc oxide, titanium oxide, barium titanate, tantalum oxide, silicon oxide, aluminum oxide, zirconium oxide, cerium oxide, and tin oxide. This is because visible light absorption is small and a high visible light transmittance can be obtained.
  • the refractive index of the metal oxide is more preferably 2.0 or more.
  • the refractive index When used as a scattering film for increasing the light extraction efficiency in an organic electroluminescence device, if the refractive index is higher than that of the adjacent high refractive ITO film (refractive index of about 1.9), light loss due to total reflection at the interface is reduced. This is because it does not occur.
  • the metal oxide having a refractive index of 2.0 or more include titanium oxide, zinc oxide, cerium oxide, barium titanate, zirconium oxide, tantalum oxide, tungsten oxide, tin oxide, and indium oxide.
  • the particles of the present invention may be either primary particles or secondary particles, and the average particle size of the metal oxide particles is 1000 nm or less, preferably 700 nm or less, more preferably 500 nm or less.
  • the average particle diameter of the metal oxide particles can be measured by a dynamic light scattering method in the case of a dispersion. In the case of a light scattering film obtained by curing, the light scattering film can be calculated from the particle size of a captured image such as an electron microscope.
  • zinc oxide particle dispersion “NANOBYK3821” (primary particle size 20 nm), “NANOBYK3841” (primary particle size 40 nm), “NANOBYK3842” (primary particle size 40 nm) manufactured by Big Chemie Chapan, Silicon oxide particle dispersion “NANOBYK3650” (primary particle size 20 nm), alumina particle dispersion “NANOBYK3601” (primary particle size 40 nm), “NANOBYK3610” (primary particle size 20 nm), cesium oxide particle dispersion “NANOBYK3812” (primary particles) 10 nm), zirconium oxide particle dispersion “ZRPMA15WT% -E05” (primary particle size 20 nm), “ZEMIBK15WT% -F57” (primary particle size 10 nm), titanium oxide particle dispersion “PT” “MA30WT% -NO1” (prim
  • TiO2 nanoparticles “PST18NR” primary particle size 18 nm
  • PST400C primary particle size 400 nm
  • titanium oxide powder “TTO-55” manufactured by Ishihara Sangyo primary particle size 30-5) nm
  • TTO-51 primary particle size 10 ⁇ 30 nm
  • Musashino Denshi Kogyo Ltd. titanium oxide powder, and the use of such high purity Chemical Co. "tantalum oxide” powder.
  • solvent contained in the coating composition of the present invention is not particularly limited as long as the polysilane compound and the metal oxide are dispersed or dissolved and can be applied.
  • aromatic solvents such as toluene, xylene and anisole, ethers such as tetrahydrofuran and propylene glycol monomethyl ether, ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, esters such as propylene glycol monomethyl ether acetate, cellosolve acetate and ethyl lactate , Halogenated hydrocarbons such as dichloromethane and monochlorobenzene, and heterocyclic rings such as N-methylpyrrolidone. These may be used singly or as a mixed solvent of two or more.
  • the coating composition further contains a compound having a carbamate structure (hereinafter referred to as “carbamate compound”).
  • carbamate compound a compound having a carbamate structure
  • the coating composition of the present invention is characterized in that voids are formed inside a cured product obtained by curing. The mechanism by which voids are formed has not been clarified, but in the process where the solvent is removed by drying, the mixture of metal oxide particles and polysilane compound is aggregated and bonded while being phase separated from the solvent, and voids are formed. It is guessed. At that time, the carbamate compound (a compound having a so-called urethane bond) in the composition has an effect of promoting the formation of voids.
  • the carbamate compound in the composition is thermally decomposed in the process of heat curing to generate a decomposition gas such as carbon dioxide and nitrogen, and this decomposition gas is present as bubbles in the composition being cured, thereby forming voids. It is thought to contribute.
  • a decomposition gas such as carbon dioxide and nitrogen
  • this decomposition gas is present as bubbles in the composition being cured, thereby forming voids. It is thought to contribute.
  • fine particles may be confirmed in the outer peripheral portion of the void.
  • this fine particle was analyzed by EDX (energy dispersive X-ray spectroscopy), C (carbon) element was detected as the main component.
  • EDX energy dispersive X-ray spectroscopy
  • the carbamate compound is preferably contained in the composition as a dispersant.
  • the dispersion may be adjusted using a dispersant for the carbamate compound, and later on with respect to the dispersion using a dispersant other than the carbamate compound.
  • a carbamate compound dispersant may be additionally added. In either case, the effect of promoting the formation of voids can be obtained.
  • Examples of the dispersant having a carbamate structure include, for example, “DisperBYK-9077”, “DisperBYK-9076”, “DisperBYK-163”, “DisperBYK-164”, and “DisperBYK-2163” manufactured by Big Chemie Chapin, “DisperBYK-2164”, “DisperBYK-2155”, “TEGO Dispers710” manufactured by Evonik Degussa, and the like.
  • Examples of the metal oxide dispersion using a dispersant having a carbamate structure include zinc oxide particle dispersions “NANOBYK-3821” (primary particle size 20 nm) and “NANOBYK-3841” (primary particle size) manufactured by Big Chemie Chapan.
  • the carbamate compound is 0.01% to 50%, preferably 0.05% to 30%, more preferably 0.1% with respect to the total solid weight of the metal oxide and polysilane in the composition. % To 20%. If it is this range, there exists sufficient quantity to promote formation of a space
  • the mixing ratio of the metal oxide and the polysilane compound is 99: 1 to 1:99, preferably 95: 5 to 30:70, more preferably. Is 90:10 to 40:60.
  • voids are formed in the cured product obtained by curing the composition of the present invention. The void is assumed to be formed in the process in which the solvent is dried and removed, and the mixture of the metal oxide particles and the polysilane compound is aggregated and bonded while containing bubbles while being phase separated from the solvent. If the mixing ratio is as described above, phase separation, internalization of bubbles, aggregation, bonding, and the like proceed smoothly, and the control of the diameter and porosity of the voids can be easily adjusted.
  • a method of dispersing metal oxide particle powder in a solution in which a polysilane compound is dissolved in a solvent to form a dispersion a method of dissolving a polysilane compound in a metal oxide particle dispersion, or a metal
  • An appropriate method can be selected from the method of mixing the oxide dispersion and the polysilane solution.
  • a method of mixing the metal oxide dispersion and the polysilane solution is preferable because the metal oxide fine particles and the polysilane compound are easily made uniform and the storage stability of the composition is easily obtained.
  • the solvent species of the metal oxide dispersion and the polysilane solution are the same.
  • a solvent, a dispersant, particles, and if necessary, beads for pulverization are mixed in advance so that the solid content concentration is 5 to 70% by weight, followed by dispersion treatment.
  • a particle dispersion for example, any dispersion method using an ultrasonic disperser, a sand mill, an attritor, a dyno mill, a bead mill, a ball mill, a fluidizer, a high speed mixer, a homogenizer, a dispersion method using a paint shaker, or the like can be used. Can do.
  • a dispersant having a carbamate structure is preferable because an effect of promoting the formation of voids is expected.
  • polymer dispersant examples include a urethane dispersant, a polyethyleneimine dispersant, a polyoxyethylene alkyl ether dispersant, a polyoxyethylene glycol diester dispersant, a sorbitan aliphatic ester dispersant, and an aliphatic modified polyester. And the like, and the like. These dispersants can be used alone or in admixture of two or more. When the dispersant is included, the content of the dispersant with respect to the particles is preferably 0.1 to 50% by weight, more preferably 0.5 to 35% by weight, still more preferably 1 to 30% by weight, Most preferred is 2 to 25% by weight.
  • the content ratio of the dispersant to the particles is less than 0.1% by weight, the dispersion stability of the particles in the dispersion may be deteriorated, and if it exceeds 50% by weight, the film characteristics of the scattering film may be deteriorated.
  • the viscosity of the composition is about 0.5 mPa ⁇ s to 500 mPa ⁇ s from the viewpoint of applicability.
  • additives such as surfactant, a flow regulator, and an antifoamer, with a composition as needed.
  • the composition prepared in this way becomes a raw material for forming a porous film and a scattering film (hereinafter sometimes collectively referred to as “film”) by the method described below.
  • the coating composition can be applied onto a suitable substrate such as glass or plastic, and the solvent can be removed to form a cured product, that is, a porous film or a light scattering film.
  • suitable substrate such as glass or plastic
  • coating methods include spin coating, dip coating, die coating, bar coating, blade coating, roll coating, spray coating, capillary coating, nozzle coating, ink jet, screen printing, and gravure.
  • Known methods such as a printing method and a flexographic printing method can be used.
  • a spin coat method, a die coat method, and a dip coat method are preferred because surface flatness is easy to obtain and simple.
  • the removal of the solvent can be carried out by heat drying, drying under reduced pressure or the like.
  • the upper limit of the drying temperature is preferably less than 400 ° C. If it is less than 400 degreeC, decomposition
  • the lower limit of drying temperature should just be more than the temperature which can remove the solvent to be used, ie, the boiling point of a solvent. When drying, it may be dried in the air or in an inert gas atmosphere.
  • Porous film The cured product formed as described above is a porous film in which voids are formed as described later.
  • a film can be used, for example, as an adsorbent using a porous film, or as a support for a functional substance such as a catalyst. .
  • the cured product formed as described above is a porous film in which voids are formed as described later. Since the average diameter of the voids is 100 nm or more, and the cured product has scattering characteristics, it can be used as a light scattering film. For example, it is useful as a light extraction film of an organic electroluminescence device.
  • FIG. 5 shows an example of the organic electroluminescent element 100.
  • the light emitted from the light emitting layer 3 passes through the anode (ITO) 6 having a higher refractive index than that of the light emitting layer 3 and reaches the interface between the ITO 6 and the scattering film 7.
  • the refractive index of the scattering film 7 is equal to or higher than the refractive index of the light emitting layer 3, the entire amount of the emitted light is incident on the scattering film 7 without being reflected at the interface, and the highest light. Extraction efficiency can be obtained.
  • the refractive index of the scattering film is preferably equal to or higher than the refractive index of the light emitting layer.
  • the refractive index is preferably 1.8 or more, more preferably 1.9 or more.
  • the refractive index of the polysilane compound constituting the coating composition of the present invention is 1.7 or more, and the refractive index of a metal oxide such as zinc oxide is 2.0, a preferable refractive index as described above. It becomes possible to incorporate in a device as a scattering film provided with.
  • FIG. 6 shows an example of the organic electroluminescent element 100 in which the scattering film 7 is formed on the light exit surface side of the substrate 8 such as a glass substrate.
  • the organic electroluminescent element 100 provided with the scattering film 7 on the light emitting surface side of the glass substrate 8 can suppress the emission loss of emitted light generated at the interface between the glass substrate 8 and the atmosphere.
  • the refractive index of the scattering film 7 is equal to or higher than the refractive index (about 1.5) of the glass substrate 8
  • the entire amount of emitted light is incident on the scattering film without being reflected at the interface.
  • light extraction efficiency can be obtained.
  • the light scattering film obtained from the coating composition of the present invention has a structure in which voids are formed on the surface and inside thereof.
  • the average diameter of the voids is 10 to 800 nm. In terms of having more preferable scattering characteristics, the average diameter of the voids is preferably 100 to 600 nm.
  • the void area ratio is preferably 2 to 40%. Within this range, the physical strength of the film can be maintained. For example, in the manufacturing process of the organic electroluminescent element, breakage during the process can be avoided. It also has excellent storage stability.
  • a space that is, a space filled with air functions as a scatterer.
  • the mechanism by which voids are formed is not clear, but in the process of coating and drying of the solvent, the mixture of metal oxide particles and polysilane compound aggregates and bonds while interspersing with the solvent while containing bubbles. Is presumed to form. Therefore, the average diameter of the voids, the volume ratio of the voids, etc. depend on the molecular weight of the polysilane compound used as the composition, the average diameter of the metal oxide, the mixing ratio of the polysilane compound and the metal oxide, the type and abundance ratio of the carbamate compound, etc. Can be controlled.
  • any chemical species can be filled by substituting with air.
  • an arbitrary chemical species can be filled in the voids by a method of applying or impregnating an arbitrary solution or dispersion liquid.
  • the scattering characteristics can be adjusted, or a color developing chemical species such as a phosphor can be substituted. This makes it possible to adjust the color development characteristics.
  • the porous film can be used as an adsorbent or a support for a functional substance such as a catalyst.
  • an arbitrary coating layer may be formed on the scattering film.
  • the outermost surface may be required to have smoothness, solvent resistance, acid resistance, alkali resistance, and the like.
  • a coating layer may be formed on the scattering film for the purpose of supplementing required characteristics.
  • the refractive index of the coating layer is preferably equal to or higher than that of the scattering film in order to suppress reflection of emitted light at the interface.
  • the coating composition of the present invention is formed on the substrate 8 as a scattering film 7 by coating and is disposed between the substrate 8 and the anode 6.
  • the substrate 8 serves as a support for the organic electroluminescent element 100, and a quartz or glass plate, a metal plate or a metal foil, a plastic film or a sheet is usually used. Of these, glass plates and transparent synthetic resin plates or films such as polyester, polymethacrylate, polycarbonate, polysulfone, and polyimide are preferable.
  • the substrate 8 is preferably made of a material having a high gas barrier property since the organic electroluminescence element is hardly deteriorated by the outside air. For this reason, in particular, when a material having low gas barrier properties such as a synthetic resin substrate is used, it is preferable to provide a dense silicon oxide film or the like on at least one surface of the substrate 8 to lower the gas barrier properties.
  • the anode 6 has a function of injecting holes into the layer on the light emitting layer 3 side.
  • the anode 6 is usually made of a metal such as aluminum, gold, silver, nickel, palladium, or platinum; a metal oxide such as an oxide of indium and / or tin; a metal halide such as copper iodide; a carbon black and a poly (3 -Methylthiophene), conductive polymers such as polypyrrole and polyaniline, and the like.
  • the anode 6 is often formed by a dry method such as a sputtering method or a vacuum deposition method.
  • an appropriate binder resin solution is used. It can also be formed by dispersing and coating on the substrate 8.
  • the anode 6 is composed of a conductive polymer, a thin film can be directly formed on the substrate by electrolytic polymerization, or the anode can be formed by applying a conductive polymer on the substrate (Appl. Phys. Lett., 60, 2711, 1992).
  • the anode 6 usually has a single layer structure, but may have a laminated structure as appropriate. When the anode 6 has a laminated structure, different conductive materials may be laminated on the first anode.
  • the thickness of the anode 6 may be determined according to required transparency and material. In particular, when high transparency is required, a thickness at which visible light transmittance is 60% or more is preferable, and a thickness at which 80% or more is more preferable.
  • the thickness of the anode 6 is usually 5 nm or more, preferably 10 nm or more, and is usually 1000 nm or less, preferably 500 nm or less.
  • the thickness of the anode 6 may be arbitrarily set according to the required strength, and in this case, the anode may have the same thickness as the substrate.
  • the film is formed on the surface of the anode 6, impurities on the anode are removed and the ionization potential is adjusted by performing treatment such as ultraviolet ray + ozone, oxygen plasma, argon plasma before the film formation. It is preferable to improve the hole injection property.
  • the layer responsible for transporting holes from the anode 6 side to the light emitting layer 3 side is usually called a hole injection transport layer or a hole transport layer.
  • the layer closer to the anode side may be referred to as the hole injection layer 1.
  • the hole injection layer 1 is preferably used in terms of enhancing the function of transporting holes from the anode 6 to the light emitting layer 6 side.
  • the hole injection layer 1 is usually formed on the anode 6.
  • the thickness of the hole injection layer 1 is usually 1 nm or more, preferably 5 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
  • the formation method of the hole injection layer 1 may be a vacuum deposition method or a wet film formation method. In terms of excellent film forming properties, it is preferable to form the film by a wet film forming method.
  • the hole injection layer 1 preferably includes a hole transporting compound, and more preferably includes a hole transporting compound and an electron accepting compound. Further, the hole injection layer preferably contains a cation radical compound, and particularly preferably contains a cation radical compound and a hole transporting compound.
  • the composition for forming a hole injection layer usually contains a hole transporting compound that becomes the hole injection layer 1. In the case of a wet film forming method, a solvent is usually further contained. It is preferable that the composition for forming a hole injection layer has high hole transportability and can efficiently transport injected holes. For this reason, it is preferable that the hole mobility is high and impurities that become traps are less likely to be generated during production or use. Moreover, it is preferable that it is excellent in stability, has a small ionization potential, and has high transparency to visible light. In particular, when the hole injection layer 1 is in contact with the light emitting layer 3, those that do not quench the light emitted from the light emitting layer or those that form an exciplex with the light emitting layer and do not decrease the light emission efficiency are preferable.
  • the hole transporting compound is preferably a compound having an ionization potential of 4.5 eV to 6.0 eV from the viewpoint of a charge injection barrier from the anode 6 to the hole injection layer 1.
  • hole transporting compounds include aromatic amine compounds, phthalocyanine compounds, porphyrin compounds, oligothiophene compounds, polythiophene compounds, benzylphenyl compounds, compounds in which tertiary amines are linked by a fluorene group, hydrazones Compound, silazane compound compound, quinacridone compound and the like.
  • an aromatic amine compound is preferable and an aromatic tertiary amine compound is particularly preferable from the viewpoint of amorphousness and visible light transmittance.
  • the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and includes a compound having a group derived from an aromatic tertiary amine.
  • the type of the aromatic tertiary amine compound is not particularly limited, but is a polymer compound having a weight average molecular weight of 1,000 to 1,000,000 (polymerization compound in which repeating units are linked) from the viewpoint of easily obtaining uniform light emission due to the surface smoothing effect. Is preferably used.
  • Preferable examples of the aromatic tertiary amine polymer compound include a polymer compound having a repeating unit represented by the following formula (I).
  • Ar 1 and Ar 2 each independently represent an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent.
  • Ar 3 to Ar 5 each independently represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent.
  • Ar 6 to Ar 16 each independently represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent.
  • R 1 and R 2 each independently represents a hydrogen atom or an arbitrary substituent.
  • the aromatic hydrocarbon group and aromatic heterocyclic group of Ar 1 to Ar 16 include a benzene ring, a naphthalene ring, a phenanthrene ring, and a thiophene ring from the viewpoint of the solubility, heat resistance, and hole injection / transport properties of the polymer compound.
  • a group derived from a pyridine ring is preferred, and a group derived from a benzene ring or a naphthalene ring is more preferred.
  • aromatic tertiary amine polymer compound having a repeating unit represented by the formula (I) include those described in International Publication No. 2005/089024.
  • the hole injection layer 1 preferably contains an electron accepting compound because the conductivity of the hole injection layer can be improved by oxidation of the hole transporting compound.
  • the electron-accepting compound a compound having an oxidizing power and the ability to accept one electron from the above-described hole-transporting compound is preferable, and specifically, a compound having an electron affinity of 4 eV or more is preferable. More preferably, the compound is 5 eV or more.
  • electron-accepting compounds include triarylboron compounds, metal halides, Lewis acids, organic acids, onium salts, salts of arylamines and metal halides, and salts of arylamines and Lewis acids. Examples thereof include one or more compounds selected from the group.
  • an onium salt substituted with an organic group such as 4-isopropyl-4′-methyldiphenyliodonium tetrakis (pentafluorophenyl) borate, triphenylsulfonium tetrafluoroborate (International Publication No. 2005/089024); iron chloride (III) (Japanese Unexamined Patent Publication No. 11-251067), high-valent inorganic compounds such as ammonium peroxodisulfate; cyano compounds such as tetracyanoethylene; tris (pendafluorophenyl) borane (Japanese Unexamined Patent Publication No. 2003-31365) Aromatic boron compounds; fullerene derivatives, iodine and the like.
  • organic group such as 4-isopropyl-4′-methyldiphenyliodonium tetrakis (pentafluorophenyl) borate, triphenylsulfonium tetra
  • cation radical compound an ionic compound composed of a cation radical which is a chemical species obtained by removing one electron from a hole transporting compound and a counter anion is preferable.
  • the cation radical is derived from a hole transporting polymer compound, the cation radical has a structure in which one electron is removed from the repeating unit of the polymer compound.
  • the cation radical is preferably a chemical species obtained by removing one electron from the compound described above as the hole transporting compound.
  • a chemical species obtained by removing one electron from a compound preferable as a hole transporting compound is preferable in terms of amorphousness, visible light transmittance, heat resistance, solubility, and the like.
  • the cation radical compound can be generated by mixing the hole transporting compound and the electron accepting compound. That is, by mixing the hole transporting compound and the electron accepting compound, electron transfer occurs from the hole transporting compound to the electron accepting compound, and the cation radical and the counter anion of the hole transporting compound A cation ion compound consisting of
  • Oxidative polymerization here refers to oxidation of a monomer chemically or electrochemically with peroxodisulfate in an acidic solution.
  • the monomer is polymerized by oxidation, and a cation radical that is removed from the polymer repeating unit by using an anion derived from an acidic solution as a counter anion is removed.
  • a composition for forming a film is usually prepared by mixing a material for the hole injection layer with a soluble solvent (a solvent for a hole injection layer). Layer formation composition), and this hole injection layer formation composition is applied onto a layer corresponding to the lower layer of the hole injection layer (usually an anode), formed into a film, and dried.
  • the concentration of the hole transporting compound in the composition for forming a hole injection layer is arbitrary as long as the effects of the present invention are not significantly impaired, but in terms of film thickness uniformity, the lower one is preferable. From the viewpoint that defects are less likely to occur in the hole injection layer, a higher value is preferable. Specifically, it is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, particularly preferably 0.5% by weight or more, and on the other hand, 70% by weight. It is preferably not more than 60% by weight, more preferably not more than 60% by weight, particularly preferably not more than 50% by weight.
  • ether solvents examples include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA), 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, and anisole.
  • PGMEA propylene glycol-1-monomethyl ether acetate
  • Aromatic ethers such as phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole and 2,4-dimethylanisole.
  • ester solvent examples include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
  • aromatic hydrocarbon solvent examples include toluene, xylene, cyclohexylbenzene, 3-isopropylbiphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, cyclohexylbenzene, methylnaphthalene and the like. It is done.
  • amide solvent examples include N, N-dimethylformamide and N, N-dimethylacetamide.
  • the formation of the hole injection layer 1 by a wet film formation method is usually performed after preparing a composition for forming a hole injection layer, and then forming the composition on the layer corresponding to the lower layer of the hole injection layer 1 (usually the anode 6).
  • the film is formed by coating and drying. In general, the hole injection layer 1 is dried by heating, drying under reduced pressure, or the like after film formation.
  • the hole injection layer 1 is formed by a vacuum deposition method
  • one or more of the constituent materials of the hole injection layer 1 are usually vacuumed.
  • the aforementioned hole transporting compound, electron accepting compound, etc. are usually vacuumed.
  • a crucible installed in the container if two or more kinds of materials are used, usually put each in separate crucibles
  • evacuate the vacuum container to about 10 -4 Pa with a vacuum pump
  • heat the crucible When using two or more types of materials, each crucible is usually heated
  • evaporated while controlling the amount of evaporation of the material in the crucible when using two or more types of materials, each is usually independent.
  • the hole injection layer is formed on the anode on the substrate placed facing the crucible.
  • the hole injection layer can be formed by putting the mixture in a crucible and heating and evaporating the mixture.
  • the degree of vacuum at the time of vapor deposition is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 ⁇ 10 ⁇ 6 Torr (0.13 ⁇ 10 ⁇ 4 Pa) or more and 9.0 ⁇ 10 ⁇ 6 Torr ( 12.0 ⁇ 10 ⁇ 4 Pa) or less.
  • the deposition rate is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 A / second or more and 5.0 A / second or less.
  • the film forming temperature at the time of vapor deposition is not limited as long as the effects of the present invention are not significantly impaired, but it is preferably performed at 10 ° C. or higher and 50 ° C. or lower.
  • the hole injection layer 1 may be cross-linked in the same manner as the hole transport layer described later.
  • the hole transport layer 2 is a layer having a function of transporting holes from the anode 6 side to the light emitting layer 3 side.
  • the hole transport layer 2 is not an essential layer in the organic electroluminescent device 100 of the present invention, but it is preferable to use this layer in terms of enhancing the function of transporting holes from the anode 6 to the light emitting layer 3. .
  • the hole transport layer 2 is usually formed between the anode 6 and the light emitting layer 3. Further, when the hole injection layer 1 described above is present, it is formed between the hole injection layer 1 and the light emitting layer 3.
  • the film thickness of the hole transport layer 2 is usually 5 nm or more, preferably 10 nm or more, and is usually 300 nm or less, preferably 100 nm or less.
  • the formation method of the hole transport layer 2 may be a vacuum deposition method or a wet film formation method. In terms of excellent film forming properties, it is preferable to form the film by a wet film forming method.
  • the hole transport layer 2 usually contains a hole transport compound that becomes a hole transport layer.
  • a hole transport compound contained in the hole transporting layer in particular, two or more tertiary amines represented by 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl Aromatic diamines having two or more condensed aromatic rings substituted with nitrogen atoms (Japanese Patent Application Laid-Open No. 5-234683), 4,4 ′, 4 ′′ -tris (1-naphthylphenylamino) triphenylamine Aromatic amine compounds having a starburst structure such as J.
  • Lumin., 72-74, 985, 1997, and aromatic amine compounds consisting of tetramers of triphenylamine (Chem. Commun., 2175) 1996), spiro compounds such as 2,2 ′, 7,7′-tetrakis- (diphenylamino) -9,9′-spirobifluorene (Synth. Metals, 91, 209, 1997), 4 , 4'-N, N'-dicarbazole biphenyl Examples thereof include polycarbene ether sulfone (Polym. Adv. Tech., Vol. 7) containing, for example, polyvinyl carbazole, polyvinyl triphenylamine (Japanese Unexamined Patent Publication No. 7-53953), and tetraphenylbenzidine. 33, 1996) can also be preferably used.
  • the hole injection layer 1 is usually replaced with the hole injection layer forming composition in the same manner as when the hole injection layer 1 is formed by a wet film formation method. It forms using the composition for positive hole transport layer formation.
  • the composition for forming a hole transport layer usually further contains a solvent.
  • the solvent used in the composition for forming a hole transport layer the same solvent as the solvent used in the composition for forming a hole injection layer can be used.
  • the concentration of the hole transporting compound in the composition for forming a hole transport layer can be in the same range as the concentration of the hole transporting compound in the composition for forming a hole injection layer. Formation of the hole transport layer by a wet film formation method can be performed in the same manner as the hole injection layer film formation method described above.
  • the positive hole injection layer 1 is usually replaced with the positive hole injection layer forming composition in the same manner as in the case of forming the hole injection layer 1 by the vacuum deposition method. It can be formed using a composition for forming a hole transport layer.
  • the film formation conditions such as the degree of vacuum at the time of vapor deposition, the vapor deposition rate, and the temperature can be formed under the same conditions as those for the vacuum vapor deposition of the hole injection layer.
  • the light emitting layer 3 is a layer that has a function of emitting light when excited by recombination of holes injected from the anode and electrons injected from the cathode when an electric field is applied between the pair of electrodes.
  • the light emitting layer 3 is a layer formed between the anode 6 and the cathode 5, and the light emitting layer 3 is between the hole injection layer 1 and the cathode 5 when the hole injection layer 1 is on the anode 6.
  • the hole transport layer 2 is formed on the anode 6, it is formed between the hole transport layer 2 and the cathode 5.
  • the thickness of the light emitting layer 3 is arbitrary as long as the effects of the present invention are not significantly impaired. However, a thicker layer is preferable from the viewpoint of hardly causing defects in the film, and a thinner layer is preferable from the viewpoint that a low driving voltage can be easily obtained. . For this reason, it is preferably 3 nm or more, more preferably 5 nm or more, and on the other hand, it is usually preferably 200 nm or less, and more preferably 100 nm or less.
  • the light emitting layer 3 contains at least a material having a light emitting property (light emitting material) and preferably contains a material having a charge transporting property (charge transporting material).
  • the light emitting material emits light at a desired light emission wavelength, and is not particularly limited as long as the effect of the present invention is not impaired, and a known light emitting material can be applied.
  • the light emitting material may be a fluorescent light emitting material or a phosphorescent light emitting material, but a material having good light emission efficiency is preferred, and a phosphorescent light emitting material is preferred from the viewpoint of internal quantum efficiency.
  • Examples of the fluorescent light emitting material include the following materials.
  • Examples of the fluorescent light emitting material that gives blue light emission include naphthalene, perylene, pyrene, anthracene, coumarin, chrysene, p-bis (2-phenylethenyl) benzene, and derivatives thereof.
  • Examples of the fluorescent light emitting material that gives green light emission include quinacridone derivatives, coumarin derivatives, aluminum complexes such as Al (C 9 H 6 NO) 3, and the like.
  • fluorescent light-emitting material that gives yellow light
  • examples of fluorescent light-emitting materials include rubrene and perimidone derivatives.
  • fluorescent light-emitting materials red fluorescent light-emitting materials
  • DCM dimethyl-6- (p-dimethylaminostyryl) -4H-pyran
  • benzopyran derivatives rhodamine derivatives.
  • Benzothioxanthene derivatives azabenzothioxanthene and the like.
  • the phosphorescent material for example, the seventh to eleventh parts of a long-period type periodic table (hereinafter referred to as a long-period type periodic table unless otherwise specified).
  • organometallic complexes containing a metal selected from the group include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold.
  • a ligand in which a (hetero) aryl group such as a (hetero) arylpyridine ligand or (hetero) arylpyrazole ligand and a pyridine, pyrazole, phenanthroline, or the like is connected is preferable.
  • a phenylpyridine ligand and a phenylpyrazole ligand are preferable.
  • (hetero) aryl represents an aryl group or a heteroaryl group.
  • Specific preferred phosphorescent materials include, for example, tris (2-phenylpyridine) iridium, tris (2-phenylpyridine) ruthenium, tris (2-phenylpyridine) palladium, bis (2-phenylpyridine) platinum, tris
  • Examples thereof include phenylpyridine complexes such as (2-phenylpyridine) osmium and tris (2-phenylpyridine) rhenium, and porphyrin complexes such as octaethylplatinum porphyrin, octaphenylplatinum porphyrin, octaethylpalladium porphyrin, and octaphenylpalladium porphyrin.
  • Polymeric light-emitting materials include poly (9,9-dioctylfluorene-2,7-diyl), poly [(9,9-dioctylfluorene-2,7-diyl) -co- (4,4′- (N- (4-sec-butylphenyl)) diphenylamine)], poly [(9,9-dioctylfluorene-2,7-diyl) -co- (1,4-benzo-2 ⁇ 2,1'-3 ⁇ -Triazole)] and polyphenylene vinylene materials such as poly [2-methoxy-5- (2-hexylhexyloxy) -1,4-phenylene vinylene].
  • the charge transport material is a material having a positive charge (hole) or negative charge (electron) transport property, and is not particularly limited as long as the effect of the present invention is not impaired, and a known light emitting material can be applied.
  • a compound conventionally used for a light emitting layer of an organic electroluminescence device can be used, and a compound used as a host material for the light emitting layer is particularly preferable.
  • charge transporting materials include aromatic amine compounds, phthalocyanine compounds, porphyrin compounds, oligothiophene compounds, polythiophene compounds, benzylphenyl compounds, and compounds in which tertiary amines are linked by a fluorene group. , Hydrazone compounds, silazane compounds, silanamin compounds, phosphamine compounds, quinacridone compounds, and the like as examples of hole transporting compounds in the hole injection layer, anthracene compounds, pyrene compounds, Examples thereof include electron transporting compounds such as carbazole compounds, pyridine compounds, phenanthroline compounds, oxadiazole compounds and silole compounds.
  • two or more condensed aromatic rings including two or more tertiary amines represented by 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl have nitrogen atoms.
  • Aromatic amine compounds having a starburst structure such as aromatic diamines substituted with (Japanese Unexamined Patent Publication No. 5-234681), 4,4 ′, 4 ′′ -tris (1-naphthylphenylamino) triphenylamine, etc. J. Lumin., 72-74, 985, 1997), an aromatic amine compound composed of a tetramer of triphenylamine (Chem.
  • Oxadiazole compounds such as oxadiazole (tBu-PBD), 2,5-bis (1-naphthyl) -1,3,4-oxadiazole (BND), 2,5-bis (6 ′-( 2 ′, 2 ′′ -bipyridyl))-1,1-dimethyl-3,4-diphenylsilole (PyPySPyPy) and other silole compounds, bathophenanthroline (BPhen), 2,9-dimethyl-4,7-diphenyl-1 And phenanthroline compounds such as 10-phenanthroline (BCP, bathocuproin).
  • oxadiazole tBu-PBD
  • BND 2,5-bis (1-naphthyl) -1,3,4-oxadiazole
  • BND 2,5-bis (6 ′-( 2 ′, 2 ′′ -bipyridyl))-1,1-dimethyl-3,4-diphenylsilo
  • a method for forming the light emitting layer 3 may be a vacuum deposition method or a wet film formation method, but a wet film formation method is preferable and a spin coating method and an ink jet method are more preferable because of excellent film forming properties.
  • the light emitting layer is usually used instead of the hole injection layer forming composition in the same manner as in the case of forming the hole injection layer by the wet film forming method.
  • the resulting material is formed using a composition for forming a light emitting layer prepared by mixing a soluble solvent (solvent for the light emitting layer).
  • the solvent examples include, for example, ether solvents, ester solvents, aromatic hydrocarbon solvents, amide solvents, alkane solvents, halogenated aromatic hydrocarbon solvents, aliphatic solvents, and the like mentioned for the formation of the hole injection layer.
  • examples thereof include alcohol solvents, alicyclic alcohol solvents, aliphatic ketone solvents, and alicyclic ketone solvents.
  • aliphatic ether solvents such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2 -Aromatic ether solvents such as methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole, diphenyl ether; phenyl acetate, phenyl propionate, methyl benzoate, benzoic acid Aromatic ester solvents such as ethyl, ethyl benzoate, propyl benzoate, n-butyl benzoate; toluene, xylene, methicylene, cyclohexylbenzene, tetralin, 3-ilopropylb
  • a hole blocking layer may be provided between the light emitting layer 3 and an electron injection layer 4 described later (not shown).
  • the hole blocking layer is a layer laminated on the light emitting layer 3 so as to be in contact with the interface of the light emitting layer 3 on the cathode 5 side.
  • the hole blocking layer has a role of blocking holes moving from the anode 6 from reaching the cathode 5 and a role of efficiently transporting electrons injected from the cathode 5 toward the light emitting layer 3.
  • the physical properties required for the material constituting the hole blocking layer include high electron mobility, low hole mobility, large energy gap (difference between HOMO and LUMO), and excited triplet level (T1). It is expensive.
  • Examples of the hole blocking layer material satisfying such conditions include bis (2-methyl-8-quinolinolato) (phenolato) aluminum, bis (2-methyl-8-quinolinolato) (triphenylsilanolato) aluminum, and the like.
  • Mixed ligand complexes of, such as metal complexes such as bis (2-methyl-8-quinolato) aluminum- ⁇ -oxo-bis- (2-methyl-8-quinolinato) aluminum binuclear metal complexes, distyryl biphenyl derivatives, etc.
  • Triazole derivatives such as styryl compounds (Japanese Patent Laid-Open No.
  • a hole-blocking layer there is no restriction
  • the thickness of the hole blocking layer is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 0.3 nm or more, preferably 0.5 nm or more, and is usually 100 nm or less, preferably 50 nm or less. .
  • the electron transport layer is provided between the light emitting layer 3 and the electron injection layer 4 (not shown) for the purpose of further improving the current efficiency of the device.
  • the electron transport layer is formed of a compound that can efficiently transport electrons injected from the cathode between the electrodes to which an electric field is applied in the direction of the light emitting layer 3.
  • the electron transporting compound used in the electron transporting layer is a compound that has high electron injection efficiency from the cathode or the electron injection layer and has high electron mobility and can efficiently transport injected electrons. It is necessary.
  • the electron transporting compound used for the electron transporting layer is usually preferably a compound that has high electron injection efficiency from the cathode or the electron injection layer and can efficiently transport the injected electrons.
  • the electron transporting compound include metal complexes such as an aluminum complex of 8-hydroxyquinoline (Japanese Patent Laid-Open No. 59-194393), a metal complex of 10-hydroxybenzo [h] quinoline, Oxadiazole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3-hydroxyflavone metal complexes, 5-hydroxyflavone metal complexes, benzoxazole metal complexes, benzothiazole metal complexes, trisbenzimidazolylbenzene (US Pat. No.
  • the film thickness of the electron transport layer is usually 1 nm or more, preferably 5 nm or more, and is usually 300 nm or less, preferably 100 nm or less.
  • the electron transport layer is formed by laminating on the hole blocking layer by a wet film formation method or a vacuum deposition method in the same manner as described above. Usually, a vacuum deposition method is used.
  • the electron injection layer 4 plays a role of efficiently injecting electrons injected from the cathode 5 into the electron transport layer or the light emitting layer 3.
  • the material for forming the electron injection layer 4 is preferably a metal having a low work function. Examples include alkali metals such as sodium and cesium, and alkaline earth metals such as barium and calcium.
  • the film thickness is usually preferably from 0.1 nm to 5 nm.
  • an organic electron transport material represented by a metal complex such as a nitrogen-containing heterocyclic compound such as bathophenanthroline or an aluminum complex of 8-hydroxyquinoline is doped with an alkali metal such as sodium, potassium, cesium, lithium, rubidium ( (Described in Japanese Laid-Open Patent Publication No. 10-270171, Japanese Laid-Open Patent Publication No. 2002-1000047, Japanese Laid-Open Patent Publication No. 2002-1000048, etc.), which improves electron injection / transport properties and achieves excellent film quality. It is preferable because it becomes possible.
  • the thickness of the electron injection layer 4 is usually 5 nm or more, preferably 10 nm or more, and usually 200 nm or less, preferably 100 nm or less.
  • the electron injection layer 4 is formed by laminating the light emitting layer or the hole blocking layer thereon by a wet film formation method or a vacuum deposition method. The details in the case of the wet film forming method are the same as those in the case of the light emitting layer described above.
  • the cathode 5 plays a role of injecting electrons into a layer (such as an electron injection layer or a light emitting layer) on the light emitting layer 3 side.
  • a layer such as an electron injection layer or a light emitting layer
  • the material used for the anode 6 can be used.
  • a metal having a low work function for example, tin, magnesium, A metal such as indium, calcium, aluminum, silver, or an alloy thereof is used.
  • Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
  • a cathode made of a metal having a low work function by laminating a metal layer having a high work function and stable to the atmosphere on the cathode 5.
  • the metal to be laminated include metals such as aluminum, silver, copper, nickel, chromium, gold, and platinum.
  • the thickness of the cathode is usually the same as that of the anode. (Other layers)
  • the organic electroluminescent element 100 of the present invention may further have other layers as long as the effects of the present invention are not significantly impaired. In other words, any other layer described above may be provided between the anode 6 and the cathode 5.
  • the organic electroluminescent element 100 of the present invention may be used as a single organic electroluminescent element or may be used in a configuration in which a plurality of organic electroluminescent elements are arranged in an array.
  • the anode and the cathode may be used in a configuration in which they are arranged in an XY matrix.
  • Organic EL Display Device uses the above-described organic electroluminescent element of the present invention.
  • organic electroluminescent display apparatus of this invention It can assemble in accordance with a conventional method using the organic electroluminescent element of this invention.
  • the organic EL display device of the present invention can be obtained by the method described in “Organic EL display” (Ohm, published on Aug. 20, 2004, Shizushi Tokito, Chiba Adachi, Hideyuki Murata). Can be formed.
  • Organic EL lighting of the present invention uses the organic electroluminescent element of the present invention described above. There is no restriction
  • the haze value and total light transmittance of the scattering layer as a scattering film and the light extraction film were measured using a haze computer-HZ-2 model manufactured by Suga Test Instruments Co., Ltd. As measured. Haze computer 0, 100 value adjustment was performed in a state where no sample was contained (that is, a state where only air was present). Therefore, the haze value and total light transmittance of the scattering layer and the light extraction film described later are the Haze characteristics of the glass substrate (Nippon Electric Glass Co., Ltd. glass substrate “OA-10G” (0.7 mm thickness)), total light It is a value including transmittance characteristics. When only this glass substrate is measured alone, the haze is 0.00 and the total light transmittance is 91.8%.
  • the average particle size of the metal oxide dispersion was measured using a concentrated particle size analyzer (FPAR-1000, dynamic light scattering method) manufactured by Otsuka Electronics Co., Ltd. . The manufacturer's published value was used for the primary particle size.
  • FPAR-1000 dynamic light scattering method
  • the value of the manufacturer's test report attached to the polysilane compound used was used.
  • the molecular weight (Mw and Mn) of polysilane “Ogsol SI-20-10 (improved)” manufactured by Osaka Gas Chemical Co., Ltd. was 1200,900.
  • the molecular weight (Mw and Mn) of “Ogsol SI-20-10” was 1500 and 800.
  • the molecular weight (Mw and Mn) of “Ogsol SI-10-10” was 13800 and 1900.
  • the molecular weight (Mw and Mn) of “Ogsol SI-10-20” was 1600 and 1100.
  • “Ogsol SI-30-10” is decaphenylcyclopentasilane (CAS number 1770-54-3)
  • its molecular weight is 911.
  • Example 1 ⁇ Formation of scattering layer 1> To 2.0 g of polysilane “Ogsol SI-20-10 (modified)” manufactured by Osaka Gas Chemical Co., Ltd., 8.0 g of propylene glycol monomethyl ether acetate (hereinafter referred to as “PGMEA”) was added and dissolved under stirring. This solution was filtered through a 0.2 ⁇ m PTEF filter (Motorcycle Al AV125EORG) to prepare “SI-20-10 (modified) PGMEA solution (20 wt%)”.
  • PGMEA propylene glycol monomethyl ether acetate
  • a scattering layer coating solution was prepared by adding 2.0 g of an average particle diameter of 125 nm by scattering measurement and solvent type: PEGMEA) and stirring for 1 minute using a pencil mixer. 0.3 ml of this scattering layer coating solution was placed on a glass substrate “OA-10G” (37.5 mm ⁇ 25 mm ⁇ 0.7 mm thickness) manufactured by Nippon Electric Glass Co., Ltd.
  • spin Coater: Mikasa (1H-360S type manufactured by Spin Co., Ltd., spin coating speed: 500 rpm for 10 seconds, later 1000 rpm for 30 seconds).
  • This coated substrate was preliminarily dried at 120 ° C. for 2 minutes on a hot plate, followed by main drying at 350 ° C. for 30 minutes. Then, it was allowed to cool naturally and the scattering layer 1 was obtained on the glass substrate.
  • the scattering layer 1 had a thickness of 0.85 ⁇ m, a haze value of 80.8, and a total light transmittance of 71.9%.
  • the refractive index of this coating film was measured using a prism coupler method and found to be 2.357 (633 nm).
  • Example 2 to 4 ⁇ Formation of scattering layers 2 to 4> Using the scattering layer coating solution prepared in Example 1, spin coating was performed on a glass substrate under the same conditions as in Example 1, and preliminary drying was performed on a hot plate at 120 ° C. for 2 minutes. Subsequently, the main drying is performed at 220 ° C. (Example 2), 170 ° C. (Example 3), or 120 ° C. (Example 4) for 30 minutes, and then naturally cooled to obtain scattering layers 2 to 4 on a glass substrate. It was. SEM observation confirmed the formation of voids on the surface and cross section of any scattering layer.
  • Example 5 to 11 ⁇ Formation of scattering layers 5 to 11>
  • the scattering layers 5 to 8 were prepared by the method described in Example 1 except that the mixing weights of “SI-20-10 (modified) PGMEA solution (20 wt%)” and “NANOBYK-3841” were changed to those shown in Table 1 below. Got.
  • “SI-10-10 PGMEA solution (20 wt%)”, “SI-10-20 PGMEA solution (20 wt%)”, “SI-30-10 tetrahydrofuran” prepared by dissolving each brand of polysilane in a solvent.
  • a scattering layer coating solution was prepared at a mixing ratio shown in Table 1 using a “solution (hereinafter referred to as THF)” (10 wt%), and scattering layers 9 to 11 were obtained by the method described in Example 1, respectively. SEM observation confirmed the formation of voids on the surface and cross section of any scattering layer.
  • Example 12 to 15 ⁇ Formation of scattering layers 12-15> Zinc oxide nanoparticle dispersion “NANOBYK-3821” (primary particle size of zinc oxide 20 nm, average particle size 98 nm by dynamic light scattering, solvent type: PEGMEA) manufactured by Big Chemie Chapin, aluminum oxide nanoparticle dispersion “ NANOBYK-3610 ”(primary particle size of aluminum oxide 20-25 nm, average particle size 110 nm by dynamic light scattering, solvent type: PEGMEA), and silicon oxide nanoparticle dispersion“ NANOBYK-3650 ”(primary silicon oxide)
  • the scattering layer coating solution was prepared at a mixing ratio shown in Table 1 using a particle size of 20 to 25 nm, the average particle size by dynamic light scattering was not measured, and solvent types: PEGMEA and methoxypropanol), and the method described in Example 1 Thus, scattering layers 12 to 15 were obtained. SEM observation confirmed the formation of voids on the surface and cross section
  • Example 16 ⁇ Preparation of dispersion A> Ishihara Sangyo Co., Ltd. titanium oxide powder “TTO-51 (A)” (primary particle size 10-30 nm) 1.20 g in 30 ml glass bottle with lid, PEGMEA 4.74 g, Dispersant manufactured by Big Chemi Japan BYK-9077 ”(0.24 g) and 0.5 mm ⁇ zirconia beads (20 g) were taken, sealed, and shaken for 4 hours with a paint shaker (PC type) manufactured by Iwata Tekko Co., Ltd. for dispersion treatment. This dispersion was filtered through a 200 mesh steel net to remove zirconia beads to obtain dispersion A.
  • TTO-51 (A) primary particle size 10-30 nm
  • PEGMEA 4.74 g Dispersant manufactured by Big Chemi Japan BYK-9077 ”(0.24 g) and 0.5 mm ⁇ zirconia beads (20 g) were taken, sealed, and shaken for
  • the average particle size of this dispersion was 200 nm.
  • ⁇ Formation of scattering layer 21> 3.6 g of dispersion A was added to 1.0 g of “SI-20-10 (modified) PGMEA solution (20 wt%)”, and the mixture was stirred for 1 minute using a pencil mixer to prepare a scattering layer coating solution.
  • the scattering layer 22 was formed by the method described in Example 1 using this scattering layer coating solution.
  • Dispersions B to F were prepared by the method described in Example 16 except that the metal oxide powder and the dispersant were changed to Table 3.
  • Scattering layer coating solutions were prepared at the mixing ratios shown in Table 4, and scattering layers 22 to 26 were formed by the method described in Example 1, respectively.
  • Example 25 ⁇ Production of organic electroluminescence device> An organic electroluminescent element was produced by the following method. The structure of the organic electroluminescent element is as shown in FIG. 1. Formation of light extraction film A In the scattering layer 1 on the glass substrate 8 produced in Example 1, a rutile-type titanium oxide nanoparticle dispersion “15% RTiO 2 0.02 um high dispersion” (average of titanium oxide) manufactured by CIK Nanotech Co., Ltd.
  • This coated substrate was preliminarily dried at 120 ° C. for 2 minutes on a hot plate, followed by main drying at 350 ° C. for 30 minutes. Then, it was allowed to cool naturally to obtain “light extraction film A” as a scattering film 7 in which a titanium oxide nanoparticle layer was laminated on the scattering layer 1.
  • a transparent conductive film made of indium tin oxide (ITO) having a thickness of 70 nm was formed as the anode 6.
  • ITO indium tin oxide
  • Substrate cleaning The glass substrate on which the above-mentioned anode was formed was made into a semi-clean L.I. G. After being immersed in a 3% surfactant aqueous solution of L for 10 minutes in an ultrasonic cleaner, it was rinsed with pure water and air-dried. Thereafter, the air-dried substrate was subjected to UV ozone cleaning with a UV ozone cleaner for 1 minute.
  • the negative photosensitive resin solution was spin-coated on the anode 6 and exposed by ultraviolet irradiation through a light shielding mask having an opening area of 6 mm ⁇ 6 mm.
  • the bank was fired in a 260 ° C. hot air oven for 1 hour to form an opening bank 9 having a bank wall height of 1.4 ⁇ m and an opening area of 6 mm ⁇ 6 mm.
  • Hole Injection Layer A polymer compound having the following repeating unit and 4-isopropyl-4-methyldiphenyliodonium tetrakis (pentafluorophenyl) borate are mixed at a weight ratio of 100: 20, and the concentration of the mixture is 2. Ethyl benzoate was added so that it might become 4 weight%, and it heated and dissolved, and prepared the composition for hole injection layer formation.
  • n is an integer of 3 to 100,000.
  • This composition for forming a hole injection layer was spin-coated on the anode 6 surrounded by the opening bank 9 in an air atmosphere (spin coating speed: 500 rpm for 10 seconds, and later, 1500 rpm for 30 seconds). .
  • This coating film was heated in a clean oven at 230 ° C. to form a hole injection layer 1 having a thickness of 35 nm.
  • the following compound as a hole transport layer was formed with a film thickness of 45 nm by a vacuum deposition method to form the hole transport layer 2.
  • Light-Emitting Layer Tris (8-hydroxyquinolinato) aluminum (Alq 3 ) was formed as a light-emitting layer 3 on the hole transport layer 2 by a vacuum evaporation method to a film thickness of 60 nm.
  • Electron Injection Layer and Cathode Lithium fluoride (LiF) was deposited on the light emitting layer 3 by a vacuum deposition method so as to have a film thickness of 0.5 nm, and then the electron injection layer 4 was formed.
  • the cathode 5 was formed by vapor deposition by the vacuum vapor deposition method.
  • FIG. 5 shows a schematic diagram of the organic electroluminescent device prepared by the above method.
  • This coated substrate was preliminarily dried at 120 ° C. for 2 minutes on a hot plate, followed by main drying at 350 ° C. for 30 minutes. Then, it was allowed to cool naturally to obtain “light extraction film B” in which the scattering layer 1, the titanium oxide nanoparticle layer, and the titanium oxide sol-gel layer were laminated.
  • an organic electroluminescent device was obtained according to the method described in Example 25.
  • Example 8 An organic electroluminescent device was obtained by the method described in Example 25 except that a glass substrate (Nippon Electric Glass Co., Ltd. glass substrate “OA-10G”) was used and no light extraction film was formed.
  • a glass substrate Nippon Electric Glass Co., Ltd. glass substrate “OA-10G”
  • the film thickness of the light extraction film, Haze, total light transmittance, surface roughness Ra, ITO etchant resistance (acid resistance), Substrate cleaning resistance and resist bank fabrication suitability were evaluated. Further, for each organic electroluminescent element, the total luminous flux of emitted light was measured by the method described below, and the light extraction magnification was evaluated. The results are shown in Table 6.
  • the glass substrate on which the light extraction film was formed before the anode was formed in the above-described organic electroluminescence device was manufactured in “ITO-02” manufactured by Kanto Chemical Co., Inc. After dipping at 25 ° C. for 20 minutes, it was washed with water, the deterioration state of the light extraction film surface was visually observed, and evaluated according to the following criteria “A” to “C”.
  • B The glossiness of the surface is lowered, but the film remains.
  • C The film is peeled off.
  • the total luminous flux [lumen (lm)] when a 4.0 mA direct current was applied to the obtained organic electroluminescent device to emit light was calculated using an integrating sphere type manufactured by Labsphere. Measurement was performed using a total luminous flux measurement system (integrating sphere: SLMS-1011 type, diode array spectroscope: DAS-1100 type).
  • Example 27 Preparation of substrate A glass substrate “OA-10G” manufactured by Nippon Electric Glass Co., Ltd. (37.5 mm ⁇ 25 mm ⁇ 0.7 mm thickness) was deposited with ITO with a film thickness of 70 nm as an anode, and the light emitting area became 2 mm square. Thus, a substrate on which ITO was patterned (hereinafter referred to as a 2 mm square element ITO substrate) was prepared.
  • the scattering layer 1 was formed by the method described in Example 1 on the surface (light emitting surface) opposite to the surface on which the ITO film of the substrate was formed. Next, the cleaning process described in “3. Cleaning of substrate” was performed.
  • a hole injection layer, a hole transport layer, a light emitting layer, an electron injection layer, a cathode, and a seal are formed on the ITO surface according to the method described in Example 10, and the scattering layer 1 is formed on the light emission surface side.
  • a 2 mm square organic electroluminescent device (light emitting area: 0.04 cm 2 ) was obtained.
  • Examples 28 to 31, Comparative Example 9 Organic field elements (Examples 28 to 31) having a scattering layer formed on the light exit surface side were obtained in accordance with the method of Example 27 except that the scattering layer 1 was replaced with the scattering layer described in Table 7. Moreover, the organic electroluminescent element (comparative example 9) which does not form a scattering layer was obtained.
  • the total amount of luminous flux was measured when a 4.0 mA direct current was applied to the obtained organic electroluminescence device to emit light.
  • the organic electroluminescent element in which the scattering layer is formed on the light exit surface has a total luminous flux of 1.27 times the maximum as compared with the element not formed (Comparative Example 9). . Even when the light scattering layer of the present invention was formed on the light exit surface side, an improvement in light extraction efficiency was recognized.
  • Example 32 ⁇ Evaluation of flexibility of scattering film>
  • the scattering layer coating solution described in Example 1 was spin-coated on a flexible polyimide film (50 mm ⁇ 50 mm ⁇ 0.7 mm thickness). (Spin coating speed: 500 rpm for 10 seconds, later 1000 rpm for 30 seconds).
  • This coated substrate was preliminarily dried at 120 ° C. for 2 minutes on a hot plate, and then finally dried at 220 ° C. for 30 minutes. Thereafter, it was allowed to cool naturally to obtain a polyimide film on which a scattering film was formed.
  • This polyimide film was wound around a stainless steel rod having a diameter of 5 mm so that the scattering film was on the outside.
  • the scattering film of the present invention has excellent flexibility and can be applied to flexible substrate materials having flexibility.
  • the scattering film of the present invention can be used as a film for improving the light extraction efficiency even for an organic electroluminescent element using a flexible flexible substrate material.
  • SYMBOLS 1 DESCRIPTION OF SYMBOLS 1 ... Hole injection layer 2 ... Hole transport layer 3 ... Light emitting layer 4 ... Electron injection layer 5 ... Cathode 6 ... Anode (ITO) 7 ... Scattering film (light extraction film) 8 ... Substrate (glass substrate) 9 ... Opening bank (bank material) DESCRIPTION OF SYMBOLS 10 ... Sheet-like dehydrating material 11 ... Pomegranate glass 12 ... Photocurable resin 100 ... Organic electroluminescent element

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Paints Or Removers (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

 本発明は、塗布等により容易に形成することができるコーティング用の組成物、及び耐熱性、表面平滑性、可撓性に優れ、高い屈折率、光散乱性及び光線透過率を有する多孔質膜、光散乱層さらには、該光散乱層を有する有機電界発光素子を提供することを目的とする。ポリシラン、金属酸化物及び溶剤を含む組成物を硬化して得られた硬化物の内部に空隙が形成されることを見出した。この空隙が形成された硬化物は、光散乱特性を有することから、光散乱膜として応用できる。

Description

コーティング用組成物、多孔質膜、光散乱膜及び有機電界発光素子
 本発明は、コーティング用組成物、該コーティング用組成物を塗布することによって得られる多孔質膜、光散乱膜、及び該光散乱膜を有する有機電界発光素子に関する。
 有機電界発光素子(以下、「有機EL」と称することがある)は、ガラス基板上の陽極、陰極と、両電極間に形成された発光層とを含む構成からなる。両電極への通電により発光層で発生した光は、陽極(例えば、ITO等の透明電極)とガラス基板を通過して外部に取り出される。しかし、ITOとガラス基板、およびガラス基板と大気の界面では屈折率差を起因とする反射が生じるため発光光の大部分が外部に取り出すことができておらず、外部に取り出された光は発光光の約20%の程度であることが知られている。
 有機電界発光素子の光取り出し効率を改善するために、陽極であるITO等の透明電極とガラス基板との間に散乱層を設ける試みが報告されている。
 例えば、特許文献1では、ガラスフリット(粉体)を樹脂とともに練りインクとしたものを使用し、ガラス基板上へ塗布し、高温にて焼成・加熱することにより、ガラスフリットを溶融すると共に樹脂を焼失させることにより、気泡をガラス媒体内に内在させた散乱層が報告されている。
 また、特許文献2では、酸化亜鉛を散乱粒子として含むアクリル系樹脂溶液をスピンコート塗布することにより得られる散乱層が報告されている。
 さらに、特許文献3では、テトラエトキシシランの加水分解物であるゾル-ゲル溶液と粒径80nmのシリカゾル溶液の混合物をスピンコートで塗布し、300℃で加熱して得られる硬化皮膜を散乱層として使用する旨が報告されている。
国際公開第2009/116531号 日本国特開2010-182449号公報 国際公開第2003/26357号
 しかしながら、特許文献1に記載の散乱層は、ガラスフリットを溶融させることにより形成されることから、500℃以上の温度で焼成することが必要となるため、熱エネルギーの消費量が多く、また高温焼成炉が必要であるなどの点で生産性に問題がある。また、高温での焼成が必要となるため、プラスチック材を基板として適用はできないなどの問題点があり、汎用性に劣る。さらに、この散乱膜は無機ガラス材質であるため可撓性が低いと考えられ、超薄板ガラスやプラスチックフィルムに代表される可撓性のある基板材料(以下、「フレキシブル基板材料」と称す)には適用できない問題がある。
 特許文献2に記載の散乱層は、樹脂溶液をスピンコートにより塗布することにより形成される。塗布後、溶媒沸点程度の温度で乾燥することにより散乱層が形成できる点で、熱エネルギー消費量が少ないため好ましい。しかし、形成される散乱膜は、有機樹脂が主成分であるため耐熱温度が低い。よって、温度変化の大きなプロセスを経る電子デバイス用基板として使用する際に問題が生じる。さらに、有機樹脂の屈折率は一般に1.5~1.6台と低く、例えば、有機ELの基板として使用する際、隣接する高屈折体のITO膜(屈折率1.9)との界面での発光光の全反射は依然として大きく、光取り出し効率の改善は不十分となる。
 特許文献3に記載の散乱層は、金属アルコキシドのゾル-ゲル液を塗布することにより形成される。特許文献2と同様、塗布による容易な形成方法であり、さらに高い耐熱性を有する膜を得ることができる点で好ましい方法といえる。しかしながら、金属アルコキシドのゾル-ゲル液から形成される硬化膜は、膜厚が厚くなると硬化時の収縮応力でクラック(割れ)が発生する。クラックが発生しない有効な膜厚は200nm以下(作花済夫、表面技術2006年57号)であり、有効な膜厚中に可視光散乱に有効な粒径数十nm以上の散乱粒子を導入するには量が限定的となるため、光散乱膜としての機能が劣る場合がある。また、この散乱膜は無機ガラス材質であるため可撓性が低く、フレキシブル基板材料には適用できない問題がある。
 本発明は、塗布等により容易に形成することができるコーティング用組成物の提供、及び耐熱性、表面平滑性、可撓性に優れ、高い屈折率、光散乱性及び光線透過率を有する多孔質膜、光散乱膜及び有機電界発光素子の提供を目的とする。
 本発明者は上記課題に鑑み鋭意検討を行った結果、ポリシラン、金属酸化物及び溶剤を含む組成物を硬化して得られた硬化物の内部に空隙が形成されることを見出した。空隙が形成された多孔質な硬化物は、光散乱特性を有することから、光散乱膜として応用できることを見出し、本発明を完成させた。
 すなわち、本発明は、以下に示す通りである。
[1]ポリシラン化合物、金属酸化物及び溶剤を含むコーティング用組成物。
[2]さらに、カーバメート構造を有する化合物を含む、上記[1]記載のコーティング用組成物。
[3]前記カーバメート構造を有する化合物が分散剤である、上記[2]記載のコーティング用組成物。
[4]前記金属酸化物が、酸化亜鉛、酸化チタン、チタン酸バリウム、酸化タンタル、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、酸化セリウム、及び酸化スズから選択される少なくとも1種である、上記[1]~[3]のいずれか1項に記載のコーティング用組成物。
[5]前記金属酸化物の屈折率が2.0以上である、上記[1]~[4]のいずれか1項に記載のコーティング用組成物。
[6]前記金属酸化物の平均粒子径が1000nm以下である、上記[1]~[5]のいずれか1項に記載のコーティング用組成物。
[7]前記ポリシラン化合物が、一般式(2)で表されるシリコンネットワークポリマーである、上記[1]~[6]のいずれか1項に記載のコーティング用組成物。
  (RSi) ・・・(2)
(式(2)中、Rは、同一又は相異なって、水素原子、アルキル基、アルケニル基、アリールアルキル基、アリール基、アルコキシ基、水酸基、フェノール性水酸基又はアミノ基を表す。nは、4~10000の整数である。)
[8]上記[1]~[7]のいずれか1項に記載のコーティング用組成物を硬化することにより得られる多孔質膜。
[9]上記[1]~[7]のいずれか1項に記載のコーティング用組成物を硬化することにより得られる光散乱膜。
[10]上記[9]記載の光散乱膜を含む有機電界発光素子。
[11]前記光散乱膜が、基板と陽極との間に配置される、上記[10]記載の有機電界発光素子。
[12]前記基板が、可撓性を有するフレキシブル基板である、上記[11]記載の有機電界発光素子。
[13]上記[10]~[12]のいずれか1項に記載の有機電界発光素子を含む有機EL表示装置。
[14]上記[10]~[12]のいずれか1項に記載の有機電界発光素子を含む有機EL照明。
[15]上記[1]~[7]のいずれかに記載のコーティング用組成物を基板に塗布し、溶媒を除去することを含む多孔質膜の製造方法。
 本発明によれば、塗布などの簡便な方法で光散乱層を形成することができる。また、得られた光散乱層は、耐熱性に優れ、高い屈折率を有し、表面平滑性に優れ、高い光散乱性と高い光線透過率を有する。
図1は、散乱層1の表面のSEM像(1万倍)を示す写真である。 図2は、散乱層1の断面のSEM像(3万倍)を示す写真である。 図3は、散乱層16の表面のSEM像(1万倍)を示す写真である。 図4は、散乱層17の表面のSEM像(1万倍)を示す写真である。 図5は、有機電界発光素子の構成の一例を示す概略図である。 図6は、有機電界発光素子の構成の一例を示す概略図である。
 以下、本発明について詳細に説明する。
I.コーティング用組成物
 本発明のコーティング用組成物は、ポリシラン化合物、金属酸化物及び溶剤を含む。
(1)ポリシラン化合物
 ポリシラン化合物とは、以下に示すようなケイ素(Si)-ケイ素(Si)結合を有する化合物の総称であり、Si-Si結合主鎖上にσ結合が非局在化しているため、高い屈折率を有し、可視光透過性に優れている。本発明において用いられるポリシラン化合物としては、下記で例示するSi-Si結合を有する直鎖状、環状、ネットワーク状の化合物であれば、特に限定されない。
 (1)-1:直鎖状ポリシラン化合物及び環状ポリシラン化合物
  (R Si)  ・・・(1)
(式(1)中、Rは、水素原子、アルキル基、アルケニル基、アリールアルキル基、アリール基、アルコキシ基、水酸基、フェノール性水酸基又はアミノ基を表す。Rは、全てが同一又は前記記載の置換基の任意の組み合わせであってもよい。mは、2~10000の整数である。)
 (1)-2:シリコンネットワークポリマー
  (RSi)   ・・・(2)
(式(2)中、Rは、同一又は相異なって、水素原子、アルキル基、アルケニル基、アリールアルキル基、アリール基、アルコキシ基、水酸基、フェノール性水酸基又はアミノ基を表す。nは、4~10000の整数である。)
 (1)-3:ネットワーク状ポリマー
  (R Si)(RSi) Si   ・・・(3)
(式(3)中、Rは、水素原子、アルキル基、アルケニル基、アリールアルキル基、アリール基、アルコキシ基、水酸基、フェノール性水酸基又はアミノ基を表す。Rは、全てが同一でも或いは前記記載の置換基の任意の組み合わせであってもよい。x、y及びzは0以上の整数で、x、y及びzの和は、5~10000であって、x、y及びzのいずれか2つが0である場合を除く。)
 上記のポリマーは、それぞれの構造単位を有するモノマーを原料として、例えばアルカリ金属の存在下でハロシラン類を脱ハロゲン縮重合させる方法(「キッピング法」J. Am. Chem. Soc.、110、124(1988)、Macromolecules、23、3423(1990))、電極還元によりハロシラン類を脱ハロゲン縮重合させる方法(J. Chem. Soc.、Chem. Commun.、1161(1990)、J. Chem. Soc.、Chem. Commun.、897(1992))、金属触媒の存在下にヒドロシラン類を脱水素縮重合させる方法(日本国特開平4-334551号公報)、ビフェニルなどで架橋されたジシレンのアニオン重合による方法(Macromolecules、23、4494(1990))、環状シラン類の開環重合による方法などにより、製造することができる。
 一般式(1)で表される直鎖状ポリシラン化合物及び環状ポリシラン化合物としては、R1が、同一又は相異なって、水素原子、アルキル基、アルケニル基、アリールアルキル基、アリール基、アルコキシ基、水酸基が好ましく、水素原子、アルキル基、アリール基、アルコキシ基、水酸基が特に好ましい。また、mは、2~300が好ましく、4~150が特に好ましい。例えば、平均重合度4~150のメチルフェニルポリシランが好ましい。
 一般式(2)で表されるシリコンネットワークポリマーとしては、R2は、同一又は相異なって、水素原子、アルキル基、アルケニル基、アリールアルキル基、アリール基、アルコキシ基、水酸基が好ましく、水素原子、アルキル基、アリール基、アルコキシ基、水酸基がより好ましい。さらにはRがアルキル基及びフェニル基からなり、アルキル基としてメチル基、アリール基としてフェニル基であることが特に好ましい。また、nは、4~300が好ましく、4~150が特に好ましい。例えば、平均重合度が4~150のフェニルネットワークポリシランが好ましい。
 一般式(3)で表されるSi-Si結合を骨格とするネットワーク状ポリマーとしては、R3は、同一又は相異なって、水素原子、アルキル基、アルケニル基、アリールアルキル基、アリール基、アルコキシ基、水酸基が好ましく、水素原子、アルキル基、アリール基、アルコキシ基、水酸基がより好ましい。さらにはRがアリール基からなり、アリール基としてフェニル基からなることが特に好ましい。また、x、y及びzは、各々1~300、1~300及び1~50が好ましい。
 高い耐熱性を有する点で、ポリシラン化合物の構造として一般式(2)又は一般式(3)のポリマーを使用することが好ましい。
 好ましいポリシラン化合物として、例えば、大阪ガスケミカル(株)製オグソールSI-10-10、SI-10-20、SI-20-10、SI-20-10(改)、SI-30-10等が挙げられる。このうち、SI-20-10(改)を使用することがより好ましい。
 なお、SI-20-10(改)は、重量平均分子量(Mw)が1200、数平均分子量(Mn)が900(GPC:ポリスチレン換算)であり、耐熱温度が354℃(5%重量減)である末端水酸基を有したメチルフェニルポリシラン化合物(メチル基:フェニル基=約1:3モル比)である。
 前記メチルフェニルポリシランは、フェニル基比率が低く、空隙がより形成されやすいと推測される。メチルフェニルポリシラン化合物のメチル基:フェニル基(モル比)が1:9以下、好ましくは1:5以下、より好ましくは1:3以下である。
 本発明においては、上記ポリシラン化合物をそれぞれ単独で使用してもよく、あるいは2種以上を併用してもよい。また、2種以上のポリシラン化合物を併用する場合であっても、それらの混合割合は特に限定されず、任意に選択することができる。
(2)金属酸化物
 ・金属酸化物の種類
 本発明のコーティング組成物は、金属酸化物として金属酸化物粒子を含む。金属酸化物粒子は高耐熱性である点で好適に使用される。
 このような金属酸化物粒子としては、酸化亜鉛、酸化チタン、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、酸化セリウム、酸化スズ、酸化タンタル、酸化銅、酸化銀、酸化鉄、酸化ビスマス、酸化タングステン、酸化インジウム、酸化マンガン、酸化バナジウム、酸化ニオブ、チタン酸ストロンチウム、チタン酸バリウム、インジウム-スズ酸化物(ITO)、アルミニウム-亜鉛酸化物(AZO)、ガリウム-亜鉛酸化物(GZO)等が挙げられる。
 これらはいずれも公知の物質であり、容易に入手可能である。またその原料、製造方法などは特に限定されない。その際、金属酸化物粒子は表面処理がされていても良い。表面処理の方法としては、例えば、金属酸化物粒子粉体に表面処理剤を添加し、ボールミルやビーズミル、混練機などを用いて均一に混合して、あるいは加熱処理を併用するなどして、金属酸化物粒子に表面処理剤を吸着させる、あるいは化学的に結合させる方法などが挙げられる。表面処理によって導入される化学種としては、例えば、水酸化アルミニウム、シリカ、酸化ジルコニウムなどの無機酸化物、ステアリン酸などの有機酸、リン酸などの無機酸、アンモニアおよびアミンなどの塩基性化学種、シリコーンなどが挙げられる。
 本発明においては、金属酸化物粒子を組成物中に単独で混合しても良く、あるいは2種以上を混合しても良い。混合割合は特に限定されず、任意に選択することができる。また、混合の際には、金属酸化物粒子を粉体で混合してもよいし、予め適当な溶媒に分散させた後、分散液として混合してもよい。
 金属酸化物粒子は、酸化亜鉛、酸化チタン、チタン酸バリウム、酸化タンタル、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、酸化セリウム、酸化スズが好ましい。なぜなら、可視光線の吸収が小さく、高い可視光線透過率が得られるからである。
 金属酸化物の屈折率は2.0以上であることがより好ましい。有機電界発光素子において光取り出し効率を高める散乱膜として利用する場合、隣接する高屈折体のITO膜(屈折率約1.9)より高い屈折率であれば、界面での全反射による光損失が生じないためである。屈折率が2.0以上の金属酸化物として、例えば、酸化チタン、酸化亜鉛、酸化セリウム、チタン酸バリウム、酸化ジルコニウム、酸化タンタル、酸化タングステン、酸化スズ、酸化インジウム等が挙げられる。
 ・粒径
 一般に微粒子は、外見上の幾何学的形態から判断して単位粒子と考えられる一次粒子と、一次粒子が複数個集合した二次粒子に分類される。本発明の粒子は一次粒子、二次粒子のいずれであっても良く、金属酸化物粒子の平均粒径は、1000nm以下であり、好ましくは700nm以下、さらに好ましくは500nm以下である。このような範囲の平均粒子径を有する金属酸化物粒子を用いることにより、光散乱性、光透過性および表面平坦性に優れた散乱膜を得ることができる。なお、金属酸化物粒子の平均粒径は、分散液の場合は動的光散乱方式で測定することができる。硬化して得られた光散乱膜の場合は電子顕微鏡等の撮影画像の粒子の大きさから算出することができる。
 これらの金属酸化物微粒子として、例えば、ビックケミー・シャパン社製酸化亜鉛粒子分散液「NANOBYK3821」(一次粒径20nm)、「NANOBYK3841」(一次粒径40nm)、「NANOBYK3842」(一次粒径40nm)、酸化ケイ素粒子分散液「NANOBYK3650」(一次粒径20nm)、アルミナ粒子分散液「NANOBYK3601」(一次粒径40nm)、「NANOBYK3610」(一次粒径20nm)、酸化セシウム粒子分散液「NANOBYK3812」(一次粒径10nm)、CIKナノテック社製酸化ジルコニウム粒子分散液「ZRPMA15WT%-E05」、(一次粒径20nm)、「ZEMIBK15WT%-F57」(一次粒径10nm)、酸化チタン粒子分散液「PTIMA30WT%-NO1」(一次粒径250nm)、アルパックマテリアル社製「ITOナノメタルインクITO1  Cden」、巴製作所社製「ITOナノ粒子」(標準粒子径:15~25nm)、「ITOナノ粒子」(シングルナノ粒子径:5~10nm)、「ITOナノ粒子」(大型ナノ粒子径:80~100nm)、奥野製薬社製ITOナノ粒子「ナノディスパーITO(SP2)」(一次粒径5~15nm)、日揮触媒化成社製TiO2ナノ粒子「PST18NR」(一次粒径18nm)、「PST400C」(一次粒径400nm)、Solarnix社製「Solanix  T」(一次粒径10nm)、「Solanix  D20」(一次粒径20nm)、石原産業製酸化チタン粉体「TTO-55」(一次粒径30~50nm)、「TTO-51」(一次粒径10~30nm)、ムサシノ電子工業製「酸化セリウム」粉体、高純度化学製「酸化タンタル」粉体等の利用が挙げられる。
(3)溶媒
 本発明のコーティング用組成物に含まれる溶媒としては、ポリシラン化合物及び金属酸化物が分散又は溶解し、塗布可能なものであれば特に限定されない。例えば、トルエン、キシレン、アニソールなどの芳香族溶媒、テトラヒドロフラン、プロピレングリコールモノメチルエーテルなどのエーテル類、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、プロピレングリコールモノメチルエーテルアセテート、酢酸セロソルブ、乳酸エチルなどのエステル類、ジクロロメタン、モノクロロベンゼンなどのハロゲン化炭化水素類、N-メチルピロリドンなど複素環類などが挙げられる。これらを単独で用いても良いし、2種以上の混合溶媒として用いても良い。
 本発明では、前記コーティング用組成物としてさらにカーバメート構造を有する化合物(以下、「カーバメート化合物」と称す。)が含まれていることが好ましい。
(4)カーバメート化合物
 本発明のコーティング用組成物は、硬化して得られた硬化物の内部に空隙が形成されることを特長とする。空隙が形成されるメカニズムは明らかにされていないが、溶媒が乾燥除去される過程で、金属酸化物粒子とポリシラン化合物の混合物が溶媒と相分離しながら凝集、結合して空隙が形成されるものと推測される。その際に、組成物中のカーバメート化合物(いわゆるウレタン結合を有する化合物)は空隙の形成を促進する効果がある。組成物中のカーバメート化合物は、加熱硬化の過程で熱分解して二酸化炭素や窒素等の分解ガスを生じ、この分解ガスが硬化中の組成物中に気泡として内在することで、空隙の形成に寄与するものと考えられる。
 走査型電子顕微鏡で硬化物の断面を観察すると、空隙の外周部分に微粒子が確認されることがある。この微粒子をEDX(エネルギー分散型X線分光法)分析すると、C(炭素)元素が主成分と検出された。この炭素の微粒子は、なんらかの有機物が熱分解して炭化してできたものと考えられ、空隙形成のメカニズムに分解ガスの発生が関与している可能性を裏付けるものである。
 カーバメート化合物は、分散剤として組成物中に含まれていることが好ましい。金属酸化物粉体から分散液を得るための分散処理の際にカーバメート化合物の分散剤を用いて分散液を調整してもよく、カーバメート化合物以外の分散剤を用いた分散液に対して後からカーバメート化合物の分散剤を追加添加することでもよい。いずれの場合も空隙の形成を促進する効果が得られる。
 カーバメート構造を有する分散剤としては、例えば、ビックケミー・シャパン社製「DisperBYK-9077」、同「DisperBYK-9076」、同「DisperBYK-163」、同「DisperBYK-164」、同「DisperBYK-2163」、同「DisperBYK-2164」、同「DisperBYK-2155」、エボニックデグサ社製「TEGO Dispers710」等が挙げられる。
 カーバメート構造を有する分散剤を用いた金属酸化物分散液としては、例えば、ビックケミー・シャパン社製酸化亜鉛粒子分散液「NANOBYK-3821」(一次粒径20nm)、「NANOBYK-3841」(一次粒径40nm)、酸化ケイ素粒子分散液「NANOBYK-3650」(一次粒径20nm)、アルミナ粒子分散液「NANOBYK-3601」(一次粒径40nm)等が挙げられる。
 カーバメート化合物は、前記の組成物中の金属酸化物とポリシランの固形分重量の合計に対して0.01%~50%であり、好ましくは0.05%~30%、より好ましくは0.1%~20%である。この範囲であれば、空隙の形成を促進するのに十分な量があり、散乱膜に求められる膜特性が著しく低下しない。
(5)コーティング用組成物の調製
 前記の組成物において、金属酸化物とポリシラン化合物の混合比は、99:1~1:99であり、好ましくは95:5~30:70であり、より好ましくは90:10~40:60である。前述のように、本発明の組成物を硬化して得られる硬化物には空隙が形成されている。当該空隙は、溶媒が乾燥除去される過程で、金属酸化物粒子とポリシラン化合物の混合物が溶媒と相分離しながら気泡を内在しつつ凝集、結合して空隙が形成されるものと推測される故、上記混合比であれば、相分離、気泡の内在、凝集、結合等が円滑に進み、空隙の径や空隙率の制御が容易に調整することが可能となる。
 組成物の調製に際しては、溶媒にポリシラン化合物を溶かした溶液に金属酸化物粒子粉体を分散処理して分散液とする方法、または金属酸化物粒子分散液にポリシラン化合物を溶解させる方法、あるいは金属酸化物分散液とポリシラン溶液を混合する方法から適宜選択することができる。金属酸化物微粒子、ポリシラン化合物が均一にしやすく、また組成物の保存安定性も得られやすいことから、金属酸化物分散液とポリシラン溶液を混合する方法が好ましい。さらに、金属酸化物分散液とポリシラン溶液の溶媒種が同一であることがより好ましい。
 粒子の分散液の調製方法としては、一般的には、溶媒と分散剤と粒子、必要に応じて粉砕用ビーズを予め固形分濃度が5~70重量%となるように混合し、分散処理して粒子分散液を調製する。分散処理の方法としては、例えば、超音波分散機による分散処理、サンドミル、アトライター、ダイノミル、ビーズミル、ボールミル、フルイダイザー、高速ミキサー、ホモジナイザー、ペイントシェーカー等による分散方法など、いずれの方法も用いることができる。
 粒子の分散安定性向上のために、通常分散剤として市販されている低分子分散剤、高分子分散剤を含有させることも可能である。中でも、カーバメート構造を有する分散剤は、空隙の形成を促進する効果が期待されることからも好ましい。
 高分子分散剤としては、例えば、ウレタン系分散剤、ポリエチレンイミン系分散剤、ポリオキシエチレンアルキルエーテル系分散剤、ポリオキシエチレングリコールジエステル系分散剤、ソルビタン脂肪族エステル系分散剤、脂肪族変性ポリエステル系分散剤等を挙げることができる。これらの分散剤は、単独で又は2種以上を混合して使用することができる。分散剤を含む場合、その含有量としては、粒子に対する分散剤の含有割合が0.1~50重量%が好ましく、0.5~35重量%がより好ましく、1~30重量%が更に好ましく、2~25重量%が最も好ましい。粒子に対する分散剤の含有割合が0.1重量%を下回ると分散液中における粒子の分散安定性が悪くなるおそれがあり、50重量%を超えると散乱膜の膜特性を低下させるおそれがある。
 また、組成物の粘度としては、塗布性の観点から0.5mPa・s~500mPa・s程度である。なお組成物には、必要に応じて界面活性剤、流動調整剤、消泡剤などの添加物を混合しても良い。このように調製した組成物は、以下に説明する方法により多孔質膜、散乱膜(以下、「膜」と総称する場合がある。)を形成する原料となる。
II.膜の形成方法
 前記コーティング用組成物は、例えばガラス、プラスチックなどの適当な基板上に塗布し、溶剤を除去することにより硬化物、すなわち多孔質膜、光散乱膜を形成することができる。
 塗布方法としては、例えば、スピンコート法、ディップコート法、ダイコート法、バーコート法、ブレードコート法、ロールコート法、スプレーコート法、キャピラリーコート法、ノズルコート法、インクジェット法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法など、公知の方法を用いることができる。表面平坦性が得やすく簡便であることから、スピンコート法、ダイコート法、ディップコート法が好ましい。
 溶媒の除去は、加熱乾燥、減圧乾燥等により実施することができる。乾燥に際して、乾燥温度の上限は、400℃未満であることが好ましい。400℃未満であれば、ポリシラン化合物の分解を抑制できる。また、乾燥温度の下限値は、使用する溶剤が除去できる程度の温度、すなわち溶剤の沸点以上であればよい。乾燥に際しては大気中で乾燥しても良いし、不活性ガス雰囲気下で乾燥しても良い。
III.多孔質膜
 前記のごとく形成された硬化物は、後述するように空隙が形成された多孔質膜である。このような膜は、後述する光散乱膜として有用である以外に、例えば、多孔質膜であることを利用して吸着体としての利用、あるいは触媒等の機能性物質の担持体等として使用できる。
IV.光散乱膜
 前記のごとく形成された硬化物は、後述するように空隙が形成された多孔質膜である。空隙の平均直径は100nm以上であり、そのため硬化物は散乱特性を有するため、光散乱膜として利用できる。例えば、有機電界発光素子の光取り出し膜として有用である。
<屈折率について>
 図5は有機電界発光素子100の一例を示している。発光層3で発光した光は、発光層3より屈折率が高い陽極(ITO)6を全量通過して、ITO6と散乱膜7との界面に至る。この時に、散乱膜7の屈折率が発光層3の屈折率と同等か、又はより高い場合には、発光光は界面で反射されることなく全量が散乱膜7中に入射し、最も高い光取り出し効率を得ることができる。
 したがって、散乱膜の屈折率は、発光層の屈折率と同等かより高いことが好ましい。一般に発光層材料の屈折率は1.7~1.8の範囲(例:トリス(8-ヒドロキシキノリナート)アルミニウム;Alqの屈折率=1.72@550nm)であることから、散乱膜の屈折率は好ましくは1.8以上、さらに好ましくは1.9以上である。ここで本発明のコーティング用組成物を構成するポリシラン化合物の屈折率は、1.7以上、また、金属酸化物、例えば酸化亜鉛の屈折率は2.0であるため、上記のごとく好ましい屈折率を備えた散乱膜として素子に組み込むことが可能となる。
 また、図6はガラス基板などの基板8の光射出面側に散乱膜7を形成した有機電界発光素子100の一例を示している。ガラス基板8の光射出面側に散乱膜7を備えた有機電界発光素子100は、ガラス基板8と大気との界面で生じる発光光の取り出し損失を抑制することができる。この時に、散乱膜7の屈折率がガラス基板8の屈折率(約1.5)と同等か、又はより高い場合には、発光光は界面で反射されることなく全量が散乱膜中に入射し、光取り出し効率を得ることができる。
<空隙について>
 本発明のコーティング用組成物から得られる光散乱膜は、その表面および内部に空隙が形成された構造を有する。空隙について、その平均直径は、10~800nmである。より好ましい散乱特性を有する点で、その空隙の平均直径は、100~600nmが好ましい。
 また空隙の面積率については、2~40%が好ましい。この範囲であれば、膜としても物理的強度も維持でき、例えば有機電界発光素子の製造工程において、工程途中での破損を回避することができる。また、保存安定性にも優れている。
 本発明の光散乱膜では、空隙、すなわち空気が充填された空間が散乱体として機能している。空気(屈折率=1.0)と金属酸化物粒子とポリシラン化合物の混合物との大きな屈折率差により、高いヘイズ、すなわち高い散乱特性を得ることができる。
 空隙が形成される機構は明かではないが、塗布され溶媒が乾燥していく過程において、金属酸化物粒子とポリシラン化合物の混合物は気泡を内在しつつ溶媒と相分離しながら凝集、結合して空隙を形成するものと推測される。よって、空隙の平均直径、空隙の体積率等は、組成物として使用するポリシラン化合物の分子量、金属酸化物の平均直径、ポリシラン化合物と金属酸化物の混合比、カーバメート化合物の種類や存在比等により制御できる。
 また、散乱体が空隙であるために、空気と置換することにより任意の化学種を充填することが可能である。例えば、当該散乱膜を形成した後に、任意の溶液あるいは分散液を重ねて塗布する方法、又は含浸する方法によって、空隙に任意の化学種を充填させることができる。
 さらには空隙を任意の屈折率を有する化学種に置換することにより、散乱特性を調整したり、蛍光体等の発色化学種と置換したりすることも可能である。それにより発色特性を調整したりする応用が可能となる。また、多孔質膜であることを利用して吸着体としての利用、あるいは触媒等の機能性物質の担持体としての利用も可能である。
 また、当該散乱膜の上に、任意の被覆層を形成しても良い。例えば、散乱膜を有機電界発光素子の光取り出し膜として利用する際には、最表面の平滑性、耐溶剤性、耐酸、耐アルカリ性などが要求される場合がある。当該散乱膜に要求特性を補う目的で被覆層を形成することがある。この被覆層の屈折率は、界面での発光光の反射を抑制するために、当該散乱膜と同等かより高いことが好ましい。
 以下に、本発明の散乱膜を含む、有機電界発光素子、有機EL表示装置及び有機EL照明装置の実施態様を、図5を参照して詳細に説明するが、本発明はその要旨を超えない限り、これらの内容により限定されるものではない。なお本発明のコーティング用組成物は、図5に示すように、基板8上に塗布により散乱膜7として層状に形成され、基板8と陽極6の間に配される。
V.有機電界発光素子
 (基板)
 基板8は、有機電界発光素子100の支持体となるものであり、通常、石英やガラスの板、金属板や金属箔、プラスチックフィルムやシート等が用いられる。これらのうち、ガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホン、ポリイミド等の透明な合成樹脂の板またはフィルムが好ましい。基板8は、外気による有機電界発光素子の劣化が起こり難いことからガスバリア性の高い材質とするのが好ましい。このため、特に合成樹脂製の基板等のようにガスバリア性の低い材質を用いる場合は、基板8の少なくとも片面に緻密なシリコン酸化膜等を設けてガスバリア性を下げるのが好ましい。
 (陽極)
 陽極6は、発光層3側の層に正孔を注入する機能を担う。陽極6は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属;インジウム及び/又はスズの酸化物等の金属酸化物;ヨウ化銅等のハロゲン化金属;カーボンブラック及びポリ(3-メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子等により構成される。陽極6の形成は、通常、スパッタリング法、真空蒸着法等の乾式法により行われることが多い。また、銀等の金属微粒子、ヨウ化銅等の微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末等を用いて陽極を形成する場合には、適当なバインダー樹脂溶液に分散させて、基板8上に塗布することにより形成することもできる。また、陽極6を導電性高分子で構成する場合は、電解重合により直接基板上に薄膜を形成したり、基板上に導電性高分子を塗布して陽極を形成することもできる(Appl.Phys.Lett.,60巻,2711頁,1992年)。
 陽極6は、通常、単層構造であるが、適宜、積層構造としてもよい。陽極6が積層構造である場合、1層目の陽極上に異なる導電材料を積層してもよい。陽極6の厚みは、必要とされる透明性と材質等に応じて、決めればよい。特に高い透明性が必要とされる場合は、可視光の透過率が60%以上となる厚みが好ましく、80%以上となる厚みが更に好ましい。陽極6の厚みは、通常5nm以上、好ましくは10nm以上であり、また、通常1000nm以下、好ましくは500nm以下とするのが好ましい。一方、透明性が不要な場合は、陽極6の厚みは必要な強度等に応じて任意に厚みとすればよく、この場合、陽極は基板と同一の厚みでもよい。
 陽極6の表面に成膜を行う場合は、成膜前に、紫外線+オゾン、酸素プラズマ、アルゴンプラズマ等の処理を施すことにより、陽極上の不純物を除去すると共に、そのイオン化ポテンシャルを調整して正孔注入性を向上させておくのが好ましい。
 (正孔注入層)
 陽極6側から発光層3側に正孔を輸送する機能を担う層は、通常、正孔注入輸送層又は正孔輸送層と呼ばれる。そして、陽極6側から発光層3側に正孔を輸送する機能を担う層が2層以上ある場合に、より陽極側に近い方の層を正孔注入層1と呼ぶことがある。正孔注入層1は、陽極6から発光層6側に正孔を輸送する機能を強化する点で、用いることが好ましい。正孔注入層1を用いる場合、通常、正孔注入層1は、陽極6上に形成される。
 正孔注入層1の膜厚は、通常1nm以上、好ましくは5nm以上、また、通常1000nm以下、好ましくは500nm以下である。
 正孔注入層1の形成方法は、真空蒸着法でも、湿式成膜法でもよい。成膜性が優れる点では、湿式成膜法により形成することが好ましい。
 正孔注入層1は、正孔輸送性化合物を含むことが好ましく、正孔輸送性化合物と電子受容性化合物とを含むことがより好ましい。更には、正孔注入層中にカチオンラジカル化合物を含むことが好ましく、カチオンラジカル化合物と正孔輸送性化合物とを含むことが特に好ましい。
 (正孔輸送性化合物)
 正孔注入層形成用組成物は、通常、正孔注入層1となる正孔輸送性化合物を含有する。また、湿式成膜法の場合は、通常、更に溶剤も含有する。正孔注入層形成用組成物は、正孔輸送性が高く、注入された正孔を効率よく輸送できるのが好ましい。このため、正孔移動度が大きく、トラップとなる不純物が製造時や使用時等に発生し難いのが好ましい。また、安定性に優れ、イオン化ポテンシャルが小さく、可視光に対する透明性が高いことが好ましい。特に、正孔注入層1が発光層3と接する場合は、発光層からの発光を消光しないものや発光層とエキサイプレックスを形成して、発光効率を低下させないものが好ましい。
 正孔輸送性化合物としては、陽極6から正孔注入層1への電荷注入障壁の観点から、4.5eV~6.0eVのイオン化ポテンシャルを有する化合物が好ましい。正孔輸送性化合物の例としては、芳香族アミン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、オリゴチオフェン系化合物、ポリチオフェン系化合物、ベンジルフェニル系化合物、フルオレン基で3級アミンを連結した化合物、ヒドラゾン系化合物、シラザン系化合物系化合物、キナクリドン系化合物等が挙げられる。
 上述の例示化合物のうち、非晶質性及び可視光透過性の点から、芳香族アミン化合物が好ましく、芳香族三級アミン化合物が特に好ましい。ここで、芳香族三級アミン化合物とは、芳香族三級アミン構造を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。
 芳香族三級アミン化合物の種類は、特に制限されないが、表面平滑化効果により均一な発光を得やすい点から、重量平均分子量が1000以上1000000以下の高分子化合物(繰り返し単位が連なる重合型化合物)を用いるのが好ましい。芳香族三級アミン高分子化合物の好ましい例としては、下記式(I)で表される繰り返し単位を有する高分子化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(式(I)中、Ar及びArは、それぞれ独立して、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。Ar~Arは、それぞれ独立して、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。Yは、下記の連結基群の中から選ばれる連結基を表す。また、Ar~Arのうち、同一のN原子に結合する二つの基は互いに結合して環を形成してもよい。
Figure JPOXMLDOC01-appb-C000002
(上記各式中、Ar~Ar16は、それぞれ独立して、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。R及びRは、それぞれ独立して、水素原子又は任意の置換基を表す。)
 Ar~Ar16の芳香族炭化水素基及び芳香族複素環基としては、高分子化合物の溶解性、耐熱性、正孔注入輸送性の点から、ベンゼン環、ナフタレン環、フェナントレン環、チオフェン環、ピリジン環由来の基が好ましく、ベンゼン環、ナフタレン環由来の基がさらに好ましい。
 式(I)で表される繰り返し単位を有する芳香族三級アミン高分子化合物の具体例としては、国際公開第2005/089024号に記載のもの等が挙げられる。
 (電子受容性化合物)
 正孔注入層1には、正孔輸送性化合物の酸化により、正孔注入層の導電率を向上させることができるため、電子受容性化合物を含有していることが好ましい。
 電子受容性化合物としては、酸化力を有し、上述の正孔輸送性化合物から一電子受容する能力を有する化合物が好ましく、具体的には、電子親和力が4eV以上である化合物が好ましく、電子親和力が5eV以上である化合物が更に好ましい。
 このような電子受容性化合物としては、例えば、トリアリールホウ素化合物、ハロゲン化金属、ルイス酸、有機酸、オニウム塩、アリールアミンとハロゲン化金属との塩、アリールアミンとルイス酸との塩よりなる群から選ばれる1種又は2種以上の化合物等が挙げられる。具体的には、4-イソプロピル-4’-メチルジフェニルヨードニウムテトラキス(ペンダフルオロフェニル)ボラート、トリフェニルスルホニウムテトラフルオロボラート等の有機基の置換したオニウム塩(国際公開2005/089024号);塩化鉄(III)(日本国特開平11-251067号公報)、ペルオキソ二硫酸アンモニウム等の高原子価の無機化合物;テトラシアノエチレン等のシアノ化合物;トリス(ペンダフルオロフェニル)ボラン(日本国特開2003-31365号公報)等の芳香族ホウ素化合物;フラーレン誘導体及びヨウ素等が挙げられる。
 (カチオンラジカル化合物)
 カチオンラジカル化合物としては、正孔輸送性化合物から一電子を取り除いた化学種であるカチオンラジカルと、対アニオンとからなるイオン化合物が好ましい。但し、カチオンラジカルが正孔輸送性の高分子化合物由来である場合、カチオンラジカルは高分子化合物の繰り返し単位から一電子取り除いた構造となる。
 カチオンラジカルとしては、正孔輸送性化合物として前述した化合物から一電子取り除いた化学種であることが好ましい。正孔輸送性化合物として好ましい化合物から一電子取り除いた化学種であることが、非晶質性、可視光の透過率、耐熱性、及び溶解性などの点から好適である。
 ここで、カチオンラジカル化合物は、前述の正孔輸送性化合物と電子受容性化合物を混合することにより生成させることができる。即ち、前述の正孔輸送性化合物と電子受容性化合物とを混合することにより、正孔輸送性化合物から電子受容性化合物へと電子移動が起こり、正孔輸送性化合物のカチオンラジカルと対アニオンとからなるカチオンイオン化合物が生成する。
 PEDOT/PSS(Adv.Mater.,2000年,12巻,481頁)やエメラルジン塩酸塩(J.Phys.Chem.,1990年,94巻,7716頁)等の高分子化合物由来のカチオンラジカル化合物は、酸化重合(脱水素重合)することによっても生成する。
 ここでいう酸化重合は、モノマーを酸性溶液中で、ペルオキソ二硫酸塩等を用いて化学的に、又は、電気化学的に酸化するものである。この酸化重合(脱水素重合)の場合、モノマーが酸化されることにより高分子化されるとともに、酸性溶液由来のアニオンを対アニオンとする、高分子の繰り返し単位から一電子取り除かれたカチオンラジカルが生成する。
 <湿式成膜法による正孔注入層の形成>
 湿式成膜法により正孔注入層を形成する場合、通常、正孔注入層となる材料を可溶な溶剤(正孔注入層用溶剤)と混合して成膜用の組成物(正孔注入層形成用組成物)を調製し、この正孔注入層形成用組成物を正孔注入層の下層に該当する層(通常は、陽極)上に塗布して成膜し、乾燥させることにより形成させる。
 正孔注入層形成用組成物中における正孔輸送性化合物の濃度は、本発明の効果を著しく損なわない限り任意であるが、膜厚の均一性の点では、低い方が好ましく、また、一方、正孔注入層に欠陥が生じ難い点では、高い方が好ましい。具体的には、0.01重量%以上であるのが好ましく、0.1重量%以上であるのが更に好ましく、0.5重量%以上であるのが特に好ましく、また、一方、70重量%以下であるのが好ましく、60重量%以下であるのが更に好ましく、50重量%以下であるのが特に好ましい。
 溶剤としては、例えば、エーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤、アミド系溶剤などが挙げられる。
 エーテル系溶剤としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル及び1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール等の芳香族エーテル等が挙げられる。
 エステル系溶剤としては、例えば、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル等が挙げられる。
 芳香族炭化水素系溶剤としては、例えば、トルエン、キシレン、シクロヘキシルベンゼン、3-イソプロピルビフェニル、1,2,3,4-テトラメチルベンゼン、1,4-ジイソプロピルベンゼン、シクロヘキシルベンゼン、メチルナフタレン等が挙げられる。アミド系溶剤としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等が挙げられる。
 これらの他、ジメチルスルホキシド等も用いることができる。
 正孔注入層1の湿式成膜法による形成は、通常、正孔注入層形成用組成物を調製後に、これを、正孔注入層1の下層に該当する層(通常は、陽極6)上に塗布成膜し、乾燥することにより行われる。
 正孔注入層1は、通常、成膜後に、加熱や減圧乾燥等により塗布膜を乾燥させる。
 <真空蒸着法による正孔注入層の形成>
 真空蒸着法により正孔注入層1を形成する場合には、通常、正孔注入層1の構成材料(前述の正孔輸送性化合物、電子受容性化合物等)の1種類又は2種類以上を真空容器内に設置された坩堝に入れ(2種類以上の材料を用いる場合は、通常各々を別々の坩堝に入れ)、真空容器内を真空ポンプで10-4Pa程度まで排気した後、坩堝を加熱して(2種類以上の材料を用いる場合は、通常各々の坩堝を加熱して)、坩堝内の材料の蒸発量を制御しながら蒸発させ(2種類以上の材料を用いる場合は、通常各々独立に蒸発量を制御しながら蒸発させ)、坩堝に向き合って置かれた基板上の陽極上に正孔注入層を形成させる。なお、2種類以上の材料を用いる場合は、それらの混合物を坩堝に入れ、加熱、蒸発させて正孔注入層を形成することもできる。
 蒸着時の真空度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1×10-6Torr(0.13×10-4Pa)以上、9.0×10-6Torr(12.0×10-4Pa)以下である。蒸着速度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1A/秒以上、5.0A/秒以下である。蒸着時の成膜温度は、本発明の効果を著しく損なわない限り限定されないが、好ましくは10℃以上、50℃以下で行われる。
 なお、正孔注入層1は、後述の正孔輸送層と同様に架橋されていてもよい。
 (正孔輸送層)
 正孔輸送層2は、陽極6側から発光層3側に正孔を輸送する機能を担う層である。正孔輸送層2は、本発明の有機電界発光素子100では、必須の層では無いが、陽極6から発光層3に正孔を輸送する機能を強化する点では、この層を用いるのが好ましい。正孔輸送層2を用いる場合、通常、正孔輸送層2は、陽極6と発光層3の間に形成される。また、上述の正孔注入層1がある場合は、正孔注入層1と発光層3の間に形成される。
 正孔輸送層2の膜厚は、通常5nm以上、好ましくは10nm以上であり、また、一方、通常300nm以下、好ましくは100nm以下である。
 正孔輸送層2の形成方法は、真空蒸着法でも、湿式成膜法でもよい。成膜性が優れる点では、湿式成膜法により形成することが好ましい。
 正孔輸送層2は、通常、正孔輸送層となる正孔輸送性化合物を含有する。正孔輸送層に含まれる正孔輸送性化合物としては、特に、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニルで代表される、2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(日本国特開平5-234681号公報)、4,4’,4”-トリス(1-ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン化合物(J.Lumin.,72-74巻、985頁、1997年)、トリフェニルアミンの四量体から成る芳香族アミン化合物(Chem.Commun.,2175頁、1996年)、2,2’,7,7’-テトラキス-(ジフェニルアミノ)-9,9’-スピロビフルオレン等のスピロ化合物(Synth.Metals,91巻、209頁、1997年)、4,4’-N,N’-ジカルバゾールビフェニルなどのカルバゾール誘導体などが挙げられる。また、例えばポリビニルカルバゾール、ポリビニルトリフェニルアミン(日本国特開平7-53953号公報)、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン(Polym.Adv.Tech.,7巻、33頁、1996年)等も好ましく使用できる。
 <湿式成膜法による正孔輸送層の形成>
 湿式成膜法で正孔輸送層2を形成する場合は、通常、上述の正孔注入層1を湿式成膜法で形成する場合と同様にして、正孔注入層形成用組成物の代わりに正孔輸送層形成用組成物を用いて形成させる。
 湿式成膜法で正孔輸送層2を形成する場合は、通常、正孔輸送層形成用組成物は、更に溶剤を含有する。正孔輸送層形成用組成物に用いる溶剤は、上述の正孔注入層形成用組成物で用いる溶剤と同様の溶剤を使用することができる。
 正孔輸送層形成用組成物中における正孔輸送性化合物の濃度は、正孔注入層形成用組成物中における正孔輸送性化合物の濃度と同様の範囲とすることができる。
 正孔輸送層の湿式成膜法による形成は、前述の正孔注入層成膜法と同様に行うことができる。
 <真空蒸着法による正孔輸送層の形成>
 真空蒸着法で正孔輸送層2を形成する場合についても、通常、上述の正孔注入層1を真空蒸着法で形成する場合と同様にして、正孔注入層形成用組成物の代わりに正孔輸送層形成用組成物を用いて形成させることができる。蒸着時の真空度、蒸着速度及び温度などの成膜条件などは、前記正孔注入層の真空蒸着時と同様の条件で成膜することができる。
 (発光層)
 発光層3は、一対の電極間に電界が与えられた時に、陽極から注入される正孔と陰極から注入される電子が再結合することにより励起され、発光する機能を担う層である。発光層3は、陽極6と陰極5の間に形成される層であり、発光層3は、陽極6の上に正孔注入層1がある場合は、正孔注入層1と陰極5の間に形成され、陽極6の上に正孔輸送層2がある場合は、正孔輸送層2と陰極5の間に形成される。
 発光層3の膜厚は、本発明の効果を著しく損なわない限り任意であるが、膜に欠陥が生じ難い点では厚い方が好ましく、また、一方、薄い方が低駆動電圧としやすい点で好ましい。このため、3nm以上であるのが好ましく、5nm以上であるのが更に好ましく、また、一方、通常200nm以下であるのが好ましく、100nm以下であるのが更に好ましい。
 発光層3は、少なくとも、発光の性質を有する材料(発光材料)を含有するとともに、好ましくは、電荷輸送性を有する材料(電荷輸送性材料)とを含有する。
 (発光材料)
 発光材料は、所望の発光波長で発光し、本発明の効果を損なわない限り特に制限はなく、公知の発光材料を適用可能である。発光材料は、蛍光発光材料でも、燐光発光材料でもよいが、発光効率が良好である材料が好ましく、内部量子効率の観点から燐光発光材料が好ましい。
 蛍光発光材料としては、例えば、以下の材料が挙げられる。
 青色発光を与える蛍光発光材料(青色蛍光発光材料)としては、例えば、ナフタレン、ペリレン、ピレン、アントラセン、クマリン、クリセン、p-ビス(2-フェニルエテニル)ベンゼン及びそれらの誘導体等が挙げられる。
 緑色発光を与える蛍光発光材料(緑色蛍光発光材料)としては、例えば、キナクリドン誘導体、クマリン誘導体、Al(CNO)などのアルミニウム錯体等が挙げられる。
 黄色発光を与える蛍光発光材料(黄色蛍光発光材料)としては、例えば、ルブレン、ペリミドン誘導体等が挙げられる。
 赤色発光を与える蛍光発光材料(赤色蛍光発光材料)としては、例えば、DCM(4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、アザベンゾチオキサンテン等が挙げられる。
 また、燐光発光材料としては、例えば、長周期型周期表(以下、特に断り書きの無い限り「周期表」という場合には、長周期型周期表を指すものとする。)の第7~11族から選ばれる金属を含む有機金属錯体等が挙げられる。周期表の第7~11族から選ばれる金属として、好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金等が挙げられる。
 有機金属錯体の配位子としては、(ヘテロ)アリールピリジン配位子、(ヘテロ)アリールピラゾール配位子などの(ヘテロ)アリール基とピリジン、ピラゾール、フェナントロリンなどが連結した配位子が好ましく、特にフェニルピリジン配位子、フェニルピラゾール配位子が好ましい。ここで、(ヘテロ)アリールとは、アリール基またはヘテロアリール基を表す。
 好ましい燐光発光材料として、具体的には、例えば、トリス(2-フェニルピリジン)イリジウム、トリス(2-フェニルピリジン)ルテニウム、トリス(2-フェニルピリジン)パラジウム、ビス(2-フェニルピリジン)白金、トリス(2-フェニルピリジン)オスミウム、トリス(2-フェニルピリジン)レニウム等のフェニルピリジン錯体及びオクタエチル白金ポルフィリン、オクタフェニル白金ポルフィリン、オクタエチルパラジウムポルフィリン、オクタフェニルパラジウムポルフィリン等のポルフィリン錯体等が挙げられる。
 高分子系の発光材料としては、ポリ(9,9-ジオクチルフルオレン-2,7-ジイル)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(4,4’-(N-(4-sec-ブチルフェニル))ジフェニルアミン)]、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(1,4-ベンゾ-2{2,1’-3}-トリアゾール)]などのポリフルオレン系材料、ポリ[2-メトキシ-5-(2-ヘチルヘキシルオキシ)-1,4-フェニレンビニレン]などのポリフェニレンビニレン系材料が挙げられる。
 (電荷輸送性材料)
 電荷輸送性材料は、正電荷(正孔)又は負電荷(電子)輸送性を有する材料であり、本発明の効果を損なわない限り、特に制限はなく、公知の発光材料を適用可能である。
 電荷輸送性材料は、従来、有機電界発光素子の発光層に用いられている化合物等を用いることができ、特に、発光層のホスト材料として使用されている化合物が好ましい。
 電荷輸送性材料としては、具体的には、芳香族アミン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、オリゴチオフェン系化合物、ポリチオフェン系化合物、ベンジルフェニル系化合物、フルオレン基で3級アミンを連結した化合物、ヒドラゾン系化合物、シラザン系化合物、シラナミン系化合物、ホスファミン系化合物、キナクリドン系化合物等の正孔注入層の正孔輸送性化合物として例示した化合物等が挙げられる他、アントラセン系化合物、ピレン系化合物、カルバゾール系化合物、ピリジン系化合物、フェナントロリン系化合物、オキサジアゾール系化合物、シロール系化合物等の電子輸送性化合物等が挙げられる。
 また、例えば、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニルで代表わされる2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(日本国特開平5-234681号公報)、4,4’,4”-トリス(1-ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン系化合物(J.Lumin.,72-74巻、985頁、1997年)、トリフェニルアミンの四量体から成る芳香族アミン系化合物(Chem.Commun.,2175頁、1996年)、2,2’,7,7’-テトラキス-(ジフェニルアミノ)-9,9’-スピロビフルオレン等のフルオレン系化合物(Synth.Metals,91巻、209頁、1997年)、4,4’-N,N’-ジカルバゾールビフェニルなどのカルバゾール系化合物等の正孔輸送層の正孔輸送性化合物として例示した化合物等も好ましく用いることができる。また、この他、2-(4-ビフェニリル)-5-(p-ターシャルブチルフェニル)-1,3,4-オキサジアゾール(tBu-PBD)、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール(BND)などのオキサジアゾール系化合物、2,5-ビス(6’-(2’,2”-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロール(PyPySPyPy)等のシロール系化合物、バソフェナントロリン(BPhen)、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP、バソクプロイン)などのフェナントロリン系化合物等も挙げられる。
 <湿式成膜法による発光層の形成>
 発光層3の形成方法は、真空蒸着法でも、湿式成膜法でもよいが、成膜性に優れることから、湿式成膜法が好ましく、スピンコート法及びインクジェット法が更に好ましい。湿式成膜法により発光層を形成する場合は、通常、上述の正孔注入層を湿式成膜法で形成する場合と同様にして、正孔注入層形成用組成物の代わりに、発光層となる材料を可溶な溶剤(発光層用溶剤)と混合して調製した発光層形成用組成物を用いて形成させる。
 溶剤としては、例えば、正孔注入層の形成について挙げたエーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤、アミド系溶剤の他、アルカン系溶剤、ハロゲン化芳香族炭化水系溶剤、脂肪族アルコール系溶剤、脂環族アルコール系溶剤、脂肪族ケトン系溶剤及び脂環族ケトン系溶剤などが挙げられる。以下に溶媒の具体例を挙げるが、本発明の効果を損なわない限り、これらに限定されるものではない。
 例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル系溶剤;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール、ジフェニルエーテル等の芳香族エーテル系溶剤;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル系溶剤;トルエン、キシレン、メチシレン、シクロヘキシルベンゼン、テトラリン、3-イロプロピルビフェニル、1,2,3,4-テトラメチルベンゼン、1,4-ジイソプロピルベンゼン、シクロヘキシルベンゼン、メチルナフタレン等の芳香族炭化水素系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶剤;n-デカン、シクロヘキサン、エチルシクロヘキサン、デカリン、ビシクロヘキサン等のアルカン系溶剤;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素系溶剤;ブタノール、ヘキサノール等の脂肪族アルコール系溶剤;シクロヘキサノール、シクロオクタノール等の脂環族アルコール系溶剤;メチルエチルケトン、ジブチルケトン等の脂肪族ケトン系溶剤;シクロヘキサノン、シクロオクタノン、フェンコン等の脂環族ケトン系溶剤等が挙げられる。これらのうち、アルカン系溶剤及び芳香族炭化水素系溶剤が特に好ましい。
 (正孔阻止層)
 発光層3と後述の電子注入層4との間に、正孔阻止層を設けてもよい(図示せず)。正孔阻止層は、発光層3の上に、発光層3の陰極5側の界面に接するように積層される層である。
 この正孔阻止層は、陽極6から移動してくる正孔を陰極5に到達するのを阻止する役割と、陰極5から注入された電子を効率よく発光層3の方向に輸送する役割とを有する。正孔阻止層を構成する材料に求められる物性としては、電子移動度が高く正孔移動度が低いこと、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いことが挙げられる。
 このような条件を満たす正孔阻止層の材料としては、例えば、ビス(2-メチル-8-キノリノラト)(フェノラト)アルミニウム、ビス(2-メチル-8-キノリノラト)(トリフェニルシラノラト)アルミニウム等の混合配位子錯体、ビス(2-メチル-8-キノラト)アルミニウム-μ-オキソ-ビス-(2-メチル-8-キノリラト)アルミニウム二核金属錯体等の金属錯体、ジスチリルビフェニル誘導体等のスチリル化合物(日本国特開平11-242996号公報)、3-(4-ビフェニルイル)-4-フェニル-5(4-tert-ブチルフェニル)-1,2,4-トリアゾール等のトリアゾール誘導体(日本国特開平7-41759号公報)、バソクプロイン等のフェナントロリン誘導体(日本国特開平10-79297号公報)などが挙げられる。更に、国際公開第2005/022962号に記載の2,4,6位が置換されたピリジン環を少なくとも1個有する化合物も、正孔阻止層の材料として好ましい。
 正孔阻止層の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成できる。
 正孔阻止層の膜厚は、本発明の効果を著しく損なわない限り任意であるが、通常0.3nm以上、好ましくは0.5nm以上であり、また、通常100nm以下、好ましくは50nm以下である。
 (電子輸送層)
 電子輸送層は素子の電流効率をさらに向上させることを目的として、発光層3と電子注入層4との間に設けられる(図示せず)。
 電子輸送層は、電界を与えられた電極間において陰極から注入された電子を効率よく発光層3の方向に輸送することができる化合物より形成される。電子輸送層に用いられる電子輸送性化合物としては、陰極又は電子注入層からの電子注入効率が高く、かつ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物であることが必要である。
 電子輸送層に用いる電子輸送性化合物は、通常、陰極又は電子注入層からの電子注入効率が高く、注入された電子を効率よく輸送できる化合物が好ましい。電子輸送性化合物としては、具体的には、例えば、8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体(日本国特開昭59-194393号公報)、10-ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3-ヒドロキシフラボン金属錯体、5-ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5645948号明細書)、キノキサリン化合物(日本国特開平6-207169号公報)、フェナントロリン誘導体(日本国特開平5-331459号公報)、2-t-ブチル-9,10-N,N’-ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。
 電子輸送層の膜厚は、通常1nm以上、好ましくは5nm以上であり、また、一方、通常300nm以下、好ましくは100nm以下である。
 電子輸送層は、前記と同様にして湿式成膜法、或いは真空蒸着法により正孔阻止層上に積層することにより形成される。通常は、真空蒸着法が用いられる。
 (電子注入層)
 電子注入層4は、陰極5から注入された電子を効率よく、電子輸送層又は発光層3へ注入する役割を果たす。
 電子注入を効率よく行うには、電子注入層4を形成する材料は、仕事関数の低い金属が好ましい。例としては、ナトリウムやセシウム等のアルカリ金属、バリウムやカルシウムなどのアルカリ土類金属等が用いられる。その膜厚は通常0.1nm以上、5nm以下が好ましい。
 更に、バソフェナントロリン等の含窒素複素環化合物や8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される有機電子輸送材料に、ナトリウム、カリウム、セシウム、リチウム、ルビジウム等のアルカリ金属をドープする(日本国特開平10-270171号公報、日本国特開2002-100478号公報、日本国特開2002-100482号公報などに記載)ことも、電子注入・輸送性が向上し優れた膜質を両立させることが可能となるため好ましい。
 電子注入層4の膜厚は通常、5nm以上、好ましくは10nm以上、また、通常200nm以下、好ましくは100nm以下の範囲である。
 電子注入層4は、湿式成膜法或いは真空蒸着法により、発光層又はその上の正孔阻止層上に積層することにより形成される。
 湿式成膜法の場合の詳細は、前述の発光層の場合と同様である。
 (陰極)
 陰極5は、発光層3側の層(電子注入層又は発光層など)に電子を注入する役割を果たす。陰極5の材料としては、前記陽極6に使用される材料を用いることが可能であるが、効率良く電子注入を行なう上では、仕事関数の低い金属を用いることが好ましく、例えば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の金属又はそれらの合金などが用いられる。具体例としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金等の低仕事関数の合金電極などが挙げられる。
 素子の安定性の点では、陰極5の上に、仕事関数が高く、大気に対して安定な金属層を積層して、低仕事関数の金属からなる陰極を保護するのが好ましい。積層する金属としては、例えば、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が挙げられる。陰極の膜厚は通常、陽極と同様である。
 (その他の層)
 本発明の有機電界発光素子100は、本発明の効果を著しく損なわなければ、更に他の層を有していてもよい。すなわち、陽極6と陰極5との間に、上述の他の任意の層を有していてもよい。
 <その他の素子構成>
 なお、上述の説明とは逆の構造、即ち、基板8上に陰極5、電子注入層4、発光層3、正孔注入層1、陽極6の順に積層することも可能である。
 <その他>
 本発明の有機電界発光素子100を有機電界発光装置に適用する場合は、単一の有機電界発光素子として用いても、複数の有機電界発光素子がアレイ状に配置された構成にして用いても、陽極と陰極がX-Yマトリックス状に配置された構成にして用いてもよい。
VI.有機EL表示装置
 本発明の有機EL表示装置は、上述の本発明の有機電界発光素子を用いたものである。本発明の有機EL表示装置の型式や構造については特に制限はなく、本発明の有機電界発光素子を用いて常法に従って組み立てることができる。
 例えば、「有機ELディスプレイ」(オーム社、平成16年8月20日発行、時任静士、安達千波矢、村田英幸著)に記載されているような方法で、本発明の有機EL表示装置を形成することができる。
VII.有機EL照明
 本発明の有機EL照明は、上述の本発明の有機電界発光素子を用いたものである。本発明の有機EL照明の型式や構造については特に制限はなく、本発明の有機電界発光素子を用いて常法に従って組み立てることができる。
 以下、製造例、実施例および比較例によって、本発明をさらに具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例により限定されるものではない。
1.Haze、全光線透過率の測定
 散乱膜としての散乱層および光取り出し膜のHaze値、全光線透過率は、スガ試験機(株)製ヘーズコンピュータ-HZ-2型を用いて、D65光源を光源として測定した。ヘーズコンピューターの0、100値合わせはサンプルが入っていない状態(すなわち、空気のみがある状態)で行った。したがって、後述する散乱層および光取り出し膜のHaze値と全光線透過率は、ガラス基板(日本電気硝子(株)製ガラス基板「OA-10G」(0.7mm厚))のHaze特性、全光線透過率特性を含めた値である。
 なお、このガラス基板のみ単独で測定した場合のHazeは0.00、全光線透過率は91.8%である。
2.膜厚、表面粗さRaの測定
 散乱層および光取り出し膜の膜厚は、KLA-Tencor Japan社製の段差・表面粗さ・微細形状測定装置(「P-15型」)を用いて測定した。表面粗さは2000μm間における算術平均粗さRaを測定した。
3.走査型電子顕微鏡(SEM)による表面観察およびEDX分析
 サンプル片をAu-Pd蒸着後、日立製走査型電子顕微鏡S-4100型を用いて加速電圧15kVでSEM像を測定した。
 EDX(エネルギー分散型X線分光法)分析は、Bruker社Quantax200(検出器:XFlash4010)にて測定した。
4.金属酸化物分散液の平均粒径の測定
 金属酸化物分散液の平均粒径は、大塚電子株式会社製の濃厚系粒径アナライザー(FPAR-1000型、動的光散乱法)を用いて測定した。一次粒径は製造者の公表値を利用した。
5.ポリシランの分子量
 使用したポリシラン化合物に付随する製造者の試験成績表の値を利用した。
 大阪ガスケミカル(株)製ポリシラン「オグソールSI-20-10(改)」の分子量(MwおよびMn)は、1200、900であった。同「オグソールSI-20-10」の分子量(MwおよびMn)は、1500、800であった。同「オグソールSI-10-10」の分子量(MwおよびMn)は、13800、1900であった。同「オグソールSI-10-20」の分子量(MwおよびMn)は、1600、1100であった。
 また、同「オグソールSI-30-10」はデカフェニルシクロペンタシラン(CAS番号1770-54-3)であるから分子量は911である。
6.ポリシラン化合物の置換基モル比率(メチル基、フェニル基比率)の測定
 ポリシランを重クロロホルムに溶解し、Bruker社NMR(400MHz)にてプロトンNMRを測定して定量した。
 大阪ガスケミカル(株)製ポリシラン「オグソールSI-20-10(改)」の置換基モル比率(メチル基:フェニル基)は、約1:3であった。同「オグソールSI-20-10」の置換基モル比率(メチル基:フェニル基)は、約1:10であった。同「オグソールSI-10-10」の置換基モル比率(メチル基:フェニル基)は、約1:1であった。同「オグソールSI-10-20」の置換基モル比率(メチル基:フェニル基)は、約1:2であった。
7.金属酸化物分散液中の分散剤成分、および市販の分散剤の構造同定
 金属酸化物分散液の溶媒を蒸発除去し、重クロロホルム/重DMSO溶媒で再溶解してBruker社NMR(400MHz)にてプロトンNMRを測定し、一次構造を同定した。
 ビックケミー・シャパン社製酸化亜鉛ナノ粒子分散液「NANOBYK-3841」の分散剤成分の構造は、ヘキサンメチレンジカーバメート、ブトキシポリプロピレングリコール、ポリカプロラクトンを含むことを確認した。
 御国色素(株)製酸化チタン粒子分散液「No.280」の分散剤成分の構造は、炭素数15~20のヒドロキシ不飽和脂肪酸のポリエステル(n=10以下)とN,N-ジメチルプロパンジアミンのアミド化物をさらに4級アンモニウム塩化したものを含むことを確認した。
 ビックケミー・シャパン社製分散剤「DISPERBYK-111」の構造は、ポリエチレングリコール、ポリカプロラクトン、リン酸エステルを含むことを確認した。
 ビックケミー・シャパン社製分散剤「BYK-9077」の構造は、ヘキサンメチレンジカーバメート、ブトキシポリプロピレングリコール、ポリカプロラクトンを含むことを確認した。
 なお、ZRPMA15WT%-E5、御国色素No.280及びNANOBYK-3812については、カーバメート化合物の存在が確認できなかった。
(実施例1)
<散乱層1の形成>
 大阪ガスケミカル(株)製ポリシラン「オグソールSI-20-10(改)」2.0gにプロピレングリコールモノメチルエーテルアセテート(以下、「PGMEA」と称す)8.0gを加えて撹拌下に溶解させた。この溶液を0.2μmPTEFフィルター(オートバイアル AV125EORG)でろ過して「SI-20-10(改)PGMEA溶液(20wt%)」を調製した。
 次いで、「SI-20-10(改)PGMEA溶液(20wt%)」1.0gにビックケミー・シャパン社製酸化亜鉛ナノ粒子分散液「NANOBYK-3841」(酸化亜鉛の一次粒径40nm、動的光散乱測定による平均粒径125nm、溶媒種:PEGMEA)2.0gを加えて、ペンシルミキサーを用いて1分間撹拌し、散乱層塗布液を調製した。
 この散乱層塗布液を、日本電気硝子(株)製ガラス基板「OA-10G」(37.5mm×25mm×0.7mm厚)の上に0.3mlのせ、スピンコート塗布した(スピンコータ-:ミカサ製1H-360S型、スピンコート回転数:500rpmで10秒間、後に1000rpmで30秒間)。この塗布基板をホットプレート上にて120℃で2分間の予備乾燥を行い、続けて350℃で30分間、本乾燥させた。その後、自然放冷させてガラス基板上に散乱層1を得た。
 この散乱層1を走査型電子顕微鏡(以下SEM)で観察したところ、表面像および断面像のいずれからも空隙が形成されていることが確認された(図1、図2参照)。図1に示した表面像から空隙の平均直径(10個あたりの算術平均値)を求めたところ、330nmであった。また同様に表面像から全面積に占める空隙の面積率を求めたところ、20.4%であった。
 また、この散乱層1の膜厚は0.85μm、Haze値は80.8、全光線透過率は71.9%であった。また、この塗膜の屈折率を、プリズムカプラー法を用いて計測したところ、2.357(633nm)であった。
(実施例2~4)
<散乱層2~4の形成>
 実施例1で調製した散乱層塗布液を用いて、実施例1と同様の条件でガラス基板上にスピンコート塗布を行い、ホットプレート上にて120℃で2分間の予備乾燥を行った。続けて本乾燥を220℃(実施例2)、170℃(実施例3)、または120℃(実施例4)で30分間行い、自然放冷してガラス基板上に散乱層2~4を得た。
 SEM観察によって、いずれの散乱層も表面および断面に空隙の形成が確認された。
(実施例5~11)
<散乱層5~11の形成>
 「SI-20-10(改)PGMEA溶液(20wt%)」および「NANOBYK-3841」の混合重量を下記の表1に記載に変更した以外は、実施例1記載の方法により散乱層5~8を得た。
 また、各銘柄のポリシランを溶媒に溶解して調製した「SI-10-10 PGMEA溶液(20wt%)」、「SI-10-20 PGMEA溶液(20wt%)」、「SI-30-10 テトラヒドロフラン(以下THFと称す)溶液(10wt%)」を用いて表1記載の混合比で散乱層塗布液を調製し、実施例1記載の方法によりそれぞれ散乱層9~11を得た。
 SEM観察によって、いずれの散乱層も表面および断面に空隙の形成が確認された。
(実施例12~15)
<散乱層12~15の形成>
 ビックケミー・シャパン社製酸化亜鉛ナノ粒子分散液「NANOBYK-3821」(酸化亜鉛の一次粒径20nm、動的光散乱による平均粒径98nm、溶媒種:PEGMEA)、同社製酸化アルミニウムナノ粒子分散液「NANOBYK-3610」(酸化アルミニウムの一次粒径20~25nm、動的光散乱による平均粒径110nm、溶媒種:PEGMEA)、および同社製酸化ケイ素ナノ粒子分散液「NANOBYK-3650」(酸化ケイ素の一次粒径20~25nm、動的光散乱による平均粒径は未測定、溶媒種:PEGMEAおよびメトキシプロパノール)を用いて表1記載の混合比で散乱層塗布液を調製し、実施例1記載の方法によりそれぞれ散乱層12~15を得た。
 SEM観察によって、いずれの散乱層も表面および断面に空隙の形成が確認された。
(比較例1)
<散乱層16の形成>
 実施例1で調製した散乱層塗布液に代えて「NANOBYK-3841」のみを使用した以外は、実施例1と同様の方法により、ガラス基板上に散乱層16を得た。SEMによる表面観察によって、散乱層16には空隙が形成されていないことが確認された(図3参照)。
(比較例2)
<散乱層17の形成>
 実施例1で調製した散乱層塗布液に代えて、「SI-20-10(改)PGMEA溶液(20wt%)」のみを使用した以外は、実施例1と同様の方法によりガラス基板上に散乱層17を得た。SEMによる表面観察によって、散乱層17には空隙が形成されていないことが確認された(図4参照)。
(比較例3~5)
<散乱層18~20の形成>
 CIKナノテック社製酸化ジルコニウムナノ粒子分散液「ZRPMA15WT%-E5」(酸化ジルコニウムの一次粒径20nm、動的光散乱による平均粒径58nm、溶媒種:PEGMEA)、御国色素(株)製酸化チタン粒子分散液「No.280」(酸化チタンの動的光散乱による平均粒径110nm、溶媒種:トルエン)、ビックケミー・シャパン社製酸化セリウムナノ粒子分散液「NANOBYK-3812」(酸化セリウムの一次粒径10nm、動的光散乱による平均粒径は未測定、溶媒種:芳香族フリーホワイトスピリット)を用いて表1記載の混合比で散乱層塗布液を調製し、実施例1記載の方法によりそれぞれ散乱層18~20を得た。
 SEMによる表面観察によって、散乱層18~20には空隙が形成されていないことが確認された。
Figure JPOXMLDOC01-appb-T000003
 散乱層1~20について、空隙の形成の有無、空隙の平均直径、空隙の面積率、膜厚、Haze値、全光線透過率、表面粗さ(Ra)を測定し、その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
(実施例16)
<分散液Aの調製>
 30ml蓋付きガラス瓶に石原産業(株)製の酸化チタン粉末「TTO-51(A)」(1次粒径10~30nm)1.20gにPEGMEA 4.74g、ビックケミ-・ジャパン製の分散剤「BYK-9077」0.24g、および0.5mmφジルコニアビーズ20gを取り、密栓して淺田鉄工製ペイントシェーカー(PC型)で4時間振とうして分散処理を行った。この分散液を200メッシュのスチール網でろ過し、ジルコニアビーズを除去して分散液Aを得た。この分散液の平均粒径は200nmであった。
<散乱層21の形成>
 次いで、「SI-20-10(改)PGMEA溶液(20wt%)」1.0gに分散液Aを3.6g加えて、ペンシルミキサーを用いて1分間撹拌し、散乱層塗布液を調製した。この散乱層塗布液を用いて実施例1に記載の方法で散乱層22を形成した。
(実施例17~20、比較例6)
<分散液B~Fの調製>
 金属酸化物粉末、分散剤を表3に変更した以外は、実施例16に記載の方法で分散液B~Fを調製した。
Figure JPOXMLDOC01-appb-T000005
<散乱層22~26の形成>
 表4記載の混合比で散乱層塗布液を調製し、それぞれ実施例1記載の方法で散乱層22~26を形成した。
 散乱層21~26について、空隙の形成の有無、空隙の平均直径、空隙の面積率を測定し、その結果を表4に示す。カーバメート化合物である「BYK-9077」分散剤を含む散乱層塗布液から形成された散乱層は、いずれも空隙の形成が見られ、カーバメート化合物を含まない散乱層塗布液から形成した散乱層は空隙の形成が見られなかった。
Figure JPOXMLDOC01-appb-T000006
(実施例21~24、比較例7)
<散乱層27~31の形成>
 散乱層に空隙の形成がみられない比較例2~6の散乱層塗布液に、カーバメート化合物として「BYK-9077」を表5の混合比で追加添加して、新たな散乱層塗布液を調製し、これを用いて実施例1記載の方法で散乱層27~31を形成した。
 散乱層27~31について、空隙の形成の有無、空隙の平均直径、空隙の面積率を測定し、その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000007
 表5の結果より、カーバメート化合物である「BYK-9077」分散剤を後から追加添加することでも、散乱層に空隙が形成される効果が得られることが確認された(実施例21~24)。一方、SI-20-10(改)PGMEA溶液(20wt%)のみを使用した比較例2の散乱層塗布液に、カーバメート化合物である「BYK-9077」分散剤を添加しても散乱層には空隙は形成されなかった(比較例7)。
(実施例25)
<有機電界発光素子の作製>
 以下の方法で、有機電界発光素子を作製した。なお、有機電界発光素子の構成は図5に示すものである。
 1.光取り出し膜Aの形成
 実施例1で作製したガラス基板8上の散乱層1に、CIKナノテック社製ルチル型酸化チタンナノ粒子分散液「15%RTiO0.02um高分散液」(酸化チタンの平均粒子径20nm、固形分濃度15%、溶媒:n-ブタノール/ジアセトンアルコール=80/20重量比)0.5mlをのせ、スピンコート塗布した(スピンコーター:ミカサ製1H-360S型、スピンコート回転数:500rpmで10秒間、後に1000rpmで30秒間)。この塗布基板をホットプレート上にて120℃で2分間の予備乾燥を行い、続けて350℃で30分間、本乾燥させた。その後、自然放冷させて、散乱層1に酸化チタンナノ粒子層が積層した散乱膜7としての「光取り出し膜A」を得た。
 2.陽極の形成
 上記の光取り出し膜Aの上に、陽極6として膜厚70nmのインジウム錫酸化物(ITO)からなる透明導電膜を形成した。
 3.基板の洗浄
 上記の陽極を形成したガラス基板を、横浜油脂工業(株)製セミクリーンL.G.Lの3%界面活性剤水溶液に浸漬させた状態で超音波洗浄機に10分間かけた後、純水によるすすぎを行い、風乾した。
 その後、風乾した基板をUVオゾン洗浄機にて1分間、UVオゾン洗浄を行った。
 4.開口バンクの形成
 昭和電工製SPCM-144を10.0g、新中村化学製NKオリゴU-6LPAを6.1g、チバジャパン製イルガキュア907を0.8g、プロピレングリコールモノメチルエーテルアセテートを22.1g混合し、ネガ型感光性樹脂用液を調整した。
 上記の陽極6上にネガ型感光性樹脂溶液をスピンコート塗布し、6mm×6mmの開口面積を有する遮光マスク越しに紫外線照射による露光を行った。テトラメチルアンモニウムハイドロオキサイド水溶液による現像を行った後、260℃熱風オーブン内で1時間バンクの焼成を行い、バンク壁面高さ1.4μm、開口面積6mm×6mmの開口バンク9を形成した。
 5.正孔注入層の形成
 以下に示す繰り返し単位を有する高分子化合物と4-イソプロピル-4-メチルジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボラートとを重量比100対20で混合し、混合物の濃度が2.4重量%となるよう安息香酸エチルを加え、加熱、溶解させて正孔注入層形成用組成物を調製した。
Figure JPOXMLDOC01-appb-C000008
 上記式中、nは3~100000の整数である。
 この正孔注入層形成用組成物を、大気雰囲気中で、前記開口バンク9で囲まれた陽極6上に、スピンコート塗布した(スピンコート回転数:500rpmで10秒間、後に1500rpmで30秒間)。この塗布膜を230℃のクリーンオーブン内で加熱して膜厚35nmの正孔注入層1を形成した。
 6.正孔輸送層の形成
 前記正孔注入層1の上に、正孔輸送層として以下に示す化合物を真空蒸着法により膜厚45nmで形成し、正孔輸送層2を形成した。
Figure JPOXMLDOC01-appb-C000009
 なお、正孔輸送層の蒸着以降から下記の<9.封止>が終了するまでは窒素雰囲気、もしくは真空雰囲気内での取扱いとし、酸素または水分との接触を避けることとした。
 7.発光層
 前記正孔輸送層2の上に、発光層3としてトリス(8-ヒドロキシキノリナート)アルミニウム(Alq)を真空蒸着法により膜厚60nmで形成した。
 8.電子注入層および陰極の形成
 前記発光層3上に、フッ化リチウム(LiF)を膜厚0.5nmとなるよう真空蒸着法によって蒸着して電子注入層4を形成した後に、アルミニウムを膜厚80nmとなるよう真空蒸着法によって蒸着して陰極5を形成した。
 9.封止
 引き続き、窒素グローブボックス中で、ザグリガラス(すなわち、凹状に加工されたガラス)11の凹部中央にシート状脱水材10を貼り付け、外周部に光硬化性樹脂12を塗布した。このザグリガラス11を、光取り出し膜7から陰極5までが積層された積層体を覆うようにガラス基板8に貼り合わせて、光硬化性樹脂が塗布された領域のみに紫外光を照射して樹脂を硬化させることにより封止し、有機電界発光素子100(発光面積;0.36cm)を得た。
 上記の方法で作成した有機電界発光素子の概略図を図5に示す。
(実施例26)
 前述の光取り出し膜Aの上に、さらにマツモトファインケミカル(株)製有機チタンオリゴマー「オルガチックスTA-22」のn-ブタノール希釈液(TA-22/n-ブタノール=10/90重量比)0.5mlをのせ、スピンコート塗布した(スピンコート回転数:500rpmで10秒間、後に2000rpmで30秒間)。この塗布基板をホットプレート上にて120℃で2分間の予備乾燥を行い、続けて350℃で30分間、本乾燥させた。その後、自然放冷させて、散乱層1、酸化チタンナノ粒子層、酸化チタンゾルゲル層が積層した「光取り出し膜B」を得た。
 陽極、基板の洗浄、開口バンク、正孔注入層、正孔輸送層、発光層、電子注入層、陰極、封止の形成は、実施例25に記載の方法に従い有機電界発光素子を得た。
(比較例8)
 ガラス基板(日本電気硝子(株)製ガラス基板「OA-10G」)を用い、光取り出し膜を形成しない以外は、実施例25に記載の方法で有機電界発光素子を得た。
 以下に示す方法で、実施例25、26、および比較例8の有機電界発光素子について、光取り出し膜の膜厚、Haze、全光線透過率、表面粗さRa、ITOエッチャント耐性(耐酸性)、基板洗浄耐性、レジストバンク作製適合性を評価した。また、各有機電界発光素子について、以下に示す方法で発光光の全光束量を測定し、光取り出し倍率を評価した。結果を表6に示す。
 ・膜厚、Haze、全光線透過率、表面粗さRaの測定
 前述の有機電界発光素子の作製において、陽極を形成する前の、光取り出し膜を形成したガラス基板を用いて膜厚、Haze、全光線透過率、表面粗さRaを測定した。
 ・ITOエッチャント耐性(耐酸性)の評価
 前述の有機電界発光素子の作製において、陽極を形成する前の、光取り出し膜を形成したガラス基板を、関東化学(株)製「ITO-02」中に25℃で20分間浸漬した後、水洗して、光取り出し膜表面の劣化状況を目視観察し、以下の基準「A」~「C」により評価した。
  A:表面は試験前の光沢感を保っている。
  B:表面の光沢感が低下しているが、膜は残留している。
  C:膜が剥離している。
 ・基板洗浄耐性の評価
 前述の有機電界発光素子の作製において、<基板の洗浄>を終えたガラス基板の表面の劣化状況を目視で観察し、以下の基準「A」~「C」により評価した。
  A:表面は試験前の光沢感を保っている。
  B:表面の光沢感が低下しているが、膜は残留している。
  C:膜が剥離している。
 ・レジストバンク作製適合性の評価
 前述の有機電界発光素子の作製において、開口バンクの形成を終えたガラス基板を光学顕微鏡(倍率5倍)で観察し、以下の基準「A」~「C」により評価した。
  A:陽極であるITO層の全域で欠落、損傷が全く生じていない。
  B:陽極であるITO層の端部で剥がれが生じている。
  C:陽極であるITO層の剥がれが、全域にわたって観察される。
 ・発光光の全光束量の評価
 得られた有機電界発光素子に4.0mAの直流電流を印加して発光させた時の全光束量[ルーメン(lm)]を、Labsphere社製積分球型の全光束測定システムで測定した(積分球:SLMS-1011型、ダイオードアレー分光器:DAS-1100型)。
 ・光取り出し倍率の評価
 各有機電界発光素子の全光束量を、光取り出し膜がない基板を用いた有機電界発光素子(比較例8)の全光束量で除した値を「光取り出し倍率」として算出した。
 表6に示すように、当該発明の散乱層を光取り出し膜として使用した有機電界発光素子は、使用しない場合に比べ最大1.51倍の全光束量が得られており、光取り出し効率の向上が認められた。
Figure JPOXMLDOC01-appb-T000010
(実施例27)
 1.基板の準備
 日本電気硝子(株)製ガラス基板「OA-10G」(37.5mm×25mm×0.7mm厚)に、陽極として膜厚70nmのITOを成膜し、発光エリアが2mm角になるようにITOをパターニング加工した基板(以下、これを2mm角素子用ITO基板とする)を準備した。
 この基板のITO膜が形成された面と反対側の面(光射出面)上に、実施例1記載の方法で散乱層1を形成した。
 次に、「3.基板の洗浄」記載の洗浄工程を行った。
 さらに、ITO面上に正孔注入層、正孔輸送層、発光層、電子注入層、陰極、封止の形成を実施例10に記載の方法に従い行い、光射出面側に散乱層1が形成されている2mm角の有機電界発光素子(発光面積:0.04cm)を得た。
(実施例28~31、比較例9)
 散乱層1をそれぞれ表7記載の散乱層に代えた以外は実施例27の方法に従い、光射出面側に散乱層が形成した有機電界素子(実施例28~31)を得た。また、散乱層を形成しない有機電界発光素子(比較例9)を得た。
Figure JPOXMLDOC01-appb-T000011
 得られた有機電界発光素子に4.0mAの直流電流を印加して発光させた時の全光束量を測定した。表7に示すように、光射出面に散乱層を形成している有機電界発光素子は、形成していない素子(比較例9)に比べて最大1.27倍の全光束量が得られた。本発明の光散乱層は光射出面側に形成した場合においても光取り出し効率の向上が認められた。
(実施例32)
<散乱膜の可撓性の評価>
 可撓性を有するポリイミドフィルム(50mm×50mm×0.7mm厚)に実施例1に記載の散乱層塗布液をスピンコート塗布した。(スピンコート回転数:500rpmで10秒間、後に1000rpmで30秒間)。この塗布基板をホットプレート上にて120℃で2分間の予備乾燥を行い、続けて220℃で30分間、本乾燥させた。その後、自然放冷させて、散乱膜が形成されたポリイミドフィルムを得た。
 このポリイミドフィルムを、散乱膜が外側になるように直径5mmのステンレス棒に巻き付けた。巻き付け後のポリイミドフィルムからSEMサンプルを切り出し、散乱膜の表面像を観察した。散乱膜表面には空隙の形成が確認されるが、ポリイミドフィルムからの剥がれや散乱膜のヒビ割れは無く、巻き付け処理による散乱膜の欠損が一切確認されなかった。
 また、巻き付け処理を50回繰り返した後に散乱膜表面を目視確認したが欠損は確認されなかった。
 以上の結果から、本発明の散乱膜は優れた可撓性を有しており、可撓性を有するフレキシブル基板材料にも適用が可能であることが判った。本発明の散乱膜は、可撓性を有するフレキシブル基板材料を用いた有機電界発光素子に対しても光取り出し効率を向上させる膜として用いることが可能である。
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2012年1月10日出願の日本特許出願(特願2012-001989)に基づくものであり、その内容はここに参照として取り込まれる。
  1・・・正孔注入層
  2・・・正孔輸送層
  3・・・発光層
  4・・・電子注入層
  5・・・陰極
  6・・・陽極(ITO)
  7・・・散乱膜(光取出し膜)
  8・・・基板(ガラス基板)
  9・・・開口バンク(バンク材)
  10・・・シート状脱水材
  11・・・ザクリガラス
  12・・・光硬化性樹脂
 100・・・有機電解発光素子

Claims (15)

  1.  ポリシラン化合物、金属酸化物及び溶剤を含むコーティング用組成物。
  2.  さらに、カーバメート構造を有する化合物を含む、請求項1記載のコーティング用組成物。
  3.  前記カーバメート構造を有する化合物が分散剤である、請求項2記載のコーティング用組成物。
  4.  前記金属酸化物が、酸化亜鉛、酸化チタン、チタン酸バリウム、酸化タンタル、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、酸化セリウム、及び酸化スズから選択される少なくとも1種である、請求項1~3のいずれか1項に記載のコーティング用組成物。
  5.  前記金属酸化物の屈折率が2.0以上である、請求項1~4のいずれか1項に記載のコーティング用組成物。
  6.  前記金属酸化物の平均粒子径が1000nm以下である、請求項1~5のいずれか1項に記載のコーティング用組成物。
  7.  前記ポリシラン化合物が、一般式(2)で表されるシリコンネットワークポリマーである、請求項1~6のいずれか1項に記載のコーティング用組成物。
      (RSi) ・・・(2)
    (式(2)中、Rは、同一又は相異なって、水素原子、アルキル基、アルケニル基、アリールアルキル基、アリール基、アルコキシ基、水酸基、フェノール性水酸基又はアミノ基を表す。nは、4~10000の整数である。)
  8.  請求項1~7のいずれか1項に記載のコーティング用組成物を硬化することにより得られる多孔質膜。
  9.  請求項1~7のいずれか1項に記載のコーティング用組成物を硬化することにより得られる光散乱膜。
  10.  請求項9記載の光散乱膜を含む有機電界発光素子。
  11.  前記光散乱膜が、基板と陽極との間に配置される、請求項10記載の有機電界発光素子。
  12.  前記基板が、可撓性を有するフレキシブル基板である、請求項11記載の有機電界発光素子。
  13.  請求項10~12のいずれか1項に記載の有機電界発光素子を含む有機EL表示装置。
  14.  請求項10~12のいずれか1項に記載の有機電界発光素子を含む有機EL照明。
  15.  請求項1~7のいずれかに記載のコーティング用組成物を基板に塗布し、溶媒を除去することを含む多孔質膜の製造方法。
     
PCT/JP2013/050135 2012-01-10 2013-01-08 コーティング用組成物、多孔質膜、光散乱膜及び有機電界発光素子 WO2013105556A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380005067.8A CN104039905B (zh) 2012-01-10 2013-01-08 涂料用组合物、多孔质膜、光散射膜和有机电致发光元件
KR1020147018983A KR102193808B1 (ko) 2012-01-10 2013-01-08 코팅용 조성물, 다공질막, 광 산란막 및 유기 전계 발광 소자
EP13736153.1A EP2803707B1 (en) 2012-01-10 2013-01-08 Coating composition, porous film, light-scattering film, and organic electroluminescent element
US14/328,178 US20140319502A1 (en) 2012-01-10 2014-07-10 Coating composition, porous membrane, light scattering membrane, and organic electroluminescent element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012001989 2012-01-10
JP2012-001989 2012-01-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/328,178 Continuation US20140319502A1 (en) 2012-01-10 2014-07-10 Coating composition, porous membrane, light scattering membrane, and organic electroluminescent element

Publications (1)

Publication Number Publication Date
WO2013105556A1 true WO2013105556A1 (ja) 2013-07-18

Family

ID=48781503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050135 WO2013105556A1 (ja) 2012-01-10 2013-01-08 コーティング用組成物、多孔質膜、光散乱膜及び有機電界発光素子

Country Status (7)

Country Link
US (1) US20140319502A1 (ja)
EP (1) EP2803707B1 (ja)
JP (2) JPWO2013105556A1 (ja)
KR (1) KR102193808B1 (ja)
CN (1) CN104039905B (ja)
TW (1) TWI580732B (ja)
WO (1) WO2013105556A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145663A (ja) * 2009-12-18 2011-07-28 Fujifilm Corp 遮光性硬化性組成物、ウエハレベルレンズ、及び遮光性カラーフィルタ
CN104425562A (zh) * 2013-09-02 2015-03-18 乐金显示有限公司 有机发光二极管显示器
JP2015175956A (ja) * 2014-03-14 2015-10-05 王子ホールディングス株式会社 保護層付凹凸パターン形成体およびそれを用いた組み立て方法
JP2015196722A (ja) * 2014-03-31 2015-11-09 大阪瓦斯株式会社 ポリシラン複合無機ナノ材料
JP2015220087A (ja) * 2014-05-16 2015-12-07 東洋インキScホールディングス株式会社 光散乱層用樹脂組成物、光散乱層、および有機エレクトロルミネッセンス装置
JP2016038999A (ja) * 2014-08-06 2016-03-22 三菱化学株式会社 有機el素子及びそれを用いた有機el照明装置
JP2016090601A (ja) * 2014-10-29 2016-05-23 大日本印刷株式会社 ホログラム積層体および情報記録媒体
JP2018506822A (ja) * 2015-01-21 2018-03-08 コーニング精密素材株式会社Corning Precision Materials Co., Ltd. 有機発光装置用光取り出し基板及びこれを含む有機発光装置
JP2018198180A (ja) * 2017-05-24 2018-12-13 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
JP2020019882A (ja) * 2018-07-31 2020-02-06 株式会社リコー 硬化型組成物、組成物収容容器、2次元又は3次元の像形成装置及び像形成方法、並びに硬化物
JP2020521996A (ja) * 2017-05-05 2020-07-27 スリーエム イノベイティブ プロパティズ カンパニー ポリマーフィルムを含むディスプレイデバイス

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101762642B1 (ko) * 2014-09-25 2017-07-31 코닝정밀소재 주식회사 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
WO2016047970A2 (ko) * 2014-09-25 2016-03-31 코닝정밀소재 주식회사 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
KR101635282B1 (ko) * 2014-11-28 2016-07-01 한국기계연구원 크랙을 이용한 마이크로/나노 기공 제조 방법
KR101632614B1 (ko) * 2014-12-24 2016-06-22 코닝정밀소재 주식회사 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
US20180138454A1 (en) * 2015-02-27 2018-05-17 Corning Incorporated Glass substrates comprising random voids and display devices comprising the same
CN107683308A (zh) * 2015-07-22 2018-02-09 住友化学株式会社 聚酰亚胺系清漆、使用其的聚酰亚胺系膜的制造方法、及聚酰亚胺系膜
CN105810843B (zh) * 2016-03-15 2018-03-13 深圳市华星光电技术有限公司 发光器件、背光模组及显示装置
US10795186B2 (en) 2016-11-30 2020-10-06 The Regents Of The University Of Michigan Enhancement of forward scattering, suppression of backscattering, and spectral tuning of optical hedgehog particles
KR101901390B1 (ko) 2017-01-20 2018-09-28 주식회사 준일테크 플렉시블 필름용 폴딩테스트 장치
CN106848096B (zh) * 2017-01-24 2018-12-07 上海大学 通过光学薄膜来提高oled发光器件光取出的方法
KR102363199B1 (ko) * 2019-05-10 2022-02-15 덕산하이메탈(주) 복합 굴절율 도막 조성물 및 이를 이용한 도막
TW202110799A (zh) * 2019-06-26 2021-03-16 日商日產化學股份有限公司 電荷輸送性塗料
CN110481182B (zh) * 2019-06-27 2021-06-01 宁波普瑞均胜汽车电子有限公司 一种一位多显示开关按键的制作方法
JP2021082755A (ja) * 2019-11-21 2021-05-27 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH アモルファスシリコン形成組成物、およびそれを用いたアモルファスシリコン膜の製造方法
KR20210153170A (ko) 2020-06-09 2021-12-17 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
KR20230042074A (ko) * 2020-07-22 2023-03-27 닛산 가가쿠 가부시키가이샤 적층체, 박리제 조성물 및 가공된 반도체 기판의 제조 방법
KR20220138501A (ko) 2021-04-02 2022-10-13 삼성디스플레이 주식회사 디스플레이 장치
CN114405788B (zh) * 2021-11-29 2023-07-28 宁夏兴昊永胜盐业科技有限公司 采输卤装置的防腐方法
CN114918119B (zh) * 2022-05-16 2023-07-07 郑州大学 一种高透明自适应发射率调制涂层及其制备方法和应用

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234681A (en) 1975-09-10 1977-03-16 Fujitsu Ltd Semiconductor device
JPS5331459A (en) 1976-07-12 1978-03-24 Pelly Ab Device for constructing fixture for shop
JPS59194393A (ja) 1983-03-25 1984-11-05 イ−ストマン コダツク カンパニ− 改良された電力転換効率をもつ有機エレクトロルミネツセント装置
JPH04334551A (ja) 1991-05-10 1992-11-20 Tonen Corp ヒドロシランの重合触媒
JPH06207169A (ja) 1992-11-17 1994-07-26 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH0741759A (ja) 1993-03-26 1995-02-10 Sumitomo Electric Ind Ltd 有機エレクトロルミネッセンス素子
JPH0753953A (ja) 1993-08-19 1995-02-28 Mitsubishi Chem Corp 有機電界発光素子
US5645948A (en) 1996-08-20 1997-07-08 Eastman Kodak Company Blue organic electroluminescent devices
JPH1021527A (ja) * 1996-06-28 1998-01-23 Tokin Corp 磁気記録媒体
JPH1079297A (ja) 1996-07-09 1998-03-24 Sony Corp 電界発光素子
JPH10270171A (ja) 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
JPH11242996A (ja) 1998-02-25 1999-09-07 Mitsubishi Chemical Corp 有機電界発光素子
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JP2000265116A (ja) * 1999-03-15 2000-09-26 Osaka Gas Co Ltd 耐熱コーティング材料
JP2001281421A (ja) * 2000-03-30 2001-10-10 Hitachi Cable Ltd 光拡散層付き反射板
JP2002100482A (ja) 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002100478A (ja) 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp 有機電界発光素子及びその製造方法
JP2003031365A (ja) 2001-05-02 2003-01-31 Junji Kido 有機電界発光素子
JP2003133306A (ja) * 2001-10-23 2003-05-09 Jsr Corp 層間絶縁膜の形成方法
WO2005022962A1 (ja) 2003-07-31 2005-03-10 Mitsubishi Chemical Corporation 化合物、電荷輸送材料および有機電界発光素子
WO2005089024A1 (ja) 2004-03-11 2005-09-22 Mitsubishi Chemical Corporation 電荷輸送膜用組成物及びイオン化合物、それを用いた電荷輸送膜及び有機電界発光素子、並びに、有機電界発光素子の製造方法及び電荷輸送膜の製造方法
JP2006199854A (ja) * 2005-01-21 2006-08-03 Koyo Matsukawa 低屈折率膜
JP2007131714A (ja) * 2005-11-09 2007-05-31 Fuso Chemical Co Ltd 膜形成用組成物、その硬化物からなる硬化膜及びその製造方法
JP2012001989A (ja) 2010-06-18 2012-01-05 Sekisui Chem Co Ltd 雨水ます用フィルター

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3415344B2 (ja) * 1995-09-14 2003-06-09 株式会社東芝 電界発光素子
JP3320647B2 (ja) * 1997-12-19 2002-09-03 中国塗料株式会社 珪素系塗料用抗菌剤、抗菌性珪素系塗料組成物、その塗膜、およびその塗膜で被覆された抗菌性基材
JP3177640B2 (ja) * 1999-04-12 2001-06-18 経済産業省産業技術総合研究所長 ポリシランを用いた偏光発光el素子及びその製造方法
JP2001051105A (ja) * 1999-08-05 2001-02-23 Nippon Kayaku Co Ltd 光散乱膜用樹脂溶液及び光散乱膜
JP4828066B2 (ja) * 1999-12-06 2011-11-30 株式会社トクヤマ コーティング組成物及びその製造方法
JP2003053195A (ja) * 2001-08-13 2003-02-25 Tasuke Iwashita 面状発光素子を光源とする光触媒装置
JPWO2003026357A1 (ja) 2001-09-13 2005-01-06 日産化学工業株式会社 有機エレクトロルミネッセンス素子用透明性基板および有機エレクトロルミネッセンス素子
JP4847050B2 (ja) * 2004-06-07 2011-12-28 扶桑化学工業株式会社 膜形成用組成物及び膜の形成方法
JP5613870B2 (ja) * 2005-12-07 2014-10-29 大阪瓦斯株式会社 ポリシラン及びポリシランを含む樹脂組成物
JP5663164B2 (ja) * 2006-09-12 2015-02-04 ユニバーシティ オブ フロリダ リサーチ ファンデーション インコーポレーティッド 広い表面積接触用途のための高度に接触可能なナノチューブ電極
JP2008208234A (ja) * 2007-02-27 2008-09-11 Institute Of Physical & Chemical Research 高屈折率ガラス用材料、該材料から得られた高屈折率ガラス、および高屈折率ガラスのパターニング方法
CN101978781A (zh) 2008-03-18 2011-02-16 旭硝子株式会社 电子器件用基板、有机led元件用层叠体及其制造方法、有机led元件及其制造方法
CN102264851B (zh) * 2008-12-27 2013-10-16 日挥触媒化成株式会社 含高折射率金属氧化物微粒的涂料组合物及将该涂料组合物涂布于基材上而得的固化性涂膜
JP2010182449A (ja) 2009-02-03 2010-08-19 Fujifilm Corp 有機el表示装置
WO2010125024A1 (en) * 2009-04-27 2010-11-04 Basf Se Organic-inorganic composite particles
JP2012099729A (ja) * 2010-11-04 2012-05-24 Toshiba Corp テンプレート、テンプレートの形成方法及び半導体装置の製造方法

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234681A (en) 1975-09-10 1977-03-16 Fujitsu Ltd Semiconductor device
JPS5331459A (en) 1976-07-12 1978-03-24 Pelly Ab Device for constructing fixture for shop
JPS59194393A (ja) 1983-03-25 1984-11-05 イ−ストマン コダツク カンパニ− 改良された電力転換効率をもつ有機エレクトロルミネツセント装置
JPH04334551A (ja) 1991-05-10 1992-11-20 Tonen Corp ヒドロシランの重合触媒
JPH06207169A (ja) 1992-11-17 1994-07-26 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH0741759A (ja) 1993-03-26 1995-02-10 Sumitomo Electric Ind Ltd 有機エレクトロルミネッセンス素子
JPH0753953A (ja) 1993-08-19 1995-02-28 Mitsubishi Chem Corp 有機電界発光素子
JPH1021527A (ja) * 1996-06-28 1998-01-23 Tokin Corp 磁気記録媒体
JPH1079297A (ja) 1996-07-09 1998-03-24 Sony Corp 電界発光素子
US5645948A (en) 1996-08-20 1997-07-08 Eastman Kodak Company Blue organic electroluminescent devices
JPH10270171A (ja) 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
JPH11242996A (ja) 1998-02-25 1999-09-07 Mitsubishi Chemical Corp 有機電界発光素子
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JP2000265116A (ja) * 1999-03-15 2000-09-26 Osaka Gas Co Ltd 耐熱コーティング材料
JP2001281421A (ja) * 2000-03-30 2001-10-10 Hitachi Cable Ltd 光拡散層付き反射板
JP2002100482A (ja) 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002100478A (ja) 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp 有機電界発光素子及びその製造方法
JP2003031365A (ja) 2001-05-02 2003-01-31 Junji Kido 有機電界発光素子
JP2003133306A (ja) * 2001-10-23 2003-05-09 Jsr Corp 層間絶縁膜の形成方法
WO2005022962A1 (ja) 2003-07-31 2005-03-10 Mitsubishi Chemical Corporation 化合物、電荷輸送材料および有機電界発光素子
WO2005089024A1 (ja) 2004-03-11 2005-09-22 Mitsubishi Chemical Corporation 電荷輸送膜用組成物及びイオン化合物、それを用いた電荷輸送膜及び有機電界発光素子、並びに、有機電界発光素子の製造方法及び電荷輸送膜の製造方法
JP2006199854A (ja) * 2005-01-21 2006-08-03 Koyo Matsukawa 低屈折率膜
JP2007131714A (ja) * 2005-11-09 2007-05-31 Fuso Chemical Co Ltd 膜形成用組成物、その硬化物からなる硬化膜及びその製造方法
JP2012001989A (ja) 2010-06-18 2012-01-05 Sekisui Chem Co Ltd 雨水ます用フィルター

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
"Kipping method", J. AM. CHEM. SOC., vol. 110, 1988, pages 124
ADV. MATER., vol. 12, 2000, pages 481
APPL. PHYS. LETT., vol. 60, 1992, pages 2711
CHEM. COMMUN., 1996, pages 2175
J. CHEM. SOC., CHEM. COMMUN., vol. 1161, 1990
J. CHEM. SOC., CHEM. COMMUN., vol. 897, 1992
J. LUMIN., vol. 72-74, 1997, pages 985
J. PHYS. CHEM., vol. 94, 1990, pages 7716
MACROMOLECULES, vol. 23, 1990, pages 3423
MACROMOLECULES, vol. 23, 1990, pages 4494
POLYM. ADV. TECH., vol. 7, 1996, pages 33
See also references of EP2803707A4
SHIZUO TOKITO; CHIHAYA ADACHI; HIDEYUKI MURATA: "Yuki EL Disupurei", 20 August 2004, OHMSHA LTD.
SYNTH. METALS, vol. 91, 1997, pages 209

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145663A (ja) * 2009-12-18 2011-07-28 Fujifilm Corp 遮光性硬化性組成物、ウエハレベルレンズ、及び遮光性カラーフィルタ
CN104425562B (zh) * 2013-09-02 2017-08-25 乐金显示有限公司 有机发光二极管显示器
CN104425562A (zh) * 2013-09-02 2015-03-18 乐金显示有限公司 有机发光二极管显示器
US9590201B2 (en) 2013-09-02 2017-03-07 Lg Display Co., Ltd. Organic light emitting diode display
JP2015175956A (ja) * 2014-03-14 2015-10-05 王子ホールディングス株式会社 保護層付凹凸パターン形成体およびそれを用いた組み立て方法
JP2015196722A (ja) * 2014-03-31 2015-11-09 大阪瓦斯株式会社 ポリシラン複合無機ナノ材料
JP2015220087A (ja) * 2014-05-16 2015-12-07 東洋インキScホールディングス株式会社 光散乱層用樹脂組成物、光散乱層、および有機エレクトロルミネッセンス装置
JP2016038999A (ja) * 2014-08-06 2016-03-22 三菱化学株式会社 有機el素子及びそれを用いた有機el照明装置
JP2016090601A (ja) * 2014-10-29 2016-05-23 大日本印刷株式会社 ホログラム積層体および情報記録媒体
JP2018506822A (ja) * 2015-01-21 2018-03-08 コーニング精密素材株式会社Corning Precision Materials Co., Ltd. 有機発光装置用光取り出し基板及びこれを含む有機発光装置
JP2020521996A (ja) * 2017-05-05 2020-07-27 スリーエム イノベイティブ プロパティズ カンパニー ポリマーフィルムを含むディスプレイデバイス
JP7285219B2 (ja) 2017-05-05 2023-06-01 スリーエム イノベイティブ プロパティズ カンパニー ポリマーフィルムを含むディスプレイデバイス
JP2018198180A (ja) * 2017-05-24 2018-12-13 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
JP2020019882A (ja) * 2018-07-31 2020-02-06 株式会社リコー 硬化型組成物、組成物収容容器、2次元又は3次元の像形成装置及び像形成方法、並びに硬化物

Also Published As

Publication number Publication date
US20140319502A1 (en) 2014-10-30
EP2803707A1 (en) 2014-11-19
KR20140110927A (ko) 2014-09-17
JP5716805B2 (ja) 2015-05-13
EP2803707B1 (en) 2015-12-23
KR102193808B1 (ko) 2020-12-22
JP2014208748A (ja) 2014-11-06
TWI580732B (zh) 2017-05-01
TW201333117A (zh) 2013-08-16
CN104039905A (zh) 2014-09-10
EP2803707A4 (en) 2014-11-26
JPWO2013105556A1 (ja) 2015-05-11
CN104039905B (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
JP5716805B2 (ja) コーティング用組成物、多孔質膜、光散乱膜及び有機電界発光素子
CN102484210B (zh) 含过渡金属化合物的纳米粒子及其制造方法、空穴注入传输层用油墨以及具有空穴注入传输层的器件及其制造方法
CN102106017B (zh) 有机电致发光元件、有机电致发光显示装置以及有机电致发光光源
CN104380494B (zh) 有机电致发光元件、有机电致发光照明装置和有机电致发光显示装置
CN102349172B (zh) 有机电致发光元件的制造方法、有机电致发光元件、有机el显示器和有机el照明
EP2557898B1 (en) Method of producing a composition for use in an organic electroluminescent element
WO2010104183A1 (ja) 有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP2012178268A (ja) 有機電界発光素子、有機電界発光モジュール、有機電界発光表示装置、及び有機電界発光照明
JP2010212354A (ja) 有機電界発光素子用組成物およびその製造方法、有機電界発光素子、有機el表示装置並びに有機el照明
JP6624296B2 (ja) 有機エレクトロニクスにおける使用のためのナノ粒子−導電性ポリマー複合体
WO2014073683A1 (ja) 有機電界発光素子およびその製造方法
JP2010192121A (ja) 有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP5304301B2 (ja) 有機電界発光素子、有機elディスプレイ及び有機el照明
JP2010192474A (ja) 有機電界発光素子、有機elディスプレイ及び有機el照明
JP2010239127A (ja) 有機電界発光素子、有機elディスプレイ及び有機el照明。
JP6492565B2 (ja) 有機エレクトロルミネッセンス素子の製造方法、及び有機エレクトロルミネッセンス照明装置の製造方法
JP6503699B2 (ja) 有機エレクトロルミネッセンス素子、及びその製造方法、並びに有機エレクトロルミネッセンス照明装置
JP2010192476A (ja) 有機電界発光素子、有機elディスプレイ、有機el照明及び有機el信号装置
JP2010239008A (ja) 有機電界発光素子、有機elディスプレイ及び有機el照明
JP2014203946A (ja) 有機電界素子用組成物、有機電界素子用組成物の製造方法、有機電界発光素子の製造方法、有機電界発光素子、有機el表示装置および有機el照明

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013553289

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13736153

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147018983

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013736153

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE