WO2013080912A1 - カーボンナノチューブ組成物の製造方法及びカーボンナノチューブ組成物 - Google Patents
カーボンナノチューブ組成物の製造方法及びカーボンナノチューブ組成物 Download PDFInfo
- Publication number
- WO2013080912A1 WO2013080912A1 PCT/JP2012/080451 JP2012080451W WO2013080912A1 WO 2013080912 A1 WO2013080912 A1 WO 2013080912A1 JP 2012080451 W JP2012080451 W JP 2012080451W WO 2013080912 A1 WO2013080912 A1 WO 2013080912A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon nanotube
- dispersion
- latex
- composition
- producing
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/041—Carbon nanotubes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/24—Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/162—Preparation characterised by catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/168—After-treatment
- C01B32/174—Derivatisation; Solubilisation; Dispersion in solvents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/205—Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
- C08J3/21—Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
- C08J3/215—Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/22—Expanded, porous or hollow particles
- C08K7/24—Expanded, porous or hollow particles inorganic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L15/00—Compositions of rubber derivatives
- C08L15/005—Hydrogenated nitrile rubber
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L21/00—Compositions of unspecified rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
- C08L9/02—Copolymers with acrylonitrile
- C08L9/04—Latex
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/20—Nanotubes characterized by their properties
- C01B2202/32—Specific surface area
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2309/00—Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
- C08J2309/02—Copolymers with acrylonitrile
- C08J2309/04—Latex
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/006—Additives being defined by their surface area
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
Definitions
- the present invention relates to a method for producing a carbon nanotube composition and a carbon nanotube composition.
- composite materials having desired conductivity have been proposed by blending a carbon material such as carbon black into a resin.
- carbon material such as carbon black
- carbon nanotubes instead of conventional carbon materials as materials that provide excellent electrical conductivity and mechanical properties. Has been done.
- Patent Document 1 By vulcanizing a composition in which a hydrogenated carboxylated nitrile rubber with heat resistance, ozone resistance, chemical resistance and oil resistance is blended with a crosslinking agent and carbon nanotubes, the elongation at break and strain characteristics are improved. It is known that the tensile strength and elastic modulus can be increased while maintaining (Patent Document 1).
- Patent Document 1 discloses an elastomer composition in which 0.1 to 150 parts by weight of carbon nanotubes are blended with 100 parts by weight of an elastomer as a rubber material for tires.
- This elastomer composition is obtained by mixing an elastomer solution or latex and a carbon nanotube slurry and then coagulating them.
- the carbon nanotube slurry is obtained by mixing with carbon nanotubes in water or a solvent, if necessary, using an emulsifier and a dispersing agent, if necessary, and then homogenizing using a stirrer.
- Patent Document 2 it is considered preferable to use short carbon nanotubes of 100 nm or less from the viewpoint of dispersibility.
- Patent Document 3 discloses that a single-walled carbon nanotube is dispersed in water in the presence of gum arabic or SDS, mixed with a latex of polystyrene or polyethylene, and then freeze-dried. A molded body is described.
- Japanese Published Patent Publication “JP 2010-001475 A” European Published Patent No. 23138535
- Japanese Published Patent Publication "Japanese Patent Laid-Open No. 2006-517996” U.S. Published Patent No. 2006-2111807
- Single-walled carbon nanotubes obtained by the super-growth method are promising as conductive fillers for composite materials because of their high aspect ratio, but due to their length, dispersibility is difficult when composited with other materials (Patent Document 2). Furthermore, when producing a composite material of carbon nanotubes and rubber, if the carbon nanotubes are dispersed by applying a high shearing force as in a biaxial kneader, the carbon nanotubes are cut during the dispersion, and the desired characteristics are obtained. It has a problem that it cannot be obtained.
- An object of the present invention is to provide a carbon nanotube composition having higher conductivity.
- the method for producing a carbon nanotube composition according to the present invention includes a carbon nanotube in which the average diameter (Av) and the diameter distribution (3 ⁇ ) satisfy 0.60> 3 ⁇ / Av> 0.20. And a dispersion step of dispersing in a solvent by a dispersion treatment capable of obtaining a cavitation effect, and a mixing step of mixing the carbon nanotube slurry and latex obtained by the dispersion step.
- the average diameter (Av) and the diameter distribution (3 ⁇ ) are 0.60> 3 ⁇ / Av> 0. .20, a dispersion step of dispersing the carbon nanotubes satisfying .20 in a solvent by a dispersion treatment capable of obtaining a cavitation effect, and a mixing step of mixing the carbon nanotube slurry and latex obtained by the dispersion step.
- the average diameter (Av) and the diameter distribution (3 ⁇ ) satisfy 0.60> 3 ⁇ / Av> 0.20.
- the average diameter (Av) and the diameter distribution (3 ⁇ ) are obtained by multiplying the average value when the diameter of 100 carbon nanotubes is measured with a transmission electron microscope and the standard deviation ( ⁇ ) by 3. .
- the standard deviation in this specification is a sample standard deviation.
- Av average diameter
- 3 ⁇ diameter distribution
- 0.60> 3 ⁇ / Av> 0.25 is more preferable
- 0.60> 3 ⁇ / Av> 0.50 is more preferable.
- 3 ⁇ / Av represents the diameter distribution of the carbon nanotube, and the larger the value, the wider the diameter distribution.
- the diameter distribution is preferably a normal distribution.
- the diameter distribution here refers to the diameter of 100 randomly selected carbon nanotubes that can be observed using a transmission electron microscope, and the results are used to calculate the diameter on the horizontal axis and the frequency on the vertical axis. And plotting the obtained data and approximating with Gaussian.
- the value of 3 ⁇ / Av can also be increased by combining a plurality of types of carbon nanotubes obtained by different production methods, but in this case, it is difficult to obtain a normal distribution of diameters. That is, in the present invention, it is preferable to use a single carbon nanotube or a single carbon nanotube mixed with another carbon nanotube in an amount that does not affect the diameter distribution.
- the average diameter of the carbon nanotubes is preferably 0.5 nm or more and 15 nm or less, and more preferably 1 nm or more and 10 nm or less from the viewpoint of imparting high conductivity.
- the carbon nanotube according to the present invention can be used without particular limitation as long as it is a carbon nanotube satisfying 0.60> 3 ⁇ / Av> 0.20.
- Japanese Patent No. 4,621,896 (published in Europe) Patent No. 1787955) and Japanese Patent No. 4,811,712 (US Published Patent No. 2009-297847)
- carbon nanotubes obtained by the super-growth method (hereinafter referred to as “SGCNT”)
- SGCNT super-growth method
- carbon nanotubes having a BET specific surface area of 600 m 2 / g or more are more preferable because they have a high modifying effect on the composition.
- the carbon nanotube according to the present invention is preferably a carbon nanotube having a peak of Radial Breathing Mode (RBM) in Raman spectroscopy. Note that there is no RBM in the Raman spectrum of multi-walled carbon nanotubes of three or more layers.
- RBM Radial Breathing Mode
- the carbon nanotube according to the present invention is more preferably a carbon nanotube having a G / D ratio of 1 or more and 20 or less, and a structure length of 100 ⁇ m or more and 5000 ⁇ m or less at the time of carbon nanotube synthesis. This can be obtained, for example, by the super growth method described above.
- the range of the G / D ratio of the carbon nanotubes produced by the super growth method is in the range of 1 or more and 20 or less. This is based on the range of variation obtained from the measurement result of the G / D ratio of the actually manufactured product.
- the obtained elastomer composition exhibits more excellent conductivity.
- the specific surface area of the carbon nanotube is preferably 600 m 2 / g or more. If the carbon nanotube is mainly unopened, the specific surface area is 600 m 2 / g or more, and the carbon nanotube is mainly open. Is preferably 1300 m 2 / g or more because of excellent reforming effect.
- the weight density of the carbon nanotubes is more preferably 0.002 g / cm 3 to 0.2 g / cm 3 . If the weight density is 0.2 g / cm 3 or less, since the carbon nanotubes constituting the carbon nanotubes are weakly bonded, it becomes easy to uniformly disperse the carbon nanotubes when they are stirred in a solvent or the like. That is, when the weight density is 0.2 g / cm 3 or less, it is easy to obtain a homogeneous dispersion. Further, when the weight density is 0.002 g / cm 3 or more, the integrity of the carbon nanotubes can be improved and the looseness can be suppressed, so that handling becomes easy.
- solvent Specific examples of the solvent are not particularly limited, and examples thereof include aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, ether solvents, alcohol solvents, ester solvents, ketone solvents, and mixed solvents thereof, and water. However, water is more preferable from the viewpoint of operability and environmental safety.
- a dispersant can be included in the solvent as necessary.
- the dispersion medium there is no particular limitation on the dispersion medium, and it may be set appropriately as long as it assists the dispersion of the carbon nanotubes.
- Preferred dispersants include surfactants and polysaccharides, among which surfactants are more preferred, and anions A surfactant is more preferred. This is because the carbon nanotube is excellent in the balance of dispersibility, solidification, and physical properties of the composition.
- surfactant More specific examples of the surfactant and the polysaccharide are as follows.
- sulfosuccinate-based anionic surfactant (trade name: Lipal (registered trademark; the same applies hereinafter) 835 l manufactured by Lion, Ripar 860K, Ripar 870P, Ripar MSC, Ripar MSE, Ripar NTD, Kao Chemical Perex (registered trademark; the same applies to the following) TR, Perex TA, Perex OT-P), an alkyl ether sulfonic acid sodium salt-based anionic surfactant (trade name: Perex SS-L, Perex SS manufactured by Kao Chemical Co., Ltd.) -H), alkylbenzenesulfonic acid sodium salt (trade names: Rybon LS-250, Rybon PS-230, Rybon PS260, Lybon PS860, LN2050D, LN2450, BN2060 manufactured by Lion), sodium lauryl sulfate (trade name: Kao Chemica) Emar (registered trademark; the same applies hereinafter) 10G,
- polysaccharides examples include gum arabic, carboxymethylcellulose sodium salt, carboxymethylcellulose ammonium salt, and hydroxyethylcellulose.
- concentration of the dispersant relative to the solvent may be equal to or higher than the critical micelle concentration.
- the amount of carbon nanotubes to be dispersed in the solvent is more preferably 0.01 parts by weight or more and 1 part by weight or less based on 100 parts by weight of the total amount of the solvent including the dispersant.
- Dispersion that provides a cavitation effect is a dispersion method that uses shock waves generated by bursting of vacuum bubbles generated in water when high energy is applied to the liquid. By using the dispersion method, carbon nanotubes are obtained. It becomes possible to disperse in water without impairing the characteristics of the.
- dispersion treatment capable of obtaining the cavitation effect examples include dispersion treatment using ultrasonic waves, dispersion treatment using a jet mill, and dispersion treatment using high shear stirring. Only one of these distributed processes may be performed, or a plurality of distributed processes may be combined. More specifically, for example, an ultrasonic homogenizer, a jet mill, and a high shear stirring device are preferably used. These devices may be conventionally known devices.
- carbon nanotubes may be added to a solvent and the solution may be irradiated with ultrasonic waves using an ultrasonic homogenizer.
- the irradiation time may be appropriately set depending on the amount of carbon nanotubes and the type of dispersant, and is preferably 3 minutes or more, more preferably 30 minutes or more, and preferably 5 hours or less, more preferably 2 hours or less.
- the output is preferably 100 W or more and 500 W or less
- the temperature is preferably 15 ° C. or more and 50 ° C. or less.
- carbon nanotubes may be added to the solvent, and the solvent may be treated with the jet mill. What is necessary is just to set suitably the frequency
- the pressure is preferably 20 MPa to 250 MPa, and the temperature is preferably 15 ° C. to 50 ° C.
- Advantages over the synthetic surfactant polysaccharides are as follows. Since the aqueous solution of polysaccharide is viscous, the pressure of the jet mill device tends to increase, and the device is loaded and may break down. With a synthetic surfactant, the jet mill apparatus can be operated stably.
- Examples of such a jet mill dispersing device include a high-pressure wet jet mill. Specifically, “Nanomaker” (manufactured by Advanced Nanotechnology), “Nanomizer” (manufactured by Nanomizer), “Nanomizer” ( And “Nanojet Pal (registered trademark)” (manufactured by Joko).
- carbon nanotubes may be added to the solvent, and the solvent may be treated with a high shear stirring device.
- the operation time time during which the machine is rotating
- the peripheral speed is 5 m / s or more and 50 m / s or less
- the temperature is preferably 15 ° C. or more and 50 ° C. or less.
- the dispersant is more preferably a polysaccharide. Since the polysaccharide aqueous solution has a high viscosity and is easily subjected to a shear stress, the dispersion is further promoted.
- Examples of such a high shear stirring device include stirring devices represented by “Ebara Milder” (manufactured by Ebara Manufacturing Co., Ltd.), “Cabitron” (manufactured by Eurotech), “DRS2000” (manufactured by IKA); Mixer (registered trademark) CLM-0.8S “(made by M Technique Co., Ltd.), a stirrer represented by" TK Homomixer "(made by Tokushu Kika Kogyo Co., Ltd.); Examples thereof include an agitator represented by “Mix” (manufactured by Tokushu Kika Kogyo Co., Ltd.).
- confirmation of the dispersion state of the carbon nanotubes may be carried out visually or by checking the aggregates with an optical microscope, combining centrifugation and absorption spectrum measurement, or the like.
- the carbon nanotubes are not dispersed or when the degree of dispersion is low, the carbon nanotubes are removed from the liquid by centrifugation at 100 G to 10,000 G.
- the degree of dispersion is high, the carbon nanotubes are not removed and the liquid remains black.
- the dispersion step is performed at a temperature of 50 ° C. or lower. This is because the change in concentration due to the volatilization of the solvent is suppressed.
- the dispersing agent functions better when the dispersing step is carried out at a low temperature that does not freeze or falls below the cloud point of the nonionic surfactant. Is done.
- the dispersion state is not particularly limited as long as it is dispersed using the apparatus, but in particular, there is no visual agglomerate, it is uniform, and the G / D ratio before the start of the dispersion treatment step is determined. It is more preferable that the dispersion state has a smaller decrease width.
- the carbon nanotube slurry obtained by the dispersing step and latex may be mixed.
- latex As the latex, it is possible to suitably use a latex of a resin and an elastomer that are polymer materials.
- resins examples include styrene resins, acrylic resins, methacrylic resins, organic acid vinyl ester resins, vinyl ether resins, halogen-containing resins, olefin resins, alicyclic olefin resins, polycarbonate resins, polyester resins, Polyamide resins, thermoplastic polyurethane resins, polysulfone resins (eg, polyethersulfone, polysulfone, etc.), polyphenylene ether resins (eg, polymers of 2,6-xylenol), cellulose derivatives (eg, cellulose esters, Cellulose carbamates, cellulose ethers, etc.), silicone resins (eg, polydimethylsiloxane, polymethylphenylsiloxane, etc.).
- styrene resins acrylic resins, methacrylic resins, organic acid vinyl ester resins, vinyl ether resins, halogen-containing resins, olefin resins,
- Examples of the alicyclic olefin-based resin include cyclic olefin random copolymers described in JP-A No. 05-310845 and US Pat. No. 5,179,171, JP-A No. 05-97978, and US Pat. No. 5,202,388.
- Examples thereof include hydrogenated polymers described in the publication, thermoplastic dicyclopentadiene ring-opening polymers described in JP-A No. 11-124429 (EP 1026189), and hydrogenated products thereof.
- acrylonitrile-butadiene rubber NBR
- acrylonitrile-isoprene rubber acrylonitrile-butadiene-isoprene rubber
- styrene-butadiene rubber SBR
- butadiene rubber BR
- isoprene rubber IR
- natural rubber NR
- EPDM Ethylene-propylene-diene rubber
- IIR butyl rubber
- rubbers having unsaturated double bonds such as partially hydrogenated products of these elastomers.
- the partially hydrogenated product include hydrogenated NBR and hydrogenated SBR. These rubbers can be used alone or in combination of two or more.
- the latex used in the production method according to the present invention is, for example, (1) a resin and elastomer solution dissolved in an organic solvent is emulsified in water in the presence of a surfactant, and the organic solvent is removed as necessary to remove the latex. And (2) a method of directly obtaining a latex by emulsion polymerization or suspension polymerization of a monomer constituting a resin and an elastomer.
- solubility parameter is defined as the square root of the cohesive energy density, and is a parameter proposed by Hildebrand and Scott based on a regular solution in which entropy change due to mixing is almost zero and enthalpy change occurs. Solubility parameters are exemplified in the “Polymer Handbook” (3rd edition).
- organic solvent having a solubility parameter of 10 (cal / cm 3 ) 1/2 or less examples include aliphatic solvents such as butane, pentane, hexane, heptane, octane, cyclopentane, cyclohexane, decane, and dodecane; toluene, Aromatic solvents such as propylbenzene, benzonitrile; butyl chloride, amyl chloride, allyl chloride, chlorotoluene; halogen solvents such as acetone, methyl ethyl ketone, diethyl ketone, diisopropyl ketone, methyl isobutyl ketone, methyl hexyl ketone, diisobutyl Ketone solvents such as ketone, butyraldehyde, propyl acetate, butyl acetate, amyl acetate; ester solvents such as ethyl
- the latex used in the production method according to the present invention is more preferably an elastomer dispersion, and more preferably a nitrile rubber which is an elastomer having a nitrile structure or an aromatic ring structure.
- a nitrile rubber which is an elastomer having a nitrile structure or an aromatic ring structure.
- the elastomer having a nitrile structure is a polymer having a structural unit derived from an ⁇ , ⁇ -unsaturated nitrile and a structural unit derived from a conjugated diene, or a hydride thereof.
- the content of the nitrile structure of the elastomer is preferably 20% by weight or more, more preferably 25% by weight or more and 55% by weight or less, further preferably 25% by weight or more and 50% by weight or less from the viewpoint of the physical properties of the composition. is there.
- the content of the nitrile structure is the weight ratio of structural units derived from ⁇ , ⁇ -unsaturated nitrile to the whole rubber, and the content is measured according to the mill oven method of JIS K 6364. Is the median of the values to be quantified by converting the binding amount from the acrylonitrile molecular weight.
- Preferred examples of the ⁇ , ⁇ -unsaturated nitrile include acrylonitrile and methacrylonitrile.
- Preferred examples of the conjugated diene include conjugated dienes having 4 to 6 carbon atoms such as 1,3-butadiene, isoprene and 2,3-methylbutadiene.
- the copolymerization of ⁇ , ⁇ -unsaturated nitrile and conjugated diene can be obtained, for example, by emulsion polymerization using an emulsifier such as alkylbenzene sulfonate.
- the elastomer having a nitrile structure may have a structural unit composed of a monomer copolymerizable with an ⁇ , ⁇ -unsaturated nitrile and a conjugated diene.
- copolymerizable monomers examples include aromatic vinyl monomers such as styrene; ⁇ , ⁇ -unsaturated carboxylic acids such as maleic acid and fumaric acid; ⁇ , such as diethyl maleate, monomethyl fumarate, and dibutyl itaconate. ⁇ -unsaturated carboxylic acid ester; and the like. These components can be used alone or in combination of two or more.
- the elastomer having an aromatic ring structure is a polymer having a structural unit derived from an aromatic vinyl and a structural unit derived from a conjugated diene or a hydride thereof, and the aromatic vinyl bond unit content is, for example, 60% by weight or less. From the viewpoint of the physical properties of the composition, it is preferably 50% by weight or less, 10% by weight or more, more preferably 40% by weight or less, and 15% by weight or more.
- Aromatic vinyls include styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t-butylstyrene, 5 -T-butyl-2-methylstyrene, N, N-dimethylaminomethylstyrene, N, N-diethylaminomethylstyrene, vinylnaphthalene and the like can be mentioned, and styrene is particularly preferable. These components can be used alone or in combination of two or more.
- a polymer material dispersed in a solvent In mixing the latex and the carbon nanotube, a polymer material dispersed in a solvent is used.
- the state in which the polymer material is dispersed may be any dispersion liquid (latex) in which the polymer material is dispersed in a solvent, and the type of the solvent can be appropriately set. Among these, a dispersion liquid (latex) dispersed in water is more preferable.
- the method for obtaining the latex and a method for obtaining a dispersion in which the polymer material is dispersed by adding a monomer constituting the polymer material in water containing a surfactant and polymerizing the monomer.
- Polymerization method or a solution in which a polymer material is dissolved in a solvent having a solubility parameter of 10 (cal / cm 3 ) 1/2 or less in water containing a surfactant, and forcedly emulsified in water, and then polymer A method (forced emulsification method) in which a solvent in which the material is dissolved is removed and a dispersion liquid in which the polymer material is dispersed in the solvent is obtained.
- the solvent for dissolving nitrile rubber is not particularly limited as long as it is a solvent capable of dissolving nitrile rubber.
- a solvent capable of dissolving nitrile rubber for example, aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, ether solvents , Alcohol-based solvents, ester-based solvents, ketone-based solvents, and mixed solvents thereof, and the like. It is preferable to use a solvent that is highly compatible with a solvent that disperses carbon nanotubes described later.
- the state in which the nitrile rubber is dispersed may be any dispersion liquid (latex) in which the nitrile rubber is dispersed in the above solvent, and the solvent can be set as appropriate, and among them, the nitrile rubber dispersed in water.
- a dispersion (latex) is preferred.
- a method for obtaining the nitrile rubber dispersion a method for adding a monomer constituting nitrile rubber in water containing a surfactant and polymerizing the monomer to obtain a nitrile rubber dispersion (emulsion polymerization method), Alternatively, a method of forcibly emulsifying a solution containing nitrile rubber dissolved in water containing a surfactant and then removing the solvent in which the nitrile rubber was dissolved is obtained (forced emulsification method). .
- the amount of carbon nanotubes used in the production method according to the present invention is, for example, 0.01 parts by weight or more and 10 parts by weight or less, preferably 0.1 parts by weight or more with respect to 100 parts by weight of the polymer material constituting the latex. 7 parts by weight or less, more preferably 0.25 parts by weight or more and 5 parts by weight or less.
- the amount of the carbon nanotube is 0.01 part by weight or more, good conductivity can be secured, and when it is 10 parts by weight or less, the fluidity of the composition is improved and the moldability is improved.
- the specific method for mixing the carbon nanotube slurry and latex to obtain a carbon nanotube dispersion is not particularly limited, and a stirring method in which the carbon nanotube slurry and latex are uniform may be used.
- the time from the dispersion step to the mixing step be 48 hours or less because the dispersibility of the carbon nanotubes can be prevented from deteriorating with time.
- the mixing step is preferably performed at a temperature of 15 ° C. or higher and 40 ° C. or lower as in the case of the above-described dispersing step because the dispersing function of the dispersing agent, particularly the surfactant, is better exhibited.
- the specific method of the mixing step is not particularly limited as long as the carbon nanotube slurry and the latex are mixed.
- the carbon nanotube slurry and latex may be put in one container and mixed by appropriately stirring.
- a conventionally known stirrer such as a stirring blade, a magnetic stirrer, or a planetary mill may be used.
- the stirring time is more preferably 10 minutes or longer and 24 hours or shorter.
- the carbon nanotube aggregates are reduced, and the resulting composition is excellent in conductivity, has a high breaking stress when pulled, and is strong against breaking.
- the production method according to the present invention further includes a solidification step of solidifying the solid in the mixture obtained in the mixing step.
- the composition may be coagulated from the carbon nanotube slurry (also referred to as a carbon nanotube dispersion) obtained in the mixing step.
- a coagulation method latex coagulation methods known to those skilled in the art can be employed. Examples thereof include a method of adding the mixture obtained in the mixing step to a water-soluble organic solvent, a method of adding an acid to the mixture, and a method of adding a salt to the mixture.
- water-soluble organic solvent it is more preferable to select a solvent that does not dissolve the polymer material in the latex and dissolves the dispersant.
- organic solvent examples include methanol, ethanol, 2-propanol (also called isopropyl alcohol), ethylene glycol, and the like.
- Examples of the acid include known materials used for coagulation of general latex, such as acetic acid, formic acid, phosphoric acid, and hydrochloric acid.
- Examples of the salt include known materials used for coagulation of general latex, such as sodium chloride, aluminum sulfate, and potassium chloride.
- the method in which the mixture obtained in the mixing step is appropriately adjusted to pH 4 or more and pH 10 or less using an acid or alkaline one, and the organic solvent is added can recover the composition with high efficiency. More preferred.
- the coagulation step is more preferably performed at a temperature of 15 ° C. or more and 40 ° C. or less as in the above-described dispersion step and mixing step. This is because the dispersing function of the dispersant, particularly the surfactant, can be exhibited better. That is, it is more preferable to carry out the dispersion process, the mixing process and the coagulation process at a temperature of 15 ° C. or higher and 40 ° C. or lower.
- the production method according to the present invention may include a drying step of drying the solidified product obtained by solidification in the solidification step.
- any method can be used without particular limitation as long as the coagulated product obtained by coagulation in the coagulation step is dried.
- drying of a polymer known to those skilled in the art such as hot air drying and reduced pressure drying A method may be employed.
- what is necessary is just to set suitably as conditions for drying based on the moisture content etc. according to the use of the composition obtained by drying.
- additives may be added to the composition in order to improve or maintain the properties of the molded body.
- Additives include antioxidants, heat stabilizers, light stabilizers, UV absorbers, pigments, colorants, foaming agents, antistatic agents, flame retardants, lubricants, softeners, tackifiers, plasticizers, release agents Agents, deodorants, fragrances, and the like.
- a crosslinking agent is further included in order to ensure moldability and mechanical strength of the molded product.
- the crosslinking agent is not limited as long as it is used as an elastomer crosslinking agent.
- Typical crosslinking agents include sulfur-based crosslinking agents or organic peroxide crosslinking agents that crosslink between unsaturated bonds of elastomers, and sulfur-based crosslinking agents are preferred.
- Sulfur-based crosslinking agents include sulfur such as powdered sulfur, sulfur white, precipitated sulfur, colloidal sulfur, surface-treated sulfur and insoluble sulfur; sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, dibenzothiazyl disulfide, N, Sulfur-containing compounds such as N′-dithio-bis (hexahydro-2H-azenopine-2), phosphorus-containing polysulfides and polymer polysulfides; tetramethylthiuram disulfide, selenium dimethyldithiocarbamate, 2- (4′-morpholinodithio) And sulfur-donating compounds such as benzothiazole.
- sulfur chloride sulfur dichloride, morpholine disulfide, alkylphenol disulfide, dibenzothiazyl disulfide, N
- Sulfur-containing compounds such as N′-dithio-bis (hexahydro-2H-azeno
- organic peroxide crosslinking agent examples include dicumyl peroxide, cumene hydroperoxide, t-butylcumyl peroxide, paramentane hydroperoxide, di-t-butyl peroxide, 1,3- and 1,4-bis (t -Butylperoxyisopropyl) benzene, 1,1-di-t-butylperoxy-3,3-trimethylcyclohexane, 4,4-bis- (t-butyl-peroxy) -n-butylvalerate, 2,5-dimethyl -2,5-di-t-butylperoxyhexane, 2,5-dimethyl-2,5-di-t-butylperoxyhexyne-3, 1,1-di-t-butylperoxy-3,5,5 -Trimethylcyclohexane, p-chlorobenzoyl peroxide, t-butylperoxyisopropyl carbonate, t-ch
- the content of the cross-linking agent in the carbon nanotube composition according to the present invention is not particularly limited, but when an elastomer is used as the latex, it is preferably 0.1 to 10 parts by weight, more preferably 0 to 100 parts by weight of the elastomer. 2 to 5 parts by weight.
- an organic peroxide crosslinking agent a multifunctional monomer such as trimethylolpropane trimethacrylate, divinylbenzene, ethylene dimethacrylate, or triallyl isocyanurate can be used in combination as a crosslinking aid.
- the amount of these crosslinking aids is not particularly limited, but is preferably in the range of 0.5 to 20 parts by weight with respect to 100 parts by weight of the elastomer.
- crosslinking assistants such as zinc white and stearic acid; crosslinking of guanidine, aldehyde-amine, aldehyde-ammonia, thiazole, sulfenamide, thiourea, etc.
- An accelerator can be used in combination.
- the amounts of these crosslinking aids and crosslinking accelerators are not particularly limited, and are preferably in the range of 0.1 to 10 parts by weight with respect to 100 parts by weight of the elastomer.
- a molding method for obtaining a molded body using the carbon nanotube composition according to the present invention is not particularly limited, and a molding machine according to a desired molded product shape, for example, an extruder, an injection molding machine, a compressor, a roll machine, or the like.
- a molding machine according to a desired molded product shape
- it is crosslinked in order to fix the shape as necessary.
- Crosslinking may be performed after molding in advance, or molding and crosslinking may be performed simultaneously.
- the molding temperature is preferably 10 ° C. or higher and 200 ° C. or lower, more preferably 25 ° C. or higher and 120 ° C. or lower.
- the crosslinking temperature is preferably 100 ° C. or higher and 200 ° C.
- the crosslinking time is preferably 1 minute or more and 5 hours or less, more preferably 2 minutes or more and 1 hour or less. Also, in the case of a carbon nanotube composition containing an elastomer, depending on the shape, size, etc. of the molded product, even if the surface is cross-linked, it may not be sufficiently cross-linked to the inside. Also good.
- the carbon nanotube slurry is composed of a carbon nanotube having a G / D ratio of 1 or more and 20 or less, and a structure length of 100 ⁇ m or more and 5000 ⁇ m or less at the time of carbon nanotube synthesis, and is composed of an ultrasonic homogenizer, a jet mill, and a high shear stirring device. It may be formed by dispersing in a solvent containing a dispersant using at least one selected from the group.
- this carbon nanotube slurry manufacturing method uses a carbon nanotube having a G / D ratio of 1 or more and 20 or less, and a structure length of 100 ⁇ m or more and 5000 ⁇ m or less when synthesizing the carbon nanotube, an ultrasonic homogenizer, a jet mill, A dispersion step of dispersing in a solvent containing a dispersant using at least one selected from the group consisting of shearing stirrers is included. That is, the carbon nanotube slurry of this embodiment is obtained by the method for producing the carbon nanotube slurry of this embodiment.
- carbon nanotubes having a G / D ratio of 1 or more and 20 or less and a structure length of 100 ⁇ m or more and 5000 ⁇ m or less at the time of carbon nanotube synthesis are removed from an ultrasonic homogenizer, a jet mill, and a high shear stirring device. What is necessary is just to disperse
- carbon nanotubes having a G / D ratio of 1 or more and 20 or less and the length of the structure at the time of carbon nanotube synthesis of 100 ⁇ m or more and 5000 ⁇ m or less are used, excellent conductivity can be obtained even in a small amount.
- the elastomer composition of this embodiment is obtained by solidifying a carbon nanotube slurry of this embodiment and a latex which is an elastomer dispersion, a coagulation step of coagulating solids in the obtained mixture, and coagulating. It is manufactured by a drying process for drying the solidified product.
- the method for producing an elastomer composition of the present embodiment comprises a carbon nanotube having a G / D ratio of 1 or more and 20 or less and a structure length of 100 ⁇ m or more and 5000 ⁇ m or less when synthesizing carbon nanotubes, an ultrasonic homogenizer, a jet mill, Using at least one selected from the group consisting of a high shear stirrer, a dispersion step of obtaining a carbon nanotube slurry by dispersing in water containing a dispersant, and a latex that is a dispersion of the carbon nanotube slurry and an elastomer A mixing step of mixing, a solidification step of solidifying the solid content in the obtained mixture, and a drying step of drying the solidified product obtained by solidification. That is, the elastomer composition of this embodiment is obtained by the method for producing the elastomer composition of this embodiment.
- the latex used in the elastomer composition of this embodiment and the method for producing the elastomer composition is an elastomer dispersion.
- NBR latex nitrile rubber latex
- SBR latex styrene butadiene rubber latex
- H-NBR latex hydrogenated nitrile rubber latex
- natural rubber latex IR latex (isoprene rubber latex)
- MBR latex Methacrylic acid ester / butadiene latex
- CR latex chloroprene rubber latex
- VP latex (2-vinylpyridine latex
- BR latex butadiene rubber latex
- ABS resin latex acrylonitrile / butadiene / styrene copolymer latex
- the latex may be a dispersion in which an elastomer is dispersed in a solvent, and the solvent may be appropriately set according to the use of the latex composition.
- an aqueous dispersion dispersed in water is more preferable.
- the amount of the elastomer with respect to the solvent in which the elastomer is dispersed is not particularly limited, and may be appropriately set according to the use of the carbon nanotube slurry to be produced.
- the ratio of carbon nanotubes contained is, for example, 0.01 parts by weight or more and 20 parts by weight or less from the viewpoint of conductivity and operability.
- the weight ratio of the elastomer to the carbon nanotube in the elastomer composition is more preferably 100: 0.01 to 100: 25 (elastomer: carbon nanotube).
- the mixing process, coagulation process, and drying process are as described above.
- the dispersion treatment is at least one dispersion treatment selected from the group consisting of an ultrasonic dispersion treatment, a jet mill dispersion treatment, and a high shear stirring dispersion treatment. It is more preferable that
- the carbon nanotubes preferably have a BET specific surface area of 600 m 2 / g or more.
- the average diameter (Av) and the diameter distribution (3 ⁇ ) of the carbon nanotube satisfy 0.60> 3 ⁇ / Av> 0.50.
- the method for producing carbon nanotubes according to the present invention further includes a solidification step for solidifying the solid matter in the mixture obtained in the mixing step.
- the latex is more preferably an elastomer dispersion.
- the elastomer is more preferably a nitrile rubber having a nitrile structure with a content of 20% by weight or more of the total amount.
- the carbon nanotube composition according to the present invention is manufactured by the carbon nanotube manufacturing method according to the present invention.
- the present invention also provides a rubber composition containing a nitrile rubber (A) having a nitrile content of 20% by weight or more and a carbon nanotube (B) having a BET specific surface area of 600 m 2 / g or more.
- the rubber composition preferably further contains a crosslinking agent (C).
- the method for producing the rubber composition includes a dispersion step of dispersing the carbon nanotube (B) in a solvent using at least one selected from the group consisting of an ultrasonic homogenizer, a jet mill, and a high shear stirring device.
- this invention also provides the molded object which consists of the said rubber composition.
- the present invention provides a carbon nanotube having a G / D ratio of 1 or more and 20 or less and a structure length of 100 ⁇ m or more and 5000 ⁇ m or less at the time of carbon nanotube synthesis from an ultrasonic homogenizer, a jet mill, and a high shear stirring device.
- a carbon nanotube slurry which is dispersed in a solvent containing a dispersant using at least one selected from the group consisting of
- the present invention also includes a mixing step of mixing the carbon nanotube slurry and latex which is an elastomer dispersion, a coagulation step of coagulating solids in the obtained mixture, and a coagulated product obtained by coagulation.
- An elastomer composition produced by a drying process is also provided.
- the carbon nanotube slurry is produced by using a carbon nanotube having a G / D ratio of 1 or more and 20 or less and a structure length of 100 ⁇ m or more and 5000 ⁇ m or less when synthesizing the carbon nanotube, an ultrasonic homogenizer, a jet mill and a high shear.
- a dispersion step of dispersing in a solvent containing a dispersant using at least one selected from the group consisting of stirring devices is included. More preferably, the dispersant is a surfactant.
- the present invention provides a carbon nanotube having a G / D ratio of 1 or more and 20 or less and a structure length of 100 ⁇ m or more and 5000 ⁇ m or less at the time of carbon nanotube synthesis from an ultrasonic homogenizer, a jet mill, and a high shear stirring device.
- a dispersion step of dispersing in water containing a dispersant to obtain a carbon nanotube slurry
- a mixing step of mixing the carbon nanotube slurry and latex which is a dispersion of an elastomer.
- the present invention provides a method for producing an elastomer composition comprising a coagulation step for coagulating solids in the obtained mixture and a drying step for drying the coagulation obtained by coagulation.
- the coagulation step is a step of adjusting the mixture to a pH of 4 to 10 and adding an organic solvent. More preferably, the dispersion step, the mixing step, and the coagulation step are performed at 20 ° C. or lower.
- the electrical conductivity of the composition in each example and each comparative example is based on JIS K 7194 using a low resistivity meter (product name “Loresta (registered trademark) -GP MCP-T610” manufactured by Mitsubishi Chemical Analytech Co., Ltd.).
- the measurement was carried out as follows. First, 450 mg of a sample was vacuum press-molded under vacuum at a temperature of 120 ° C., a pressure of 0.4 MPa, and a pressurization time of 5 minutes to form a thin film circular shape with an area of about 40 to 60 mm ⁇ and a thickness of 100 to 500 ⁇ m. After that, four square test pieces of 10 mm ⁇ 10 mm were cut out and used as measurement samples.
- a PSP probe was selected as the four-end needle probe of the low resistivity meter.
- the measurement sample was fixed on an insulating board, the probe was pressed against the center position of the measurement sample (position of 5 mm in length and 5 mm in width), and a voltage of 10 V was applied to measure the conductivity.
- the conductivity of the four measurement sample specimens was measured, and the average value was taken as the conductivity of the sample.
- SGCNT-1 was grown under the following conditions. Carbon compound: ethylene; supply rate 50 sccm Atmosphere (gas) (Pa): Helium, hydrogen mixed gas; supply rate 1000 sccm Pressure 1 atmospheric pressure water vapor addition amount (ppm): 300 ppm Reaction temperature (° C): 750 ° C Reaction time (min): 10 minutes Metal catalyst (abundance): Iron thin film; thickness 1 nm Substrate: silicon wafer.
- the obtained SGCNT-1 has a BET specific surface area of 1,050 m 2 / g and a radial breathing mode (RBM) in a low frequency region of 100 to 300 cm ⁇ 1 , which is characteristic of a single-walled carbon nanotube, as measured with a Raman spectrophotometer. ) was observed. Further, as a result of randomly measuring the diameter of 100 SGCNT-1 using a transmission electron microscope, the average diameter (Av) was 3.3 nm, the diameter distribution (3 ⁇ ) was 1.9, and (3 ⁇ / Av) Was 0.58.
- SGCNT-2 Synthesis of carbon nanotube> SGCNT-2 was obtained by the same method except that the thickness of the iron thin film layer of the metal catalyst of Production Example 1 was changed to 5 nm.
- the obtained SGCNT-2 has a BET specific surface area of 620 m 2 / g and has a radial breathing mode (RBM) in a low frequency region of 100 to 300 cm ⁇ 1 characteristic of single-walled carbon nanotubes, as measured with a Raman spectrophotometer. A spectrum was observed. Further, as a result of randomly measuring the diameter of 100 SGCNT-2 using a transmission electron microscope, the average diameter (Av) was 5.9 nm, the diameter distribution (3 ⁇ ) was 3.3, and (3 ⁇ / Av) Was 0.56.
- RBM radial breathing mode
- Example 1 In a metal bottle, charged with 125 g of ion-exchanged water, 25 g of a 10% strength by weight sodium dodecylbenzenesulfonate aqueous solution, 37 g of acrylonitrile, 4 g of mono-n-butyl fumarate, and 0.5 g of t-dodecyl mercaptan (molecular weight regulator). After replacing the internal gas with nitrogen three times, 59 g of butadiene was charged. The metal bottle was kept at 5 ° C., 0.1 g of cumene hydroperoxide (polymerization initiator) was charged, and the polymerization reaction was carried out for 16 hours while rotating the metal bottle.
- ion-exchanged water 25 g of a 10% strength by weight sodium dodecylbenzenesulfonate aqueous solution, 37 g of acrylonitrile, 4 g of mono-n-butyl fumarate, and 0.5 g of t
- SGCNT-1 30 mg was added to 300 mL of an aqueous solution of 1% by weight lauryl alcohol ethoxylate (product of “ADEKA® (registered trademark) LA-1275” manufactured by ADEKA), and a probe type ultrasonic device (manufactured by Mitsui Denki Co., Ltd., product name “ UX300 ”) was used for ultrasonic irradiation for 20 minutes at an output of 300 W and a frequency of 20000 kHz to obtain an SGCNT-1 dispersion without aggregates.
- lauryl alcohol ethoxylate product of “ADEKA® (registered trademark) LA-1275” manufactured by ADEKA
- UX300 a probe type ultrasonic device
- SGCNT-1 dispersion and 0.5 g of the acrylonitrile-butadiene latex were mixed and stirred for 2 hours to obtain a SGCNT-1 / rubber mixed solution.
- 2-propanol and a stirring bar were put in a beaker to prepare 2-propanol in a stirring state.
- the crumb-like SGCNT-1 / rubber composition was coagulated in 2-propanol by gradually adding the prepared SGCNT-1 / rubber mixed solution thereto.
- the SGCNT-1 / rubber composition was taken out from 2-propanol by suction filtration and vacuum-dried in a vacuum dryer at 40 ° C. for 24 hours or more to obtain SWCNT-1 (2.5 parts) / rubber (100 parts).
- the molded body obtained by molding the composition 1 into a thin film disk was a flexible rubber-like substance, and its conductivity was 0.8 S / cm.
- Example 2 90 mg of SGCNT-2 was added to 90 mL of a 1% by weight aqueous sodium dodecyl sulfate solution, and the linear velocity was set to 50 m / s using a high shear stirrer (product name “FILMIX (registered trademark) 56-50 type” manufactured by Primix). Intermittent treatment was performed at a temperature in the range of 30 ° C. to 60 ° C. until the aggregate of SGCNT-2 disappeared to obtain SGCNT-2 dispersion 1 containing 0.1% by weight of SGCNT-2.
- a high shear stirrer product name “FILMIX (registered trademark) 56-50 type” manufactured by Primix.
- the SGCNT-2 / rubber composition was taken out of 2-propanol by suction filtration and vacuum-dried in a vacuum dryer at 40 ° C. for 24 hours or more to obtain SWCNT-2 (2.5 parts) / rubber (100 parts). ) 0.248 g (yield: 95%).
- the molded body obtained by molding the composition 2 into a thin film disk was a flexible rubber-like substance, and its conductivity was 2.2 S / cm.
- Example 3 90mg of SGCNT-2 was added to 90mL of 1wt% sodium dodecyl sulfate aqueous solution and treated 20 times using a jet mill (product name "JN-20", manufactured by Joko), containing 0.1wt% SGCNT-2. SGCNT-2 dispersion 2 was obtained.
- a composition 3 of SGCNT-2 (2.5 parts) / rubber (100 parts) was prepared in the same manner as in Example 1 except that the SGCNT-1 dispersion of Example 1 was changed to SGCNT-2 dispersion 2. 0.199 g (yield: 96%) was obtained.
- the molded product obtained by molding the composition 3 into a thin film disk was a flexible rubber-like substance, and its electrical conductivity was 2.3 S / cm.
- Example 4 The dispersing agent is changed from lauryl alcohol ethoxylate to sodium alkylbenzene sulfonate (product name “Perex (registered trademark) SS-L” manufactured by Kao Chemical Co., Ltd.), and the carbon nanotube used is changed from SGCNT-1 to multi-walled carbon nanotube (MWCNT; Nanocyl). MWCNT dispersion 1 without aggregates was obtained in the same manner as in Example 1, except that the product name was changed to “NC7000” and the BET specific surface area was 290 m 2 / g. In addition, as a result of measuring the diameter of 100 NC7000s at random using a transmission electron microscope, the average diameter (Av) was 9.3 nm, the diameter distribution (3 ⁇ ) was 2.6, and (3 ⁇ / Av) was 0. .28.
- composition 4 0.191 g of NC7000 (2.5 parts) / rubber (100 parts) of composition 4 was made in the same manner as in Example 1 except that the SGCNT-1 dispersion of Example 1 was changed to MWCNT dispersion 1. (Yield: 92%) was obtained.
- a molded body obtained by molding the composition 4 into a thin film disk was a flexible rubber-like substance, and its conductivity was 1 ⁇ 10 ⁇ 3 S / cm.
- Example 5 The dispersing agent is changed from lauryl alcohol ethoxylate to sulfosuccinate-based anionic surfactant (manufactured by Lion, product name “Ripal (registered trademark) 870P”), and the carbon nanotube used is changed from SGCNT-1 to multi-walled carbon nanotube (MWCNT).
- MWCNT dispersion 2 free from aggregates was obtained in the same manner as in Example 1, except that the material was changed to Nanostructured & Amorphous Materials Inc., Lot. 1234, BET specific surface area 58 m 2 / g). In addition, using a transmission electron microscope, 100 Lot. As a result of measuring the diameter of 1234, the average diameter (Av) was 76.8 nm, the diameter distribution (3 ⁇ ) was 19.4, and (3 ⁇ / Av) was 0.25.
- Example 2 The same as in Example 1 except that the SGCNT-1 dispersion of Example 1 was changed to MWCNT dispersion 2, and the NBR latex was changed to SBR latex (product name “Nipol (registered trademark) LX112” manufactured by Zeon Corporation). By operation, Lot. Thus, 0.108 g (yield: 52%) of Composition 5 of 1234 (2.5 parts) / rubber (100 parts) was obtained.
- the molded body obtained by molding the composition 5 into a thin film disk was a flexible rubber-like substance, and its conductivity was 4.2 ⁇ 10 ⁇ 5 S / cm.
- Example 6 The dispersant was changed from lauryl alcohol ethoxylate to sodium dodecylbenzenesulfonate, and the carbon nanotube used was changed from SGCNT-1 to multi-walled carbon nanotube (MWCNT; manufactured by Nanocyl, product name “NC7000”, BET specific surface area 290 m 2 / g).
- MWCNT multi-walled carbon nanotube
- a MWCNT dispersion 3 free from aggregates was obtained by the same operation as in Example 1 except that.
- NC7000 (2.5 parts) / rubber (100 parts) composition 6 was obtained in the same manner as in Example 1 except that the SGCNT-1 dispersion of Example 1 was changed to MWCNT dispersion 3. (Yield: 87%) was obtained.
- a molded body obtained by molding the composition 6 into a thin film disk was a flexible rubber-like substance, and its electrical conductivity was 8 ⁇ 10 ⁇ 4 S / cm.
- Example 1 The same operation as in Example 1 except that the dispersant was changed from lauryl alcohol ethoxylate to sodium dodecyl sulfate, and the carbon nanotube used was changed from SGCNT-1 to HiPCO (NanoIntegris Inc., BET specific surface area 700 m 2 / g). As a result, Comparative Example SWCNT dispersion 1 without aggregates was obtained. As a result of randomly measuring the diameter of 100 HiPCOs using a transmission electron microscope, the average diameter (Av) was 1.1 nm, the diameter distribution (3 ⁇ ) was 0.2, (3 ⁇ / Av) was 0.18.
- Comparative Example Composition 1 of HiPCO (2.5 parts) / rubber (100 parts) was prepared in the same manner as in Example 1 except that the SGCNT-1 dispersion of Example 1 was changed to the Comparative Example SWCNT dispersion. 0.176 g (yield: 85%) was obtained.
- molded the comparative example composition 1 in the thin film disk shape was a flexible rubber-like substance, the electrical conductivity was below a measurement lower limit.
- Comparative Example Composition 2 of 1232 (2.5 parts) / rubber (100 parts) was obtained.
- the molded body obtained by molding Comparative Composition 2 into a thin film disk was a flexible rubber-like substance, but its conductivity was as low as 1.4 ⁇ 10 ⁇ 6 S / cm. It was.
- molded the comparative example composition 3 in the thin film disk shape was a flexible rubber-like substance, the electrical conductivity was below a measurement lower limit.
- the present invention can be used in any industrial field that uses rubber or the like, and can be suitably used particularly for rubber products such as tires, hoses, and packings.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Carbon And Carbon Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
Description
本発明に係るカーボンナノチューブ組成物の製造方法(以下、単に「本発明に係る製造方法」という。)は、平均直径(Av)と直径分布(3σ)とが0.60>3σ/Av>0.20を満たすカーボンナノチューブを、キャビテーション効果が得られる分散処理によって溶媒に分散させる分散工程と、前記分散工程によって得られるカーボンナノチューブスラリーとラテックスとを混合する混合工程と、を含む。
分散工程では、平均直径(Av)と直径分布(3σ)とが0.60>3σ/Av>0.20を満たすカーボンナノチューブを、キャビテーション効果が得られる分散処理によって溶媒に分散させる。これによりカーボンナノチューブスラリーが得られる。
本発明に係るカーボンナノチューブは、平均直径(Av)と直径分布(3σ)とが0.60>3σ/Av>0.20を満たす。ここでいう平均直径(Av)、直径分布(3σ)は、それぞれ透過型電子顕微鏡でカーボンナノチューブ100本の直径を測定した際の平均値、並びに標準偏差(σ)に3を乗じたものである。なお、本明細書における標準偏差は、標本標準偏差である。
溶媒の具体例は特に限定されないが、例えば、脂肪族炭化水素系溶媒、芳香族炭化水素溶媒、エーテル系溶媒、アルコール系溶媒、エステル系溶媒、ケトン系溶媒、及びこれらの混合溶媒、水が挙げられるが、操作性や環境安全性の観点から水がより好ましい。
分散処理の方法はキャビテーション効果が得られる方法であればよい。キャビテーション効果が得られる分散は、液体に高エネルギーを付与した際、水に生じた真空の気泡が破裂することにより生じた衝撃波を利用した分散方法であり、当該分散方法を用いることにより、カーボンナノチューブの特性を損なうことなく水中に分散することが可能となる。
混合工程では、分散工程によって得られるカーボンナノチューブスラリーとラテックスとを混合すればよい。
ラテックスとしては、高分子材料である樹脂及びエラストマーのラテックスを好適に用いることができる。
ラテックスとカーボンナノチューブとを混合するに当たり、高分子材料は溶剤に分散させたものを使用する。高分子材料を分散させた状態のもとしては、高分子材料を溶媒に分散させた分散液(ラテックス)であればよく、当該溶媒の種類は適宜設定することができる。中でも水に分散させた分散液(ラテックス)がより好ましい。ラテックスを得る方法に格別な制限はなく、界面活性剤を含む水中に高分子材を構成するモノマーを添加し、当該モノマーを重合させて、高分子材料を分散させた分散液を得る方法(乳化重合法)、又は界面活性剤を含む水中に、溶解性パラメータが10(cal/cm3)1/2以下の溶媒に高分子材料を溶解した溶液を加えて水中で強制乳化させ、次いで高分子材料を溶解していた溶媒を除去し、高分子材料を溶媒に分散させた分散液を得る方法(強制乳化法)が挙げられる。
本発明に係る製造方法は、混合工程で得られた混合物中の固形物を凝固させる凝固工程をさらに含むことがより好ましい。
本発明に係る製造方法は、凝固工程にて凝固して得られた凝固物を乾燥する乾燥工程を含んでもよい。
本発明に係る製造方法おいて、成形体の特性の改良又は維持のために、組成物に各種添加剤を配合してもよい。添加剤としては、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、顔料、着色剤、発泡剤、帯電防止剤、難燃剤、滑剤、軟化剤、粘着付与剤、可塑剤、離型剤、防臭剤、香料、等を挙げることができる。
本発明に係るカーボンナノチューブ組成物を用いて成形体を得る成形方法は、特に限定されず、所望の成形品形状に応じた成形機、例えば押出機、射出成形機、圧縮機、ロール機等により成形を行ない、エラストマー組成物の場合には、必要に応じて形状を固定化するために架橋する。予め成形した後に架橋しても、成形と架橋を同時に行ってもよい。成形温度は、好ましくは10℃以上、200℃以下、より好ましくは25℃以上、120℃以下である。架橋温度は、好ましくは100℃以上、200℃以下、より好ましくは130℃以上、190℃以下、特に好ましくは140℃以上、180℃以下である。架橋時間は、好ましくは1分以上、5時間以下、より好ましくは2分以上、1時間以下である。また、エラストマーを含むカーボンナノチューブ組成物の場合、成形物の形状、大きさなどによっては、表面が架橋していても、内部まで十分に架橋していない場合があるので、二次架橋を行ってもよい。
以下に、カーボンナノチューブスラリー及びそれから得られるエラストマー組成物の別例について説明する。ここに説明しない事項は上述の説明に準じる。
以上のように、本発明に係るカーボンナノチューブの製造方法では、前記分散処理が、超音波による分散処理、ジェットミルによる分散処理及び高剪断撹拌による分散処理からなる群より選ばれる少なくとも一つの分散処理であることがより好ましい。
各実施例、各比較例における組成物の電気伝導率は、低抵抗率計(三菱化学アナリテック社製、製品名「ロレスタ(登録商標)-GP MCP-T610」)を用い、JIS K 7194準拠の方法で以下のように測定した。まず、試料450mgを真空下において、温度120℃、圧力0.4MPa、加圧時間5分の条件で真空プレス成形し、面積が約40~60mmφ、厚さ100~500μmの薄膜円径状に成形した後、10mm×10mmの正方形状試験片を4個切り出し、測定サンプルとした。低抵抗率計の四端針プローブには、PSPプローブを選択した。測定サンプルを絶縁ボードの上に固定し、測定サンプルの中心位置(縦5mm横5mmの位置)にプローブを押し当て、10Vの電圧をかけ導電率を測定した。4個の測定サンプル試験片の導電率を測定し、その平均値を試料の導電率とした。
日本国特許公報「特許4,621,896号公報」に記載のスーパーグロース法で得たカーボンナノチューブ(以下、「SGCNT」と略記)を用いた。
炭素化合物:エチレン;供給速度50sccm
雰囲気(ガス)(Pa):ヘリウム、水素混合ガス;供給速度1000sccm
圧力1大気圧
水蒸気添加量(ppm):300ppm
反応温度(℃):750℃
反応時間(分):10分
金属触媒(存在量):鉄薄膜;厚さ1nm
基板:シリコンウェハー。
製造例1の金属触媒の鉄薄膜層の厚みを、5nmにした以外は同様の手法により、SGCNT-2を得た。得られたSGCNT-2は、BET比表面積620m2/g、ラマン分光光度計での測定において、単層カーボンナノチューブに特長的な100~300cm-1の低周波数領域にラジアルブリージングモード(RBM)のスペクトルが観察された。また、透過型電子顕微鏡を用い、無作為に100本のSGCNT-2の直径を測定した結果、平均直径(Av)が5.9nm、直径分布(3σ)が3.3、(3σ/Av)が0.56であった。
金属製ボトルに、イオン交換水125g、濃度10重量%のドデシルベンゼンスルホン酸ナトリウム水溶液25g、アクリロニトリル37g、フマル酸モノn-ブチル4g、t-ドデシルメルカプタン(分子量調整剤)0.5gの順に仕込み、内部の気体を窒素で3回置換した後、ブタジエン59gを仕込んだ。金属製ボトルを5℃に保ち、クメンハイドロパーオキサイド(重合開始剤)0.1gを仕込み、金属製ボトルを回転させながら16時間重合反応を行った。そして、濃度10重量%のハイドロキノン水溶液(重合停止剤)0.1gを加えて重合反応を停止した後、水温60℃のロータリーエバポレータを用いて残留単量体を除去し、ニトリル構造を34%有するアクリロニトリル・ブタジエン系ラテックス(固形分濃度約40重量%)を得た。
1重量%ドデシル硫酸ナトリウム水溶液90mLにSGCNT-2を90mg加え、高剪断撹拌装置(プライミクス社製、製品名「フィルミックス(登録商標)56-50型」)を用いて、線速50m/s、温度30℃~60℃の範囲で、SGCNT-2の凝集塊がなくなるまで間欠処理を行ない、SGCNT-2を0.1重量%含むSGCNT-2分散液1を得た。
1重量%ドデシル硫酸ナトリウム水溶液90mLにSGCNT-2を90mg加え、ジェットミル(常光社製、製品名「JN-20」)を用いて20回処理して、SGCNT-2を0.1重量%含むSGCNT-2分散液2を得た。
分散剤をラウリルアルコールエトキシレートからアルキルベンゼンスルホン酸ナトリウム(花王ケミカル社製、製品名「ペレックス(登録商標)SS-L」)に、使用するカーボンナノチューブをSGCNT-1から多層カーボンナノチューブ(MWCNT;Nanocyl社製、製品名「NC7000」、BET比表面積290m2/g)に変えた以外は実施例1と同様の操作により、凝集体のないMWCNT分散液1を得た。なお、透過型電子顕微鏡を用い、無作為に100本のNC7000の直径を測定した結果、平均直径(Av)が9.3nm、直径分布(3σ)が2.6、(3σ/Av)が0.28であった。
分散剤をラウリルアルコールエトキシレートからからスルホコハク酸塩系アニオン性界面活性剤(ライオン社製、製品名「リパール(登録商標)870P」)に、使用するカーボンナノチューブをSGCNT-1から多層カーボンナノチューブ(MWCNT;Nanostructured & Amorphous Materials Inc.社製、Lot.1234、BET比表面積58m2/g)に変えた以外は実施例1と同様の操作により、凝集体のないMWCNT分散液2を得た。なお、透過型電子顕微鏡を用い、無作為に100本のLot.1234の直径を測定した結果、平均直径(Av)が76.8nm、直径分布(3σ)が19.4、(3σ/Av)が0.25であった。
分散剤をラウリルアルコールエトキシレートからドデシルベンゼンスルホン酸ナトリウムに、使用するカーボンナノチューブをSGCNT-1から多層カーボンナノチューブ(MWCNT;Nanocyl社製、製品名「NC7000」、BET比表面積290m2/g)に変えた以外は実施例1と同様の操作により、凝集体のないMWCNT分散液3を得た。
分散剤をラウリルアルコールエトキシレートからドデシル硫酸ナトリウムに、使用するカーボンナノチューブをSGCNT-1からHiPCO(NanoIntegris Inc.社製、BET比表面積700m2/g)に変えた以外は実施例1と同様の操作により、凝集体のない比較例SWCNT分散液1を得た。なお、用いたHiPCOを透過型電子顕微鏡を用い、無作為に100本のHiPCOの直径を測定した結果、平均直径(Av)が1.1nm、直径分布(3σ)が0.2、(3σ/Av)が0.18であった。
分散剤をラウリルアルコールエトキシレートからドデシル硫酸ナトリウムに、使用するカーボンナノチューブをSGCNT-1から多層カーボンナノチューブ(MWCNT;Nanostructured & Amorphous Materials Inc.社製、Lot.1232、BET比表面積57m2/g)に変えた以外は実施例1と同様の操作により、凝集体のない比較例MWCNT分散液を得た。なお、透過型電子顕微鏡を用い、無作為に100本のLot.1232の直径を測定した結果、平均直径(Av)が51.1nm、直径分布(3σ)が9.8、(3σ/Av)が0.19であった。
1重量%ラウリルアルコールエトキシレート(ADEKA社製、製品名「アデカトール(登録商標)LA-1275」)水溶液300mLにSGCNT-1を30mg加え、小分けした分散液をボールミル装置(ドイツ・フリッチュ社製、製品名「P-7」)を用いて、回転数500pmで30分間分散処理を複数回行ない、比較例SGCNT-1分散液を得た。
Claims (8)
- 平均直径(Av)と直径分布(3σ)とが0.60>3σ/Av>0.20を満たすカーボンナノチューブを、キャビテーション効果が得られる分散処理によって溶媒に分散させる分散工程と、
前記分散工程によって得られるカーボンナノチューブスラリーとラテックスとを混合する混合工程と、
を含む、カーボンナノチューブ組成物の製造方法。 - 前記分散処理が、超音波による分散処理、ジェットミルによる分散処理及び高剪断撹拌による分散処理からなる群より選ばれる少なくとも一つの分散処理である、請求項1に記載のカーボンナノチューブ組成物の製造方法。
- 前記カーボンナノチューブのBET比表面積が600m2/g以上である請求項1又は2に記載のカーボンナノチューブ組成物の製造方法。
- 前記カーボンナノチューブの平均直径(Av)と直径分布(3σ)とが0.60>3σ/Av>0.50を満たす請求項1~3のいずれか1項に記載のカーボンナノチューブ組成物の製造方法。
- 上記混合工程で得られた混合物中の固形物を凝固させる凝固工程をさらに含む、請求項1~4のいずれか1項に記載のカーボンナノチューブ組成物の製造方法。
- 前記ラテックスがエラストマーの分散液である、請求項1~5のいずれか1項に記載のカーボンナノチューブ組成物の製造方法。
- 前記エラストマーが、全量のうち20重量%以上の含有量でニトリル構造を有するニトリルゴムである、請求項6記載のカーボンナノチューブ組成物の製造方法。
- 請求項1~7のいずれか1項に記載のカーボンナノチューブ組成物の製造方法により製造される、カーボンナノチューブ組成物。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/360,746 US9748016B2 (en) | 2011-11-28 | 2012-10-26 | Process for producing carbon nanotube composition and carbon nanotube composition |
CN201280057157.7A CN103946316B (zh) | 2011-11-28 | 2012-11-26 | 碳纳米管组合物的制造方法及碳纳米管组合物 |
EP12852928.6A EP2787044B1 (en) | 2011-11-28 | 2012-11-26 | Process for producing carbon nanotube composition and carbon nanotube composition |
JP2013508050A JP5263463B1 (ja) | 2011-11-28 | 2012-11-26 | カーボンナノチューブ組成物の製造方法及びカーボンナノチューブ組成物 |
KR1020147013619A KR101890121B1 (ko) | 2011-11-28 | 2012-11-26 | 카본 나노튜브 조성물의 제조 방법 및 카본 나노튜브 조성물 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011259257 | 2011-11-28 | ||
JP2011-259257 | 2011-11-28 | ||
JP2012-140152 | 2012-06-21 | ||
JP2012140152 | 2012-06-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013080912A1 true WO2013080912A1 (ja) | 2013-06-06 |
Family
ID=48535368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/080451 WO2013080912A1 (ja) | 2011-11-28 | 2012-11-26 | カーボンナノチューブ組成物の製造方法及びカーボンナノチューブ組成物 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9748016B2 (ja) |
EP (1) | EP2787044B1 (ja) |
JP (1) | JP5263463B1 (ja) |
KR (1) | KR101890121B1 (ja) |
CN (2) | CN103946316B (ja) |
WO (1) | WO2013080912A1 (ja) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014120219A (ja) * | 2012-12-13 | 2014-06-30 | Nippon Zeon Co Ltd | 色素増感型太陽電池用対向電極、色素増感型太陽電池、および太陽電池モジュール |
JP2015020939A (ja) * | 2013-07-22 | 2015-02-02 | 東レ株式会社 | カーボンナノチューブ集合体、カーボンナノチューブ集合体の合成方法、樹脂組成物、導電性エラストマーおよび分散液 |
WO2015045417A1 (ja) * | 2013-09-30 | 2015-04-02 | 日本ゼオン株式会社 | カーボンナノチューブ分散液の製造方法 |
JP2015105442A (ja) * | 2013-11-28 | 2015-06-08 | 豊田通商株式会社 | ゴム構造体補強用繊維及びその製造方法 |
JP2015105441A (ja) * | 2013-11-28 | 2015-06-08 | 日本ゼオン株式会社 | カーボンナノチューブ含有繊維の製造方法およびカーボンナノチューブ含有繊維 |
JP2015128101A (ja) * | 2013-12-27 | 2015-07-09 | 日本ゼオン株式会社 | 太陽電池用電極基板 |
JP2015128099A (ja) * | 2013-12-27 | 2015-07-09 | 日本ゼオン株式会社 | 太陽電池用電極基板 |
WO2015115048A1 (ja) * | 2014-01-31 | 2015-08-06 | 日本ゼオン株式会社 | 透明導電膜、色素増感太陽電池用光電極及びタッチパネル並びに色素増感太陽電池 |
JP2015146229A (ja) * | 2014-01-31 | 2015-08-13 | 日本ゼオン株式会社 | 導電膜の製造方法、並びに、導電膜、タッチパネル、色素増感型太陽電池用電極および色素増感型太陽電池 |
JP2015145438A (ja) * | 2014-01-31 | 2015-08-13 | 日本ゼオン株式会社 | カーボンナノチューブ分散液及び導電性フィルム |
JP2015188808A (ja) * | 2014-03-27 | 2015-11-02 | 日本ゼオン株式会社 | 酸化還元触媒、電極材料、電極、太陽電池、燃料電池用膜電極接合体および燃料電池 |
WO2015182058A1 (ja) * | 2014-05-30 | 2015-12-03 | 日本ゼオン株式会社 | カーボンナノチューブ分散液の製造方法およびカーボンナノチューブ分散液、複合材料用組成物の製造方法および複合材料の製造方法、並びに、複合材料および複合材料成形体 |
JP2015214450A (ja) * | 2014-05-09 | 2015-12-03 | 日本ゼオン株式会社 | カーボンナノチューブ複合材料の製造方法およびカーボンナノチューブ複合材料 |
WO2015182138A1 (ja) * | 2014-05-30 | 2015-12-03 | 日本ゼオン株式会社 | 酸化還元触媒、電極材料、電極、燃料電池用膜電極接合体、及び燃料電池 |
WO2016027254A1 (en) * | 2014-08-21 | 2016-02-25 | Samsuri Azemi B | Rubber products based on improved nbr masterbatch |
KR20160037905A (ko) * | 2013-07-31 | 2016-04-06 | 니폰 제온 가부시키가이샤 | 카본 나노튜브 분산액의 제조 방법, 복합 재료용 조성물의 제조 방법 및 복합 재료의 제조 방법, 및 복합 재료 및 복합 재료 성형체 |
CN105814721A (zh) * | 2013-12-27 | 2016-07-27 | 日本瑞翁株式会社 | 导电膜、燃料电池用气体扩散层、燃料电池用催化剂层、燃料电池用电极、燃料电池用膜电极接合体、及燃料电池 |
US20160240279A1 (en) * | 2013-10-24 | 2016-08-18 | Zeon Corporation | Latex composition, production method therefor, composite material, and conductive formed product |
WO2016143299A1 (ja) * | 2015-03-06 | 2016-09-15 | 日本ゼオン株式会社 | 複合材料の製造方法および複合材料 |
JPWO2016136275A1 (ja) * | 2015-02-27 | 2017-12-07 | 日本ゼオン株式会社 | シリコーンゴム組成物および加硫物 |
JP2018028028A (ja) * | 2016-08-18 | 2018-02-22 | 日本ゼオン株式会社 | 複合材料の製造方法 |
WO2018066458A1 (ja) * | 2016-10-03 | 2018-04-12 | 日本ゼオン株式会社 | スラリー、複合樹脂材料および成形体の製造方法 |
WO2018066433A1 (ja) * | 2016-10-03 | 2018-04-12 | 日本ゼオン株式会社 | 複合樹脂材料の製造方法および成形体の製造方法 |
US20180127273A1 (en) * | 2015-05-27 | 2018-05-10 | Zeon Corporation | Carbon film and method of producing same, and fibrous carbon nanostructure dispersion liquid and method of producing same |
CN108140841A (zh) * | 2016-03-24 | 2018-06-08 | 株式会社Lg化学 | 导电材料分散液和使用其制造的二次电池 |
JP2018090758A (ja) * | 2016-11-30 | 2018-06-14 | 三菱ケミカル株式会社 | カーボンナノチューブ/ゴム複合体及びその製造方法 |
DE102017129842A1 (de) | 2016-12-20 | 2018-06-21 | Toyo Tire & Rubber Co., Ltd. | Kautschukmasterbatch, Verfahren zum Herstellen eines Kautschukmasterbatches und daraus erhaltene Kautschukzusammensetzung |
CN108367925A (zh) * | 2015-12-28 | 2018-08-03 | 日本瑞翁株式会社 | 纤维状碳纳米结构体分散液 |
WO2019172399A1 (ja) * | 2018-03-08 | 2019-09-12 | 三菱商事株式会社 | カーボンナノチューブ高配合ゴム粒状物の製造方法 |
WO2019180993A1 (ja) * | 2018-03-23 | 2019-09-26 | 日本ゼオン株式会社 | ゴム組成物の製造方法 |
WO2021193667A1 (ja) * | 2020-03-26 | 2021-09-30 | 日本ゼオン株式会社 | 高圧水素機器用ガスシール部材および高圧水素機器 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014097626A1 (ja) * | 2012-12-21 | 2014-06-26 | 日本ゼオン株式会社 | ゴム組成物および成形体 |
WO2015045396A1 (ja) * | 2013-09-30 | 2015-04-02 | 日本ゼオン株式会社 | 色素増感型太陽電池および太陽電池モジュール |
JP6483616B2 (ja) * | 2013-10-08 | 2019-03-13 | 日本ゼオン株式会社 | 金属複合材料の製造方法 |
GB2530526B (en) * | 2014-09-25 | 2017-02-08 | Amril Ag | Styrene-butadiene rubber (SBR)-CNT filled masterbatch |
WO2016084697A1 (ja) * | 2014-11-26 | 2016-06-02 | 昭和電工株式会社 | 導電性ペーストの製造方法及び導電性ペースト |
JP6274359B2 (ja) * | 2015-06-26 | 2018-02-07 | 日本ゼオン株式会社 | ガスシール部材用組成物およびガスシール部材 |
EP3348582B1 (en) * | 2015-09-09 | 2021-04-07 | LG Chem, Ltd. | Carbon nanotube dispersion liquid and manufacturing method thereof |
US10686185B2 (en) | 2015-09-25 | 2020-06-16 | Lg Chem, Ltd. | Carbon nanotube dispersion liquid and manufacturing method thereof |
CN108430918B (zh) * | 2015-12-17 | 2022-04-08 | 日本瑞翁株式会社 | 纤维状碳纳米结构体分散液 |
JPWO2018151099A1 (ja) * | 2017-02-14 | 2019-11-21 | 国立大学法人九州大学 | 高圧水素機器用ガスシール部材および高圧水素機器 |
CN110352176B (zh) * | 2017-03-30 | 2022-11-18 | 日本瑞翁株式会社 | 纤维状碳纳米结构体分散液及其制造方法、以及纤维状碳纳米结构体 |
CN108794900A (zh) * | 2017-04-28 | 2018-11-13 | 中国石油化工股份有限公司 | 一种超轻耐热橡胶复合材料及其制备方法 |
CN111051414B (zh) * | 2017-09-22 | 2022-04-26 | 日本瑞翁株式会社 | 橡胶组合物 |
CN110436443B (zh) * | 2018-05-03 | 2023-09-19 | 史增谦 | 碳纳米管分散剂及其制备方法和应用 |
US20230183447A1 (en) * | 2021-12-15 | 2023-06-15 | The Goodyear Tire & Rubber Company | Conductive rubber compositions and articles composed of the same |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5179171A (en) | 1985-05-24 | 1993-01-12 | Mitsui Petrochemical Industries, Ltd. | Random copolymer, and process for production thereof |
US5202388A (en) | 1990-11-30 | 1993-04-13 | Japan Synthetic Rubber Co., Ltd. | Process for producing hydrogenation product of ring-opening polymer |
JPH0597978A (ja) | 1991-10-09 | 1993-04-20 | Japan Synthetic Rubber Co Ltd | 水素添加重合体 |
JPH05310845A (ja) | 1992-05-11 | 1993-11-22 | Mitsui Petrochem Ind Ltd | 環状オレフィン系ランダム多元共重合体およびその製造方法 |
JPH11124429A (ja) | 1997-10-23 | 1999-05-11 | Nippon Zeon Co Ltd | 熱可塑性ジシクロペンタジエン系開環重合体、及びその製造方法 |
EP1026189A1 (en) | 1997-10-23 | 2000-08-09 | Nippon Zeon Co., Ltd. | Thermoplastic dicyclopentadiene-base open-ring polymers, hydrogenated derivatives thereof, and processes for the preparation of both |
JP2004210830A (ja) | 2002-12-27 | 2004-07-29 | Jsr Corp | エラストマー組成物およびその製造方法 |
JP2006517996A (ja) | 2003-02-13 | 2006-08-03 | スティッチング ダッチ ポリマー インスティテュート | 強化ポリマー |
EP1787955A1 (en) | 2004-07-27 | 2007-05-23 | National Institute of Advanced Industrial Science and Technology | Single-layer carbon nanotube and alinged single-layer carbon nanotube bulk structure, and their production process, production apparatus and use |
JP2009196840A (ja) * | 2008-02-20 | 2009-09-03 | National Institute Of Advanced Industrial & Technology | カーボンナノチューブの切断方法、カーボンナノチューブ片、およびカーボンナノチューブ分散液 |
US20090297846A1 (en) | 2005-11-25 | 2009-12-03 | Kenji Hata | Double-Walled Carbon Nanotube, Aligned Double-Walled Carbon Nanotube Bulk Structure and Process for Producing the Same |
JP2010001475A (ja) | 2008-06-23 | 2010-01-07 | Lanxess Deutschland Gmbh | カーボンナノチューブ含有ゴム組成物 |
JP2010185032A (ja) * | 2009-02-13 | 2010-08-26 | Bridgestone Corp | ゴム組成物及びそれを用いたタイヤ |
JP2010235320A (ja) * | 2009-03-30 | 2010-10-21 | Taiyo Nippon Sanso Corp | 導電性樹脂充填用カーボンナノ物質及びその製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4811712B1 (ja) | 1964-12-24 | 1973-04-14 | ||
CN100549070C (zh) * | 2007-10-18 | 2009-10-14 | 西北工业大学 | 一种碳纳米管/聚合物导电复合材料的制备方法 |
EP2218682B1 (en) * | 2007-11-30 | 2012-10-03 | Toray Industries, Inc. | Carbon nanotube assembly and process for producing the same |
CN101381483B (zh) * | 2008-10-28 | 2011-04-27 | 中国热带农业科学院农产品加工研究所 | 一种碳纳米管-天然橡胶复合材料的制备方法 |
EP2543632B1 (en) * | 2010-03-01 | 2020-08-05 | Zeon Corporation | Method for producing aligned carbon nanotube aggregate |
US20130004657A1 (en) * | 2011-01-13 | 2013-01-03 | CNano Technology Limited | Enhanced Electrode Composition For Li ion Battery |
WO2014097626A1 (ja) * | 2012-12-21 | 2014-06-26 | 日本ゼオン株式会社 | ゴム組成物および成形体 |
-
2012
- 2012-10-26 US US14/360,746 patent/US9748016B2/en active Active
- 2012-11-26 EP EP12852928.6A patent/EP2787044B1/en not_active Not-in-force
- 2012-11-26 CN CN201280057157.7A patent/CN103946316B/zh not_active Expired - Fee Related
- 2012-11-26 KR KR1020147013619A patent/KR101890121B1/ko active IP Right Grant
- 2012-11-26 JP JP2013508050A patent/JP5263463B1/ja active Active
- 2012-11-26 CN CN201711221742.7A patent/CN107973921A/zh active Pending
- 2012-11-26 WO PCT/JP2012/080451 patent/WO2013080912A1/ja active Application Filing
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5179171A (en) | 1985-05-24 | 1993-01-12 | Mitsui Petrochemical Industries, Ltd. | Random copolymer, and process for production thereof |
US5202388A (en) | 1990-11-30 | 1993-04-13 | Japan Synthetic Rubber Co., Ltd. | Process for producing hydrogenation product of ring-opening polymer |
JPH0597978A (ja) | 1991-10-09 | 1993-04-20 | Japan Synthetic Rubber Co Ltd | 水素添加重合体 |
JPH05310845A (ja) | 1992-05-11 | 1993-11-22 | Mitsui Petrochem Ind Ltd | 環状オレフィン系ランダム多元共重合体およびその製造方法 |
JPH11124429A (ja) | 1997-10-23 | 1999-05-11 | Nippon Zeon Co Ltd | 熱可塑性ジシクロペンタジエン系開環重合体、及びその製造方法 |
EP1026189A1 (en) | 1997-10-23 | 2000-08-09 | Nippon Zeon Co., Ltd. | Thermoplastic dicyclopentadiene-base open-ring polymers, hydrogenated derivatives thereof, and processes for the preparation of both |
JP2004210830A (ja) | 2002-12-27 | 2004-07-29 | Jsr Corp | エラストマー組成物およびその製造方法 |
JP2006517996A (ja) | 2003-02-13 | 2006-08-03 | スティッチング ダッチ ポリマー インスティテュート | 強化ポリマー |
EP1787955A1 (en) | 2004-07-27 | 2007-05-23 | National Institute of Advanced Industrial Science and Technology | Single-layer carbon nanotube and alinged single-layer carbon nanotube bulk structure, and their production process, production apparatus and use |
JP4621896B2 (ja) | 2004-07-27 | 2011-01-26 | 独立行政法人産業技術総合研究所 | 単層カーボンナノチューブおよびその製造方法 |
US20090297846A1 (en) | 2005-11-25 | 2009-12-03 | Kenji Hata | Double-Walled Carbon Nanotube, Aligned Double-Walled Carbon Nanotube Bulk Structure and Process for Producing the Same |
JP4811712B2 (ja) | 2005-11-25 | 2011-11-09 | 独立行政法人産業技術総合研究所 | カーボンナノチューブ・バルク構造体及びその製造方法 |
JP2009196840A (ja) * | 2008-02-20 | 2009-09-03 | National Institute Of Advanced Industrial & Technology | カーボンナノチューブの切断方法、カーボンナノチューブ片、およびカーボンナノチューブ分散液 |
JP2010001475A (ja) | 2008-06-23 | 2010-01-07 | Lanxess Deutschland Gmbh | カーボンナノチューブ含有ゴム組成物 |
JP2010185032A (ja) * | 2009-02-13 | 2010-08-26 | Bridgestone Corp | ゴム組成物及びそれを用いたタイヤ |
JP2010235320A (ja) * | 2009-03-30 | 2010-10-21 | Taiyo Nippon Sanso Corp | 導電性樹脂充填用カーボンナノ物質及びその製造方法 |
Non-Patent Citations (3)
Title |
---|
J. BRANDRUP AND E. H. IMMERGUT: "Polymer Handbook(Third Edition)", JOHN WILEY & SONS |
KENJI HATA ET AL.: "Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes", SCIENCE, vol. 30, no. 6, 19 November 2004 (2004-11-19), pages 1362 - 1364 |
See also references of EP2787044A4 |
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014120219A (ja) * | 2012-12-13 | 2014-06-30 | Nippon Zeon Co Ltd | 色素増感型太陽電池用対向電極、色素増感型太陽電池、および太陽電池モジュール |
JP2015020939A (ja) * | 2013-07-22 | 2015-02-02 | 東レ株式会社 | カーボンナノチューブ集合体、カーボンナノチューブ集合体の合成方法、樹脂組成物、導電性エラストマーおよび分散液 |
US10189713B2 (en) | 2013-07-31 | 2019-01-29 | Zeon Corporation | Method for producing carbon nanotube dispersion liquid, method for producing composite material composition, method for producing composite material, composite material, and composite-material shaped product |
KR102345024B1 (ko) * | 2013-07-31 | 2021-12-28 | 니폰 제온 가부시키가이샤 | 카본 나노튜브 분산액의 제조 방법, 복합 재료용 조성물의 제조 방법 및 복합 재료의 제조 방법, 및 복합 재료 및 복합 재료 성형체 |
KR20160037905A (ko) * | 2013-07-31 | 2016-04-06 | 니폰 제온 가부시키가이샤 | 카본 나노튜브 분산액의 제조 방법, 복합 재료용 조성물의 제조 방법 및 복합 재료의 제조 방법, 및 복합 재료 및 복합 재료 성형체 |
EP3028992A4 (en) * | 2013-07-31 | 2017-05-24 | Zeon Corporation | Method for producing carbon nanotube dispersion, method for producing composite material composition, method for producing composite material, composite material, and composite-material molded product |
WO2015045417A1 (ja) * | 2013-09-30 | 2015-04-02 | 日本ゼオン株式会社 | カーボンナノチューブ分散液の製造方法 |
US20160240279A1 (en) * | 2013-10-24 | 2016-08-18 | Zeon Corporation | Latex composition, production method therefor, composite material, and conductive formed product |
US10163541B2 (en) * | 2013-10-24 | 2018-12-25 | Zeon Corporation | Latex composition, production method therefor, composite material, and conductive formed product |
JP2015105441A (ja) * | 2013-11-28 | 2015-06-08 | 日本ゼオン株式会社 | カーボンナノチューブ含有繊維の製造方法およびカーボンナノチューブ含有繊維 |
JP2015105442A (ja) * | 2013-11-28 | 2015-06-08 | 豊田通商株式会社 | ゴム構造体補強用繊維及びその製造方法 |
JPWO2015098089A1 (ja) * | 2013-12-27 | 2017-03-23 | 日本ゼオン株式会社 | 導電膜、燃料電池用ガス拡散層、燃料電池用触媒層、燃料電池用電極、燃料電池用膜電極接合体、及び燃料電池 |
EP3089247A4 (en) * | 2013-12-27 | 2017-07-19 | Zeon Corporation | Conductive film, gas diffusion layer for fuel cells, catalyst layer for fuel cells, electrode for fuel cells, membrane electrode assembly for fuel cells, and fuel cell |
CN105814721B (zh) * | 2013-12-27 | 2019-11-15 | 日本瑞翁株式会社 | 导电膜,燃料电池用气体扩散层、催化剂层、电极、膜电极接合体,以及燃料电池 |
TWI674700B (zh) * | 2013-12-27 | 2019-10-11 | 日商日本瑞翁股份有限公司 | 導電膜、燃料電池用氣體擴散層、燃料電池用觸媒層、燃料電池用電極、燃料電池用膜電極接合體及燃料電池 |
JP2015128099A (ja) * | 2013-12-27 | 2015-07-09 | 日本ゼオン株式会社 | 太陽電池用電極基板 |
CN105814721A (zh) * | 2013-12-27 | 2016-07-27 | 日本瑞翁株式会社 | 导电膜、燃料电池用气体扩散层、燃料电池用催化剂层、燃料电池用电极、燃料电池用膜电极接合体、及燃料电池 |
JP2015128101A (ja) * | 2013-12-27 | 2015-07-09 | 日本ゼオン株式会社 | 太陽電池用電極基板 |
CN105900182A (zh) * | 2014-01-31 | 2016-08-24 | 日本瑞翁株式会社 | 透明导电膜、色素敏化太阳能电池用光电极及触摸面板以及色素敏化太阳能电池 |
TWI638463B (zh) * | 2014-01-31 | 2018-10-11 | 日本瑞翁股份有限公司 | 透明導電膜、染料敏化太陽能電池用光電極及觸控面板以及染料敏化太陽能電池 |
JPWO2015115048A1 (ja) * | 2014-01-31 | 2017-03-23 | 日本ゼオン株式会社 | 透明導電膜、色素増感太陽電池用光電極及びタッチパネル並びに色素増感太陽電池 |
JP2015145438A (ja) * | 2014-01-31 | 2015-08-13 | 日本ゼオン株式会社 | カーボンナノチューブ分散液及び導電性フィルム |
JP2015146229A (ja) * | 2014-01-31 | 2015-08-13 | 日本ゼオン株式会社 | 導電膜の製造方法、並びに、導電膜、タッチパネル、色素増感型太陽電池用電極および色素増感型太陽電池 |
EP3101663A4 (en) * | 2014-01-31 | 2017-09-20 | Zeon Corporation | Transparent conductive film, photoelectrode for dye-sensitized solar cells, touch panel and dye-sensitized solar cell |
WO2015115048A1 (ja) * | 2014-01-31 | 2015-08-06 | 日本ゼオン株式会社 | 透明導電膜、色素増感太陽電池用光電極及びタッチパネル並びに色素増感太陽電池 |
JP2015188808A (ja) * | 2014-03-27 | 2015-11-02 | 日本ゼオン株式会社 | 酸化還元触媒、電極材料、電極、太陽電池、燃料電池用膜電極接合体および燃料電池 |
JP2015214450A (ja) * | 2014-05-09 | 2015-12-03 | 日本ゼオン株式会社 | カーボンナノチューブ複合材料の製造方法およびカーボンナノチューブ複合材料 |
EP3151320A4 (en) * | 2014-05-30 | 2017-10-18 | Zeon Corporation | Redox catalyst, electrode material, electrode, membrane electrode assembly for fuel cells, and fuel cell |
WO2015182138A1 (ja) * | 2014-05-30 | 2015-12-03 | 日本ゼオン株式会社 | 酸化還元触媒、電極材料、電極、燃料電池用膜電極接合体、及び燃料電池 |
JPWO2015182058A1 (ja) * | 2014-05-30 | 2017-04-20 | 日本ゼオン株式会社 | カーボンナノチューブ分散液の製造方法およびカーボンナノチューブ分散液、複合材料用組成物の製造方法および複合材料の製造方法、並びに、複合材料および複合材料成形体 |
JPWO2015182138A1 (ja) * | 2014-05-30 | 2017-04-20 | 日本ゼオン株式会社 | 酸化還元触媒、電極材料、電極、燃料電池用膜電極接合体、及び燃料電池 |
KR102396056B1 (ko) | 2014-05-30 | 2022-05-09 | 니폰 제온 가부시키가이샤 | 카본나노튜브 분산액의 제조 방법 및 카본나노튜브 분산액, 복합 재료용 조성물의 제조 방법 및 복합 재료의 제조 방법, 그리고, 복합 재료 및 복합 재료 성형체 |
EP3150550A4 (en) * | 2014-05-30 | 2018-01-03 | Zeon Corporation | Method for producing carbon nanotube dispersion and carbon nanotube dispersion, method for producing composition for composite material and method for producing composite material, and composite material and composite material molded article |
WO2015182058A1 (ja) * | 2014-05-30 | 2015-12-03 | 日本ゼオン株式会社 | カーボンナノチューブ分散液の製造方法およびカーボンナノチューブ分散液、複合材料用組成物の製造方法および複合材料の製造方法、並びに、複合材料および複合材料成形体 |
US10181602B2 (en) | 2014-05-30 | 2019-01-15 | Zeon Corporation | Redox catalyst, electrode material, electrode, membrane electrode assembly for fuel cells, and fuel cell |
KR20170013229A (ko) * | 2014-05-30 | 2017-02-06 | 니폰 제온 가부시키가이샤 | 카본나노튜브 분산액의 제조 방법 및 카본나노튜브 분산액, 복합 재료용 조성물의 제조 방법 및 복합 재료의 제조 방법, 그리고, 복합 재료 및 복합 재료 성형체 |
US10138347B2 (en) | 2014-05-30 | 2018-11-27 | Zeon Corporation | Method for producing carbon nanotube dispersion liquid, carbon nanotube dispersion liquid, method for producing composite material composition, method for producing composite material, composite material, and composite material shaped product |
CN106458599A (zh) * | 2014-05-30 | 2017-02-22 | 日本瑞翁株式会社 | 碳纳米管分散液及制造方法、复合材料用组合物制造方法、复合材料及其制造方法及成型体 |
WO2016027254A1 (en) * | 2014-08-21 | 2016-02-25 | Samsuri Azemi B | Rubber products based on improved nbr masterbatch |
EP3183287A1 (en) | 2014-08-21 | 2017-06-28 | Samsuri, Azemi B | Rubber products based on improved nbr masterbatch |
US10839976B2 (en) | 2015-02-27 | 2020-11-17 | Zeon Corporation | Silicone rubber composition and vulcanized product |
JPWO2016136275A1 (ja) * | 2015-02-27 | 2017-12-07 | 日本ゼオン株式会社 | シリコーンゴム組成物および加硫物 |
WO2016143299A1 (ja) * | 2015-03-06 | 2016-09-15 | 日本ゼオン株式会社 | 複合材料の製造方法および複合材料 |
US20180127273A1 (en) * | 2015-05-27 | 2018-05-10 | Zeon Corporation | Carbon film and method of producing same, and fibrous carbon nanostructure dispersion liquid and method of producing same |
US10611640B2 (en) * | 2015-05-27 | 2020-04-07 | Zeon Corporation | Carbon film and method of producing same, and fibrous carbon nanostructure dispersion liquid and method of producing same |
CN108367925A (zh) * | 2015-12-28 | 2018-08-03 | 日本瑞翁株式会社 | 纤维状碳纳米结构体分散液 |
US10995223B2 (en) * | 2015-12-28 | 2021-05-04 | Zeon Corporation | Fibrous carbon nanostructure dispersion liquid |
US20190161628A1 (en) * | 2015-12-28 | 2019-05-30 | Zeon Corporation | Fibrous carbon nanostructure dispersion liquid |
CN108140841A (zh) * | 2016-03-24 | 2018-06-08 | 株式会社Lg化学 | 导电材料分散液和使用其制造的二次电池 |
US11108050B2 (en) | 2016-03-24 | 2021-08-31 | Lg Chem, Ltd. | Conductive material dispersed liquid and secondary battery manufactured using the same |
JP2018028028A (ja) * | 2016-08-18 | 2018-02-22 | 日本ゼオン株式会社 | 複合材料の製造方法 |
WO2018066458A1 (ja) * | 2016-10-03 | 2018-04-12 | 日本ゼオン株式会社 | スラリー、複合樹脂材料および成形体の製造方法 |
WO2018066433A1 (ja) * | 2016-10-03 | 2018-04-12 | 日本ゼオン株式会社 | 複合樹脂材料の製造方法および成形体の製造方法 |
JP2018090758A (ja) * | 2016-11-30 | 2018-06-14 | 三菱ケミカル株式会社 | カーボンナノチューブ/ゴム複合体及びその製造方法 |
US10273350B2 (en) | 2016-12-20 | 2019-04-30 | Toyo Tire Corporation | Rubber masterbatch, method for producing the same, and rubber composition obtained from the same |
DE102017129842A1 (de) | 2016-12-20 | 2018-06-21 | Toyo Tire & Rubber Co., Ltd. | Kautschukmasterbatch, Verfahren zum Herstellen eines Kautschukmasterbatches und daraus erhaltene Kautschukzusammensetzung |
JP2019156911A (ja) * | 2018-03-08 | 2019-09-19 | 三菱商事株式会社 | カーボンナノチューブ高配合ゴム粒状物の製造方法 |
WO2019172399A1 (ja) * | 2018-03-08 | 2019-09-12 | 三菱商事株式会社 | カーボンナノチューブ高配合ゴム粒状物の製造方法 |
WO2019180993A1 (ja) * | 2018-03-23 | 2019-09-26 | 日本ゼオン株式会社 | ゴム組成物の製造方法 |
JPWO2019180993A1 (ja) * | 2018-03-23 | 2021-03-11 | 日本ゼオン株式会社 | ゴム組成物の製造方法 |
JP7151760B2 (ja) | 2018-03-23 | 2022-10-12 | 日本ゼオン株式会社 | ゴム組成物の製造方法 |
WO2021193667A1 (ja) * | 2020-03-26 | 2021-09-30 | 日本ゼオン株式会社 | 高圧水素機器用ガスシール部材および高圧水素機器 |
Also Published As
Publication number | Publication date |
---|---|
EP2787044A1 (en) | 2014-10-08 |
CN107973921A (zh) | 2018-05-01 |
KR101890121B1 (ko) | 2018-08-21 |
EP2787044B1 (en) | 2017-09-20 |
JP5263463B1 (ja) | 2013-08-14 |
CN103946316B (zh) | 2020-01-21 |
US20140353556A1 (en) | 2014-12-04 |
EP2787044A4 (en) | 2015-08-19 |
CN103946316A (zh) | 2014-07-23 |
US9748016B2 (en) | 2017-08-29 |
JPWO2013080912A1 (ja) | 2015-04-27 |
KR20140105439A (ko) | 2014-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5263463B1 (ja) | カーボンナノチューブ組成物の製造方法及びカーボンナノチューブ組成物 | |
JP6497375B2 (ja) | ラテックス組成物およびその製造方法、並びに、複合材料の製造方法および導電性成形体の製造方法 | |
Sahu et al. | Design of a molecular architecture via a green route for an improved silica reinforced nanocomposite using bioresources | |
JP2004210830A (ja) | エラストマー組成物およびその製造方法 | |
WO2015015758A1 (ja) | カーボンナノチューブ分散液の製造方法、複合材料用組成物の製造方法および複合材料の製造方法、並びに、複合材料および複合材料成形体 | |
JP2013523908A (ja) | エラストマー複合材料の製造方法 | |
EP2651819A1 (en) | Improved elastomer formulations | |
US8592512B2 (en) | Carbon nanotubes and organic media containing microgels | |
JP2010222582A (ja) | ナノチューブの含有量が高いエラストマーの複合材料の製造方法 | |
KR20150097532A (ko) | 고무 조성물 및 성형체 | |
EP3412708B1 (en) | Polymer latex production method | |
JP2020066699A (ja) | タイヤ用ゴム組成物 | |
JP5488797B2 (ja) | エポキシ化ジエン系ゴムの製造方法およびゴム組成物 | |
Kar et al. | Nucleation barrier, growth kinetics in ternary polymer blend filled with preferentially distributed carbon nanotubes | |
JPWO2020009185A1 (ja) | エラストマー組成物の製造方法 | |
JP2021176930A (ja) | 組成物の製造方法 | |
Gong et al. | Thermoplastic vulcanizates: Historical perspectives and synthesis strategies | |
JP7243061B2 (ja) | 分散体、製造方法、ゴム組成物及び空気入りタイヤ | |
JP7255124B2 (ja) | フィラー・ゴム複合体 | |
Li et al. | Starch/SBR biocomposites prepared by solid blend method: Effect of surface modification and coupling agent | |
WO2014183024A1 (en) | Solution based polymer nanofiller-composites synthesis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013508050 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12852928 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147013619 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14360746 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2012852928 Country of ref document: EP |