WO2015015926A1 - 炭化珪素半導体装置およびその製造方法 - Google Patents

炭化珪素半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2015015926A1
WO2015015926A1 PCT/JP2014/065775 JP2014065775W WO2015015926A1 WO 2015015926 A1 WO2015015926 A1 WO 2015015926A1 JP 2014065775 W JP2014065775 W JP 2014065775W WO 2015015926 A1 WO2015015926 A1 WO 2015015926A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
silicon carbide
semiconductor device
main surface
protruding
Prior art date
Application number
PCT/JP2014/065775
Other languages
English (en)
French (fr)
Inventor
増田 健良
拓 堀井
良輔 久保田
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US14/908,846 priority Critical patent/US9786741B2/en
Publication of WO2015015926A1 publication Critical patent/WO2015015926A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • H01L21/0465Making n or p doped regions or layers, e.g. using diffusion using ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/086Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/0865Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/0869Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0886Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors

Definitions

  • the present invention relates to a silicon carbide semiconductor device and a method for manufacturing the same, and more particularly to a silicon carbide semiconductor device capable of improving a threshold voltage while suppressing an increase in characteristic on-resistance and a method for manufacturing the same.
  • silicon carbide has been increasingly adopted as a material for semiconductor devices in order to enable the use of high-voltage, low-loss and high-temperature environments in semiconductor devices such as MOSFETs (Metal Oxide Semiconductor Field Effect Transistors). It is being Silicon carbide is a wide band gap semiconductor having a larger band gap than silicon that has been widely used as a material for forming semiconductor devices. Therefore, by adopting silicon carbide as a material constituting the semiconductor device, it is possible to achieve a high breakdown voltage and a low on-resistance of the semiconductor device. In addition, a semiconductor device that employs silicon carbide as a material has an advantage that a decrease in characteristics when used in a high temperature environment is small as compared with a semiconductor device that employs silicon as a material.
  • Patent Document 1 Japanese Patent Laid-Open No. 2012-146838
  • Patent Document 1 describes a MOSFET having an n-type source region, a p-type body region, and an n-type SiC region.
  • MOSFET when a voltage is applied to the gate voltage, an inversion layer is formed in the channel region of the p-type body region immediately below the gate insulating film, and the source electrode and the drain electrode Current is supposed to flow between
  • the channel length is preferably shorter from the viewpoint of the characteristic on-resistance.
  • the threshold voltage is lowered, so that the channel length is preferably long from the viewpoint of the threshold voltage.
  • the threshold voltage and the characteristic on-resistance are in a trade-off relationship.
  • the channel length is designed so as to increase the threshold voltage, it is difficult to sufficiently reduce the characteristic on-resistance.
  • the present invention has been made to solve such problems, and an object thereof is to provide a silicon carbide semiconductor device capable of improving the threshold voltage while suppressing an increase in characteristic on-resistance, and a method for manufacturing the same. It is.
  • a silicon carbide semiconductor device includes a silicon carbide layer and a gate insulating layer.
  • the silicon carbide layer has a main surface.
  • the gate insulating layer is disposed in contact with the main surface of the silicon carbide layer.
  • the silicon carbide layer has a drift region having a first conductivity type, a body region having a second conductivity type different from the first conductivity type and in contact with the drift region, a first conductivity type, and drifting by the body region
  • the method for manufacturing a silicon carbide semiconductor device includes the following steps.
  • a silicon carbide layer having a main surface is formed.
  • a gate insulating layer in contact with the main surface of the silicon carbide layer is formed.
  • the silicon carbide layer includes a drift region having a first conductivity type, a body region having a second conductivity type different from the first conductivity type and in contact with the drift region, and having a first conductivity type and drifting by the body region.
  • a source region disposed apart from the region, and a projecting region disposed so as to project from at least one side of the source region and the drift region into the body region, in contact with the main surface, and having the first conductivity type.
  • the present invention it is possible to provide a silicon carbide semiconductor device capable of improving the threshold voltage while suppressing an increase in characteristic on-resistance, and a method for manufacturing the same.
  • 1 is a schematic cross-sectional view schematically showing a structure of a silicon carbide semiconductor device according to an embodiment of the present invention. It is a cross-sectional schematic diagram which shows schematically the structure of the 1st modification of the silicon carbide semiconductor device which concerns on one embodiment of this invention. It is a cross-sectional schematic diagram which shows schematically the structure of the 2nd modification of the silicon carbide semiconductor device which concerns on one embodiment of this invention. It is a cross-sectional schematic diagram which shows schematically the structure of the 3rd modification of the silicon carbide semiconductor device which concerns on one embodiment of this invention. It is a figure which shows the relationship between the characteristic on-resistance and weak inversion threshold voltage of the silicon carbide semiconductor device which concerns on a comparative example and one embodiment of this invention.
  • the inventor is arranged to project from at least one of the source region and the drift region to the body region, and is in contact with the gate insulating layer and has a projecting region having a conductivity type different from that of the body region. It has been found that shortening the channel length can effectively shorten the channel length while maintaining a high barrier. As a result, a silicon carbide semiconductor device having a high threshold voltage can be obtained while suppressing an increase in characteristic on-resistance.
  • the relationship between the characteristic on-resistance and the weak inversion threshold voltage in the conventional MOSFET is indicated by a broken line 6, and the relationship between the characteristic on-resistance and the weak inversion threshold voltage in the MOSFET according to the present embodiment is shown.
  • the relationship is shown by the solid line 5.
  • the weak inversion threshold voltage is large and the characteristic on-resistance is small.
  • the threshold voltage of the conventional MOSFET is Vth1
  • the threshold voltage of the MOSFET according to the present embodiment is Vth2, which is larger than Vth1. That is, according to the MOSFET according to the present embodiment, the threshold voltage can be improved while suppressing an increase in characteristic on-resistance.
  • the silicon carbide semiconductor device includes a silicon carbide layer 10 and a gate insulating layer 15.
  • Silicon carbide layer 10 has a main surface 10a.
  • Gate insulating layer 15 is arranged in contact with main surface 10 a of silicon carbide layer 10.
  • Silicon carbide layer 10 has a drift region 17 having a first conductivity type, a body region 13 having a second conductivity type different from the first conductivity type and in contact with drift region 17, and a first conductivity type, A source region 14 disposed separated from the drift region 17 by the body region 13; a source region 14 projecting from at least one side of the source region 14 and the drift region 17 to the body region 13, contacting the gate insulating layer 15; And a protruding region 2 having the first conductivity type.
  • silicon carbide layer 10 is arranged so as to protrude from at least one side of source region 14 and drift region 17 to body region 13, is in contact with gate insulating layer 15, and A protruding region 2 having the first conductivity type is included.
  • the threshold voltage can be improved while suppressing an increase in the characteristic on-resistance of the silicon carbide semiconductor device.
  • projecting region 2 includes first projecting region 2a arranged to project from drift region 17 to body region 13, and source region 14 side. And a second protruding region 2b arranged to protrude from the body region 13 to the body region 13.
  • the threshold voltage can be effectively improved while suppressing an increase in the characteristic on-resistance of the silicon carbide semiconductor device.
  • dimension La of first projecting region 2a along the direction parallel to main surface 10a is the first dimension along the direction perpendicular to the main surface.
  • the dimension Lb of the second projecting region 2b along the direction parallel to the main surface is larger than the dimension Tch of the second projecting region along the direction perpendicular to the main surface.
  • each dimension Tch of first projecting region 2a and second projecting region 2b along the direction perpendicular to main surface 10a is main surface 10a. Less than half of the dimension Ts of the source region 14 along the direction perpendicular to. Thereby, the threshold voltage can be improved while suppressing an increase in the characteristic on-resistance of the silicon carbide semiconductor device.
  • each dimension Tch of first projecting region 2a and second projecting region 2b along the direction perpendicular to main surface 10a is greater than 100 nm. small.
  • channel region CH in body region 13 is in contact with main surface 10a and is sandwiched between first protruding region 2a and second protruding region 2b. Is less than 0.5 ⁇ m. Thereby, the characteristic on-resistance can be effectively reduced.
  • channel region CH is in contact with main surface 10 a and is sandwiched between first protruding region 2 a and second protruding region 2 b. Is smaller than the length Lch1 of the channel region corresponding to the threshold voltage Vth3 which is 90% of the ideal threshold voltage Vth4. Thereby, the resistance of the channel region can be reduced.
  • protruding region 2 is arranged to protrude from one side of source region 14 and drift region 17 to body region 13.
  • the threshold voltage can be improved while suppressing an increase in the characteristic on-resistance of the silicon carbide semiconductor device.
  • protruding region 2 is arranged to protrude from drift region 17 side to body region 13, and silicon carbide layer 10 extends from protruding region 2.
  • the semiconductor device further includes a first conductivity type region 3 a protruding into the drift region 17, in contact with the gate insulating layer 15, and having an impurity concentration higher than that of the drift region 17. Thereby, the characteristic on-resistance can be effectively reduced.
  • dimension La of projecting region 2 along the direction parallel to main surface 10a is the dimension of projecting region 2 along the direction perpendicular to main surface 10a. Greater than Tch.
  • the electron or hole extraction effect at the portion of the protruding region 2 opposite to the side in contact with the main surface 10a is higher than the electron or hole extraction effect at the portion of the protruding region 2 on the channel region side. Therefore, the spread of the depletion layer extending from the protruding region 2 to the channel region side can be reduced.
  • dimension Tch of protruding region 2 along the direction perpendicular to main surface 10a is the dimension of source region 14 along the direction perpendicular to main surface 10a. Less than half of Ts. Thereby, the threshold voltage can be improved while suppressing an increase in the characteristic on-resistance of the silicon carbide semiconductor device.
  • dimension Tch of protruding region 2 along the direction perpendicular to main surface 10a is smaller than 100 nm.
  • body region 13 Preferably in silicon carbide semiconductor device according to the above-described embodiment, in body region 13, it is in contact with main surface 10 a and at projecting region 2 and end portions 13 c and 13 d of body region 13 facing projecting region 2.
  • the length of the sandwiched channel region CH is less than 0.5 ⁇ m. Thereby, the characteristic on-resistance can be effectively reduced.
  • the impurity concentration of protruding region 2 is higher than the impurity concentration of body region 13.
  • the impurity concentration is the acceptor concentration when the region has p-type conductivity, and the impurity concentration is the donor concentration when the region has n-type conductivity. .
  • the protruding region can be formed after the body region is formed.
  • the first conductivity type is n-type and the second conductivity type is p-type.
  • a method for manufacturing a silicon carbide semiconductor device includes the following steps. Silicon carbide layer 10 having main surface 10a is formed. Gate insulating layer 15 in contact with main surface 10a of silicon carbide layer 10 is formed. Silicon carbide layer 10 has a drift region 17 having a first conductivity type, a body region 13 having a second conductivity type different from the first conductivity type and in contact with drift region 17, a first conductivity type, and A source region 14 disposed apart from drift region 17 by body region 13, a region projecting from at least one side of source region 14 and drift region 17 to body region 13, is in contact with main surface 10 a, and And a protruding region 2 having one conductivity type.
  • the silicon carbide semiconductor device is disposed so as to protrude from at least one side of source region 14 and drift region 17 to body region 13, is in contact with main surface 10 a, and has the first conductivity type. And a protruding region 2 having Thereby, the threshold voltage can be improved while suppressing an increase in the characteristic on-resistance of the silicon carbide semiconductor device.
  • the step of forming silicon carbide layer 10 includes the step of forming mask layer 4 in contact with body region 13 on main surface 10a, and the mask layer. 4 and forming the projecting region 2 in contact with at least the body region 13.
  • the channel length is determined by the position of the boundary between the source region and the body region and the position of the boundary between the body region and the drift region. That is, since the channel length is affected by the misalignment of both the source region and the body region, the channel length varies greatly.
  • the protruding region 2 is formed using the mask layer 4, the channel length is controlled by the width of the mask layer 4. Therefore, variation in channel length can be reduced.
  • the step of forming protruding region 2 includes a first protruding region arranged to protrude from drift region 17 side to body region 13. And a step of forming a first conductivity type region 3a protruding from the first protruding region 2a to the drift region 17, in contact with the main surface 10a, and having an impurity concentration higher than that of the drift region 17.
  • the step of forming the first projecting region 2a and the step of forming the first conductivity type region 3a are performed simultaneously. Thereby, the silicon carbide semiconductor device which can reduce characteristic on-resistance effectively can be manufactured efficiently.
  • the step of forming protruding region 2 is performed by ion implantation. Thereby, the protrusion area
  • region 2 can be formed efficiently.
  • MOSFET 1 as an example of the silicon carbide semiconductor device in the present embodiment includes silicon carbide layer 10, gate insulating layer 15, gate electrode 27, source contact electrode 16, and drain electrode 20.
  • the interlayer insulating film 21, the source wiring 19, and the pad electrode 23 are mainly included.
  • Silicon carbide layer 10 is made of, for example, polytype 4H hexagonal silicon carbide.
  • Main surface 10a of silicon carbide layer 10 may be a surface off, for example, about 8 ° or less from the ⁇ 0001 ⁇ plane, or may be a ⁇ 0-33-8 ⁇ plane.
  • Silicon carbide layer 10 includes base substrate 11, drift region 17, body region 13, source region 14, p + region 18, protruding region 2, first n + region 3 a, and second n + Region 3b is mainly included.
  • Base substrate 11 is a silicon carbide single crystal substrate made of silicon carbide and having n-type conductivity (first conductivity type).
  • Drift region 17 is a silicon carbide epitaxial layer arranged on base substrate 11, and conductivity type of drift region 17 is n-type.
  • the impurity contained in drift region 17 is, for example, nitrogen (N).
  • the concentration of nitrogen contained in the drift region 17 is, for example, about 5 ⁇ 10 15 cm ⁇ 3 .
  • the drift region 17 includes a JFET region sandwiched between a pair of body regions 13 described later.
  • Body region 13 is in contact with drift region 17 and first main surface 10a.
  • Body region 13 has p-type (second conductivity type).
  • the body region 13 contains an impurity (acceptor) such as aluminum or boron.
  • the concentration of the acceptor included in the body region 13 is, for example, about 4 ⁇ 10 16 cm ⁇ 3 to 4 ⁇ 10 18 cm ⁇ 3 .
  • the concentration of the impurity (acceptor) included in the body region 13 is higher than the concentration of the impurity (donor) included in the drift region 17.
  • Source region 14 is in contact with body region 13 and first main surface 10 a, and is separated from drift region 17 by body region 13.
  • the source region 14 is formed so as to be surrounded by the body region 13.
  • Source region 14 has n-type.
  • the source region 14 contains an impurity (donor) such as phosphorus (P).
  • the concentration of the impurity (donor) contained in the source region 14 is, for example, about 1 ⁇ 10 18 cm ⁇ 3 .
  • the concentration of the impurity (donor) included in the source region 14 is higher than the concentration of the impurity (acceptor) included in the body region 13 and higher than the concentration of the impurity (donor) included in the drift region 17.
  • P + region 18 is arranged in contact with first main surface 10 a, source region 14, and body region 13. P + region 18 is surrounded by source region 14 and formed to extend from first main surface 10 a to body region 13.
  • the p + region 18 is a p-type region containing an impurity (acceptor) such as Al.
  • the concentration of the impurity (acceptor) included in the p + region 18 is higher than the concentration of the impurity (acceptor) included in the body region 13.
  • the impurity (acceptor) concentration in p + region 18 is, for example, about 1 ⁇ 10 20 cm ⁇ 3 .
  • the protruding region 2 is disposed so as to protrude from at least one side of the source region 14 and the drift region 17 into the body region 13.
  • Protruding region 2 is in contact with gate insulating layer 15 and has n-type (first conductivity type).
  • the protruding region 2 includes an impurity (donor) such as phosphorus.
  • the concentration of the impurity (donor) included in the protruding region 2 is higher than the concentration of the impurity (acceptor) included in the body region 13.
  • the concentration of the impurity (donor) included in the protruding region 2 is, for example, about 1 ⁇ 10 18 cm ⁇ 3 .
  • the concentration of the impurity (donor) included in the protruding region 2 is, for example, about 5 ⁇ 10 17 cm ⁇ 3 or more and 2 ⁇ 10 19 cm ⁇ 3 or less.
  • the dimensions La and Lb of the protruding area 2 along the direction parallel to the first main surface 10a are larger than the dimension Tch of the protruding area 2 along the direction perpendicular to the first main surface 10a. More preferably, the dimensions La and Lb of the protruding area 2 are twice or more the dimension Tch of the protruding area 2 along the direction perpendicular to the first main surface 10a. More preferably, the dimension Tch of the protruding region 2 along the direction perpendicular to the first main surface 10a is smaller than half of the dimension Ts of the source region 14 along the direction perpendicular to the first main surface 10a.
  • the dimension Tch of the protruding region 2 is, for example, about 30 nm to 200 nm.
  • the dimension Ts of the source region 14 is, for example, about 200 nm to 400 nm.
  • the dimension Tb of the body region 13 along the direction perpendicular to the first main surface 10a is, for example, about 0.8 ⁇ m to 1.2 ⁇ m.
  • the projecting region 2 includes a first projecting region 2 a disposed so as to project from the drift region 17 side to the body region 13 and a second projecting region 2 disposed so as to project from the source region 14 side to the body region 13.
  • Projecting region 2b The dimension La of the first protruding region 2a along the direction parallel to the first main surface 10a is, for example, about (200) nm or more and (1000) nm or less, and in the direction parallel to the first main surface 10a.
  • the dimension Lb of the second projecting region 2b along, for example, is about (200) nm or more and (1000) nm or less.
  • the dimension Tch of the first projecting region 2a and the second projecting region 2b along the direction perpendicular to the first main surface 10a is, for example, about 100 nm or less.
  • length Lch of channel region CH in contact with first main surface 10a and sandwiched between first projecting region 2a and second projecting region 2b is, for example, 0.2 ⁇ m or more. It is about 6 ⁇ m or less, preferably less than 0.5 ⁇ m.
  • the total of the dimension La of the first protruding region 2a, the dimension Lb of the second protruding region 2b, and the length Lch of the channel region CH is about 0.6 ⁇ m or more and 1.2 ⁇ m or less.
  • the length Lch of the channel region CH is along the direction parallel to the first main surface 10a of the region sandwiched between the first projecting region 2a and the second projecting region 2b. Corresponds to the dimensions.
  • the dimension La of the first projecting region 2a along the direction parallel to the first major surface 10a is larger than the dimension Tch of the first projecting region 2a along the direction perpendicular to the first major surface 10a. Also good.
  • the dimension Lb of the second projecting region 2b along the direction parallel to the first major surface 10a is larger than the dimension Tch of the second projecting region 2b along the direction perpendicular to the first major surface 10a. Also good.
  • the dimension Tch of at least one of the first projecting region 2a and the second projecting region 2b along the direction perpendicular to the first major surface 10a is equal to the source region 14 along the direction perpendicular to the first major surface 10a.
  • the dimension Tch of each of the first projecting region 2a and the second projecting region 2b along the direction perpendicular to the first major surface 10a may be smaller than half of the dimension Ts of the first major surface 10a. It may be smaller than half of the dimension Ts of the source region 14 along the direction perpendicular to the surface 10a. At least one dimension Tch of the first protruding region 2a and the second protruding region 2b along the direction perpendicular to the first main surface 10a may be smaller than 100 nm, Each dimension Tch of the first protruding region 2a and the second protruding region 2b along the vertical direction may be smaller than 100 nm.
  • the threshold voltage increases as the channel length Lch increases, but the threshold voltage does not increase beyond a certain value even if the channel length increases beyond a certain value. That is, the threshold voltage gradually approaches the constant threshold voltage Vth4 when the channel length is increased.
  • This threshold voltage Vth is called an ideal threshold voltage.
  • the threshold voltage 90% of the ideal threshold voltage Vth4 is Vth3
  • the channel length Lch1 corresponding to Vth3 is determined from the relationship between the channel length and the threshold voltage.
  • the channel length Lch in the MOSFET 1 is preferably smaller than the channel length Lch1 corresponding to the threshold voltage Vth3 that is 90% of the ideal threshold voltage Vth4.
  • Silicon carbide layer 10 may include first n + region 3 a that protrudes from first protruding region 2 a to drift region 17, is in contact with gate insulating layer 15, and has a higher impurity concentration than drift region 17. .
  • the first n + region 3 a is disposed between the drift region 17 and the gate insulating layer 15.
  • FIG. 1 when silicon carbide layer 10 has a pair of body regions 13 that are opposed to each other in a sectional view, drift region 17 sandwiched between one body region 13 and the other body region 13 has a first n + so as to be separated with the gate insulating layer 15 through the region 3a, the first n + region 3a may be formed.
  • the impurity concentration of the first n + region 3a may be approximately the same as that of the second protruding region 2b.
  • Silicon carbide layer 10 may include second n + region 3 b that extends from second protruding region 2 b to source region 14, is in contact with gate insulating layer 15, and has a higher impurity concentration than drift region 17. Good. Second n + region 3b is disposed between source region 14 and gate insulating layer 15. The impurity concentration of the second n + region 3b may be approximately the same as that of the second protruding region 2b.
  • Gate insulating layer 15 includes body region 13, first protruding region 2 a, second protruding region 2 b, first n + region 3 a, and first n + region 3 a on first main surface 10 a of silicon carbide layer 10. 2 n + region 3b.
  • Gate insulating layer 15 is made of, for example, silicon dioxide. The thickness of the gate insulating layer 15 is, for example, about 50 nm.
  • the gate electrode 27 is connected to the body region 13, the first protruding region 2a, the second protruding region 2b, the first n + region 3a, and the second n + region 3b via the gate insulating layer 15. Are arranged opposite to each other. Gate electrode 27 is arranged in contact with gate insulating layer 15 so as to sandwich gate insulating layer 15 between silicon carbide layer 10.
  • the gate electrode 27 is made of polysilicon doped with impurities or a conductor such as Al.
  • Source contact electrode 16 is arranged in contact with source region 14, p + region 18, and gate insulating layer 15.
  • the source contact electrode 16 may be in contact with the second n + region 3b.
  • the source contact electrode 16 is made of a material capable of making ohmic contact with the source region 14, such as NiSi (nickel silicide).
  • the source contact electrode 16 may be made of a material containing Ti, Al, and Si.
  • the drain electrode 20 is formed in contact with the second main surface 10b of the silicon carbide layer 10.
  • the drain electrode 20 is made of a material that can be in ohmic contact with the n-type base substrate 11 such as NiSi, and is electrically connected to the base substrate 11.
  • a pad electrode 23 is disposed in contact with the drain electrode 20.
  • the interlayer insulating film 21 is formed so as to contact the gate insulating layer 15 and surround the gate electrode 27.
  • Interlayer insulating film 21 is made of, for example, silicon dioxide which is an insulator.
  • Source wiring 19 surrounds interlayer insulating film 21 and is in contact with the upper surface of source contact electrode 16 at a position facing first main surface 10 a of silicon carbide layer 10.
  • Source wiring 19 is made of a conductor such as Al, and is electrically connected to source region 14 via source contact electrode 16.
  • silicon carbide layer 10 of MOSFET 1 has a first projecting region 2 a projecting from drift region 17 side to body region 13, and first projecting from body region 13 to drift region 17.
  • the n + region 3a may not be provided.
  • silicon carbide layer 10 of MOSFET 1 has second projecting region 2 b projecting from source region 14 side to body region 13, and second n + region projecting from body region 13 to source region 14. 3b may not be included.
  • silicon carbide layer 10 of MOSFET 1 has a first projecting region 2 a projecting from drift region 17 side to body region 13, and the first projecting region 2 a projecting from body region 13 to drift region 17. 1 n + region 3a may be included. Further, the silicon carbide layer 10 of the MOSFET 1 may not have the second projecting region 2 b that projects from the source region 14 side to the body region 13. Further, as shown in FIG. 3, a drift region 17 is disposed between two first n + regions 3a facing each other in a cross-sectional view (a visual field along a direction parallel to the first main surface 10a). The drift region 17 may be in contact with the gate insulating layer 15. In the MOSFET shown in FIG.
  • the length Lch of the channel region CH is a body region that is in contact with the first major surface 10a and faces the first projecting region 2a and the first projecting region 2a in the body region 13. This corresponds to the dimension along the direction parallel to the first main surface 10a of the region sandwiched between the 13 end portions 13c. In other words, the length Lch of the channel region CH corresponds to the dimension along the direction parallel to the first main surface 10a of the region sandwiched between the first protruding region 2a and the source region 14.
  • silicon carbide layer 10 of MOSFET 1 may have a second protruding region 2 b protruding from source region 14 side to body region 13. Silicon carbide layer 10 may have a second n + region 3 b that protrudes from second protruding region 2 b to source region 14 and is in contact with p + region 18. Further, the silicon carbide layer 10 of the MOSFET 1 may not have the first protruding region 2 a that protrudes from the drift region 17 side to the body region 13. In the MOSFET shown in FIG. 4, the channel region CH has a length Lch in the body region 13 that is in contact with the first major surface 10a and that faces the second projecting region 2b and the second projecting region 2b.
  • the length Lch of the channel region CH corresponds to the dimension along the direction parallel to the first main surface 10a of the region sandwiched between the second projecting region 2b and the drift region 17.
  • MOSFET 1 when the voltage of gate electrode 27 is lower than the threshold voltage, that is, in the off state, the pn junction between body region 13 and drift region 17 located immediately below gate insulating layer 15 becomes a reverse bias. It becomes a non-conductive state.
  • a voltage equal to or higher than the threshold voltage is applied to the gate electrode 27, an inversion layer is formed in the channel region CH in the vicinity of the body region 13 in contact with the gate insulating layer 15.
  • the source region 14 and the drift region 17 are electrically connected, and a current flows between the source wiring 19 and the drain electrode 20.
  • a silicon carbide substrate preparation step (S10: FIG. 7) is performed. Specifically, for example, a base substrate 11 made of hexagonal silicon carbide having polytype 4H is prepared, and an n-type (first conductivity type) drift region 17 is formed on the base substrate 11 by epitaxial growth. Drift region 17 contains impurities such as N (nitrogen) ions.
  • an ion implantation forming step (S20: FIG. 7) is performed. Specifically, referring to FIG. 8, body region 13 is formed by implanting, for example, Al (aluminum) ions into drift region 17. Next, ion implantation for forming the source region 14 is performed. Specifically, for example, P (phosphorus) ions are implanted into the body region 13 to form the source region 14 in the body region 13. Further, ion implantation for forming the p + region 18 is performed. Specifically, for example, Al ions are implanted into the body region 13 to form a p + region 18 in the body region 13 and in contact with the source region 14.
  • the ion implantation is performed, for example, by forming a mask layer made of silicon dioxide on the main surface 10a of the drift region 17 and having an opening in a desired region where ion implantation is to be performed, and performing ion implantation using the mask layer. Can be implemented.
  • a mask layer forming step (S25: FIG. 7) is performed.
  • mask layer 4 in contact with body region 13 is formed on first main surface 10a.
  • mask layer 4 that covers a region to be channel region CH in body region 13 and has an opening on a conductive region that is opposed to sandwich channel region CH is formed.
  • mask layer 4 is formed of silicon carbide layer 10 so as to be in contact with part of body region 13 on first main surface 10a and to cover the entire surface of p + region 18 and part of source region 14. It is formed on the first main surface 10a.
  • the dimension along the direction parallel to the first major surface 10a of the mask layer 4 formed on the body region 13 is substantially the same as the above-described channel length, for example, about 0.2 ⁇ m or more and 0.6 ⁇ m or less.
  • the mask layer 4 is a mask for ion implantation described later, and is made of, for example, silicon dioxide or resist.
  • a protruding region forming step (S30: FIG. 7) is performed.
  • projecting region 2 in contact with at least body region 13 is formed using mask layer 4.
  • impurities (donors) such as phosphorus ions are introduced into the body region 13 using the mask layer 4 so as to protrude from the drift region 17 side into the body region 13 and in contact with the first main surface 10a.
  • First projecting region 2a and second projecting region 2b projecting from body region 13 to source region 14 and in contact with first main surface 10a are formed.
  • the protruding region 2 is formed by ion implantation.
  • each of first projecting region 2a and second projecting region 2b is formed simultaneously.
  • the protruding region 2 is formed so as to protrude from at least one side of the source region 14 and the drift region 17 into the body region 13.
  • each of first projecting region 2a and second projecting region 2b is in contact with gate insulating layer 15 and has an n-type (first conductivity type).
  • the protruding region 2 includes an impurity (donor) such as phosphorus.
  • the concentration of the impurity (donor) included in the protruding region 2 is higher than the concentration of the impurity (acceptor) included in the body region 13.
  • the concentration of the impurity (donor) in the protruding region 2 is, for example, about 1 ⁇ 10 18 cm ⁇ 3 .
  • the step of forming the projecting region 2 includes the step of forming the first projecting region 2a arranged so as to project from the drift region 17 side to the body region 13, and the step of forming the projecting region 2 from the first projecting region 2a. And forming a first n + region 3a having an impurity concentration higher than that of the drift region 17 in contact with the first main surface 10a.
  • the first projecting region 2a projects from the first projecting region 2a to the drift region 17, contacts the first main surface 10a, and has a higher impurity concentration than the drift region 17.
  • the n + region 3a is formed simultaneously with the first protruding region 2a.
  • the second protruding region 2b preferably protrudes from the second protruding region 2b to the source region 14, contacts the first main surface 10a, and has a higher impurity concentration than the drift region 17.
  • the n + region 3b is formed simultaneously with the second protruding region 2b. More preferably, the first protruding region 2a, the second protruding region 2b, the first n + region 3a, and the second n + region 3b are formed simultaneously.
  • an activation annealing step is performed. Specifically, heat treatment is performed in which the silicon carbide layer 10 is heated to, for example, about 1700 ° C. and held for about 30 minutes in an inert gas atmosphere such as argon. As a result, the implanted impurities are activated. Thus, silicon carbide layer 10 having first main surface 10a and second main surface 10b is formed. Silicon carbide layer 10 includes a drift region 17 having an n type (first conductivity type), a body region 13 having a p type (second conductivity type) and in contact with drift region 17, and an n type and a body.
  • a source region 14 disposed by being separated from the drift region 17 by the region 13; a source region 14 which is disposed so as to protrude from at least one side of the source region 14 and the drift region 17 to the body region 13, and is in contact with the first main surface 10a; And a protruding region 2 having an n-type.
  • a gate insulating film formation step (S40: FIG. 7) is performed. Specifically, referring to FIG. 11, for example, heat treatment is performed in which main surface 10a of silicon carbide layer 10 is heated to, for example, about 1200 ° C. or higher and about 1300 ° C. or lower and held for about 60 minutes in an oxygen atmosphere. Thereby, gate insulating layer 15 made of silicon dioxide is formed in contact with first main surface 10a of silicon carbide layer 10.
  • the gate insulating layer 15 includes a first projecting region 2a, a second projecting region 2b, a drift region 17, a source region 14, a p + region 18, and a first n-type surface on the first main surface 10a.
  • the + region 3a and the second n + region 3b are formed in contact with each other.
  • the gate insulating layer 15 may be formed so as to be in contact with the drift region 17 on the first main surface 10a, as shown in FIGS.
  • silicon carbide layer 10 is held at a temperature of 1300 ° C. or higher and 1500 ° C. or lower for about 1 hour in a nitrogen monoxide atmosphere. Thereafter, heat treatment for heating silicon carbide layer 10 is performed in an inert gas such as argon or nitrogen. In the heat treatment, silicon carbide layer 10 is held at a temperature of 1100 ° C. or higher and 1500 ° C. or lower for about 1 hour.
  • gate electrode forming step (S50: FIG. 7) is performed.
  • gate electrode 27 made of polysilicon which is a conductor doped with impurities at a high concentration, is formed by, for example, CVD, photolithography and etching.
  • the interlayer insulating film 21 and the gate insulating layer 15 in the region where the source contact electrode 16 is formed are removed by photolithography and etching.
  • an ohmic electrode formation step (S60: FIG. 7) is performed.
  • a metal film formed by vapor deposition is formed on main surface 10a of silicon carbide layer 10 so as to be in contact with source region 14 and p + region 18.
  • the metal film may contain, for example, Ti (titanium) atoms, Al (aluminum) atoms, and Si (silicon) atoms.
  • the metal film may contain, for example, Ni atoms and Si atoms.
  • the metal film is heated at, for example, about 1000 ° C. so that the metal film is heated and silicided, thereby forming an ohmic contact with the source region 14 of the silicon carbide layer 10. 16 is formed.
  • a metal film such as Ni is formed in contact with second main surface 10b of silicon carbide layer 10, and drain electrode 20 that is in ohmic contact with silicon carbide layer 10 is formed by heating the metal film.
  • a source wiring 19 made of Al as a conductor is formed so as to surround the interlayer insulating film 21 and to be in contact with the source contact electrode 16 by, for example, vapor deposition. Further, a pad electrode 23 made of, for example, Al is formed in contact with the drain electrode 20. With the above procedure, MOSFET 1 (see FIG. 1) according to the present embodiment is completed.
  • the first conductivity type is n-type and the second conductivity type is p-type has been described, but the first conductivity type is p-type and the second conductivity type is n-type. It may be a type.
  • a planar MOSFET has been described as an example of a silicon carbide semiconductor device, but the present invention is not limited to this embodiment.
  • the silicon carbide semiconductor device may be a trench MOSFET, or an IGBT (Insulated Gate Bipolar Transistor).
  • the silicon carbide semiconductor device may be a vertical semiconductor device.
  • silicon carbide layer 10 is arranged so as to protrude from body region 13 from at least one side of source region 14 and drift region 17, is in contact with gate insulating layer 15, and is n-type.
  • projecting region 2 includes first projecting region 2 a arranged to project from drift region 17 side to body region 13, and source region 14 side to body region 13. And a second projecting region 2b arranged to project.
  • the threshold voltage can be effectively improved while suppressing an increase in the characteristic on-resistance of the MOSFET 1.
  • dimension La of first projecting region 2a along the direction parallel to main surface 10a is equal to dimension Tch of the first projecting region along the direction perpendicular to the main surface.
  • the dimension Lb of the second projecting region 2b along the direction parallel to the main surface is larger than the dimension Tch of the second projecting region 2b along the direction perpendicular to the main surface.
  • each dimension Tch of first projecting region 2a and second projecting region 2b along the direction perpendicular to main surface 10a is in the direction perpendicular to main surface 10a. Less than half of the dimension Ts of the source region 14 along. Thereby, the threshold voltage can be improved while suppressing an increase in the characteristic on-resistance of the silicon carbide semiconductor device.
  • each dimension Tch of first projecting region 2a and second projecting region 2b along the direction perpendicular to the main surface is smaller than 100 nm.
  • the length of channel region CH in contact with main surface 10a and sandwiched between first projecting region 2a and second projecting region 2b is: It is less than 0.5 ⁇ m. Thereby, the characteristic on-resistance can be effectively reduced.
  • the length of channel region CH in contact with main surface 10a and sandwiched between first projecting region 2a and second projecting region 2b is: It is smaller than the length Lch1 of the channel region corresponding to the threshold voltage Vth3 which is 90% of the ideal threshold voltage Vth4. Thereby, the resistance of the channel region can be reduced.
  • protruding region 2 is arranged to protrude from one side of source region 14 and drift region 17 to body region 13. Thereby, the threshold voltage can be improved while suppressing an increase in the characteristic on-resistance of the silicon carbide semiconductor device.
  • protruding region 2 is arranged to protrude from drift region 17 side to body region 13, and silicon carbide layer 10 protrudes from protruding region 2 to drift region 17.
  • the semiconductor device further includes a first conductivity type region 3 a in contact with the gate insulating layer 15 and having an impurity concentration higher than that of the drift region 17.
  • dimension La of projecting region 2 along the direction parallel to main surface 10a is larger than dimension Tch of projecting region 2 along the direction perpendicular to main surface 10a.
  • dimension Tch of protruding region 2 along the direction perpendicular to main surface 10a is larger than half of dimension Ts of source region 14 along the direction perpendicular to main surface 10a. small. Thereby, the threshold voltage can be improved while suppressing an increase in the characteristic on-resistance of the silicon carbide semiconductor device.
  • dimension Tch of protruding region 2 along the direction perpendicular to main surface 10a is smaller than 100 nm.
  • MOSFET 1 in body region 13, channel region that is in contact with main surface 10 a and sandwiched between projecting region 2 and end portions 13 c and 13 d of body region 13 that faces projecting region 2.
  • the length of CH is less than 0.5 ⁇ m.
  • MOSFET 1 in body region 13, channel region that is in contact with main surface 10 a and sandwiched between projecting region 2 and end portions 13 c and 13 d of body region 13 that faces projecting region 2.
  • the length of CH is smaller than the length Lch1 of the channel region corresponding to the threshold voltage Vth3 that is 90% of the ideal threshold voltage Vth4. Thereby, the resistance of the channel region can be reduced.
  • the impurity concentration of protruding region 2 is higher than the impurity concentration of body region 13. Therefore, the protruding region 2 can be formed after the body region 13 is formed.
  • the first conductivity type is n-type and the second conductivity type is p-type.
  • the method for manufacturing a silicon carbide semiconductor device includes the following steps. Silicon carbide layer 10 having main surface 10a is formed. Gate insulating layer 15 in contact with main surface 10a of silicon carbide layer 10 is formed. Silicon carbide layer 10 has a drift region 17 having a first conductivity type, a body region 13 having a second conductivity type different from the first conductivity type and in contact with drift region 17, a first conductivity type, and A source region 14 disposed apart from drift region 17 by body region 13, a region projecting from at least one side of source region 14 and drift region 17 to body region 13, is in contact with main surface 10 a, and And a protruding region 2 having one conductivity type.
  • the MOSFET 1 is disposed so as to protrude from at least one side of the source region 14 and the drift region 17 to the body region 13, is in contact with the main surface 10a, and has the first conductivity type. And the protruding region 2.
  • the threshold voltage can be improved while suppressing an increase in the characteristic on-resistance of the MOSFET 1.
  • the step of forming silicon carbide layer 10 uses the step of forming mask layer 4 in contact with body region 13 on main surface 10a, and mask layer 4. Forming at least the protruding region 2 in contact with the body region 13.
  • the channel length is determined by the position of the boundary between the source region and the body region and the position of the boundary between the body region and the drift region. That is, since the channel length is affected by the misalignment of both the source region and the body region, the channel length varies greatly.
  • the protruding region 2 is formed using the mask layer 4, the channel length is controlled by the width of the mask layer 4. Therefore, variation in channel length can be reduced.
  • the step of forming protruding region 2 is a step of forming first protruding region 2 a arranged to protrude from drift region 17 side to body region 13. And forming a first n + region 3a projecting from the first projecting region 2a to the drift region 17 and in contact with the main surface 10a and having an impurity concentration higher than that of the drift region 17, The step of forming protruding region 2a and the step of forming first n + region 3a are performed simultaneously. Thereby, MOSFET1 which can reduce characteristic on-resistance effectively can be manufactured efficiently.
  • the step of forming protruding region 2 is performed by ion implantation. Thereby, the protrusion area
  • region 2 can be formed efficiently.
  • the relationship between the characteristic on-resistance and the weak inversion threshold voltage was investigated using the MOSFETs of the comparative example and the example of the present invention.
  • the MOSFET of the comparative example does not have the protruding region 2, whereas the MOSFET of the present invention has the protruding region 2. That is, it was investigated how the relationship between the characteristic on-resistance and the threshold voltage changes depending on the presence or absence of the protruding region 2.
  • a MOSFET having a structure as shown in FIG. 13 was prepared as a comparative example.
  • the channel length Lch of the MOSFET having the structure is the length of the channel region CH in contact with the first main surface 10 a in the body region 13 sandwiched between the source region 14 and the drift region 17.
  • Samples 1 to 4 were prepared as comparative examples.
  • a MOSFET having a structure as shown in FIG. 1 was prepared.
  • Samples 5 to 7 were prepared as examples of the present invention. Four each of the above samples were prepared.
  • the concentration of the channel region (p body region 13) in each of Sample 1 to Sample 7 was 3 ⁇ 10 17 cm ⁇ 3 .
  • the reticle design values Lch of the channel lengths in samples 1 to 7 were set to ⁇ 0.1 ⁇ m, 0 ⁇ m, 0.1 ⁇ m, 0.2 ⁇ m, 0.6 ⁇ m, 0.8 ⁇ m, and 1.2 ⁇ m, respectively.
  • the actual channel length deviates from the reticle design value of the channel length.
  • the actual channel length is expected to be a value obtained by adding 0.2 ⁇ m to 0.5 ⁇ m to the reticle design value of the channel length in consideration of the effect of lateral scattering depending on the injection energy.
  • the characteristic on-resistance and weak inversion threshold voltage of each MOSFET of samples 1 to 7 were measured. The relationship between the characteristic on-resistance and the weak inversion threshold voltage will be described with reference to FIG.
  • the characteristic on-resistance and the weak inversion threshold voltage of each of the samples 1 to 4 of the comparative example are located on the curve 6 indicated by a broken line, and the characteristic on-resistance and the weak inversion threshold voltage of each of the samples 5 to 7 of the present invention are shown.
  • Desirable MOSFET characteristics are a low characteristic on-resistance and a high threshold voltage. As shown in FIG. 14, it was confirmed that the MOSFET according to the example of the present invention has a higher threshold voltage than the MOSFET according to the comparative example when compared with the same characteristic on-resistance.
  • SYMBOLS 1 Silicon carbide semiconductor device (MOSFET), 2 protrusion area
  • MOSFET Silicon carbide semiconductor device

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 炭化珪素半導体装置は、炭化珪素層(10)と、ゲート絶縁層(15)とを備える。炭化珪素層(10)は、主面(10a)を有する。ゲート絶縁層(15)は、炭化珪素層(10)の主面(10a)に接して配置されている。炭化珪素層(10)は、第1導電型を有するドリフト領域(17)と、第1導電型とは異なる第2導電型を有しかつドリフト領域(17)に接するボディ領域(13)と、第1導電型を有し、ボディ領域(13)によってドリフト領域(17)と隔てられて配置されたソース領域(14)と、ソース領域(14)およびドリフト領域(17)の少なくとも一方側からボディ領域(13)に突出するように配置され、ゲート絶縁層(15)と接し、かつ第1導電型を有する突出領域(2)とを含む。これにより、特性オン抵抗の上昇を抑制しつつ閾値電圧を向上可能な炭化珪素半導体装置およびその製造方法を提供する。

Description

炭化珪素半導体装置およびその製造方法
 本発明は炭化珪素半導体装置およびその製造方法に関し、より特定的には、特性オン抵抗の上昇を抑制しつつ閾値電圧を向上可能な炭化珪素半導体装置およびその製造方法に関するものである。
 近年、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)などの半導体装置の高耐圧化、低損失化、高温環境下での使用などを可能とするため、半導体装置を構成する材料として炭化珪素の採用が進められつつある。炭化珪素は、従来から半導体装置を構成する材料として広く使用されている珪素に比べてバンドギャップが大きいワイドバンドギャップ半導体である。そのため、半導体装置を構成する材料として炭化珪素を採用することにより、半導体装置の高耐圧化、オン抵抗の低減などを達成することができる。また、炭化珪素を材料として採用した半導体装置は、珪素を材料として採用した半導体装置に比べて、高温環境下で使用された場合の特性の低下が小さいという利点も有している。
 たとえば、特開2012-146838号公報(特許文献1)には、n型ソース領域と、p型ボディ領域と、n型SiC領域とを有するMOSFETが記載されている。特開2012-146838号公報に記載のMOSFETによれば、ゲート電圧に電圧を印加していくと、ゲート絶縁膜直下のp型ボディ領域のチャネル領域において反転層が形成されてソース電極とドレイン電極との間に電流が流れるとされている。
特開2012-146838号公報
 チャネル領域の長さ(チャネル長)が長いと特性オン抵抗が大きくなるので、特性オン抵抗の観点からはチャネル長は短い方がよい。しかしながら、チャネル長を短くすると閾値電圧が低くなるため、閾値電圧の観点からはチャネル長は長い方がよい。閾値電圧と特性オン抵抗とはトレードオフの関係にある。特開2012-146838号公報に記載の構造を有するMOSFETにおいて、閾値電圧が高くなるようにチャネル長を設計する場合、特性オン抵抗を十分低くすることが困難であった。
 本発明はこのような課題を解決するためになされたものであって、その目的は、特性オン抵抗の上昇を抑制しつつ閾値電圧を向上可能な炭化珪素半導体装置およびその製造方法を提供することである。
 本発明に係る炭化珪素半導体装置は、炭化珪素層と、ゲート絶縁層とを備える。炭化珪素層は、主面を有する。ゲート絶縁層は、炭化珪素層の主面に接して配置されている。炭化珪素層は、第1導電型を有するドリフト領域と、第1導電型とは異なる第2導電型を有しかつドリフト領域に接するボディ領域と、第1導電型を有し、ボディ領域によってドリフト領域と隔てられて配置されたソース領域と、ソース領域およびドリフト領域の少なくとも一方側からボディ領域に突出するように配置され、ゲート絶縁層と接し、かつ第1導電型を有する突出領域とを含む。
 本発明に係る炭化珪素半導体装置の製造方法は、以下の工程を備えている。主面を有する炭化珪素層が形成される。炭化珪素層の主面に接するゲート絶縁層が形成される。炭化珪素層は、第1導電型を有するドリフト領域と、第1導電型とは異なる第2導電型を有しかつドリフト領域に接するボディ領域と、第1導電型を有しかつボディ領域によってドリフト領域と隔てられて配置されたソース領域と、ソース領域およびドリフト領域の少なくとも一方側からボディ領域に突出するように配置され、主面と接し、かつ第1導電型を有する突出領域とを含む。
 以上の説明から明らかなように、本発明によれば、特性オン抵抗の上昇を抑制しつつ閾値電圧を向上可能な炭化珪素半導体装置およびその製造方法を提供することができる。
本発明の一実施の形態に係る炭化珪素半導体装置の構造を示す概略的に示す断面模式図である。 本発明の一実施の形態に係る炭化珪素半導体装置の第1の変形例の構造を示す概略的に示す断面模式図である。 本発明の一実施の形態に係る炭化珪素半導体装置の第2の変形例の構造を示す概略的に示す断面模式図である。 本発明の一実施の形態に係る炭化珪素半導体装置の第3の変形例の構造を示す概略的に示す断面模式図である。 比較例および本発明の一実施の形態に係る炭化珪素半導体装置の特性オン抵抗と弱反転閾値電圧との関係を示す図である。 本発明の一実施の形態に係る炭化珪素半導体装置のチャネル長と弱反転閾値電圧との関係を示す図である。 本発明の一実施の形態に係る炭化珪素半導体装置の製造方法を概略的に示すフロー図である。 本発明の一実施の形態に係る炭化珪素半導体装置の製造方法の第1の工程を概略的に示す断面模式図である。 本発明の一実施の形態に係る炭化珪素半導体装置の製造方法の第2の工程を概略的に示す断面模式図である。 本発明の一実施の形態に係る炭化珪素半導体装置の製造方法の第3の工程を概略的に示す断面模式図である。 本発明の一実施の形態に係る炭化珪素半導体装置の製造方法の第4の工程を概略的に示す断面模式図である。 本発明の一実施の形態に係る炭化珪素半導体装置の製造方法の第5の工程を概略的に示す断面模式図である。 比較例に係る炭化珪素半導体装置の構造を概略的に示す断面模式図である。 比較例および本発明の一実施の形態に係る炭化珪素半導体装置の特性オン抵抗と弱反転閾値電圧との関係を示す図である。
 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。また、本明細書中の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また、負の指数については、結晶学上、”-”(バー)を数字の上に付けることになっているが、本明細書中では、数字の前に負の符号を付けている。また角度の記載には、全方位角を360度とする系を用いている。
 はじめに、本発明の実施の形態の概要について説明する。
 発明者らは、特性オン抵抗および閾値電圧のトレードオフの関係について鋭意研究の結果、以下の知見を得て本発明を見出した。まず、特開2012-146838号公報に記載の構造を有する従来型のMOSFETにおいて、チャネル長を短くすると、短チャネル効果によりバリアが低くなり閾値電圧が低減する。またチャネル長がある程度短くなると、特性オン抵抗はあまり小さくならず、閾値電圧が大きく低減してしまう。発明者は、鋭意研究の結果、ソース領域およびドリフト領域の少なくとも一方からボディ領域に突出するように配置され、ゲート絶縁層と接し、かつボディ領域と異なる導電型を有する突出領域を形成することによりチャネル長を短くすると、バリアを高く維持しながらチャネル長を実効的に短くすることができることを見出した。結果として、特性オン抵抗の上昇を抑制しつつ、高い閾値電圧を有する炭化珪素半導体装置を得ることができる。
 図5を参照して、従来型のMOSFETにおける特性オン抵抗と弱反転閾値電圧との関係が破線6で示されており、本実施の形態に係るMOSFETにおける特性オン抵抗と弱反転閾値電圧との関係が実線5で示されている。MOSFETの特性としては、弱反転閾値電圧が大きく、かつ特性オン抵抗が小さくなることが望ましい。たとえば特性オン抵抗がRaの場合において、従来のMOSFETの閾値電圧がVth1であるのに対し、本実施の形態に係るMOSFETの閾値電圧はVth1よりも大きいVth2となる。つまり、本実施の形態に係るMOSFETによれば、特性オン抵抗の上昇を抑制しつつ閾値電圧を向上することができる。
 (1)実施の形態に係る炭化珪素半導体装置は、炭化珪素層10と、ゲート絶縁層15とを備える。炭化珪素層10は、主面10aを有する。ゲート絶縁層15は、炭化珪素層10の主面10aに接して配置されている。炭化珪素層10は、第1導電型を有するドリフト領域17と、第1導電型とは異なる第2導電型を有しかつドリフト領域17に接するボディ領域13と、第1導電型を有し、ボディ領域13によってドリフト領域17と隔てられて配置されたソース領域14と、ソース領域14およびドリフト領域17の少なくとも一方側からボディ領域13に突出するように配置され、ゲート絶縁層15と接し、かつ第1導電型を有する突出領域2とを含む。
 実施の形態に係る炭化珪素半導体装置によれば、炭化珪素層10は、ソース領域14およびドリフト領域17の少なくとも一方側からボディ領域13に突出するように配置され、ゲート絶縁層15と接し、かつ第1導電型を有する突出領域2を含む。これにより、炭化珪素半導体装置の特性オン抵抗の上昇を抑制しつつ閾値電圧を向上することができる。
 (2)上記実施の形態に係る炭化珪素半導体装置において好ましくは、突出領域2は、ドリフト領域17側からボディ領域13に突出するように配置された第1の突出領域2aと、ソース領域14側からボディ領域13に突出するように配置された第2の突出領域2bとを含む。これにより、効果的に、炭化珪素半導体装置の特性オン抵抗の上昇を抑制しつつ閾値電圧を向上することができる。
 (3)上記実施の形態に係る炭化珪素半導体装置において好ましくは、主面10aに平行な方向に沿った第1の突出領域2aの寸法Laは、主面に垂直な方向に沿った第1の突出領域の寸法Tchよりも大きく、主面に平行な方向に沿った第2の突出領域2bの寸法Lbは、主面に垂直な方向に沿った第2の突出領域の寸法Tchよりも大きい。これにより、主面10aと接する側と反対側の第1の突出領域2aおよび第2の突出領域2bの部分における電子または正孔の引き抜き効果が、チャネル領域側の第1の突出領域2aおよび第2の突出領域2bの部分における電子または正孔の引き抜き効果よりも高くなる。それゆえ、第1の突出領域2aおよび第2の突出領域2bの各々からチャネル領域側に伸長する空乏層の広がりを低減することができる。
 (4)上記実施の形態に係る炭化珪素半導体装置において好ましくは、主面10aに垂直な方向に沿った第1の突出領域2aおよび第2の突出領域2bの各々の寸法Tchは、主面10aに垂直な方向に沿ったソース領域14の寸法Tsの半分よりも小さい。これにより、炭化珪素半導体装置の特性オン抵抗の上昇を抑制しつつ閾値電圧を向上することができる。
 (5)上記実施の形態に係る炭化珪素半導体装置において好ましくは、主面10aに垂直な方向に沿った第1の突出領域2aおよび第2の突出領域2bの各々の寸法Tchは、100nmよりも小さい。これにより、突出領域は垂直方向により空乏層を広げやすくなり、一方水平方向に空乏層は広がりにくくなるため短チャネル効果を抑制することができる。
 (6)上記実施の形態に係る炭化珪素半導体装置において好ましくは、ボディ領域13内において、主面10aに接し、かつ第1の突出領域2aおよび第2の突出領域2bに挟まれたチャネル領域CHの長さは、0.5μm未満である。これにより、効果的に特性オン抵抗を低減することができる。
 (7)上記実施の形態に係る炭化珪素半導体装置において好ましくは、ボディ領域13内において、主面10aに接し、かつ第1の突出領域2aおよび第2の突出領域2bに挟まれたチャネル領域CHの長さは、理想的な閾値電圧Vth4の90%の閾値電圧Vth3に対応するチャネル領域の長さLch1よりも小さい。これにより、チャネル領域の抵抗を低減することができる。
 (8)上記実施の形態に係る炭化珪素半導体装置において好ましくは、突出領域2は、ソース領域14およびドリフト領域17の一方側からボディ領域13に突出するように配置される。これにより、炭化珪素半導体装置の特性オン抵抗の上昇を抑制しつつ閾値電圧を向上することができる。
 (9)上記実施の形態に係る炭化珪素半導体装置において好ましくは、突出領域2は、ドリフト領域17側からボディ領域13に突出するように配置されており、炭化珪素層10は、突出領域2からドリフト領域17に突出し、ゲート絶縁層15と接し、かつドリフト領域17よりも高い不純物濃度を有する第1導電型領域3aをさらに含む。これにより、特性オン抵抗を効果的に低減することができる。
 (10)上記実施の形態に係る炭化珪素半導体装置において好ましくは、主面10aに平行な方向に沿った突出領域2の寸法Laは、主面10aに垂直な方向に沿った突出領域2の寸法Tchよりも大きい。これにより、主面10aと接する側と反対側の突出領域2の部分における電子または正孔の引き抜き効果が、チャネル領域側の突出領域2の部分における電子または正孔の引き抜き効果よりも高くなる。それゆえ、突出領域2からチャネル領域側に伸長する空乏層の広がりを低減することができる。
 (11)上記実施の形態に係る炭化珪素半導体装置において好ましくは、主面10aに垂直な方向に沿った突出領域2の寸法Tchは、主面10aに垂直な方向に沿ったソース領域14の寸法Tsの半分よりも小さい。これにより、炭化珪素半導体装置の特性オン抵抗の上昇を抑制しつつ閾値電圧を向上することができる。
 (12)上記実施の形態に係る炭化珪素半導体装置において好ましくは、主面10aに垂直な方向に沿った突出領域2の寸法Tchは、100nmよりも小さい。これにより、突出領域は垂直方向により空乏層を広げやすくなり、一方水平方向に空乏層は広がりにくくなるため短チャネル効果を抑制することができる。
 (13)上記実施の形態に係る炭化珪素半導体装置において好ましくは、ボディ領域13内において、主面10aに接し、かつ突出領域2および突出領域2と対向するボディ領域13の端部13c、13dに挟まれたチャネル領域CHの長さは、0.5μm未満である。これにより、効果的に特性オン抵抗を低減することができる。
 (14)上記実施の形態に係る炭化珪素半導体装置において好ましくは、ボディ領域13内において、主面10aに接し、かつ突出領域2および突出領域2と対向するボディ領域13の端部13c、13dに挟まれたチャネル領域CHの長さは、理想的な閾値電圧Vth4の90%の閾値電圧Vth3に対応するチャネル領域の長さLch1よりも小さい。これにより、チャネル領域の抵抗を低減することができる。
 (15)上記実施の形態に係る炭化珪素半導体装置において好ましくは、突出領域2の不純物濃度は、ボディ領域13の不純物濃度よりも高い。不純物濃度とは、当該領域がp型の導電型を有する場合、不純物濃度とはアクセプタ濃度のことであり、当該領域がn型の導電型を有する場合、不純物濃度とはドナー濃度のことである。これにより、ボディ領域を形成した後に突出領域を形成することができる。
 (16)上記実施の形態に係る炭化珪素半導体装置において好ましくは、第1導電型はn型であり、かつ第2導電型はp型である。これにより、炭化珪素半導体装置の製造しやすさを向上することができる。
 (17)実施の形態に係る炭化珪素半導体装置の製造方法は、以下の工程を備えている。主面10aを有する炭化珪素層10が形成される。炭化珪素層10の主面10aに接するゲート絶縁層15が形成される。炭化珪素層10は、第1導電型を有するドリフト領域17と、第1導電型とは異なる第2導電型を有しかつドリフト領域17に接するボディ領域13と、第1導電型を有しかつボディ領域13によってドリフト領域17と隔てられて配置されたソース領域14と、ソース領域14およびドリフト領域17の少なくとも一方側からボディ領域13に突出するように配置され、主面10aと接し、かつ第1導電型を有する突出領域2とを含む。
 実施の形態に係る炭化珪素半導体装置の製造方法によれば、ソース領域14およびドリフト領域17の少なくとも一方側からボディ領域13に突出するように配置され、主面10aと接し、かつ第1導電型を有する突出領域2とを含む。これにより、炭化珪素半導体装置の特性オン抵抗の上昇を抑制しつつ閾値電圧を向上することができる。
 (18)上記実施の形態に係る炭化珪素半導体装置の製造方法において好ましくは、炭化珪素層10を形成する工程は、主面10aにおいてボディ領域13と接するマスク層4を形成する工程と、マスク層4を用いて、少なくともボディ領域13に接する突出領域2を形成する工程とを含む。突出領域2を有しない場合、チャネル長は、ソース領域とボディ領域との境界の位置およびボディ領域およびドリフト領域の境界の位置により決定される。つまり、チャネル長は、ソース領域およびボディ領域の双方の位置合わせのずれの影響を受けるため、チャネル長のばらつきが大きくなる。一方、上記マスク層4を用いて突出領域2を形成する場合、チャネル長はマスク層4の幅により制御される。それゆえ、チャネル長のばらつきを低減することができる。
 (19)上記実施の形態に係る炭化珪素半導体装置の製造方法において好ましくは、突出領域2を形成する工程は、ドリフト領域17側からボディ領域13に突出するように配置された第1の突出領域2aを形成する工程と、第1の突出領域2aからドリフト領域17に突出し、主面10aと接し、かつドリフト領域17よりも高い不純物濃度を有する第1導電型領域3aを形成する工程とを含み、第1の突出領域2aを形成する工程および第1導電型領域3aを形成する工程は同時に実施される。これにより、特性オン抵抗を効果的に低減することができる炭化珪素半導体装置を効率的に製造することができる。
 (20)上記実施の形態に係る炭化珪素半導体装置の製造方法において好ましくは、突出領域2を形成する工程は、イオン注入により行われる。これにより、効率的に突出領域2を形成することができる。
 次に、本発明の実施の形態についてより詳細に説明する。
 図1を参照して、本実施の形態における炭化珪素半導体装置の一例としてのMOSFET1は、炭化珪素層10と、ゲート絶縁層15と、ゲート電極27と、ソースコンタクト電極16と、ドレイン電極20と、層間絶縁膜21と、ソース配線19と、パッド電極23とを主に有している。
 炭化珪素層10は、たとえばポリタイプ4Hの六方晶炭化珪素からなる。炭化珪素層10の主面10aは、たとえば{0001}面から8°以下程度オフした面であってもよく、{0-33-8}面であってもよい。
 炭化珪素層10は、ベース基板11と、ドリフト領域17と、ボディ領域13と、ソース領域14と、p+領域18と、突出領域2と、第1のn+領域3aと、第2のn+領域3bとを主に含む。ベース基板11は、炭化珪素からなり導電型がn型(第1導電型)を有する炭化珪素単結晶基板である。ドリフト領域17は、ベース基板11上に配置された炭化珪素エピタキシャル層であり、ドリフト領域17の導電型はn型である。ドリフト領域17に含まれる不純物はたとえば窒素(N)である。ドリフト領域17に含まれている窒素濃度はたとえば5×1015cm-3程度である。ドリフト領域17は、後述する一対のボディ領域13によって挟まれたJFET領域を含む。
 ボディ領域13は、ドリフト領域17および第1の主面10aに接する。ボディ領域13は、p型(第2導電型)を有する。ボディ領域13には、アルミニウムまたはホウ素などの不純物(アクセプタ)を含んでいる。ボディ領域13が含むアクセプタの濃度は、たとえば4×1016cm-3以上4×1018cm-3以下程度である。ボディ領域13が含む不純物(アクセプタ)の濃度は、ドリフト領域17が含む不純物(ドナー)の濃度よりも高い。
 ソース領域14は、ボディ領域13および第1の主面10aに接し、ボディ領域13によってドリフト領域17と隔てられている。ソース領域14は、ボディ領域13に取り囲まれるように形成されている。ソース領域14は、n型を有する。ソース領域14には、たとえばリン(P)などの不純物(ドナー)が含まれている。ソース領域14に含まれる不純物(ドナー)の濃度は、たとえば1×1018cm-3程度である。ソース領域14に含まれる不純物(ドナー)の濃度は、ボディ領域13が含む不純物(アクセプタ)の濃度よりも高く、ドリフト領域17が含む不純物(ドナー)の濃度よりも高い。
 p+領域18は、第1の主面10aと、ソース領域14と、ボディ領域13とに接して配置されている。p+領域18は、ソース領域14に囲まれ、第1の主面10aからボディ領域13に伸長するように形成されている。p+領域18は、たとえばAlなどの不純物(アクセプタ)を含んだp型領域である。p+領域18が含む不純物(アクセプタ)の濃度は、ボディ領域13が含む不純物(アクセプタ)の濃度よりも高い。p+領域18における、不純物(アクセプタ)の濃度はたとえば1×1020cm-3程度である。
 突出領域2は、ソース領域14およびドリフト領域17の少なくとも一方側からボディ領域13に突出するように配置されている。突出領域2は、ゲート絶縁層15と接し、かつn型(第1導電型)を有する。突出領域2は、たとえばリンなどの不純物(ドナー)を含む。突出領域2が含む不純物(ドナー)の濃度は、ボディ領域13が含む不純物(アクセプタ)の濃度よりも高い。突出領域2が含む不純物(ドナー)の濃度は、たとえば1×1018cm-3程度である。好ましくは、突出領域2が含む不純物(ドナー)の濃度は、たとえば5×1017cm-3以上2×1019cm-3以下程度である。
 好ましくは、第1の主面10aに平行な方向に沿った突出領域2の寸法La、Lbは、第1の主面10aに垂直な方向に沿った突出領域2の寸法Tchよりも大きい。より好ましくは、突出領域2の寸法La、Lbは、第1の主面10aに垂直な方向に沿った突出領域2の寸法Tchの2倍以上である。さらに好ましくは、第1の主面10aに垂直な方向に沿った突出領域2の寸法Tchは、第1の主面10aに垂直な方向に沿ったソース領域14の寸法Tsの半分よりも小さい。突出領域2の寸法Tchは、たとえば30nm以上200nm以下程度である。ソース領域14の寸法Tsは、たとえば200nm以上400nm以下程度である。第1の主面10aに垂直な方向に沿ったボディ領域13の寸法Tbは、たとえば0.8μm以上1.2μm以下程度である。
 好ましくは、突出領域2は、ドリフト領域17側からボディ領域13に突出するように配置された第1の突出領域2aと、ソース領域14側からボディ領域13に突出するように配置された第2の突出領域2bとを含む。第1の主面10aと平行な方向に沿った第1の突出領域2aの寸法Laは、たとえば(200)nm以上(1000)nm以下程度であり、第1の主面10aと平行な方向に沿った第2の突出領域2bの寸法Lbは、たとえば(200)nm以上(1000)nm以下程度である。第1の主面10aと垂直な方向に沿った第1の突出領域2aおよび第2の突出領域2bの寸法Tchは、たとえば100nm以下程度である。またボディ領域13内において、第1の主面10aに接し、かつ第1の突出領域2aおよび第2の突出領域2bに挟まれたチャネル領域CHの長さLchは、たとえば0.2μm以上0.6μm以下程度であり、好ましくは0.5μm未満である。第1の突出領域2aの寸法Laと、第2の突出領域2bの寸法Lbと、チャネル領域CHの長さLchとの合計は0.6μm以上1.2μm以下程度である。図1に示すMOSFETにおいて、チャネル領域CHの長さLchは、第1の突出領域2aと、第2の突出領域2bとに挟まれた領域の第1の主面10aと平行な方向に沿った寸法に対応する。
 第1の主面10aに平行な方向に沿った第1の突出領域2aの寸法Laは、第1の主面10aに垂直な方向に沿った第1の突出領域2aの寸法Tchよりも大きくてもよい。第1の主面10aに平行な方向に沿った第2の突出領域2bの寸法Lbは、第1の主面10aに垂直な方向に沿った第2の突出領域2bの寸法Tchよりも大きくてもよい。第1の主面10aに垂直な方向に沿った第1の突出領域2aおよび第2の突出領域2bの少なくとも一方の寸法Tchは、第1の主面10aに垂直な方向に沿ったソース領域14の寸法Tsの半分よりも小さくてもよいし、第1の主面10aに垂直な方向に沿った第1の突出領域2aおよび第2の突出領域2bの各々の寸法Tchは、第1の主面10aに垂直な方向に沿ったソース領域14の寸法Tsの半分よりも小さくてもよい。第1の主面10aに垂直な方向に沿った第1の突出領域2aおよび第2の突出領域2bの少なくとも一方の寸法Tchは、100nmよりも小さくてもよいし、第1の主面10aに垂直な方向に沿った第1の突出領域2aおよび第2の突出領域2bの各々の寸法Tchは、100nmよりも小さくてもよい。
 図6を参照して、チャネル長Lchと、弱反転閾値電圧との関係について説明する。図6に示すように、チャネル長Lchが大きくなると、閾値電圧は大きくなるが、チャネル長がある一定以上大きくなっても閾値電圧はある一定の値より大きくならない。つまり、閾値電圧は、チャネル長を大きくすると一定の閾値電圧Vth4に漸近する。この閾値電圧Vthを理想的な閾値電圧とよぶ。理想的な閾値電圧Vth4の90%の閾値電圧をVth3とすると、Vth3に対応するチャネル長Lch1がチャネル長と閾値電圧との関係から決定される。MOSFET1におけるチャネル長Lchは、理想的な閾値電圧Vth4の90%の閾値電圧Vth3に対応するチャネル長Lch1よりも小さいことが好ましい。
 炭化珪素層10は、第1の突出領域2aからドリフト領域17に突出し、ゲート絶縁層15と接し、かつドリフト領域17よりも高い不純物濃度を有する第1のn+領域3aを含んでいてもよい。第1のn+領域3aは、ドリフト領域17とゲート絶縁層15とに挟まれて配置されている。図1に示すように、炭化珪素層10が、断面視において対向する一対のボディ領域13を有する場合、一方のボディ領域13から他方のボディ領域13に挟まれるドリフト領域17が、第1のn+領域3aを介してゲート絶縁層15と離間するように、第1のn+領域3aが形成されてもよい。第1のn+領域3aの不純物濃度は、第2の突出領域2bと同程度であってもよい。
 炭化珪素層10は、第2の突出領域2bからソース領域14に伸長し、ゲート絶縁層15と接し、かつドリフト領域17よりも高い不純物濃度を有する第2のn+領域3bを含んでいてもよい。第2のn+領域3bは、ソース領域14とゲート絶縁層15とに挟まれて配置されている。第2のn+領域3bの不純物濃度は、第2の突出領域2bと同程度であってもよい。
 ゲート絶縁層15は、炭化珪素層10の第1の主面10aにおいて、ボディ領域13と、第1の突出領域2aと、第2の突出領域2bと、第1のn+領域3aと、第2のn+領域3bとに接して配置されている。ゲート絶縁層15はたとえば二酸化珪素からなる。ゲート絶縁層15の厚みは、たとえば50nm程度である。
 ゲート電極27は、ゲート絶縁層15を介して、ボディ領域13と、第1の突出領域2aと、第2の突出領域2bと、第1のn+領域3aと、第2のn+領域3bとに対向して配置されている。ゲート電極27は、炭化珪素層10との間にゲート絶縁層15を挟むようにゲート絶縁層15と接して配置されている。また、ゲート電極27は、不純物が添加されたポリシリコン、またはAlなどの導電体からなっている。
 ソースコンタクト電極16は、ソース領域14と、p+領域18と、ゲート絶縁層15とに接触して配置されている。ソースコンタクト電極16は、第2のn+領域3bと接していてもよい。ソースコンタクト電極16は、たとえばNiSi(ニッケルシリサイド)など、ソース領域14とオーミックコンタクト可能な材料からなっている。ソースコンタクト電極16は、Ti、AlおよびSiを含む材料からなっていてもよい。
 ドレイン電極20は、炭化珪素層10の第2の主面10bに接触して形成されている。このドレイン電極20は、たとえばNiSiなど、n型のベース基板11とオーミックコンタクト可能な材料からなっており、ベース基板11と電気的に接続されている。ドレイン電極20に接してパッド電極23が配置されている。
 層間絶縁膜21は、ゲート絶縁層15と接し、ゲート電極27を取り囲むように形成されている。層間絶縁膜21は、たとえば絶縁体である二酸化珪素からなっている。ソース配線19は、炭化珪素層10の第1の主面10aに対向する位置において、層間絶縁膜21を取り囲み、かつソースコンタクト電極16の上部表面上に接している。ソース配線19は、たとえばAlなどの導電体からなり、ソースコンタクト電極16を介してソース領域14と電気的に接続されている。
 図2を参照して、MOSFET1の炭化珪素層10は、ドリフト領域17側からボディ領域13に突出する第1の突出領域2aを有しており、ボディ領域13からドリフト領域17に突出する第1のn+領域3aを有していなくてもよい。同様に、MOSFET1の炭化珪素層10は、ソース領域14側からボディ領域13に突出する第2の突出領域2bを有しており、ボディ領域13からソース領域14に突出する第2のn+領域3bを有していなくてもよい。
 図3を参照して、MOSFET1の炭化珪素層10は、ドリフト領域17側からボディ領域13に突出する第1の突出領域2aを有しており、かつボディ領域13からドリフト領域17に突出する第1のn+領域3aを有していてもよい。また、MOSFET1の炭化珪素層10は、ソース領域14側からボディ領域13に突出する第2の突出領域2bを有していなくてもよい。また図3に示すように、断面視(第1の主面10aと平行な方向に沿った視野)において対向し合う2つの第1のn+領域3aの間にドリフト領域17が配置され、当該ドリフト領域17がゲート絶縁層15と接していてもよい。図3に示すMOSFETにおいて、チャネル領域CHの長さLchは、ボディ領域13内において、第1の主面10aに接し、かつ第1の突出領域2aおよび第1の突出領域2aと対向するボディ領域13の端部13cに挟まれた領域の第1の主面10aと平行な方向に沿った寸法に対応する。言い換えれば、チャネル領域CHの長さLchは、第1の突出領域2aと、ソース領域14とに挟まれた領域の第1の主面10aと平行な方向に沿った寸法に対応する。
 図4を参照して、MOSFET1の炭化珪素層10は、ソース領域14側からボディ領域13に突出する第2の突出領域2bを有してもよい。炭化珪素層10は、第2の突出領域2bからソース領域14に突出し、かつp+領域18に接する第2のn+領域3bを有していてもよい。またMOSFET1の炭化珪素層10は、ドリフト領域17側からボディ領域13に突出する第1の突出領域2aを有していなくてもよい。図4に示すMOSFETにおいて、チャネル領域CHの長さLchは、ボディ領域13内において、第1の主面10aに接し、かつ第2の突出領域2bおよび第2の突出領域2bと対向するボディ領域13の端部13dに挟まれた領域の第1の主面10aと平行な方向に沿った寸法に対応する。言い換えれば、チャネル領域CHの長さLchは、第2の突出領域2bと、ドリフト領域17とに挟まれた領域の第1の主面10aと平行な方向に沿った寸法に対応する。
 次に、MOSFET1の動作について説明する。図1を参照して、ゲート電極27の電圧が閾値電圧未満の状態、すなわちオフ状態では、ゲート絶縁層15の直下に位置するボディ領域13とドリフト領域17との間のpn接合が逆バイアスとなり非導通状態となる。一方、ゲート電極27に閾値電圧以上の電圧を印加すると、ボディ領域13のゲート絶縁層15と接触する付近であるチャネル領域CHにおいて反転層が形成される。その結果、ソース領域14とドリフト領域17とが電気的に接続され、ソース配線19とドレイン電極20との間に電流が流れる。
 次に、本実施の形態におけるMOSFET1の製造方法の一例について、図7~図12を参照して説明する。
 まず炭化珪素基板準備工程(S10:図7)が実施される。具体的には、たとえばポリタイプ4Hを有する六方晶炭化珪素からなるベース基板11が準備され、当該ベース基板11上にエピタキシャル成長によりn型(第1導電型)のドリフト領域17が形成される。ドリフト領域17にはたとえばN(窒素)イオンなどの不純物が含まれている。
 次に、イオン注入形成工程(S20:図7)が実施される。具体的には、図8を参照して、たとえばAl(アルミニウム)イオンがドリフト領域17にイオン注入されることによりボディ領域13が形成される。次に、ソース領域14を形成するためのイオン注入が実施される。具体的には、たとえばP(リン)イオンがボディ領域13に注入されることにより、ボディ領域13内にソース領域14が形成される。さらに、p+領域18を形成するためのイオン注入が実施される。具体的には、たとえばAlイオンがボディ領域13に注入されることにより、ボディ領域13内であって、ソース領域14と接するp+領域18が形成される。上記イオン注入は、たとえばドリフト領域17の主面10a上に二酸化珪素からなり、イオン注入を実施すべき所望の領域に開口を有するマスク層を形成し、当該マスク層を用いてイオン注入することにより実施することができる。
 次に、マスク層形成工程(S25:図7)が実施される。マスク層形成工程において、第1の主面10aにおいてボディ領域13と接するマスク層4が形成される。具体的には、図9を参照して、ボディ領域13内においてチャネル領域CHとなるべき領域を覆い、当該チャネル領域CHを挟んで対向する導電領域上に開口部を有するマスク層4が形成される。より特定的には、第1の主面10aにおいて、ボディ領域13の一部と接し、p+領域18の全面およびソース領域14の一部を覆うように、マスク層4が炭化珪素層10の第1の主面10aに形成される。ボディ領域13上に形成されたマスク層4の第1の主面10aと平行な方向に沿った寸法は、上述したチャネル長とほぼ同じであり、たとえば0.2μm以上0.6μm以下程度である。マスク層4は、後述するイオン注入のマスクであり、たとえば二酸化珪素やレジストなどからなる。
 次に、突出領域形成工程(S30:図7)が実施される。図10を参照して、上記マスク層4を用いて、少なくともボディ領域13と接する突出領域2が形成される。具体的には、マスク層4を用いて、リンイオンなど不純物(ドナー)がボディ領域13内に導入されることにより、ドリフト領域17側からボディ領域13に突出し、かつ第1の主面10aと接する第1の突出領域2aと、ソース領域14側からボディ領域13に突出し、かつ第1の主面10aと接する第2の突出領域2bとが形成される。好ましくは、突出領域2の形成は、イオン注入により行われる。また好ましくは、第1の突出領域2aおよび第2の突出領域2bの各々は、同時に形成される。なお、突出領域2は、ソース領域14およびドリフト領域17の少なくとも一方側からボディ領域13に突出するように形成される。
 上述のように第1の突出領域2aおよび第2の突出領域2bの各々は、ゲート絶縁層15と接し、かつn型(第1導電型)を有する。突出領域2は、たとえばリンなどの不純物(ドナー)を含む。突出領域2が含む不純物(ドナー)の濃度は、ボディ領域13が含む不純物(アクセプタ)の濃度よりも高い。突出領域2における、不純物(ドナー)の濃度は、たとえば1×1018cm-3程度である。
 好ましくは、突出領域2を形成する工程は、ドリフト領域17側からボディ領域13に突出するように配置された第1の突出領域2aを形成する工程と、第1の突出領域2aからドリフト領域17に突出し、第1の主面10aと接し、かつドリフト領域17よりも高い不純物濃度を有する第1のn+領域3aを形成する工程とを含む。第1の突出領域2aを形成する工程において好ましくは、第1の突出領域2aからドリフト領域17に突出し、第1の主面10aと接し、かつドリフト領域17よりも高い不純物濃度を有する第1のn+領域3aが第1の突出領域2aと同時に形成される。第2の突出領域2bを形成する工程において好ましくは、第2の突出領域2bからソース領域14に突出し、第1の主面10aと接し、かつドリフト領域17よりも高い不純物濃度を有する第2のn+領域3bが第2の突出領域2bと同時に形成される。より好ましくは、第1の突出領域2aと、第2の突出領域2bと、第1のn+領域3aと、第2のn+領域3bとが同時に形成される。
 次に、活性化アニール工程が実施される。具体的には、たとえばアルゴンなどの不活性ガス雰囲気中において、炭化珪素層10をたとえば1700℃程度に加熱して、30分間程度保持する熱処理が実施される。これにより注入された不純物が活性化する。以上により、第1の主面10aおよび第2の主面10bを有する炭化珪素層10が形成される。炭化珪素層10は、n型(第1導電型)を有するドリフト領域17と、p型(第2導電型)を有しかつドリフト領域17に接するボディ領域13と、n型を有しかつボディ領域13によってドリフト領域17と隔てられて配置されたソース領域14と、ソース領域14およびドリフト領域17の少なくとも一方側からボディ領域13に突出するように配置され、第1の主面10aと接し、かつn型を有する突出領域2とを含む。
 次に、ゲート絶縁膜形成工程(S40:図7)が実施される。具体的には、図11を参照して、たとえば酸素雰囲気中において炭化珪素層10の主面10aをたとえば1200℃以上程度1300℃以下程度に加熱して60分間程度保持する熱処理が実施される。これにより、炭化珪素層10の第1の主面10aに接し、かつ二酸化珪素からなるゲート絶縁層15が形成される。ゲート絶縁層15は、第1の主面10aにおいて、第1の突出領域2aと、第2の突出領域2bと、ドリフト領域17と、ソース領域14と、p+領域18と、第1のn+領域3aと、第2のn+領域3bと接するように形成される。またゲート絶縁層15は、図2~図4に示すように、第1の主面10aにおいてドリフト領域17に接するように形成されてもよい。
 次に、窒素アニール工程が実施される。具体的には、一酸化窒素雰囲気中において、炭化珪素層10が1300℃以上1500℃以下の温度でたとえば1時間程度保持される。その後、アルゴンや窒素などの不活性ガス中において、炭化珪素層10を加熱する熱処理が実施される。当該熱処理において、炭化珪素層10は1100℃以上1500℃以下の温度で1時間程度保持される。
 次に、ゲート電極形成工程(S50:図7)が実施される。具体的には、図12を参照して、たとえばCVD法、フォトリソグラフィおよびエッチングにより、高濃度に不純物が添加された導電体であるポリシリコンからなるゲート電極27が形成される。その後、たとえばCVD法により、絶縁体である二酸化珪素からなる層間絶縁膜21が、ゲート電極27を取り囲むように形成される。次に、フォトリソグラフィおよびエッチングによりソースコンタクト電極16を形成する領域の層間絶縁膜21とゲート絶縁層15が除去される。
 次に、オーミック電極形成工程(S60:図7)が実施される。具体的には、炭化珪素層10の主面10aにおいてソース領域14およびp+領域18と接するように、たとえば蒸着法により形成された金属膜が形成される。金属膜は、たとえばTi(チタン)原子、Al(アルミニウム)原子およびSi(シリコン)原子を含んでいてもよい。金属膜はたとえばNi原子およびSi原子を含んでいてもよい。金属膜が形成された後、当該金属膜をたとえば1000℃程度で加熱することにより、金属膜が加熱されてシリサイド化されることにより、炭化珪素層10のソース領域14とオーミック接合するソースコンタクト電極16が形成される。同様に、炭化珪素層10の第2の主面10bに接して、たとえばNiなどの金属膜が形成され、当該金属膜を加熱することにより炭化珪素層10とオーミック接合するドレイン電極20が形成される。
 次に、たとえば蒸着法により、導電体であるAlからなるソース配線19が、層間絶縁膜21を取り囲み、かつソースコンタクト電極16と接するように形成される。また、たとえばAlからなるパッド電極23がドレイン電極20と接して形成される。以上の手順により、本実施の形態に係るMOSFET1(図1参照)が完成する。
 なお、本実施の形態においては、第1導電型がn型であり、第2導電型がp型である場合について説明したが、第1導電型がp型であり、第2導電型がn型であっても構わない。
 また、本実施の形態において、炭化珪素半導体装置としてプレナー型MOSFETを例に挙げて説明したが本発明はこの形態に限定されない。たとえば、炭化珪素半導体装置は、トレンチ型MOSFETであってもよいし、IGBT(Insulated Gate Bipolar Transistor)などであっても構わない。炭化珪素半導体装置は、縦型半導体装置であってもよい。
 次に、本実施の形態に係るMOSFET1およびその製造方法の作用効果について説明する。
 本実施の形態に係るMOSFET1によれば、炭化珪素層10は、ソース領域14およびドリフト領域17の少なくとも一方側からボディ領域13に突出するように配置され、ゲート絶縁層15と接し、かつn型を有する突出領域2を含む。これにより、MOSFET1の特性オン抵抗の上昇を抑制しつつ閾値電圧を向上することができる。
 また本実施の形態に係るMOSFET1によれば、突出領域2は、ドリフト領域17側からボディ領域13に突出するように配置された第1の突出領域2aと、ソース領域14側からボディ領域13に突出するように配置された第2の突出領域2bとを含む。これにより、効果的に、MOSFET1の特性オン抵抗の上昇を抑制しつつ閾値電圧を向上することができる。
 さらに本実施の形態に係るMOSFET1によれば、主面10aに平行な方向に沿った第1の突出領域2aの寸法Laは、主面に垂直な方向に沿った第1の突出領域の寸法Tchよりも大きく、主面に平行な方向に沿った第2の突出領域2bの寸法Lbは、主面に垂直な方向に沿った第2の突出領域2bの寸法Tchよりも大きい。これにより、主面10aと接する側と反対側の第1の突出領域2aおよび第2の突出領域2bの部分における電子または正孔の引き抜き効果が、チャネル領域側の第1の突出領域2aおよび第2の突出領域2bの部分における電子または正孔の引き抜き効果よりも高くなる。それゆえ、第1の突出領域2aおよび第2の突出領域2bの各々からチャネル領域側に伸長する空乏層の広がりを低減することができる。
 さらに本実施の形態に係るMOSFET1によれば、主面10aに垂直な方向に沿った第1の突出領域2aおよび第2の突出領域2bの各々の寸法Tchは、主面10aに垂直な方向に沿ったソース領域14の寸法Tsの半分よりも小さい。これにより、炭化珪素半導体装置の特性オン抵抗の上昇を抑制しつつ閾値電圧を向上することができる。
 さらに本実施の形態に係るMOSFET1によれば、主面に垂直な方向に沿った第1の突出領域2aおよび第2の突出領域2bの各々の寸法Tchは、100nmよりも小さい。これにより、突出領域は垂直方向により空乏層を広げやすくなり、一方水平方向に空乏層は広がりにくくなるため短チャネル効果を抑制することができる。
 さらに本実施の形態に係るMOSFET1によれば、ボディ領域13内において、主面10aに接し、かつ第1の突出領域2aおよび第2の突出領域2bに挟まれたチャネル領域CHの長さは、0.5μm未満である。これにより、効果的に特性オン抵抗を低減することができる。
 さらに本実施の形態に係るMOSFET1によれば、ボディ領域13内において、主面10aに接し、かつ第1の突出領域2aおよび第2の突出領域2bに挟まれたチャネル領域CHの長さは、理想的な閾値電圧Vth4の90%の閾値電圧Vth3に対応するチャネル領域の長さLch1よりも小さい。これにより、チャネル領域の抵抗を低減することができる。
 さらに本実施の形態に係るMOSFET1によれば、突出領域2は、ソース領域14およびドリフト領域17の一方側からボディ領域13に突出するように配置される。これにより、炭化珪素半導体装置の特性オン抵抗の上昇を抑制しつつ閾値電圧を向上することができる。
 さらに本実施の形態に係るMOSFET1によれば、突出領域2は、ドリフト領域17側からボディ領域13に突出するように配置されており、炭化珪素層10は、突出領域2からドリフト領域17に突出し、ゲート絶縁層15と接し、かつドリフト領域17よりも高い不純物濃度を有する第1導電型領域3aをさらに含む。これにより、特性オン抵抗を効果的に低減することができる。
 さらに本実施の形態に係るMOSFET1によれば、主面10aに平行な方向に沿った突出領域2の寸法Laは、主面10aに垂直な方向に沿った突出領域2の寸法Tchよりも大きい。これにより、主面10aと接する側と反対側の突出領域2の部分における電子または正孔の引き抜き効果が、チャネル領域側の突出領域2の部分における電子または正孔の引き抜き効果よりも高くなる。それゆえ、突出領域2からチャネル領域側に伸長する空乏層の広がりを低減することができる。
 さらに本実施の形態に係るMOSFET1によれば、主面10aに垂直な方向に沿った突出領域2の寸法Tchは、主面10aに垂直な方向に沿ったソース領域14の寸法Tsの半分よりも小さい。これにより、炭化珪素半導体装置の特性オン抵抗の上昇を抑制しつつ閾値電圧を向上することができる。
 さらに本実施の形態に係るMOSFET1によれば、主面10aに垂直な方向に沿った突出領域2の寸法Tchは、100nmよりも小さい。これにより、突出領域は垂直方向により空乏層を広げやすくなり、一方水平方向に空乏層は広がりにくくなるため短チャネル効果を抑制することができる。
 さらに本実施の形態に係るMOSFET1によれば、ボディ領域13内において、主面10aに接し、かつ突出領域2および突出領域2と対向するボディ領域13の端部13c、13dに挟まれたチャネル領域CHの長さは、0.5μm未満である。これにより、効果的に特性オン抵抗を低減することができる。
 さらに本実施の形態に係るMOSFET1によれば、ボディ領域13内において、主面10aに接し、かつ突出領域2および突出領域2と対向するボディ領域13の端部13c、13dに挟まれたチャネル領域CHの長さは、理想的な閾値電圧Vth4の90%の閾値電圧Vth3に対応するチャネル領域の長さLch1よりも小さい。これにより、チャネル領域の抵抗を低減することができる。
 さらに本実施の形態に係るMOSFET1によれば、突出領域2の不純物濃度は、ボディ領域13の不純物濃度よりも高い。これにより、ボディ領域13を形成した後に突出領域2を形成することができる。
 さらに本実施の形態に係るMOSFET1によれば、第1導電型はn型であり、かつ第2導電型はp型である。これにより、炭化珪素半導体装置の製造しやすさを向上することができる。
 実施の形態に係る炭化珪素半導体装置の製造方法は、以下の工程を備えている。主面10aを有する炭化珪素層10が形成される。炭化珪素層10の主面10aに接するゲート絶縁層15が形成される。炭化珪素層10は、第1導電型を有するドリフト領域17と、第1導電型とは異なる第2導電型を有しかつドリフト領域17に接するボディ領域13と、第1導電型を有しかつボディ領域13によってドリフト領域17と隔てられて配置されたソース領域14と、ソース領域14およびドリフト領域17の少なくとも一方側からボディ領域13に突出するように配置され、主面10aと接し、かつ第1導電型を有する突出領域2とを含む。
 本実施の形態に係るMOSFET1の製造方法によれば、ソース領域14およびドリフト領域17の少なくとも一方側からボディ領域13に突出するように配置され、主面10aと接し、かつ第1導電型を有する突出領域2とを含む。これにより、MOSFET1の特性オン抵抗の上昇を抑制しつつ閾値電圧を向上することができる。
 また本実施の形態に係るMOSFET1の製造方法によれば、炭化珪素層10を形成する工程は、主面10aにおいてボディ領域13と接するマスク層4を形成する工程と、マスク層4を用いて、少なくともボディ領域13に接する突出領域2を形成する工程とを含む。突出領域2を有しない場合、チャネル長は、ソース領域とボディ領域との境界の位置およびボディ領域およびドリフト領域の境界の位置により決定される。つまり、チャネル長は、ソース領域およびボディ領域の双方の位置合わせのずれの影響を受けるため、チャネル長のばらつきが大きくなる。一方、上記マスク層4を用いて突出領域2を形成する場合、チャネル長はマスク層4の幅により制御される。それゆえ、チャネル長のばらつきを低減することができる。
 さらに本実施の形態に係るMOSFET1の製造方法によれば、突出領域2を形成する工程は、ドリフト領域17側からボディ領域13に突出するように配置された第1の突出領域2aを形成する工程と、第1の突出領域2aからドリフト領域17に突出し、主面10aと接し、かつドリフト領域17よりも高い不純物濃度を有する第1のn+領域3aを形成する工程とを含み、第1の突出領域2aを形成する工程および第1のn+領域3aを形成する工程は同時に実施される。これにより、特性オン抵抗を効果的に低減することができるMOSFET1を効率的に製造することができる。
 さらに本実施の形態に係るMOSFET1の製造方法によれば、突出領域2を形成する工程は、イオン注入により行われる。これにより、効率的に突出領域2を形成することができる。
 本実施例では、比較例および本発明例のMOSFETを用いて、特性オン抵抗と弱反転閾値電圧との関係を調査した。比較例のMOSFETは突出領域2を有していないのに対し、本発明例のMOSFETは突出領域2を有する。つまり、突出領域2の有無によって、特性オン抵抗と閾値電圧との関係がどのように変化するかを調査した。まず、比較例として、図13に示すような構造を有するMOSFETを準備した。当該構造のMOSFETのチャネル長Lchはソース領域14とドリフト領域17とに挟まれたボディ領域13において第1の主面10aと接するチャネル領域CHの長さである。比較例として、サンプル1~サンプル4を準備した。次に、本発明例として、図1に示すような構造を有するMOSFETを準備した。本発明例として、サンプル5~サンプル7を準備した。上記各サンプルを4個ずつ準備した。サンプル1~サンプル7の各々における、チャネル領域(pボディ領域13)の濃度を、3×1017cm-3とした。また、サンプル1~サンプル7における、チャネル長のレチクル設計値Lchを、それぞれ-0.1μm、0μm、0.1μm、0.2μm、0.6μm、0.8μmおよび1.2μmとした。なお、実際のチャネル長は、チャネル長のレチクル設計値からずれている。実際のチャネル長は、チャネル長のレチクル設計値に注入エネルギーに依存する横方向散乱の効果を加味した0.2μmから0.5μm加えた値となると予想される。
 上記サンプル1~7の各々のMOSFETの特性オン抵抗および弱反転閾値電圧を測定した。図14を参照して、特性オン抵抗および弱反転閾値電圧との関係について説明する。
 比較例のサンプル1~サンプル4の各々の特性オン抵抗と弱反転閾値電圧は、破線で示す曲線6上に位置し、本発明例のサンプル5~7の各々の特性オン抵抗と弱反転閾値電圧は、実線で示す曲線5上に位置した。望ましいMOSFETの特性は、特性オン抵抗が低く、かつ閾値電圧が高いことである。図14に示すように、本発明例に係るMOSFETは、同じ特性オン抵抗で比較すると、比較例に係るMOSFETよりも、閾値電圧が高くなることが確認された。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 1 炭化珪素半導体装置(MOSFET)、2 突出領域、2a 第1の突出領域、2b 第2の突出領域、3a 第1のn+領域(第1導電型領域)、3b 第2のn+領域、4 マスク層、10 炭化珪素層、10a 第1の主面(主面)、10b 第2の主面、11 ベース基板、13 ボディ領域、14 ソース領域、15 ゲート絶縁層、16 ソースコンタクト電極、17 ドリフト領域、18 p+領域、19 ソース配線、20 ドレイン電極、21 層間絶縁膜、23 パッド電極、27 ゲート電極、CH チャネル領域。

Claims (20)

  1.  主面を有する炭化珪素層と、
     前記炭化珪素層の前記主面に接して配置されたゲート絶縁層とを備え、
     前記炭化珪素層は、第1導電型を有するドリフト領域と、前記第1導電型とは異なる第2導電型を有しかつ前記ドリフト領域に接するボディ領域と、前記第1導電型を有し、前記ボディ領域によって前記ドリフト領域と隔てられて配置されたソース領域と、前記ソース領域および前記ドリフト領域の少なくとも一方側から前記ボディ領域に突出するように配置され、前記ゲート絶縁層と接し、かつ前記第1導電型を有する突出領域とを含む、炭化珪素半導体装置。
  2.  前記突出領域は、前記ドリフト領域側から前記ボディ領域に突出するように配置された第1の突出領域と、前記ソース領域側から前記ボディ領域に突出するように配置された第2の突出領域とを含む、請求項1に記載の炭化珪素半導体装置。
  3.  前記主面に平行な方向に沿った前記第1の突出領域の寸法は、前記主面に垂直な方向に沿った前記第1の突出領域の寸法よりも大きく、前記主面に平行な方向に沿った前記第2の突出領域の寸法は、前記主面に垂直な方向に沿った前記第2の突出領域の寸法よりも大きい、請求項2に記載の炭化珪素半導体装置。
  4.  前記主面に垂直な方向に沿った前記第1の突出領域および前記第2の突出領域の各々の寸法は、前記主面に垂直な方向に沿った前記ソース領域の寸法の半分よりも小さい、請求項2または請求項3に記載の炭化珪素半導体装置。
  5.  前記主面に垂直な方向に沿った前記第1の突出領域および前記第2の突出領域の各々の寸法は、100nmよりも小さい、請求項2または請求項3に記載の炭化珪素半導体装置。
  6.  前記ボディ領域内において、前記主面に接し、かつ前記第1の突出領域および前記第2の突出領域に挟まれたチャネル領域の長さは、0.5μm未満である、請求項2~請求項5のいずれか1項に記載の炭化珪素半導体装置。
  7.  前記ボディ領域内において、前記主面に接し、かつ前記第1の突出領域および前記第2の突出領域に挟まれたチャネル領域の長さは、理想的な閾値電圧の90%の閾値電圧に対応する前記チャネル領域の長さよりも小さい、請求項2~請求項5のいずれか1項に記載の炭化珪素半導体装置。
  8.  前記突出領域は、前記ソース領域および前記ドリフト領域の一方側から前記ボディ領域に突出するように配置される、請求項1に記載の炭化珪素半導体装置。
  9.  前記突出領域は、前記ドリフト領域側から前記ボディ領域に突出するように配置されており、
     前記炭化珪素層は、前記突出領域から前記ドリフト領域に突出し、前記ゲート絶縁層と接し、かつ前記ドリフト領域よりも高い不純物濃度を有する第1導電型領域をさらに含む、請求項8に記載の炭化珪素半導体装置。
  10.  前記主面に平行な方向に沿った前記突出領域の寸法は、前記主面に垂直な方向に沿った前記突出領域の寸法よりも大きい、請求項8または請求項9に記載の炭化珪素半導体装置。
  11.  前記主面に垂直な方向に沿った前記突出領域の寸法は、前記主面に垂直な方向に沿った前記ソース領域の寸法の半分よりも小さい、請求項8~請求項10のいずれか1項に記載の炭化珪素半導体装置。
  12.  前記主面に垂直な方向に沿った前記突出領域の寸法は、100nmよりも小さい、請求項8~請求項10のいずれか1項に記載の炭化珪素半導体装置。
  13.  前記ボディ領域内において、前記主面に接し、かつ前記突出領域および前記突出領域と対向する前記ボディ領域の端部に挟まれたチャネル領域の長さは、0.5μm未満である、請求項8~請求項12のいずれか1項に記載の炭化珪素半導体装置。
  14.  前記ボディ領域内において、前記主面に接し、かつ前記突出領域および前記突出領域と対向する前記ボディ領域の端部に挟まれたチャネル領域の長さは、理想的な閾値電圧の90%の閾値電圧に対応する前記チャネル領域の長さよりも小さい、請求項8~請求項12のいずれか1項に記載の炭化珪素半導体装置。
  15.  前記突出領域の不純物濃度は、前記ボディ領域の不純物濃度よりも高い、請求項1~請求項14のいずれか1項に記載の炭化珪素半導体装置。
  16.  前記第1導電型はn型であり、かつ前記第2導電型はp型である、請求項1~請求項15のいずれか1項に記載の炭化珪素半導体装置。
  17.  主面を有する炭化珪素層を形成する工程と、
     前記炭化珪素層の前記主面に接するゲート絶縁層を形成する工程とを備え、
     前記炭化珪素層は、第1導電型を有するドリフト領域と、前記第1導電型とは異なる第2導電型を有しかつ前記ドリフト領域に接するボディ領域と、前記第1導電型を有しかつ前記ボディ領域によって前記ドリフト領域と隔てられて配置されたソース領域と、前記ソース領域および前記ドリフト領域の少なくとも一方側から前記ボディ領域に突出するように配置され、前記主面と接し、かつ前記第1導電型を有する突出領域とを含む、炭化珪素半導体装置の製造方法。
  18.  前記炭化珪素層を形成する工程は、前記主面において前記ボディ領域と接するマスク層を形成する工程と、前記マスク層を用いて、少なくとも前記ボディ領域に接する前記突出領域を形成する工程とを含む、請求項17に記載の炭化珪素半導体装置の製造方法。
  19.  前記突出領域を形成する工程は、前記ドリフト領域側から前記ボディ領域に突出するように配置された第1の突出領域を形成する工程と、前記第1の突出領域から前記ドリフト領域に突出し、前記主面と接し、かつ前記ドリフト領域よりも高い不純物濃度を有する第1導電型領域を形成する工程とを含み、
     前記第1の突出領域を形成する工程および前記第1導電型領域を形成する工程は同時に実施される、請求項18に記載の炭化珪素半導体装置の製造方法。
  20.  前記突出領域を形成する工程は、イオン注入により行われる、請求項17~請求項19のいずれか1項に記載の炭化珪素半導体装置の製造方法。
PCT/JP2014/065775 2013-07-31 2014-06-13 炭化珪素半導体装置およびその製造方法 WO2015015926A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/908,846 US9786741B2 (en) 2013-07-31 2014-06-13 Silicon carbide semiconductor device and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-159232 2013-07-31
JP2013159232A JP2015032614A (ja) 2013-07-31 2013-07-31 炭化珪素半導体装置およびその製造方法

Publications (1)

Publication Number Publication Date
WO2015015926A1 true WO2015015926A1 (ja) 2015-02-05

Family

ID=52431470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065775 WO2015015926A1 (ja) 2013-07-31 2014-06-13 炭化珪素半導体装置およびその製造方法

Country Status (3)

Country Link
US (1) US9786741B2 (ja)
JP (1) JP2015032614A (ja)
WO (1) WO2015015926A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108780816A (zh) * 2016-02-24 2018-11-09 通用电气公司 碳化硅装置及其制作方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105874604B (zh) * 2014-07-23 2019-03-19 富士电机株式会社 半导体装置及半导体装置的制造方法
WO2016132987A1 (ja) * 2015-02-20 2016-08-25 住友電気工業株式会社 炭化珪素半導体装置
JP6625938B2 (ja) * 2016-07-22 2019-12-25 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
CN107579118A (zh) * 2017-07-24 2018-01-12 中国电子科技集团公司第五十五研究所 一种碳化硅开关器件及制作方法
SE542607C2 (en) 2018-06-29 2020-06-16 Ascatron Ab MOSFET in SiC with self-aligned lateral MOS channel
KR102369049B1 (ko) * 2020-07-07 2022-03-02 현대모비스 주식회사 전력 반도체 소자 및 그 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066438A (ja) * 2004-08-24 2006-03-09 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2006303323A (ja) * 2005-04-22 2006-11-02 Rohm Co Ltd 半導体装置およびその製造方法
JP2012124536A (ja) * 2012-03-23 2012-06-28 Sumitomo Electric Ind Ltd 酸化膜電界効果トランジスタおよびその製造方法
JP2012235001A (ja) * 2011-05-06 2012-11-29 Mitsubishi Electric Corp 半導体装置およびその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4620368B2 (ja) * 2004-03-08 2011-01-26 三菱電機株式会社 半導体装置の製造方法
JP5098489B2 (ja) * 2007-07-27 2012-12-12 住友電気工業株式会社 酸化膜電界効果トランジスタの製造方法
JP4858791B2 (ja) * 2009-05-22 2012-01-18 住友電気工業株式会社 半導体装置およびその製造方法
JP5728954B2 (ja) 2011-01-13 2015-06-03 住友電気工業株式会社 炭化珪素半導体装置の製造方法
JP5811829B2 (ja) * 2011-12-22 2015-11-11 住友電気工業株式会社 半導体装置の製造方法
US9450056B2 (en) * 2012-01-17 2016-09-20 Taiwan Semiconductor Manufacturing Company, Ltd. Lateral DMOS device with dummy gate
JP2013175593A (ja) * 2012-02-24 2013-09-05 Rohm Co Ltd 半導体装置およびその製造方法
JP5814881B2 (ja) * 2012-07-31 2015-11-17 株式会社東芝 トランジスタ及びその製造方法
US9425153B2 (en) * 2013-04-04 2016-08-23 Monolith Semiconductor Inc. Semiconductor devices comprising getter layers and methods of making and using the same
EP3024017A4 (en) * 2013-07-16 2017-03-01 Hitachi, Ltd. Semiconductor device and method for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066438A (ja) * 2004-08-24 2006-03-09 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2006303323A (ja) * 2005-04-22 2006-11-02 Rohm Co Ltd 半導体装置およびその製造方法
JP2012235001A (ja) * 2011-05-06 2012-11-29 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2012124536A (ja) * 2012-03-23 2012-06-28 Sumitomo Electric Ind Ltd 酸化膜電界効果トランジスタおよびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108780816A (zh) * 2016-02-24 2018-11-09 通用电气公司 碳化硅装置及其制作方法
CN108780816B (zh) * 2016-02-24 2022-03-18 通用电气公司 碳化硅装置及其制作方法

Also Published As

Publication number Publication date
JP2015032614A (ja) 2015-02-16
US9786741B2 (en) 2017-10-10
US20160181373A1 (en) 2016-06-23

Similar Documents

Publication Publication Date Title
JP5433352B2 (ja) 半導体装置の製造方法
WO2015015926A1 (ja) 炭化珪素半導体装置およびその製造方法
JP5994604B2 (ja) 炭化珪素半導体装置およびその製造方法
US9362121B2 (en) Method of manufacturing a silicon carbide semiconductor device
JP5002693B2 (ja) 半導体装置
WO2012169224A1 (ja) 半導体装置
JP6237408B2 (ja) 炭化珪素半導体装置およびその製造方法
WO2012014617A1 (ja) 半導体装置
WO2010116886A1 (ja) 絶縁ゲート型バイポーラトランジスタ
JP2008503894A (ja) 炭化ケイ素デバイスおよびその作製方法
JP2012243966A (ja) 半導体装置
WO2017051616A1 (ja) 炭化珪素半導体装置およびその製造方法
JP5802492B2 (ja) 半導体素子及びその製造方法
JP5751146B2 (ja) 半導体装置およびその製造方法
JP6250938B2 (ja) 半導体装置及びその製造方法
US9806167B2 (en) Method for manufacturing silicon carbide semiconductor device
JP7074173B2 (ja) 半導体装置および半導体装置の製造方法
CA3025767C (en) Semiconductor device
JP2014060272A (ja) 炭化珪素半導体装置およびその製造方法
JP2023104657A (ja) 炭化珪素半導体装置
JP2022019004A (ja) 半導体装置
JP2014017376A (ja) 炭化珪素半導体装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832506

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14908846

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14832506

Country of ref document: EP

Kind code of ref document: A1