WO2015045396A1 - 色素増感型太陽電池および太陽電池モジュール - Google Patents

色素増感型太陽電池および太陽電池モジュール Download PDF

Info

Publication number
WO2015045396A1
WO2015045396A1 PCT/JP2014/004920 JP2014004920W WO2015045396A1 WO 2015045396 A1 WO2015045396 A1 WO 2015045396A1 JP 2014004920 W JP2014004920 W JP 2014004920W WO 2015045396 A1 WO2015045396 A1 WO 2015045396A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
layer
dye
solar cell
sensitized solar
Prior art date
Application number
PCT/JP2014/004920
Other languages
English (en)
French (fr)
Inventor
清茂 児島
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2015538909A priority Critical patent/JPWO2015045396A1/ja
Publication of WO2015045396A1 publication Critical patent/WO2015045396A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/821Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a dye-sensitized solar cell that is excellent in durability and suitable for mass production.
  • the present invention also relates to a solar cell module in which the above dye-sensitized solar cells are connected in series and / or in parallel.
  • organic solar cells such as dye-sensitized solar cells and organic thin-film solar cells have attracted attention as solar cells that replace Si-based solar cells.
  • dye-sensitized solar cells can be expected to be lighter than Si-based solar cells, etc., can generate power stably over a wide illuminance range, and are relatively inexpensive without requiring large-scale equipment.
  • it has attracted attention because it can be manufactured using various materials.
  • This dye-sensitized solar cell usually has a structure in which a photoelectrode 10, an electrolyte layer 20, and a counter electrode 30 are arranged in this order as shown in FIG. Then, in the dye-sensitized solar cell, when the sensitizing dye in the photoelectrode 10 receives light and is excited, the electrons of the sensitizing dye are taken out, and the taken-out electrons come out of the photoelectrode 10, It moves to the counter electrode 30 through the external circuit 40 and further moves to the electrolyte layer 20.
  • FIG. 10 In FIG.
  • reference numeral 10a is a photoelectrode substrate
  • 10b is a porous semiconductor fine particle layer
  • 10c is a sensitizing dye layer
  • 10d and 30a are supports
  • 10e and 30c are conductive films
  • 30b is a catalyst layer.
  • the conductive film 10e of the photoelectrode comes into contact with the electrolyte.
  • indium-tin oxide hereinafter also referred to as ITO
  • ITO indium-tin oxide
  • a transparent electrode includes a porous layer containing metal oxide semiconductor fine particles and a second metal oxide such as ITO.
  • a first transparent electrode layer made of a first metal oxide having a chemical durability higher than that of the second metal oxide is provided between the second transparent electrode layer as the conductive film. 2
  • a technique for preventing corrosion of an electrode by utilizing it as a protective layer of a transparent electrode layer is disclosed.
  • fluorine-doped tin oxide (hereinafter also referred to as FTO) that is relatively excellent in chemical durability is used as the first metal oxide.
  • FTO fluorine-doped tin oxide
  • a first transparent electrode layer made of such a first metal oxide is formed.
  • the second transparent electrode layer undergoes oxidative degradation, and the conductive It will cause deterioration.
  • a porous layer and a first transparent electrode layer are first laminated in this order on a heat-resistant substrate different from the battery base material, and a second transparent electrode layer is further laminated thereon.
  • a laminate for a dye-sensitized solar cell (hereinafter simply referred to as a laminate)
  • oxidative deterioration of the second transparent electrode layer made of ITO or the like is prevented.
  • a step of joining the battery substrate to the second transparent electrode layer of the laminated body and peeling the heat-resistant substrate from the laminated body is required.
  • the technique of Patent Document 1 is inferior in manufacturability, such as being unable to perform the roll-to-roll manufacturing, and has a problem in mass production.
  • the present invention has been developed to solve the above-described problems, and it is an object of the present invention to provide a dye-sensitized solar cell suitable for mass production, not to mention having excellent durability.
  • the inventor has intensively studied to solve the above problems.
  • a carbon nanotube layer containing carbon nanotubes having predetermined characteristics hereinafter also referred to as CNT
  • CNT carbon nanotubes having predetermined characteristics
  • conductivity and transparency are reduced.
  • the corrosion of the electrode can be prevented and the durability as a battery can be improved.
  • the inventor can form a carbon nanotube layer to be formed as a conductive film of a photoelectrode by applying and drying a dispersion liquid in which CNTs are dispersed. ⁇ We obtained knowledge that it is easy to manufacture processed films.
  • the inventor further researched the applicability of the carbon nanotube layer to the portion other than the conductive film of the photoelectrode based on the above knowledge.
  • the carbon nanotube layer can also be applied to the conductive film and the catalyst layer of the counter electrode, and it is needless to say that sufficient conductivity and catalytic activity can be obtained in the counter electrode. It was found that it would be further advantageous and very advantageous for mass production.
  • the present invention is based on the above findings.
  • the gist configuration of the present invention is as follows. 1.
  • a dye-sensitized solar cell having a photoelectrode, an electrolyte layer, and a counter electrode in this order,
  • the photoelectrode has a support and a carbon nanotube layer (1) as a conductive film formed on the support, while the counter electrode is formed on the support and the support,
  • a carbon nanotube layer (2) as a catalyst layer that can also serve as a conductive film;
  • the carbon nanotubes constituting each of the carbon nanotube layers (1) and (2) have an average diameter (Av) and a standard deviation of diameter ( ⁇ ) satisfying 0.60> 3 ⁇ / Av> 0.20.
  • Dye-sensitized solar cells are examples of the average diameter (Av) and a standard deviation of diameter ( ⁇ ) satisfying 0.60> 3 ⁇ / Av> 0.20.
  • the counter electrode has a carbon nanotube layer (3) or a composite metal oxide layer as a conductive film between the support and the carbon nanotube layer (2), 2.
  • the carbon nanotube constituting the carbon nanotube layer (3) has an average diameter (Av) and a standard deviation ( ⁇ ) of the diameter satisfying 0.60> 3 ⁇ / Av> 0.20. Dye-sensitized solar cell.
  • a solar cell module in which the dye-sensitized solar cells according to any one of 1 to 3 are connected in series and / or in parallel.
  • the dye-sensitized solar cell suitable for mass production can be obtained. Moreover, with mass production, it becomes possible to manufacture at low cost a solar cell module in which the dye-sensitized solar cells are connected in series and / or in parallel.
  • the dye-sensitized solar cell of the present invention has, for example, a photoelectrode 10, an electrolyte layer 20, and a counter electrode 30 in this order, as shown in FIG.
  • the photoelectrode 10 includes a photoelectrode substrate 10a, a porous semiconductor fine particle layer 10b, and a sensitizing dye layer 10c.
  • the photoelectrode substrate 10a has a support 10d and a carbon nanotube layer (1) 10f as a conductive film formed on the support 10d.
  • the counter electrode 30 includes a support 30a and a carbon nanotube layer (2) 30d as a catalyst layer that is formed directly or indirectly on the support 30a and can also serve as a conductive film.
  • the carbon nanotube layer as the catalyst layer that can also serve as the conductive film in the photoelectrode and the conductive film in the counter electrode.
  • these carbon nanotube layers can be formed by applying and drying a CNT dispersion liquid in which CNTs are dispersed, the applicability is good, and the accuracy of workability is greatly improved.
  • the high-speed coating / processing film can be easily manufactured. For this reason, manufacturability is improved, which is very advantageous in terms of mass production of dye-sensitized solar cells.
  • the carbon nanotube layer (2) is provided directly on the support of the counter electrode, and the function as a conductive film and a catalyst layer is provided on the carbon nanotube layer (2), the production is further improved. Therefore, the dye-sensitized solar cell This is further advantageous in terms of mass production.
  • the thickness of the carbon nanotube layers (1) and (2) is not particularly limited, but is preferably in the range of 1 nm to 0.1 mm from the viewpoint of conductivity and transparency.
  • the content of CNT in the carbon nanotube layers (1) and (2) is not particularly limited, but from the viewpoint of conductivity and transparency, it is in the range of 1.0 ⁇ 10 ⁇ 6 to 30 mg / cm 2 . It is preferable to do.
  • the preparation of the CNT dispersion used for forming the carbon nanotube layers (1) and (2) may be in accordance with a conventional method.
  • a conventional method for example, by using water or alcohol as a solvent, mixing CNT and other components such as a binder, a conductive aid, a dispersant, a surfactant, etc.
  • a CNT dispersion can be obtained.
  • the content of CNT in the CNT dispersion is preferably in the range of 0.001 to 10% by mass, and more preferably in the range of 0.001 to 5% by mass.
  • CNTs satisfying the following characteristics as the CNTs constituting the carbon nanotube layers (1) and (2).
  • the CNTs constituting the carbon nanotube layers (1) and (2) must satisfy the relationship that the average diameter (Av) and the standard deviation ( ⁇ ) of the diameter are 0.60> 3 ⁇ / Av> 0.20. .
  • the carbon nanotube layers (1) and (2) have excellent durability without deteriorating transparency and conductivity, and the carbon nanotubes of the counter electrode are further obtained. This is because excellent catalytic activity is easily obtained in the layer (2).
  • 3 ⁇ refers to a diameter distribution obtained by multiplying (sample) standard deviation ( ⁇ ) of the diameter of CNT by 3.
  • the “average diameter (Av)” and “standard deviation of diameter ( ⁇ )” can be obtained by measuring the diameter of 100 CNTs using a transmission electron microscope (the same applies to the average length described later). The length is measured by the above method, and the average value is obtained.)
  • the “diameter” of the CNT means the outer diameter of the CNT.
  • the diameters measured as described above are plotted on the horizontal axis, the frequency is plotted on the vertical axis, and the normal distribution is used when approximated by Gaussian. Is done.
  • CNT that satisfies the following characteristics in addition to the above characteristics.
  • the average diameter (Av) of CNT is preferably in the range of 0.5 to 15 nm. This is because by setting the average diameter (Av) of the CNTs within the above range, excellent durability can be obtained in the carbon nanotube layers (1) and (2) without deteriorating transparency and conductivity.
  • the carbon nanotube layer (2) of the counter electrode can easily obtain excellent catalytic activity. More preferably, it is in the range of 1 to 10 nm.
  • the average length of CNT is preferably in the range of 0.1 ⁇ m to 1 cm. This is because, by setting the average length of CNT within the above range, in the carbon nanotube layers (1) and (2), excellent durability can be obtained without lowering transparency and conductivity. This is because excellent catalytic activity is easily obtained on the counter electrode side. More preferably, it is in the range of 0.1 ⁇ m to 1 mm.
  • the specific surface area of the CNT is preferably in the range of 100 to 2500 m 2 / g. This is because, by setting the specific surface area of the CNT within the above range, the carbon nanotube layers (1) and (2) can obtain excellent durability without deteriorating the transparency and conductivity. This is because excellent catalytic activity is easily obtained on the electrode side. More preferably, it is in the range of 400 to 1600 m 2 / g.
  • the specific surface area of CNT can be calculated
  • Mass density 0.002 to 0.2 g / cm 3
  • the mass density of CNT is preferably in the range of 0.002 to 0.2 g / cm 3 . This is because by setting the mass density of the CNT within the above range, in the carbon nanotube layers (1) and (2), excellent durability can be obtained without deteriorating transparency and conductivity. This is because excellent catalytic activity is easily obtained on the electrode side.
  • the mass density of CNT is a value measured as an aligned CNT aggregate directly obtained by a CNT manufacturing method described later.
  • the CNT may be a single layer or a multilayer, but from the viewpoint of improving catalytic activity and conductivity, a single layer to five layers are preferable, and a single layer is preferable. More preferred.
  • the CNT may have a functional group such as a carboxyl group introduced on the surface.
  • the functional group can be introduced by a known oxidation treatment method using hydrogen peroxide, nitric acid or the like.
  • the CNT preferably has a plurality of micropores.
  • the CNT preferably has micropores having a pore size smaller than 2 nm, and the abundance thereof is a micropore volume determined by the following method, preferably 0.4 mL / g or more, more preferably 0.43 mL. / G or more, more preferably 0.45 mL / g or more, and the upper limit is usually about 0.65 mL / g.
  • the CNTs have the above micropores from the viewpoint of improving catalyst activity and conductivity.
  • the micropore volume can be adjusted, for example, by appropriately changing the CNT preparation method and preparation conditions.
  • Vp (V / 22414) ⁇ (M / ⁇ ).
  • P the measurement pressure at the time of adsorption equilibrium
  • P0 the saturated vapor pressure of liquid nitrogen at the time of measurement
  • M the molecular weight of adsorbate (nitrogen) 28.010
  • the adsorbate (nitrogen).
  • the micropore volume can be easily determined using, for example, “BELSORP (registered trademark) -mini” (manufactured by Nippon Bell Co., Ltd.).
  • the CNTs having the above characteristics are obtained by, for example, supplying a raw material compound and a carrier gas on a substrate having a catalyst layer for CNT production on the surface (hereinafter also referred to as “CNT production substrate”).
  • CNT production substrate a substrate having a catalyst layer for CNT production on the surface
  • CVD chemical vapor deposition
  • a catalyst layer is formed on the surface of the substrate by a wet process, and a source gas containing acetylene as a main component (for example, a gas containing 50% by mass or more of acetylene) Can be used for efficient production.
  • a source gas containing acetylene as a main component for example, a gas containing 50% by mass or more of acetylene
  • carbon nanotubes are used as a conductive film between the support and the carbon nanotube layer (2) in the counter electrode.
  • a layer (3) or a composite metal oxide layer can be provided. In this case, functional separation of the conductive film and the catalyst layer in the counter electrode can be achieved, and the catalytic activity and conductivity can be further improved.
  • the carbon nanotube layer (3) is provided between the support and the carbon nanotube layer (2), it is preferable to use CNTs having the following characteristics, respectively.
  • CNTs having the following characteristics, respectively.
  • catalyst activity can be improved
  • electroconductivity can be improved in carbon nanotube layer (3).
  • what is necessary is just to make it the same as the characteristic of CNT mentioned above except the characteristic shown below.
  • CNT used for carbon nanotube layer (2) (thickness: 1 nm to 0.1 ⁇ m) Average length: 0.1 ⁇ m to 1 cm Specific surface area: 600-1600 m 2 / g Mass density: 0.002 to 0.1 g / cm 3
  • CNT used for carbon nanotube layer (3) (thickness: 0.1 to 100 ⁇ m) Average length: 0.1 ⁇ m to 1 cm Specific surface area: 400-1200 m 2 / g Mass density: 0.002 to 0.1 g / cm 3
  • indium tin oxide (ITO), indium zinc oxide (IZO), or the like is formed on the composite metal oxide layer.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the thickness of the composite metal oxide layer is preferably 0.01 to 100 ⁇ m.
  • the total thickness of the carbon nanotube layer (2) and the carbon nanotube layer (3) is The total thickness of the minimum thicknesses of the carbon nanotube layer (2) and the carbon nanotube layer (3) is preferably in the range of 100 ⁇ m. This is because when the total thickness of the carbon nanotube layer (2) and the carbon nanotube layer (3) exceeds 100 ⁇ m, the accuracy at the time of bonding deteriorates, whereas when the total thickness is less than the lower limit value, the conductivity tends to be inferior. It is. More preferably, the upper limit is 10 ⁇ m.
  • the carbon nanotube layer (2) of the counter electrode functions as a catalyst layer also serving as a conductive film, or when it functions only as a catalyst layer (separately, a carbon nanotube layer (3) or a composite metal oxide layer is formed as a conductive film.
  • the metal nanoparticle can be supported on the carbon nanotube layer (2), and thus the catalytic effect can be expected to be improved.
  • Examples of the metal nanoparticles include metal nanoparticles of Groups 6 to 14 of the periodic table.
  • the metals of Groups 6 to 14 of the periodic table include Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ru, Rh, Pd, Ag, Cd, Sn, Sb, W, Re, Ir , Pt, Au, Pb and the like.
  • Fe, Co, Ni, Ag, W, Ru, Pt, Au, and Pd are preferable because a highly versatile oxidation-reduction catalyst can be obtained.
  • the said metal can be used individually by 1 type or in combination of 2 or more types.
  • the average particle diameter of the metal nanoparticles is preferably 0.5 to 15 nm, and the standard deviation of the particle diameter is preferably 1.5 nm or less.
  • the amount of metal nanoparticles supported is not particularly limited, but is preferably 1 part by mass or more per 100 parts by mass of the carbon nanotubes. More excellent catalytic activity can be obtained when the supported amount of metal nanoparticles is 1 part by mass or more. The catalytic activity is considered to be higher as the loading amount of the metal nanoparticles is larger. However, considering the loading ability and economic efficiency of the CNT, the upper limit of the loading amount of the metal nanoparticles is usually 30 per 100 parts by mass of the CNT. 000 parts by mass or less is preferable.
  • the method for supporting the metal nanoparticles on the CNT is not particularly limited.
  • the metal nanoparticles may be formed using a known method of generating metal nanoparticles by reducing the metal precursor in the presence of CNTs. It can be supported on CNTs. Specifically, a dispersion containing water, alcohol, CNT, and a dispersant is prepared, and after adding the metal precursor, the solvent is distilled off, and the metal precursor is further reduced by heating in a hydrogen stream. By doing so, a metal nanoparticle carrier in which the generated metal nanoparticles are supported on CNTs can be obtained efficiently.
  • the addition amount of the metal precursor to be added to the dispersion is not particularly limited, but after adding the metal precursor from the viewpoint of efficiently obtaining the metal nanoparticle support in which the metal nanoparticles are supported on the CNT. It is preferable to add such that the content in the dispersion is 1.0 ⁇ 10 ⁇ 10 to 1.0 ⁇ 10 ⁇ 8 mass%.
  • the carbon nanotube layer (2) of the counter electrode may contain a metal nanostructure.
  • the metal nanostructure described above is a microstructure made of a metal or a metal compound, and is used here as a conductor.
  • the metal or metal compound constituting the metal nanostructure is not particularly limited as long as it has conductivity.
  • metals such as copper, silver, platinum, and gold; metal oxides such as indium oxide, zinc oxide, and tin oxide; aluminum zinc oxide (AZO), indium tin oxide (ITO), and indium zinc oxide (IZO) And the like, and the like.
  • metals such as copper, silver, platinum, and gold
  • metal oxides such as indium oxide, zinc oxide, and tin oxide
  • gold, silver, copper, or platinum is preferable because excellent conductivity and transparency can be easily obtained.
  • examples of the metal nanostructure include metal nanoparticles, metal nanowires, metal nanorods, and metal nanosheets.
  • metal nanoparticles are particulate structures having an average particle size on the nanometer scale.
  • the average particle diameter of metal nanoparticles (average particle diameter of primary particles) is not particularly limited, but is preferably 10 to 300 nm. When the average particle diameter is within the above range, a conductive film having excellent conductivity and transparency can be easily obtained.
  • the average particle diameter of the metal nanoparticles can be calculated by measuring the particle diameters of 100 randomly selected metal nanoparticles using a transmission electron microscope. In addition, the size of other metal nanostructures described below can be obtained by the same method.
  • metal nanoparticles can be prepared by mixing a polyol method for synthesizing metal nanoparticles by reducing an organic complex with a polyhydric alcohol, a reverse micelle solution containing a reducing agent, and a reverse micelle solution containing a metal salt. It can be obtained by using a known method such as a reverse micelle method for synthesizing particles.
  • the metal nanowire is a linear structure having an average diameter of nanometer scale and an aspect ratio (length / diameter) of 10 or more.
  • the average diameter of the metal nanowire is not particularly limited, but is preferably 10 to 300 nm.
  • the average length of the metal nanowire is not particularly limited, but is preferably 3 ⁇ m or more. When the average diameter and the average length are within the above ranges, a conductive film having excellent conductivity and transparency can be easily obtained.
  • the metal nanowire is, for example, a method in which an applied voltage or current is applied to the precursor surface from the tip of the probe, the metal nanowire is drawn out at the probe tip, and the metal nanowire is continuously formed (Japanese Patent Laid-Open No. 2004-223893) ) And a method of reducing nanofibers composed of metal complexed peptide lipids (Japanese Patent Laid-Open No. 2002-266007).
  • the metal nanorod is a cylindrical structure having an average diameter of nanometer scale and an aspect ratio (length / diameter) of 1 or more and less than 10.
  • the average diameter of the nanorods is not particularly limited, but is preferably 10 to 300 nm.
  • the average length of the nanorods is not particularly limited, but is preferably 10 to 3000 nm. When the average diameter and the average length are within the above ranges, a conductive film having excellent conductivity and transparency can be easily obtained.
  • the metal nanorod can be obtained by using a known method such as an electrolytic method, a chemical reduction method, or a photoreduction method.
  • the metal nanosheet is a sheet-like structure having a thickness on the nanometer scale.
  • the thickness of the metal nanosheet is not particularly limited, but is preferably 1 to 10 nm.
  • the size of the metal nanosheet is not particularly limited, but preferably the length of one side is 0.1 to 10 ⁇ m. When the thickness and the length of one side are within the above ranges, a conductive film having excellent conductivity and transparency can be easily obtained.
  • the metal nanosheet can be obtained by using a known method such as a method of peeling a layered compound, a chemical vapor deposition method, a hydrothermal method or the like.
  • metal nanowires because excellent conductivity and transparency are easily obtained.
  • a metal nanostructure can be used individually by 1 type or in combination of 2 or more types.
  • the content of the metal nanostructure in each carbon nanotube layer is not particularly limited, but is preferably in the range of 0.0001 to 0.05 mg / cm 2 .
  • a transparent resin substrate or a glass substrate is used as a support for a photoelectrode and a counter electrode.
  • a transparent resin substrate can be used as a support for a photoelectrode and a counter electrode.
  • a transparent resin substrate can be used as a support for a photoelectrode and a counter electrode.
  • Such transparent resins include cycloolefin polymer (COP), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), syndiotactic polystyrene (SPS), polyphenylene sulfide (PPS), polycarbonate (PC), polyarylate ( Examples thereof include synthetic resins such as PAr), polysulfone (PSF), polyestersulfone (PES), polyetherimide (PEI), and transparent polyimide (PI).
  • COP cycloolefin polymer
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • SPS syndiotactic polystyrene
  • PPS polyphenylene sulfide
  • PC polycarbonate
  • PAr synthetic resins
  • PSF polysulfone
  • PET polyestersulfone
  • PEI polyetherimide
  • PI transparent polyimide
  • the semiconductor fine particles used for the porous semiconductor fine particle layer 10b of the photoelectrode include metal oxide particles such as titanium oxide, zinc oxide and tin oxide.
  • the porous semiconductor fine particle layer can be formed by a press method, a hydrothermal decomposition method, an electrophoretic electrodeposition method, a binder-free coating method, or the like.
  • the sensitizing dye used for the sensitizing dye layer 10c adsorbed on the surface of the porous semiconductor fine particle layer cyanine dye, merocyanine dye, oxonol dye, xanthene dye, squarylium dye, polymethine dye, coumarin dye, riboflavin dye And organic dyes such as perylene dyes; metal complex dyes such as phthalocyanine complexes and porphyrin complexes of metals such as iron, copper and ruthenium.
  • the sensitizing dye layer is formed by, for example, a method of immersing the porous semiconductor fine particle layer in a sensitizing dye solution or a method of applying a sensitizing dye solution on the porous semiconductor fine particle layer. Can do.
  • the electrolyte layer 20 usually contains a supporting electrolyte, a redox couple (a pair of chemical species that can be reversibly converted into an oxidized form and a reduced form in a redox reaction), a solvent, and the like.
  • a supporting electrolyte examples include salts containing cations such as lithium ions, imidazolium ions, and quaternary ammonium ions.
  • the oxidation-reduction pair is not particularly limited as long as it can reduce the oxidized sensitizing dye. Chlorine compound-chlorine, iodine compound-iodine, bromine compound-bromine, thallium ion (III) -thallium ion (I ), Ruthenium ion (III) -ruthenium ion (II), copper ion (II) -copper ion (I), iron ion (III) -iron ion (II), cobalt ion (III) -cobalt ion (II), Examples thereof include vanadium ion (III) -vanadium ion (II), manganate ion-permanganate ion, ferricyanide-ferrocyanide, quinone-hydroquinone, fumaric acid-succinic acid, and the like.
  • examples of the solvent include acetonitrile, methoxyacetonitrile, methoxypropionitrile, N, N-dimethylformamide, ethylmethylimidazolium bistrifluoromethylsulfonylimide, propylene carbonate and the like which are solvents for forming an electrolyte layer of a solar cell. .
  • the electrolyte layer is formed by applying a solution (electrolyte solution) containing the constituent component onto the photoelectrode, or forming a cell having the photoelectrode and the counter electrode, and injecting the electrolyte solution into the gap.
  • a solution electrolyte solution
  • the solar cell module of the present invention is obtained by connecting the above-described dye-sensitized solar cells in series and / or in parallel.
  • the solar cell module of the present invention includes, for example, the dye-sensitized solar cells of the present invention arranged in a plane or on a curved surface, provided with non-conductive partition walls between the batteries, It can be obtained by electrically connecting the counter electrode using a conductive member.
  • the number of dye-sensitized solar cells to be used is not particularly limited, and can be determined as appropriate according to the target voltage.
  • an aligned CNT aggregate was obtained by the super-growth method.
  • the obtained aligned CNT aggregate had a BET specific surface area of 800 m 2 / g, a mass density of 0.03 g / cm 3 , and a micropore volume of 0.44 mL / g. Further, as a result of randomly measuring the diameter of 100 CNTs using a transmission electron microscope, the average diameter (Av) was 3.3 nm, the diameter distribution (3 ⁇ ) was 1.9 nm, and (3 ⁇ / Av) was 0. .58.
  • the obtained aligned CNT aggregate was mainly composed of single-walled CNTs.
  • Example 1 In a 30 mL glass container, 5 g of water and 1 g of ethanol are added, and 0.0025 g of the aligned CNT aggregate obtained as described above is added and mixed. A bath type ultrasonic cleaner (BRANSON, 5510J-MT (42 kHz , 180 W) for 2 hours to obtain a CNT dispersion. By applying and drying this CNT dispersion liquid, a carbon nanotube layer (1) having a thickness of 0.05 ⁇ m is formed on the transparent substrate (support) of the counter electrode. A carbon nanotube layer (2) having a thickness of 0.5 ⁇ m was formed to manufacture a dye-sensitized solar cell. In addition, about the structure except the above, it was set as the same as the conventional dye-sensitized solar cell.
  • BRANSON Bath type ultrasonic cleaner
  • Example 2 A dye-sensitized solar cell was prepared in the same manner as in Example 1 except that the carbon nanotube layer (3) was formed between the transparent substrate (support) of the counter electrode and the carbon nanotube layer (2). Manufactured. The carbon nanotube layer (3) was formed using a CNT dispersion obtained under the same conditions as in Example 1 except that the following CNTs were used.
  • Example 3 Except that a composite metal oxide layer made of ITO having a thickness of 10 ⁇ m was formed between the transparent substrate (support) of the counter electrode and the carbon nanotube layer (2), the same as in Example 1, A dye-sensitized solar cell was manufactured.
  • Example 4 To the CNT dispersion prepared in Example 1, dinitrodiammineplatinum (II) [Pt (NH 3 ) 2 (NO 2 ) 2 ] nitric acid aqueous solution was added and mixed so that the compound concentration was 2 mM, and the mixture was mixed at 80 ° C. The solvent was evaporated, and reduction treatment was performed using hydrogen gas at 250 ° C. for 2 hours to obtain platinum particle-supported CNTs. This platinum particle carrying
  • II dinitrodiammineplatinum
  • a carbon nanotube layer (2) having CNTs carrying platinum nanoparticles is formed on a transparent substrate (support) of a counter electrode, and a dye-sensitized solar cell Manufactured.
  • the configuration other than the above was the same as in Example 1.
  • Example 5 Example 2 except that the carbon nanotube layer (2) having CNTs carrying platinum nanoparticles was formed on the transparent base material (support) of the counter electrode using the CNT dispersion prepared in Example 4. In the same manner, a dye-sensitized solar cell was produced.
  • Comparative Example 1 Using the CNT dispersion prepared in Example 1, a carbon nanotube layer is formed on the transparent substrate (support) of the photoelectrode, while a platinum thin film is formed on the catalyst layer of the counter electrode and indium is formed on the conductive film of the counter electrode. A dye-sensitized solar cell using tin oxide (ITO) was manufactured. The configuration other than the above was the same as in Example 1.
  • Example 1 A conventional dye-sensitized solar cell using a platinum thin film as the catalyst layer of the counter electrode and indium tin oxide (ITO) as the conductive film of the photoelectrode and the counter electrode was manufactured.
  • ITO indium tin oxide
  • the output current was measured while changing the bias voltage from 0 V to 0.8 V in units of 0.01 V under light irradiation of 1 sun.
  • the output current was measured by integrating the values from 0.05 seconds to 0.15 seconds after changing the voltage in each voltage step. Measurement was also performed by stepping the bias voltage from 0.8 V to 0 V in the reverse direction, and the average value of the measurement in the forward direction and the reverse direction was taken as the photocurrent. From the above measurement, the open circuit voltage (V), the fill factor, and the energy conversion efficiency (%) were calculated.
  • Manufacturability was evaluated in four stages as follows with respect to the time required for battery manufacture, with the time required for battery manufacture in Conventional Example 1 being 100%. ⁇ : Manufacturable in less than 50% time ⁇ : Manufacturable in 50% to less than 75% time ⁇ : Manufacturable in 75% to less than 100% time ⁇ : Manufacturable in 100% or more time
  • Examples 1 to 5 sufficient performance as a dye-sensitized solar cell can be obtained, and the energy conversion efficiency is hardly decreased even after continuous irradiation for 10,000 hours, and the durability is excellent. It was. Examples 1 and 2 were particularly excellent in manufacturability. On the other hand, in Comparative Example 1 and Conventional Example 1, the energy conversion efficiency after 10,000 hours of continuous irradiation was significantly reduced, and sufficient durability was not obtained. Moreover, it was inferior to manufacturability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 光電極、電解質層および対向電極をこの順に有する色素増感型太陽電池において、前記光電極が、支持体と、前記支持体上に形成された、導電膜としてのカーボンナノチューブ層(1)とを有する一方、前記対向電極が、支持体と、前記支持体上に形成され、導電膜を兼ねることができる、触媒層としてのカーボンナノチューブ層(2)とを有し、前記カーボンナノチューブ層(1)、(2)にそれぞれ、平均直径(Av)と直径の標準偏差(σ)が0.60>3σ/Av>0.20の関係を満足するカーボンナノチューブを用いる。

Description

色素増感型太陽電池および太陽電池モジュール
 本発明は、耐久性に優れるとともに、量産化にも適した色素増感型太陽電池に関するものである。
 また、本発明は、上記の色素増感型太陽電池が直列および/または並列に接続されてなる太陽電池モジュールに関するものである。
 近年、Si系の太陽電池等に代わる太陽電池として、色素増感型太陽電池や有機薄膜太陽電池といった有機系太陽電池が注目されている。
 なかでも、色素増感型太陽電池は、Si系の太陽電池等に比べて軽量化が期待でき、広い照度範囲で安定して発電できることや、大掛かりな設備を必要とすることなく、比較的安価な材料を用いて製造し得ることから、特に注目を集めている。
 この色素増感型太陽電池は、通常、図1に示すような、光電極10、電解質層20および対向電極30がこの順に並んでなる構造を有する。そして、色素増感型太陽電池は、光電極10中の増感色素が光を受けて励起されると、増感色素の電子が取り出され、取り出された電子が、光電極10から出て、外部の回路40を通って対向電極30に移動し、さらに電解質層20に移動するという仕組みとなっている。
 なお、図1中、符号10aが光電極基板、10bが多孔質半導体微粒子層、10cが増感色素層、10dおよび30aが支持体、10eおよび30cが導電膜、30bが触媒層である。
 ここで、色素増感型太陽電池においては、光電極の多孔質半導体微粒子層10bにまで電解質が浸透することになるので、光電極の導電膜10eは、電解質と接触することとなる。光電極の導電膜10eには、通常、導電性や透明性に優れるインジウム-スズ酸化物(以下、ITOともいう)が用いられるが、ITOは十分な耐食性を有しているとは言えない。このため、ITOは、時間の経過とともに、電解質中に含まれる酸化還元対や電解質溶媒によって腐食され、これにより、電極としての機能、特に導電性が劣化し、ひいては色素増感型太陽電池のエネルギー変換効率が低下するという耐久性の問題があった。
 このような問題を解決するための技術として、例えば、特許文献1には、透明電極(光電極)において、金属酸化物半導体微粒子を含む多孔質層と、ITOなどの第2金属酸化物からなる導電膜としての第2透明電極層との間に、第2金属酸化物よりも化学的耐久性の高い第1金属酸化物からなる第1透明電極層を設け、この第1透明電極層を第2透明電極層の保護層として活用することにより、電極の腐食を防止しようとする技術が開示されている。
特開2006-278299号公報
 ここで、特許文献1の技術では、第1金属酸化物として比較的化学的耐久性に優れるフッ素ドープ酸化スズ(以下、FTOともいう)などが用いられており、加熱処理を行うことにより、かような第1金属酸化物からなる第1透明電極層を形成している。しかしながら、第1透明電極層を形成する際の加熱処理を、ITOなどからなる第2透明電極層が形成された状態で行うと、第2透明電極層の酸化劣化が進行して、導電性の劣化を招くこととなる。
 このため、太陽電池セルの製造に先立ち、まず電池基材とは異なる耐熱基板上に多孔質層、第1透明電極層をこの順に積層し、その上で、さらに第2透明電極層を積層した色素増感型太陽電池用積層体(以下、単に積層体という)を製造することで、ITOなどからなる第2透明電極層の酸化劣化を防止している。
 しかしながら、この積層体を太陽電池セルに組み込む際には、積層体の第2透明電極層に電池基材を接合するとともに、この積層体から耐熱基板を剥離する工程が必要となる。このため、特許文献1の技術は、ロールツーロール方式での製造を行うことができないなど、製造性に劣り、量産化の点で問題があった。
 本発明は、上記の問題を解決するために開発されたものであって、耐久性に優れるのは言うまでもなく、量産化にも適した色素増感型太陽電池を提供することを目的とする。
 さて、発明者は、上記の問題を解決すべく、鋭意検討を行った。
 その結果、色素増感型太陽電池の光電極の導電膜として、所定の特性を有するカーボンナノチューブ(以下、CNTともいう)を含むカーボンナノチューブ層を適用したところ、導電性や透明性を低下させることなく、電極の腐食を防止でき、ひいては電池としての耐久性も向上できるとの知見を得た。
 また、発明者は、光電極の導電膜として形成するカーボンナノチューブ層が、CNTを分散させた分散液を塗布・乾燥して形成でき、その塗布性は良好で、ロールツーロール方式での高速塗布・加工フィルムの製造も容易であるとの知見を得た。
 そこで、発明者は、上記の知見に基づき、光電極の導電膜以外の部分に対するカーボンナノチューブ層の適用可能性について、さらに研究を進めた。
 その結果、対向電極の導電膜や触媒層にもカーボンナノチューブ層を適用することができ、これにより、対向電極において十分な導電性や触媒活性が得られるのは言うまでもなく、耐久性や製造性が一層向上し、量産化を行う上でも非常に有利になるとの知見を得た。
 本発明は、上記の知見に立脚するものである。
 すなわち、本発明の要旨構成は次のとおりである。
1.光電極、電解質層および対向電極をこの順に有する色素増感型太陽電池であって、
 前記光電極が、支持体と、前記支持体上に形成された、導電膜としてのカーボンナノチューブ層(1)とを有する一方、前記対向電極が、支持体と、前記支持体上に形成され、導電膜を兼ねることができる、触媒層としてのカーボンナノチューブ層(2)とを有し、
 前記カーボンナノチューブ層(1)、(2)をそれぞれ構成するカーボンナノチューブが、その平均直径(Av)と直径の標準偏差(σ)が0.60>3σ/Av>0.20を満たすものである、色素増感型太陽電池。
2.前記対向電極が、前記支持体と、前記カーボンナノチューブ層(2)と、の間に、導電膜としてカーボンナノチューブ層(3)または複合金属酸化物層を有し、
 前記カーボンナノチューブ層(3)を構成するカーボンナノチューブが、その平均直径(Av)と直径の標準偏差(σ)が0.60>3σ/Av>0.20を満たすものである、前記1記載の色素増感型太陽電池。
3.前記対向電極の前記カーボンナノチューブ層(2)を構成するカーボンナノチューブが金属ナノ粒子を担持してなるものである前記1または2記載の色素増感型太陽電池。
4.前記1~3いずれかに記載の色素増感型太陽電池が直列および/または並列に接続されてなる太陽電池モジュール。
 本発明によれば、耐久性に優れるとともに、量産化にも適した色素増感型太陽電池を得ることができる。
 また、量産化に伴い、上記の色素増感型太陽電池が直列および/または並列に接続されてなる太陽電池モジュールを、安価に製造することが可能になる。
従来の色素増感型太陽電池の概略構成を示す図である。 本発明の一例となる色素増感型太陽電池の概略構成を示す図である。
 以下、本発明を具体的に説明する。
 本発明の色素増感型太陽電池は、例えば、図2に示すように、光電極10、電解質層20および対向電極30をこの順に有する。そして、光電極10は、光電極基板10aと、多孔質半導体微粒子層10bと、増感色素層10cとを有する。光電極基板10aは、支持体10dと、前記支持体10d上に形成された、導電膜としてのカーボンナノチューブ層(1)10fとを有する。また、対向電極30は、支持体30aと、前記支持体30a上に直接的または間接的に形成され、導電膜を兼ねることができる、触媒層としてのカーボンナノチューブ層(2)30dとを有する。
 このように、本発明の色素増感型太陽電池では、光電極において、導電膜としてカーボンナノチューブ層(1)を、また対向電極において、導電膜を兼ねることができる、触媒層としてのカーボンナノチューブ層(2)を設けることで、腐食等を防止して、耐久性を高めている。
 また、これらのカーボンナノチューブ層は、CNTを分散させたCNT分散液を塗布・乾燥することで形成でき、その塗布性は良好で、かつ加工性の精度も大幅に向上し、ロールツーロール方式での高速塗布・加工フィルムの製造も容易となる。このため、製造性が向上し、色素増感型太陽電池の量産化の点で非常に有利となる。
 特に、対向電極の支持体上に直接カーボンナノチューブ層(2)を設け、これに導電膜と触媒層としての機能を兼備させる場合には、製造製が一層向上するので、色素増感型太陽電池の量産化の点でさらに有利になる。
 ここに、カーボンナノチューブ層(1)、(2)の厚さは、特に限定されないが、導電性や透明性の観点からは、1nm~0.1mmの範囲とすることが好ましい。また、カーボンナノチューブ層(1)、(2)中のCNTの含有量も、特に限定されないが、導電性や透明性の観点からは、1.0×10-6~30mg/cm2の範囲とすることが好ましい。
 なお、カーボンナノチューブ層(1)、(2)の形成に使用するCNT分散液の調製は常法に従えばよい。例えば、溶媒として水やアルコール等を用い、CNT、および必要に応じて結着剤、導電助剤、分散剤、界面活性剤等といったその他の成分を溶媒中で混合し、CNTを分散させることで、CNT分散液を得ることができる。ここに、CNT分散液中のCNTの含有量は0.001~10質量%の範囲とすることが好ましく、より好ましくは0.001~5質量%の範囲である。
 そして、本発明では、カーボンナノチューブ層(1)、(2)を構成するCNTとして、以下の特性を満足するCNTを用いることが重要である。
0.60>3σ/Av>0.20
 カーボンナノチューブ層(1)、(2)を構成するCNTは、その平均直径(Av)と直径の標準偏差(σ)が0.60>3σ/Av>0.20の関係を満足する必要がある。
 というのは、上記の関係を満足させることで、カーボンナノチューブ層(1)、(2)において、透明性や導電性を低下させることなく、優れた耐久性が得られ、さらに対向電極のカーボンナノチューブ層(2)では、優れた触媒活性も得られ易くなるからである。好ましくは0.60>3σ/Av>0.25、より好ましくは0.60>3σ/Av>0.50である。
 なお、「3σ」とは、CNTの直径の(標本)標準偏差(σ)に3を乗じた直径分布を指す。そして、「平均直径(Av)」および「直径の標準偏差(σ)」は、それぞれ、透過型電子顕微鏡を用いてCNT100本の直径を測定して求めることができる(後述する平均長さも、同様の方法で長さの測定を行い、その平均値として求められる。)。また、CNTの「直径」とは、当該CNTの外径を意味する。さらに、本発明で使用するCNTとしては、前述のようにして測定した直径を横軸に、その頻度を縦軸に取ってプロットし、ガウシアンで近似した際に、正規分布を取るものが通常使用される。
 また、本発明では、上記の特性に加え、以下の特性を満足するCNTを用いることが好適である。
平均直径(Av):0.5~15nm
 CNTの平均直径(Av)は、0.5~15nmの範囲とすることが好ましい。というのは、CNTの平均直径(Av)を上記の範囲とすることにより、カーボンナノチューブ層(1)、(2)において、透明性や導電性を低下させることなく、優れた耐久性が得られ、さらに対向電極のカーボンナノチューブ層(2)では、優れた触媒活性も得られ易くなるからである。より好ましくは1~10nmの範囲である。
平均長さ:0.1μm~1cm
 CNTの平均長さは、0.1μm~1cmの範囲とすることが好ましい。というのは、CNTの平均長さを上記の範囲とすることにより、カーボンナノチューブ層(1)、(2)において、透明性や導電性を低下させることなく、優れた耐久性が得られ、さらに対向電極側では、優れた触媒活性も得られ易くなるからである。より好ましくは0.1μm~1mmの範囲である。
比表面積:100~2500m2/g
 CNTの比表面積は、100~2500m2/gの範囲とすることが好ましい。というのは、CNTの比表面積を上記の範囲とすることにより、カーボンナノチューブ層(1)、(2)において、透明性や導電性を低下させることなく、優れた耐久性が得られ、さらに対向電極側では、優れた触媒活性も得られ易くなるからである。より好ましくは400~1600m2/gの範囲である。
 なお、CNTの比表面積は、窒素ガス吸着法により求めることができる。
質量密度:0.002~0.2g/cm3
 CNTの質量密度は、0.002~0.2g/cm3の範囲とすることが好ましい。というのは、CNTの質量密度を上記の範囲とすることにより、カーボンナノチューブ層(1)、(2)において、透明性や導電性を低下させることなく、優れた耐久性が得られ、さらに対向電極側では、優れた触媒活性も得られ易くなるからである。なお、CNTの質量密度は、後述のCNTの製造方法により直接的に得られるCNT配向集合体として測定した値である。
 また、CNTは、単層のものであっても、多層のものであってもよいが、触媒活性や導電性を向上させる観点から、単層から5層のものが好ましく、単層のものがより好ましい。
 さらに、CNTは、表面にカルボキシル基等の官能基が導入されたものであってもよい。官能基の導入は、過酸化水素や硝酸等を用いる公知の酸化処理法により行うことができる。
 加えて、CNTは、複数の微小孔を有することが好ましい。CNTは、中でも、孔径が2nmよりも小さいマイクロ孔を有するのが好ましく、その存在量は、下記の方法で求めたマイクロ孔容積で、好ましくは0.4mL/g以上、より好ましくは0.43mL/g以上、更に好ましくは0.45mL/g以上であり、上限としては、通常、0.65mL/g程度である。CNTが上記のようなマイクロ孔を有することは、触媒活性や導電性を向上させる観点から好ましい。なお、マイクロ孔容積は、例えば、CNTの調製方法および調製条件を適宜変更することで調整することができる。
 ここで、「マイクロ孔容積(Vp)」は、CNTの液体窒素温度(77K)での窒素吸脱着等温線を測定し、相対圧P/P0=0.19における窒素吸着量をVとして、式(I):Vp=(V/22414)×(M/ρ)より、算出することができる。なお、Pは吸着平衡時の測定圧力、P0は測定時の液体窒素の飽和蒸気圧であり、 式(I)中、Mは吸着質(窒素)の分子量28.010、ρは吸着質(窒素)の77Kにおける密度0.808g/cm3である。マイクロ孔容積は、例えば、「BELSORP(登録商標)-mini」(日本ベル(株)製)を使用して容易に求めることができる。
 なお、以上の特性を有するCNTは、例えば、表面にCNT製造用触媒層を有する基材(以下、「CNT製造用基材」ということがある。)上に、原料化合物およびキャリアガスを供給して、化学的気相成長法(CVD法)によりCNTを合成する際に、系内に微量の酸化剤を存在させることで、CNT製造用触媒層の触媒活性を飛躍的に向上させるという方法(スーパーグロース法;国際公開第2006/011655号参照)において、基材表面への触媒層の形成をウェットプロセスにより行い、アセチレンを主成分とする原料ガス(例えば、アセチレンを50質量%以上含むガス)を用いることにより、効率的に製造することができる。
 以上、カーボンナノチューブ層(1)、(2)を構成するCNTの特性について説明したが、本発明では、対向電極において、支持体とカーボンナノチューブ層(2)との間に、導電膜としてカーボンナノチューブ層(3)または複合金属酸化物層を設けることができる。
 この場合、対向電極における導電膜と触媒層の機能分離を図ることができ、触媒活性と導電性を一層向上させることができる。
 例えば、支持体とカーボンナノチューブ層(2)との間に、カーボンナノチューブ層(3)を設ける場合、以下の特性となるCNTをそれぞれ用いることが好適である。これにより、カーボンナノチューブ層(2)では、触媒活性を高めることができる一方、カーボンナノチューブ層(3)では、導電性を高めることできる。なお、以下に示す特性以外については、前述したCNTの特性と同じにすればよい。
・カーボンナノチューブ層(2)(厚さ:1nm~0.1μm)に用いるCNT
 平均長さ:0.1μm~1cm
 比表面積:600~1600m2/g
 質量密度:0.002~0.1g/cm3
・カーボンナノチューブ層(3)(厚さ:0.1~100μm)に用いるCNT
 平均長さ:0.1μm~1cm
 比表面積:400~1200m2/g
 質量密度:0.002~0.1g/cm3
 また、支持体とカーボンナノチューブ層(2)との間に複合金属酸化物層を設ける場合には、この複合金属酸化物層にインジウムスズ酸化物(ITO)やインジウム亜鉛酸化物(IZO)等が用いることができるが、なかでもインジウムスズ酸化物(ITO)を用いることが好ましい。
 なお、複合金属酸化物層の厚さは0.01~100μmとすることが好ましい。
 さらに、対向電極の支持体とカーボンナノチューブ層(2)との間に、カーボンナノチューブ層(3)を設ける場合には、カーボンナノチューブ層(2)とカーボンナノチューブ層(3)の合計厚さを、前記した、カーボンナノチューブ層(2)とカーボンナノチューブ層(3)の各々の最低厚さの合計厚さから100μmの範囲とすることが好ましい。
 というのは、カーボンナノチューブ層(2)とカーボンナノチューブ層(3)の合計厚さが100μmを超えると貼りあわせ時の精度が悪くなり、一方、下限値未満になると導電性に劣る傾向があるからである。より好ましくは上限値は10μmである。
 加えて、対向電極のカーボンナノチューブ層(2)が導電膜を兼ねる触媒層として機能する場合、また触媒層のみとして機能する場合(別途導電膜としてカーボンナノチューブ層(3)または複合金属酸化物層を設ける場合)のいずれであっても、当該カーボンナノチューブ層(2)に金属ナノ粒子を担持させることができ、これにより、触媒効果の向上が期待できる。
 ここに、この金属ナノ粒子としては、周期律表第6族~第14族の金属のナノ粒子が挙げられる。
 周期律表第6族~第14族の金属としては、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ru、Rh、Pd、Ag、Cd、Sn、Sb、W、Re、Ir、Pt、Au、Pb等が挙げられる。なかでも、汎用性の高い酸化還元触媒が得られることから、Fe、Co、Ni、Ag、W、Ru、Pt、Au、Pdが好ましい。
 上記金属は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 また、触媒効果の向上の観点から、金属ナノ粒子の平均粒径は好ましくは0.5~15nmであり、粒径の標準偏差は好ましくは1.5nm以下である。
 さらに、金属ナノ粒子の担持量は特に限定されないが、カーボンナノチューブ100質量部あたり、1質量部以上が好ましい。金属ナノ粒子の担持量が1質量部以上であることで、より優れた触媒活性が得られる。金属ナノ粒子の担持量は多ければ多いほど触媒活性は高くなると考えられるが、CNTの担持能や経済性を考慮すれば、金属ナノ粒子の担持量の上限は、CNT100質量部あたり、通常、30,000質量部以下とすることが好ましい。
 なお、金属ナノ粒子をCNTに担持させる方法は特に限定されず、例えば、CNTの存在下で、金属前駆体を還元して金属ナノ粒子を生成させる公知の方法を利用して、金属ナノ粒子をCNTに担持させることができる。
 具体的には、水やアルコール、CNT、及び分散剤を含有する分散液を調製し、次いで金属前駆体を添加後、溶媒を留去し、さらに水素気流下に加熱して金属前駆体を還元することで、生成した金属ナノ粒子がCNTに担持されてなる金属ナノ粒子担持体を効率よく得ることができる。ここで、分散液に添加する金属前駆体の添加量は、特に限定されないが、金属ナノ粒子がCNTに担持されてなる金属ナノ粒子担持体を効率よく得る観点から、金属前駆体を添加した後の分散液中の含有量が、好ましくは1.0×10-10~1.0×10-8質量%となるように添加するのが好適である。
 さらに、導電性を向上させるため、光電極におけるカーボンナノチューブ層(1)や対向電極のカーボンナノチューブ層(3)に金属ナノ構造体を含有させてもよい。また、対向電極のカーボンナノチューブ層(2)が導電膜を兼ねる触媒層として機能する場合には、カーボンナノチューブ層(2)に金属ナノ構造体を含有させてもよい。
 ここに、上記した金属ナノ構造体は、金属又は金属化合物からなる微小構造体であり、ここでは導電体として用いられる。
 金属ナノ構造体を構成する金属や金属化合物としては、導電性を有するものであれば特に限定されない。例えば、銅、銀、白金、金等の金属;酸化インジウム、酸化亜鉛、酸化スズ等の金属酸化物;アルミニウム亜鉛酸化物(AZO)、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)等の金属複合酸化物;等が挙げられる。
 これらの中でも、優れた導電性および透明性が得られやすいことから、金、銀、銅または白金が好ましい。
 また、金属ナノ構造体としては、金属ナノ粒子、金属ナノワイヤ、金属ナノロッド、金属ナノシート等が挙げられる。
 このうち、金属ナノ粒子は、ナノメートルスケールの平均粒子径を有する粒子状構造体である。金属ナノ粒子の平均粒子径(一次粒子の平均粒子径)は、特に限定されないが、好ましくは10~300nmである。平均粒子径が上記範囲内であることで、導電性および透明性に優れる導電膜が得られ易くなる。
 なお、金属ナノ粒子の平均粒子径は、透過型電子顕微鏡を用いて、無作為に選択された100個の金属ナノ粒子の粒子径を測定することで、算出することができる。また、以下に説明する他の金属ナノ構造体の大きさも、同様の方法により求めることができる。
 金属ナノ粒子は、例えば、有機錯体を多価アルコールで還元することで金属ナノ粒子を合成するポリオール法、還元剤を含む逆ミセル溶液と、金属塩を含む逆ミセル溶液を混合することで金属ナノ粒子を合成する逆ミセル法等の公知の方法を用いて得ることができる。
 また、金属ナノワイヤは、ナノメートルスケールの平均直径を有し、アスペクト比(長さ/直径)が、10以上の線状の構造体である。金属ナノワイヤの平均直径は、特に限定されないが、好ましくは10~300nmである。また、金属ナノワイヤの平均長さは、特に限定されないが、好ましくは3μm以上である。
 平均直径と平均長さが上記範囲内であることで、導電性および透明性に優れる導電膜が得られ易くなる。
 金属ナノワイヤは、例えば、前駆体表面にプローブの先端部から印加電圧又は電流を作用させ、プローブ先端部で金属ナノワイヤを引き出し、該金属ナノワイヤを連続的に形成する方法(特開2004-223693号公報)や、金属複合化ペプチド脂質からなるナノファイバを還元する方法(特開2002-266007号公報)等の公知の方法を用いて得ることができる。
 金属ナノロッドは、ナノメートルスケールの平均直径を有し、アスペクト比(長さ/直径)が、1以上10未満の円柱状構造体である。ナノロッドの平均直径は、特に限定されないが、好ましくは10~300nmである。また、ナノロッドの平均長さは、特に限定されないが、好ましくは10~3000nmである。
 平均直径と平均長さが上記範囲内であることで、導電性および透明性に優れる導電膜が得られ易くなる。
 金属ナノロッドは、例えば、電解法、化学還元法、光還元法等の公知の方法を用いて得ることができる。
 金属ナノシートは、ナノメートルスケールの厚みを有するシート状構造体である。金属ナノシートの厚みは、特に限定されないが、好ましくは1~10nmである。また、金属ナノシートの大きさは、特に限定されないが、好ましくは一辺の長さが0.1~10μmである。厚みや一辺の長さが上記範囲内であることで、導電性および透明性に優れる導電膜が得られ易くなる。
 金属ナノシートは、層状化合物を剥離する方法、化学的気相成長法、水熱法等の公知の方法を用いて得ることができる。
 これらの中でも、優れた導電性および透明性が得られやすいことから、金属ナノワイヤを用いることが好ましい。
 なお、金属ナノ構造体は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 また、各カーボンナノチューブ層中の金属ナノ構造体の含有量は、特に限定されないが、好ましくは0.0001~0.05mg/cm2の範囲である。
 本発明の色素増感型太陽電池における上記した以外の構成については、従来公知のものを使用することができ、例えば、光電極および対向電極の支持体としては、透明樹脂基材やガラス基材が用いることができ、特に透明樹脂基材を用いることができる。
 このような透明樹脂としては、シクロオレフィンポリマー(COP)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、シンジオタクチックポリスチレン(SPS)、ポリフェニレンスルフィド(PPS)、ポリカーボネート(PC)、ポリアリレート(PAr)、ポリスルホン(PSF)、ポリエステルスルホン(PES)、ポリエーテルイミド(PEI)、透明ポリイミド(PI)等の合成樹脂が挙げられる。
 また、光電極の多孔質半導体微粒子層10bに用いる半導体微粒子としては、酸化チタン、酸化亜鉛、酸化スズ等の金属酸化物の粒子が挙げられる。なお、多孔質半導体微粒子層は、プレス法、水熱分解法、泳動電着法、バインダーフリーコーティング法等により、形成することができる。
 さらに、多孔質半導体微粒子層の表面に吸着されてなる増感色素層10cに用いる増感色素としては、シアニン色素、メロシアニン色素、オキソノール色素、キサンテン色素、スクワリリウム色素、ポリメチン色素、クマリン色素、リボフラビン色素、ペリレン色素等の有機色素;鉄、銅、ルテニウム等の金属のフタロシアニン錯体やポルフィリン錯体等の金属錯体色素;等が挙げられる。
 なお、増感色素層は、例えば、増感色素の溶液中に多孔質半導体微粒子層を浸漬する方法や、増感色素の溶液を多孔質半導体微粒子層上に塗布する方法等により、形成することができる。
 加えて、電解質層20は、通常、支持電解質、酸化還元対(酸化還元反応において可逆的に酸化体および還元体の形で相互に変換しうる一対の化学種)、溶媒等を含有しており、支持電解質としては、リチウムイオン、イミダゾリウムイオン、4級アンモニウムイオン等の陽イオンを含む塩が挙げられる。
 また、酸化還元対としては、酸化された増感色素を還元し得るものであれば、よく、塩素化合物-塩素、ヨウ素化合物-ヨウ素、臭素化合物-臭素、タリウムイオン(III)-タリウムイオン(I)、ルテニウムイオン(III)-ルテニウムイオン(II)、銅イオン(II)-銅イオン(I)、鉄イオン(III)-鉄イオン(II)、コバルトイオン(III)-コバルトイオン(II)、バナジウムイオン(III)-バナジウムイオン(II)、マンガン酸イオン-過マンガン酸イオン、フェリシアン化物-フェロシアン化物、キノン-ヒドロキノン、フマル酸-コハク酸等が挙げられる。
 さらに、溶媒としては、太陽電池の電解質層の形成用溶媒であるアセトニトリル、メトキシアセトニトリル、メトキシプロピオニトリル、N,N-ジメチルホルムアミド、エチルメチルイミダゾリウムビストリフルオロメチルスルホニルイミド、炭酸プロピレン等が挙げられる。
 なお、電解質層は、その構成成分を含有する溶液(電解液)を光電極上に塗布したり、光電極と対向電極を有するセルを作製し、その隙間に電解液を注入することで形成することができる。
 次に、本発明の太陽電池モジュールについて説明する。
 本発明の太陽電池モジュールは、前述した色素増感型太陽電池が直列および/または並列に接続されてなるものである。
 そして、本発明の太陽電池モジュールは、例えば、本発明の色素増感型太陽電池を平面状または曲面上に配列し、各電池間に非導電性の隔壁を設けるとともに、各電池の光電極や対向電極を導電性の部材を用いて電気的に接続することで得ることができる。
 なお、用いる色素増感型太陽電池の数は特に限定されず、目的の電圧に応じて適宜決定することができる。
(カーボンナノチューブの合成)
 国際公開第2006/011655号の記載に従って、スーパーグロース法によってCNT配向集合体を得た。
 得られたCNT配向集合体は、BET比表面積が800m2/g、質量密度が0.03g/cm3、マイクロ孔容積が0.44mL/gであった。また、透過型電子顕微鏡を用い、無作為に100本のCNTの直径を測定した結果、平均直径(Av)が3.3nm、直径分布(3σ)が1.9nm、(3σ/Av)が0.58であった。また、得られたCNT配向集合体は、主に単層CNTにより構成されていた。
実施例1
 30mLガラス容器に、水5g、エタノール1gを入れ、さらに上記のようにして得たCNT配向集合体を0.0025g加えて混合し、バス型超音波洗浄機(BRANSON社製、5510J-MT(42kHz、180W)を用いて、2時間分散処理を行い、CNT分散液を得た。
 このCNT分散液を塗布・乾燥することにより、光電極の透明基材(支持体)上に厚さ0.05μmのカーボンナノチューブ層(1)を、対向電極の透明基材(支持体)上に厚さ0.5μmのカーボンナノチューブ層(2)をそれぞれ形成し、色素増感型太陽電池を製造した。
 なお、上記以外の構成については、従来の色素増感型太陽電池と同様とした。
実施例2
 対向電極の透明基材(支持体)と、カーボンナノチューブ層(2)との間に、カーボンナノチューブ層(3)を形成した以外は、実施例1と同様にして、色素増感型太陽電池を製造した。
 なお、カーボンナノチューブ層(3)の形成には、以下のCNTを用いたことを除き、実施例1と同様の条件で得られたCNT分散液を使用した。
・カーボンナノチューブ層(3)のCNT(主に単層CNT)
 平均直径(Av):3.3nm
 直径分布(3σ):1.9nm
 BET比表面積:600m2/g、
 質量密度:0.03g/cm3
 また、カーボンナノチューブ層(2)とカーボンナノチューブ層(3)との合計厚さは1.1μm(カーボンナノチューブ層(2)の厚さ:0.1μm、カーボンナノチューブ層(3)の厚さ:1μm)であった。
実施例3
 対向電極の透明基材(支持体)と、カーボンナノチューブ層(2)との間に、厚さ10μmのITOからなる複合金属酸化物層を形成したこと以外は、実施例1と同様にして、色素増感型太陽電池を製造した。
実施例4
 実施例1で調整したCNT分散液に、さらにジニトロジアンミン白金(II)[Pt(NH32(NO22]硝酸水溶液を化合物濃度が2mMになるように添加・混合し、80℃で溶媒を蒸発させ、250℃で水素ガスを用いて2時間還元処理を行い、白金粒子担持CNTを得た。この白金粒子担持CNTをエタノール中に分散させ、金属ナノ粒子含有CNT分散液を得た。
 この金属ナノ粒子含有CNT分散液を用いて、対向電極の透明基材(支持体)上に、白金ナノ粒子を担持したCNTを有するカーボンナノチューブ層(2)を形成し、色素増感型太陽電池を製造した。なお、上記以外の構成については、実施例1と同様とした。
実施例5
 実施例4で調製したCNT分散液を用いて、対向電極の透明基材(支持体)上に、白金ナノ粒子を担持したCNTを有するカーボンナノチューブ層(2)を形成した以外は、実施例2と同様にして、色素増感型太陽電池を製造した。
比較例1
 実施例1で調整したCNT分散液を用いて、光電極の透明基材(支持体)上に、カーボンナノチューブ層を形成する一方、対向電極の触媒層に白金薄膜、対向電極の導電膜にインジウムスズ酸化物(ITO)を用いた色素増感型太陽電池を製造した。なお、上記以外の構成については、実施例1と同様とした。
従来例1
 対向電極の触媒層に白金薄膜、光電極および対向電極の導電膜にインジウムスズ酸化物(ITO)を用いる従来型の色素増感型太陽電池を製造した。なお、上記以外の構成については、実施例1と同様とした。
 上記のようにして得られた各色素増感型太陽電池について、以下のようにしてその性能と耐久性、製造性を評価した。
[性能評価]
 光源として、150Wキセノンランプ光源にAM1.5Gフィルタを装着した擬似太陽光照射装置(PEC-L11型、ペクセル・テクノロジーズ社製)光源を用いた。光量は、1sun(AM1.5G、100mWcm-2(JIS C 8912のクラスA))に調整した。上記方法により得られた色素増感型太陽電池をソースメータ(2400型ソースメータ、Keithley社製)に接続した。
 電流電圧特性は、1sunの光照射下、バイアス電圧を、0Vから0.8Vまで0.01V単位で変化させながら出力電流を測定した。出力電流の測定は、各電圧ステップにおいて、電圧を変化後、0.05秒後から0.15秒後の値を積算することで行った。バイアス電圧を、逆方向に0.8Vから0Vまでステップさせる測定も行い、順方向と逆方向の測定の平均値を光電流とした。
 上記の測定により、開放電圧(V)、曲線因子およびエネルギー変換効率(%)を算出した。
[耐久性の評価]
 また、耐久性の評価として、上記した1sunの照射条件で10000時間の連続照射を行った後、上記と同様の方法で、各色素増感型太陽電池のエネルギー変換効率を測定し、連続照射前後のエネルギー変換効率を比較することにより、その耐久性を評価した。
[製造性の評価]
 また、製造性については、電池製造に要する時間につき、従来例1の電池製造に要した時間を100%として、以下のように4段階で評価した。
 ◎:50%未満の時間で製造可
 ○:50%以上75%未満の時間で製造可
 △:75%以上100%未満の時間で製造可
 ×:100%以上の時間で製造可
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1~5では、色素増感型太陽電池として十分な性能が得られるとともに、10000時間の連続照射後でもエネルギー変換効率の低下はほとんど見られず、耐久性にも優れていた。また、実施例1と2は、製造性に特に優れていた。
 一方、比較例1と従来例1では、10000時間の連続照射後のエネルギー変換効率が大幅に低下しており、十分な耐久性が得られなかった。また、製造性にも劣っていた。
 10   光電極
 10a  光電極基板
 10b  多孔質半導体微粒子層
 10c  増感色素層
 10d  支持体
 10e  導電膜
 10f  カーボンナノチューブ層(1)
 20   電解質層
 30   対向電極
 30a  支持体
 30b  触媒層
 30c  導電膜
 30d  カーボンナノチューブ層(2)
 40   外部の回路

Claims (4)

  1.  光電極、電解質層および対向電極をこの順に有する色素増感型太陽電池であって、
     前記光電極が、支持体と、前記支持体上に形成された、導電膜としてのカーボンナノチューブ層(1)とを有する一方、前記対向電極が、支持体と、前記支持体上に形成され、導電膜を兼ねることができる、触媒層としてのカーボンナノチューブ層(2)とを有し、
     前記カーボンナノチューブ層(1)、(2)をそれぞれ構成するカーボンナノチューブが、その平均直径(Av)と直径の標準偏差(σ)が0.60>3σ/Av>0.20を満たすものである、色素増感型太陽電池。
  2.  前記対向電極が、前記支持体と、前記カーボンナノチューブ層(2)と、の間に、導電膜としてカーボンナノチューブ層(3)または複合金属酸化物層を有し、
     前記カーボンナノチューブ層(3)を構成するカーボンナノチューブが、その平均直径(Av)と直径の標準偏差(σ)が0.60>3σ/Av>0.20を満たすものである、請求項1記載の色素増感型太陽電池。
  3.  前記対向電極の前記カーボンナノチューブ層(2)を構成するカーボンナノチューブが金属ナノ粒子を担持してなるものである請求項1または2記載の色素増感型太陽電池。
  4.  請求項1~3いずれかに記載の色素増感型太陽電池が直列および/または並列に接続されてなる太陽電池モジュール。
PCT/JP2014/004920 2013-09-30 2014-09-25 色素増感型太陽電池および太陽電池モジュール WO2015045396A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015538909A JPWO2015045396A1 (ja) 2013-09-30 2014-09-25 色素増感型太陽電池および太陽電池モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013205927 2013-09-30
JP2013-205927 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015045396A1 true WO2015045396A1 (ja) 2015-04-02

Family

ID=52742565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004920 WO2015045396A1 (ja) 2013-09-30 2014-09-25 色素増感型太陽電池および太陽電池モジュール

Country Status (2)

Country Link
JP (1) JPWO2015045396A1 (ja)
WO (1) WO2015045396A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3101663A4 (en) * 2014-01-31 2017-09-20 Zeon Corporation Transparent conductive film, photoelectrode for dye-sensitized solar cells, touch panel and dye-sensitized solar cell
WO2017170524A1 (ja) * 2016-03-29 2017-10-05 日本ゼオン株式会社 太陽電池用電極およびその製造方法、並びに太陽電池
JP2020138890A (ja) * 2019-02-28 2020-09-03 日本ゼオン株式会社 複合体の製造方法
CN114824328A (zh) * 2022-05-12 2022-07-29 吉林大学 一种光敏低温金属空气电池组及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021651A (ja) * 2006-07-13 2008-01-31 Samsung Electronics Co Ltd 触媒が担持されたカーボンナノチューブを用いた太陽電池及びその製造方法
JP2011014411A (ja) * 2009-07-02 2011-01-20 Mitsubishi Rayon Co Ltd 光電変換素子及びその製造方法
WO2012157506A1 (ja) * 2011-05-13 2012-11-22 国立大学法人熊本大学 カーボンナノチューブ複合電極及びその製造方法
JP5263463B1 (ja) * 2011-11-28 2013-08-14 日本ゼオン株式会社 カーボンナノチューブ組成物の製造方法及びカーボンナノチューブ組成物
WO2014148598A1 (ja) * 2013-03-21 2014-09-25 日本ゼオン株式会社 色素増感太陽電池素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021651A (ja) * 2006-07-13 2008-01-31 Samsung Electronics Co Ltd 触媒が担持されたカーボンナノチューブを用いた太陽電池及びその製造方法
JP2011014411A (ja) * 2009-07-02 2011-01-20 Mitsubishi Rayon Co Ltd 光電変換素子及びその製造方法
WO2012157506A1 (ja) * 2011-05-13 2012-11-22 国立大学法人熊本大学 カーボンナノチューブ複合電極及びその製造方法
JP5263463B1 (ja) * 2011-11-28 2013-08-14 日本ゼオン株式会社 カーボンナノチューブ組成物の製造方法及びカーボンナノチューブ組成物
WO2014148598A1 (ja) * 2013-03-21 2014-09-25 日本ゼオン株式会社 色素増感太陽電池素子

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3101663A4 (en) * 2014-01-31 2017-09-20 Zeon Corporation Transparent conductive film, photoelectrode for dye-sensitized solar cells, touch panel and dye-sensitized solar cell
WO2017170524A1 (ja) * 2016-03-29 2017-10-05 日本ゼオン株式会社 太陽電池用電極およびその製造方法、並びに太陽電池
JPWO2017170524A1 (ja) * 2016-03-29 2019-02-07 日本ゼオン株式会社 太陽電池用電極およびその製造方法、並びに太陽電池
JP2020138890A (ja) * 2019-02-28 2020-09-03 日本ゼオン株式会社 複合体の製造方法
JP7264370B2 (ja) 2019-02-28 2023-04-25 日本ゼオン株式会社 複合体の製造方法
CN114824328A (zh) * 2022-05-12 2022-07-29 吉林大学 一种光敏低温金属空气电池组及其制备方法

Also Published As

Publication number Publication date
JPWO2015045396A1 (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
Ji et al. Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage and sensor systems
Kamat Graphene-based nanoassemblies for energy conversion
JP6497389B2 (ja) 色素増感型太陽電池用対向電極、色素増感型太陽電池および太陽電池モジュール
Patil et al. Recent progress of graphene‐based photoelectrode materials for dye‐sensitized solar cells
Ubani et al. Application of graphene in dye and quantum dots sensitized solar cell
Calandra et al. Metal Nanoparticles and Carbon‐Based Nanostructures as Advanced Materials for Cathode Application in Dye‐SensitizedSolar Cells
US20190066933A1 (en) Transparent conductive film, photoelectrode for dye-sensitized solar cell, touch panel, and dye-sensitized solar cell
WO2015045396A1 (ja) 色素増感型太陽電池および太陽電池モジュール
Rajesh et al. 2D layered nickel-cobalt double hydroxide nano sheets@ 1D silver nanowire-graphitic carbon nitrides for high performance super capacitors
Mehmood et al. Nanocomposites of carbon allotropes with TiO2 as effective photoanodes for efficient dye-sensitized solar cells
Lin et al. Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage, and sensor systems
WO2015029415A1 (ja) 光発電デバイスおよびその製造方法
JP6364770B2 (ja) 太陽電池用電極基板、色素増感型太陽電池用対向電極、色素増感型太陽電池、太陽電池モジュール、および太陽電池用電極基板の製造方法
JP6155615B2 (ja) 色素増感型太陽電池用対向電極、色素増感型太陽電池、および太陽電池モジュール
Hieu Graphene-Based Material for Fabrication of Electrodes in Dye-Sensitized Solar Cells
JP6326815B2 (ja) 太陽電池用電極基板
JP6135166B2 (ja) 酸化還元触媒、電極材料、電極、太陽電池、燃料電池、および窒素酸化物除去触媒
JP6911833B2 (ja) 太陽電池用電極およびその製造方法、並びに太陽電池
JP6613556B2 (ja) 導電性組成物、色素増感型太陽電池用電極およびその製造方法、並びに、色素増感型太陽電池
Mat‐Teridi et al. Graphene as sensitizer
as Sensitizer Graphene as Sensitizer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848799

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015538909

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848799

Country of ref document: EP

Kind code of ref document: A1