WO2012169224A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2012169224A1
WO2012169224A1 PCT/JP2012/052709 JP2012052709W WO2012169224A1 WO 2012169224 A1 WO2012169224 A1 WO 2012169224A1 JP 2012052709 W JP2012052709 W JP 2012052709W WO 2012169224 A1 WO2012169224 A1 WO 2012169224A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
region
semiconductor device
mosfet
silicon carbide
Prior art date
Application number
PCT/JP2012/052709
Other languages
English (en)
French (fr)
Inventor
和田 圭司
増田 健良
美紗子 穂永
透 日吉
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201280021088.4A priority Critical patent/CN103503146A/zh
Priority to EP12796108.4A priority patent/EP2720269A1/en
Priority to KR1020137027182A priority patent/KR20140012139A/ko
Publication of WO2012169224A1 publication Critical patent/WO2012169224A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes

Definitions

  • the present invention relates to a semiconductor device, and more particularly to a semiconductor device capable of increasing the freedom of setting a threshold voltage while suppressing a decrease in channel mobility.
  • Silicon carbide is a wide band gap semiconductor having a large band gap as compared to silicon which has conventionally been widely used as a material for constituting a semiconductor device. Therefore, by adopting silicon carbide as a material forming the semiconductor device, it is possible to achieve high breakdown voltage of the semiconductor device, reduction of on-resistance, and the like.
  • a semiconductor device employing silicon carbide as a material also has an advantage in that the decrease in characteristics when used under a high temperature environment is smaller than a semiconductor device employing silicon as a material.
  • a p-type body region having a p-type conductivity is formed, and a channel layer is formed in the p-type body region.
  • the threshold voltage is shifted to the positive side to approach to the normally off type. Or, it can be a normally off type.
  • the threshold voltage is shifted to the negative side by bringing the density of the n-type impurity in the n-type body region high, contrary to the case of the N-channel, to approach the normally off type. Or, it can be a normally off type.
  • the doping density of the p-type body region is, for example, approximately 1 ⁇ 10 16 cm ⁇ 3 to 4 ⁇ 10 16 cm ⁇ 3 .
  • the conventional semiconductor device there is a problem that it is difficult to freely set the threshold voltage while securing a sufficient channel mobility, in particular to approach a normally off type or to make a normally off type.
  • the present invention has been made to address such a problem, and an object thereof is to provide a semiconductor device capable of increasing the degree of freedom in setting a threshold voltage while suppressing a decrease in channel mobility. It is.
  • the semiconductor device has a substrate made of silicon carbide and a surface formed on the substrate and having an off angle of 50 ° to 65 ° with respect to the ⁇ 0001 ⁇ plane, and the conductivity type is the first conductivity type.
  • the semiconductor layer is formed to include a region in contact with the insulating film, and includes a body region having a second conductivity type different from the first conductivity type.
  • the impurity density in the body region is 5 ⁇ 10 16 cm ⁇ 3 or more.
  • the vicinity of the surface having an off angle of about 8 ° or less with respect to the ⁇ 0001 ⁇ plane formed in the semiconductor layer made of silicon carbide is used as a channel layer.
  • the body region is formed to include a surface having an off angle of 50 ° or more and 65 ° or less with respect to the ⁇ 0001 ⁇ plane of the semiconductor layer made of silicon carbide, and a channel layer is formed in the region including the surface
  • the decrease in channel mobility is largely suppressed even if the doping density of the body region is increased.
  • the insulating film is formed to be in contact with the surface of the semiconductor layer made of silicon carbide having a surface having an off angle of 50 ° to 65 ° with respect to the ⁇ 0001 ⁇ plane
  • the body region is formed to include a region in contact with the insulating film. That is, in the semiconductor device of the present invention, the body region is formed to include the surface having an off angle of 50 ° to 65 ° with respect to the ⁇ 0001 ⁇ plane, thereby forming a channel layer in the region including the surface. Be done. Therefore, even when a body region having a high doping density of 5 ⁇ 10 16 cm -3 or more is formed and the threshold voltage is shifted to the positive side, the decrease in channel mobility is suppressed. As a result, according to the semiconductor device of the present invention, it is possible to provide a semiconductor device capable of increasing the degree of freedom in setting the threshold voltage while suppressing the decrease in channel mobility.
  • impurity means the impurity which produces
  • the semiconductor device according to the present invention in the region of the semiconductor layer sandwiched between the body region and the substrate, the conductivity types arranged separately from each other in the direction perpendicular to the thickness direction of the semiconductor layer are the second conductivity type. A plurality of regions are formed to line up. That is, a super junction (Super Junction) structure is formed in the semiconductor layer of the semiconductor device of the present invention.
  • the semiconductor device of the present invention is a semiconductor device capable of reducing the on-resistance while maintaining a desired withstand voltage.
  • the angle between the off orientation of the surface of the semiconductor layer and the ⁇ 01-10> direction may be 5 ° or less.
  • the ⁇ 01-10> direction is a typical off orientation in a silicon carbide substrate.
  • the semiconductor layer is formed by epitaxial growth on a silicon carbide substrate having a main surface whose off orientation is close to the ⁇ 01-10> direction, whereby the off orientation of the surface of the semiconductor layer is It becomes close to the ⁇ 01-10> direction.
  • the off angle of the surface of the semiconductor layer with respect to the ⁇ 03-38 ⁇ plane in the ⁇ 01-10> direction may be -3 ° or more and 5 ° or less.
  • the reason that the off angle with respect to the plane orientation ⁇ 03-38 ⁇ is set to -3 ° or more and + 5 ° or less is the result of investigating the relationship between the channel mobility and the above off angle. Based on what was obtained.
  • the off angle with respect to the ⁇ 03-38 ⁇ plane in the ⁇ 01-10> direction is an orthographic projection of the normal to the surface of the semiconductor layer to a plane including the ⁇ 01-10> direction and the ⁇ 0001> direction.
  • the plane orientation of the surface of the semiconductor layer is more preferably substantially ⁇ 03-38 ⁇ , and the plane orientation of the surface of the semiconductor layer is even more preferably ⁇ 03-38 ⁇ .
  • the surface orientation of the surface is substantially ⁇ 03-38 ⁇ means that the surface orientation of the surface is within the range of the off angle where the surface orientation can be regarded substantially as ⁇ 03-38 ⁇ in consideration of processing accuracy etc. Is included, and the range of the off angle in this case is, for example, the range of ⁇ 2 ° of the off angle with respect to ⁇ 03-38 ⁇ .
  • the angle between the off orientation of the surface of the semiconductor layer and the ⁇ 2110> direction may be 5 ° or less.
  • the ⁇ -2110> direction is a typical off direction in a silicon carbide substrate, as in the ⁇ 01-10> direction. Then, for example, in the case of manufacturing a planar type MOSFET, the semiconductor layer is formed by epitaxial growth on the silicon carbide substrate having the main surface whose off orientation is close to the ⁇ -2110> direction, whereby the off orientation of the surface of the semiconductor layer is produced. Is close to the ⁇ -2110> direction.
  • the surface of the semiconductor layer may be a surface on the carbon surface side of silicon carbide.
  • the (0001) plane of hexagonal single crystal silicon carbide is defined as a silicon plane
  • the (000-1) plane is defined as a carbon plane. That is, when adopting a configuration in which the angle between the off orientation of the surface of the semiconductor layer and the ⁇ 01-10> direction is 5 ° or less, the surface of the semiconductor layer is close to the (0-33-8) plane By doing this, channel mobility can be further improved.
  • the impurity density in the body region may be 1 ⁇ 10 20 cm ⁇ 3 or less.
  • the threshold voltage can be set with a sufficient degree of freedom.
  • a doping density of more than 1 ⁇ 10 20 cm ⁇ 3 is employed, problems such as deterioration of crystallinity may occur.
  • the semiconductor device may be of a normally-off type.
  • the semiconductor device according to the present invention can sufficiently suppress the decrease in channel mobility.
  • the semiconductor device may further include a gate electrode disposed in contact with the insulating film, and the gate electrode may be made of polysilicon of a second conductivity type. That is, when the second conductivity type is p-type, the gate electrode is made of p-type polysilicon, and when the second conductivity type is n-type, the gate electrode is made of n-type polysilicon it can.
  • the p-type polysilicon refers to polysilicon in which the majority carriers are holes
  • the n-type polysilicon refers to polysilicon in which the majority carriers are electrons.
  • the semiconductor device may further include a gate electrode disposed in contact with the insulating film, and the gate electrode may be made of n-type polysilicon. By doing this, the switching speed of the semiconductor device can be improved.
  • the thickness of the insulating film may be 25 nm or more and 70 nm or less. If the thickness of the insulating film is less than 25 nm, dielectric breakdown may occur during operation. On the other hand, when the thickness of the insulating film exceeds 70 nm, it is necessary to increase the absolute value of the gate voltage when the insulating film is used as a gate insulating film. Therefore, the problem can be easily solved by setting the thickness of the insulating film to 25 nm or more and 70 nm or less.
  • the first conductivity type may be n-type
  • the second conductivity type may be p-type. That is, the semiconductor device may be an n-channel type.
  • the impurity density in the body region may be 8 ⁇ 10 16 cm ⁇ 3 or more and 3 ⁇ 10 18 cm ⁇ 3 or less. By doing this, it is possible to obtain a threshold voltage of about 0 to 5 V at a normal operating temperature. As a result, it becomes easy to replace and use the semiconductor device of this application with the semiconductor device which adopted silicon as a material, and a semiconductor device can be stabilized and it can be considered as a normally-off type. In addition, a significant decrease in channel mobility due to an increase in impurity density can be avoided.
  • the threshold voltage at which the weak inversion layer is formed in the region in contact with the insulating film in the body region may be 2 V or more in a temperature range of room temperature to 100 ° C. This makes it possible to maintain the normally-off state more reliably at normal operating temperatures.
  • the room temperature is specifically 27 ° C.
  • the threshold voltage may be 3 V or more at 100 ° C. Thereby, even when the operating temperature is high, the normally-off state can be more reliably maintained.
  • the threshold voltage may be 1 V or more at 200 ° C. Thereby, even when the operating temperature is higher, the normally-off state can be maintained more reliably.
  • the temperature dependency of the threshold voltage may be ⁇ 10 mV / ° C. or more. By doing this, it is possible to stably maintain the normally-off state.
  • the channel mobility of electrons at room temperature may be 30 cm 2 / Vs or more. By doing so, it becomes easy to sufficiently suppress the on resistance of the semiconductor device.
  • the channel mobility of electrons at 100 ° C. may be 50 cm 2 / Vs or more.
  • the on resistance of the semiconductor device can be sufficiently suppressed.
  • the channel mobility of electrons at 150 ° C. may be 40 cm 2 / Vs or more. This makes it possible to sufficiently suppress the on-resistance of the semiconductor device even when the operating temperature is higher.
  • the temperature dependence of the channel mobility of electrons may be ⁇ 0.3 cm 2 / Vs ° C. or higher. This makes it possible to stably suppress the on-resistance of the semiconductor device.
  • the barrier height at the interface between the semiconductor layer and the insulating film may be 2.2 eV or more and 2.6 eV or less.
  • the barrier height By increasing the barrier height, it is possible to suppress a leak current (tunneling current) flowing in the insulating film functioning as a gate insulating film.
  • the epitaxial growth layer is made of silicon carbide
  • the channel mobility is lowered if a crystal plane having a large barrier height with the insulating film is simply adopted for the surface in contact with the insulating film.
  • a crystal plane with a barrier height of 2.2 eV or more and 2.6 eV for the surface in contact with the insulating film, high channel mobility can be secured while suppressing a leak current.
  • Such barrier height can be easily achieved by employing a semiconductor layer having a surface with an off angle of 50 ° to 65 ° with respect to the ⁇ 0001 ⁇ plane.
  • the barrier height refers to the size of the band gap between the conduction band of the semiconductor layer and the conduction band of the insulating film.
  • the channel resistance which is the resistance value of the channel layer formed in the body region may be smaller than the drift resistance which is the resistance value of the semiconductor layer other than the channel layer.
  • the on resistance of the semiconductor device can be reduced.
  • Such a relationship between the channel resistance and the drift resistance can be easily achieved by employing a semiconductor layer having a surface with an off angle of not less than 50 ° and not more than 65 ° with respect to the ⁇ 0001 ⁇ plane.
  • the semiconductor device may be a DiMOSFET (Double Implanted MOSFET) or a trench MOSFET.
  • the semiconductor device of the present invention can be applied to semiconductor devices having various structures.
  • the semiconductor device of the present invention it is possible to provide a semiconductor device capable of increasing the degree of freedom in setting the threshold voltage while suppressing the decrease in channel mobility.
  • FIG. 2 is a schematic cross-sectional view showing the structure of the MOSFET in the first embodiment.
  • 3 is a flowchart schematically showing a method of manufacturing the MOSFET in the first embodiment.
  • FIG. 7 is a schematic cross-sectional view for illustrating the method of manufacturing the MOSFET in the first embodiment.
  • FIG. 7 is a schematic cross-sectional view for illustrating the method of manufacturing the MOSFET in the first embodiment.
  • FIG. 7 is a schematic cross-sectional view for illustrating the method of manufacturing the MOSFET in the first embodiment.
  • FIG. 7 is a schematic cross-sectional view for illustrating the method of manufacturing the MOSFET in the first embodiment.
  • FIG. 7 is a schematic cross-sectional view for illustrating the method of manufacturing the MOSFET in the first embodiment.
  • FIG. 7 is a schematic cross-sectional view for illustrating the method of manufacturing the MOSFET in the first embodiment.
  • FIG. 7 is a schematic cross-sectional view for illustrating the method of manufacturing the MOSFET in the first embodiment.
  • FIG. 7 is a schematic cross-sectional view for illustrating the method of manufacturing the MOSFET in the first embodiment.
  • FIG. 7 is a schematic cross-sectional view for illustrating the method of manufacturing the MOSFET in the first embodiment.
  • FIG. 7 is a schematic cross-sectional view for illustrating the method of manufacturing the MOSFET in the first embodiment.
  • FIG. 16 is a schematic perspective view showing the structure of the MOSFET in the second embodiment.
  • 15 is a flowchart schematically illustrating a method of manufacturing a MOSFET in a second embodiment.
  • FIG. 17 is a schematic cross-sectional view for illustrating the method of manufacturing the MOSFET in the second embodiment.
  • FIG. 17 is a schematic cross-sectional view for illustrating the method of manufacturing the MOSFET in the second embodiment.
  • FIG. 17 is a schematic cross-sectional view for illustrating the method of manufacturing the MOSFET in the second embodiment.
  • FIG. 17 is a schematic cross-sectional view for illustrating the method of manufacturing the MOSFET in the second embodiment.
  • FIG. 17 is a schematic cross-sectional view for illustrating the method of manufacturing the MOSFET in the second embodiment.
  • FIG. 17 is a schematic cross-sectional view for illustrating the method of manufacturing the MOSFET in the second embodiment.
  • FIG. 17 is a schematic cross-sectional view for illustrating the method of manufacturing the MOSFET in the second embodiment.
  • FIG. 17 is a schematic cross-sectional view for illustrating the method of manufacturing the MOSFET in the second embodiment.
  • FIG. 17 is a schematic cross-sectional view for illustrating the method of manufacturing the MOSFET in the second embodiment.
  • FIG. 17 is a schematic cross-sectional view for
  • MOSFET 1 which is a semiconductor device (DiMOSFET) in the present embodiment, is made of silicon carbide substrate 11 having a conductivity type of n type (first conductivity type), made of silicon carbide, and having a conductivity type of n type , A p-type region 13 of p-type (second conductivity type) conductivity type, a pair of p-type body regions 14 of p-type conductivity type, n-type conductivity type A + region 15 and ap + region 16 of p type conductivity are provided.
  • n type first conductivity type
  • second conductivity type second conductivity type
  • Drift layer 12 is formed on one main surface 11A of silicon carbide substrate 11, and contains n-type impurities to have n-type conductivity.
  • the n-type impurity contained in drift layer 12 is, for example, N (nitrogen), and is contained at a lower concentration (density) than the n-type impurity contained in silicon carbide substrate 11.
  • Drift layer 12 is an epitaxial growth layer formed on one main surface 11A of silicon carbide substrate 11.
  • the pair of p-type body regions 14 are formed separately from each other so as to include the main surface 12A opposite to the main surface on the side of silicon carbide substrate 11 in drift layer 12,
  • the conductivity type is p-type by including the (impurity).
  • the p-type impurity contained in p-type body region 14 is, for example, aluminum (Al), boron (B) or the like.
  • the off-angle with respect to the ⁇ 0001 ⁇ plane of the main surface 12A is 50 ° or more and 65 ° or less.
  • the impurity density in the p-type body region 14 is 5 ⁇ 10 16 cm ⁇ 3 or more.
  • the n + region 15 is formed inside each of the pair of p-type body regions 14 so as to include the main surface 12A and be surrounded by the p-type body region 14.
  • the n + region 15 contains an n-type impurity such as P at a higher concentration (density) than the n-type impurity contained in the drift layer 12.
  • the p + region 16 includes the main surface 12 A, is surrounded by the p-type body region 14, and is formed in each of the pair of p-type body regions 14 so as to be adjacent to the n + region 15.
  • the p + region 16 contains a p-type impurity such as Al at a higher concentration (density) than the p-type impurity contained in the p-type body region 14.
  • the p-type region 13 is a direction perpendicular to the thickness direction of the drift layer 12 in the region of the drift layer 12 sandwiched between the p-type body region 14 and the silicon carbide substrate 11 (along the main surface 11A of the silicon carbide substrate 11 A plurality of pieces are arranged side by side so as to be separated from each other in the direction).
  • p type region 13 of MOSFET 1 in the present embodiment has the following features.
  • the structure of the semiconductor device of the present invention is not limited to the following embodiments.
  • the p-type region 13 is formed such that one p-type region 13 corresponds to one p-type body region 14. Further, the distance between the adjacent p-type body regions 14 is smaller than the distance between the p-type regions 13 arranged corresponding to the respective p-type body regions 14. Furthermore, p type region 13 is formed to be in contact with p type body region 14. On the other hand, a space is formed between p-type region 13 and silicon carbide substrate 11. Further, the p-type region 13 has a columnar shape, more specifically, a rectangular parallelepiped shape.
  • MOSFET 1 includes gate oxide film 21 as a gate insulating film, gate electrode 23, a pair of source contact electrodes 22, interlayer insulating film 24, source wiring 25, and drain electrode 26. And a passivation protective film 27.
  • Gate oxide film 21 is in contact with main surface 12A, and main surface 12A of drift layer 12 as a semiconductor layer so as to extend from the upper surface of one n + region 15 to the upper surface of the other n + region 15 It is formed on top and made of a dielectric such as silicon dioxide (SiO 2 ), Al 2 O 3 or the like.
  • Gate electrode 23 is arranged in contact with gate oxide film 21 so as to extend from above one n + region 15 to above the other n + region 15.
  • the gate electrode 23 is made of a conductor to which an impurity is added, such as polysilicon, Al, W, or Mo.
  • Source contact electrodes 22 extend from each on a pair of n + regions 15 in a direction away from gate oxide film 21 to reach p + regions 16 and are arranged in contact with main surface 12A.
  • the source contact electrode 22 is made of, for example, Ni x Si y (nickel silicide), Ti x Si y (titanium silicide), Al x Si y (aluminum silicide), Ti x Al y Si z (titanium aluminum silicide), or the like. It is made of a material capable of ohmic contact with n + region 15 and p + region 16.
  • Interlayer insulating film 24 is formed to surround gate electrode 23 on main surface 12A of drift layer 12 and to extend from above one p-type body region 14 to the other p-type body region 14, for example, It is made of silicon dioxide (SiO 2 ), silicon nitride (SiN) or the like which is an insulator.
  • Source interconnection 25 surrounds interlayer insulating film 24 on main surface 12 A of drift layer 12 and extends onto the upper surface of source contact electrode 22.
  • Source interconnection 25 is made of a conductor such as Al and is electrically connected to n + region 15 via source contact electrode 22.
  • Drain electrode 26 is formed in contact with main surface 11 B on the side opposite to the side on which drift layer 12 is formed in silicon carbide substrate 11.
  • the drain electrode 26 is made of, for example, a material capable of ohmic contact with the silicon carbide substrate 11 such as Ni x Si y , and is electrically connected to the silicon carbide substrate 11.
  • the passivation protective film 27 is formed on the source line 25 so as to cover the source line 25.
  • the passivation protective film 27 is made of, for example, an insulator such as silicon dioxide or silicon nitride (SiN).
  • MOSFET 1 which is a DiMOSFET in the present embodiment is formed on silicon carbide substrate 11 and silicon carbide substrate 11 and has an off angle of 50 ° to 65 ° with respect to the ⁇ 0001 ⁇ plane (principal surface 12A) And a gate as an insulating film formed in contact with the main surface 12A of the drift layer 12 as a semiconductor layer made of silicon carbide having a first conductivity type (n type) of a first conductivity type.
  • An oxide film 21 is provided.
  • Drift layer 12 is formed to include a region 14 A in contact with gate oxide film 21 and includes a p-type body region 14 whose conductivity type is the second conductivity type (p-type).
  • the impurity density in the p-type body region 14 is 5 ⁇ 10 16 cm ⁇ 3 or more. Then, in the region of drift layer 12 sandwiched between p-type body region 14 and silicon carbide substrate 11, the conductivity types arranged separately from each other in the direction perpendicular to the thickness direction of drift layer 12 are the second conductivity type. A plurality of p-type regions 13 of (p-type) are formed to be aligned.
  • the off angle of main surface 12 ⁇ / b> A opposite to silicon carbide substrate 11 in drift layer 12 with respect to the ⁇ 0001 ⁇ plane is 50 ° or more and 65 ° or less. Therefore, the off angle of the region 14A in contact with the gate oxide film 21 in the p-type body region 14 with respect to the ⁇ 0001 ⁇ plane is 50 ° or more and 65 ° or less, and a channel layer is formed in the vicinity of the region 14A. Therefore, even if the p-type body region 14 having a high doping density of 5 ⁇ 10 16 cm -3 or more is formed and the threshold voltage is shifted to the positive side, carriers (electrons) in the channel layer are The decrease in mobility (channel mobility) is suppressed.
  • the MOSFET 1 is a MOSFET that can shift the threshold voltage to the positive side while suppressing a decrease in channel mobility to approach a normal off-type or a normally-off-type.
  • the p-type impurity density in the p-type body region 14 may be 1 ⁇ 10 17 cm ⁇ 3 or more, and further 5 ⁇ 10 17 cm ⁇ 3 or more. You can also
  • MOSFET 1 p-type region 13 is separated from each other in the direction perpendicular to the thickness direction of drift layer 12 in the region of drift layer 12 sandwiched between p-type body region 14 and silicon carbide substrate 11. It is arranged side by side. That is, in the drift layer 12 of the MOSFET 1, a super junction structure in which pn junctions are repeatedly arranged in the direction along the main surface 11A of the silicon carbide substrate 11 is formed. Due to the function of the depletion layer formed by this pn junction, the MOSFET 1 has a high breakdown voltage. On the other hand, the region where the p-type region 13 is not formed in the drift layer 12 becomes a flow path of current, so the on-resistance is reduced. As a result, the MOSFET 1 is a semiconductor device capable of achieving low loss while securing a high breakdown voltage.
  • an angle between the off orientation of the main surface 12A of the drift layer 12 and the ⁇ 01-10> direction be 5 ° or less.
  • MOSFET 1 can be easily manufactured using silicon carbide substrate 11 having an off orientation of ⁇ 01-10> direction which is a typical off orientation.
  • the off-angle with respect to the ⁇ 03-38 ⁇ plane in the ⁇ 01-10> direction of the principal plane 12A be -3 ° or more and 5 ° or less, and the principal plane 12A substantially has the ⁇ 03-38 ⁇ plane It is more preferable that Thereby, channel mobility can be further improved.
  • the angle between the off orientation of the main surface 12A and the ⁇ 2110> direction may be 5 ° or less.
  • MOSFET 1 can be easily manufactured using silicon carbide substrate 11 having an off orientation in the ⁇ -2110> direction, which is a typical off orientation.
  • main surface 12A is preferably a surface on the carbon surface side of silicon carbide. Thereby, channel mobility can be further improved.
  • the p-type impurity density in the p-type body region 14 is preferably 1 ⁇ 10 20 cm ⁇ 3 or less. Thereby, the deterioration of crystallinity can be suppressed.
  • the MOSFET 1 may be of the normally-off type. As described above, even when the doping density of the p-type body region 14 is increased to a normally-off type, according to the MOSFET 1 described above, the decrease in channel mobility can be sufficiently suppressed.
  • gate electrode 23 may be made of p-type polysilicon. As a result, the threshold voltage can be easily shifted to the positive side, and the MOSFET 1 can be easily made to be a normally-off type.
  • the gate electrode 23 may be made of n-type polysilicon. By doing this, the switching speed of the MOSFET 1 can be improved.
  • the p-type impurity density in p-type body region 14 may be 8 ⁇ 10 16 cm ⁇ 3 or more and 3 ⁇ 10 18 cm ⁇ 3 or less. By doing this, it is possible to obtain a threshold voltage of about 0 to 5 V at a normal operating temperature. As a result, it becomes easy to replace and use MOSFET1 with MOSFET which employ
  • the thickness of the gate oxide film 21 may be 25 nm or more and 70 nm or less. If the thickness of the gate oxide film 21 is less than 25 nm, dielectric breakdown may occur during operation, whereas if it exceeds 70 nm, it is necessary to increase the gate voltage. Therefore, the thickness of the gate oxide film 21 is preferably 25 nm or more and 70 nm or less.
  • the threshold voltage may be 2 V or more in a temperature range of room temperature or more and 100 ° C. or less. This makes it possible to maintain the normally-off state more reliably at normal operating temperatures.
  • the threshold voltage may be 3 V or more at 100 ° C. Therefore, even when the operating temperature is high, the normally-off state can be more reliably maintained.
  • the threshold voltage may be 1 V or more at 200 ° C. Thereby, even when the operating temperature is higher, the normally-off state can be maintained more reliably.
  • the temperature dependency of the threshold voltage may be ⁇ 10 mV / ° C. or more. By doing this, it is possible to stably maintain the normally-off state.
  • the channel mobility of electrons at room temperature is preferably 30 cm 2 / Vs or more. This makes it easy to sufficiently suppress the on resistance of the MOSFET 1.
  • the channel mobility of electrons at 100 ° C. may be 50 cm 2 / Vs or more. As a result, even when the operating temperature is high, the on resistance of the MOSFET 1 can be sufficiently suppressed.
  • the channel mobility of electrons at 150 ° C. may be 40 cm 2 / Vs or more. As a result, even when the operating temperature is higher, the on resistance of the MOSFET 1 can be sufficiently suppressed.
  • the temperature dependence of the channel mobility of electrons may be ⁇ 0.3 cm 2 / Vs ° C. or more. This makes it possible to stably suppress the on resistance of the MOSFET 1.
  • the barrier height at the interface between the drift layer 12 and the gate oxide film 21 may be 2.2 eV or more and 2.6 eV or less. Thereby, high channel mobility can be secured while suppressing the leak current.
  • the channel resistance which is the resistance value in the channel layer formed in p type body region 14 is smaller than the drift resistance which is the resistance value in drift layer 12 other than p type body region 14. It may be done. Thereby, the on resistance of the MOSFET 1 can be reduced.
  • a substrate preparation step is performed as a step (S10).
  • step (S10) referring to FIG. 3, silicon carbide substrate 11 having main surface 11A with an off angle of not less than 50 ° and not more than 65 ° with respect to the ⁇ 0001 ⁇ plane is prepared.
  • drift layer 12 made of silicon carbide is formed on one main surface 11A of silicon carbide substrate 11 by epitaxial growth.
  • a p-type region forming step is performed as a step (S30).
  • ion implantation for forming p-type region 13 is performed. Specifically, for example, Al (aluminum) ions are implanted into drift layer 12 to form p-type region 13. Al ions are implanted, for example, to a concentration (density) of about 1 ⁇ 10 16 cm ⁇ 3 .
  • the thickness of the drift layer 12 needs to be determined according to the required withstand voltage. Therefore, for the purpose of increasing the thickness of the drift layer 12, the steps (S20) and (S30) may be repeatedly performed. More specifically, referring to FIGS. 5 and 6, after drift layer 12 is further formed by epitaxial growth on drift layer 12 in which p-type region 13 is formed, drift is achieved by forming p-type region 13 by ion implantation. The thickness of the layer 12 and the p-type region 13 can be increased.
  • a p-type body region forming step is performed as a step (S40).
  • step (S40) referring to FIG. 7, for example, Al ions are implanted into drift layer 12 to form p type body region 14.
  • an n + region forming step is performed as a step (S50).
  • P (phosphorus) ions are implanted into p type body region 14 to form n + region 15 in p type body region 14.
  • a p + region forming step is performed as a step (S60).
  • Al ions are implanted into p type body region 14 to form p + region 16 in p type body region 14.
  • the ion implantation for forming the p-type region 13, the p-type body region 14, the n + region 15 and the p + region 16 is made of, for example, silicon dioxide (SiO 2 ) on the main surface of the drift layer 12.
  • SiO 2 silicon dioxide
  • an activation annealing step is performed as a step (S70).
  • heat treatment is performed, for example, by heating to about 1700 to 1800 ° C. in an inert gas atmosphere such as argon, and holding for 5 to 30 minutes. Thereby, the impurities (ions) implanted in the above steps (S30) to (S60) are activated.
  • a gate oxide film formation step is performed as a step (S80).
  • this step (S80) referring to FIGS. 7 and 8, for example, heat treatment is carried out by heating at 1100 ° C. to 1300 ° C. and holding for about 60 minutes in an oxygen atmosphere to obtain an oxide film (gate oxide film 21 is formed.
  • an NO annealing step may be performed.
  • nitrogen monoxide (NO) gas is employed as the atmosphere gas, and heat treatment is performed to heat the atmosphere gas.
  • the conditions of this heat treatment for example, conditions of holding at a temperature of 1100 ° C. or more and 1300 ° C. or less for about 60 minutes can be adopted.
  • nitrogen atoms are introduced into the interface region between the oxide film 21 and the drift layer 12.
  • the process of using NO gas as the atmosphere gas is employed is described here, other gases capable of introducing nitrogen atoms into the interface region between oxide film 21 and drift layer 12 are used.
  • a process may be employed.
  • an Ar annealing step may be performed.
  • argon (Ar) gas is employed as the atmosphere gas, and heat treatment is performed to heat in the atmosphere gas.
  • the conditions of this heat treatment for example, the condition of holding for about 60 minutes at a temperature less than the melting point of oxide film 21 (specifically, a temperature of about 1100 ° C. to 1300 ° C.) above the heating temperature in the above NO annealing step is employed. be able to.
  • the formation of interface states in the interface region between oxide film 21 and drift layer 12 can be further suppressed, and the channel mobility of MOSFET 1 finally obtained can be improved.
  • a process using Ar gas as the atmosphere gas is employed is described here, a process using another inert gas such as nitrogen gas instead of Ar gas may be employed.
  • a gate electrode forming step is performed as a step (S90).
  • a polysilicon film (conductor film) is formed by, for example, LPCVD (Low Pressure Chemical Vapor Deposition) method
  • a mask is formed by photolithography
  • the polysilicon film is processed by etching such as RIE (Reactive Ion Etching) to form a gate electrode 23 made of polysilicon which is a conductor to which an impurity is added at a high concentration.
  • interlayer insulating film formation step is performed as a step (S100).
  • step (S100) referring to FIG. 9, interlayer insulating film 24 made of SiO 2 which is an insulator is surrounded by gate electrode 23 on main surface 12A by P (Plasma) -CVD method, for example. It is formed.
  • the thickness of interlayer insulating film 24 can be, for example, about 1 ⁇ m.
  • step (S110) described later is removed by photolithography and etching. Thereby, interlayer insulating film 24 is formed into a desired shape.
  • an ohmic contact electrode forming step is performed as a step (S110).
  • source contact electrode 22 and drain electrode 26 are formed by heating and siliciding a nickel (Ni) film formed by, for example, a vapor deposition method.
  • a source wiring formation step is performed as a step (S120).
  • source interconnection 25 which is a conductor by, for example, vapor deposition, surrounds interlayer insulating film 24 on main surface 12A, and n + region 15 and the source It is formed to extend onto the upper surface of contact electrode 22.
  • the source wiring 25 can be formed, for example, by sequentially depositing Ti (titanium) having a thickness of 50 to 200 nm, Al having a thickness of 2 to 8 ⁇ m, and AlSi.
  • a passivation protective film formation step is performed as a step (S130).
  • step (S130) referring to FIGS. 11 and 1, passivation protection film 27 is formed to cover source interconnection 25.
  • the passivation protective film 27 can be formed, for example, by forming a film having a thickness of about 0.5 to 3 ⁇ m and made of an insulator such as SiO 2 , SiN, or polyimide.
  • MOSFET 3 which is a semiconductor device in the second embodiment relates to the surface orientation of the surface of the semiconductor layer in contact with the insulating film (gate oxide film), the p-type impurity density of the p-type body region, and the super junction structure formed in the drift layer.
  • the structure basically the same as that of the MOSFET 1 in the first embodiment including the points the same operation is performed and the same effect is obtained.
  • MOSFET 3 in the second embodiment is a trench MOSFET in which a channel layer is formed along a trench formed in a semiconductor layer, and has a silicon carbide substrate 31 of n type conductivity.
  • Drift layer 32 which is a semiconductor layer of n-type conductivity, made of silicon carbide, p-type region 33 of p-type conductivity type, p-type body region 34 of p-type conductivity type, n-type conductivity type and n + region 35, conductivity type and a p-type p + region 36.
  • Drift layer 32 is formed on one main surface 31A of silicon carbide substrate 31 and has n-type conductivity by containing n-type impurities.
  • the n-type impurity contained in drift layer 32 is, for example, nitrogen, and is contained at a lower concentration (density) than the n-type impurity contained in silicon carbide substrate 31.
  • Drift layer 32 is an epitaxial growth layer formed on one main surface 31 A of silicon carbide substrate 31.
  • drift layer 32 In drift layer 32, a trench 39 having a tapered shape in which the width gradually narrows from the surface on the opposite side to silicon carbide substrate 31 toward silicon carbide substrate 31 is formed.
  • P-type body region 34 is formed to include, in drift layer 32, a main surface 32A opposite to the main surface on the side of silicon carbide substrate 31, and a surface 34A exposed at the surface of trench 39, p-type
  • the conductivity type is p-type.
  • the p-type impurity contained in p-type body region 34 is, for example, aluminum, boron or the like.
  • the off angle of the surface 34A with respect to the ⁇ 0001 ⁇ plane is 50 ° or more and 65 ° or less.
  • the impurity density in the p-type body region 34 is 5 ⁇ 10 16 cm ⁇ 3 or more.
  • the n + region 35 is formed inside the p-type body region 34 so as to include the main surface 32A.
  • the n + region 35 contains an n-type impurity such as P at a higher concentration (density) than the n-type impurity contained in the drift layer 32.
  • the p + region 36 is formed inside the p-type body region 34 so as to include the main surface 32 A and be adjacent to the n + region 35.
  • the p + region 36 contains a p-type impurity such as Al at a higher concentration (density) than the p-type impurity contained in the p-type body region 34.
  • the trench 39 is formed to penetrate the n + region 35 and the p-type body region 34 and to reach the drift layer 32.
  • the p-type region 33 is a direction perpendicular to the thickness direction of the drift layer 32 in the region of the drift layer 32 sandwiched between the p-type body region 34 and the silicon carbide substrate 31 (along the main surface 31A of the silicon carbide substrate 31). Are arranged side by side so as to be separated from each other in the direction).
  • p type region 33 of MOSFET 3 in the present embodiment has the following features.
  • the structure of the semiconductor device of the present invention is not limited to the following embodiments.
  • a plurality of p-type regions 33 are arranged side by side so as to be separated from each other along the direction in which the trenches 39 extend.
  • the p-type region 33 is formed to be in contact with the p-type body region 34.
  • a space is formed between p type region 33 and silicon carbide substrate 31.
  • MOSFET 3 includes gate oxide film 41 as a gate insulating film, gate electrode 43, source contact electrode 42, interlayer insulating film 44, source interconnection 45, and drain electrode 46, And a passivation protective film (not shown).
  • Gate oxide film 41 is formed to cover the surface of trench 39 and to extend onto main surface 32A, and made of, for example, silicon dioxide (SiO 2 ).
  • Gate electrode 43 is arranged in contact with gate oxide film 41 so as to fill trench 39 and extend onto main surface 32A.
  • the gate electrode 43 is made of an impurity-doped polysilicon or a conductor such as Al.
  • Source contact electrode 42 is arranged in contact with n + region 35 and p + region 36 by extending from above n + region 35 to above p + region 36.
  • the source contact electrode 42 is, for example, Ni x Si y (nickel silicide), Ti x Si y (titanium silicide), Al x Si y (aluminum silicide), Ti x Al y Si z (titanium aluminum silicide), or the like. It is made of a material capable of ohmic contact with n + region 35 and p + region 36.
  • Interlayer insulating film 44 is formed to surround gate electrode 43 on main surface 32A of drift layer 32 to separate gate electrode 43 and source contact electrode 42, and is made of, for example, silicon dioxide (SiO 2 ), which is an insulator. It has become.
  • Source interconnection 45 surrounds interlayer insulating film 44 on main surface 32 A of drift layer 32 and extends onto the upper surface of source contact electrode 42.
  • Source interconnection 45 is made of a conductor such as Al, and is electrically connected to n + region 35 via source contact electrode 42.
  • Drain electrode 46 is formed in contact with main surface 31 ⁇ / b> B opposite to the side on which drift layer 32 is formed in silicon carbide substrate 31.
  • the drain electrode 46 is made of, for example, a material that can make ohmic contact with the silicon carbide substrate 31 such as Ni x Si y , and is electrically connected to the silicon carbide substrate 31.
  • a passivation protective film (not shown) is formed on the source line 45 so as to cover the source line 45.
  • the passivation protective film is made of an insulator such as silicon dioxide, for example.
  • MOSFET 3 which is a trench MOSFET in the present embodiment is formed on silicon carbide substrate 31 and silicon carbide substrate 31 and has an off angle of 50 ° to 65 ° with respect to the ⁇ 0001 ⁇ plane (surface 34A)
  • a drift layer 32 as a semiconductor layer made of silicon carbide having a first conductivity type (n type) of a conductivity type, and a gate oxide as an insulating film formed in contact with the surface 34A of the drift layer 32 And a membrane 41.
  • Drift layer 32 is formed to include surface 34A in contact with gate oxide film 41, and includes a p-type body region 34 having a second conductivity type (p-type).
  • the impurity density in the p-type body region 34 is 5 ⁇ 10 16 cm ⁇ 3 or more.
  • the conductivity types arranged separately from each other in the direction perpendicular to the thickness direction of drift layer 32 are the second conductivity type.
  • a plurality of p-type regions 33 which are (p-type) are formed side by side.
  • the off angle with respect to the ⁇ 0001 ⁇ plane of surface 34A in contact with gate oxide film 41 in p-type body region 34 is not less than 50 ° and not more than 65 °. Is formed. Therefore, even when the p-type body region 34 having a high doping density of 5 ⁇ 10 16 cm -3 or more is formed and the threshold voltage is shifted to the positive side, carriers (electrons) in the channel layer are The decrease in mobility (channel mobility) is suppressed. As a result, the MOSFET 3 is a MOSFET that can shift the threshold voltage to the positive side while suppressing a decrease in channel mobility to approach a normal off-type or a normally-off-type.
  • MOSFET 3 p-type region 33 is separated from each other in the direction perpendicular to the thickness direction of drift layer 32 in the region of drift layer 32 sandwiched between p-type body region 34 and silicon carbide substrate 31. It is arranged side by side. That is, in the drift layer 32 of the MOSFET 3, a superjunction structure is formed in which pn junctions are repeatedly arranged in the direction along the extending direction of the trench 39. Due to the function of the depletion layer formed by the pn junction, MOSFET 3 has a high breakdown voltage. On the other hand, the region where the p-type region 33 is not formed in the drift layer 32 serves as a current flow path, so the on-resistance is reduced. As a result, the MOSFET 3 is a semiconductor device capable of achieving low loss while securing a high breakdown voltage.
  • a substrate preparation step is first performed as a step (S210).
  • silicon carbide substrate 31 having main surface 31A having an off angle of 2 ° to 10 ° with respect to the ⁇ 0001 ⁇ plane is prepared.
  • step (S220) an epitaxial growth step is performed as a step (S220).
  • drift layer 32 made of silicon carbide is formed on one main surface 31A of silicon carbide substrate 31 by epitaxial growth.
  • a p-type region forming step is performed as a step (S230).
  • ion implantation for forming p-type region 33 is performed. Specifically, for example, Al (aluminum) ions are implanted into drift layer 32 to form p-type region 33. Al ions are implanted, for example, to a concentration (density) of about 1 ⁇ 10 16 cm ⁇ 3 .
  • drift layer 32 is further formed by epitaxial growth on drift layer 32 in which p-type region 33 is formed, and then p-type region 33 is formed by ion implantation.
  • the thickness of the layer 32 and the p-type region 33 can be increased.
  • a p-type body region forming step is performed as a step (S240).
  • the following steps will be described with reference to FIGS. 18 to 22 showing cross sections in a state of being rotated by 90 ° around an axis perpendicular to main surface 31A of silicon carbide substrate 31 with respect to FIGS.
  • Al ions are implanted into drift layer 32 to form p-type body region 34.
  • an n + region forming step is performed as a step (S250).
  • P (phosphorus) ions are implanted into p type body region 34 to form n + region 35 in p type body region 34.
  • ap + region forming step is performed as a step (S260).
  • step (S260) referring to FIG. 18, for example, Al ions are implanted into p type body region 34 to form p + region 36 in p type body region 34.
  • the ion implantation for forming the p-type region 33, the p-type body region 34, the n + region 35 and the p + region 36 is made of, for example, silicon dioxide (SiO 2 ) on the main surface of the drift layer 32 Can be implemented by forming a mask layer having an opening in a desired area to be implemented.
  • an activation annealing step is performed as a step (S270).
  • heat treatment is performed, for example, by heating to about 1700 to 1800 ° C. in an inert gas atmosphere such as argon, and holding for 5 to 30 minutes. Thereby, the impurities (ions) implanted in the steps (S230) to (S260) are activated.
  • a trench formation step is performed as a step (S275).
  • a mask made of silicon dioxide having an opening in a desired region is used, and dry etching such as RIE, or thermal etching using a halogen-based gas such as chlorine or bromine, or a combination thereof
  • the trench 39 is formed by the method such as, for example.
  • n + after the mask having an opening is formed on the region 35, as well as through the n + region 35 and p-type body region 34, the silicon carbide substrate 31 A trench 39 is formed extending in the direction along the major surface 31A (in the depth direction in FIG. 19).
  • trench 39 is formed such that the off angle with respect to the ⁇ 0001 ⁇ plane of surface 34A of p type body region 34 exposed from the surface (inclined surface) of the trench is not less than 50 ° and not more than 65 °.
  • a gate oxide film formation step is performed as a step (S280).
  • this step (S280) referring to FIGS. 19 and 20, for example, heat treatment is carried out by heating at 1100 ° C. to 1300 ° C. and holding for about 60 minutes in an oxygen atmosphere to obtain an oxide film (gate oxide film ) 41 is formed.
  • Oxide film 41 is formed to cover main surface 32A of drift layer 32 and also to cover the surface of trench 39.
  • the NO annealing step and the Ar annealing step may be performed after this step (S280).
  • a gate electrode formation step is performed as a step (S290).
  • a polysilicon film (conductor film) is first formed to fill trench 39, for example, by the LPCVD method.
  • a mask is formed by photolithography, and the polysilicon film is processed by etching such as RIE to form a gate electrode 43 made of polysilicon which is a conductor to which an impurity is added at a high concentration.
  • interlayer insulating film forming step is performed as a step (S300).
  • step (S300) referring to FIG. 20, interlayer insulating film 44 made of SiO 2 which is an insulator is formed on main surface 32A so as to surround gate electrode 43 by P-CVD, for example. .
  • the thickness of interlayer insulating film 24 can be, for example, about 1 ⁇ m.
  • interlayer insulating film 24 is formed into a desired shape by photolithography and etching.
  • an ohmic contact electrode forming step is performed as a step (S310).
  • a nickel (Ni) film formed by a vapor deposition method is heated and silicided, whereby source contact electrode 22 and drain electrode 26 are formed.
  • a source wiring formation step is performed as a step (S320).
  • source interconnection 45 which is a conductor, for example, is deposited by evaporation and surrounds interlayer insulating film 44 on main surface 32A, and the upper portion of source contact electrode 42. It is formed to extend onto the surface.
  • the source wiring 45 can be formed, for example, by sequentially depositing Ti (titanium) having a thickness of 50 to 200 nm, Al having a thickness of 2 to 8 ⁇ m, and AlSi.
  • a passivation protective film formation step is performed as a step (S330).
  • a passivation protective film is formed to cover the source wiring 45.
  • the passivation protective film can be formed, for example, by forming a film having a thickness of about 0.5 to 3 ⁇ m and made of an insulator such as SiO 2 , SiN, or polyimide.
  • the semiconductor device of the present invention can be applied particularly advantageously to a semiconductor device for which it is required to increase the degree of freedom in setting the threshold voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 MOSFET(1)は、炭化珪素基板(11)と、{0001}面に対するオフ角が50°以上65°以下である主面(12A)を有し、炭化珪素からなるドリフト層(12)と、ドリフト層(12)の主面(12A)上に接触して形成されたゲート酸化膜(21)とを備えている。ドリフト層(12)は、ゲート酸化膜(21)と接触する領域(14A)を含むように形成されたp型ボディ領域(14)を含んでいる。p型ボディ領域(14)における不純物密度は5×1016cm-3以上となっている。そして、p型ボディ領域(14)と炭化珪素基板(11)とに挟まれたドリフト層(12)の領域には、ドリフト層(12)の厚み方向に垂直な方向において互いに分離して配置された導電型がp型であるp型領域(13)が複数並ぶように形成されている。

Description

半導体装置
 本発明は半導体装置に関し、より特定的には、チャネル移動度の低下を抑制しつつ閾値電圧の設定の自由度を高めることが可能な半導体装置に関するものである。
 近年、半導体装置の高耐圧化、低損失化、高温環境下での使用などを可能とするため、半導体装置を構成する材料として炭化珪素の採用が進められつつある。炭化珪素は、従来から半導体装置を構成する材料として広く使用されている珪素に比べてバンドギャップが大きいワイドバンドギャップ半導体である。そのため、半導体装置を構成する材料として炭化珪素を採用することにより、半導体装置の高耐圧化、オン抵抗の低減などを達成することができる。また、炭化珪素を材料として採用した半導体装置は、珪素を材料として採用した半導体装置に比べて、高温環境下で使用された場合の特性の低下が小さいという利点も有している。
 このような炭化珪素を材料として用いた半導体装置のうち、たとえばMOSFET(Metal Oxide Semiconductor Field Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor)など、所定の閾値電圧を境にチャンネル層における反転層の形成の有無をコントロールし、電流を導通および遮断する半導体装置においては、閾値電圧の調整やチャネル移動度の向上について様々な検討がなされている(たとえばSei-Hyung Ryu et al.、“Critical Issues for MOS BasedPower Devices in 4H-SiC”、Materials Science Forum、2009年、 Vols.615-617、p743-748(非特許文献1)参照)。
Sei-Hyung Ryu et al.、"Critical Issues for MOS BasedPower Devices in 4H-SiC"、Materials Science Forum、2009年、 Vols.615-617、p743-748
 ここで、たとえばNチャネルのMOSFETやIGBTなどの半導体装置においては、導電型がp型であるp型ボディ領域が形成され、当該p型ボディ領域内にチャンネル層が形成される。そして、p型ボディ領域におけるp型不純物(たとえばB(硼素)、Al(アルミニウム)など)の密度(ドーピング密度)を高くすることにより、閾値電圧をプラス側にシフトさせ、ノーマリーオフ型に近づける、あるいはノーマリーオフ型とすることができる。一方、Pチャネルの半導体装置においては、上記Nチャネルの場合とは逆にn型ボディ領域におけるn型不純物の密度を高くすることにより、閾値電圧をマイナス側にシフトさせ、ノーマリーオフ型に近づける、あるいはノーマリーオフ型とすることができる。
 しかし、このような方法で閾値電圧を調整すると、チャネル移動度が大幅に低下するという問題がある。これは、ドーピング密度を高くすることにより、ドーパントによる電子の散乱が顕著になるためである。そのため、たとえばp型ボディ領域のドーピング密度は、たとえば1×1016cm-3~4×1016cm-3程度とされる。その結果、従来の半導体装置においては、十分なチャネル移動度を確保しつつ閾値電圧を自由に設定すること、特にノーマリーオフ型に近づける、あるいはノーマリーオフ型とすることは難しいという問題があった。
 本発明はこのような問題に対応するためになされたものであって、その目的は、チャネル移動度の低下を抑制しつつ閾値電圧の設定の自由度を高めることが可能な半導体装置を提供することである。
 本発明に従った半導体装置は、炭化珪素からなる基板と、基板上に形成され、{0001}面に対するオフ角が50°以上65°以下である表面を有し、導電型が第1導電型である炭化珪素からなる半導体層と、半導体層の上記表面上に接触して形成された絶縁膜とを備えている。半導体層は、絶縁膜と接触する領域を含むように形成され、導電型が第1導電型とは異なる第2導電型であるボディ領域を含んでいる。ボディ領域における不純物密度は5×1016cm-3以上である。そして、ボディ領域と基板とに挟まれた半導体層の領域には、半導体層の厚み方向に垂直な方向において互いに分離して配置された導電型が第2導電型である領域が複数並ぶように形成されている。
 本発明者は、チャネル移動度の低下を抑制しつつ閾値電圧の設定の自由度を高める方策について詳細な検討を行なった結果、以下のような知見を得て本発明に想到した。
 従来の炭化珪素を素材として採用した半導体装置においては、炭化珪素からなる半導体層に形成された{0001}面に対するオフ角が8°以下程度の表面近傍がチャネル層として利用される。このような半導体装置においては、上述のように十分なチャネル移動度を確保しつつ閾値電圧を自由に設定することは困難である。
 しかし、本発明者の検討によれば、{0001}面に対するオフ角が所定の範囲となる表面の近傍にチャネル層が形成される構造を採用した場合、ボディ領域のドーピング密度上昇とチャネル移動度の向上との相反関係が大幅に緩和されることが明らかとなった。より具体的には、炭化珪素からなる半導体層の{0001}面に対するオフ角が50°以上65°以下である表面を含むようにボディ領域を形成し、当該表面を含む領域にチャネル層が形成される構造を採用した場合、ボディ領域のドーピング密度を上昇させてもチャネル移動度の低下が大幅に抑制される。
 本発明の半導体装置においては、{0001}面に対するオフ角が50°以上65°以下である表面を有する炭化珪素からなる半導体層の当該表面上に接触するように絶縁膜を形成するとともに、この絶縁膜と接触する領域を含むようにボディ領域が形成される。つまり、本発明の半導体装置においては、{0001}面に対するオフ角が50°以上65°以下である表面を含むようにボディ領域が形成されることにより、当該表面を含む領域にチャネル層が形成される。そのため、不純物密度が5×1016cm-3以上という高いドーピング密度のボディ領域を形成し、閾値電圧をプラス側にシフトさせた場合でも、チャネル移動度の低下が抑制される。その結果、本発明の半導体装置によれば、チャネル移動度の低下を抑制しつつ閾値電圧の設定の自由度を高めることが可能な半導体装置を提供することができる。
 なお、上述の「不純物」は、炭化珪素中に導入されることにより多数キャリアを生成する不純物を意味する。
 さらに、本発明の半導体装置においては、ボディ領域と基板とに挟まれた半導体層の領域に、半導体層の厚み方向に垂直な方向において互いに分離して配置された導電型が第2導電型である領域が複数並ぶように形成されている。すなわち、本発明の半導体装置の半導体層には、超接合(Super Junction)構造が形成されている。その結果、本発明の半導体装置は、所望の耐圧を維持しつつ、オン抵抗を低減可能な半導体装置となっている。
 上記半導体装置においては、上記半導体層の表面のオフ方位と<01-10>方向とのなす角は5°以下となっていてもよい。
 <01-10>方向は、炭化珪素基板における代表的なオフ方位である。たとえばプレーナ型のMOSFETを製造する場合、オフ方位が<01-10>方向に近い主面を有する炭化珪素基板上に、半導体層をエピタキシャル成長により形成することで、上記半導体層の表面のオフ方位が<01-10>方向に近いものとなる。
 上記半導体装置においては、上記半導体層の表面の、<01-10>方向における{03-38}面に対するオフ角は-3°以上5°以下であってもよい。
 これにより、チャネル移動度を一層向上させることができる。ここで、面方位{03-38}に対するオフ角を-3°以上+5°以下としたのは、チャネル移動度と上記オフ角との関係を調査した結果、この範囲内で特に高いチャネル移動度が得られたことに基づいている。
 また、「<01-10>方向における{03-38}面に対するオフ角」とは、<01-10>方向および<0001>方向を含む平面への上記半導体層の表面の法線の正射影と、{03-38}面の法線とのなす角度であり、その符号は、上記正射影が<01-10>方向に対して平行に近づく場合が正であり、上記正射影が<0001>方向に対して平行に近づく場合が負である。
 なお、上記半導体層の表面の面方位は、実質的に{03-38}であることがより好ましく、上記半導体層の表面の面方位は{03-38}であることがさらに好ましい。ここで、表面の面方位が実質的に{03-38}であるとは、加工精度などを考慮して実質的に面方位が{03-38}とみなせるオフ角の範囲に表面の面方位が含まれていることを意味し、この場合のオフ角の範囲はたとえば{03-38}に対してオフ角が±2°の範囲である。これにより、上述したチャネル移動度をより一層向上させることができる。
 上記半導体装置においては、上記半導体層の表面のオフ方位と<-2110>方向とのなす角は5°以下となっていてもよい。
 <-2110>方向は、上記<01-10>方向と同様に、炭化珪素基板における代表的なオフ方位である。そして、たとえばプレーナ型のMOSFETを製造する場合、オフ方位が<-2110>方向に近い主面を有する炭化珪素基板上に、半導体層をエピタキシャル成長により形成することで、上記半導体層の表面のオフ方位が<-2110>方向に近いものとなる。
 上記半導体装置においては、上記半導体層の表面は、炭化珪素のカーボン面側の面であってもよい。
 このようにすることにより、チャネル移動度をさらに向上させることができる。ここで、六方晶の単結晶炭化珪素の(0001)面はシリコン面、(000-1)面はカーボン面と定義される。つまり、上記半導体層の表面のオフ方位と<01-10>方向とのなす角が5°以下である構成を採用する場合、上記半導体層の表面を(0-33-8)面に近いものとすることにより、チャネル移動度をさらに向上させることができる。
 上記半導体装置においては、上記ボディ領域における不純物密度は1×1020cm-3以下であってもよい。
 ボディ領域における不純物密度を1×1020cm-3以下としても、閾値電圧は十分な自由度をもって設定することができる。また、1×1020cm-3を超えるドーピング密度を採用すると、結晶性の悪化などの問題が発生する可能性がある。
 上記半導体装置は、ノーマリーオフ型となっていてもよい。このようにノーマリーオフ型になる程度にボディ領域のドーピング密度を高くした場合でも、本発明の半導体装置によればチャネル移動度の低下を十分に抑制することができる。
 上記半導体装置においては、上記絶縁膜上に接触して配置されたゲート電極をさらに備え、当該ゲート電極は第2導電型のポリシリコンからなっていてもよい。すなわち、第2導電型がp型である場合、ゲート電極はp型ポリシリコンからなるものとし、第2導電型がn型である場合、ゲート電極はn型ポリシリコンからなるものとすることができる。p型ポリシリコンとは、多数キャリアが正孔であるポリシリコンをいい、n型ポリシリコンとは、多数キャリアが電子であるポリシリコンをいう。このようにすることにより、ゲート電極の仕事関数により半導体装置の閾値電圧を制御し、半導体装置をノーマリーオフ型とすることが容易となる。
 上記半導体装置においては、絶縁膜上に接触して配置されたゲート電極をさらに備え、当該ゲート電極はn型ポリシリコンからなっていてもよい。このようにすることにより、半導体装置のスイッチング速度を向上させることができる。
 上記半導体装置においては、上記絶縁膜の厚みは25nm以上70nm以下であってもよい。上記絶縁膜の厚みが25nm未満では、動作中に絶縁破壊が発生するおそれがある。一方、上記絶縁膜の厚みが70nmを超える場合、当該絶縁膜をゲート絶縁膜として使用する場合のゲート電圧の絶対値を大きくする必要が生じる。そのため、上記絶縁膜の厚みを25nm以上70nm以下とすることにより、上記問題点を容易に解消することができる。
 上記半導体装置においては、上記第1導電型はn型であり、第2導電型はp型であってもよい。すなわち、上記半導体装置は、Nチャネル型であってもよい。このようにすることにより、高い移動度を確保することが容易な電子を多数キャリアとする半導体装置を提供することができる。
 上記半導体装置においては、ボディ領域における不純物密度は8×1016cm-3以上3×1018cm-3以下であってもよい。このようにすることにより、通常の動作温度において0~5V程度の閾値電圧を得ることが可能となる。その結果、本願の半導体装置を、珪素を材料として採用した半導体装置と置き換えて使用することが容易になるとともに、半導体装置を安定してノーマリーオフ型とすることができる。また、不純物密度が高くなることによる大幅なチャネル移動度の低下を回避することができる。
 上記半導体装置においては、ボディ領域において絶縁膜に接する領域に弱反転層が形成される閾値電圧は、室温以上100℃以下の温度範囲において2V以上であってもよい。これにより、通常の動作温度においてより確実にノーマリーオフの状態を維持することができる。ここで、室温とは具体的には27℃である。
 上記半導体装置においては、上記閾値電圧が100℃において3V以上であってもよい。これにより、動作温度が高温である場合でも、より確実にノーマリーオフの状態を維持することができる。
 上記半導体装置においては、上記閾値電圧が200℃において1V以上であってもよい。これにより、動作温度がより高温である場合でも、より確実にノーマリーオフの状態を維持することができる。
 上記半導体装置においては、上記閾値電圧の温度依存性は-10mV/℃以上であってもよい。このようにすることにより、安定してノーマリーオフの状態を維持することができる。
 上記半導体装置においては、室温における電子のチャネル移動度が30cm/Vs以上であってもよい。このようにすることにより、半導体装置のオン抵抗を十分に抑制することが容易となる。
 上記半導体装置においては、100℃における電子のチャネル移動度が50cm/Vs以上であってもよい。これにより、動作温度が高温である場合でも、半導体装置のオン抵抗を十分に抑制することが可能となる。
 上記半導体装置においては、150℃における電子のチャネル移動度が40cm/Vs以上であってもよい。これにより、動作温度がより高温である場合でも、半導体装置のオン抵抗を十分に抑制することが可能となる。
 上記半導体装置においては、電子のチャネル移動度の温度依存性が-0.3cm/Vs℃以上であってもよい。これにより、安定して半導体装置のオン抵抗を抑制することが可能となる。
 上記半導体装置においては、半導体層と絶縁膜との界面におけるバリアハイトは2.2eV以上2.6eV以下であってもよい。
 バリアハイトを大きくすることにより、ゲート絶縁膜として機能する上記絶縁膜中を流れるリーク電流(トンネル電流)を抑制することができる。しかし、上記エピタキシャル成長層が炭化珪素からなる場合、単に絶縁膜との間のバリアハイトが大きい結晶面を絶縁膜と接触する面に採用すると、チャネル移動度が低下するという問題が生じる。これに対し、バリアハイトが2.2eV以上2.6eVとなる結晶面を絶縁膜と接触する面に採用することにより、リーク電流を抑制しつつ、高いチャネル移動度を確保することができる。このようなバリアハイトは、{0001}面に対するオフ角が50°以上65°以下である表面を有する半導体層を採用することにより、容易に達成することができる。なお、バリアハイトとは、半導体層の伝導帯と絶縁膜の伝導帯との間のバンドギャップの大きさをいう。
 上記半導体装置においては、オン状態において、ボディ領域に形成されるチャンネル層における抵抗値であるチャネル抵抗は、チャンネル層以外の半導体層における抵抗値であるドリフト抵抗よりも小さくなっていてもよい。これにより、半導体装置のオン抵抗を低減することができる。このようなチャネル抵抗とドリフト抵抗との関係は、{0001}面に対するオフ角が50°以上65°以下である表面を有する半導体層を採用することにより、容易に達成することができる。
 上記半導体装置は、DiMOSFET(Double Implanted MOSFET)であってもよいし、トレンチMOSFETであってもよい。本発明の半導体装置は、種々の構造を有する半導体装置に適用することができる。
 以上の説明から明らかなように、本発明の半導体装置によれば、チャネル移動度の低下を抑制しつつ閾値電圧の設定の自由度を高めることが可能な半導体装置を提供することができる。
実施の形態1におけるMOSFETの構造を示す概略断面図である。 実施の形態1におけるMOSFETの製造方法の概略を示すフローチャートである。 実施の形態1におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態1におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態1におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態1におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態1におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態1におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態1におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態1におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態1におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態2におけるMOSFETの構造を示す概略斜視図である。 実施の形態2におけるMOSFETの製造方法の概略を示すフローチャートである。 実施の形態2におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態2におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態2におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態2におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態2におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態2におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態2におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態2におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態2におけるMOSFETの製造方法を説明するための概略断面図である。
 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。また、本明細書中においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また、負の指数については、結晶学上、”-”(バー)を数字の上に付けることになっているが、本明細書中では、数字の前に負の符号を付けている。
 (実施の形態1)
 まず、本発明の一実施の形態である実施の形態1について説明する。図1を参照して、本実施の形態における半導体装置(DiMOSFET)であるMOSFET1は、導電型がn型(第1導電型)である炭化珪素基板11と、炭化珪素からなり導電型がn型の半導体層であるドリフト層12と、導電型がp型(第2導電型)のp型領域13と、導電型がp型の一対のp型ボディ領域14と、導電型がn型のn領域15と、導電型がp型のp領域16とを備えている。
 ドリフト層12は、炭化珪素基板11の一方の主面11A上に形成され、n型不純物を含むことにより導電型がn型となっている。ドリフト層12に含まれるn型不純物は、たとえばN(窒素)であり、炭化珪素基板11に含まれるn型不純物よりも低い濃度(密度)で含まれている。ドリフト層12は、炭化珪素基板11の一方の主面11A上に形成されたエピタキシャル成長層である。
 一対のp型ボディ領域14は、ドリフト層12において、炭化珪素基板11側の主面とは反対側の主面12Aを含むように互いに分離して形成され、p型不純物(導電型がp型である不純物)を含むことにより、導電型がp型となっている。p型ボディ領域14に含まれるp型不純物は、たとえばアルミニウム(Al)、硼素(B)などである。主面12Aの{0001}面に対するオフ角は50°以上65°以下となっている。p型ボディ領域14における不純物密度は5×1016cm-3以上となっている。
 n領域15は、上記主面12Aを含み、かつp型ボディ領域14に取り囲まれるように、一対のp型ボディ領域14のそれぞれの内部に形成されている。n領域15は、n型不純物、たとえばPなどをドリフト層12に含まれるn型不純物よりも高い濃度(密度)で含んでいる。p領域16は、上記主面12Aを含み、かつp型ボディ領域14に取り囲まれるとともに、n領域15に隣接するように一対のp型ボディ領域14のそれぞれの内部に形成されている。p領域16は、p型不純物、たとえばAlなどをp型ボディ領域14に含まれるp型不純物よりも高い濃度(密度)で含んでいる。
 p型領域13は、p型ボディ領域14と炭化珪素基板11とに挟まれたドリフト層12の領域に、ドリフト層12の厚み方向に垂直な方向(炭化珪素基板11の主面11Aに沿った方向)において互いに分離するように複数並べて配置されている。
 より具体的には、本実施の形態におけるMOSFET1のp型領域13は以下のような特徴を有している。なお、本発明の半導体装置の構造は以下の態様に限定されるものではない。p型領域13は、1のp型ボディ領域14に対して1のp型領域13が対応するように形成されている。また、隣接するp型ボディ領域14同士の距離は、それぞれのp型ボディ領域14に対応して配置されるp型領域13同士の距離よりも小さくなっている。さらに、p型領域13は、p型ボディ領域14に接触するように形成されている。一方、p型領域13と炭化珪素基板11との間には間隔が形成されている。また、p型領域13は、柱状の形状、より具体的には直方体状の形状を有している。
 さらに、図1を参照して、MOSFET1は、ゲート絶縁膜としてのゲート酸化膜21と、ゲート電極23と、一対のソースコンタクト電極22と、層間絶縁膜24と、ソース配線25と、ドレイン電極26と、パッシベーション保護膜27とを備えている。
 ゲート酸化膜21は、主面12Aに接触し、一方のn領域15の上部表面から他方のn領域15の上部表面にまで延在するように半導体層としてのドリフト層12の主面12A上に形成され、たとえば二酸化珪素(SiO)、Alなどの誘電体からなっている。
 ゲート電極23は、一方のn領域15上から他方のn領域15上にまで延在するように、ゲート酸化膜21に接触して配置されている。また、ゲート電極23は、不純物が添加されたポリシリコン、Al、W、Moなどの導電体からなっている。
 ソースコンタクト電極22は、一対のn領域15上のそれぞれから、ゲート酸化膜21から離れる向きに延在してp領域16上にまで達するとともに、主面12Aに接触して配置されている。また、ソースコンタクト電極22は、たとえばNiSi(ニッケルシリサイド)、TiSi(チタンシリサイド)、AlSi(アルミシリサイド)や、TiAlSi(チタンアルミシリサイド)など、n領域15およびp領域16とオーミックコンタクト可能な材料からなっている。
 層間絶縁膜24は、ドリフト層12の主面12A上においてゲート電極23を取り囲み、かつ一方のp型ボディ領域14上から他方のp型ボディ領域14上にまで延在するように形成され、たとえば絶縁体である二酸化珪素(SiO)、窒化珪素(SiN)などからなっている。
 ソース配線25は、ドリフト層12の主面12A上において、層間絶縁膜24を取り囲み、かつソースコンタクト電極22の上部表面上にまで延在している。また、ソース配線25は、Alなどの導電体からなり、ソースコンタクト電極22を介してn領域15と電気的に接続されている。
 ドレイン電極26は、炭化珪素基板11においてドリフト層12が形成される側とは反対側の主面11Bに接触して形成されている。このドレイン電極26は、たとえばNiSiなど、炭化珪素基板11とオーミックコンタクト可能な材料からなっており、炭化珪素基板11と電気的に接続されている。
 パッシベーション保護膜27は、ソース配線25上にソース配線25を覆うように形成されている。このパッシベーション保護膜27は、たとえば二酸化珪素、窒化珪素(SiN)などの絶縁体からなっている。
 すなわち、本実施の形態におけるDiMOSFETであるMOSFET1は、炭化珪素基板11と、炭化珪素基板11上に形成され、{0001}面に対するオフ角が50°以上65°以下である表面(主面12A)を有し、導電型が第1導電型(n型)である炭化珪素からなる半導体層としてのドリフト層12と、ドリフト層12の主面12A上に接触して形成された絶縁膜としてのゲート酸化膜21とを備えている。ドリフト層12は、ゲート酸化膜21と接触する領域14Aを含むように形成され、導電型が第2導電型(p型)であるp型ボディ領域14を含んでいる。p型ボディ領域14における不純物密度は5×1016cm-3以上となっている。そして、p型ボディ領域14と炭化珪素基板11とに挟まれたドリフト層12の領域には、ドリフト層12の厚み方向に垂直な方向において互いに分離して配置された導電型が第2導電型(p型)であるp型領域13が複数並ぶように形成されている。
 次に、MOSFET1の動作について説明する。図1を参照して、ゲート電極23の電圧が閾値電圧未満の状態、すなわちオフ状態では、ドレイン電極26に電圧が印加されても、ゲート酸化膜21の直下に位置するp型ボディ領域14とドリフト層12との間のpn接合が逆バイアスとなり、非導通状態となる。一方、ゲート電極23に閾値電圧以上の電圧を印加すると、p型ボディ領域14のゲート酸化膜21と接触する付近であるチャンネル層において、反転層が形成される。その結果、n領域15とドリフト層12とが電気的に接続され、ソース配線25とドレイン電極26との間に電流が流れる。
 ここで、MOSFET1においては、ドリフト層12において炭化珪素基板11とは反対側の主面12Aの{0001}面に対するオフ角は50°以上65°以下となっている。そのため、p型ボディ領域14においてゲート酸化膜21と接触する領域14Aの{0001}面に対するオフ角は50°以上65°以下となっており、この領域14Aの近傍にチャネル層が形成される。そのため、p型不純物密度が5×1016cm-3以上という高いドーピング密度のp型ボディ領域14を形成し、閾値電圧をプラス側にシフトさせた場合でも、上記チャンネル層におけるキャリア(電子)の移動度(チャネル移動度)の低下が抑制される。その結果、MOSFET1は、チャネル移動度の低下を抑制しつつ閾値電圧をプラス側にシフトさせ、ノーマルオフ型に近づける、あるいはノーマリーオフ型とすることが可能なMOSFETとなっている。なお、閾値電圧をさらにプラス側にシフトさせる観点から、p型ボディ領域14におけるp型不純物密度は、1×1017cm-3以上であってもよく、さらに5×1017cm-3以上とすることもできる。
 さらに、MOSFET1においては、p型領域13が、p型ボディ領域14と炭化珪素基板11とに挟まれたドリフト層12の領域に、ドリフト層12の厚み方向に垂直な方向において互いに分離するように並べて配置されている。すなわち、MOSFET1のドリフト層12には、炭化珪素基板11の主面11Aに沿った方向においてpn接合が繰り返して配置される超接合構造が形成されている。このpn接合により形成される空乏層のはたらきによって、MOSFET1は高い耐圧を有している。一方、ドリフト層12においてp型領域13が形成されていない領域が電流の流路となるため、オン抵抗が低減されている。その結果、MOSFET1は、高い耐圧を確保しながら低損失化を図ることが可能な半導体装置となっている。
 また、ドリフト層12の主面12Aのオフ方位と<01-10>方向とのなす角は5°以下となっていることが好ましい。これにより、代表的なオフ方位である<01-10>方向のオフ方位を有する炭化珪素基板11を用いてMOSFET1を容易に製造することができる。
 さらに、主面12Aの、<01-10>方向における{03-38}面に対するオフ角は-3°以上5°以下であることが好ましく、主面12Aは実質的に{03-38}面であることがより好ましい。これにより、チャネル移動度を一層向上させることができる。
 一方、上記MOSFET1においては、主面12Aのオフ方位と<-2110>方向とのなす角は5°以下となっていてもよい。これにより、代表的なオフ方位である<-2110>方向のオフ方位を有する炭化珪素基板11を用いてMOSFET1を容易に製造することができる。
 さらに、主面12Aは、炭化珪素のカーボン面側の面であることが好ましい。これにより、チャネル移動度をさらに向上させることができる。
 また、p型ボディ領域14におけるp型不純物密度は1×1020cm-3以下であることが好ましい。これにより、結晶性の悪化などを抑制することができる。
 さらに、MOSFET1は、ノーマリーオフ型となっていてもよい。このようにノーマリーオフ型になる程度にp型ボディ領域14のドーピング密度を高くした場合でも、上記MOSFET1によれば、チャネル移動度の低下を十分に抑制することができる。
 また、MOSFET1においては、ゲート電極23はp型ポリシリコンからなっていてもよい。これにより、閾値電圧をプラス側にシフトさせ易くなり、MOSFET1をノーマリーオフ型とすることも容易となる。
 さらに、MOSFET1においては、ゲート電極23はn型ポリシリコンからなっていてもよい。このようにすることにより、MOSFET1のスイッチング速度を向上させることができる。
 また、MOSFET1においては、p型ボディ領域14におけるp型不純物密度は8×1016cm-3以上3×1018cm-3以下であってもよい。このようにすることにより、通常の動作温度において0~5V程度の閾値電圧を得ることが可能となる。その結果、MOSFET1を、珪素を材料として採用したMOSFETと置き換えて使用することが容易になるとともに、MOSFET1を安定してノーマリーオフ型とすることができる。また、不純物密度が高くなることによる大幅なチャネル移動度の低下を回避することができる。
 さらに、MOSFET1においては、ゲート酸化膜21の厚みは25nm以上70nm以下であってもよい。ゲート酸化膜21の厚みが25nm未満では、動作中に絶縁破壊が発生するおそれがある一方、70nmを超えるとゲート電圧を大きくする必要が生じる。そのため、ゲート酸化膜21の厚みは25nm以上70nm以下とすることが好ましい。
 また、MOSFET1においては、閾値電圧は、室温以上100℃以下の温度範囲において2V以上であってもよい。これにより、通常の動作温度においてより確実にノーマリーオフの状態を維持することができる。
 さらに、MOSFET1においては、閾値電圧が100℃において3V以上であってもよい。これにより、動作温度が高温である場合でも、より確実にノーマリーオフの状態を維持することができる。
 また、MOSFET1においては、閾値電圧が200℃において1V以上であってもよい。これにより、動作温度がより高温である場合でも、より確実にノーマリーオフの状態を維持することができる。
 さらに、MOSFET1においては、閾値電圧の温度依存性は-10mV/℃以上であってもよい。このようにすることにより、安定してノーマリーオフの状態を維持することができる。
 さらに、MOSFET1においては、室温における電子のチャネル移動度が30cm/Vs以上であることが好ましい。これにより、MOSFET1のオン抵抗を十分に抑制することが容易となる。
 また、MOSFET1においては、100℃における電子のチャネル移動度が50cm/Vs以上であってもよい。これにより、動作温度が高温である場合でも、MOSFET1のオン抵抗を十分に抑制することが可能となる。
 さらに、MOSFET1においては、150℃における電子のチャネル移動度が40cm/Vs以上であってもよい。これにより、動作温度がより高温である場合でも、MOSFET1のオン抵抗を十分に抑制することが可能となる。
 また、MOSFET1においては、電子のチャネル移動度の温度依存性が-0.3cm/Vs℃以上であってもよい。これにより、安定してMOSFET1のオン抵抗を抑制することが可能となる。
 さらに、MOSFET1においては、ドリフト層12とゲート酸化膜21との界面におけるバリアハイトは2.2eV以上2.6eV以下であってもよい。これにより、リーク電流を抑制しつつ、高いチャネル移動度を確保することができる。
 また、MOSFET1においては、オン状態において、p型ボディ領域14に形成されるチャンネル層における抵抗値であるチャネル抵抗は、p型ボディ領域14以外のドリフト層12における抵抗値であるドリフト抵抗よりも小さくなっていてもよい。これにより、MOSFET1のオン抵抗を低減することができる。
 次に、実施の形態1におけるMOSFET1の製造方法の一例について、図2~図11を参照して説明する。図2を参照して、本実施の形態におけるMOSFET1の製造方法では、まず工程(S10)として基板準備工程が実施される。この工程(S10)では、図3を参照して、{0001}面に対するオフ角が50°以上65°以下である主面11Aを有する炭化珪素基板11が準備される。
 次に、工程(S20)としてエピタキシャル成長工程が実施される。この工程(S20)では、図3を参照して、エピタキシャル成長により炭化珪素基板11の一方の主面11A上に炭化珪素からなるドリフト層12が形成される。
 次に、工程(S30)としてp型領域形成工程が実施される。この工程(S30)では、図3および図4を参照して、p型領域13を形成するためのイオン注入が実施される。具体的には、たとえばAl(アルミニウム)イオンがドリフト層12に注入されることにより、p型領域13が形成される。Alイオンは、たとえば1×1016cm-3程度の濃度(密度)となるように注入される。
 ここで、ドリフト層12の厚みは、必要な耐圧に応じて決定する必要がある。そのため、ドリフト層12の厚みを大きくする目的で、上記工程(S20)および(S30)を繰り返して実施してもよい。すなわち図5および図6を参照して、p型領域13が形成されたドリフト層12上に、さらにエピタキシャル成長によりドリフト層12を形成した後、イオン注入によりp型領域13を形成することにより、ドリフト層12およびp型領域13の厚みを大きくすることができる。
 次に、工程(S40)としてp型ボディ領域形成工程が実施される。この工程(S40)では、図7を参照して、たとえばAlイオンがドリフト層12に注入されることにより、p型ボディ領域14が形成される。次に、工程(S50)としてn領域形成工程が実施される。この工程(S50)では、図7を参照して、たとえばP(リン)イオンがp型ボディ領域14に注入されることにより、p型ボディ領域14内にn領域15が形成される。さらに、工程(S60)としてp領域形成工程が実施される。この工程(S60)では、図7を参照して、たとえばAlイオンがp型ボディ領域14に注入されることにより、p型ボディ領域14内にp領域16が形成される。上記p型領域13、p型ボディ領域14、n領域15およびp領域16を形成するためのイオン注入は、たとえばドリフト層12の主面上に二酸化珪素(SiO)からなり、イオン注入を実施すべき所望の領域に開口を有するマスク層を形成して実施することができる。
 次に、工程(S70)として活性化アニール工程が実施される。この工程(S70)では、たとえばアルゴンなどの不活性ガス雰囲気中において1700~1800℃程度に加熱し、5~30分間保持する熱処理が実施される。これにより、上記工程(S30)~(S60)において注入された不純物(イオン)が活性化する。
 次に、工程(S80)としてゲート酸化膜形成工程が実施される。この工程(S80)では、図7および図8を参照して、たとえば酸素雰囲気中において1100℃~1300℃に加熱して60分間程度保持する熱処理が実施されることにより、酸化膜(ゲート酸化膜)21が形成される。
 この工程(S80)の後に、NOアニール工程が実施されてもよい。この工程では、雰囲気ガスとして一酸化窒素(NO)ガスが採用され、当該雰囲気ガス中において加熱する熱処理が実施される。この熱処理の条件としては、たとえば1100℃以上1300℃以下の温度で60分間程度保持する条件を採用することができる。このような熱処理により、酸化膜21とドリフト層12との界面領域に窒素原子が導入される。これにより、酸化膜21とドリフト層12との界面領域における界面準位の形成が抑制され、最終的に得られるMOSFET1のチャネル移動度を向上させることができる。なお、ここでは雰囲気ガスとしてNOガスを使用するプロセスが採用される場合について説明したが、酸化膜21とドリフト層12との界面領域に窒素原子を導入することが可能な他のガスを使用するプロセスが採用されてもよい。
 次に、Arアニール工程が実施されてもよい。この工程では、雰囲気ガスとしてアルゴン(Ar)ガスが採用され、当該雰囲気ガス中において加熱する熱処理が実施される。この熱処理の条件としては、たとえば上記NOアニール工程における加熱温度以上で、酸化膜21の融点未満の温度(具体的には1100℃~1300℃程度の温度)で60分間程度保持する条件を採用することができる。このような熱処理により、酸化膜21とドリフト層12との界面領域における界面準位の形成がさらに抑制され、最終的に得られるMOSFET1のチャネル移動度を向上させることができる。なお、ここでは雰囲気ガスとしてArガスを使用するプロセスが採用される場合について説明したが、Arガスに代えて窒素ガスなどの他の不活性ガスを使用するプロセスが採用されてもよい。
 次に、工程(S90)としてゲート電極形成工程が実施される。図8および図9を参照して、この工程(S90)では、たとえばLPCVD(Low Pressure Chemical Vapor Deposition)法によりポリシリコン膜(導電体膜)が形成された後、フォトリソグラフィによりマスクが形成され、さらにRIE(Reactive Ion Etching)などのエッチングにより当該ポリシリコン膜が加工されることにより、高濃度に不純物が添加された導電体であるポリシリコンからなるゲート電極23が形成される。
 次に、工程(S100)として層間絶縁膜形成工程が実施される。この工程(S100)では、図9を参照して、たとえばP(Plasma)-CVD法により、絶縁体であるSiOからなる層間絶縁膜24が、主面12A上においてゲート電極23を取り囲むように形成される。層間絶縁膜24の厚みは、たとえば1μm程度とすることができる。次に、図10を参照して、フォトリソグラフィおよびエッチングにより、後述の工程(S110)においてソースコンタクト電極22が形成されるべき領域の層間絶縁膜24と酸化膜21が除去される。これにより、層間絶縁膜24が所望の形状に成形される。
 次に、工程(S110)としてオーミックコンタクト電極形成工程が実施される。この工程(S110)では、図10を参照して、たとえば蒸着法により形成されたニッケル(Ni)膜が加熱されてシリサイド化されることにより、ソースコンタクト電極22およびドレイン電極26が形成される。
 次に、工程(S120)としてソース配線形成工程が実施される。この工程(S120)では、図10および図11を参照して、たとえば蒸着法により導電体であるソース配線25が、主面12A上において、層間絶縁膜24を取り囲むとともに、n領域15およびソースコンタクト電極22の上部表面上にまで延在するように形成される。このソース配線25は、たとえば厚み50~200nmのTi(チタン)、厚み2~8μmのAl、AlSiを順次蒸着することにより形成することができる。
 次に、工程(S130)としてパッシベーション保護膜形成工程が実施される。この工程(S130)では、図11および図1を参照して、ソース配線25を覆うようにパッシベーション保護膜27が形成される。パッシベーション保護膜27の形成は、たとえば厚み0.5~3μm程度のSiO、SiN、ポリイミドなどの絶縁体からなる膜を形成することにより実施することができる。以上の手順により、本実施の形態におけるMOSFET1が完成する。
 (実施の形態2)
 次に、本発明の他の実施の形態である実施の形態2について説明する。実施の形態2における半導体装置であるMOSFET3は、絶縁膜(ゲート酸化膜)と接触する半導体層の表面の面方位、p型ボディ領域のp型不純物密度およびドリフト層に形成された超接合構造に関する点を含めて、基本的には上記実施の形態1におけるMOSFET1と同様の構造を有することにより、同様に動作し、同様の効果を奏する。
 すなわち、図12を参照して、実施の形態2におけるMOSFET3は半導体層に形成されたトレンチに沿ってチャネル層が形成されるトレンチMOSFETであって、導電型がn型である炭化珪素基板31と、炭化珪素からなり導電型がn型の半導体層であるドリフト層32と、導電型がp型のp型領域33と、導電型がp型のp型ボディ領域34と、導電型がn型のn領域35と、導電型がp型のp領域36とを備えている。
 ドリフト層32は、炭化珪素基板31の一方の主面31A上に形成され、n型不純物を含むことにより導電型がn型となっている。ドリフト層32に含まれるn型不純物は、たとえば窒素であり、炭化珪素基板31に含まれるn型不純物よりも低い濃度(密度)で含まれている。ドリフト層32は、炭化珪素基板31の一方の主面31A上に形成されたエピタキシャル成長層である。
 このドリフト層32には、炭化珪素基板31とは反対側の面から炭化珪素基板31側に向けて幅が徐々に狭くなるテーパ形状を有するトレンチ39が形成されている。
 p型ボディ領域34は、ドリフト層32において、炭化珪素基板31側の主面とは反対側の主面32Aを含むとともに、トレンチ39の表面において露出する表面34Aを含むように形成され、p型不純物を含むことにより、導電型がp型となっている。p型ボディ領域34に含まれるp型不純物は、たとえばアルミニウム、硼素などである。表面34Aの{0001}面に対するオフ角は50°以上65°以下となっている。p型ボディ領域34における不純物密度は5×1016cm-3以上となっている。
 n領域35は、上記主面32Aを含むようにp型ボディ領域34の内部に形成されている。n領域35は、n型不純物、たとえばPなどをドリフト層32に含まれるn型不純物よりも高い濃度(密度)で含んでいる。p領域36は、上記主面32Aを含み、かつn領域35に隣接するようにp型ボディ領域34の内部に形成されている。p領域36は、p型不純物、たとえばAlなどをp型ボディ領域34に含まれるp型不純物よりも高い濃度(密度)で含んでいる。上記トレンチ39は、n領域35およびp型ボディ領域34を貫通し、ドリフト層32に至るように形成されている。
 p型領域33は、p型ボディ領域34と炭化珪素基板31とに挟まれたドリフト層32の領域に、ドリフト層32の厚み方向に垂直な方向(炭化珪素基板31の主面31Aに沿った方向)において互いに分離するように並べて配置されている。
 より具体的には、本実施の形態におけるMOSFET3のp型領域33は以下のような特徴を有している。なお、本発明の半導体装置の構造は以下の態様に限定されるものではない。p型領域33は、トレンチ39が延在する方向に沿って互いに分離するように複数並べて配置されている。また、p型領域33は、p型ボディ領域34に接触するように形成されている。一方、p型領域33と炭化珪素基板31との間には間隔が形成されている。
 さらに、図12を参照して、MOSFET3は、ゲート絶縁膜としてのゲート酸化膜41と、ゲート電極43と、ソースコンタクト電極42と、層間絶縁膜44と、ソース配線45と、ドレイン電極46と、パッシベーション保護膜(図示しない)とを備えている。
 ゲート酸化膜41は、トレンチ39の表面を覆うとともに、主面32A上にまで延在するように形成され、たとえば二酸化珪素(SiO)からなっている。
 ゲート電極43は、トレンチ39を充填するとともに主面32A上にまで延在するように、ゲート酸化膜41に接触して配置されている。ゲート電極43は、不純物が添加されたポリシリコン、またはAlなどの導電体からなっている。
 ソースコンタクト電極42は、n領域35上からp領域36上にまで延在することによりn領域35およびp領域36に接触して配置されている。また、ソースコンタクト電極42は、たとえばNiSi(ニッケルシリサイド)、TiSi(チタンシリサイド)、AlSi(アルミシリサイド)や、TiAlSi(チタンアルミシリサイド)など、n領域35およびp領域36とオーミックコンタクト可能な材料からなっている。
 層間絶縁膜44は、ドリフト層32の主面32A上においてゲート電極43を取り囲み、ゲート電極43とソースコンタクト電極42とを分離するように形成され、たとえば絶縁体である二酸化珪素(SiO)からなっている。
 ソース配線45は、ドリフト層32の主面32A上において、層間絶縁膜44を取り囲み、かつソースコンタクト電極42の上部表面上にまで延在している。また、ソース配線45は、Alなどの導電体からなり、ソースコンタクト電極42を介してn領域35と電気的に接続されている。
 ドレイン電極46は、炭化珪素基板31においてドリフト層32が形成される側とは反対側の主面31Bに接触して形成されている。このドレイン電極46は、たとえばNiSiなど、炭化珪素基板31とオーミックコンタクト可能な材料からなっており、炭化珪素基板31と電気的に接続されている。
 パッシベーション保護膜(図示しない)は、ソース配線45上にソース配線45を覆うように形成されている。パッシベーション保護膜は、たとえば二酸化珪素などの絶縁体からなっている。
 すなわち、本実施の形態におけるトレンチMOSFETであるMOSFET3は、炭化珪素基板31と、炭化珪素基板31上に形成され、{0001}面に対するオフ角が50°以上65°以下である表面(表面34A)を有し、導電型が第1導電型(n型)である炭化珪素からなる半導体層としてのドリフト層32と、ドリフト層32の表面34A上に接触して形成された絶縁膜としてのゲート酸化膜41とを備えている。ドリフト層32は、ゲート酸化膜41と接触する表面34Aを含むように形成され、導電型が第2導電型(p型)であるp型ボディ領域34を含んでいる。p型ボディ領域34における不純物密度は5×1016cm-3以上となっている。そして、p型ボディ領域34と炭化珪素基板31とに挟まれたドリフト層32の領域には、ドリフト層32の厚み方向に垂直な方向において互いに分離して配置された導電型が第2導電型(p型)であるp型領域33が複数並ぶように形成されている。
 ここで、MOSFET3においては、p型ボディ領域34においてゲート酸化膜41と接触する表面34Aの{0001}面に対するオフ角は50°以上65°以下となっており、この表面34Aの近傍にチャネル層が形成される。そのため、p型不純物密度が5×1016cm-3以上という高いドーピング密度のp型ボディ領域34を形成し、閾値電圧をプラス側にシフトさせた場合でも、上記チャンネル層におけるキャリア(電子)の移動度(チャネル移動度)の低下が抑制される。その結果、MOSFET3は、チャネル移動度の低下を抑制しつつ閾値電圧をプラス側にシフトさせ、ノーマルオフ型に近づける、あるいはノーマリーオフ型とすることが可能なMOSFETとなっている。
 さらに、MOSFET3においては、p型領域33が、p型ボディ領域34と炭化珪素基板31とに挟まれたドリフト層32の領域に、ドリフト層32の厚み方向に垂直な方向において互いに分離するように並べて配置されている。すなわち、MOSFET3のドリフト層32には、トレンチ39が延在する方向に沿った方向においてpn接合が繰り返して配置される超接合構造が形成されている。このpn接合により形成される空乏層のはたらきによって、MOSFET3は高い耐圧を有している。一方、ドリフト層32においてp型領域33が形成されていない領域が電流の流路となるため、オン抵抗が低減されている。その結果、MOSFET3は、高い耐圧を確保しながら低損失化を図ることが可能な半導体装置となっている。
 次に、実施の形態2におけるMOSFET3の製造方法の一例について、図13~図22を参照して説明する。図13を参照して、本実施の形態におけるMOSFET3の製造方法では、まず工程(S210)として基板準備工程が実施される。この工程(S210)では、図14を参照して、{0001}面に対するオフ角が2°以上10°以下である主面31Aを有する炭化珪素基板31が準備される。
 次に、工程(S220)としてエピタキシャル成長工程が実施される。この工程(S220)では、図14を参照して、エピタキシャル成長により炭化珪素基板31の一方の主面31A上に炭化珪素からなるドリフト層32が形成される。
 次に、工程(S230)としてp型領域形成工程が実施される。この工程(S230)では、図14および図15を参照して、p型領域33を形成するためのイオン注入が実施される。具体的には、たとえばAl(アルミニウム)イオンがドリフト層32に注入されることにより、p型領域33が形成される。Alイオンは、たとえば1×1016cm-3程度の濃度(密度)となるように注入される。
 ここで、ドリフト層32の厚みを大きくする目的で、上記工程(S220)および(S230)を繰り返して実施してもよい。すなわち図16および図17を参照して、p型領域33が形成されたドリフト層32上に、さらにエピタキシャル成長によりドリフト層32を形成した後、イオン注入によりp型領域33を形成することにより、ドリフト層32およびp型領域33の厚みを大きくすることができる。
 次に、工程(S240)としてp型ボディ領域形成工程が実施される。以下の工程については、上記図14~図17に対して炭化珪素基板31の主面31Aに垂直な軸周りに90°回転した状態の断面を示す図18~図22に基づいて説明する。工程(S240)では、図18を参照して、たとえばAlイオンがドリフト層32に注入されることにより、p型ボディ領域34が形成される。次に、工程(S250)としてn領域形成工程が実施される。この工程(S250)では、図18を参照して、たとえばP(リン)イオンがp型ボディ領域34に注入されることにより、p型ボディ領域34内にn領域35が形成される。さらに、工程(S260)としてp領域形成工程が実施される。この工程(S260)では、図18を参照して、たとえばAlイオンがp型ボディ領域34に注入されることにより、p型ボディ領域34内にp領域36が形成される。上記p型領域33、p型ボディ領域34、n領域35およびp領域36を形成するためのイオン注入は、たとえばドリフト層32の主面上に二酸化珪素(SiO)からなり、イオン注入を実施すべき所望の領域に開口を有するマスク層を形成して実施することができる。
 次に、工程(S270)として活性化アニール工程が実施される。この工程(S270)では、たとえばアルゴンなどの不活性ガス雰囲気中において1700~1800℃程度に加熱し、5~30分間保持する熱処理が実施される。これにより、上記工程(S230)~(S260)において注入された不純物(イオン)が活性化する。
 次に、工程(S275)としてトレンチ形成工程が実施される。この工程(S275)では、たとえば所望の領域に開口を有する二酸化珪素からなるマスクが用いられて、RIEなどのドライエッチング、または塩素や臭素等のハロゲン系ガスを用いた熱エッチング、あるいはそれらの組み合わせなどの方法によりトレンチ39が形成される。具体的には、図18および図19を参照して、n領域35上に開口を有するマスクが形成された後、n領域35およびp型ボディ領域34を貫通するとともに、炭化珪素基板31の主面31Aに沿った方向(図19では紙面奥行き方向)に延在するトレンチ39が形成される。このとき、トレンチの表面(斜面)から露出するp型ボディ領域34の表面34Aの{0001}面に対するオフ角が50°以上65°以下となるように、トレンチ39は形成される。
 次に、工程(S280)としてゲート酸化膜形成工程が実施される。この工程(S280)では、図19および図20を参照して、たとえば酸素雰囲気中において1100℃~1300℃に加熱して60分間程度保持する熱処理が実施されることにより、酸化膜(ゲート酸化膜)41が形成される。この酸化膜41は、ドリフト層32の主面32Aを覆うとともに、トレンチ39の表面をも覆うように形成される。この工程(S280)の後に、実施の形態1の場合と同様に、NOアニール工程およびArアニール工程が実施されてもよい。
 次に、工程(S290)としてゲート電極形成工程が実施される。図20を参照して、この工程(S290)では、まず、たとえばLPCVD法によりポリシリコン膜(導電体膜)がトレンチ39を充填するように形成される。その後、フォトリソグラフィによりマスクが形成され、RIEなどのエッチングにより当該ポリシリコン膜が加工されて、高濃度に不純物が添加された導電体であるポリシリコンからなるゲート電極43が形成される。
 次に、工程(S300)として層間絶縁膜形成工程が実施される。この工程(S300)では、図20を参照して、たとえばP-CVD法により、絶縁体であるSiOからなる層間絶縁膜44が、主面32A上においてゲート電極43を取り囲むように形成される。層間絶縁膜24の厚みは、たとえば1μm程度とすることができる。次に、図21を参照して、フォトリソグラフィおよびエッチングにより層間絶縁膜24が所望の形状に成形される。
 次に、工程(S310)としてオーミックコンタクト電極形成工程が実施される。この工程(S310)では、図21を参照して、たとえば蒸着法により形成されたニッケル(Ni)膜が加熱されてシリサイド化されることにより、ソースコンタクト電極22およびドレイン電極26が形成される。
 次に、工程(S320)としてソース配線形成工程が実施される。この工程(S320)では、図21および図22を参照して、たとえば蒸着法により導電体であるソース配線45が、主面32A上において、層間絶縁膜44を取り囲むとともに、ソースコンタクト電極42の上部表面上にまで延在するように形成される。このソース配線45は、たとえば厚み50~200nmのTi(チタン)、厚み2~8μmのAl、AlSiを順次蒸着することにより形成することができる。
 次に、工程(S330)としてパッシベーション保護膜形成工程が実施される。この工程(S330)では、ソース配線45を覆うようにパッシベーション保護膜が形成される。パッシベーション保護膜の形成は、たとえば厚み0.5~3μm程度のSiO、SiN、ポリイミドなどの絶縁体からなる膜を形成することにより実施することができる。以上の手順により、図12に示す本実施の形態におけるMOSFET3が完成する。
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 本発明の半導体装置は、閾値電圧の設定の自由度を高めることが求められる半導体装置に、特に有利に適用され得る。
 1,3 MOSFET、11,31 炭化珪素基板、11A,11B,31A,31B 主面、12,32 ドリフト層、12A,32A 主面、13,33 p型領域、14,34 p型ボディ領域、14A 領域、15,35 n領域、16,36 p領域、21,41 ゲート酸化膜(酸化膜)、22,42 ソースコンタクト電極、23,43 ゲート電極、24,44 層間絶縁膜、25,45 ソース配線、26,46 ドレイン電極、27 パッシベーション保護膜、34A 表面、39 トレンチ。

Claims (10)

  1.  炭化珪素からなる基板(11,31)と、
     前記基板(11,31)上に形成され、{0001}面に対するオフ角が50°以上65°以下である表面(14A,34A)を有し、導電型が第1導電型である炭化珪素からなる半導体層(12,32)と、
     前記半導体層(12,32)の前記表面(14A,34A)上に接触して形成された絶縁膜(21,41)とを備え、
     前記半導体層(12,32)は、前記絶縁膜(21,41)と接触する領域を含むように形成され、導電型が前記第1導電型とは異なる第2導電型であるボディ領域(14,34)を含み、
     前記ボディ領域(14,34)における不純物密度は5×1016cm-3以上であり、
     前記ボディ領域(14,34)と前記基板(11,31)とに挟まれた前記半導体層(12,32)の領域には、前記半導体層(12,32)の厚み方向に垂直な方向において互いに分離して配置された導電型が前記第2導電型である領域(13,33)が複数並ぶように形成されている、半導体装置(1,3)。
  2.  前記表面(14A,34A)のオフ方位と<01-10>方向とのなす角は5°以下となっている、請求項1に記載の半導体装置(1,3)。
  3.  前記表面(14A,34A)の、<01-10>方向における{03-38}面に対するオフ角は-3°以上5°以下である、請求項2に記載の半導体装置(1,3)。
  4.  前記表面(14A,34A)のオフ方位と<-2110>方向とのなす角は5°以下となっている、請求項1に記載の半導体装置(1,3)。
  5.  前記表面(14A,34A)は、炭化珪素のカーボン面側の面である、請求項1に記載の半導体装置(1,3)。
  6.  前記ボディ領域(14,34)における不純物密度は1×1020cm-3以下である、請求項1に記載の半導体装置(1,3)。
  7.  ノーマリーオフ型となっている、請求項1に記載の半導体装置(1,3)。
  8.  前記絶縁膜(21,41)の厚みは25nm以上70nm以下である、請求項1に記載の半導体装置(1,3)。
  9.  前記第1導電型はn型であり、前記第2導電型はp型である、請求項1に記載の半導体装置(1,3)。
  10.  前記ボディ領域(14,34)における不純物密度は8×1016cm-3以上3×1018cm-3以下である、請求項9に記載の半導体装置(1,3)。
PCT/JP2012/052709 2011-06-07 2012-02-07 半導体装置 WO2012169224A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280021088.4A CN103503146A (zh) 2011-06-07 2012-02-07 半导体器件
EP12796108.4A EP2720269A1 (en) 2011-06-07 2012-02-07 Semiconductor device
KR1020137027182A KR20140012139A (ko) 2011-06-07 2012-02-07 반도체 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-126917 2011-06-07
JP2011126917A JP2012253293A (ja) 2011-06-07 2011-06-07 半導体装置

Publications (1)

Publication Number Publication Date
WO2012169224A1 true WO2012169224A1 (ja) 2012-12-13

Family

ID=47292396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052709 WO2012169224A1 (ja) 2011-06-07 2012-02-07 半導体装置

Country Status (7)

Country Link
US (1) US20120313112A1 (ja)
EP (1) EP2720269A1 (ja)
JP (1) JP2012253293A (ja)
KR (1) KR20140012139A (ja)
CN (1) CN103503146A (ja)
TW (1) TW201251023A (ja)
WO (1) WO2012169224A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5751146B2 (ja) * 2011-11-24 2015-07-22 住友電気工業株式会社 半導体装置およびその製造方法
JP5818099B2 (ja) * 2012-04-27 2015-11-18 国立研究開発法人産業技術総合研究所 半導体装置
JP2014003253A (ja) * 2012-06-21 2014-01-09 Sumitomo Electric Ind Ltd 炭化珪素半導体装置
JP5772842B2 (ja) 2013-01-31 2015-09-02 株式会社デンソー 炭化珪素半導体装置
US9515145B2 (en) * 2013-02-28 2016-12-06 Mitsubishi Electric Corporation Vertical MOSFET device with steady on-resistance
US9240476B2 (en) 2013-03-13 2016-01-19 Cree, Inc. Field effect transistor devices with buried well regions and epitaxial layers
US9142668B2 (en) 2013-03-13 2015-09-22 Cree, Inc. Field effect transistor devices with buried well protection regions
US9012984B2 (en) 2013-03-13 2015-04-21 Cree, Inc. Field effect transistor devices with regrown p-layers
US9306061B2 (en) 2013-03-13 2016-04-05 Cree, Inc. Field effect transistor devices with protective regions
US11721547B2 (en) * 2013-03-14 2023-08-08 Infineon Technologies Ag Method for manufacturing a silicon carbide substrate for an electrical silicon carbide device, a silicon carbide substrate and an electrical silicon carbide device
JP6284140B2 (ja) * 2013-06-17 2018-02-28 株式会社タムラ製作所 Ga2O3系半導体素子
US9748341B2 (en) 2013-07-02 2017-08-29 General Electric Company Metal-oxide-semiconductor (MOS) devices with increased channel periphery
US9024328B2 (en) 2013-07-02 2015-05-05 General Electric Company Metal-oxide-semiconductor (MOS) devices with increased channel periphery and methods of manufacture
JP5928429B2 (ja) 2013-09-30 2016-06-01 サンケン電気株式会社 半導体装置及びその製造方法
JP2015070192A (ja) * 2013-09-30 2015-04-13 サンケン電気株式会社 半導体装置の製造方法、半導体装置
JP6098474B2 (ja) * 2013-10-24 2017-03-22 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
JP6256148B2 (ja) * 2014-03-27 2018-01-10 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
CN106298926A (zh) * 2015-06-05 2017-01-04 北大方正集团有限公司 一种垂直双扩散金属氧化物半导体晶体管及其制作方法
JP2017059600A (ja) * 2015-09-14 2017-03-23 株式会社東芝 半導体装置及びその製造方法
CN107994074B (zh) * 2016-10-26 2021-06-08 深圳尚阳通科技有限公司 沟槽栅超结器件及其制造方法
CN113097305B (zh) * 2021-03-26 2022-11-08 深圳市金誉半导体股份有限公司 一种场效应管及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261275A (ja) * 2001-03-05 2002-09-13 Shikusuon:Kk Mosデバイス
JP2010041021A (ja) * 2008-07-07 2010-02-18 Sumitomo Electric Ind Ltd 炭化ケイ素半導体装置およびその製造方法
JP2010040564A (ja) * 2008-07-31 2010-02-18 Sumitomo Electric Ind Ltd 炭化ケイ素半導体装置およびその製造方法
WO2010110252A1 (ja) * 2009-03-27 2010-09-30 住友電気工業株式会社 Mosfetおよびmosfetの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7394158B2 (en) * 2004-10-21 2008-07-01 Siliconix Technology C.V. Solderable top metal for SiC device
JP4604241B2 (ja) * 2004-11-18 2011-01-05 独立行政法人産業技術総合研究所 炭化ケイ素mos電界効果トランジスタおよびその製造方法
JP2006351744A (ja) * 2005-06-15 2006-12-28 Fuji Electric Holdings Co Ltd 炭化珪素半導体装置の製造方法
JP4564509B2 (ja) * 2007-04-05 2010-10-20 株式会社東芝 電力用半導体素子
JP2009033036A (ja) * 2007-07-30 2009-02-12 Hitachi Ltd 半導体装置及びこれを用いた電気回路装置
US7989882B2 (en) * 2007-12-07 2011-08-02 Cree, Inc. Transistor with A-face conductive channel and trench protecting well region
CA2739576A1 (en) * 2009-04-10 2010-10-14 Sumitomo Electric Industries, Ltd. Insulated gate field effect transistor
JP5531787B2 (ja) * 2010-05-31 2014-06-25 株式会社デンソー 炭化珪素半導体装置およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261275A (ja) * 2001-03-05 2002-09-13 Shikusuon:Kk Mosデバイス
JP2010041021A (ja) * 2008-07-07 2010-02-18 Sumitomo Electric Ind Ltd 炭化ケイ素半導体装置およびその製造方法
JP2010040564A (ja) * 2008-07-31 2010-02-18 Sumitomo Electric Ind Ltd 炭化ケイ素半導体装置およびその製造方法
WO2010110252A1 (ja) * 2009-03-27 2010-09-30 住友電気工業株式会社 Mosfetおよびmosfetの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEI-HYUNG RYU ET AL.: "Critical Issues for MOS Based Power Devices in 4H-SiC", MATERIALS SCIENCE FORUM, vol. 615-617, 2009, pages 743 - 748

Also Published As

Publication number Publication date
JP2012253293A (ja) 2012-12-20
KR20140012139A (ko) 2014-01-29
CN103503146A (zh) 2014-01-08
US20120313112A1 (en) 2012-12-13
TW201251023A (en) 2012-12-16
EP2720269A1 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
WO2012169224A1 (ja) 半導体装置
JP5668576B2 (ja) 炭化珪素半導体装置
JP5699628B2 (ja) 半導体装置
JP5994604B2 (ja) 炭化珪素半導体装置およびその製造方法
WO2013001677A1 (ja) 半導体装置とその製造方法
JP6587265B2 (ja) 炭化珪素半導体装置およびその製造方法
WO2014083943A1 (ja) 炭化珪素半導体装置およびその製造方法
JP2012209422A (ja) Igbt
WO2012165008A1 (ja) 炭化珪素半導体装置およびその製造方法
JP2018060923A (ja) 半導体装置および半導体装置の製造方法
JP6075120B2 (ja) 炭化珪素半導体装置
WO2015015926A1 (ja) 炭化珪素半導体装置およびその製造方法
JP2017092355A (ja) 半導体装置および半導体装置の製造方法
EP2947694B1 (en) Silicon carbide semiconductor device
WO2013077078A1 (ja) 半導体装置およびその製造方法
JP5870672B2 (ja) 半導体装置
WO2015015938A1 (ja) 炭化珪素半導体装置の製造方法
JP5059989B1 (ja) 半導体装置とその製造方法
JP5673113B2 (ja) 半導体装置
JP2017092364A (ja) 半導体装置および半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796108

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137027182

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012796108

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE