JP7255124B2 - フィラー・ゴム複合体 - Google Patents

フィラー・ゴム複合体 Download PDF

Info

Publication number
JP7255124B2
JP7255124B2 JP2018187559A JP2018187559A JP7255124B2 JP 7255124 B2 JP7255124 B2 JP 7255124B2 JP 2018187559 A JP2018187559 A JP 2018187559A JP 2018187559 A JP2018187559 A JP 2018187559A JP 7255124 B2 JP7255124 B2 JP 7255124B2
Authority
JP
Japan
Prior art keywords
rubber
filler
group
mass
latex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018187559A
Other languages
English (en)
Other versions
JP2020055951A (ja
Inventor
澄子 宮崎
大輔 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2018187559A priority Critical patent/JP7255124B2/ja
Publication of JP2020055951A publication Critical patent/JP2020055951A/ja
Application granted granted Critical
Publication of JP7255124B2 publication Critical patent/JP7255124B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tires In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、フィラー・ゴム複合体、その製造方法、ゴム組成物、及び該ゴム組成物で構成されたタイヤ部材を有するタイヤに関する。
セルロース繊維等のミクロフィブリル化植物繊維を充填剤としてゴム組成物に配合することで、ゴム組成物を補強し、モジュラス(複素弾性率)を向上できることが知られているが、ミクロフィブリル化植物繊維は、自己凝集力が強く、ゴム成分との相溶性も悪い。
また、ナノ解繊されているミクロフィブリル化植物繊維の水分散体は、通常粘度が高い。そのため、良好なミクロフィブリル化植物繊維の分散性を確保するため、通常、希釈して充分に粘度を低下させた水分散体を使用し、ミクロフィブリル化植物繊維とゴム成分の複合体(マスターバッチ)が製造されている。
しかしながら、希釈して充分に粘度を低下させたミクロフィブリル化植物繊維水分散体を用いた場合、固形分が低いため、廃液が多い、生産性が低い、材料の輸送費がかさむ、等の課題があり、改良が望まれている。
本発明は、前記課題を解決し、フィラーの分散性、生産性に優れたフィラー・ゴム複合体及びその製造方法等を提供することを目的とする。
本発明は、ゴムラテックス及びフィラーを含む粘度100mPa・s以上の配合ラテックスから得られるフィラー・ゴム複合体であって、前記フィラーにより形成される凝集塊100%中、10μm以上の凝集塊が5.0%以下であるフィラー・ゴム複合体に関する。
前記フィラー・ゴム複合体は、ムーニー粘度(ML1+4(130℃))が100以下であることが好ましい。
前記フィラーは、ミクロフィブリル化植物繊維、短繊維状セルロース、及びゲル状化合物からなる群より選択される少なくとも1種であることが好ましい。
前記ゴムラテックスは、イソプレン系ゴムラテックス、スチレンブタジエンゴムラテックス、及びブタジエンゴムラテックスからなる群より選択される少なくとも1種であることが好ましい。
前記配合ラテックスは、ゴムラテックス中のゴム固形分100質量部に対して、フィラー(固形分)を1~30質量部含むことが好ましい。
本発明は、自公転式混合装置を用いてゴムラテックス及びフィラーを混合し、粘度100mPa・s以上の配合ラテックスを作製する工程1を含むフィラー・ゴム複合体の製造方法に関する。
前記自公転式混合装置は、自転公転撹拌機又はプラネタリーミキサーであることが好ましい。
本発明は、前記フィラー・ゴム複合体を含むゴム組成物に関する。
本発明はまた、前記ゴム組成物で構成されたタイヤ部材を有するタイヤに関する。
本発明によれば、ゴムラテックス及びフィラーを含む粘度100mPa・s以上の配合ラテックスから得られるフィラー・ゴム複合体であって、前記フィラーにより形成される凝集塊100%中、10μm以上の凝集塊が5.0%以下であるフィラー・ゴム複合体であるため、フィラーの分散性、生産性に優れている。
〔フィラー・ゴム複合体〕
本発明のフィラー・ゴム複合体は、ゴムラテックス及びフィラーを含む粘度100mPa・s以上の配合ラテックスから得られるもので、かつ該フィラーにより形成される凝集塊100%中、10μm以上の凝集塊が5.0%以下である。該複合体は、フィラーの分散性に優れ、生産性も良好である。
このような作用効果が得られる理由は明らかではないが、以下のように推察される。
ミクロフィブリル化植物繊維等の難分散性フィラーの分散体は高粘度であるため、通常、分散体を希釈し粘度を低下させて使用しているが、低固形分であることに起因し、生産性が低い、廃液が多い、輸送コストがかさむ、等の問題がある。一方、例えば、ゴムラテックス、比較的高濃度の難分散性フィラーを混合した比較的高粘度(比較的高濃度)の分散体を、自公転式混合装置等を用いて混合すると、公転、自転による遠心力、回転、せん断等により、分散体が比較的高粘度でも、ゴム中に充分にフィラーが分散して、良好なフィラー分散性を得られ、フィラーで形成される凝集塊のうち、大きさ10μm以上のものが5.0%以下と少ないフィラー・ゴム複合体(マスターバッチ)が調製されると推察される。従って、本発明によれば、良好な生産性、低廃液性、低コスト性を得ながら、フィラー分散性に優れたフィラー・ゴム複合体を提供できると推察される。
前記フィラー・ゴム複合体は、該複合体内において、フィラーにより形成されている凝集塊100%(100質量%)のうち、大きさ10μm以上の凝集塊の割合が5.0%以下(5.0質量%以下)である。従って、フィラーの分散性に優れている。10μm以上の凝集塊は、4.5質量%以下が好ましく、3.5質量%以下がより好ましい。下限は特に限定されず、該凝集塊は少ないほど好適である。
本明細書において、フィラー・ゴム複合体中のフィラーにより形成される凝集塊の大きさは、走査型電子顕微鏡写真による画像解析、透過型電子顕微鏡写真による画像解析等によって測定できる。なお、凝集塊のサイズは、走査型電子顕微鏡写真、透過型電子顕微鏡写真等で観察した凝集塊のサイズの平均値である。凝集塊の形状が球形の場合には球の直径をその凝集塊のサイズとし、針状又は棒状の場合には短径をその凝集塊のサイズとし、不定型の場合には中心部からの平均粒径を凝集塊のサイズとする。
前記フィラー・ゴム複合体は、加工性、フィラー分散性等の観点から、ムーニー粘度(ML1+4,130℃)が100以下であることが好ましい。より好ましくは80以下、更に好ましくは65以下である。ゴム組成物の物性の観点から、該ムーニー粘度は、40以上が好ましく、45以上がより好ましく、50以上が更に好ましい。
なお、ムーニー粘度(ML1+4,130℃)は、JIS K6300-1に準拠した方法で測定できる。
ここで、前述の大きさ10μm以上の凝集塊の含有率、前記ムーニー粘度を満足させる手法としては、(a)自公転式混合装置を用いて混合する方法、(b)ゴムラテックス、フィラー分散液を用いる方法、(c)ゴムラテックス、フィラーを適量混合する方法、(d)界面活性剤を配合する方法、等を単独又は適宜組み合わせる手法が挙げられる。
前記フィラー・ゴム複合体は、ゴムラテックス及びフィラーを含む粘度100mPa・s以上の配合ラテックスを用いて作製されるものである。
上記ゴムラテックスとしては、例えば、イソプレン系ゴムラテックス(天然ゴムラテックス、改質天然ゴムラテックス(ケン化天然ゴムラテックス、エポキシ化天然ゴムラテックスなど)、イソプレンゴムラテックス等);ブタジエンゴムラテックス、スチレンブタジエンゴムラテックス、スチレンイソプレンブタジエンゴムラテックス、ブチルゴムラテックス;等を好適に使用できる。これらゴムラテックスとしては、単独で用いてもよいし、2種以上を併用してもよい。なかでも、天然ゴムラテックス、SBRラテックス、BRラテックス、イソプレンゴムラテックスがより好ましく、天然ゴムラテックスが特に好ましい。
天然ゴムラテックスはヘベア樹等の天然ゴムの樹木の樹液として採取され、ゴム成分のほか水、タンパク質、脂質、無機塩類等を含み、ゴム中のゲル分は種々の不純物の複合的な存在に基づくものと考えられている。本発明では、天然ゴムラテックスとして、ヘベア樹をタッピングして出てくる生ラテックス(フィールドラテックス)、遠心分離法やクリーミング法によって濃縮した濃縮ラテックス(精製ラテックス、常法によりアンモニアを添加したハイアンモニアラテックス、亜鉛華とTMTDとアンモニアによって安定化させたLATZラテックス等)等を使用できる。
ここで、上記ゴムラテックスのpHは、好ましくは8.5以上、より好ましくは9.5以上である。該pHが8.5以上であると、ゴムラテックスが不安定になりにくく、凝固しにくい傾向がある。上記ゴムラテックスのpHは、好ましくは12以下、より好ましくは11以下である。該pHが12以下であると、ゴムラテックスが劣化しにくい傾向がある。
上記ゴムラテックスは、従来公知の製法で調製でき、各種市販品も使用できる。なお、ゴムラテックスとしては、ゴム固形分が10~80質量%のものを使用することが好ましい。より好ましくは20質量%以上、60質量%以下である。
上記フィラーとしては、応用分野に従って、その使用の際に使われるフィラーを適宜配合できるが、一般にゴムへの分散が困難な繊維状フィラーでも好適に使用でき、例えば、ミクロフィブリル化植物繊維、短繊維状セルロース、ゲル状化合物等の難分散性フィラーでも好適に適用できる。なかでも、得られる複合体の物性等の観点から、ミクロフィブリル化植物繊維が好ましい。
上記ミクロフィブリル化植物繊維としては、良好な補強性が得られるという点から、セルロースミクロフィブリルが好ましい。セルロースミクロフィブリルとしては、天然物由来のものであれば特に制限されず、例えば、果実、穀物、根菜などの資源バイオマス、木材、竹、麻、ジュート、ケナフ、及びこれらを原料として得られるパルプや紙、布、農作物残廃物、食品廃棄物や下水汚泥などの廃棄バイオマス、稲わら、麦わら、間伐材などの未使用バイオマスの他、ホヤ、酢酸菌等の生産するセルロースなどに由来するものが挙げられる。これらミクロフィブリル化植物繊維は、1種を用いてもよいし、2種以上を組み合わせて用いてもよい。
なお、本明細書において、セルロースミクロフィブリルとは、典型的には、平均繊維径が10μm以下の範囲内であるセルロース繊維、より典型的には、セルロース分子の集合により形成されている平均繊維径500nm以下の微小構造を有するセルロース繊維を意味する。典型的なセルロースミクロフィブリルは、例えば、上記のような平均繊維径を有するセルロース繊維の集合体として形成されていることができる。
上記ミクロフィブリル化植物繊維の製造方法としては特に限定されないが、例えば、上記セルロースミクロフィブリルの原料を必要に応じて水酸化ナトリウム等のアルカリで化学処理した後、リファイナー、二軸混練機(二軸押出機)、二軸混練押出機、高圧ホモジナイザー、媒体撹拌ミル、石臼、グラインダー、振動ミル、サンドグラインダー等により機械的に磨砕ないし叩解する方法が挙げられる。これらの方法では、化学処理によって原料からリグニンが分離されるため、リグニンを実質的に含有しないミクロフィブリル化植物繊維が得られる。また、その他の方法として、上記セルロースミクロフィブリルの原料を超高圧処理する方法なども挙げられる。
上記ミクロフィブリル化植物繊維としては、例えば、(株)スギノマシン等の製品を使用できる。
なお、上記ミクロフィブリル化植物繊維としては、上記製造方法により得られたものに更に、酸化処理や種々の化学変性処理などを施したものや、上記セルロースミクロフィブリルの由来となり得る天然物(例えば、木材、パルプ、竹、麻、ジュート、ケナフ、農作物残廃物、布、紙、ホヤセルロース等)をセルロース原料として、酸化処理や種々の化学変性処理などを行い、その後に必要に応じて解繊処理を行ったものも用いることができる。例えば、酸化処理を施したミクロフィブリル化植物繊維を好適に使用できる。
酸化処理の態様としては、例えば、N-オキシル化合物を用いた酸化処理などが例示される。上記N-オキシル化合物を用いた酸化処理は、例えば、水中においてN-オキシル化合物を酸化触媒とし、ミクロフィブリル化植物繊維に共酸化剤を作用させる方法で行うことができる。上記N-オキシル化合物としては、例えば、2,2,6,6-テトラメチルピペリジン-1-オキシル(TEMPO)およびその誘導体などが挙げられる。上記共酸化剤としては、例えば、次亜塩素酸ナトリウムなどが挙げられる。
上記ミクロフィブリル化植物繊維の平均繊維径は、10μm以下であることが好ましい。上記範囲であることにより、ゴム中でのミクロフィブリル化植物繊維の分散性を向上できる。また、加工中のミクロフィブリル化植物繊維の破損が抑えられる傾向にある。当該平均繊維径は、500nm以下がより好ましく、100nm以下が更に好ましく、50nm以下が特に好ましい。また、該平均繊維径の下限は特に制限されないが、ミクロフィブリル化植物繊維の絡まりがほどけにくく、分散し難いという理由から、4nm以上が好ましく、10nm以上がより好ましく、20nm以上が更に好ましい。
上記ミクロフィブリル化植物繊維の平均繊維長は、100nm以上であることが好ましく、より好ましくは300nm以上、更に好ましくは500nm以上である。また、5mm以下が好ましく、1mm以下がより好ましく、50μm以下が更に好ましく、3μm以下が特に好ましく、2μm以下が最も好ましい。平均繊維長が下限未満の場合や上限を超える場合は、前述の平均繊維径と同様の傾向がある。
なお、上記ミクロフィブリル化植物繊維が2種以上の組み合わせからなる場合、上記平均繊維径、上記平均繊維長は、ミクロフィブリル化植物繊維全体での平均として算出される。
本明細書において、上記ミクロフィブリル化植物繊維の平均繊維径及び平均繊維長は、走査型電子顕微鏡写真による画像解析、透過型電子顕微鏡写真による画像解析、原子間力顕微鏡写真による画像解析、X線散乱データの解析、細孔電気抵抗法(コールター原理法)等によって測定できる。
上記短繊維状セルロースは、ゴム中での分散性が良好なことから、ゴムの破壊強度を損なうことなく、維持又は改善でき、ゴム物性が良好になる。
上記短繊維状セルロースの繊維幅は、3~200μmであることが好ましい。通常、ゴム組成物に配合される繊維状のフィラーは、繊維幅が小さいほどゴムの補強性の面で好ましいが、一方で繊維幅の小さい繊維状フィラーは配向しにくい傾向があるところ、ゴムの補強性と繊維の配向性のバランスの観点、更にはゴム中での分散性の観点から、当該繊維幅としては、10μm以上が好ましく、15μm以上がより好ましく、20μm以上が更に好ましい。また、120μm以下が好ましく、80μm以下がより好ましく、50μm以下が更に好ましい。
上記短繊維状セルロースの繊維長は、20~1000μmであることが好ましい。繊維幅同様に、ゴムの補強性と繊維の配向性のバランスの観点、更にはゴム中での分散性の観点から、当該繊維長としては、50μm以上が好ましく、100μm以上がより好ましく、200μm以上が更に好ましい。また、700μm以下が好ましく、500μm以下がより好ましい。
上記短繊維状セルロースは、繊維幅と繊維長との比(繊維長/繊維幅)が5~1000であることが好ましい。繊維幅同様に、ゴムの補強性と繊維の配向性のバランスの観点から、当該繊維幅と繊維長との比としては、6以上が好ましく、10以上がより好ましい。また、800以下が好ましく、500以下がより好ましく、400以下が更に好ましく、300以下が特に好ましい。
上記短繊維状セルロースの繊維幅及び繊維長は、走査型原子間力顕微鏡写真の画像解析、走査型電子顕微鏡写真の画像解析、透過型顕微鏡写真の画像解析、X線散乱データの解析、細孔電気抵抗法(コールター原理法)等によって測定できる。
ゲル状化合物は、ミクロフィブリル化植物繊維や短繊維状セルロースをゲル化させて得られる物質である。このようなゲル化物を用いた場合にも、該ゲル状化合物を良好に分散できる。ゲル化の方法としては特に限定されず、超高圧ホモジナイザー等を用いて撹拌する方法等が挙げられる。
上記フィラーは、溶媒中に分散させた分散液(フィラー分散液、スラリー)の状態で、ゴムラテックスと混合してもよいし、フィラー分散液をエタノール等で溶媒置換した後、ゴムラテックスと混合してもよいし、あるいは、フィラーをそのまま、ゴムラテックスと混合してもよい。なお、上記フィラー分散液における溶媒としては特に限定されず、水等が挙げられる。なかでも、フィラー分散性の観点から、水等の溶媒にフィラーを分散させたフィラー分散液を用いることが好ましい。
上記フィラー分散液は、公知の方法で製造でき、その製造方法は特に限定されず、例えば、高速ホモジナイザー、超音波ホモジナイザー、コロイドミル、ブレンダ―ミル、電子制御撹拌機などを用いてフィラーを水等の溶媒中に分散させることで調製できる。調製の際の温度や時間も、フィラーが水等の溶媒中に十分分散するよう、通常行われる範囲で適宜設定することができる。
上記フィラー分散液中のフィラーの含有量(固形分)は、特に限定されないが、フィラー分散性の観点からは、低濃度が好ましい一方で、生産性、輸送コスト等の観点からは、高濃度であることが好ましい。本発明では、従来の1質量%程度の分散液に代えて、高濃度の分散液を用いても良好な分散性を得ることが可能である。従って、該含有量は、生産性、フィラー分散性の観点から、好ましくは0.5~20質量%、より好ましくは1.5~15質量%、更に好ましくは2.0~10質量%である。
前記ゴムラテックス及び前記フィラーを含む配合ラテックスは、粘度が100mPa・s以上である。これにより、輸送コスト等を低減でき、生産性を向上できる。該粘度は、200mPa・s以上が好ましく、250mPa・s以上が更に好ましい。下限は特に限定されないが、フィラー分散性等の観点から、1500mPa・s以下が好ましく、1000mPa・s以下がより好ましく、800mPa・s以下が更に好ましい。
なお、上記配合ラテックスの粘度は、23℃の条件下で、音叉型振動式粘度計により測定される値である。
ここで、前記配合ラテックスの粘度を満足させる手法としては、(a)自公転式混合装置を用いて混合する方法、(b)ゴムラテックス、フィラー分散液を用いる方法、(c)ゴムラテックス、フィラーを適量混合する方法、(d)界面活性剤を配合する方法、等を単独又は適宜組み合わせる手法が挙げられる。
前記フィラー・ゴム複合体は、前記配合ラテックスから得られるもので、効果を阻害しない範囲内で他の成分を含むものでもよい。
前記フィラー・ゴム複合体は、ゴムラテックス及びフィラーを含む粘度100mPa・s以上の配合ラテックスから得られるものであるが、例えば、ゴムラテックス及びフィラーを混合し、粘度100mPa・s以上の配合ラテックスを調製する工程(1)を含む製造方法により製造できる。このような製造方法により、フィラーをゴム中に微細に高分散させたマスターバッチを得ることができる。
(工程(1))
上記工程(1)において、上記ゴムラテックスと上記フィラーとの混合は、上記ゴムラテックスと上記フィラーとが混合される限り、特に限定されず、上記ゴムラテックス、上記フィラー以外のバインダーや、界面活性剤などの他の配合剤を更に加えてもよい。なかでも、フィラー分散性の観点から、界面活性剤を配合することが好ましく、特に上記フィラーと界面活性剤とを混合、分散させた後、上記ゴムラテックスと混合する方法が好ましい。
界面活性剤としては、陽イオン性界面活性剤、陰イオン性界面活性剤、両性界面活性剤等が挙げられるが、陰イオン性界面活性剤を用いることが好ましい。
上記陰イオン性界面活性剤は、疎水性基及び親水性基を有する界面活性剤である。このような界面活性剤を用いることにより、疎水性基とゴムの疎水基とが疎水-疎水結合を形成して親和性を示し、また、親水性基とミクロフィブリル化植物繊維の有する水酸基とが水素結合で吸着して親和性を示すために、ミクロフィブリル化植物繊維の分散性を高め、ゴム中でミクロフィブリル化植物繊維が凝集するのを抑制し、凝集塊が発生するのを抑えることができると推察される。陰イオン性界面活性剤としては、1種を用いてもよいし、2種以上を組み合わせて用いてもよい。
上記疎水性基は、疎水性の官能基であればよいが、なかでも、炭化水素基であることが好ましい。該炭化水素基としては、直鎖状、分岐状、環状のいずれであってもよく、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基などが挙げられる。なかでも、脂肪族炭化水素基、芳香族炭化水素基が好ましい。上記炭化水素基の炭素数は、好ましくは4~20、より好ましくは4~15、更に好ましくは4~12である。
上記脂肪族炭化水素基としては、炭素数1~20のものが好ましく、1~10のものがより好ましく、1~6のものが更に好ましい。好ましい例として、上記炭素数のアルキル基が挙げられ、具体的には、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、へキシル基、へプチル基、2-エチルヘキシル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、オクタデシル基等が挙げられる。また、上記炭素数のアルケニル基、アルキニル基も挙げられ、一例としては、ビニル基、アリル基、1-プロペニル基、1-メチルエテニル基、イソブチレン基等のアルケニル基、エチニル基、プロパギル基等のアルキニル基が挙げられる。なかでも、イソブチレン基が好ましい。
上記脂環式炭化水素基としては、炭素数3~8のものが好ましく、具体的には、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基、シクロヘプテニル基、シクロオクテニル基等が挙げられる。
上記芳香族炭化水素基としては、炭素数6~12のものが好ましく、具体的には、フェニル基、ベンジル基、フェネチル基、トリル(tolyl)基、キシリル(xylyl)基、ナフチル基等が挙げられる。なかでも、フェニル基、ベンジル基、フェネチル基が好ましく、フェニル基、ベンジル基がより好ましく、フェニル基が特に好ましい。なお、トリル基及びキシリル基におけるベンゼン環上のメチル基の置換位置は、オルト位、メタ位、パラ位のいずれの位置でもよい。
上記親水性基は、カルボキシル基、スルホン酸基、硫酸基、及びリン酸基からなる群より選択される少なくとも1種であることが好ましい。なかでも、カルボキシル基が特に好ましい。
上記陰イオン性界面活性剤のなかでも、疎水性基としてフェニル基又はイソブチレン基を有し、親水性基としてカルボキシル基を有する陰イオン性界面活性剤が特に好ましい。
上記陰イオン性界面活性剤としては、上述のような官能基を有するものが好ましい形態として挙げられるが、具体的には、カルボン酸系、スルホン酸系、硫酸エステル系、リン酸エステル系などの界面活性剤に分類できる。
上記カルボン酸系界面活性剤としては、例えば、炭素数が6~30の脂肪酸塩、多価カルボン酸塩、ロジン酸塩、ダイマー酸塩、ポリマー酸塩、トール油脂肪酸塩や、ポリカルボン酸型高分子界面活性剤等が挙げられ、好ましくは炭素数10~20のカルボン酸塩、ポリカルボン酸塩、ポリカルボン酸型高分子界面活性剤であり、特に好ましくはポリカルボン酸型高分子界面活性剤である。
上記スルホン酸系界面活性剤としては、例えば、アルキルベンゼンスルホン酸塩、アルキルスルホン酸塩、アルキルナフタレンスルホン酸塩、ナフタレンスルホン酸塩、ジフェニルエ-テルスルホン酸塩等が挙げられる。
上記硫酸エステル系界面活性剤としては、例えば、アルキル硫酸エステル塩、ポリオキシアルキレンアルキル硫酸エステル塩、ポリオキシアルキレンアルキルフェニルエ-テル硫酸塩、トリスチレン化フェノ-ル硫酸エステル塩、ジスチレン化フェノール硫酸エステル塩、α-オレフィン硫酸エステル塩、アルキルコハク酸硫酸エステル塩、ポリオキシアルキレントリスチレン化フェノール硫酸エステル塩、ポリオキシアルキレンジスチレン化フェノ-ル硫酸エステル塩等が挙げられる。
上記リン酸エステル系界面活性剤としては、例えば、アルキルリン酸エステル塩、ポリオキシアルキレンリン酸エステル塩等が挙げられる。
これらの化合物の塩としては、金属塩(Na,k,Ca,Mg,Zn等)、アンモニウム塩、アミン塩(トリエタノールアミン塩等)などが挙げられる。
なお、上記界面活性剤におけるアルキル基としては、炭素数4~30のアルキル基が挙げられる。また、ポリオキシアルキレン基としては、炭素数2~4のアルキレン基を有するものが挙げられ、例えば酸化エチレンの付加モル数が1~50モル程度のものが使用可能である。
上記陰イオン性界面活性剤は、重量平均分子量(Mw)が500以上であることが好ましく、1000以上であることがより好ましい。また、50000以下であることが好ましく、30000以下であることがより好ましい。
上記陰イオン性界面活性剤としては、例えば、エレメンティス社、花王(株)、第一工業製薬(株)、三洋化成工業(株)等の製品を使用できる。
上記ゴムラテックス、上記フィラー(フィラー分散液等)、及び必要に応じて界面活性剤を混合する方法としては、フィラー分散性の観点から、自公転式混合装置を用いて混合する方法が好ましい。本明細書において、自公転式混合装置とは、自転機構、公転機構の両機構を備えた混合装置であり、例えば、自転公転撹拌機、プラネタリーミキサー等が挙げられる。
自転公転撹拌機は、材料を入れる容器を公転させると共に自転させることにより、該材料を撹拌する装置である。容器を公転させると共に自転させることによる遠心力、せん断力等により充分な混合が可能となる。例えば、特開2015-52034号公報に記載の撹拌機等が挙げられ、市販品としては、シンキー社製「自転・公転ミキサー あわとり錬太郎 ARE-310」等が挙げられる。
プラネタリーミキサーは、攪拌機構として自転と公転機能を有するブレード(撹拌羽根)を持つ遊星運動型ミキサーである。
自転公転撹拌機、プラネタリーミキサーにおいて、自転回転速度、公転回転速度は、使用材料、配合量等を考慮し、良好な混合を実現できる範囲で適宜設定すれば良い。
上記ゴムラテックス、上記フィラー、及び必要に応じて界面活性剤を混合する際の温度や時間は、分散状態等を考慮し、適宜設定すればよい。混合温度は特に限定されず、適宜設定すれば良いが、10~40℃が好ましく、15~30℃がより好ましい。混合時間は、は特に限定されず、適宜設定すれば良く、例えば、1~120分で実施可能であるが、生産性の観点からは、1~10分が好ましく、2~8分間がより好ましい。
配合ラテックス調製の際、ゴム固形分100質量部に対して、フィラー(固形分)が1~30質量部となるように、ゴムラテックス、フィラーを混合することが好ましい。上記範囲であると、良好なフィラー分散性、ゴム物性が得られる傾向がある。該フィラー(固形分)の含有量は、5質量部以上がより好ましく、10質量部以上が更に好ましい。また、27質量部以下がより好ましく、25質量部以下が更に好ましい。
自公転式混合装置による混合で得られた粘度100mPa・s以上の配合ラテックス(混合物)を必要に応じて凝固させ、該凝固物(凝集ゴム及びフィラーを含む凝集物)を公知の方法でろ過、乾燥させ、更に乾燥後、2軸ロール、バンバリーなどでゴム練りを行うと、フィラーがゴムマトリックスに十分に分散した複合体(フィラー・ゴム複合体)を得ることができる。該フィラー・ゴム複合体は、他の成分を含んでもよい。
上記凝固は、得られた配合ラテックスに通常酸を添加することで行われる。凝固させるための酸としては、硫酸、塩酸、ギ酸、酢酸などが挙げられる。凝固させる際の温度としては、10~40℃が好ましい。
上記凝固の際、得られた配合ラテックスのpHを3~5に調整するのが好ましく、3~4に調整するのがより好ましい。
また、凝固の状態(凝固した凝集粒子の大きさ)を制御する目的で、凝集剤を添加しても良い。凝集剤として、カチオン性高分子などを用いることができる。
得られたフィラー・ゴム複合体は、マスターバッチとして使用できる。上記フィラー・ゴム複合体はゴム中にフィラーが十分に分散しており、他の成分と混合したゴム組成物においてもフィラーを十分に分散できる。そのため、フィラーの分散性に優れ、良好な引張特性(引張強度、破断時伸び)、低燃費性が得られる。
〔ゴム組成物〕
上記フィラー・ゴム複合体は、マスターバッチとして使用でき、例えば、上記フィラー・ゴム複合体を含むゴム組成物は各種用途に適用可能である。上記フィラー・ゴム複合体はゴム中にフィラーが十分に分散しており、他の成分と混合したゴム組成物でもフィラーを十分に分散できる。そのため、効果的な補強性を発揮でき、耐久性(破断強度)、操縦安定性、低燃費性等のゴム物性をバランス良く改善できる。
上記ゴム組成物には、上記フィラー・ゴム複合体に用いられたゴム(ゴム成分)以外の他のゴム成分を配合してもよい。他のゴム成分としては、例えば、ジエン系ゴムを使用できる。ジエン系ゴムとしては、イソプレン系ゴム、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)、エチレンプロピレンジエンゴム(EPDM)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)などが挙げられる。また、上記以外のゴム成分としては、ブチル系ゴム、フッ素ゴムなどが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。ゴム成分としては、SBR、BR、イソプレン系ゴムが好ましい。
なお、本明細書において、Mw、数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)(東ソー(株)製GPC-8000シリーズ、検出器:示差屈折計、カラム:東ソー(株)製のTSKGEL SUPERMULTIPORE HZ-M)による測定値を基に標準ポリスチレン換算により求めることができる。
上記他のゴム成分は、非変性ジエン系ゴムでもよいし、変性ジエン系ゴムでもよい。
変性ジエン系ゴムとしては、シリカ等の充填剤と相互作用する官能基を有するジエン系ゴムであればよく、例えば、ジエン系ゴムの少なくとも一方の末端を、上記官能基を有する化合物(変性剤)で変性された末端変性ジエン系ゴム(末端に上記官能基を有する末端変性ジエン系ゴム)や、主鎖に上記官能基を有する主鎖変性ジエン系ゴムや、主鎖及び末端に上記官能基を有する主鎖末端変性ジエン系ゴム(例えば、主鎖に上記官能基を有し、少なくとも一方の末端を上記変性剤で変性された主鎖末端変性ジエン系ゴム)や、分子中に2個以上のエポキシ基を有する多官能化合物により変性(カップリング)され、水酸基やエポキシ基が導入された末端変性ジエン系ゴム等が挙げられる。
上記官能基としては、例えば、アミノ基、アミド基、シリル基、アルコキシシリル基、イソシアネート基、イミノ基、イミダゾール基、ウレア基、エーテル基、カルボニル基、オキシカルボニル基、メルカプト基、スルフィド基、ジスルフィド基、スルホニル基、スルフィニル基、チオカルボニル基、アンモニウム基、イミド基、ヒドラゾ基、アゾ基、ジアゾ基、カルボキシル基、ニトリル基、ピリジル基、アルコキシ基、水酸基、オキシ基、エポキシ基等が挙げられる。なお、これらの官能基は、置換基を有していてもよい。なかでも、アミノ基(好ましくはアミノ基が有する水素原子が炭素数1~6のアルキル基に置換されたアミノ基)、アルコキシ基(好ましくは炭素数1~6のアルコキシ基)、アルコキシシリル基(好ましくは炭素数1~6のアルコキシシリル基)が好ましい。
SBRとしては特に限定されず、例えば、乳化重合スチレンブタジエンゴム(E-SBR)、溶液重合スチレンブタジエンゴム(S-SBR)等を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
SBRのスチレン含量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上である。また、該スチレン含量は、好ましくは60質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下である。上記範囲内であると、前記効果がより好適に得られる。
なお、本明細書において、SBRのスチレン含量は、H-NMR測定により算出される。
SBRとしては、例えば、住友化学(株)、JSR(株)、旭化成(株)、日本ゼオン(株)等により製造・販売されているSBRを使用できる。
SBRは、非変性SBRでもよいし、変性SBRでもよい。変性SBRとしては、変性ジエン系ゴムと同様の官能基が導入された変性SBRが挙げられる。
SBRを含有する場合、ゴム成分100質量%中のSBRの含有量は、ウェットグリップ性能等の観点から、好ましくは10~90質量%、より好ましくは20~80質量%である。
BRは特に限定されず、例えば、高シス含量のハイシスBR、シンジオタクチックポリブタジエン結晶を含有するBR、希土類系触媒を用いて合成したBR(希土類BR)等を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、耐摩耗性が向上するという理由から、シス含量が90質量%以上のハイシスBRが好ましい。
また、BRは、非変性BRでもよいし、変性BRでもよい。変性BRとしては、変性ジエン系ゴムと同様の官能基が導入された変性BRが挙げられる。
BRを含有する場合、ゴム成分100質量%中のBRの含有量は、耐摩耗性等の観点から、好ましくは10~90質量%、より好ましくは20~80質量%である。
BRとしては、例えば、宇部興産(株)、JSR(株)、旭化成(株)、日本ゼオン(株)等の製品を使用できる。
イソプレン系ゴムとしては、天然ゴム(NR)、イソプレンゴム(IR)、改質NR、変性NR、変性IR等が挙げられる。NRとしては、例えば、SIR20、RSS♯3、TSR20等、ゴム工業において一般的なものを使用できる。IRとしては、特に限定されず、例えば、IR2200等、ゴム工業において一般的なものを使用できる。改質NRとしては、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(UPNR)等、変性NRとしては、エポキシ化天然ゴム(ENR)、水素添加天然ゴム(HNR)、グラフト化天然ゴム等、変性IRとしては、エポキシ化イソプレンゴム、水素添加イソプレンゴム、グラフト化イソプレンゴム等、が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
イソプレン系ゴムを含有する場合、ゴム成分100質量%中のイソプレン系ゴムの含有量は、低燃費性等の観点から、好ましくは10~90質量%、より好ましくは20~80質量%である。
上記ゴム組成物において、フィラーの含有量(フィラ-の合計含有量)は、ゴム物性の観点から、ゴム成分100質量部に対して、5質量部以上が好ましく、10質量部以上がより好ましく、15質量部以上が更に好ましい。また、フィラー分散性等の観点から、150質量部以下が好ましく、120質量部以下がより好ましく、100質量部以下が更に好ましい。
上記ゴム組成物において、前述のミクロフィブリル化植物繊維、短繊維状セルロース及びゲル状化合物の合計含有量は、ゴム物性の観点から、ゴム成分100質量部に対して、1質量部以上が好ましく、5質量部以上がより好ましく、10質量部以上が更に好ましい。また、フィラー分散性等の観点から、45質量部以下が好ましく、30質量部以下がより好ましく、25質量部以下が更に好ましい。なお、ミクロフィブリル化植物繊維を用いる場合も、その含有量は同様の範囲であることが好適である。
上記ゴム組成物は、各種ゴム物性の観点から、フィラーとしてシリカを含んでもよい。シリカとしては、乾式法シリカ(無水シリカ)、湿式法シリカ(含水シリカ)などが挙げられる。なかでも、シラノール基が多いという理由から、湿式法シリカが好ましい。市販品としては、デグッサ社、ローディア社、東ソー・シリカ(株)、ソルベイジャパン(株)、(株)トクヤマ等の製品を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
シリカの含有量は、ゴム成分100質量部に対して、好ましくは25質量部以上、より好ましくは30質量部以上、更に好ましくは50質量部以上である。下限以上にすることで、良好なウェットグリップ性能、操縦安定性が得られる傾向がある。該含有量の上限は特に限定されないが、好ましくは300質量部以下、より好ましくは200質量部以下、更に好ましくは170質量部以下、特に好ましくは100質量部以下、最も好ましくは80質量部以下である。上限以下にすることで、良好な分散性が得られる傾向がある。
シリカの窒素吸着比表面積(NSA)は、好ましくは70m/g以上、より好ましくは140m/g以上、更に好ましくは160m/g以上である。下限以上にすることで、良好なウェットグリップ性能、破壊強度が得られる傾向がある。また、シリカのNSAの上限は特に限定されないが、好ましくは500m/g以下、より好ましくは300m/g以下、更に好ましくは250m/g以下である。上限以下にすることで、良好な分散性が得られる傾向がある。
なお、シリカのNSAは、ASTM D3037-93に準じてBET法で測定される値である。
上記ゴム組成物がシリカを含む場合、更にシランカップリング剤を含むことが好ましい。
シランカップリング剤としては、特に限定されず、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(4-トリエトキシシリルブチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)トリスルフィド、ビス(4-トリメトキシシリルブチル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)ジスルフィド、ビス(4-トリエトキシシリルブチル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、ビス(2-トリメトキシシリルエチル)ジスルフィド、ビス(4-トリメトキシシリルブチル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、などのスルフィド系、3-メルカプトプロピルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、Momentive社製のNXT、NXT-Zなどのメルカプト系、ビニルトリエトキシシラン、ビニルトリメトキシシランなどのビニル系、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシランなどのアミノ系、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、などのグリシドキシ系、3-ニトロプロピルトリメトキシシラン、3-ニトロプロピルトリエトキシシランなどのニトロ系、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシランなどのクロロ系などがあげられる。市販品としては、デグッサ社、Momentive社、信越シリコーン(株)、東京化成工業(株)、アヅマックス(株)、東レ・ダウコーニング(株)等の製品を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
シランカップリング剤の含有量は、シリカ100質量部に対して、3質量部以上が好ましく、6質量部以上がより好ましい。3質量部以上であると、良好な破壊強度等が得られる傾向がある。また、上記含有量は、20質量部以下が好ましく、15質量部以下がより好ましい。20質量部以下であると、配合量に見合った効果が得られる傾向がある。
上記ゴム組成物は、各種ゴム物性の観点から、フィラーとしてカーボンブラックを含むことが好ましい。また、カーボンブラックを用いることで、ゴム粘度が高くなって、シェアがかかり、フィラー分散性が良好になる傾向がある。
カーボンブラックとしては、特に限定されないが、N134、N110、N220、N234、N219、N339、N330、N326、N351、N550、N762等が挙げられる。市販品としては、旭カーボン(株)、キャボットジャパン(株)、東海カーボン(株)、三菱化学(株)、ライオン(株)、新日化カーボン(株)、コロンビアカーボン社等の製品を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
カーボンブラックの含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上である。下限以上にすることで、良好な耐摩耗性、グリップ性能等が得られる傾向がある。また、上記含有量は、好ましくは20質量部以下、より好ましくは15質量部以下である。上限以下にすることで、ゴム組成物の良好な加工性が得られる傾向がある。
カーボンブラックの窒素吸着比表面積(NSA)は、50m/g以上が好ましく、80m/g以上がより好ましく、100m/g以上が更に好ましい。下限以上にすることで、良好な耐摩耗性、グリップ性能が得られる傾向がある。また、上記NSAは、200m/g以下が好ましく、150m/g以下がより好ましく、130m/g以下が更に好ましい。上限以下にすることで、カーボンブラックの良好な分散が得られる傾向がある。
なお、カーボンブラックの窒素吸着比表面積は、JIS K6217-2:2001によって求められる。
上記ゴム組成物は、シリカ、カーボンブラック以外の他のフィラーを配合してもよい。他のフィラーとしては、炭酸カルシウム、タルク、アルミナ、クレー、水酸化アルミニウム、酸化アルミニウム、マイカなどが挙げられる。
上記ゴム組成物は、可塑剤を配合してもよい。可塑剤としては、特に限定されないが、オイル、液状樹脂などの25℃で液状の可塑性を有する材料が挙げられる。これら可塑剤は、1種を用いてもよいし、2種以上を併用してもよい。
上記オイルとしては、特に限定されず、パラフィン系プロセスオイル、アロマ系プロセスオイル、ナフテン系プロセスオイルなどのプロセスオイル、TDAE、MES等の低PCA(多環式芳香族)プロセスオイル、植物油脂、及びこれらの混合物等、従来公知のオイルを使用できる。なかでも、耐摩耗性及び破壊特性の点では、アロマ系プロセスオイルが好ましい。上記アロマ系プロセスオイルとしては、具体的には、出光興産(株)製のダイアナプロセスオイルAHシリーズ等が挙げられる。
上記液状樹脂としては、特に制限されないが、例えば、液状の芳香族ビニル重合体、クマロンインデン樹脂、インデン樹脂、テルペン樹脂、ロジン樹脂、またはこれらの水素添加物などが挙げられる。
液状芳香族ビニル重合体とは、α-メチルスチレン及び/又はスチレンを重合して得られる樹脂であり、スチレンの単独重合体、α-メチルスチレンの単独重合体、α-メチルスチレンとスチレンとの共重合体などの液状樹脂が挙げられる。
液状クマロンインデン樹脂とは、樹脂の骨格(主鎖)を構成する主なモノマー成分として、クマロン及びインデンを含む樹脂であり、クマロン、インデン以外に骨格に含まれていてもよいモノマー成分としては、スチレン、α-メチルスチレン、メチルインデン、ビニルトルエンなどの液状樹脂が挙げられる。
液状インデン樹脂とは、樹脂の骨格(主鎖)を構成する主なモノマー成分として、インデンを含む液状樹脂である。
液状テルペン樹脂とは、αピネン、βピネン、カンフェル、ジペテンなどのテルペン化合物を重合して得られる樹脂や、テルペン化合物とフェノール系化合物とを原料として得られる樹脂であるテルペンフェノールに代表される液状テルペン系樹脂である。
液状ロジン樹脂とは、天然ロジン、重合ロジン、変性ロジン、これらのエステル化合物、または、これらの水素添加物に代表される液状ロジン系樹脂である。
上記ゴム組成物には、固体樹脂(常温(25℃)で固体状態のポリマー)を配合してもよい。
固体樹脂を含有する場合、その含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上、更に好ましくは5質量部以上である。また、上記含有量は、好ましくは50質量部以下、より好ましくは30質量部以下、更に好ましくは20質量部以下である。上記範囲内であると、良好なウェットグリップ性能が得られる傾向がある。
固体樹脂としては、特に限定されないが、例えば、固体状のスチレン系樹脂、クマロンインデン樹脂、テルペン系樹脂、p-t-ブチルフェノールアセチレン樹脂、アクリル系樹脂、ジシクロペンタジエン系樹脂(DCPD系樹脂)、C5系石油樹脂、C9系石油樹脂、C5C9系石油樹脂等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
固体状のスチレン系樹脂は、スチレン系単量体を構成モノマーとして用いた固体状ポリマーであり、スチレン系単量体を主成分(50質量%以上)として重合させたポリマー等が挙げられる。具体的には、スチレン系単量体(スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、p-メトキシスチレン、p-tert-ブチルスチレン、p-フェニルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン等)をそれぞれ単独で重合した単独重合体、2種以上のスチレン系単量体を共重合した共重合体の他、スチレン系単量体及びこれと共重合し得る他の単量体のコポリマーも挙げられる。
上記他の単量体としては、アクリロニトリル、メタクリロニトリルなどのアクリロニトリル類、アクリル類、メタクリル酸などの不飽和カルボン酸類、アクリル酸メチル、メタクリル酸メチルなどの不飽和カルボン酸エステル類、クロロプレン、ブタジエンイソプレンなどのジエン類、1-ブテン、1-ペンテンのようなオレフィン類;無水マレイン酸等のα,β-不飽和カルボン酸又はその酸無水物;等が例示できる。
なかでも、固体状のα-メチルスチレン系樹脂(α-メチルスチレン単独重合体、α-メチルスチレンとスチレンとの共重合体等)が好ましい。
固体状のクマロンインデン樹脂としては、前述の液状状態のクマロンインデン樹脂と同様の構成単位を有する固体樹脂が挙げられる。
固体状のテルペン系樹脂としては、ポリテルペン、テルペンフェノール、芳香族変性テルペン樹脂などが挙げられる。
ポリテルペンは、テルペン化合物を重合して得られる樹脂及びそれらの水素添加物である。テルペン化合物は、(Cの組成で表される炭化水素及びその含酸素誘導体で、モノテルペン(C1016)、セスキテルペン(C1524)、ジテルペン(C2032)などに分類されるテルペンを基本骨格とする化合物であり、例えば、α-ピネン、β-ピネン、ジペンテン、リモネン、ミルセン、アロオシメン、オシメン、α-フェランドレン、α-テルピネン、γ-テルピネン、テルピノレン、1,8-シネオール、1,4-シネオール、α-テルピネオール、β-テルピネオール、γ-テルピネオールなどが挙げられる。
固体状のポリテルペンとしては、上述したテルペン化合物を原料とするα-ピネン樹脂、β-ピネン樹脂、リモネン樹脂、ジペンテン樹脂、β-ピネン/リモネン樹脂などのテルペン樹脂の他、該テルペン樹脂に水素添加処理した水素添加テルペン樹脂等の固体樹脂も挙げられる。
固体状のテルペンフェノールとしては、上記テルペン化合物とフェノール系化合物とを共重合した固体樹脂、及び該樹脂に水素添加処理した固体樹脂が挙げられ、具体的には、上記テルペン化合物、フェノール系化合物及びホルマリンを縮合させた固体樹脂が挙げられる。なお、フェノール系化合物としては、例えば、フェノール、ビスフェノールA、クレゾール、キシレノールなどが挙げられる。
固体状の芳香族変性テルペン樹脂としては、テルペン樹脂を芳香族化合物で変性して得られる固体樹脂、及び該樹脂に水素添加処理した固体樹脂が挙げられる。なお、芳香族化合物としては、芳香環を有する化合物であれば特に限定されないが、例えば、フェノール、アルキルフェノール、アルコキシフェノール、不飽和炭化水素基含有フェノールなどのフェノール化合物;ナフトール、アルキルナフトール、アルコキシナフトール、不飽和炭化水素基含有ナフトールなどのナフトール化合物;スチレン、アルキルスチレン、アルコキシスチレン、不飽和炭化水素基含有スチレンなどのスチレン誘導体;クマロン、インデンなどが挙げられる。
固体状のp-t-ブチルフェノールアセチレン樹脂としては、p-t-ブチルフェノールとアセチレンとを縮合反応させて得られる固体樹脂が挙げられる。
固体状のアクリル系樹脂としては特に限定されないが、不純物が少なく、分子量分布がシャープな樹脂が得られるという点から、無溶剤型アクリル系固体樹脂を好適に使用できる。
固体状の無溶剤型アクリル樹脂は、副原料となる重合開始剤、連鎖移動剤、有機溶媒などを極力使用せずに、高温連続重合法(高温連続塊重合法)(米国特許第4,414,370号明細書、特開昭59-6207号公報、特公平5-58005号公報、特開平1-313522号公報、米国特許第5,010,166号明細書、東亜合成研究年報TREND2000第3号p42-45等に記載の方法)により合成された(メタ)アクリル系樹脂(重合体)が挙げられる。なお、本明細書において、(メタ)アクリルは、メタクリル及びアクリルを意味する。
固体状のアクリル系樹脂は、実質的に副原料となる重合開始剤、連鎖移動剤、有機溶媒などを含まないことが好ましい。また、上記アクリル系樹脂は、連続重合により得られる組成分布や分子量分布が比較的狭いものが好ましい。
上述のように、固体状のアクリル系樹脂としては、実質的に副原料となる重合開始剤、連鎖移動剤、有機溶媒などを含まないもの、すなわち、純度が高いものが好ましい。固体状のアクリル系樹脂の純度(該樹脂中に含まれる樹脂の割合)は、好ましくは95質量%以上、より好ましくは97質量%以上である。
固体状のアクリル系樹脂を構成するモノマー成分としては、例えば、(メタ)アクリル酸や、(メタ)アクリル酸エステル(アルキルエステル、アリールエステル、アラルキルエステルなど)、(メタ)アクリルアミド、及び(メタ)アクリルアミド誘導体などの(メタ)アクリル酸誘導体が挙げられる。
また、固体状のアクリル系樹脂を構成するモノマー成分として、(メタ)アクリル酸や(メタ)アクリル酸誘導体と共に、スチレン、α-メチルスチレン、ビニルトルエン、ビニルナフタレン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレンなどの芳香族ビニルを使用してもよい。
固体状のアクリル系樹脂は、(メタ)アクリル成分のみで構成される樹脂であっても、(メタ)アクリル成分以外の成分をも構成要素とする樹脂であっても良い。
また、固体状のアクリル系樹脂は、水酸基、カルボキシル基、シラノール基等を有していてよい。
可塑剤、固体樹脂としては、例えば、丸善石油化学(株)、住友ベークライト(株)、ヤスハラケミカル(株)、東ソー(株)、Rutgers Chemicals社、BASF社、アリゾナケミカル社、日塗化学(株)、(株)日本触媒、JXエネルギー(株)、荒川化学工業(株)、田岡化学工業(株)等の製品を使用できる。
上記ゴム組成物は、耐クラック性、耐オゾン性等の観点から、老化防止剤を含有することが好ましい。
老化防止剤としては特に限定されないが、フェニル-α-ナフチルアミン等のナフチルアミン系老化防止剤;オクチル化ジフェニルアミン、4,4′-ビス(α,α′-ジメチルベンジル)ジフェニルアミン等のジフェニルアミン系老化防止剤;N-イソプロピル-N′-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N′-フェニル-p-フェニレンジアミン、N,N′-ジ-2-ナフチル-p-フェニレンジアミン等のp-フェニレンジアミン系老化防止剤;2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物等のキノリン系老化防止剤;2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノール等のモノフェノール系老化防止剤;テトラキス-[メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオネート]メタン等のビス、トリス、ポリフェノール系老化防止剤などが挙げられる。なかでも、p-フェニレンジアミン系老化防止剤、キノリン系老化防止剤が好ましく、N-(1,3-ジメチルブチル)-N′-フェニル-p-フェニレンジアミン、2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物がより好ましい。市販品としては、例えば、精工化学(株)、住友化学(株)、大内新興化学工業(株)、フレクシス社等の製品を使用できる。
老化防止剤の含有量は、ゴム成分100質量部に対して、好ましくは0.2質量部以上、より好ましくは0.5質量部以上である。下限以上にすることで、充分な耐オゾン性が得られる傾向がある。該含有量は、好ましくは7.0質量部以下、より好ましくは4.0質量部以下である。上限以下にすることで、良好な外観が得られる傾向がある。
上記ゴム組成物は、ステアリン酸を含むことが好ましい。ステアリン酸の含有量は、前記性能バランスの観点から、ゴム成分100質量部に対して、好ましくは0.5~10質量部以上、より好ましくは0.5~5質量部である。
なお、ステアリン酸としては、従来公知のものを使用でき、例えば、日油(株)、NOF社、花王(株)、和光純薬工業(株)、千葉脂肪酸(株)等の製品を使用できる。
上記ゴム組成物は、酸化亜鉛を含むことが好ましい。酸化亜鉛の含有量は、前記性能バランスの観点から、ゴム成分100質量部に対して、好ましくは0.5~10質量部、より好ましくは1~5質量部である。
なお、酸化亜鉛としては、従来公知のものを使用でき、例えば、三井金属鉱業(株)、東邦亜鉛(株)、ハクスイテック(株)、正同化学工業(株)、堺化学工業(株)等の製品を使用できる。
上記ゴム組成物には、ワックスを配合してもよい。ワックスとしては特に限定されず、石油系ワックス、天然系ワックスなどが挙げられ、また、複数のワックスを精製又は化学処理した合成ワックスも使用可能である。これらのワックスは、単独で使用しても、2種類以上を併用してもよい。
石油系ワックスとしては、パラフィンワックス、マイクロクリスタリンワックス等が挙げられる。天然系ワックスとしては、石油外資源由来のワックスであれば特に限定されず、例えば、キャンデリラワックス、カルナバワックス、木ろう、ライスワックス、ホホバろうなどの植物系ワックス;ミツロウ、ラノリン、鯨ろうなどの動物系ワックス;オゾケライト、セレシン、ペトロラクタムなどの鉱物系ワックス;及びこれらの精製物などが挙げられる。市販品としては、例えば、大内新興化学工業(株)、日本精蝋(株)、精工化学(株)等の製品を使用できる。なお、ワックスの含有量は、耐オゾン性、コストの点から、適宜設定すれば良い。
上記ゴム組成物には、ポリマー鎖に適度な架橋鎖を形成し、良好な前記性能バランスを付与するという点で、硫黄を配合することが好ましい。
硫黄の含有量は、ゴム成分100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、更に好ましくは0.7質量部以上である。該含有量は、好ましくは6.0質量部以下、より好ましくは4.0質量部以下、更に好ましくは3.0質量部以下である。上記範囲内にすることで、良好な前記性能バランスが得られる傾向がある。
硫黄としては、ゴム工業において一般的に用いられる粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄、可溶性硫黄などが挙げられる。市販品としては、鶴見化学工業(株)、軽井沢硫黄(株)、四国化成工業(株)、フレクシス社、日本乾溜工業(株)、細井化学工業(株)等の製品を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
上記ゴム組成物は、加硫促進剤を含むことが好ましい。
加硫促進剤の含有量は特に制限はなく、要望する加硫速度や架橋密度に合わせて自由に決定すれば良いが、ゴム成分100質量部に対して、通常、0.3~10質量部、好ましくは0.5~7質量部である。
加硫促進剤の種類は特に制限はなく、通常用いられているものを使用可能である。加硫促進剤としては、2-メルカプトベンゾチアゾール、ジ-2-ベンゾチアゾリルジスルフィド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド等のチアゾール系加硫促進剤;テトラメチルチウラムジスルフィド(TMTD)、テトラベンジルチウラムジスルフィド(TBzTD)、テトラキス(2-エチルヘキシル)チウラムジスルフィド(TOT-N)等のチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド等のスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジン等のグアニジン系加硫促進剤を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、前記性能バランスの観点から、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が好ましい。
上記ゴム組成物には、上記成分以外にも、離型剤や顔料等の応用分野に従って、それらの使用に使われる通常の添加物を適宜配合してもよい。
上記ゴム組成物の製造方法としては、公知の方法を用いることができ、例えば、上記フィラー・ゴム複合体等の各成分をオープンロール、バンバリーミキサーなどのゴム混練装置を用いて混練し、その後加硫する方法などにより製造できる。
混練条件としては、加硫剤及び加硫促進剤以外の添加剤を混練するベース練り工程では、混練温度は、通常50~200℃、好ましくは80~190℃であり、混練時間は、通常30秒~30分、好ましくは1分~30分である。加硫剤、加硫促進剤を混練する仕上げ練り工程では、混練温度は、通常100℃以下、好ましくは室温~80℃である。また、加硫剤、加硫促進剤を混練した組成物は、通常、プレス加硫などの加硫処理が施される。加硫温度としては、通常120~200℃、好ましくは140~180℃である。
上記ゴム組成物は、タイヤ、靴底ゴム、床材ゴム、防振ゴム、免震ゴム、ブチル枠ゴム、ベルト、ホース、パッキン、薬栓、その他のゴム製工業製品等に用いることができる。特に、耐久性(破断強度)、操縦安定性、低燃費性等を改善できることから、タイヤ用ゴム組成物として用いることが好ましい。
上記ゴム組成物は空気入りタイヤに好適に使用できる。上記空気入りタイヤは、上記ゴム組成物を用いて通常の方法により製造される。すなわち、必要に応じて各種材料を配合したゴム組成物を、未加硫の段階でタイヤ部材の形状に合わせて押し出し加工し、他のタイヤ部材とともに、タイヤ成型機上にて通常の方法で成形することにより、未加硫タイヤを形成した後、加硫機中で加熱加圧してタイヤを製造することができる。
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
以下のミクロフィブリル化植物繊維分散液の調製、フィラー・ゴム複合体の作製で使用した各種薬品を説明する。
ミクロフィブリル化植物繊維:(株)スギノマシン製のバイオマスナノファイバー(製品名「BiNFi-s セルロース」、固形分2質量%、水分98質量%、平均繊維径20~50nm、平均繊維長500~1000nm)
TEMPO:2,2,6,6-テトラメチルピペリジン-1-オキシル
臭化ナトリウム:和光純薬工業(株)製
次亜塩素酸ナトリウム:東京化成工業(株)製
NaOH:和光純薬工業(株)製のNaOH
界面活性剤:エレメンティス社製のNUOSPERSE FX 600(陰イオン性界面活性剤、ポリカルボン酸アミン塩(疎水性基としてフェニル基、親水性基としてカルボキシル基を含有)、Mw:2000)
天然ゴムラテックス:Muhibbah LATEKS社から入手したフィールドラテックスを使用
(ミクロフィブリル化植物繊維分散液(ナノ化セルロース分散液)の調製)
ミクロフィブリル化植物繊維10g、TEMPO150mg、臭化ナトリウム1000mgを水1000mlに分散させた後、15質量%次亜塩素酸ナトリウム水溶液を、1gのミクロフィブリル化植物繊維(絶乾)に対して次亜塩素酸ナトリウムの量が5mmolとなるように加えて反応を開始した。反応中は3MのNaOH水溶液を滴下してpHを10.0に保った。pHに変化が見られなくなった時点で反応終了とみなし、反応物をガラスフィルターにてろ過した後、十分な量の水による水洗、ろ過を5回繰り返し、固形分量15質量%の水を含浸させた反応物繊維を得た。
それを希釈して1質量%及び3質量%のナノ化セルロース分散液を得た。
(ミクロフィブリル化植物繊維・ゴム複合体の調製)
調製した1質量%又は3質量%のナノ化セルロース分散液に、表1の配合処方に従って、天然ゴムラテックス、界面活性剤を所定量添加し、表1に記載の撹拌条件(撹拌機、混合時間、混合温度)にて、これらの材料を撹拌し、記載の粘度、固形分割合(質量%)、pHを有する配合ラテックスを得た。
次いで、得られた配合ラテックスに、室温下で2質量%ギ酸水溶液を加え、pH3~4に調整し、凝固物を得た。得られた凝固物をろ過し、乾燥してナノ化セルロース・ゴム複合体(MB1~5)を得た。
なお、用いた撹拌機A~Cは、以下のとおりである。
撹拌機A:IKA社製パッチ式ホモジナイザー「T65Dウルトラタラックス」(回転数7000rpm)
撹拌機B:新東科学社製「スリーワンモーターBL1200」
撹拌機C:自転公転撹拌機 シンキー社製「あわとり練太郎ARV-310」
(撹拌条件:公転回転速度2000rpm)
配合ラテックスの粘度、フィラー凝集塊(ナノ化セルロースの凝集塊)のサイズ、ムーニー粘度を以下の方法で測定した。
(配合ラテックスの粘度測定)
各配合ラテックスの23℃での粘度(mPa・s)を、音叉型振動式粘度計により測定した。
(フィラー凝集塊のサイズ測定)
各マスターバッチ(MB)中のフィラー凝集塊(フィラーにより形成される凝集塊)の大きさは、走査型電子顕微鏡写真による画像解析により測定した。
(ムーニー粘度)
JIS K6300-1に準じて、130℃で各マスターバッチ(MB)のムーニー粘度を測定した。指数が大きいほど粘度が低く、加工が容易である(加工性に優れる)ことを示す。
Figure 0007255124000001
以下、使用した各種薬品について、まとめて説明する。
ナノ化セルロース・ゴム複合体(MB1~MB5):上記にて調製
老化防止剤:精工化学(株)製のオゾノン6C(N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン)
酸化亜鉛:三井金属鉱業(株)製の亜鉛華1号
ステアリン酸:日油(株)製のステアリン酸「椿」
硫黄:鶴見化学(株)製の粉末硫黄
加硫促進剤:大内新興化学工業(株)製のノクセラーNS(N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド)
<加硫ゴム組成物の作製>
表2に示す配合処方に従い、1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の材料を150℃で4分間混練りした。次に、オープンロールを用いて、得られた混練り物に硫黄及び加硫促進剤を添加して80℃で4分間練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を170℃で12分間、2mm厚の金型でプレス加硫し、加硫ゴム組成物を得た。
(引張試験)
JIS K6251「加硫ゴム及び熱可塑性ゴム-引張特性の求め方」に従い、各配合(加硫ゴム組成物)の引張強度及び破断伸びを測定した。配合ゴム1を100とし、各配合の引張強度指数、破断伸び指数を算出した。指数が大きい程、加硫ゴム組成物が良好に補強されており、ゴムの機械強度が大きく、ゴム物性に優れることを示す。
(複素弾性率)
(株)岩本製作所製の粘弾性スペクトロメーターVESを用いて、温度70℃、周波数10Hz、初期伸縮歪10%及び動歪2%の条件下で、各配合(加硫ゴム組成物)の複素弾性率E(MPa)を測定した。配合ゴム1のEを100として、各配合を指数表示した。指数が大きいほど剛性が高いことを示す。
(低燃費性)
粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、温度70℃、初期歪み10%、動歪み1%、周波数10Hzの条件下で、各配合(加硫ゴム組成物)の損失正接(tanδ)を測定した。配合ゴム1のtanδを100として、各配合のtanδ指数を算出した。指数が大きいほど、転がり抵抗が低減され、好ましいことを示す。
Figure 0007255124000002
表1~2より、ゴムラテックス及びフィラーを含む粘度100mPa・s以上の配合ラテックスから得られたMB2、4を用いた配合ゴム2、4は、高粘度配合ラテックスから作製したにもかかわらず、低粘度配合ラテックスから作製した配合ゴム1(MB1)と同等以上のゴム物性を有していた。

Claims (8)

  1. ゴムラテックス、界面活性剤、及びフィラーを含む粘度100mPa・s以上の配合ラテックスから得られるフィラー・ゴム複合体であって、
    前記フィラーにより形成される凝集塊100%中、10μm以上の凝集塊が5.0%以下であり、
    前記界面活性剤は、陰イオン性界面活性剤であり、
    前記フィラーは、ミクロフィブリル化植物繊維、短繊維状セルロース、及びゲル状化合物からなる群より選択される少なくとも1種であり、
    前記ゲル状化合物は、ミクロフィブリル化植物繊維及び/又は短繊維状セルロースをゲル化させて得られる物質であるフィラー・ゴム複合体。
  2. ムーニー粘度(ML1+4(130℃))が100以下である請求項1記載のフィラー・ゴム複合体。
  3. ゴムラテックスは、イソプレン系ゴムラテックス、スチレンブタジエンゴムラテックス、及びブタジエンゴムラテックスからなる群より選択される少なくとも1種である請求項1又は2記載のフィラー・ゴム複合体。
  4. 配合ラテックスは、ゴムラテックス中のゴム固形分100質量部に対して、フィラー(固形分)を1~30質量部含む請求項1~のいずれかに記載のフィラー・ゴム複合体。
  5. 自公転式混合装置を用いてゴムラテックス、界面活性剤、及びフィラーを混合し、粘度100mPa・s以上の配合ラテックスを作製する工程1を含む請求項1~のいずれかに記載のフィラー・ゴム複合体の製造方法。
  6. 自公転式混合装置は、自転公転撹拌機又はプラネタリーミキサーである請求項記載のフィラー・ゴム複合体の製造方法。
  7. 請求項1~のいずれかに記載のフィラー・ゴム複合体を含むゴム組成物。
  8. 請求項記載のゴム組成物で構成されたタイヤ部材を有するタイヤ。
JP2018187559A 2018-10-02 2018-10-02 フィラー・ゴム複合体 Active JP7255124B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018187559A JP7255124B2 (ja) 2018-10-02 2018-10-02 フィラー・ゴム複合体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018187559A JP7255124B2 (ja) 2018-10-02 2018-10-02 フィラー・ゴム複合体

Publications (2)

Publication Number Publication Date
JP2020055951A JP2020055951A (ja) 2020-04-09
JP7255124B2 true JP7255124B2 (ja) 2023-04-11

Family

ID=70106503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018187559A Active JP7255124B2 (ja) 2018-10-02 2018-10-02 フィラー・ゴム複合体

Country Status (1)

Country Link
JP (1) JP7255124B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084564A (ja) 2007-09-10 2009-04-23 Sumitomo Rubber Ind Ltd 加硫ゴム組成物、空気入りタイヤおよびこれらの製造方法
JP2009203415A (ja) 2008-02-29 2009-09-10 Toray Ind Inc ガラスペーストおよびその製造方法、ならびにそれを用いたディスプレイ用部材の製造方法
JP2016147996A (ja) 2015-02-13 2016-08-18 住友ゴム工業株式会社 ミクロフィブリル化植物繊維・ゴム複合体及びその製造方法、並びに、ゴム組成物及び空気入りタイヤ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084564A (ja) 2007-09-10 2009-04-23 Sumitomo Rubber Ind Ltd 加硫ゴム組成物、空気入りタイヤおよびこれらの製造方法
JP2009203415A (ja) 2008-02-29 2009-09-10 Toray Ind Inc ガラスペーストおよびその製造方法、ならびにそれを用いたディスプレイ用部材の製造方法
JP2016147996A (ja) 2015-02-13 2016-08-18 住友ゴム工業株式会社 ミクロフィブリル化植物繊維・ゴム複合体及びその製造方法、並びに、ゴム組成物及び空気入りタイヤ

Also Published As

Publication number Publication date
JP2020055951A (ja) 2020-04-09

Similar Documents

Publication Publication Date Title
JP7322543B2 (ja) ナノセルロース・界面活性剤複合体
JP7081222B2 (ja) ミクロフィブリル化植物繊維・ゴム複合体の製造方法
JP5658142B2 (ja) 樹脂伸展イソプレンゴムの製造方法、その方法で得られたゴム組成物及び空気入りタイヤ
EP3623416B1 (en) Tire rubber composition and tire
EP3438178B1 (en) Rubber composition and pneumatic tire
JP7243060B2 (ja) 分散体、製造方法、ゴム組成物及び空気入りタイヤ
WO2019198398A1 (ja) ゴム組成物
JP7091716B2 (ja) タイヤ用ゴム組成物
JP2021001253A (ja) ゴム・フィラー複合体の製造方法
JP7172078B2 (ja) ゴム/フィラー複合体の製造方法
JP7205131B2 (ja) 空気入りタイヤ
JP2021195442A (ja) 重荷重用タイヤ
JP7255124B2 (ja) フィラー・ゴム複合体
JP5912934B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP7243061B2 (ja) 分散体、製造方法、ゴム組成物及び空気入りタイヤ
JP7342431B2 (ja) ゴム組成物及び空気入りタイヤ
JP2024061608A (ja) タイヤ
JP7338209B2 (ja) タイヤトレッド用ゴム組成物及びタイヤ
JP2024060814A (ja) タイヤ
EP4357155A2 (en) Tire
JP2022118521A (ja) ゴム組成物及び複合体
JP2022180912A (ja) 担持体の製造方法及び担持体
JP2024073043A (ja) ゴム組成物の製造方法
JP5898007B2 (ja) ビードエイペックス用ゴム組成物及び空気入りタイヤ
JP2023082931A (ja) タイヤ用ゴム組成物及びタイヤ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230313

R150 Certificate of patent or registration of utility model

Ref document number: 7255124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150