WO2012070592A1 - 自動車ランプエクステンション成形体 - Google Patents

自動車ランプエクステンション成形体 Download PDF

Info

Publication number
WO2012070592A1
WO2012070592A1 PCT/JP2011/076960 JP2011076960W WO2012070592A1 WO 2012070592 A1 WO2012070592 A1 WO 2012070592A1 JP 2011076960 W JP2011076960 W JP 2011076960W WO 2012070592 A1 WO2012070592 A1 WO 2012070592A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
resin composition
parts
component
molded article
Prior art date
Application number
PCT/JP2011/076960
Other languages
English (en)
French (fr)
Inventor
山口 徹
古河 弘昭
剛士 藤沢
三井 昭
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to CN201180056365.0A priority Critical patent/CN103221484B/zh
Priority to JP2012545773A priority patent/JP5868871B2/ja
Priority to US13/884,025 priority patent/US8895655B2/en
Priority to EP11843397.8A priority patent/EP2644655B1/en
Priority to MX2013005424A priority patent/MX355310B/es
Publication of WO2012070592A1 publication Critical patent/WO2012070592A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/50Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by aesthetic components not otherwise provided for, e.g. decorative trim, partition walls or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/50Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by aesthetic components not otherwise provided for, e.g. decorative trim, partition walls or covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile

Definitions

  • the present invention relates to an automobile lamp extension molded body.
  • thermosetting resins such as unsaturated polyester resins, bulk molding compounds (BMC), or aluminum materials have been widely used.
  • Thermosetting resins are superior in that they are lighter than aluminum materials, but still require further weight reduction because their specific gravity exceeds 2.0.
  • there are also problems such as the complexity of post-processing work of the molded product and contamination of the working environment due to dust and the like peculiar to thermosetting resins. Therefore, as materials used for parts around automobile lamps, the conversion of materials from thermosetting resins and aluminum materials to thermoplastic resins such as polyetherimide and high heat-resistant polycarbonate that can be directly deposited on aluminum is possible. Progressing. However, even these thermoplastic resins are insufficient in terms of light weight, and materials with a lower specific gravity are desired in consideration of environmental and energy saving aspects.
  • Polyphenylene ether resin has excellent properties such as mechanical properties, electrical properties, acid resistance, alkali resistance, heat resistance, low specific gravity, low water absorption, and good dimensional stability. ing. Therefore, it is widely used as a material for home appliances, OA equipment, office machines, information equipment, automobiles, etc., especially in applications that require high heat resistance and rigidity such as parts around automobile lamps. Demand for resin compositions designed with a high ratio of ether resin content is expected.
  • thermoplastic resin containing a polyphenylene ether resin As a method for improving the heat resistance and mechanical properties of a thermoplastic resin containing a polyphenylene ether resin, a method of adding an inorganic filler such as glass fiber, carbon fiber, mica or talc is generally used.
  • an inorganic filler such as glass fiber, carbon fiber, mica or talc
  • the resin composition obtained by the above method has many applications that cannot be used. In particular, it is extremely difficult to apply in automotive extension member applications.
  • HIPS rubber-reinforced polystyrene
  • inorganic filler a small amount of rubber-reinforced polystyrene is blended.
  • the brightness of the resulting molded product tends to be impaired.
  • Patent Document 1 The resin composition described in Patent Document 1 is certainly excellent in heat resistance and molding fluidity due to the addition of liquid crystal polyester, but on the other hand, the addition of a crystalline polymer impairs the brightness of the molded product. As a material applied to the automotive lamp extension molded body, it is not always sufficient and there is room for improvement.
  • the conventionally proposed polyphenylene ether resin composition for automobile lamp members can be applied to molded articles for automobile lamp members for various uses, but on the surface of the molded article after aluminum vapor deposition.
  • Patent Document 2 certainly improves the heat aging resistance by adding a specific stabilizer.
  • Patent Document 2 describes white spots in a molded article after aluminum deposition and its improvement. There is no description about the above, and the claims and examples have not been studied on a technique effective in improving white spots after aluminum deposition in an automotive lamp extension molded body.
  • the present invention provides an automotive lamp extension molded article having a low specific gravity, a good balance between heat resistance and molding fluidity, and further comprising a resin composition having excellent molded product gloss and brightness.
  • the purpose is to do.
  • the present invention is as follows.
  • An automotive lamp extension molded article comprising a resin composition containing 50 to 95% by mass of polyphenylene ether (A) and having a specific gravity in the range of 1.00 to 1.12.
  • the resin composition comprises at least one resin component (B) 5 to 5 selected from the group consisting of a styrene resin (B1) not reinforced with rubber, a styrene thermoplastic elastomer (B2), and a polycarbonate resin (B3).
  • the automotive lamp extension molded article according to any one of [1] to [3], further containing 50% by mass.
  • the component (B2) comprises a hydrogenated styrene-conjugated diene compound block copolymer (B2-1) having a bound styrene content of 45 to 80% by mass and a styrene-conjugated compound having a bound styrene content of 20 to 40% by mass.
  • the automotive lamp extension molded article according to any one of [6] to [6].
  • the resin composition has an MFR (measured at 280 ° C., 10 kg) of 20 g / 10 min or more and a Vicat softening temperature (according to ISO 306, measured at a test load of 50 N and a heating rate of 120 ° C./hr) of 160 ° C. or more.
  • MFR measured at 280 ° C., 10 kg
  • Vicat softening temperature according to ISO 306, measured at a test load of 50 N and a heating rate of 120 ° C./hr
  • a molded article having a low specific gravity, a good balance between heat resistance and fluidity, and further comprising a resin composition excellent in gloss and brightness of the molded article.
  • the molded body can be used well as a molded body for an automobile lamp extension.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
  • the automobile lamp extension molded article according to the present embodiment includes a resin composition containing 50 to 95% by mass of polyphenylene ether (A) and having a specific gravity in the range of 1.00 to 1.12.
  • the resin composition used in the present embodiment contains 50 to 95% by mass of polyphenylene ether (A) and has a specific gravity in the range of 1.00 to 1.12.
  • the present inventors have a low specific gravity, a good balance between heat resistance and fluidity, and also excellent brightness on the glossy surface of the molded product. It has been found that an automotive lamp extension molded body can be obtained.
  • each component of the above resin composition will be described in detail.
  • the reduced viscosity of the polyphenylene ether (A) used in the present embodiment is preferably in the range of 0.25 to 0.45 dl / g, more preferably 0.25 to 0.40 dl / g, and still more preferably Is 0.25 to 0.38 dl / g, particularly preferably in the range of 0.25 to 0.35 dL / g.
  • the reduced viscosity of the polyphenylene ether (A) is preferably 0.25 dl / g or more from the viewpoint of sufficient mechanical properties, and is preferably 0.45 dl / g or less from the viewpoint of molding processability and brightness of the molded body.
  • the reduced viscosity is a value obtained by measuring at 30 ° C. using a chloroform solvent.
  • the polyphenylene ether (A) is a homopolymer having a repeating unit of [a] or [b] of the following formula (1) and the structural unit consisting of [a] or [b] of the general formula (1). Or a copolymer (copolymer).
  • R1, R2, R3, R4, R5 and R6 are each independently an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms. And monovalent residues such as halogen and hydrogen. However, in this case, the case where R5 and R6 are simultaneously hydrogen is excluded. Further, the alkyl group preferably has 1 to 3 carbon atoms, the aryl group preferably has 6 to 8 carbon atoms, and more preferably hydrogen among the monovalent residues.
  • the number of repeating units in [a] and [b] in (1) is not particularly limited because it varies depending on the molecular weight distribution of the polyphenylene ether (A).
  • the homopolymer of polyphenylene ether is not limited to the following, but examples thereof include poly (2,6-dimethyl-1,4-phenylene) ether and poly (2-methyl-6-ethyl-1,4-phenylene) ether.
  • the copolymer of polyphenylene ether is not limited to the following, but examples thereof include a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol, and a copolymer of 2,6-dimethylphenol and o-cresol. Examples thereof include those mainly composed of a polyphenylene ether structure, such as a copolymer and a copolymer of 2,3,6-trimethylphenol and o-cresol. Among them, a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol is preferable from the viewpoint of easy availability of raw materials and processability, and 2,6-dimethylphenol from 90 to 70 from the viewpoint of improving physical properties. More preferred is a copolymer of 10% by mass with 2,3,6-trimethylphenol by mass.
  • Polyphenylene ether (A) may be used alone or in combination of two or more.
  • polyphenylene ether (A) may contain other various phenylene ether units as partial structures as long as they do not deviate from the desired effects of the present embodiment.
  • a phenylene ether unit is not limited to the following, but is, for example, 2- (dialkylaminomethyl) -6-methylphenylene ether described in JP-A-01-297428 and JP-A-63-301222. Units and 2- (N-alkyl-N-phenylaminomethyl) -6-methylphenylene ether units.
  • a small amount of diphenoquinone or the like may be bonded to the main chain of polyphenylene ether.
  • a part or all of the polyphenylene ether is substituted with an acyl functional group and at least one selected from the group consisting of carboxylic acid, acid anhydride, acid amide, imide, amine, orthoester, hydroxy and ammonium carboxylate.
  • a functionalized polyphenylene ether may be obtained by reacting (modifying) with a functionalizing agent.
  • the ratio of the weight average molecular weight Mw to the number average molecular weight Mn (Mw / Mn value) of the polyphenylene ether (A) is preferably 2.0 to 5.5, more preferably 2.5 to 4.5, More preferably, it is 3.0 to 4.5.
  • the Mw / Mn value is preferably 2.0 or more from the viewpoint of molding processability of the resin composition, and preferably 5.5 or less from the viewpoint of mechanical properties of the resin composition.
  • the weight average molecular weight Mw and the number average molecular weight Mn can be measured by gel permeation chromatography (GPC), and are obtained from the polystyrene equivalent molecular weight.
  • the residual volatile content of the polyphenylene ether (A) is preferably 0.3% by mass (3000 ppm) or less from the viewpoint of improving the surface appearance of the molded article. More preferably, it is 0.1 mass% (1000 ppm) or less.
  • the polyphenylene ether having a residual volatile content of 0.3% by mass or less is not limited to the following, but can be suitably manufactured by adjusting the drying temperature and drying time after polymerization of the polyphenylene ether, for example.
  • the drying temperature include 40 to 200 ° C., preferably 80 to 180 ° C., and more preferably 120 to 170 ° C. 40 ° C. or higher is desirable from the viewpoint of drying efficiency, and drying at 200 ° C. or lower is desirable from the viewpoint of seizure by melting and prevention of deterioration.
  • the drying time is 0.5 to 72 hours, preferably 2 to 48 hours, more preferably 6 to 24 hours.
  • the polymerization is not adversely affected, the environment is hardly adversely affected, and It is preferable to polymerize in advance using a polymerization solvent having a relatively low boiling point and being easily volatilized.
  • the polymerization solvent include, but are not limited to, toluene. More specifically, after polymerizing a polyphenylene ether having a reduced viscosity within the above range by a known polymerization method, the resulting polymer is sufficiently dried using a vacuum dryer or the like, thereby remaining. A polyphenylene ether having a volatile content within the above range can be produced. In addition, even if it uses things other than the above-mentioned preferable polymerization solvent, the polyphenylene ether whose residual volatile matter is in the said range can be manufactured by fully drying.
  • the content of polyphenylene ether (A) used in the present embodiment is in the range of 50 to 95% by mass in 100% by mass of the resin composition. It is preferably in the range of 60 to 90% by mass, more preferably 65 to 85% by mass.
  • the content of the polyphenylene ether (A) is 50% by mass or more from the viewpoint of heat resistance required for this application, and is 95% by mass or less from the viewpoint of appearance of the molded body and maintenance of brightness.
  • the resin composition used in the present embodiment includes a styrene-based resin (B1), a styrene-based thermoplastic elastomer (B2), and a polycarbonate that are not reinforced with rubber from the viewpoint of improving moldability, appearance of the molded body, and brightness. It is preferable to further contain 5 to 50% by mass of at least one resin component (B) selected from the group consisting of the resin (B3).
  • the content of the resin component (B) is more preferably 10 to 40% by mass, still more preferably 15 to 35% by mass in 100% by mass of the resin composition.
  • the content of the resin component (B) is preferably 50% by mass or less from the viewpoint of heat resistance required for this application, and 5% by mass from the viewpoint of impact resistance, brightness, and molding fluidity improvement of the molded product. % Or more is preferable.
  • the resin component (B) is at least one selected from the group consisting of a styrene resin (B1), a polycarbonate resin (B2), and a styrene thermoplastic elastomer (B3) that are not reinforced with rubber.
  • the non-rubber-reinforced styrene resin (B1) used in the present embodiment is a styrene compound or a styrene compound and a compound copolymerizable with the styrene compound. It is a synthetic resin obtained by polymerization in the presence.
  • a styrene-type compound means the compound represented by following formula (2).
  • R is hydrogen, lower alkyl or halogen
  • Z is one or more selected from the group consisting of vinyl group, hydrogen, halogen and lower alkyl group
  • p is an integer of 0 to 5 It is.
  • styrene examples include, but are not limited to, styrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, monochlorostyrene, p-methylstyrene, p-tert-butylstyrene. And ethyl styrene.
  • examples of the compound copolymerizable with the styrene compound include methacrylic acid esters such as methyl methacrylate and ethyl methacrylate; unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; and acid anhydrides such as maleic anhydride.
  • a preferred styrene resin (B1) is a styrene-acrylonitrile (AS) resin having an acrylonitrile (AN) unit content of 5 to 15% by mass.
  • the content of the acrylonitrile unit in the AS resin is preferably 5 to 15% by mass from the viewpoint of improving the surface appearance of the obtained molded product and ensuring sufficient miscibility with polyphenylene ether. Preferably it is 5 to 12% by mass, and even more preferably 7 to 10% by mass.
  • the styrene resin (B1) that is not reinforced with rubber used in the present embodiment may be used alone or in combination of two or more.
  • the content of the styrene resin (B1) not reinforced with rubber used in the present embodiment is preferably in the range of 5 to 40% by mass with respect to 100% by mass of the entire resin composition, The content is preferably 8 to 30% by mass, more preferably 8 to 25% by mass, and particularly preferably 8 to 20% by mass.
  • the content of the styrene-based resin (B1) not reinforced with rubber is preferably 5% by mass or more from the viewpoint of improving the appearance of the molded product and improving the molding fluidity, and 40% by mass or less from the viewpoint of sufficient heat resistance. preferable.
  • the styrenic thermoplastic elastomer (B2) is a hydrogenated product of a block copolymer having a styrene block and a conjugated diene compound block (hereinafter also referred to as “styrene block-conjugated diene compound block copolymer”). Is preferred.
  • the conjugated diene compound block is preferably hydrogenated at a hydrogenation rate of at least 50% from the viewpoint of thermal stability. The hydrogenation rate is more preferably 80% or more, and even more preferably 95% or more.
  • Styrenic thermoplastic elastomer (B2) may be used alone or in combination of two or more.
  • conjugated diene compound block examples include, but are not limited to, polybutadiene, polyisoprene, poly (ethylene / butylene), poly (ethylene / propylene), and vinyl-polyisoprene.
  • the said conjugated diene compound block may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the arrangement of the repeating units constituting the styrene block-conjugated diene compound block copolymer may be a linear type or a radial type.
  • the block structure constituted by the polystyrene block and the rubber intermediate block may be any of two types, three types, and four types. Among these, from the viewpoint that the desired effect can be sufficiently exerted in the present embodiment, a three-type linear block copolymer composed of a polystyrene-poly (ethylene / butylene) -polystyrene structure is preferable.
  • the conjugated diene compound block may contain butadiene units within a range not exceeding 30% by mass.
  • a functionalized styrene thermoplastic elastomer obtained by introducing a functional group such as a carbonyl group or an amino group into a styrene thermoplastic elastomer. is there.
  • the carbonyl group is introduced by modification with an unsaturated carboxylic acid or a functional derivative thereof.
  • unsaturated carboxylic acids or functional derivatives thereof include, but are not limited to, for example, maleic acid, fumaric acid, itaconic acid, halogenated maleic acid, cis-4-cyclohexene-1,2-dicarboxylic acid, and Endo-cis-bicyclo [2,2,1] -5-heptene-2,3-dicarboxylic acid, and anhydrides, ester compounds, amide compounds and imide compounds of these dicarboxylic acids, as well as acrylic acid and methacrylic acid, and These monocarboxylic acid ester compounds and amide compounds may be mentioned.
  • maleic anhydride is preferred from the viewpoint of maintaining the surface appearance of the molded body and imparting impact resistance.
  • the above amino group is introduced by reacting an imidazolidinone compound or a pyrrolidone compound with a styrene thermoplastic elastomer.
  • the amount of bonded styrene is 45 to 80% by mass as the component (B2) from the viewpoint of improving the gloss of the molded product, imparting further impact resistance, and preventing delamination of the molded product. It is preferable to contain a hydrogenated product (B2-1) of a styrene-conjugated diene compound block copolymer.
  • (B2-1) / (B2) and a hydrogenated product (B2-2) of a styrene-conjugated diene compound block copolymer having a bound styrene content of 20 to 40% by mass are represented by (B2-1) / (B2 -2) It is more preferable to use in combination at a mass ratio of 4/1 to 1/4.
  • the component (B2-2) is more preferably blended so as to achieve such a mass ratio.
  • the component (B2-2) is preferably blended so as to achieve such a mass ratio.
  • the amount of bound styrene of the component (B2-1) is selected from the range of 45 to 80% by mass, preferably 50 to 75% by mass, more preferably 55 to 70% by mass.
  • the amount of bound styrene of the component (B2-1) is preferably 45% by mass or more from the viewpoint of suppressing delamination due to mixing with the component (B2-2), and preferably 80% by mass or less from the viewpoint of maintaining impact resistance.
  • the amount of bound styrene of the component (B2-2) is selected from the range of 20 to 40% by mass, preferably 25 to 40% by mass, more preferably 25 to 35% by mass.
  • the amount of bound styrene of the component (B2-2) is preferably 20% by mass or more from the viewpoint of miscibility with the component (A), and preferably 40% by mass or less from the viewpoint of imparting sufficient impact resistance.
  • the number average molecular weight of the component (B2-1) is preferably 5,000 to 150,000, more preferably 10,000 to 120,000, and still more preferably 30,000 to 100,000.
  • the number average molecular weight of the component (B2-1) is preferably in the range of 5,000 to 150,000 from the viewpoint of miscibility with the component (B2-2).
  • the number average molecular weight of the component (B2-2) is preferably 50,000 to 500,000, more preferably 100,000 to 400,000, and still more preferably 150,000 to 300,000.
  • the number average molecular weight of the component (B2-2) is preferably in the range of 50,000 to 500,000 from the viewpoint of imparting sufficient impact resistance.
  • the ratio of the weight average molecular weight Mw to the number average molecular weight Mn (Mw / Mn value) of the component (B2) is preferably 1.0 to 3.0, more preferably 1.0 to 2.0, and even more. Preferably it is in the range of 1.0 to 1.5. From the viewpoint of mechanical properties, a range of 1.0 to 3.0 is preferable.
  • the weight average molecular weight Mw and the number average molecular weight Mn can be measured by gel permeation chromatography (GPC), and are obtained from the polystyrene-equivalent molecular weight.
  • the content of the styrenic thermoplastic elastomer (B2) used in the present embodiment is preferably in the range of 1 to 15% by weight, more preferably 2 to 2% with respect to 100% by weight of the entire resin composition. It is 12% by mass, more preferably 4 to 10% by mass, and particularly preferably 4 to 8% by mass.
  • the content of the styrenic thermoplastic elastomer (B2) is preferably 1% by mass or more from the viewpoint of imparting impact resistance and improving the appearance of the molded article, and preferably 15% by mass or less from the viewpoint of heat resistance and rigidity retention.
  • the component (B) preferably contains a polycarbonate resin (B3).
  • the component (B) preferably contains a styrene-acrylonitrile (AS) resin and a polycarbonate resin (B3) having an acrylonitrile (AN) unit content of 5 to 15% by mass.
  • AS styrene-acrylonitrile
  • AN acrylonitrile
  • Polycarbonate resin (B3) may be used individually by 1 type, and may be used together 2 or more types.
  • Examples of the polycarbonate resin (B3) include aromatic polycarbonates, aliphatic polycarbonates, and aromatic-aliphatic polycarbonates. In the present embodiment, aromatic polycarbonates are preferable.
  • An aromatic polycarbonate is obtained by reacting a dihydric phenol and a carbonate precursor.
  • reaction method examples include an interfacial polycondensation method, a melt transesterification method, a solid phase transesterification method of a carbonate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound.
  • dihydric phenol examples include hydroquinone, resorcinol, 4,4′-biphenol, 1,1-bis (4-hydroxyphenyl) ethane, and 2,2-bis (4-hydroxyphenyl) propane (commonly referred to as bisphenol A).
  • a preferable dihydric phenol is bis (4-hydroxyphenyl) alkane, and bisphenol A is more preferable from the viewpoint of impact resistance.
  • Examples of the carbonate precursor include carbonyl halide, carbonate ester, haloformate, and the like, and specifically, phosgene, diphenyl carbonate, dihaloformate of dihydric phenol, and the like.
  • Antioxidant to prevent oxidation of catalyst, terminal terminator and dihydric phenol as necessary when producing aromatic polycarbonate by interfacial polymerization method using the dihydric phenol and the carbonate precursor An agent or the like may be used.
  • the aromatic polycarbonate is a branched aromatic polycarbonate obtained by copolymerization of a trifunctional or higher polyfunctional aromatic compound, or a polyester carbonate obtained by copolymerization of an aromatic or aliphatic (including alicyclic) difunctional carboxylic acid.
  • a copolymer polycarbonate obtained by copolymerizing a bifunctional alcohol (including an alicyclic group) and a polyester carbonate obtained by copolymerizing the bifunctional carboxylic acid and the difunctional alcohol together may be included.
  • the mixture which mixed 2 or more types of the obtained polycarbonate may be sufficient.
  • trifunctional or higher polyfunctional aromatic compound examples include 1,1,1-tris (4-hydroxyphenyl) ethane and 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl). Ethane etc. can be used.
  • the proportion is preferably 0.001 to 1 mol%, more preferably 0.005 to 0, based on the total amount of the aromatic polycarbonate. 0.9 mol%, more preferably 0.01 to 0.8 mol%.
  • a branched structure may be generated as a side reaction.
  • the amount of the branched structure is also 0.001 to 1 mol% in the total amount of the aromatic polycarbonate. Is more preferably 0.005 to 0.9 mol%, and still more preferably 0.01 to 0.8 mol%.
  • the content of the polyfunctional compound and the amount of branched structure can be calculated by 1 H-NMR measurement.
  • the aliphatic difunctional carboxylic acid is preferably ⁇ , ⁇ -dicarboxylic acid.
  • aliphatic difunctional carboxylic acid examples include, for example, sebacic acid (decanedioic acid), dodecanedioic acid, tetradecanedioic acid, octadecanedioic acid, icosanedioic acid and other linear saturated aliphatic dicarboxylic acids, and cyclohexane.
  • Aliphatic dicarboxylic acids such as dicarboxylic acids are preferred.
  • an alicyclic diol is preferable, and examples thereof include cyclohexanedimethanol, cyclohexanediol, and tricyclodecane dimethanol.
  • aromatic polycarbonate a polycarbonate-polyorganosiloxane copolymer obtained by copolymerizing polyorganosiloxane units can be used.
  • the aromatic polycarbonate includes two types of aromatic polycarbonates such as the above-described aromatic polycarbonates having different dihydric phenols, aromatic polycarbonates containing a branched component, various polyester carbonates, and polycarbonate-polyorganosiloxane copolymers. A mixture of the above may be used.
  • the reaction by the interfacial polycondensation method is usually a reaction of dihydric phenol and phosgene, and it is preferable to carry out the reaction in the presence of an acid binder and an organic solvent.
  • an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an amine compound such as pyridine is used.
  • organic solvent for example, halogenated hydrocarbons such as methylene chloride and chlorobenzene are used.
  • a catalyst such as a tertiary amine such as triethylamine, tetra-n-butylammonium bromide, tetra-n-butylphosphonium bromide, a quaternary ammonium compound, or a quaternary phosphonium compound may be used. it can.
  • the reaction temperature is preferably 0 to 40 ° C.
  • the reaction time is preferably about 10 minutes to 5 hours
  • the pH during the reaction is 9 or more. Is preferably maintained.
  • a terminal terminator in the polymerization reaction by the interfacial polycondensation method.
  • monofunctional phenols can be used.
  • monofunctional phenols for example, monofunctional phenols such as phenol, p-tert-butylphenol, and p-cumylphenol are preferably used.
  • examples of the monofunctional phenols include decylphenol, dodecylphenol, tetradecylphenol, hexadecylphenol, octadecylphenol, eicosylphenol, docosylphenol, and triacontylphenol.
  • end terminator may be used alone or in combination of two or more.
  • the reaction by the melt transesterification method in the polymerization reaction of an aromatic polycarbonate is usually a transesterification reaction between a dihydric phenol and a carbonate ester, and the dihydric phenol and the carbonate ester are heated in the presence of an inert gas. It is preferably carried out by a method in which the resulting alcohol or phenol is distilled while mixing.
  • the reaction temperature in the melt transesterification method varies depending on the boiling point of the alcohol or phenol produced, but is usually preferably in the range of 120 to 350 ° C. In the latter stage of the reaction, it is preferable to facilitate the distillation of the alcohol or phenol produced by reducing the pressure of the reaction system to about 1.33 ⁇ 10 3 to 13.3 Pa.
  • the reaction time is usually preferably about 1 to 4 hours.
  • carbonate ester examples include esters such as an aryl group having 6 to 10 carbon atoms, an aralkyl group, or an alkyl group having 1 to 4 carbon atoms which may have a substituent. Among them, diphenyl carbonate is preferable.
  • a polymerization catalyst can be used to increase the polymerization rate in the melt transesterification method.
  • the polymerization catalyst include alkali metal compounds such as sodium hydroxide, potassium hydroxide, sodium salt and potassium salt of dihydric phenol; alkaline earth metal compounds such as calcium hydroxide, barium hydroxide and magnesium hydroxide; Catalysts such as nitrogen-containing basic compounds such as methylammonium hydroxide, tetraethylammonium hydroxide, trimethylamine, and triethylamine can be used.
  • alkali (earth) metal alkoxides alkali (earth) metal organic acid salts, boron compounds, germanium compounds, antimony compounds, titanium compounds, zirconium compounds, etc.
  • the catalyst used for the exchange reaction can be used.
  • the polymerization catalyst may be used alone or in combination of two or more.
  • the amount of these polymerization catalysts used is preferably 1 ⁇ 10 ⁇ 8 to 1 ⁇ 10 ⁇ 3 equivalent, more preferably 1 ⁇ 10 ⁇ 7 to 5 ⁇ 10 ⁇ 4, etc., relative to 1 mol of dihydric phenol as a raw material. Selected in a range of quantities.
  • 2-chlorophenylphenyl carbonate 2-methoxycarbonyl is used after the end or after the end of the polycondensation reaction in order to reduce phenolic end groups.
  • Compounds such as phenylphenyl carbonate and 2-ethoxycarbonylphenyl phenyl carbonate may be added.
  • the stability of the polymer can be improved by reducing the number of phenolic end groups.
  • melt transesterification method it is preferable to use a deactivator that neutralizes the activity of the catalyst.
  • the amount of the deactivator is preferably 0.5 to 50 mol with respect to 1 mol of the remaining catalyst.
  • the amount of the deactivator is preferably 0.01 to 500 ppm, more preferably 0.01 to 300 ppm, still more preferably 0.01 to 100 ppm based on the aromatic polycarbonate after polymerization. Use as a percentage.
  • Preferred examples of the deactivator include phosphonium salts such as tetrabutylphosphonium dodecylbenzenesulfonate and ammonium salts such as tetraethylammonium dodecylbenzyl sulfate.
  • the aromatic polycarbonate preferably has a viscosity average molecular weight of 10,000 or more, more preferably 15,000 to 50,000.
  • the lower limit of the viscosity average molecular weight is more preferably 16000, still more preferably 17000, and still more preferably 18000.
  • the upper limit of the viscosity average molecular weight is more preferably 26000, still more preferably 25000, and still more preferably 23000.
  • the aromatic polycarbonate may be a mixture of two or more different aromatic polycarbonates as described above. In this case, an aromatic polycarbonate having a viscosity average molecular weight outside the above range is mixed. Of course it is also possible.
  • a mixture with an aromatic polycarbonate having a viscosity average molecular weight exceeding 50000 has a high entropy elasticity, and has a characteristic that a molded product is not likely to be defective due to rheological behavior represented by jetting. Therefore, when the appearance defect of a molded object arises, it is a suitable aspect to suppress an appearance defect by using a mixture with the aromatic polycarbonate whose viscosity average molecular weight exceeds 50000.
  • gas injection molding and the like are advantageous because the gas injection amount is stable, and foam molding is advantageous because the foam cells are stable and fine and homogeneous cells are easily formed.
  • it is a mixture with an aromatic polycarbonate having a viscosity average molecular weight of 80,000 or more, and more preferably a mixture with an aromatic polycarbonate having a viscosity average molecular weight of 100,000 or more. That is, an aromatic polycarbonate capable of observing a molecular weight distribution of two or more peaks in a measuring method such as GPC (gel permeation chromatography) can be preferably used.
  • GPC gel permeation chromatography
  • the phenolic hydroxyl group content is preferably 30 eq / ton or less, more preferably 25 eq / ton or less, and further preferably 20 eq / ton or less.
  • the value of the phenolic hydroxyl group amount can be substantially 0 eq / ton by sufficiently reacting the terminal terminator.
  • the amount of the phenolic hydroxyl group is measured by 1 H-NMR, and the molar ratio of a divalent phenol unit having a carbonate bond, a divalent phenol unit having a phenolic hydroxyl group, and a unit of a terminal terminator is calculated. It is calculated
  • the viscosity average molecular weight of the aromatic polycarbonate can be determined as follows. First, the specific viscosity is calculated by the following formula (I). In the following formula (I), the drop time (t 0 ) of methylene chloride and the drop time (t) of the sample solution were obtained by using a solution obtained by dissolving 0.7 g of aromatic polycarbonate at 20 ° C. in 100 ml of methylene chloride. It can be determined by an Ostwald viscometer. The specific viscosity can be inserted into the following formula (II) to determine the viscosity average molecular weight M.
  • the viscosity average molecular weight M is determined by inserting the determined specific viscosity into the following formula (II).
  • aromatic polycarbonates are different in dihydric phenol, those using and not using a terminator, linear ones and branched ones, those having different production methods, and terminal terminations.
  • Two or more kinds of aromatic polycarbonates such as those having different agents, aromatic polycarbonates and polyester carbonates, and those having different viscosity average molecular weights can be mixed and used.
  • the polycarbonate resin (B3) used in the present embodiment is a polycarbonate resin (particularly aromatic) produced by the melt transesterification method (non-phosgene method) from the viewpoint of moldability of the molded body and appearance (white spots) improvement.
  • Polycarbonate resin is preferred.
  • a polycarbonate resin produced by the melt transesterification method is used, an automobile lamp extension molded body with less white spots and a better appearance can be obtained as compared with the case where a polycarbonate produced by the phosgene method is used.
  • the polycarbonate resin (B3) used in the present embodiment is preferably an aromatic polycarbonate resin containing a dihydric phenol residue in the molecular skeleton.
  • the polycarbonate resin (B3) used in the present embodiment contains a bisphenol residue having a cyclohexane ring introduced in the molecular skeleton from the viewpoint of heat resistance, thermal stability and chemical resistance of the molded product.
  • a polycarbonate resin is preferred.
  • the melt flow rate (MFR) of the polycarbonate resin (B3) used in the present embodiment is preferably selected from the range of 0.1 to 70 g / 10 min, more preferably 0.5 to 35 g / 10 min, still more preferably The range is 0.5 to 25 g / 10 min, particularly preferably 1 to 20 g / 10 min.
  • the MFR is preferably 0.1 g / 10 min or more from the viewpoint of imparting sufficient fluidity, and preferably 70 g / 10 min or less from the viewpoint of sufficient miscibility with the polyphenylene ether resin and suppression of hydrolysis during extrusion molding.
  • the MFR is a value measured at a measurement temperature of 300 ° C. and a load of 1.2 kg in accordance with the test method ISO1133.
  • the water content of the polycarbonate resin (B3) used in the present embodiment is preferably 2500 ppm or less. More preferably, it is 2000 ppm or less, More preferably, it is 1000 ppm or less, Most preferably, it is 500 ppm or less. From the viewpoint of strand take-out stability at the time of extrusion and suppression of generation of silver on the surface of the molded product due to hydrolysis at the time of molding, the moisture content of the polycarbonate resin (B3) is preferably 2500 ppm or less. The water content can be measured with a Karl Fischer moisture meter or the like.
  • the polycarbonate resin (B3) used in the present embodiment may contain a polycarbonate oligomer in order to improve the appearance of the molded body and the fluidity.
  • the polycarbonate oligomer has a viscosity average molecular weight (Mv) of preferably 1,500 to 9,500, more preferably 2,000 to 9,000.
  • the method for measuring the viscosity average molecular weight (Mv) is the same as the method for measuring the viscosity average molecular weight of the aromatic polycarbonate.
  • the content of the polycarbonate oligomer is preferably 30% by mass or less in the polycarbonate resin (B3).
  • the content of the polycarbonate resin (B3) used in the present embodiment is preferably in the range of 5 to 40% by mass, more preferably 8 to 30% by mass with respect to 100% by mass of the entire resin composition. %, Even more preferably 8 to 25% by weight, and particularly preferably 8 to 20% by weight.
  • the polycarbonate resin (B3) is preferably blended in an amount of 5% by mass or more from the viewpoint of improving the appearance (white spots) of the molded product, and 40% by mass or less from the viewpoint of maintaining sufficient heat resistance, appearance of the molded product, and maintaining low specific gravity. Is preferable.
  • the polycarbonate resin (B3) is blended as the component (B) used in the present embodiment, it is preferable to use the AS resin together from the viewpoint of improving the miscibility of the component (B3) and the appearance of the molded product (white spots).
  • the polycarbonate resin (B3) not only virgin resin but also polycarbonate resin regenerated from used products, so-called material-recycled polycarbonate resin may be used.
  • Used products include, for example, optical recording media such as optical disks, light guide plates, vehicle window glass, vehicle headlamp lenses, windshields, and other vehicle transparent members, water bottle containers, glasses lenses, soundproof walls, glass windows, etc. ⁇ Construction materials such as corrugated sheet.
  • non-conforming products, pulverized products obtained from sprues, runners, etc., or pellets obtained by melting them can be used.
  • the use ratio of the regenerated polycarbonate resin is preferably 80% by mass or less, more preferably 50% by mass or less, based on the virgin resin.
  • the resin composition used in the present embodiment further comprises 0.01 to 5% by mass of the thermal stabilizer component (C) from the viewpoint of improving the thermal stability of the resin composition and the surface appearance and brightness of the molded product. It is preferable to contain.
  • the content of the heat stabilizer component (C) is more preferably 0.1 to 3% by mass, even more preferably 0.2 to 2% by mass, with respect to 100% by mass of the resin composition. is there.
  • Component heat stabilizers include hindered phenol and phosphorus heat stabilizers.
  • Specific examples of the hindered phenol heat stabilizer include 3,3 ′, 3 ′′, 5,5 ′, 5 ”-hexa-tert-butyl-a, a ′, a ′′-(mesitylene-2, 4,6-triyl) tri-p-cresol, 1,3,5-tris (3,5-di-tert-butyl-4-hydroxybenzyl) -1,3,5-triazine-2,4,6 ( 1H, 3H, 5H) -trione, etc.
  • phosphorus-based heat stabilizer examples include tris (2,4-di-tert-butylphenyl) phosphite, bis (2,4-dicumyl). Phenyl) pentaerythritol diphosphite, 3,9-bis (2,6-di-tert-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphapyro [5,5] An undecane etc. are mentioned.
  • the heat stabilizer of component (C) used in the present embodiment is preferably a heat stabilizer having a melting point of 180 ° C. or higher from the viewpoint of improving the appearance (white spots) of the molded product.
  • the melting point of the component (C) is more preferably (180 to 300 ° C., more preferably 180 to 280 ° C.
  • the melting point of the component (C) is the melting point It can be measured with a measuring instrument model: B-545 (manufactured by Shibata Kagaku).
  • the resin composition used in the present embodiment does not contain the polycarbonate resin (B3), it is preferable to use a hindered phenol heat stabilizer from the viewpoint of improving the appearance (white spots).
  • the polycarbonate resin (B3) is included in the resin composition used in the present embodiment, it is preferable to use a phosphorus-based heat stabilizer from the viewpoint of improving the appearance (white spots) and suppressing the hydrolysis of the polycarbonate. .
  • the resin composition used in the present embodiment preferably does not contain an inorganic filler as a reinforcing agent from the viewpoint of maintaining the brightness of the molded product.
  • the inorganic filler as the reinforcing agent is generally used for reinforcing a thermoplastic resin, and examples thereof include glass fiber, carbon fiber, glass flake, talc, mica and the like.
  • the resin composition used in the present embodiment preferably does not contain a crystalline polymer from the viewpoint of maintaining the brightness of the molded product.
  • crystalline polymer examples include polyamide, polypropylene, polyethylene, polyphenylene sulfide, polyacetal, polyethylene terephthalate, polybutylene terephthalate, and liquid crystal polymer.
  • the resin composition used in the present embodiment has an MFR (measured at 280 ° C., 10 kg load) from the viewpoint of balance between thin-wall molding processability for weight reduction, long-term heat resistance and durability retention of the molded body.
  • the Vicat softening temperature (based on ISO 306, measured at a test load of 50 N and a heating rate of 120 ° C./hr) is preferably 160 ° C. or higher.
  • the MFR is in a range of 20 to 150 g / min and the Vicat softening temperature is in a range of 160 to 210 ° C., and even more preferably, the MFR is in a range of 25 to 90 g / min and the Vicat softening temperature is in a range of 170 to 200 ° C. Within range.
  • a polyphenylene ether (A) component having a reduced viscosity within the range of 0.25 to 0.38 dl / g is used.
  • Method a method of using general purpose polystyrene (GPPS) and AN 5-15% AS resin together as component (B1), and a combination of AN 5-15% AS resin and (B3) polycarbonate resin as component (B1) And the method used.
  • GPPS general purpose polystyrene
  • B3 polycarbonate resin
  • the resin composition used in the present embodiment has a specific gravity of 1 from the viewpoint of the balance between the advantages of reducing the environmental burden due to weight reduction and the material design that maintains sufficient performance (heat resistance, mechanical strength, appearance of molded product, etc.). It is within the range of 0.001 to 1.12, preferably within the range of 1.04 to 1.10, and more preferably within the range of 1.05 to 1.08.
  • the inorganic filler is not blended, or the blending amount of the polycarbonate resin as the component (B3) is set to 40% by mass or less in the entire resin composition. And so on.
  • the specific gravity of the resin composition can be measured using an electronic hydrometer SD-200L manufactured by Alpha Mirage.
  • the resin composition used for this Embodiment can be manufactured by melt-kneading said each component, for example, said (A) component, said (B) component, and / or said (C) component.
  • the conditions for melting and kneading the component (A), the component (B) and / or the component (C) for producing the resin composition are not particularly limited, but are desired in the present embodiment. From the viewpoint of stably obtaining a large amount of a resin composition capable of sufficiently exhibiting the above effect, it is preferable to use a twin screw extruder.
  • the resin composition used in the present embodiment is produced using a larger twin screw extruder (screw diameter of 40 to 90 mm), it should be noted that the above-mentioned resin produced during extrusion into extruded resin pellets.
  • the component (A) is introduced from the most upstream (top feed) raw material inlet and the oxygen concentration inside the shooter at the uppermost inlet is set to 3% by volume or less. The oxygen concentration is more preferably 1% by volume or less.
  • the inside of the raw material storage hopper is sufficiently replaced with nitrogen, and a tape is put in the middle of the feed line from the raw material storage hopper to the raw material inlet of the extruder to prevent air from entering and exiting.
  • This can be achieved by adjusting the nitrogen feed amount and adjusting the opening of the vent hole after improving the sealing performance.
  • the oxygen concentration inside the shooter is preferably 3% by volume or less.
  • the automobile lamp extension molded body of the present embodiment can be obtained by molding the above resin composition.
  • the molding method in the case of producing an automotive lamp extension molded body using the resin composition is not limited to the following, but preferable examples include injection molding, extrusion molding, vacuum molding and pressure molding, and particularly molding appearance. In view of brightness and brightness, injection molding is more preferably used.
  • the automotive lamp extension molded body is a relatively large light reflecting component that exists between a reflector that is a light reflecting component behind the light source beam of the headlight of the vehicle and the lamp front cover, It plays a role of collecting the reflected light from the light source and the reflector.
  • heat resistance as high as that of a reflector is not required, it has a good brightness on the glossy surface of the molded product, a surface appearance after aluminum deposition, a sufficient balance between heat resistance and molding fluidity, and light weight (a low specific gravity material). Is required at a higher level.
  • the molding temperature of the automobile lamp extension molded body of the present embodiment is selected from the range of the cylinder set temperature (maximum temperature part) 270 to 340 ° C., for example.
  • the molding temperature is preferably 280 to 330 ° C, more preferably 290 to 320 ° C, still more preferably 300 to 320 ° C. 270 ° C. or higher is preferable from the viewpoint of sufficient molding fluidity, and 340 ° C. or lower is preferable from the viewpoint of thermal stability of the resin composition.
  • the average thickness of the automobile lamp extension molded body of the present embodiment is preferably selected from the range of 0.8 to 3.2 mm.
  • the average thickness is more preferably 1.0 to 3.0 mm, still more preferably 1.2 to 2.5 mm, and particularly preferably 1.2 to 2.0 mm.
  • the average thickness is preferably 3.2 mm or less from the viewpoint of lightness, and preferably 0.8 mm or more from the viewpoint of sufficient moldability and strength retention.
  • the automotive lamp extension molded body of the present embodiment is molded using a mirror mold that has been polished to a very small level (average surface roughness of 0.2 ⁇ m or less) with diamond paste or the like. It is preferable. # 1000 or more is preferable, # 2000 or more is more preferable, and # 5000 or more is particularly preferable. From the viewpoint of sufficient mirror appearance, the polishing count is preferably # 1000 or more.
  • the gloss value of the mirror surface portion of the automotive lamp extension molded body of this embodiment is a material design that retains sufficient reflectivity of light emitted from the light source and sufficient physical properties (heat resistance, mechanical strength, appearance of molded product, etc.) From the viewpoint of balance, it is preferably in the range of 90 to 140% when measured at a measurement angle of 20 °.
  • the gloss value is more preferably in the range of 90 to 140%, and even more preferably in the range of 100 to 140%.
  • the gloss value of the mirror surface portion of the molded body can be within the above range.
  • the gloss value can be measured by the method described in the examples described later.
  • the automobile lamp extension molded body of the present embodiment is preferably subjected to aluminum vapor deposition treatment on a part or all of the surface of the molded body after molding.
  • the automobile lamp extension molded body of the present embodiment is preferably subjected to plasma treatment in advance because the adhesion of the aluminum film can be improved by activating the surface of the molded body before aluminum deposition.
  • the number of white spots (referring to protrusions having a crater-like depression having a diameter of 30 ⁇ m or more) existing within a certain area (52.4 mm 2 ) of the mirror surface portion is further increased. From the viewpoint of maintaining a good appearance of the molded product, the number is preferably 40 or less.
  • the number of vitiligo is more preferably 30 or less, still more preferably 20 or less, and particularly preferably 10 or less.
  • the number of vitiligo can be measured by the method described in the examples described later.
  • the automobile lamp extension molded body of the present embodiment can be molded by partially blending a rework (recycled) material (such as a crushed product of a molded product once molded). is there.
  • the blending ratio of the rework material in the automotive lamp extension molded body is preferably in the range of 0 to 40% by mass, more preferably 2 to 25% by mass, and even more preferably 5 to 15% by mass. It is particularly preferably within the range of 5 to 10% by mass. From the viewpoint of sufficient physical properties and appearance maintenance, it is preferable that the content is 40% by mass or less.
  • the resin composition pellets obtained in Examples and Comparative Examples were dried in a hot air dryer at 120 ° C. for 3 hours.
  • the dried resin composition pellets are molded by an injection molding machine (IS-80EPN, manufactured by Toshiba Machine Co., Ltd.) at a cylinder temperature of 300 ° C., a mold temperature of 120 ° C., and an injection speed (panel set value) of 85%, and a width of 13 mm.
  • a dumbbell-shaped molded piece having a thickness of 3.2 mm or a tanzaza-shaped molded piece having a width of 13 mm and a thickness of 6.4 mm was obtained.
  • Fluidity The resin composition pellets obtained in Examples and Comparative Examples were dried in a hot air dryer at 120 ° C. for 3 hours. After drying, MFR (melt flow rate) was measured using a melt indexer (P-111, manufactured by Toyo Seiki Co., Ltd.) at a cylinder set temperature of 280 ° C. and a load of 10 kg. As an evaluation standard, it was determined that the higher the MFR, the better the fluidity and the more advantageous the material design for this application.
  • IZOD Impact Value In accordance with ASTM D256, a test piece shape of 64 mm ⁇ 13 mm ⁇ thickness of 6.4 mm prepared by cutting the tangerine shaped piece was measured at 23 ° C. with a notch. As an evaluation standard, it was determined that the higher the IZOD impact value, the more advantageous in terms of material design for this application.
  • Gloss value (Gloss: Measurement angle 20 °) The gloss value (gross) at a measurement angle of 20 ° was measured for the central portion of the dumbbell specimen having a thickness of 3.2 mm produced by the above molding method using a gloss meter (VG7000, manufactured by Nippon Denshoku Industries Co., Ltd.). As an evaluation standard, the higher the gloss value, the higher the gloss of the molded piece and the better the brightness.
  • Luminance after thermal aging (visual) Using a dumbbell test piece having a thickness of 3.2 mm, after performing 250 hr aging in an oven set at 150 ° C., the brightness of the molded piece was visually evaluated. The case where no problem was observed in the brightness feeling was rated as “Good”, and the case where the cast piece surface was fogged and the brightness feeling was clearly lower than before aging was marked as “cloudy”. It was judged that those marked with ⁇ can be suitably used in this application.
  • the resin composition pellets obtained in the examples and comparative examples were dried in a hot air dryer at 120 ° C. for 3 hours.
  • the resin composition after drying was subjected to cylinder injection by an injection molding machine (IS-80EPN, manufactured by Toshiba Machine Co., Ltd.) equipped with a film gate mirror mold having a size of 100 mm ⁇ 100 mm ⁇ 2 mm with the mold surface polished to # 5000.
  • a molded flat plate was obtained by molding at a temperature of 320 ° C., a mold temperature of 120 ° C., an injection pressure (gauge pressure of 70 MPa), and an injection speed (panel set value) of 85%.
  • the obtained shaped flat plate is placed in a vacuum deposition apparatus, an inert gas and oxygen are introduced into the device, the inside of the chamber is brought into a plasma state, and plasma treatment is performed to activate the shaped flat plate surface.
  • aluminum was deposited on the formed flat plate in a vacuum deposition apparatus.
  • plasma polymerization treatment was performed to form a silicon dioxide polymer film.
  • the aluminum film thickness was 80 nm and the silicon dioxide film thickness was 50 nm.
  • a 40 ⁇ magnified photograph was taken with a digital microscope (model: VHX1000, manufactured by Keyence Corporation) at the center of the aluminum vapor deposition surface of the formed flat plate (hereinafter also referred to as “aluminum vapor deposition flat plate”) on which this aluminum vapor deposition was performed.
  • the total of the number of projections having crater-like depressions with a diameter of 30 ⁇ m or more existing in one field of view (area: 52.4 mm 2 ) (the traces of gas escape during molding) for all five mirror-molded flat plates was divided by 5 to calculate the average number per field of view. The average number was defined as the number of vitiligo.
  • the ratio (tensile strength retention rate (%)) of the tensile strength of the test piece after immersion with respect to the case where the tensile strength of the normal sample was 100% was determined (number of tests n 3).
  • ⁇ (hadan) means that the tensile strength could not be measured because all three test pieces broke during immersion.
  • PPE-1 Reduced viscosity (measured at 30 ° C. using chloroform solvent) 0.48 dl / g poly (2,6-dimethyl-1,4-phenylene) ether (hereinafter “PPE-1”) Sometimes it is.)
  • PPE-2 Reduced viscosity (measured at 30 ° C. using chloroform solvent) 0.40 dl / g of poly (2,6-dimethyl-1,4-phenylene) ether (hereinafter “PPE-2”) Sometimes it is.)
  • PPE-3 Reduced viscosity (measured at 30 ° C. using chloroform solvent) 0.35 dl / g poly (2,6-dimethyl-1,4-phenylene) ether (hereinafter “PPE-3”) Sometimes it is.)
  • PPE-4 Reduced viscosity (measured at 30 ° C. using a chloroform solvent) 0.30 dl / g of poly (2,6-dimethyl-1,4-phenylene) ether (hereinafter referred to as “PPE-4”) Sometimes it is.)
  • PPE-5 Reduced viscosity (measured at 30 ° C. using chloroform solvent) 0.25 dl / g of poly (2,6-dimethyl-1,4-phenylene) ether (hereinafter “PPE-5”) Sometimes it is.)
  • PPE-6 Reduced viscosity (measured at 30 ° C. using chloroform solvent) 0.22 dl / g of poly (2,6-dimethyl-1,4-phenylene) ether (hereinafter referred to as “PPE-6”) Sometimes it is.)
  • GPPS General purpose polystyrene (polystyrene 680 [registered trademark], manufactured by PS Japan Ltd.) was used. (Hereafter, it may be referred to as “GPPS”). Note that general-purpose polystyrene is polystyrene that does not contain a rubber component, that is, polystyrene that is not rubber-reinforced.
  • (AS) Styrene-acrylonitrile resin A styrene-acrylonitrile resin produced as follows was used. A mixed solution consisting of 4.7 parts by mass of acrylonitrile, 73.3 parts by mass of styrene, 22 parts by mass of ethylbenzene, and 0.02 parts by mass of t-butylperoxy-isopropyl carbonate as a polymerization initiator was added at 2.5 liters / hour. The polymer was continuously fed at a flow rate to a 5 liter fully mixed reactor and polymerized at 142 ° C. to obtain a polymerization solution.
  • the resulting polymerization solution is continuously led to an extruder with a vent, and unreacted monomers and solvent are removed under conditions of 260 ° C. and 40 Torr, the polymer is continuously cooled and solidified, and chopped into particulate styrene.
  • -Acrylonitrile resin hereinafter sometimes referred to as "AS" was obtained.
  • composition analysis of this styrene-acrylonitrile resin by infrared absorption spectroscopy revealed that it was 9% by mass of acrylonitrile units and 91% by mass of styrene units.
  • the melt flow rate of this styrene-acrylonitrile resin was 78 g / 10 min (according to ASTM D 1238, measured at 220 ° C., 10 kg load).
  • a styrene-based thermoplastic elastomer having a hydrogenation rate of 99.9% in the butadiene block portion was used (hereinafter also referred to as “elastomer 2”).
  • PC-1 MFR (Test conditions: ISO 1133, measured at 300 ° C., 1.2 kg load) Aromatic polycarbonate resin (Wonderlite PC-110 [registered trademark], Asahi Kasei Co., Ltd.) produced by the melt transesterification method of 10 g / 10 min (Hereinafter also referred to as “PC-1”).
  • PC-2 MFR (Test conditions: ISO 1133, measured at 300 ° C., 1.2 kg load) Aromatic polycarbonate resin (Wonderlite PC-122 [registered trademark], Asahi Kasei Co., Ltd.) produced by a 22 g / 10 min melt transesterification method (Hereinafter also referred to as “PC-2”).
  • PC-3 MFR (Test conditions: ISO 1133, measured at 300 ° C. under a load of 1.2 kg) 1.1 g / 10 min polycarbonate resin containing about 41% bisphenol structure having cyclohexane rings introduced into the molecular skeleton (APEC 1800 [ Registered trademark] (manufactured by Bayer)) (hereinafter also referred to as “PC-3”).
  • PC-4 MFR (Test conditions: ISO 1133, measured at 300 ° C. under a 1.2 kg load) Aromatic polycarbonate resin produced by the phosgene method of 10 g / 10 min (Panlite L-1225Y [registered trademark], manufactured by Teijin Chemicals Ltd.) (Hereinafter also referred to as “PC-4”).
  • C-1 A hindered phenol heat stabilizer having a melting point of 242 ° C. Chemical name: 3,3 ′, 3 ′′, 5,5 ′, 5 ”-hexa-tert-butyl-a, a ′, a ′′-( Mesitylene-2,4,6-triyl) tri-p-cresol (trade name: Irganox 1330 (registered trademark), manufactured by BASF) was used (hereinafter also referred to as “C-1”).
  • C-2 A hindered phenol heat stabilizer having a melting point of 221 ° C.
  • C-3 Phosphorus heat stabilizer having a melting point of 184 ° C.
  • C-4 A hindered phenol heat stabilizer having a melting point of 158 ° C.
  • C-5 Hindered amine heat stabilizer with a melting point of 156 ° C. Chemical name: N, N′-bis (2,2,6,6-tetramethyl-4-piperidyl) N, N′-diformylhexamethylenediamine ( Trade name: Uvinil 4050FF (registered trademark), manufactured by BASF) was used (hereinafter also referred to as “C-5”).
  • C-6 Hindered amine heat stabilizer having a melting point of 133 ° C.
  • a polycondensate of 1,6-hexamethylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine (trade name: Chimassorb 2020 (registered trademark), manufactured by BASF) was used. (Hereafter, sometimes referred to as “C-6”).
  • C-7 Hindered amine heat stabilizer having a melting point of 118 ° C. Chemical name: Pentaerythritol tetrekis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (trade name: Irganox 1010 [registered trademark] ] (Manufactured by BASF) (hereinafter sometimes referred to as “C-7”).
  • C-8 A hindered phenol heat stabilizer having a melting point of 52 ° C. Chemical name: Octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate (trade name: Irganox 1076 (registered trademark)) BASF) (hereinafter also referred to as “C-8”).
  • C-10 A hindered phenol heat stabilizer having a melting point of 14 ° C. Chemical name: 4,6-bis (octylthiomethyl) -O-cresol (trade name: Irganox 1520 (registered trademark), manufactured by BASF) was used. (Hereafter, it may be referred to as “C-10”).
  • C-11 Sulfur heat stabilizer having a melting point of 65 ° C.
  • C-12 Phosphorus heat stabilizer having a melting point of 235 ° C.
  • C-13 Phosphorus heat stabilizer having a melting point of 225 ° C.
  • the melting point of the heat stabilizer was measured with a melting point measuring device model: B-545 (manufactured by Shibata Kagaku Co.).
  • the disk is fed from the most upstream part (top feed) of the disk R: 6 and the kneading disk N: 2), the cylinder temperature is 300 ° C., the screw speed is 250 rpm, and the vent vacuum is 7.998 kPa (60 Torr). And kneaded to obtain a resin composition.
  • the physical property measurement results of the obtained resin composition are shown in Table 1 below.
  • Example 2 80 parts by mass of PPE-2, 10 parts by mass of GPPS, and 10 parts by mass of AS were melt-kneaded in the same manner as in Example 1 to obtain a resin composition.
  • the physical property measurement results of the obtained resin composition are shown in Table 1 below.
  • Example 3 80 parts by mass of PPE-4 and 20 parts by mass of GPPS were melt-kneaded in the same manner as in Example 1 to obtain a resin composition.
  • the physical property measurement results of the obtained resin composition are shown in Table 1 below.
  • Example 4 80 parts by mass of PPE-2, 20 parts by mass of GPPS, 5 parts by mass of polyamide 6 (trade name: 1013B [registered trademark], manufactured by Ube Industries, Ltd., hereinafter also referred to as “PA”), and 3 parts by mass of elastomer 1 Were melt-kneaded in the same manner as in Example 1 to obtain a resin composition.
  • the physical property measurement results of the obtained resin composition are shown in Table 1 below.
  • Example 5 Except for replacing polyamide 6 of Example 4 with 5 parts by mass of polypropylene (trade name: Novatec PP SA08 [registered trademark], manufactured by Nippon Polypropylene Co., Ltd., hereinafter also referred to as “PP”), the same as in Example 4 And kneaded to obtain a resin composition.
  • the physical property measurement results of the obtained resin composition are shown in Table 1 below.
  • Example 6 80 parts by mass of PPE-2, 20 parts by mass of GPPS, and 5 parts by mass of rubber-reinforced polystyrene (trade name: H9405 [registered trademark], manufactured by Asahi Kasei Chemicals) were melt-kneaded in the same manner as in Example 1. A resin composition was obtained. The physical property measurement results of the obtained resin composition are shown in Table 1 below.
  • Example 7 60 parts by mass of PPE-2, 40 parts by mass of GPPS, and 5 parts by mass of elastomer 1 were melt-kneaded in the same manner as in Example 1 to obtain a resin composition.
  • the physical property measurement results of the obtained resin composition are shown in Table 1 below.
  • Example 8 60 parts by mass of PPE-1, 40 parts by mass of GPPS, 2 parts by mass of elastomer 1, and 3 parts by mass of elastomer 2 were melt-kneaded in the same manner as in Example 1 to obtain a resin composition.
  • the physical property measurement results of the obtained resin composition are shown in Table 1 below.
  • Example 9 60 parts by mass of PPE-2, 40 parts by mass of GPPS, 2 parts by mass of elastomer 1, and 3 parts by mass of elastomer 2 were melt-kneaded in the same manner as in Example 1 to obtain a resin composition.
  • the physical property measurement results of the obtained resin composition are shown in Table 1 below.
  • Example 10 60 parts by mass of PPE-2, 40 parts by mass of GPPS, 1 part by mass of elastomer 1, and 4 parts by mass of elastomer 2 were melt-kneaded in the same manner as in Example 1 to obtain a resin composition.
  • the physical property measurement results of the obtained resin composition are shown in Table 1 below.
  • Example 11 60 parts by mass of PPE-2, 40 parts by mass of GPPS, 4 parts by mass of elastomer 1, and 1 part by mass of elastomer 2 were melt-kneaded in the same manner as in Example 1 to obtain a resin composition.
  • the physical property measurement results of the obtained resin composition are shown in Table 1 below.
  • Example 12 60 parts by mass of PPE-2, 40 parts by mass of GPPS, and 5 parts by mass of elastomer 2 were melt-kneaded in the same manner as in Example 1 to obtain a resin composition.
  • the physical property measurement results of the obtained resin composition are shown in Table 1 below.
  • Example 13 90 parts by mass of PPE-2, 5 parts by mass of GPPS, 5 parts by mass of AS, 2 parts by mass of elastomer 1, and 2 parts by mass of elastomer 2 were melt-kneaded in the same manner as in Example 1 to obtain a resin composition. I got a thing. The physical property measurement results of the obtained resin composition are shown in Table 1 below.
  • Example 14 90 parts by mass of PPE-4, 5 parts by mass of GPPS, 5 parts by mass of AS, 2 parts by mass of elastomer 1, and 2 parts by mass of elastomer 2 were melt-kneaded in the same manner as in Example 1 to obtain a resin composition. I got a thing. The physical property measurement results of the obtained resin composition are shown in Table 1 below.
  • Example 15 60 parts by mass of PPE-4, 32 parts by mass of GPPS, 2 parts by mass of elastomer 1, and 6 parts by mass of elastomer 2 were melt-kneaded in the same manner as in Example 1 to obtain a resin composition.
  • the physical property measurement results of the obtained resin composition are shown in Table 2 below.
  • Example 16 60 parts by mass of PPE-4, 32 parts by mass of AS, 2 parts by mass of elastomer 1, and 6 parts by mass of elastomer 2 were melt-kneaded in the same manner as in Example 1 to obtain a resin composition.
  • the physical property measurement results of the obtained resin composition are shown in Table 2 below.
  • Example 17 In the case of Example 1, 60 parts by mass of PPE-4, 31.5 parts by mass of GPPS, 2 parts by mass of elastomer 1, 6 parts by mass of elastomer 2, and 0.5 parts by mass of C-1 Similarly, the resin composition was obtained by melt-kneading. The physical property measurement results of the obtained resin composition are shown in Table 2 below.
  • Example 18 60 parts by mass of PPE-4, 31 parts by mass of GPPS, 2 parts by mass of elastomer 1, 6 parts by mass of elastomer 2, and 1 part by mass of C-1 were melt kneaded in the same manner as in Example 1. Thus, a resin composition was obtained. The physical property measurement results of the obtained resin composition are shown in Table 2 below.
  • Example 19 In the case of Example 1, 60 parts by mass of PPE-4, 21 parts by mass of GPPS, 10 parts by mass of AS, 2 parts by mass of elastomer 1, 6 parts by mass of elastomer 2, and 1 part by mass of C-1
  • the resin composition was obtained by melt-kneading in the same manner as described above.
  • the physical property measurement results of the obtained resin composition are shown in Table 2 below.
  • Example 20 60 parts by mass of PPE-4, 30 parts by mass of GPPS, 2 parts by mass of elastomer 1, 6 parts by mass of elastomer 2, and 2 parts by mass of C-1 were melt kneaded in the same manner as in Example 1. Thus, a resin composition was obtained. The physical property measurement results of the obtained resin composition are shown in Table 2 below.
  • Example 21 95 parts by mass of PPE-5, 3 parts by mass of elastomer 1, and 2 parts by mass of elastomer 2 were melt-kneaded in the same manner as in Example 1 to obtain a resin composition.
  • the physical property measurement results of the obtained resin composition are shown in Table 2 below.
  • Example 22 94 parts by mass of PPE-5, 3 parts by mass of elastomer 1, 2 parts by mass of elastomer 2, and 1 part by mass of C-1 were melt-kneaded in the same manner as in Example 1 to obtain a resin composition. Got. The physical property measurement results of the obtained resin composition are shown in Table 2 below.
  • Example 23 70 parts by mass of PPE-4, 21 parts by mass of GPPS, 2 parts by mass of elastomer 1, 6 parts by mass of elastomer 2, and 1 part by mass of C-2 were melt kneaded in the same manner as in Example 1. Thus, a resin composition was obtained. The physical property measurement results of the obtained resin composition are shown in Table 2 below.
  • Example 24 A resin composition was obtained by melt-kneading in the same manner as in Example 23 except that C-2 was changed to C-3.
  • the physical property measurement results of the obtained resin composition are shown in Table 2 below.
  • Example 25 A resin composition was obtained by melt-kneading in the same manner as in Example 23 except that C-2 was changed to C-4.
  • the physical property measurement results of the obtained resin composition are shown in Table 2 below.
  • Example 26 A resin composition was obtained by melt-kneading in the same manner as in Example 23 except that C-2 was changed to C-5.
  • the physical property measurement results of the obtained resin composition are shown in Table 2 below.
  • Example 27 A resin composition was obtained by melt-kneading in the same manner as in Example 23 except that C-2 was changed to C-6.
  • the physical property measurement results of the obtained resin composition are shown in Table 2 below.
  • Example 28 A resin composition was obtained by melt-kneading in the same manner as in Example 23 except that C-2 was changed to C-7.
  • the physical property measurement results of the obtained resin composition are shown in Table 2 below.
  • Example 29 A resin composition was obtained by melt-kneading in the same manner as in Example 23 except that C-2 was changed to C-9.
  • the physical property measurement results of the obtained resin composition are shown in Table 2 below.
  • Example 30 A resin composition was obtained by melt-kneading in the same manner as in Example 23 except that C-2 was changed to C-11.
  • the physical property measurement results of the obtained resin composition are shown in Table 2 below.
  • Example 31 80 parts by mass of PPE-5, 7 parts by mass of GPPS, 7 parts by mass of AS, 1 part by mass of elastomer 1, 4 parts by mass of elastomer 2, 0.5 part by mass of C-3, and C-7 0.5 parts by mass was melt-kneaded in the same manner as in Example 1 to obtain a resin composition.
  • the physical property measurement results of the obtained resin composition are shown in Table 2 below.
  • Example 32 80 parts by mass of PPE-5, 6 parts by mass of GPPS, 7 parts by mass of AS, 1 part by mass of elastomer 1, 4 parts by mass of elastomer 2, 1 part by mass of C-5, and 1 part by mass of C-7 Were melt-kneaded in the same manner as in Example 1 to obtain a resin composition.
  • the physical property measurement results of the obtained resin composition are shown in Table 2 below.
  • Example 33 80 parts by mass of PPE-5, 6 parts by mass of GPPS, 7 parts by mass of AS, 1 part by mass of elastomer 1, 4 parts by mass of elastomer 2, 1 part by mass of C-8, and 1 part by mass of C-10 Were melt-kneaded in the same manner as in Example 1 to obtain a resin composition.
  • the physical property measurement results of the obtained resin composition are shown in Table 2 below.
  • Example 34 85 parts by mass of PPE-2, 10.5 parts by mass of GPPS, 2 parts by mass of elastomer 1, and 2.5 parts by mass of elastomer 2 were melt-kneaded in the same manner as in Example 1 to obtain a resin composition. Got. The physical property measurement results of the obtained resin composition are shown in Table 3 below.
  • Example 35 85 parts by mass of PPE-2, 2 parts by mass of elastomer 1, 2.5 parts by mass of elastomer 2, and 10.5 parts by mass of PC-1 were melt-kneaded in the same manner as in Example 1. Thus, a resin composition was obtained. The physical property measurement results of the obtained resin composition are shown in Table 3 below.
  • Example 36 A resin composition was obtained by melt-kneading in the same manner as in Example 35 except that PC-1 was replaced with PC-3.
  • the physical property measurement results of the obtained resin composition are shown in Table 3 below.
  • Example 37 75 parts by mass of PPE-2, 10.5 parts by mass of GPPS, 10 parts by mass of AS, 2 parts by mass of elastomer 1, and 2.5 parts by mass of elastomer 2 were melt kneaded in the same manner as in Example 1. Thus, a resin composition was obtained. The physical property measurement results of the obtained resin composition are shown in Table 3 below.
  • Example 38 In the case of Example 1, 75 parts by weight of PPE-2, 10.5 parts by weight of AS, 2 parts by weight of elastomer 1, 2.5 parts by weight of elastomer 2, and 10 parts by weight of PC-4 Similarly, the resin composition was obtained by melt-kneading. The physical property measurement results of the obtained resin composition are shown in Table 3 below.
  • Example 39 A resin composition was obtained by melt-kneading in the same manner as in Example 38 except that PC-4 was replaced with PC-3.
  • the physical property measurement results of the obtained resin composition are shown in Table 3 below.
  • Example 40 In the case of Example 1, 75 parts by weight of PPE-2, 10.5 parts by weight of GPPS, 2 parts by weight of elastomer 1, 2.5 parts by weight of elastomer 2, and 10 parts by weight of PC-1 Similarly, the resin composition was obtained by melt-kneading. The physical property measurement results of the obtained resin composition are shown in Table 3 below.
  • Example 41 A resin composition was obtained by melt-kneading in the same manner as in Example 40 except that GPPS was replaced with AS.
  • the physical property measurement results of the obtained resin composition are shown in Table 3 below.
  • Example 42 In the case of Example 1, 80 parts by weight of PPE-2, 10.5 parts by weight of AS, 2 parts by weight of elastomer 1, 2.5 parts by weight of elastomer 2, and 5 parts by weight of PC-3 Similarly, the resin composition was obtained by melt-kneading. The physical property measurement results of the obtained resin composition are shown in Table 3 below.
  • Example 43 75 parts by mass of PPE-4 and 25 parts by mass of PC-1 were melt-kneaded in the same manner as in Example 1 to obtain a resin composition.
  • the physical property measurement results of the obtained resin composition are shown in Table 4 below.
  • Example 44 60 parts by mass of PPE-4 and 40 parts by mass of PC-1 were melt-kneaded in the same manner as in Example 1 to obtain a resin composition.
  • the physical property measurement results of the obtained resin composition are shown in Table 4 below.
  • Example 45 100 parts by mass of PPE-4 and 30 parts by mass of PC-2 were melt-kneaded in the same manner as in Example 1 to obtain a resin composition.
  • the physical property measurement results of the obtained resin composition are shown in Table 4 below.
  • Example 46 84 parts by mass of PPE-4, 3 parts by mass of elastomer 1, 3 parts by mass of elastomer 2, and 10 parts by mass of PC-1 were melt-kneaded in the same manner as in Example 1 to obtain a resin composition. Got. The physical property measurement results of the obtained resin composition are shown in Table 4 below.
  • Example 47 84 parts by mass of PPE-4, 2 parts by mass of AS, 3 parts by mass of elastomer 1, 3 parts by mass of elastomer 2, and 8 parts by mass of PC-1 were melt kneaded in the same manner as in Example 1. Thus, a resin composition was obtained. The physical property measurement results of the obtained resin composition are shown in Table 4 below.
  • Example 48 84 parts by mass of PPE-4, 6 parts by mass of AS, 3 parts by mass of elastomer 1, 3 parts by mass of elastomer 2, and 4 parts by mass of PC-1 were melt kneaded in the same manner as in Example 1. Thus, a resin composition was obtained. The physical property measurement results of the obtained resin composition are shown in Table 4 below.
  • Example 49 83 parts by weight of PPE-4, 3 parts by weight of elastomer 1, 3 parts by weight of elastomer 2, 1 part by weight of C-1, 10 parts by weight of PC-1, Similarly, the resin composition was obtained by melt-kneading. The physical property measurement results of the obtained resin composition are shown in Table 4 below.
  • Example 50 84 parts by mass of PPE-5, 3 parts by mass of elastomer 1, 3 parts by mass of elastomer 2, and 10 parts by mass of PC-2 were melt-kneaded in the same manner as in Example 1 to obtain a resin composition. Got. The physical property measurement results of the obtained resin composition are shown in Table 4 below.
  • Example 51 In the case of Example 1, 83 parts by weight of PPE-5, 3 parts by weight of elastomer 1, 3 parts by weight of elastomer 2, 1 part by weight of C-1, and 10 parts by weight of PC-2 Similarly, the resin composition was obtained by melt-kneading. The physical property measurement results of the obtained resin composition are shown in Table 4 below.
  • Example 52 70 parts by mass of PPE-4, 9 parts by mass of AS, 3 parts by mass of elastomer 1, 3 parts by mass of elastomer 2, and 15 parts by mass of PC-1 were melt kneaded in the same manner as in Example 1. Thus, a resin composition was obtained. The physical property measurement results of the obtained resin composition are shown in Table 4 below.
  • Example 53 100 parts by mass of PPE-4, 3 parts by mass of elastomer 1, 3 parts by mass of elastomer 2, and 30 parts by mass of PC-1 were melt-kneaded in the same manner as in Example 1 to obtain a resin composition. Got. The physical property measurement results of the obtained resin composition are shown in Table 4 below.
  • Example 54 Implementation of 70 parts by weight of PPE-4, 8 parts by weight of AS, 3 parts by weight of elastomer 1, 3 parts by weight of elastomer 2, 1 part by weight of C-1, and 15 parts by weight of PC-1
  • the resin composition was obtained by melt-kneading in the same manner as in Example 1.
  • the physical property measurement results of the obtained resin composition are shown in Table 4 below.
  • Example 55 Implementation of 65 parts by weight of PPE-4, 13 parts by weight of AS, 3 parts by weight of elastomer 1, 3 parts by weight of elastomer 2, 1 part by weight of C-1, and 15 parts by weight of PC-1
  • the resin composition was obtained by melt-kneading in the same manner as in Example 1.
  • the physical property measurement results of the obtained resin composition are shown in Table 4 below.
  • Example 56 Implementation of 75 parts by weight of PPE-4, 10 parts by weight of AS, 2 parts by weight of elastomer 1, 2 parts by weight of elastomer 2, 1 part by weight of C-1, and 10 parts by weight of PC-1
  • the resin composition was obtained by melt-kneading in the same manner as in Example 1.
  • the physical property measurement results of the obtained resin composition are shown in Table 4 below.
  • Example 57 75 parts by weight of PPE-4, 10.75 parts by weight of AS, 2 parts by weight of elastomer 1, 2 parts by weight of elastomer 2, 0.25 parts by weight of C-3, and 10 parts by weight of PC-1 Were melt-kneaded in the same manner as in Example 1 to obtain a resin composition.
  • the physical property measurement results of the obtained resin composition are shown in Table 4 below.
  • Example 58 75 parts by weight of PPE-4, 10.5 parts by weight of AS, 2 parts by weight of elastomer 1, 2 parts by weight of elastomer 2, 0.5 parts by weight of C-3, and 10 parts by weight of PC-1 Were melt-kneaded in the same manner as in Example 1 to obtain a resin composition.
  • the physical property measurement results of the obtained resin composition are shown in Table 4 below.
  • Example 59 75 parts by weight of PPE-4, 10.5 parts by weight of AS, 2 parts by weight of elastomer 1, 2 parts by weight of elastomer 2, 0.5 parts by weight of C-12, and 10 parts by weight of PC-1 Were melt-kneaded in the same manner as in Example 1 to obtain a resin composition.
  • the physical property measurement results of the obtained resin composition are shown in Table 4 below.
  • Example 60 75 parts by weight of PPE-4, 10.5 parts by weight of AS, 2 parts by weight of elastomer 1, 2 parts by weight of elastomer 2, 0.5 parts by weight of C-13, and 10 parts by weight of PC-1 Were melt-kneaded in the same manner as in Example 1 to obtain a resin composition.
  • the physical property measurement results of the obtained resin composition are shown in Table 4 below.
  • both content of polyphenylene ether (A) is outside the range of the resin composition used for this Embodiment. Therefore, the molded body made of the resin composition of Comparative Example 1 is cloudy on the surface of the molded body, and the brightness of the molded body after heat aging is insufficient, and the molded body made of the resin composition of Comparative Example 2 is The Vicat softening temperature, which is an index of heat resistance, was insufficient.
  • the molded body made of the resin composition of Examples 4 and 5 is blended with a crystalline polymer in the resin composition, the gloss value of the molded body, the brightness after heat aging, and the peelability of the molded body are not necessarily limited. The result was not enough.
  • the molded body made of the resin composition of Example 6 was blended with rubber-reinforced polystyrene in the resin composition, the gloss value of the molded body and the brightness feeling after heat aging were not necessarily satisfactory. .
  • the molded body made of the resin composition of Example 7 contains the styrene thermoplastic elastomer (B2-2) having a low amount of bound styrene (33%) alone in the resin composition, SFD high-speed injection molding Since peeling occurred in the piece, the result was not necessarily sufficient in the peelability of the molded body.
  • the resin composition of Reference Example 1 could not be molded because the reduced viscosity of the polyphenylene ether (A) used was low ( ⁇ sp / c : 0.22 dl / g). It was.
  • the molded bodies made of the resin compositions of Example 15, Example 16, Example 21, and Examples 24 to 33 were not necessarily satisfactory in appearance and appearance of the aluminum vapor-deposited flat plate. 20, a hindered phenol heat stabilizer having a melting point of 180 ° C. or higher in the composition of the resin composition not containing the polycarbonate resin (B3). Therefore, it has been found that the appearance of vitiligo and aluminum vapor-deposited flat plates is good and can be used more favorably with automobile lamp extension molded articles.
  • Example 35, Example 36, and Examples 38 to 42 are molded articles made of a resin composition in which a polycarbonate resin (B3) is blended as the component (B), and none of them is blended with a polycarbonate (B3). It was found that the molded products of Examples 34 and 37, which are resin compositions, were excellent in vitiligo, the appearance of the aluminum vapor-deposited flat plate, and the chemical resistance, and could be more suitably used in the automotive lamp extension molded product.
  • the molded body made of the resin composition of Comparative Example 4 has a higher specific gravity because 50% by mass of the polycarbonate resin (B3) is blended as the component (B). Since the appearance of the vapor-deposited flat plate was also lowered, it was insufficient.
  • the molded bodies made of the resin compositions of Examples 49 to 60 are all molded bodies made of a resin composition in which the polycarbonate resin (B3) is blended as the component (B), and both the white spots and the appearance of the aluminum vapor-deposited flat plate are good. there were.
  • the molded products made of the resin compositions of Examples 57 to 60 are blended with the phosphorous heat stabilizer as component (C), so that the number of vitiligo is further increased compared to other molded products.
  • the appearance of the aluminum vapor-deposited flat plate is improved, and it has been found that it can be used even more suitably as an automobile lamp extension molded body.
  • Japanese Patent Application No. 2010-261661 Japanese patent application filed on September 27, 2011
  • Japanese Patent Application No. 2011-212235 Japanese patent application filed on September 27, 2011
  • Japanese Patent Application No. 2011-246747 Japanese patent application filed on September 27, 2011
  • the molded body made of the resin composition of the present invention is effective as an automotive lamp extension molded body because of its low specific gravity, good balance between heat resistance and fluidity, and excellent gloss and brightness of the molded product. Can be used.

Abstract

[課題]本発明は、低比重で、耐熱性と流動性とのバランスに優れ、成形品表面の光沢、輝度感に優れた樹脂組成物を含む自動車ランプエクステンション成形体を提供することを目的とする。 [解決手段]本発明の自動車ランプエクステンション成形体は、ポリフェニレンエーテル(A)50~95質量%を含有し、比重が1.00~1.12の範囲内である樹脂組成物を含む。前記(A)成分の還元粘度(クロロホルム溶媒を用いて30℃で測定)は、0.25~0.45dl/gであることが好ましく、0.25~0.38dl/gであることがより好ましい。

Description

自動車ランプエクステンション成形体
 本発明は、自動車ランプエクステンション成形体に関する。
 自動車ランプ周りの部品に用いられる材料として、主に、不飽和ポリエステル樹脂、バルクモールディングコンパウンド(BMC)等の熱硬化性樹脂、又はアルミニウム製材料が従来から広く使用されている。熱硬化性樹脂はアルミニウム製材料と比較して軽量である点で優れているが、それでも比重が2.0を超えるために一層の軽量化が求められている。また、熱硬化性樹脂に特有の、成形品の後処理作業の煩雑さや、粉塵などによる作業環境汚染などの問題もある。そのため、自動車ランプ周りの部品に用いられる材料としては、熱硬化性樹脂やアルミニウム製材料から、ダイレクトでアルミ蒸着が可能な、ポリエーテルイミドや高耐熱ポリカーボネート等の熱可塑性樹脂への材料の転換が進んでいる。しかし、これらの熱可塑性樹脂でも軽量性の面で不十分であり、環境・省エネルギー面の配慮から、更なる低比重の材料が望まれている。
 ポリフェニレンエーテル樹脂は、機械的物性、電気的特性、耐酸性、耐アルカリ性、耐熱性に優れると共に、低比重で、吸水性が低く、且つ寸法安定性が良好である等の多様な特性を有している。そのため、家電製品、OA機器、事務機、情報機器や自動車などの材料として、幅広く利用されており、特に自動車ランプ周辺部品のような高い耐熱性や剛性が要求される用途において、今後、さらにポリフェニレンエーテル樹脂の含有量が高い比率で設計された樹脂組成物の需要が見込まれている。
 中でも、自動車ランプエクステンション部材用途においては、良好な成形流動性と、極めて高い光反射特性と、ダイレクトでのアルミ蒸着性とが要求される場合が少なくない。そのため、ポリフェニレンエーテル樹脂組成物の特性としては、十分な耐熱性や機械的物性、良好な成形流動性と共に、特に、成形品に良好な表面外観及び輝度感が期待されている。
 ポリフェニレンエーテル樹脂を含む熱可塑性樹脂の耐熱性及び機械的物性を改良する方法としては、ガラス繊維、炭素繊維、マイカやタルク等の無機充填剤を添加する方法が一般的である。しかし上記の方法では、少量の無機充填剤の添加でも、樹脂が本来有する靭性や、成形品の表面光沢が著しく損なわれるため、上記の方法で得られた樹脂組成物は、使用できない用途が多く存在し、特に自動車エクステンション部材用途における適用は極めて困難である。
 ポリフェニレンエーテル樹脂に耐衝撃性を付与する方法として、ゴム強化ポリスチレン(HIPS)の配合が広く行なわれているが、上述した無機フィラーを添加した場合と同様、少量のゴム強化ポリスチレンの配合であっても、得られる成形品の輝度感は損なわれる傾向にある。
 ポリフェニレンエーテル系樹脂を用いてなる自動車ランプエクステンション部材に関する技術として、既に、ポリフェニレンエーテルと液晶ポリエステルとのブレンド物による、軽量性、耐熱性、流動性及び機械物性のバランスに優れた樹脂組成物について開示がなされている(例えば、特許文献1参照)。
 比較的、高濃度のポリフェニレンエーテルを含有する樹脂組成物において、特定の安定剤を添加することによって、樹脂の耐熱老化性やフィルム成形品外観を改良した、自動車ランプエクステンションを含む自動車ランプ部品用途に好適な樹脂組成物の技術が開示されている(例えば、特許文献2参照)。
特開2002-079540号広報 特開2009-221387号公報
 特許文献1に記載の樹脂組成物は、確かに、液晶ポリエステルの添加によって、耐熱性と成形流動性とに優れる反面、一方では、結晶性ポリマーを添加することによって、成形品の輝度感が損なわれる恐れがあり、自動車ランプエクステンション成形体用途へ適用する材料としては、必ずしも十分ではなく、改良の余地がある。
 一方、従来から提案されている、自動車ランプ部材向けのポリフェニレンエーテル樹脂組成物は、様々な用途の自動車ランプ部材用の成形体への展開が可能である反面、アルミ蒸着後の成形体表面に白斑(ポリフェニレンエーテル樹脂組成物特有の、微細なガスの抜けによって成形時に生じる直径30μm以上のクレーター形状の跡)が多数認められることから、輝度感には優れるものの、外観に劣り、自動車ランプエクステンション成形体用途へ適用する材料としては、必ずしも十分とは言えない。
 特許文献2に記載の樹脂組成物は、確かに、特定の安定剤を添加することによって、耐熱老化性は改善されるが、特許文献2には、アルミ蒸着後の成形体における白斑やその改良に関する記述は一切見られず、特許請求の範囲や実施例も、自動車ランプエクステンション成形体におけるアルミ蒸着後の白斑の改良に有効な技術について検討されていない。
 従って、上記の技術文献は、必ずしも、自動車ランプエクステンション成形体用途における樹脂組成物の好ましい改良技術について示されたものではない。
 そこで、本発明は、低比重で、良好な耐熱性と成形流動性とのバランスを有して、さらには、成形品光沢及び輝度感に優れた樹脂組成物を含む自動車ランプエクステンション成形体を提供することを目的とする。
 本発明者らは上記課題を解決するため鋭意検討した。その結果、ポリフェニレンエーテルを50~95質量%を含有して、比重が1.00~1.12の範囲内である樹脂組成物を含む自動車ランプエクステンション成形体により上記課題を解決できることを見出し、本発明を完成した。
 即ち、本発明は、以下の通りである。
 [1]
 ポリフェニレンエーテル(A)50~95質量%を含有し、比重が1.00~1.12の範囲内である樹脂組成物を含む、自動車ランプエクステンション成形体。
 [2]
 前記(A)成分の還元粘度(クロロホルム溶媒を用いて30℃で測定)が0.25~0.45dl/gである、前記[1]に記載の自動車ランプエクステンション成形体。
 [3]
 前記(A)成分の還元粘度(クロロホルム溶媒を用いて30℃で測定)が0.25~0.38dl/gである、前記[1]又は[2]に記載の自動車ランプエクステンション成形体。
 [4]
 前記樹脂組成物が、ゴム強化されていないスチレン系樹脂(B1)、スチレン系熱可塑性エラストマー(B2)及びポリカーボネート樹脂(B3)からなる群より選択される少なくとも1種の樹脂成分(B)5~50質量%をさらに含有する、前記[1]~[3]のいずれかに記載の自動車ランプエクステンション成形体。
 [5]
 前記(B1)成分が、アクリロニトリル(AN)単位含有量5~15質量%のスチレン-アクリロニトリル(AS)樹脂である、前記[4]に記載の自動車ランプエクステンション成形体。
 [6]
 前記(B2)成分が、スチレン-共役ジエン化合物ブロック共重合体の水素添加物である、前記[4]又は[5]に記載の自動車ランプエクステンション成形体。
 [7]
 前記(B2)成分が、結合スチレン量が45~80質量%のスチレン-共役ジエン化合物ブロック共重合体の水素添加物(B2-1)と、結合スチレン量が20~40質量%のスチレン-共役ジエン化合物ブロック共重合体の水素添加物(B2-2)とを、(B2-1)/(B2-2)=4/1~1/4の質量比率で併用したものである、前記[4]~[6]のいずれかに記載の自動車ランプエクステンション成形体。
 [8]
 前記(B3)成分が、分子骨格内に、二価フェノール残基を含有する芳香族ポリカーボネート樹脂である、前記[4]~[7]のいずれかに記載の自動車ランプエクステンション成形体。
 [9]
 前記(B3)成分が、分子骨格中に、シクロヘキサン環を導入したビスフェノール残基を含有するポリカーボネート樹脂である、前記[4]~[8]のいずれかに記載の自動車ランプエクステンション成形体。
 [10]
 前記(B3)成分のMFR(試験方法ISO1133に準拠。測定温度300℃、1.2kg荷重で測定)が、0.5~25g/10minの範囲内である、前記[4]~[9]のいずれかに記載の自動車ランプエクステンション成形体。
 [11]
 前記樹脂組成物が、前記(B3)成分を5~40質量%含有する、前記[4]~[10]のいずれかに記載の自動車ランプエクステンション成形体。
 [12]
 前記(B)成分が、アクリロニトリル(AN)単位含有量5~15質量%のスチレン-アクリロニトリル(AS)樹脂とポリカーボネート樹脂とを含有する、前記[4]~[11]のいずれかに記載の自動車ランプエクステンション成形体。
 [13]
 前記樹脂組成物が、熱安定剤成分(C)0.01~5質量%をさらに含有する、前記[1]~[12]のいずれかに記載の自動車ランプエクステンション成形体。
 [14]
 前記(C)成分が、融点が180℃以上の熱安定剤である、前記[13]に記載の自動車ランプエクステンション成形体。
 [15]
 前記(C)成分が、ヒンダードフェノール系熱安定剤である、前記[13]又は[14]に記載の自動車ランプエクステンション成形体。
 [16]
 前記(C)成分がリン系熱安定剤である、前記[13]又は[14]に記載の自動車ランプエクステンション成形体。
 [17]
 前記樹脂組成物が、MFR(280℃、10kgで測定)が20g/10min以上で、かつ、ビカット軟化温度(ISO306に準拠、試験荷重50N、昇温速度120℃/hrで測定)が160℃以上である、前記[1]~[16]のいずれかに記載の自動車ランプエクステンション成形体。
 [18]
 測定角20°での光沢値が90~140%の範囲内である光沢面を有する、前記[1]~[17]のいずれかに記載の自動車ランプエクステンション成形体。
 [19]
 成形体の鏡面部分の面積52.4mm内に存在する白斑(直径30μm以上のクレーター状の窪みを有する突起物を指す)が、40個以下である、前記[1]~[18]のいずれかに記載の自動車ランプエクステンション成形体。
 本発明によれば、低比重で、良好な耐熱性と流動性とのバランスを有して、さらには、成形品光沢面の光沢及び輝度感にも優れた樹脂組成物を含む成形体が得られ、該成形体は自動車ランプエクステンション用の成形体として良好に利用できる。
  以下、本発明を実施するための形態(以下、「本実施の形態」という)について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
  [自動車ランプエクステンション成形体]
 本実施の形態に係る自動車ランプエクステンション成形体は、ポリフェニレンエーテル(A)50~95質量%を含有し、比重が1.00~1.12の範囲内である樹脂組成物を含む。
  《樹脂組成物》
 本実施の形態に用いる樹脂組成物は、ポリフェニレンエーテル(A)を50~95質量%含有し、比重が1.00~1.12の範囲内である。
 本発明者らは、上記の樹脂組成物を使用することにより、低比重で、良好な耐熱性と流動性とのバランスを有して、さらには、成形体光沢面の輝度感にも優れた自動車ランプエクステンション成形体が得られることを見出した。以下、上記の樹脂組成物の各構成成分について詳細に説明する。
 <ポリフェニレンエーテル(A)>
 本実施の形態に用いるポリフェニレンエーテル(A)の還元粘度は、0.25~0.45dl/gの範囲であることが好ましく、より好ましくは0.25~0.40dl/gであり、さらに好ましくは0.25~0.38dl/gであり、特に好ましくは0.25~0.35dL/gの範囲である。ポリフェニレンエーテル(A)の還元粘度は、十分な機械物性の観点から0.25dl/g以上が好ましく、成形加工性と成形体の輝度感との観点から0.45dl/g以下が好ましい。なお、本実施の形態において、還元粘度は、クロロホルム溶媒を用いて30℃で測定し、得られた値である。
 ポリフェニレンエーテル(A)は、下記式(1)の〔a〕又は〔b〕を繰り返し単位とし、構成単位が一般式(1)の〔a〕又は〔b〕からなる単独重合体(ホモポリマー)、あるいは共重合体(コポリマー)であることが好ましい。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 上記式(1)の〔a〕及び〔b〕中、R1、R2、R3、R4、R5及びR6は、それぞれ独立して、炭素数1~4のアルキル基、炭素数6~12のアリール基、並びにハロゲン及び水素などの一価の残基であることが好ましい。但し、かかる場合、R5及びR6が同時に水素である場合を除く。また、前記アルキル基のより好ましい炭素数は1~3であり、前記アリール基のより好ましい炭素数は6~8であり、前記一価の残基の中でもより好ましくは水素である。なお、上記(1)の〔a〕及び〔b〕における繰り返し単位数については、ポリフェニレンエーテル(A)の分子量分布により様々であるため、特に制限されることはない。
 ポリフェニレンエーテルの単独重合体としては、以下に制限されないが、例えば、ポリ(2,6-ジメチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-エチル-1,4-フェニレン)エーテル、ポリ(2,6-ジエチル-1,4-フェニレン)エーテル、ポリ(2-エチル-6-n-プロピル-1,4-フェニレン)エーテル、ポリ(2,6-ジ-n-プロピル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-n-ブチル-1,4-フェニレン)エーテル、ポリ(2-エチル-6-イソプロピル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-クロロエチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-ヒドロキシエチル-1,4-フェニレン)エーテル及びポリ(2-メチル-6-クロロエチル-1,4-フェニレン)エーテル等が挙げられ、中でも原料入手の容易性や加工性の観点からポリ(2,6-ジメチル-1,4-フェニレン)エーテルが好ましい。
 ポリフェニレンエーテルの共重合体としては、以下に制限されないが、例えば、2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとの共重合体、2,6-ジメチルフェノールとo-クレゾールとの共重合体、及び2,3,6-トリメチルフェノールとo-クレゾールとの共重合体といった、ポリフェニレンエーテル構造を主体とするものが挙げられる。中でも、原料入手の容易性と加工性の観点から2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとの共重合体が好ましく、物性改良の観点から2,6-ジメチルフェノール90~70質量%と2,3,6-トリメチルフェノール10~30質量%との共重合体がより好ましい。
 ポリフェニレンエーテル(A)は、1種単独で用いてもよく、2種以上併用してもよい。
 また、ポリフェニレンエーテル(A)は、本実施の形態に所望の効果を逸脱しない限度で、他の種々のフェニレンエーテル単位を部分構造として含んでいてもよい。かかるフェニレンエーテル単位としては、以下に制限されないが、例えば、特開平01-297428号公報及び特開昭63-301222号公報に記載されている、2-(ジアルキルアミノメチル)-6-メチルフェニレンエーテル単位や、2-(N-アルキル-N-フェニルアミノメチル)-6-メチルフェニレンエーテル単位が挙げられる。
 また、ポリフェニレンエーテルの主鎖中にジフェノキノン等が少量結合していてもよい。さらに、ポリフェニレンエーテルの一部又は全部を、アシル官能基とカルボン酸、酸無水物、酸アミド、イミド、アミン、オルトエステル、ヒドロキシ及びカルボン酸アンモニウム塩よりなる群から選択される1種以上とを含む官能化剤と反応(変性)させることにより官能化ポリフェニレンエーテルとしてもよい。
 ポリフェニレンエーテル(A)の、重量平均分子量Mwと数平均分子量Mnとの比(Mw/Mn値)は、好ましくは2.0~5.5であり、より好ましくは2.5~4.5、さらに好ましくは3.0~4.5である。該Mw/Mn値は、樹脂組成物の成形加工性の観点から2.0以上が好ましく、樹脂組成物の機械物性の観点から5.5以下が好ましい。
 なお、本実施の形態において、重量平均分子量Mw及び数平均分子量Mnは、ゲルパーミュエーションクロマトグラフィ(GPC)により測定することができ、ポリスチレン換算分子量から得られる。
 ポリフェニレンエーテル(A)の残留揮発分は、成形体の表面外観改良の観点から0.3質量%(3000ppm)以下が好ましい。より好ましくは0.1質量%(1000ppm)以下である。ここで、前記残留揮発分が0.3質量%以下であるポリフェニレンエーテルは、以下に制限されないが、例えば、ポリフェニレンエーテル重合後の乾燥温度や乾燥時間を調節することによって、好適に製造できる。前記乾燥温度として、40~200℃が挙げられ、好ましくは80~180℃、より好ましくは120~170℃である。乾燥効率の観点から40℃以上が望ましく、溶融による焼け付きや劣化防止の観点から200℃以下での乾燥が望ましい。
 前記乾燥時間として、0.5~72時間が挙げられ、好ましくは2~48時間、より好ましくは6~24時間である。ポリフェニレンエーテル(A)の残留揮発分を比較的短時間で除去しようとする場合は、高温でポリフェニレンエーテル(A)を乾燥させることが好ましい。かかる場合には、熱による劣化を防止するため、窒素雰囲気中での乾燥や真空乾燥機による乾燥が好適である。
 重合後の乾燥によって、ポリフェニレンエーテル(A)の残留揮発分を低減させ、上記した残留揮発分の範囲内にするためには、重合に悪影響を及ぼさず、環境にも殆ど悪影響を及ぼさず、且つ比較的沸点が低くて揮発させやすい重合溶剤を予め用いて重合させることが好ましい。前記重合溶剤としては、以下に制限されないが、例えばトルエンが挙げられる。より具体的に説明すると、公知の重合方法により、還元粘度が上記の範囲内であるポリフェニレンエーテルを重合した後、得られたポリマーを、真空乾燥機などを用いて十分に乾燥することによって、残留揮発分が上記の範囲内であるポリフェニレンエーテルを製造できる。なお、上記した好ましい重合溶剤以外のものを使用しても、乾燥を十分に行なうことにより、残留揮発分が上記の範囲内であるポリフェニレンエーテルを製造することができる。
 本実施の形態に用いるポリフェニレンエーテル(A)の含有量は、樹脂組成物100質量%中において、50~95質量%の範囲内である。好ましくは60~90質量%、より好ましくは65~85質量%の範囲内である。ポリフェニレンエーテル(A)の含有量は、本用途に要求される耐熱性の観点から、50質量%以上であり、成形体の外観及び輝度感保持の観点から、95質量%以下である。
 <樹脂成分(B)>
 本実施の形態に用いる樹脂組成物は、成形加工性及び成形体の外観、輝度感を向上させる観点から、ゴム強化されていないスチレン系樹脂(B1)、スチレン系熱可塑性エラストマー(B2)及びポリカーボネート樹脂(B3)からなる群より選択される少なくとも1種の樹脂成分(B)5~50質量%をさらに含有することが好ましい。樹脂成分(B)の含有量は、樹脂組成物100質量%中において、より好ましくは10~40質量%であり、さらにより好ましくは15~35質量%の範囲内である。樹脂成分(B)の含有量は、本用途に要求される耐熱性の観点から、50質量%以下が好ましく、成形品の耐衝撃性、輝度感及び成形流動性改良等の観点から、5質量%以上が好ましい。
 樹脂成分(B)は、ゴム強化されていないスチレン系樹脂(B1)、ポリカーボネート樹脂(B2)及びスチレン系熱可塑性エラストマー(B3)からなる群より選択される少なくとも1種である。このような樹脂成分(B)を、ポリフェニレンエーテル(A)へ添加することによって、ポリフェニレンエーテル(A)の有する耐熱性を極力損なわせずに、成形時の溶融流動性を改良して、なおかつ成形品の外観や輝度感を改良することが可能である。
 〔ゴム強化されていないスチレン系樹脂(B1)〕
 本実施の形態に使用する、ゴム強化されていないスチレン系樹脂(B1)とは、スチレン系化合物、又はスチレン系化合物と該スチレン系化合物と共重合可能な化合物とを、ゴム質重合体の非存在下で重合して得られる合成樹脂である。スチレン系化合物とは、下記式(2)で表される化合物を意味する。
Figure JPOXMLDOC01-appb-C000003
 上記式(2)中、Rは水素、低級アルキル又はハロゲンであり、Zはビニル基、水素、ハロゲン及び低級アルキル基よりなる群から選択される1種以上であり、pは0~5の整数である。
 上記式(2)で表される化合物の具体例としては、以下に制限されないが、スチレン、α-メチルスチレン、2,4-ジメチルスチレン、モノクロロスチレン、p-メチルスチレン、p-tert-ブチルスチレン、エチルスチレン等が挙げられる。また、スチレン系化合物と共重合可能な化合物としては、メチルメタクリレートやエチルメタクリレート等のメタクリル酸エステル;アクリロニトリルやメタクリロニトリル等の不飽和ニトリル化合物;無水マレイン酸等の酸無水物などが挙げられ、スチレン系化合物と共に使用される。中でも、好ましいスチレン系樹脂(B1)は、アクリロニトリル(AN)単位含有量5~15質量%のスチレン-アクリロニトリル(AS)樹脂である。
 上記のAS樹脂に占めるアクリロニトリル単位の含有量としては、得られる成形体の表面外観を改良し、且つポリフェニレンエーテルとの十分な混和性を確保するという観点から、好ましくは5~15質量%、より好ましくは5~12質量%、さらにより好ましくは、7~10質量%である。
 本実施の形態に使用する、ゴム強化されていないスチレン系樹脂(B1)は、1種単独で用いてもよく、2種以上併用してもよい。
 本実施の形態に使用する、ゴム強化されていないスチレン系樹脂(B1)の含有量は、樹脂組成物全体100質量%に対して、5~40質量%の範囲内であることが好ましく、より好ましくは8~30質量%であり、さらに好ましくは8~25質量%であり、特に好ましくは8~20質量%の範囲内である。ゴム強化されていないスチレン系樹脂(B1)の含有量は、成形品の外観改良と成形流動性改良の観点から、5質量%以上が好ましく、十分な耐熱性の観点から、40質量%以下が好ましい。
 〔スチレン系熱可塑性エラストマー(B2)〕
 スチレン系熱可塑性エラストマー(B2)は、スチレンブロックと共役ジエン化合物ブロックとを有するブロック共重合体(以下、「スチレンブロック-共役ジエン化合物ブロック共重合体」とも記す。)の水素添加物であることが好ましい。前記共役ジエン化合物ブロックは、熱安定性の観点から、少なくとも水素添加率50%以上で水素添加されたものが好ましい。該水素添加率は、より好ましくは80%以上、さらにより好ましくは95%以上である。
 スチレン系熱可塑性エラストマー(B2)は、1種単独で用いてもよく、2種以上併用してもよい。
 前記共役ジエン化合物ブロックとしては、以下に制限されないが、例えば、ポリブタジエン、ポリイソプレン、ポリ(エチレン・ブチレン)、ポリ(エチレン・プロピレン)及びビニル-ポリイソプレンが挙げられる。前記共役ジエン化合物ブロックは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 スチレンブロック-共役ジエン化合物ブロック共重合体を構成する繰り返し単位の配列の様式は、リニアタイプでもラジアルタイプでもよい。また、ポリスチレンブロック及びゴム中間ブロックにより構成されるブロック構造は二型、三型及び四型のいずれであってもよい。中でも、本実施の形態に所望の効果を十分に発揮し得る観点から、好ましくは、ポリスチレン-ポリ(エチレン・ブチレン)-ポリスチレン構造で構成される三型のリニアタイプのブロック共重合体である。なお、共役ジエン化合物ブロック中に30質量%を超えない範囲でブタジエン単位が含まれてもよい。
 また、本実施の形態に用いる樹脂組成物において、スチレン系熱可塑性エラストマーに、カルボニル基やアミノ基などの官能基を導入してなる、官能化されたスチレン系熱可塑性エラストマーを用いることも可能である。
 前記カルボニル基は、不飽和カルボン酸又はその官能的誘導体で変性することにより導入される。不飽和カルボン酸又はその官能的誘導体の例としては、以下に制限されないが、例えば、マレイン酸、フマル酸、イタコン酸、ハロゲン化マレイン酸、シス-4-シクロヘキセン-1,2-ジカルボン酸、及びエンド-シス-ビシクロ[2,2,1]-5-ヘプテン-2,3-ジカルボン酸、並びにこれらジカルボン酸の無水物、エステル化合物、アミド化合物及びイミド化合物、さらにはアクリル酸及びメタクリル酸、並びにこれらモノカルボン酸類のエステル化合物及びアミド化合物が挙げられる。中でも、成形体の表面外観を保持し、且つ耐衝撃性を付与する観点から、好ましくは無水マレイン酸である。
 上記のアミノ基は、イミダゾリジノン化合物やピロリドン化合物などをスチレン系熱可塑性エラストマーと反応させることにより導入させる。
 本実施の形態に用いる樹脂組成物において、成形品光沢改良及び一層の耐衝撃性付与と、成形品の層剥離防止との観点から、(B2)成分として、結合スチレン量が45~80質量%のスチレン-共役ジエン化合物ブロック共重合体の水素添加物(B2-1)を含有することが好ましい。さらには、前記(B2-1)と、結合スチレン量が20~40質量%のスチレン-共役ジエン化合物ブロック共重合体の水素添加物(B2-2)とを、(B2-1)/(B2-2)=4/1~1/4の質量比率で併用して用いることが、より好ましい。
 前記(B2-1)と(B2-2)とを併用する場合、より一層好ましい範囲は(B2-1)/(B2-2)=3/2~1/3であり、特により一層好ましい範囲は1/1~1/2の質量比率である。十分な耐衝撃性付与の観点から、(B2-1)/(B2-2)=4/1の質量比率以下であることが好ましい。このような質量比率となるように、例えば、(B2-2)成分が配合されることがより好ましい。また、十分な成形体光沢の改良と、層剥離防止の観点から、(B2-1)/(B2-2)=1/4の質量比率以上であることが好ましい。このような質量比率となるように、例えば、(B2-2)成分が配合されることが好ましい。
 (B2-1)成分の結合スチレン量は45~80質量%の範囲から選ばれ、好ましくは50~75質量%、より好ましくは55~70質量%の範囲である。(B2-1)成分の結合スチレン量は、(B2-2)成分との混和による層剥離抑制の観点から45質量%以上が好ましく、耐衝撃性保持の観点から80質量%以下が好ましい。
 (B2-2)成分の結合スチレン量は20~40質量%の範囲から選ばれ、好ましくは25~40質量%、より好ましくは25~35質量%の範囲である。(B2-2)成分の結合スチレン量は、前記(A)成分との混和性の観点から20質量%以上が好ましく、十分な耐衝撃性付与の観点から40質量%以下が好ましい。
 (B2-1)成分の数平均分子量は、5,000~150,000が好ましく、より好ましくは10,000~120,000、さらにより好ましくは30,000~100,000の範囲である。(B2-1)成分の数平均分子量は、(B2-2)成分との混和性の観点から、5,000~150,000の範囲が好ましい。
 (B2-2)成分の数平均分子量は、50,000~500,000が好ましく、より好ましくは100,000~400,000、さらにより好ましくは150,000~300,000の範囲である。(B2-2)成分の数平均分子量は、十分な耐衝撃性付与の観点から、50,000~500,000の範囲が好ましい。
 前記(B2)成分の、重量平均分子量Mwと数平均分子量Mnとの比(Mw/Mn値)は、好ましくは1.0~3.0、より好ましくは1.0~2.0、さらにより好ましくは1.0~1.5の範囲内である。機械特性の観点から、1.0~3.0の範囲内が好ましい。重量平均分子量Mw及び数平均分子量Mnは、ゲルパーミュエーションクロマトグラフィ(GPC)により測定することができ、ポリスチレン換算分子量から得られる。
 本実施の形態に使用するスチレン系熱可塑性エラストマー(B2)の含有量は、樹脂組成物全体100質量%に対して、1~15質量%の範囲内であることが好ましく、より好ましくは2~12質量%であり、さらに好ましくは4~10質量%であり、特に好ましくは4~8質量%の範囲内である。スチレン系熱可塑性エラストマー(B2)の含有量は、耐衝撃性付与及び成形体外観改良の観点から、1質量%以上が好ましく、耐熱性及び剛性保持の観点から、15質量%以下が好ましい。
 〔ポリカーボネート樹脂(B3)〕
 前記(B)成分は、ポリカーボネート樹脂(B3)を含むことが好ましい。また、前記(B)成分は、上述のアクリロニトリル(AN)単位含有量5~15質量%のスチレン-アクリロニトリル(AS)樹脂とポリカーボネート樹脂(B3)とを含むことがより好ましい。このような(B)成分を含む樹脂組成物は、耐熱性、流動性のバランスが良好となり、該樹脂組成物から、成形体表面の白斑が極めて少なく、外観が良好な成形体を得ることができる。
 ポリカーボネート樹脂(B3)は、1種単独で用いてもよく、2種以上併用してもよい。
 ポリカーボネート樹脂(B3)としては、芳香族ポリカーボネート、脂肪族ポリカーボネート、芳香族-脂肪族ポリカーボネートが挙げられるが、本実施の形態においては、芳香族ポリカーボネートが好ましい。
 芳香族ポリカーボネートは、二価フェノールとカーボネート前駆体とを反応させることにより得られる。
 該反応の方法としては、界面重縮合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、及び環状カーボネート化合物の開環重合法等が挙げられる。
 前記二価フェノールとしては、例えば、ハイドロキノン、レゾルシノール、4,4‘-ビフェノール、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、4,4‘-(p-フェニレンジイソプロピリデン)ジフェノール、4,4’-(m-フェニレンジイソプロピリデン)ジフェノール、1,1-ビス(4-ヒドロキシフェニル)-4-イソプロピルシクロヘキサン、ビス(4-ヒドロキシフェニル)オキシド、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホキシド、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)ケトン、ビス(4-ヒドロキシフェニル)エステル、2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)プロパン、ビス(3,5-ジブロモ-4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシ-3-メチルフェニル)スルフィド、9,9-ビス(4-ヒドロキシフェニル)フルオレン及び9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンなどが挙げられる。
 好ましい二価フェノールは、ビス(4-ヒドロキシフェニル)アルカンであり、中でも耐衝撃性の観点からビスフェノールAが、より好ましい。
 前記カーボネート前駆体としては、例えば、カルボニルハライド、カーボネートエステル又は、ハロホルメート等が挙げられ、具体的にはホスゲン、ジフェニルカーボネート又は二価フェノールのジハロホルメート等が挙げられる。
 前記二価フェノールと前記カーボネート前駆体とを用い、界面重合法によって、芳香族ポリカーボネートを製造する際、必要に応じて触媒、末端停止剤、二価フェノールが酸化するのを防止するための酸化防止剤などを使用してもよい。
 また、芳香族ポリカーボネートは三官能以上の多官能性芳香族化合物を共重合した分岐芳香族ポリカーボネート、芳香族又は、脂肪族(脂環族を含む)の二官能性カルボン酸を共重合したポリエステルカーボネート、二官能性アルコール(脂環族を含む)を共重合した共重合ポリカーボネート、並びにかかる二官能性カルボン酸及び二官能性アルコールを共に共重合したポリエステルカーボネートを含んでいてもよい。また、得られたポリカーボネートの2種以上を混合した混合物であってもよい。
 前記三官能以上の多官能性芳香族化合物としては、例えば、1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタン等が使用できる。
 芳香族ポリカーボネートが、分岐芳香族ポリカーボネートを生ずる多官能性化合物を含む場合、かかる割合は、芳香族ポリカーボネート全量中、0.001~1モル%であることが好ましく、より好ましくは0.005~0.9モル%、さらに好ましくは0.01~0.8モル%である。
 また、芳香族ポリカーボネートを溶融エステル交換法により作製する場合、副反応として分岐構造が生ずる場合があるが、かかる分岐構造量についても、芳香族ポリカーボネート全量中、0.001~1モル%であることが好ましく、より好ましくは0.005~0.9モル%、さらに好ましくは0.01~0.8モル%である。なお、前記多官能性化合物の含有量、分岐構造量は、H-NMR測定により算出することが可能である。
 前記脂肪族の二官能性のカルボン酸は、α、ω-ジカルボン酸が好ましい。
 前記脂肪族の二官能性のカルボン酸としては、例えば、セバシン酸(デカン二酸)、ドデカン二酸、テトラデカン二酸、オクタデカン二酸、イコサン二酸などの直鎖飽和脂肪族ジカルボン酸、並びにシクロヘキサンジカルボン酸などの脂肪族ジカルボン酸が好ましい。
 二官能性アルコールとしては脂環族ジオールが好ましく、例えば、シクロヘキサンジメタノール、シクロヘキサンジオール、及びトリシクロデカンジメタノールなどが挙げられる。
 また、芳香族ポリカーボネートとしては、ポリオルガノシロキサン単位を共重合した、ポリカーボネート-ポリオルガノシロキサン共重合体の使用も可能である。
 芳香族ポリカーボネートは、上述した各種二価フェノールの異なる芳香族ポリカーボネート、分岐成分を含有する芳香族ポリカーボネート、各種のポリエステルカーボネート、ポリカーボネート-ポリオルガノシロキサン共重合体などの、各種の芳香族ポリカーボネートを2種以上混合したものであってもよい。
 さらに、下記に示す製造法の異なる芳香族ポリカーボネート、末端停止剤の異なる芳香族ポリカーボネートなど、各種についても2種以上を混合したものが使用できる。
 芳香族ポリカーボネートの重合反応において、前記界面重縮合法による反応は、通常、二価フェノールとホスゲンとの反応であり、酸結合剤及び有機溶媒の存在下で反応させることが好ましい。
 前記酸結合剤としては、例えば水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物又はピリジン等のアミン化合物が用いられる。
 前記有機溶媒としては、例えば塩化メチレン、クロロベンゼン等のハロゲン化炭化水素が用いられる。
 また、反応促進のために例えばトリエチルアミン、テトラ-n-ブチルアンモニウムブロマイド、テトラ-n-ブチルホスホニウムブロマイド等の第三級アミン、第四級アンモニウム化合物、第四級ホスホニウム化合物等の触媒を用いることもできる。
 芳香族ポリカーボネートの重合反応を界面重縮合法により行なう場合、反応温度は0~40℃であることが好ましく、反応時間は10分~5時間程度であることが好ましく、反応中のpHは9以上に保つのが好ましい。
 また、かかる界面重縮合法による重合反応においては、末端停止剤を使用することが好ましい。前記末端停止剤としては、単官能フェノール類を使用することができる。単官能フェノール類としては、例えば、フェノール、p-tert-ブチルフェノール、p-クミルフェノールなどの単官能フェノール類を用いるのが好ましい。さらに単官能フェノール類としては、デシルフェノール、ドデシルフェノール、テトラデシルフェノール、ヘキサデシルフェノール、オクタデシルフェノール、エイコシルフェノール、ドコシルフェノール及びトリアコンチルフェノールなどが挙げられる。
 また、末端停止剤は単独で使用してもよく、2種以上混合して使用してもよい。
 芳香族ポリカーボネートの重合反応における、前記溶融エステル交換法による反応は、通常、二価フェノールとカーボネートエステルとのエステル交換反応であり、不活性ガスの存在下に二価フェノールとカーボネートエステルとを加熱しながら混合して、生成するアルコール又はフェノールを留出させる方法により行なわれることが好ましい。
 前記溶融エステル交換法における反応温度は、生成するアルコール又はフェノールの沸点等により異なるが、通常120~350℃の範囲であることが好ましい。反応後期には反応系を1.33×10~13.3Pa程度に減圧して生成するアルコール又はフェノールの留出を容易にさせることが好ましい。反応時間は通常1~4時間程度であることが好ましい。
 前記カーボネートエステルとしては、置換基を有していてもよい炭素数6~10のアリール基、アラルキル基あるいは炭素数1~4のアルキル基などのエステルが挙げられ、中でもジフェニルカーボネートが好ましい。
 また、溶融エステル交換法における重合速度を速めるために重合触媒を用いることができる。該重合触媒としては、例えば水酸化ナトリウム、水酸化カリウム、二価フェノールのナトリウム塩、カリウム塩等のアルカリ金属化合物;水酸化カルシウム、水酸化バリウム、水酸化マグネシウム等のアルカリ土類金属化合物;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、トリメチルアミン、トリエチルアミン等の含窒素塩基性化合物などの触媒を用いることができる。さらに、アルカリ(土類)金属のアルコキシド類、アルカリ(土類)金属の有機酸塩類、ホウ素化合物類、ゲルマニウム化合物類、アンチモン化合物類、チタン化合物類、ジルコニウム化合物類などの通常エステル化反応、エステル交換反応に使用される触媒を用いることができる。
 該重合触媒は1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。これらの重合触媒の使用量は、原料の二価フェノール1モルに対し、好ましくは1×10-8~1×10-3等量、より好ましくは1×10-7~5×10-4等量の範囲で選ばれる。
 芳香族ポリカーボネートの重合反応のうち、前記溶融エステル交換法による反応においては、フェノール性の末端基を減少させるために、重縮反応の後期あるいは終了後に、例えば2-クロロフェニルフェニルカーボネート、2-メトキシカルボニルフェニルフェニルカーボネート及び2-エトキシカルボニルフェニルフェニルカーボネート等の化合物を加えてもよい。
 フェノール性の末端基を減少させることにより、ポリマーの安定性の改良を図ることができる。
 さらに、溶融エステル交換法では、触媒の活性を中和する失活剤を用いることが好ましい。
 失活剤の量としては、残存する触媒1モルに対して0.5~50モルの割合で用いるのが好ましい。また、失活剤の量は、重合後の芳香族ポリカーボネートに対し、0.01~500ppmの割合で使用することが好ましく、より好ましくは0.01~300ppm、さらに好ましくは0.01~100ppmの割合で使用する。
 失活剤としては、例えば、ドデシルベンゼンスルホン酸テトラブチルホスホニウム塩などのホスホニウム塩、テトラエチルアンモニウムドデシルベンジルサルフェートなどのアンモニウム塩などが好ましく挙げられる。
 前記芳香族ポリカーボネートは、粘度平均分子量は10000以上であることが好ましく、より好ましくは15000~50000である。
 該粘度平均分子量の下限は、さらに好ましくは16000であり、さらにより好ましくは17000であり、よりさらに好ましくは18000である。
 一方、該粘度平均分子量の上限は、さらに好ましくは26000であり、さらにより好ましくは25000であり、よりさらに好ましくは23000である。
 また、前記芳香族ポリカーボネートは、上記のように2種以上の異なる芳香族ポリカーボネートが混合されたものであってもよいが、この場合、粘度平均分子量が上記範囲外である芳香族ポリカーボネートを混合することも当然に可能である。
 特に粘度平均分子量が50000を超える芳香族ポリカーボネートとの混合物はエントロピー弾性が高く、ジェッティングなどに代表されるレオロジー挙動による成形体の外観不良が生じにくい特徴がある。したがって、成形体の外観不良が生ずる場合には、粘度平均分子量が50000を超える芳香族ポリカーボネートとの混合物を用いることにより外観不良を抑制することは、適切な態様である。さらに、ガスインジェクション成形などにおいても、ガス注入量が安定し、また発泡成形においては発泡セルが安定し、微細かつ均質なセルが形成されやすいことから有利である。
 より好ましくは粘度平均分子量が80000以上の芳香族ポリカーボネートとの混合物であり、さらに好ましくは100000以上の粘度平均分子量を有する芳香族ポリカーボネートとの混合物である。すなわちGPC(ゲルパーミエーションクロマトグラフィー)などの測定法において2ピーク以上の分子量分布を観察できる芳香族ポリカーボネートが好ましく使用できる。
 また、芳香族ポリカーボネートにおいて、そのフェノール性水酸基量は30eq/ton以下が好ましく、25eq/ton以下がより好ましく、20eq/ton以下がさらに好ましい。
 尚、フェノール性水酸基量の値は十分に末端停止剤を反応させることで実質的に0eq/tonとすることも可能である。
 前記フェノール性水酸基量は、H-NMR測定を行い、カーボネート結合を有する2価フェノールユニット、フェノール性水酸基を有する2価フェノールユニット、及び末端停止剤のユニットのモル比を算出し、それに基づきポリマー重量当たりのフェノール性水酸基量に換算することで求められる。
 前記芳香族ポリカーボネートの粘度平均分子量は、以下のようにして求めることができる。まず下記式(I)により比粘度を算出する。下記式(I)中、塩化メチレンの落下秒数(t)及び試料溶液の落下秒数(t)は、塩化メチレン100mlに芳香族ポリカーボネート0.7gを20℃で溶解した溶液を用いて、オストワルド粘度計により求めることができる。該比粘度を下記数式(II)に挿入して粘度平均分子量Mを求めることができる。
 比粘度(ηSP)=(t-t)/t0 ・・・・(I)
 [tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
 求められた比粘度を次式(II)に挿入して粘度平均分子量Mを求める。
 ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)・・・・(II)
 [η]=1.23×10-40.83
 c=0.7
 芳香族ポリカーボネートとしては、上述したように、二価フェノールの異なるもの、末端停止剤を使用したものと使用していないもの、直鎖状のものと分岐状のもの、製法の異なるもの、末端停止剤の異なるもの、芳香族ポリカーボネートとポリエステルカーボネート、粘度平均分子量の異なるものなど、2種以上の芳香族ポリカーボネートを混合して使用することができる。
 本実施の形態に使用するポリカーボネート樹脂(B3)は、成形体の成形性と、外観(白斑)改良との観点から、溶融エステル交換法(非ホスゲン法)によって製造されたポリカーボネート樹脂(特に芳香族ポリカーボネート樹脂)が好ましい。溶融エステル交換法で製造されたポリカーボネート樹脂を使用した場合、ホスゲン法で製造したポリカーボネートを使用した場合と比べて、白斑が少なく、より外観が良好な自動車ランプエクステンション成形体が得られる。
 また、本実施の形態に使用するポリカーボネート樹脂(B3)は、分子骨格内に、二価フェノール残基を含有する芳香族ポリカーボネート樹脂であることが好ましい。
 さらにまた、本実施の形態に使用するポリカーボネート樹脂(B3)は、成形体の耐熱性、熱安定性及び耐薬品性の観点から、分子骨格中に、シクロヘキサン環を導入したビスフェノール残基を含有するポリカーボネート樹脂であることが好ましい。
 本実施の形態に使用するポリカーボネート樹脂(B3)のメルトフローレート(MFR)は、好ましくは0.1~70g/10minの範囲から選ばれ、より好ましくは0.5~35g/10min、さらに好ましくは0.5~25g/10min、特に好ましくは、1~20g/10minの範囲である。該MFRは、十分な流動性付与の観点から0.1g/10min以上が好ましく、ポリフェニレンエーテル樹脂との十分な混和性、押出成形加工時の加水分解抑制の観点から70g/10min以下が好ましい。該MFRは、試験方法ISO1133に準拠し、測定温度300℃、1.2kg荷重で測定した値である。
 本実施の形態に使用するポリカーボネート樹脂(B3)の水分量は、2500ppm以下であることが好ましい。より好ましくは2000ppm以下、さらに好ましくは1000ppm以下、特により好ましくは500ppm以下である。押出時のストランド引取り安定性及び成形時の加水分解による成形体表面シルバー発生抑制の観点から、ポリカーボネート樹脂(B3)の水分量は、2500ppm以下であることが好ましい。該水分量は、カールフィッシャー水分計等により測定することができる。
 また、本実施の形態に使用するポリカーボネート樹脂(B3)は、成形体外観の向上や流動性の向上を図るため、ポリカーボネートオリゴマーを含有していてもよい。このポリカーボネートオリゴマーの粘度平均分子量(Mv)は、好ましくは1,500~9,500、より好ましくは2,000~9,000である。該粘度平均分子量(Mv)の測定方法は、上述の芳香族ポリカーボネートの粘度平均分子量の測定方法と同様である。ポリカーボネートオリゴマーの含有量は、ポリカーボネート樹脂(B3)において、好ましくは30質量%以下である。
 本実施の形態に使用するポリカーボネート樹脂(B3)の含有量は、樹脂組成物全体100質量%に対して、5~40質量%の範囲内であることが好ましく、より好ましくは、8~30質量%であり、さらにより好ましくは8~25質量%であり、特により好ましくは8~20質量%の範囲内である。ポリカーボネート樹脂(B3)は、成形品の外観(白斑)改良の観点から、5質量%以上の配合が好ましく、十分な耐熱性と成形体外観保持、低比重性保持の観点から、40質量%以下の配合が好ましい。
 本実施の形態に使用する(B)成分として、ポリカーボネート樹脂(B3)を配合する場合、前記AS樹脂を併用することが(B3)成分の混和性及び成形品外観(白斑)改良の観点から好ましい。(B3)成分と前記AS樹脂との配合比率(質量)は、(B3)/AS樹脂=4/1~1/4が好ましく、2/1~1/2がより好ましく、3/2~2/3が特に好ましい。
 さらに、本実施の形態においては、ポリカーボネート樹脂(B3)として、バージン樹脂だけでなく、使用済みの製品から再生されたポリカーボネート樹脂、所謂マテリアルリサイクルされたポリカーボネート樹脂を使用してもよい。使用済みの製品としては、例えば、光学ディスク等の光記録媒体、導光板、自動車窓ガラス・自動車ヘッドランプレンズ・風防などの車両透明部材、水ボトル等の容器、メガネレンズ、防音壁・ガラス窓・波板などの建築部材が挙げられる。また、製品の不適合品、スプルー、ランナー等から得られた粉砕品又はそれらを溶融して得たペレット等も使用可能である。再生されたポリカーボネート樹脂の使用割合は、バージン樹脂に対し、好ましくは80質量%以下、より好ましくは50質量%以下である。
 <熱安定剤成分(C)>
 本実施の形態に用いる樹脂組成物は、樹脂組成物の熱安定性、並びに成形品の表面外観及び輝度感を向上させる観点から、熱安定剤成分(C)0.01~5質量%をさらに含有することが好ましい。熱安定剤成分(C)の含有量は、樹脂組成物100質量%に対して、より好ましくは0.1~3質量%であり、さらにより好ましくは0.2~2質量%の範囲内である。
 (C)成分の熱安定剤としては、ヒンダードフェノール系、リン系の熱安定剤が挙げられる。ヒンダードフェノール系熱安定剤としては、具体的には、3,3‘,3“,5,5’,5”-ヘキサ-tert-ブチル-a,a‘,a“-(メシチレン-2,4,6-トリイル)トリ-p-クレゾール、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン等が挙げられる。リン系熱安定剤としては、具体的には、トリス(2,4-ジ-tert-ブチルフェニル)フォスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジフォスファイト、3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファピロ[5,5]ウンデカン等が挙げられる。
 本実施の形態に用いる(C)成分の熱安定剤としては、成形品の外観(白斑)改良の観点から、融点が180℃以上の熱安定剤であることが好ましい。(C)成分の融点は、(180~300℃であることがより好ましく、180~280℃であることがさらに好ましい。なお、本実施の形態に置いて、(C)成分の融点は、融点測定器 型式:B-545(柴田科学社製)により、測定することができる。
 また、本実施の形態に用いる樹脂組成物中に、ポリカーボネート樹脂(B3)を含まない場合は、外観(白斑)改良の観点から、ヒンダードフェノール系熱安定剤の使用が好ましい。
 一方、本実施の形態に用いる樹脂組成物中に、ポリカーボネート樹脂(B3)を含む場合は、外観(白斑)改良及びポリカーボネートの加水分解抑制の観点から、リン系熱安定剤を使用することが好ましい。
 <その他>
 本実施の形態に用いる樹脂組成物には、成形品の輝度感保持の観点から、強化剤としての無機フィラーは含まないことが好ましい。強化剤としての無機フィラーとしては、一般的に、熱可塑性樹脂の補強に用いられるものであり、例えば、ガラス繊維、炭素繊維、ガラスフレーク、タルク、マイカ等が挙げられる。
 本実施の形態に用いる樹脂組成物には、成形品の輝度感保持の観点から、結晶性ポリマーを含まないことが好ましい。結晶性ポリマーとしては、ポリアミド、ポリプロピレン、ポリエチレン、ポリフェニレンスルフィド、ポリアセタール、ポリエチレンテレフタレート、ポリブチレンテレフタレート、液晶ポリマー等が挙げられる。
 [樹脂組成物の特性]
 本実施の形態に用いる樹脂組成物は、軽量化のための薄肉成形加工性と、成形体の長期耐熱性、耐久性保持との兼ね合いの観点から、MFR(280℃、10kg荷重で測定)が20g/min以上で、かつ、ビカット軟化温度(ISO306に準拠、試験荷重50N、昇温速度120℃/hrで測定)が160℃以上であることが好ましい。より好ましくは、前記MFR20~150g/min、かつ、前記ビカット軟化温度160~210℃の範囲内であり、さらにより好ましくは、前記MFR25~90g/min、かつ、前記ビカット軟化温度170~200℃の範囲内である。
 樹脂組成物の、MFR及びビカット軟化温度を前記範囲内に調整する方法としては、例えば、ポリフェニレンエーテル(A)成分の還元粘度を0.25~0.38dl/gの範囲内のものを使用する方法や、(B1)成分としてゼネラルパーパスポリスチレン(GPPS)とAN5~15%のAS樹脂とを併用する方法や、(B1)成分としてAN5~15%のAS樹脂と(B3)ポリカーボネート樹脂とを併用して用いる方法などが挙げられる。
 本実施の形態に用いる樹脂組成物は、軽量化による環境負荷低減メリットと、十分な性能(耐熱性、機械強度、成形品外観等)を保持した材料設計との兼ね合いの観点から、比重が1.00~1.12の範囲内であり、好ましくは、1.04~1.10の範囲内であり、より好ましくは1.05~1.08の範囲内である。
 樹脂組成物の比重を前記範囲内に調整する方法としては、例えば、無機質充填材を配合しないことや、(B3)成分であるポリカーボネート樹脂の配合量を樹脂組成物全体における40質量%以下とすることなどが挙げられる。
 なお、本実施の形態において、樹脂組成物の比重は、アルファーミラージュ社製の電子比重計SD-200Lを用いて測定することができる。
 [樹脂組成物の製造方法]
 本実施の形態に用いる樹脂組成物は、上記各成分、例えば、前記(A)成分、前記(B)成分及び/又は、前記(C)成分を溶融混錬することにより製造することができる。前記樹脂組成物を製造するための、前記(A)成分、前記(B)成分及び/又は、前記(C)成分の溶融混錬の条件については、特に制限されないが、本実施の形態の所望の効果を十分に発揮し得る樹脂組成物を大量且つ安定的に得るという観点から、二軸押出機を用いることが好適である。一例として、ZSK25二軸押出機(独国Werner&Pfleiderer社製、バレル数10、スクリュー径25mm、L/D=44);ニーディングディスクL:2個、ニーディングディスクR:6個、及びニーディングディスクN:2個を有するスクリューパターン)を用いた場合に、シリンダー温度270~340℃、スクリュー回転数150~450rpm、及びベント真空度11.0~1.0kPaの条件で溶融混練する方法が挙げられる。
 また、本実施の形態に用いる樹脂組成物を、より大型(スクリュー径40~90mm)の二軸押出機を用いて製造する際に注意すべきは、押出樹脂ペレット中に押出時に生じた、前記(A)成分から生じるゲルや炭化物が混入することで、成形体の表面外観や輝度感を低下させる原因となる場合もある。そこで、前記(A)成分を最上流(トップフィード)の原料投入口から投入して、最上流投入口におけるシューター内部の酸素濃度を3容量%以下に設定しておくことが好ましい。該酸素濃度はより好ましくは1容量%以下である。
 酸素濃度の調節は、原料貯蔵ホッパー内を十分に窒素置換して、原料貯蔵ホッパーから押出機原料投入口までの、フィードラインの途中を空気の出入りがないようにテープを貼って塞ぐなどして密閉性を向上させた上で、窒素フィード量の調節、ガス抜き口の開度を調節することで可能である。押出中における、ゲルや炭化物発生低減の観点から、シューター内部の酸素濃度は3容量%以下が好ましい。
 [自動車ランプエクステンション成形体の製造方法]
 本実施の形態の自動車ランプエクステンション成形体は、上述の樹脂組成物を成形することにより得ることができる。
 前記樹脂組成物を用いて自動車ランプエクステンション成形体を製造する場合の成形方法としては、以下に制限されないが、例えば、射出成形、押出成形、真空成形及び圧空成形が好適に挙げられ、特に成形外観及び輝度感の観点から、射出成形がより好適に用いられる。
 ここで、自動車ランプエクステンション成形体とは、自動車の前照灯の光源ビームの後方にある光反射部品であるリフレクターと、ランプ前面カバーとの間に存在する比較的大型の光反射部品であり、光源及び、リフレクターからの反射光を集光する役割を果たす。リフレクターほどの高い耐熱性は必要とされないが、成形体光沢面の良好な輝度感やアルミ蒸着後の表面外観、耐熱性と成形流動性との十分なバランス特性、軽量性(低比重の材料であること)等がより一層高いレベルで要求される。
 本実施の形態の自動車ランプエクステンション成形体の成形温度は、例えば、シリンダー設定温度(最高温部)270~340℃の範囲から選ばれる。該成形温度は、280~330℃が好ましく、290~320℃がさらに好ましく、300~320℃がさらにより好ましい。十分な成形流動性の観点から270℃以上が好ましく、樹脂組成物の熱安定性の観点から340℃以下が好ましい。
 [自動車ランプエクステンション成形体の特性]
 本実施の形態の自動車ランプエクステンション成形体の平均厚みは、0.8~3.2mmの範囲から選ばれることが好ましい。該平均厚みは、1.0~3.0mmがより好ましく、1.2~2.5mmがさらにより好ましく、1.2~2.0mmが特により好ましい。該平均厚みは、軽量性の観点から3.2mm以下が好ましく、十分な成形性と強度保持の観点から0.8mm以上が好ましい。
 本実施の形態の自動車ランプエクステンション成形体は、金型表面の表面粗さを極めて小さいレベル(平均表面粗度0.2μm以下)までダイヤモンドペースト等で磨き上げた鏡面成形金型を用いて成形されることが好ましい。鏡面成形金型の磨き番手は、#1000以上が好ましく、#2000以上がより好ましく、さらには#5000以上が特に好ましい。十分な鏡面外観発現の観点から、磨き番手は、#1000以上が好ましい。
 本実施の形態の自動車ランプエクステンション成形体の鏡面部分の光沢値は、光源から発せられる光の十分な反射性と、十分な物性(耐熱性、機械強度、成形品外観等)を保持した材料設計との兼ね合いの観点から、測定角20°で測定した時に90~140%の範囲内であることが好ましい。該光沢値は、より好ましくは、90~140%の範囲内であり、さらにより好ましくは100~140%の範囲内である。上述した樹脂組成物を用いることにより、成形体の鏡面部分の光沢値を前記範囲内とすることができる。
 なお、本実施の形態において、該光沢値は、後述の実施例に記載の方法により測定することができる。
 本実施の形態の自動車ランプエクステンション成形体は、成形後に、その成形体表面の一部又は全部にアルミ蒸着処理が施されることが好ましい。本実施の形態の自動車ランプエクステンション成形体には、アルミ蒸着前に、成形体表面を活性化させることによって、アルミ膜の密着性を高められることから、予めプラズマ処理を行なうことが好ましい。また、アルミ蒸着後の成形体表面には、酸化等による外観や輝度感の低下を防止するため、プラズマ重合処理によって、二酸化珪素重合膜のコーティングを施すことが好ましい。
 本実施の形態の自動車ランプエクステンション成形体における、鏡面部分の一定面積(52.4mm)内に存在する白斑(直径30μm以上のクレーター状の窪みを有する突起物を指す)の個数は、更なる良好な成形品外観保持の観点から、40個以下であることが好ましい。該白斑の個数は、より好ましくは30個以下であり、さらにより好ましくは20個以下であり、特により好ましくは10個以下である。上述した樹脂組成物を用いることにより、成形体における鏡面部分の一定面積内(52.4mm)に存在する白斑の個数を前記範囲内とすることができる。
 なお、本実施の形態において、該白斑の個数は、後述の実施例に記載の方法により測定することができる。
 また、本実施の形態の自動車ランプエクステンション成形体は、成形する際に、一部、リワーク(リサイクル)材(一度成形された成形品の破砕物等)を配合して、成形することも可能である。自動車ランプエクステンション成形体におけるリワーク(リサイクル)材の配合割合は、0~40質量%の範囲であることが好ましく、より好ましくは2~25質量%であり、さらにより好ましくは5~15質量%であり、特により好ましくは5~10質量%の範囲内である。十分な物性及び外観保持の観点から、40質量%以下の配合とすることが好ましい。
 以下、本実施の形態を実施例及び比較例によってさらに具体的に説明するが、本実施の形態はこれらの実施例のみに制限されるものではない。実施例及び比較例に用いた物性の測定方法及び原材料を以下に示す。
 [物性の測定方法]
 前提として、物性測定に用いた成形片は、いずれも以下のように作製した成形片とした。
 実施例及び比較例で得られた樹脂組成物ペレットを120℃の熱風乾燥機中で3時間乾燥した。乾燥後の樹脂組成物ペレットを、射出成形機(IS-80EPN、東芝機械社製)により、シリンダー温度300℃、金型温度120℃、射出速度(パネル設定値)85%で成形し、幅13mm、厚み3.2mmのダンベル形状の成形片又は、幅13mm、厚み6.4mmのタンザク形状の成形片を得た。
 尚、各サンプルにおける、幅13mm、厚み3.2mmのダンベル成形片は、成形片のSSP(ショートショットプレッシャー)+5kg/cmのゲージ圧、成形サイクル:射出時間/冷却時間=10sec/10secで成形し、幅13mm、厚み6.4mmのタンザク成形片は、前記ダンベル成形片の場合と同様のSSPのゲージ圧で、成形サイクル:射出時間/冷却時間=15sec/15secで成形した。
 1.比重
 アルファーミラージュ社製の電子比重計SD-200Lを用いて測定した。
 2.ビカット軟化温度(Vicat軟化点)
 上記ダンベル成形片を切削して作製した、試験片形状35mm×13mm×3.2mm厚の試験片を用いて、ISO306に準拠、HDTテスター S-6M型(東洋精機製作所社製)を使用して、試験荷重:50N、圧子先端形状:円柱状 断面積1mm、昇温速度120℃/hr、測定数n=2の条件で測定した。
 評価基準としては、ビカット軟化温度が高い値である程、耐熱性に優れ、本用途の材料設計面において有利であると判定した。
 3.流動性(MFR)
 実施例及び比較例で得られた樹脂組成物ペレットを120℃の熱風乾燥機中で3時間乾燥した。乾燥後、メルトインデクサー(P-111、東洋精機社製)を用いて、シリンダー設定温度280℃、10kg荷重にて、MFR(メルトフローレート)を測定した。
 評価基準としては、MFRが高い値である程、流動性に優れ、本用途の材料設計面において有利であると判定した。
 4.IZOD衝撃値
 ASTM D256に従い、上記タンザク成形片を切削して作製した試験片形状64mm×13mm×厚み6.4mmのタンザク試験片を用いて、ノッチ有り、23℃で測定した。
 評価基準としては、IZOD衝撃値が高い値である程、本用途の材料設計面において有利であると判定した。
 5.光沢値(グロス:測定角20°)
 上記の成形方法で作製した厚み3.2mmのダンベル試験片の中央部を、グロスメーター(VG7000、日本電色工業社製)により、測定角20°における光沢値(グロス)を測定した。
 評価基準としては、光沢値が高い値である程、見た目にも成形片の艶が高く、輝度感に優れる。
 6.成形品の剥離し易さ
 射出成形機(IS-80EPN、東芝機械社製)を用いて、1mm厚みSFD(スパイラルフロー)成形品を以下のとおり作製した。
 下記の実施例及び比較例でで得られた樹脂組成物のペレットを、120℃で3時間乾燥させた。乾燥後の樹脂組成物を、上記射出成形機を用い、ゲージ圧120MPa、射出速度95%、成形サイクル:射出時間/冷却時間=10sec/10secの条件で成形し、上記成形品を得た。得られた成形品の剥離の有無を確認した。剥離無しの場合を○、剥離有りの場合を×とし、○の場合を、本用途の材料設計面において有利であると判定した。
 7.熱エージング後の輝度感(目視)
 厚み3.2mmのダンベル試験片を用いて、150℃に設定したオーブン内に250hrエージングを行なった後、成形片の輝度感を目視で評価した。輝度感に問題が見られないものを○、成形片表面に曇りが生じてエージング前と比較して輝度感低下が明らかなものを“曇り有り”とした。○のものが、本用途において好適に使用可能であると判断した。
 8.白斑(直径30μm以上のクレーター)の個数
 実施例及び比較例で得られた樹脂組成物のペレットを、120℃の熱風乾燥機中で3時間乾燥した。乾燥後の樹脂組成物を、金型表面を#5000で磨き上げた寸法100mm×100mm×2mm厚みのフィルムゲート鏡面金型を備え付けた射出成形機(IS-80EPN、東芝機械社製)により、シリンダー温度320℃、金型温度120℃、射出圧力(ゲージ圧70MPa)、射出速度(パネル設定値)85%で成形して成形平板を得た。さらにこの得られた成形平板を真空状態下の蒸着装置内に設置し、該装置内に不活性ガス及び酸素を導入し、チャンバー内をプラズマ状態にして、成形平板表面を活性化させるプラズマ処理を行ない、真空下の蒸着装置内で成形平板のアルミニウム蒸着を行なった。さらに、アルミニウム蒸着面の保護膜として、プラズマ重合処理を行ない、二酸化珪素重合膜を形成させた。アルミニウム膜厚は80nm、二酸化珪素膜厚は50nmであった。このアルミニウム蒸着を行なった成形平板(以下、「アルミ蒸着平板」とも記す。)のアルミニウム蒸着面中央部をデジタルマイクロスコープ(型式:VHX1000、キーエンス社製)により、40倍の拡大写真を撮影した。1撮影視野(面積:52.4mm)内に存在する直径30μm以上のクレーター状の窪みを有する突起物(成形時にガスが抜けた跡)の個数を鏡面成形平板5枚分すべてにおいてカウントした合計を5で割って、1撮影視野当たりの平均個数を算出した。該平均個数を白斑の個数とした。
 9.成形平板のアルミニウム蒸着面の外観(目視)
 上記の方法で作製したアルミ蒸着平板のアルミニウム蒸着面を、目視で観察し、以下のランクに応じて○~×で評価した。目視では白斑が認められず外観が良好なものを○、白斑が認められるものの概ね外観が良好なものを△、白斑が多数認められて外観不良が明らかであるものを×とし、○のものが本用途においてより好適に使用可能であると判定した。
 10.耐薬品性(IPA/CHX=60/40浸漬試験)
 厚み3.2mmのダンベル試験片を、1%歪のベンディングフォームに取り付けて、イソプロピルアルコール(IPA)/シクロヘキサン(CHX)=60/40質量%混合溶液中に浸漬させ23℃で30分放置させた。その後、試験片をベンディングフォームから取り外して、ティシュペーパーで十分に溶剤を拭き取って23℃で2時間以上放置した。その後、浸漬後の試験片について、引張試験(ASTM D638に準拠)を行なって、引張強度(TY)を求めた。通常サンプルの引張強度を100%とした場合に対する浸漬後の試験片の引張強度の割合(引張強度保持率(%))を求めた(試験本数n=3)。なお、表3中、「×(ハダン)」とは、いずれも浸漬中に試験片が3本とも破断したため、引張強度の測定不可であったことを意味する。
 11.耐薬品性(リノール酸塗布)
 厚み3.2mmのダンベル試験片を、1%歪のベンディングフォームに取り付けて、ダンベル中心線上に3mm幅でリノール酸を塗布して、23℃で30分放置させた。その後、ダンベル試験片を、ベンディングフォームから取り外し、リノール酸をティシュペーパーで拭き取り、さらにエタノールで洗浄した後、23℃で2時間以上放置した。その後、放置後の試験片について、引張試験(ASTM D638に準拠)を行なって、引張強度(TY)を求めた。通常サンプルの引張強度を100%とした場合に対する放置後の試験片の引張強度の割合(引張強度保持率(%))とを求めた(試験本数n=3)。
 [原材料]
 <ポリフェニレンエーテル(A)>
(PPE-1)還元粘度(クロロホルム溶媒を用いて30℃で測定)0.48dl/gのポリ(2,6-ジメチル-1,4-フェニレン)エーテルを用いた(以下、「PPE-1」ということもある)。
(PPE-2)還元粘度(クロロホルム溶媒を用いて30℃で測定)0.40dl/gのポリ(2,6-ジメチル-1,4-フェニレン)エーテルを用いた(以下、「PPE-2」ということもある)。
(PPE-3)還元粘度(クロロホルム溶媒を用いて30℃で測定)0.35dl/gのポリ(2,6-ジメチル-1,4-フェニレン)エーテルを用いた(以下、「PPE-3」ということもある)。
(PPE-4)還元粘度(クロロホルム溶媒を用いて30℃で測定)0.30dl/gのポリ(2,6-ジメチル-1,4-フェニレン)エーテルを用いた(以下、「PPE-4」ということもある)。
(PPE-5)還元粘度(クロロホルム溶媒を用いて30℃で測定)0.25dl/gのポリ(2,6-ジメチル-1,4-フェニレン)エーテルを用いた(以下、「PPE-5」ということもある)。
(PPE-6)還元粘度(クロロホルム溶媒を用いて30℃で測定)0.22dl/gのポリ(2,6-ジメチル-1,4-フェニレン)エーテルを用いた(以下、「PPE-6」ということもある)。
 <樹脂成分(B)>
(GPPS)ゼネラルパーパスポリスチレン(ポリスチレン680〔登録商標〕、PSジャパン社製)を用いた。(以下、「GPPS」ということもある)。なお、ゼネラルパーパスポリスチレンはゴム成分を含まないポリスチレン、すなわちゴム強化されていないポリスチレンである。
(AS)スチレン-アクリロニトリル樹脂
 以下のように製造したスチレン-アクリロニトリル樹脂を用いた。
 アクリロニトリル4.7質量部、スチレン73.3質量部、エチルベンゼン22質量部、重合開始剤としてのt-ブチルパーオキシ-イソプロピルカーボネート0.02質量部よりなる混合液を、2.5リットル/時間の流速で、容量5リットルの完全混合型反応機に連続的に供給し、142℃で重合を行って重合液を得た。
 得られた重合液を連続してベント付き押出機に導き、260℃、40Torrの条件下で未反応モノマー及び溶剤を除去し、ポリマーを連続して冷却固化し、細断して粒子状のスチレン-アクリロニトリル樹脂(以下、「AS」ということもある)を得た。
 このスチレン-アクリロニトリル樹脂について、赤外吸収スペクトル法により組成分析したところ、アクリロニトリル単位9質量%とスチレン単位91質量%であった。また、このスチレン-アクリロニトリル樹脂のメルトフローレートは、78g/10分(ASTM D 1238準拠、220℃、10kg荷重で測定)であった。
(エラストマー1)結合スチレン量33%、数平均分子量Mn246,000、重量平均分子量/数平均分子量(Mw/Mn)=1.07の、スチレンブロック-水素添加されたブタジエンブロック-スチレンブロックの構造を有し、ブタジエンブロック部分の水素添加率が99.9%である、スチレン系熱可塑性エラストマーを用いた(以下、「エラストマー1」ということもある)。
(エラストマー2)結合スチレン量60%、数平均分子量Mn83,800、重量平均分子量/数平均分子量(Mw/Mn)=1.20の、スチレンブロック-水素添加されたブタジエンブロック-スチレンブロックの構造を有し、ブタジエンブロック部分の水素添加率が99.9%である、スチレン系熱可塑性エラストマーを用いた(以下、「エラストマー2」ということもある)。
(PC-1)MFR(試験条件 ISO1133、300℃、1.2kg荷重で測定)10g/10minの溶融エステル交換法で製造した芳香族ポリカーボネート樹脂(ワンダーライトPC-110〔登録商標〕、旭美化成社製)を用いた(以下、「PC-1」ということもある)。
(PC-2)MFR(試験条件 ISO1133、300℃、1.2kg荷重で測定)22g/10minの溶融エステル交換法で製造した芳香族ポリカーボネート樹脂(ワンダーライトPC-122〔登録商標〕、旭美化成社製)を用いた(以下、「PC-2」ということもある)。
(PC-3)MFR(試験条件 ISO1133、300℃、1.2kg荷重で測定)1.1g/10minの、分子骨格中にシクロヘキサン環を導入したビスフェノール構造を約41%含有するポリカーボネート樹脂(APEC1800〔登録商標〕、バイエル社製)を用いた(以下、「PC-3」ということもある)。
(PC-4)MFR(試験条件 ISO1133、300℃、1.2kg荷重で測定)10g/10minのホスゲン法で製造した芳香族ポリカーボネート樹脂(パンライトL-1225Y〔登録商標〕、帝人化成社製)を用いた(以下、「PC-4」ということもある)。
 <熱安定剤成分(C)>
(C-1)融点242℃のヒンダードフェノール系熱安定剤
 化学名:3,3‘,3“,5,5’,5”-ヘキサ-tert-ブチル-a,a‘,a“-(メシチレン-2,4,6-トリイル)トリ-p-クレゾール(商品名:Irganox1330〔登録商標〕、BASF社製)を用いた(以下、「C-1」ということもある)。
(C-2)融点221℃のヒンダードフェノール系熱安定剤
 化学名:1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン(商品名:Irganox3114〔登録商標〕、BASF社製)を用いた(以下、「C-2」ということもある)。
(C-3)融点184℃のリン系熱安定剤
 化学名:トリス(2,4-ジ-tert-ブチルフェニル)フォスファイト(商品名:Irgafos168〔登録商標〕、BASF社製)を用いた(以下、「C-3」ということもある)。
(C-4)融点158℃のヒンダードフェノール系熱安定剤
 化学名:N,N‘-ヘキサン-1,6-ジイルビス〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオンアミド〕(商品名:Irganox1098〔登録商標〕、BASF社製)を用いた(以下、「C-4」ということもある)。
(C-5)融点156℃のヒンダードアミン系熱安定剤
 化学名:N,N‘-ビス(2,2,6,6-テトラメチル-4-ピペリジル)N,N’-ジホルミルヘキサメチレンジアミン(商品名:Uvinil4050FF〔登録商標〕、BASF社製)を用いた(以下、「C-5」ということもある)。
(C-6)融点133℃のヒンダードアミン系熱安定剤
 化学名:ジブチルアミン・1,3,5-トリアジン・N,N‘-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンとの重縮合物(商品名:Chimassorb2020〔登録商標〕、BASF社製)を用いた(以下、「C-6」ということもある)。
(C-7)融点118℃のヒンダードアミン系熱安定剤
 化学名:ペンタエリスリトールテトレキス〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート〕(商品名:Irganox1010〔登録商標〕、BASF社製)を用いた(以下、「C-7」ということもある)。
(C-8)融点52℃のヒンダードフェノール系熱安定剤
 化学名:オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート(商品名:Irganox1076〔登録商標〕、BASF社製)を用いた(以下、「C-8」ということもある)。
(C-9)融点94℃のヒンダードフェノール系熱安定剤
 化学名:2,6-ジ-tert-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノール(商品名:Irganox565〔登録商標〕、BASF社製)を用いた(以下、「C-9」ということもある)。
(C-10)融点14℃のヒンダードフェノール系熱安定剤
 化学名:4,6-ビス(オクチルチオメチル)-O-クレゾール(商品名:Irganox1520〔登録商標〕、BASF社製)を用いた(以下、「C-10」ということもある)。
(C-11)融点65℃のイオウ系熱安定剤
 化学名:ジオクタデシル3,3‘-チオジプロピオネート(商品名:Irganox PS802〔登録商標〕、BASF社製)を用いた(以下、「C-11」ということもある)。
(C-12)融点235℃のリン系熱安定剤
 化学名:3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5,5]ウンデカン(商品名:アデカスタブPEP-36〔登録商標〕、アデカ社製)を用いた(以下、「C-12」ということもある)。
(C-13)融点225℃のリン系熱安定剤
 化学名:ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト(商品名:DoverPhos S-9228〔登録商標〕、ドーバーケミカル社製)を用いた(以下、「C-13」ということもある)。
 なお、熱安定剤の融点は、融点測定器 型式:B-545(柴田科学社製)により、測定した。
 [実施例1]
 PPE-2を80質量部とGPPS20質量部とを、独国Werner&Pfleiderer社製、バレル数10、スクリュー径25mm、L/D=44のZSK25二軸押出機(ニーディングディスクL:2個、ニーディングディスクR:6個、ニーディングディスクN:2個を有するスクリューパターン)の最上流部(トップフィード)から供給して、シリンダー温度300℃、スクリュー回転数250rpm、ベント真空度7.998kPa(60Torr)で溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表1に示す。
 [実施例2]
 PPE-2を80質量部と、GPPS10質量部と、AS10質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表1に示す。
 [比較例1]
 PPE-4を100質量部、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表1に示す。
 [実施例3]
 PPE-4を80質量部と、GPPS20質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表1に示す。
 [実施例4]
 PPE-2を80質量部と、GPPS20質量部と、ポリアミド6(商品名:1013B〔登録商標〕、宇部興産社製、以下「PA」とも記す。)を5質量部と、エラストマー1を3質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表1に示す。
 [実施例5]
 実施例4のポリアミド6を、ポリプロピレン(商品名:ノバテックPP SA08〔登録商標〕、日本ポリプロピレン社製、以下「PP」とも記す。)5質量部に置き換えた以外は、実施例4の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表1に示す。
 [実施例6]
 PPE-2を80質量部と、GPPS20質量部と、ゴム強化ポリスチレン(商品名:H9405〔登録商標〕、旭化成ケミカルズ社製)5質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表1に示す。
 [実施例7]
 PPE-2を60質量部と、GPPS40質量部と、エラストマー1を5質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表1に示す。
 [実施例8]
 PPE-1を60質量部と、GPPS40質量部と、エラストマー1を2質量部と、エラストマー2を3質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表1に示す。
 [実施例9]
 PPE-2を60質量部と、GPPS40質量部と、エラストマー1を2質量部と、エラストマー2を3質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表1に示す。
 [実施例10]
 PPE-2を60質量部と、GPPS40質量部と、エラストマー1を1質量部と、エラストマー2を4質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表1に示す。
 [実施例11]
 PPE-2を60質量部と、GPPS40質量部と、エラストマー1を4質量部と、エラストマー2を1質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表1に示す。
 [実施例12]
 PPE-2を60質量部と、GPPS40質量部と、エラストマー2を5質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表1に示す。
 [比較例2]
 PPE-2を50質量部と、GPPS25質量部と、AS25質量部と、エラストマー1を2質量部と、エラストマー2を3質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表1に示す。
 [実施例13]
 PPE-2を90質量部と、GPPS5質量部と、AS5質量部と、エラストマー1を2質量部と、エラストマー2を2質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表1に示す。
 [実施例14]
 PPE-4を90質量部と、GPPS5質量部と、AS5質量部と、エラストマー1を2質量部と、エラストマー2を2質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表1に示す。
 [実施例15]
 PPE-4を60質量部と、GPPS32質量部と、エラストマー1を2質量部と、エラストマー2を6質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表2に示す。
 [実施例16]
 PPE-4を60質量部と、AS32質量部と、エラストマー1を2質量部と、エラストマー2を6質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表2に示す。
 [実施例17]
 PPE-4を60質量部と、GPPS31.5質量部と、エラストマー1を2質量部と、エラストマー2を6質量部と、C-1を0.5質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表2に示す。
 [実施例18]
 PPE-4を60質量部と、GPPS31質量部と、エラストマー1を2質量部と、エラストマー2を6質量部と、C-1を1質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表2に示す。
 [実施例19]
 PPE-4を60質量部と、GPPS21質量部と、AS10質量部と、エラストマー1を2質量部と、エラストマー2を6質量部と、C-1を1質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表2に示す。
 [実施例20]
 PPE-4を60質量部と、GPPS30質量部と、エラストマー1を2質量部と、エラストマー2を6質量部と、C-1を2質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表2に示す。
 [実施例21]
 PPE-5を95質量部と、エラストマー1を3質量部と、エラストマー2を2質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表2に示す。
 [実施例22]
 PPE-5を94質量部と、エラストマー1を3質量部と、エラストマー2を2質量部と、C-1を1質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表2に示す。
 [参考例1]
 PPE-6を94質量部と、エラストマー1を3質量部と、エラストマー2を2質量部と、C-1を1質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の成形を試みたが、成形品が脆く、割れやスプルーブッシュ詰まりが発生して、成形ができない状態であった。従って、物性測定結果は出せなかった。
 [実施例23]
 PPE-4を70質量部と、GPPS21質量部と、エラストマー1を2質量部と、エラストマー2を6質量部と、C-2を1質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表2に示す。
 [実施例24]
 C-2を、C-3に変えた以外は、実施例23の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表2に示す。
 [実施例25]
 C-2を、C-4に変えた以外は、実施例23の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表2に示す。
 [実施例26]
 C-2を、C-5に変えた以外は、実施例23の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表2に示す。
 [実施例27]
 C-2を、C-6に変えた以外は、実施例23の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表2に示す。
 [実施例28]
 C-2を、C-7に変えた以外は、実施例23の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表2に示す。
 [実施例29]
 C-2を、C-9に変えた以外は、実施例23の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表2に示す。
 [実施例30]
 C-2を、C-11に変えた以外は、実施例23の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表2に示す。
 [実施例31]
 PPE-5を80質量部と、GPPS7質量部と、AS7質量部と、エラストマー1を1質量部と、エラストマー2を4質量部と、C-3を0.5質量部と、C-7を0.5質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表2に示す。
 [実施例32]
 PPE-5を80質量部と、GPPS6質量部と、AS7質量部と、エラストマー1を1質量部と、エラストマー2を4質量部と、C-5を1質量部と、C-7を1質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表2に示す。
 [実施例33]
 PPE-5を80質量部と、GPPS6質量部と、AS7質量部と、エラストマー1を1質量部と、エラストマー2を4質量部と、C-8を1質量部と、C-10を1質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表2に示す。
 [比較例3]
 PC-3の物性測定結果を下記表3に示す。
 [実施例34]
 PPE-2を85質量部と、GPPS10.5質量部と、エラストマー1を2質量部と、エラストマー2を2.5質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表3に示す。
 [実施例35]
 PPE-2を85質量部と、エラストマー1を2質量部と、エラストマー2を2.5質量部と、PC-1を10.5質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表3に示す。
 [実施例36]
 PC-1を、PC-3に置き換えた以外は、実施例35の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表3に示す。
 [実施例37]
 PPE-2を75質量部と、GPPS10.5質量部と、AS10質量部と、エラストマー1を2質量部と、エラストマー2を2.5質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表3に示す。
 [実施例38]
 PPE-2を75質量部と、AS10.5質量部と、エラストマー1を2質量部と、エラストマー2を2.5質量部と、PC-4を10質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表3に示す。
 [実施例39]
 PC-4を、PC-3に置き換えた以外は、実施例38の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表3に示す。
 [実施例40]
 PPE-2を75質量部と、GPPS10.5質量部と、エラストマー1を2質量部と、エラストマー2を2.5質量部と、PC-1を10質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表3に示す。
 [実施例41]
 GPPSを、ASに置き換えた以外は、実施例40の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表3に示す。
 [実施例42]
 PPE-2を80質量部と、AS10.5質量部と、エラストマー1を2質量部と、エラストマー2を2.5質量部と、PC-3を5質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表3に示す。
 [実施例43]
 PPE-4を75質量部と、PC-1を25質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表4に示す。
 [実施例44]
 PPE-4を60質量部と、PC-1を40質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表4に示す。
 [実施例45]
 PPE-4を100質量部と、PC-2を30質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表4に示す。
 [比較例4]
 PPE-4を50質量部と、PC-1を50質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表4に示す。
 [実施例46]
 PPE-4を84質量部と、エラストマー1を3質量部と、エラストマー2を3質量部と、PC-1を10質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表4に示す。
 [実施例47]
 PPE-4を84質量部と、AS2質量部と、エラストマー1を3質量部と、エラストマー2を3質量部と、PC-1を8質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表4に示す。
 [実施例48]
 PPE-4を84質量部と、AS6質量部と、エラストマー1を3質量部と、エラストマー2を3質量部と、PC-1を4質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表4に示す。
 [実施例49]
 PPE-4を83質量部と、エラストマー1を3質量部と、エラストマー2を3質量部と、C-1を1質量部と、PC-1を10質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表4に示す。
 [実施例50]
 PPE-5を84質量部と、エラストマー1を3質量部と、エラストマー2を3質量部と、PC-2を10質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表4に示す。
 [実施例51]
 PPE-5を83質量部と、エラストマー1を3質量部と、エラストマー2を3質量部と、C-1を1質量部と、PC-2を10質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表4に示す。
 [実施例52]
 PPE-4を70質量部と、AS9質量部と、エラストマー1を3質量部と、エラストマー2を3質量部と、PC-1を15質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表4に示す。
 [実施例53]
 PPE-4を100質量部と、エラストマー1を3質量部と、エラストマー2を3質量部と、PC-1を30質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表4に示す。
 [実施例54]
 PPE-4を70質量部と、AS8質量部と、エラストマー1を3質量部と、エラストマー2を3質量部と、C-1を1質量部と、PC-1を15質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表4に示す。
 [実施例55]
 PPE-4を65質量部と、AS13質量部と、エラストマー1を3質量部と、エラストマー2を3質量部と、C-1を1質量部と、PC-1を15質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表4に示す。
 [実施例56]
 PPE-4を75質量部と、AS10質量部と、エラストマー1を2質量部と、エラストマー2を2質量部と、C-1を1質量部と、PC-1を10質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表4に示す。
 [実施例57]
 PPE-4を75質量部と、AS10.75質量部と、エラストマー1を2質量部と、エラストマー2を2質量部と、C-3を0.25質量部と、PC-1を10質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表4に示す。
 [実施例58]
 PPE-4を75質量部と、AS10.5質量部と、エラストマー1を2質量部と、エラストマー2を2質量部と、C-3を0.5質量部と、PC-1を10質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表4に示す。
 [実施例59]
 PPE-4を75質量部と、AS10.5質量部と、エラストマー1を2質量部と、エラストマー2を2質量部と、C-12を0.5質量部と、PC-1を10質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表4に示す。
 [実施例60]
 PPE-4を75質量部と、AS10.5質量部と、エラストマー1を2質量部と、エラストマー2を2質量部と、C-13を0.5質量部と、PC-1を10質量部とを、実施例1の場合と同様に溶融混練して樹脂組成物を得た。得られた樹脂組成物の物性測定結果を下記表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表1に示すように、比較例1及び比較例2の樹脂組成物からなる成形体は、いずれもポリフェニレンエーテル(A)の含有量が、本実施の形態に用いられる樹脂組成物の範囲外であるため、比較例1の樹脂組成物からなる成形体は、成形体表面に曇りがあり熱エージング後の成形体の輝度感が不十分であり、比較例2の樹脂組成物からなる成形体は、耐熱性の指標であるビカット軟化温度が不十分であった。
 実施例4及び5の樹脂組成物からなる成形体は、樹脂組成物に結晶性ポリマーが配合されているため、成形体の光沢値や、熱エージング後の輝度感、成形体の剥離性において必ずしも十分ではない結果であった。
 実施例6の樹脂組成物からなる成形体は、樹脂組成物にゴム強化ポリスチレンが配合されているため、成形体の光沢値や、熱エージング後の輝度感において、必ずしも十分ではない結果であった。
 実施例7の樹脂組成物からなる成形体は、樹脂組成物に結合スチレン量が低い(33%)スチレン系熱可塑性エラストマー(B2-2)を単独で配合しているため、SFDの高速射出成形片に剥離が生じたことから、成形体の剥離性において、必ずしも十分ではない結果であった。
 実施例8の樹脂組成物からなる成形体は、使用しているポリフェニレンエーテル(A)の還元粘度が高め(ηsp/c:0.48dl/g)であるため、熱エージング後の輝度感において、必ずしも十分ではない結果であった。
 その他の実施例1~3、実施例9~14の樹脂組成物からなる成形体は、白斑やアルミ蒸着平板の外観が必ずしも十分ではないが、いずれも低比重で、耐熱性(ビカット軟化温度)、流動性(MFR)に加えて、成形体光沢及び熱エージング後の輝度感も良好であり、自動車ランプエクステンション成形体に好適に使用できることがわかった。
Figure JPOXMLDOC01-appb-T000005
 表2に示すように、参考例1の樹脂組成物は、使用しているポリフェニレンエーテル(A)の還元粘度が低め(ηsp/c:0.22dl/g)であるため、成形不可であった。
 実施例15、実施例16、実施例21、及び実施例24~33の樹脂組成物からなる成形体は、外観やアルミ蒸着平板の外観が必ずしも十分ではなかったのに対して、実施例17~20、実施例22、及び実施例23の樹脂組成物からなる成形体は、ポリカーボネート樹脂(B3)を配合していない樹脂組成物の組成中に、融点180℃以上のヒンダードフェノール系熱安定剤が配合されているため、白斑やアルミ蒸着平板の外観が良好であり、自動車ランプエクステンション成形体により好適に使用できることがわかった。
Figure JPOXMLDOC01-appb-T000006
 表3に示すように、比較例3のポリカーボネート(B3)単独からなる成形体は、比重が高く、不十分な結果であった。
 実施例35、実施例36及び実施例38~42は、(B)成分としてポリカーボネート樹脂(B3)を配合した樹脂組成物からなる成形体であり、いずれも、ポリカーボネート(B3)を配合していない樹脂組成物である実施例34及び実施例37の成形体に対して、白斑、アルミ蒸着平板の外観、耐薬品性に優れて、自動車ランプエクステンション成形体により一層好適に使用できることがわかった。
Figure JPOXMLDOC01-appb-T000007
 表4に示すように、比較例4の樹脂組成物からなる成形体は、(B)成分として、ポリカーボネート樹脂(B3)が50質量%、配合されたことで、比重が高めとなり、また、アルミ蒸着平板の外観の低下も見られるため、不十分であった。
 実施例49~60の樹脂組成物からなる成形体は、いずれも(B)成分としてポリカーボネート樹脂(B3)を配合した樹脂組成物からなる成形体で白斑、アルミ蒸着平板の外観等いずれも良好であった。特に、実施例57~60の樹脂組成物からなる成形体は、(C)成分であるリン系の熱安定剤が配合されることで、他の成形体と比べて、白斑の個数がより一層低減されて、アルミ蒸着平板の外観もより良好となっていることから、自動車ランプエクステンション成形体として、さらにより一層好適に使用できることがわかった。
 本出願は、2010年11月24日出願の日本特許出願(特願2010-261661号)、2011年9月27日出願の日本特許出願(特願2011-211235号)及び2011年11月10日出願の日本特許出願(特願2011-246747号)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の樹脂組成物からなる成形体は、低比重で、良好な耐熱性と流動性とのバランスを有して、成形品の光沢、輝度感に優れることから、自動車ランプエクステンション成形体として有効に使用することが可能である。

Claims (19)

  1.  ポリフェニレンエーテル(A)50~95質量%を含有し、比重が1.00~1.12の範囲内である樹脂組成物を含む、自動車ランプエクステンション成形体。
  2.  前記(A)成分の還元粘度(クロロホルム溶媒を用いて30℃で測定)が0.25~0.45dl/gである、請求項1に記載の自動車ランプエクステンション成形体。
  3.  前記(A)成分の還元粘度(クロロホルム溶媒を用いて30℃で測定)が0.25~0.38dl/gである、請求項1又は2に記載の自動車ランプエクステンション成形体。
  4.  前記樹脂組成物が、ゴム強化されていないスチレン系樹脂(B1)、スチレン系熱可塑性エラストマー(B2)及びポリカーボネート樹脂(B3)からなる群より選択される少なくとも1種の樹脂成分(B)5~50質量%をさらに含有する、請求項1~3のいずれか一項に記載の自動車ランプエクステンション成形体。
  5.  前記(B1)成分が、アクリロニトリル(AN)単位含有量5~15質量%のスチレン-アクリロニトリル(AS)樹脂である、請求項4に記載の自動車ランプエクステンション成形体。
  6.  前記(B2)成分が、スチレン-共役ジエン化合物ブロック共重合体の水素添加物である、請求項4又は5に記載の自動車ランプエクステンション成形体。
  7.  前記(B2)成分が、結合スチレン量が45~80質量%のスチレン-共役ジエン化合物ブロック共重合体の水素添加物(B2-1)と、結合スチレン量が20~40質量%のスチレン-共役ジエン化合物ブロック共重合体の水素添加物(B2-2)とを、(B2-1)/(B2-2)=4/1~1/4の質量比率で併用したものである、請求項4~6のいずれか一項に記載の自動車ランプエクステンション成形体。
  8.  前記(B3)成分が、分子骨格内に、二価フェノール残基を含有する芳香族ポリカーボネート樹脂である、請求項4~7のいずれか一項に記載の自動車ランプエクステンション成形体。
  9.  前記(B3)成分が、分子骨格中に、シクロヘキサン環を導入したビスフェノール残基を含有するポリカーボネート樹脂である、請求項4~8のいずれか一項に記載の自動車ランプエクステンション成形体。
  10.  前記(B3)成分のMFR(試験方法ISO1133に準拠。測定温度300℃、1.2kg荷重で測定)が、0.5~25g/10minの範囲内である、請求項4~9のいずれか一項に記載の自動車ランプエクステンション成形体。
  11.  前記樹脂組成物が、前記(B3)成分を5~40質量%含有する、請求項4~10のいずれか一項に記載の自動車ランプエクステンション成形体。
  12.  前記(B)成分が、アクリロニトリル(AN)単位含有量5~15質量%のスチレン-アクリロニトリル(AS)樹脂とポリカーボネート樹脂とを含有する、請求項4~11のいずれか一項に記載の自動車ランプエクステンション成形体。
  13.  前記樹脂組成物が、熱安定剤成分(C)0.01~5質量%をさらに含有する、請求項1~12のいずれか一項に記載の自動車ランプエクステンション成形体。
  14.  前記(C)成分が、融点が180℃以上の熱安定剤である、請求項13に記載の自動車ランプエクステンション成形体。
  15.  前記(C)成分が、ヒンダードフェノール系熱安定剤である、請求項13又は14に記載の自動車ランプエクステンション成形体。
  16.  前記(C)成分がリン系熱安定剤である、請求項13又は14に記載の自動車ランプエクステンション成形体。
  17.  前記樹脂組成物が、MFR(280℃、10kgで測定)が20g/10min以上で、かつ、ビカット軟化温度(ISO306に準拠、試験荷重50N、昇温速度120℃/hrで測定)が160℃以上である、請求項1~16のいずれか一項に記載の自動車ランプエクステンション成形体。
  18.  測定角20°での光沢値が90~140%の範囲内である光沢面を有する、請求項1~17のいずれか一項に記載の自動車ランプエクステンション成形体。
  19.  成形体の鏡面部分の面積52.4mm内に存在する白斑(直径30μm以上のクレーター状の窪みを有する突起物を指す)が、40個以下である、請求項1~18のいずれか一項に記載の自動車ランプエクステンション成形体。
PCT/JP2011/076960 2010-11-24 2011-11-22 自動車ランプエクステンション成形体 WO2012070592A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180056365.0A CN103221484B (zh) 2010-11-24 2011-11-22 汽车灯延长器件成型体
JP2012545773A JP5868871B2 (ja) 2010-11-24 2011-11-22 自動車ランプエクステンション成形体
US13/884,025 US8895655B2 (en) 2010-11-24 2011-11-22 Automotive lamp extension molding
EP11843397.8A EP2644655B1 (en) 2010-11-24 2011-11-22 Automotive lamp extension molding
MX2013005424A MX355310B (es) 2010-11-24 2011-11-22 Moldura para extensión de lámpara automotriz.

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010261661 2010-11-24
JP2010-261661 2010-11-24
JP2011211235 2011-09-27
JP2011-211235 2011-09-27
JP2011246747 2011-11-10
JP2011-246747 2011-11-10

Publications (1)

Publication Number Publication Date
WO2012070592A1 true WO2012070592A1 (ja) 2012-05-31

Family

ID=46145932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076960 WO2012070592A1 (ja) 2010-11-24 2011-11-22 自動車ランプエクステンション成形体

Country Status (7)

Country Link
US (1) US8895655B2 (ja)
EP (1) EP2644655B1 (ja)
JP (1) JP5868871B2 (ja)
CN (1) CN103221484B (ja)
MX (1) MX355310B (ja)
MY (1) MY161180A (ja)
WO (1) WO2012070592A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014009350A (ja) * 2012-07-03 2014-01-20 Asahi Kasei Chemicals Corp ポリフェニレンエーテル/ポリカーボネート難燃性樹脂組成物
JP2014047343A (ja) * 2012-09-04 2014-03-17 Asahi Kasei Chemicals Corp 樹脂組成物および光反射部品用成形体
JP2014112648A (ja) * 2012-11-09 2014-06-19 Toyoda Gosei Co Ltd 発光装置
WO2014171461A1 (ja) * 2013-04-17 2014-10-23 旭化成ケミカルズ株式会社 樹脂組成物及び成形品
KR20150002806A (ko) * 2012-04-18 2015-01-07 사빅 글로벌 테크놀러지스 비.브이. 폴리(페닐렌 에테르) 조성물, 물품, 및 제조 방법
JP2015034199A (ja) * 2013-08-07 2015-02-19 旭化成ケミカルズ株式会社 ポリフェニレンエーテル樹脂組成物
JP2016176072A (ja) * 2015-03-20 2016-10-06 旭化成株式会社 光反射部品及び自動車ランプ反射部品
JP2018028061A (ja) * 2016-08-10 2018-02-22 旭化成株式会社 樹脂組成物及び成形体
JP2021038321A (ja) * 2019-09-03 2021-03-11 旭化成株式会社 ポリフェニレンエーテル系樹脂組成物及び車両用灯具エクステンション

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5864021B1 (ja) * 2014-07-01 2016-02-17 三菱エンジニアリングプラスチックス株式会社 ポリエステル樹脂組成物、射出成形品、光反射体基体及び光反射体
US9822240B1 (en) * 2016-09-30 2017-11-21 Asahi Kasei Kabushiki Kaisha Light reflective parts and reflective parts for automobile lamp
WO2022019743A1 (en) * 2020-07-23 2022-01-27 Toray Plastics (M) Sdn. Bhd Aromatic vinylidene copolymer thermoplastic resin formulations featuring superior colorability, transparency, fluidity and chemical resistance

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840046B1 (ja) * 1970-12-18 1973-11-28
JPH07316414A (ja) * 1994-05-23 1995-12-05 Sumitomo Chem Co Ltd 熱可塑性樹脂組成物
JPH08113702A (ja) * 1994-10-18 1996-05-07 Sumitomo Chem Co Ltd 熱可塑性樹脂組成物
JPH11119011A (ja) * 1997-10-15 1999-04-30 Sumitomo Chem Co Ltd 光反射体及びランプリフレクター
JP2002069290A (ja) * 2000-08-30 2002-03-08 Asahi Kasei Corp 耐熱部品
JP2009030045A (ja) * 2007-07-02 2009-02-12 Asahi Kasei Chemicals Corp 液晶ポリエステル系樹脂組成物
JP2010138216A (ja) * 2008-12-09 2010-06-24 Asahi Kasei Chemicals Corp 樹脂組成物、その製造方法並びにこれからなる成形品、ケーブル用被覆材及びケーブル
JP2010180325A (ja) * 2009-02-05 2010-08-19 Aron Kasei Co Ltd 難燃性エラストマー組成物
WO2010134608A1 (ja) * 2009-05-22 2010-11-25 旭化成ケミカルズ株式会社 自動車ランプ周辺部品

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058257B2 (ja) 1980-07-17 1985-12-19 旭化成株式会社 高耐熱性熱可塑性樹脂組成物
EP0473206B1 (en) 1985-10-11 1999-06-23 Asahi Kasei Kogyo Kabushiki Kaisha Compositions containing a terminal-modified block copolymer
JPH07725B2 (ja) 1985-10-25 1995-01-11 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー 熱可塑性樹脂組成物
US4681906A (en) 1985-11-01 1987-07-21 General Electric Company Polyphenylene compositions containing sulfonate having improved melt behavior
JPS6399257A (ja) 1986-06-05 1988-04-30 Asahi Chem Ind Co Ltd 変性ブロック共重合体組成物
JP2887401B2 (ja) 1990-04-02 1999-04-26 旭化成工業株式会社 ポリフェニレンエーテル樹脂組成物
JPH05320495A (ja) 1992-05-18 1993-12-03 Asahi Chem Ind Co Ltd 自動車ランプ用反射板
JPH0665500A (ja) * 1992-08-21 1994-03-08 Mitsubishi Gas Chem Co Inc ポリアミド樹脂組成物
JP3528208B2 (ja) 1993-08-11 2004-05-17 東レ株式会社 樹脂組成物および成形体
JPH07192503A (ja) * 1993-12-24 1995-07-28 Nippon G Ii Plast Kk ランプリフレクター
KR960000557A (ko) 1994-06-23 1996-01-25 배순훈 에어커튼(Air-Curtain)을 이용한 차량 자동온도 조절 시스템
JPH1160935A (ja) * 1995-10-26 1999-03-05 Nippon G Ii Plast Kk ランプリフレクター用成形材料
JPH09167511A (ja) 1995-12-15 1997-06-24 Nippon G Ii Plast Kk ランプリフレクター
JPH1088028A (ja) 1996-09-02 1998-04-07 J M Huber Corp シラン処理クレー製品、その製法及びその組成物
US5840795A (en) 1997-04-30 1998-11-24 J. M. Huber Corporation Treated clay product, methods of making and using and products therefrom
ES2257353T3 (es) * 2000-04-21 2006-08-01 Jsr Corporation Composicion de resina termoplastica.
JP2002079540A (ja) * 2000-09-05 2002-03-19 Asahi Kasei Corp 二酸化炭素を用いた射出成形方法、及びそれにより得られる成形体
CN1304479C (zh) 2002-08-13 2007-03-14 旭化成化学株式会社 聚亚苯基醚基树脂组合物
US7128959B2 (en) 2002-08-23 2006-10-31 General Electric Company Reflective article and method for the preparation thereof
WO2004026962A2 (en) * 2002-09-20 2004-04-01 General Electric Company Underhood components
JP2005097578A (ja) 2003-08-26 2005-04-14 Mitsubishi Rayon Co Ltd 熱可塑性樹脂組成物及び光反射体
US7329708B2 (en) 2004-08-18 2008-02-12 General Electric Company Functionalized poly(arylene ether) composition and method
US8044142B2 (en) * 2004-12-21 2011-10-25 Asahi Kasei Chemicals Corporation Polyphenylene sulfide resin composition
US8710119B2 (en) 2005-03-29 2014-04-29 Asahi Kasei Chemicals Corporation Process for producing polyphenylene ether composition
US20100036029A1 (en) 2007-02-22 2010-02-11 Asahi Kasei Chemicals Corporation Polymer-(organo)clay composite, composition comprising the composite, sheet-like material comprising the composite or the composition, and process for production of polymer-(organo)clay composite
CN101855299B (zh) 2007-11-09 2013-07-17 旭化成化学株式会社 热塑性树脂组合物以及由该组合物形成的成型体和片材
JP2009123731A (ja) 2007-11-12 2009-06-04 Seiko Epson Corp セラミック多層基板の製造方法
JP2009221387A (ja) * 2008-03-18 2009-10-01 Asahi Kasei Chemicals Corp ポリフェニレンエーテル系樹脂組成物
JP5588862B2 (ja) 2008-05-12 2014-09-10 旭化成ケミカルズ株式会社 分子量分布の狭いポリフェニレンエーテル樹脂組成物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840046B1 (ja) * 1970-12-18 1973-11-28
JPH07316414A (ja) * 1994-05-23 1995-12-05 Sumitomo Chem Co Ltd 熱可塑性樹脂組成物
JPH08113702A (ja) * 1994-10-18 1996-05-07 Sumitomo Chem Co Ltd 熱可塑性樹脂組成物
JPH11119011A (ja) * 1997-10-15 1999-04-30 Sumitomo Chem Co Ltd 光反射体及びランプリフレクター
JP2002069290A (ja) * 2000-08-30 2002-03-08 Asahi Kasei Corp 耐熱部品
JP2009030045A (ja) * 2007-07-02 2009-02-12 Asahi Kasei Chemicals Corp 液晶ポリエステル系樹脂組成物
JP2010138216A (ja) * 2008-12-09 2010-06-24 Asahi Kasei Chemicals Corp 樹脂組成物、その製造方法並びにこれからなる成形品、ケーブル用被覆材及びケーブル
JP2010180325A (ja) * 2009-02-05 2010-08-19 Aron Kasei Co Ltd 難燃性エラストマー組成物
WO2010134608A1 (ja) * 2009-05-22 2010-11-25 旭化成ケミカルズ株式会社 自動車ランプ周辺部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2644655A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101924912B1 (ko) 2012-04-18 2018-12-04 사빅 글로벌 테크놀러지스 비.브이. 폴리(페닐렌 에테르) 조성물, 물품, 및 제조 방법
JP2015514846A (ja) * 2012-04-18 2015-05-21 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ ポリ(フェニレンエーテル)組成物、物品および方法
KR20150002806A (ko) * 2012-04-18 2015-01-07 사빅 글로벌 테크놀러지스 비.브이. 폴리(페닐렌 에테르) 조성물, 물품, 및 제조 방법
JP2014009350A (ja) * 2012-07-03 2014-01-20 Asahi Kasei Chemicals Corp ポリフェニレンエーテル/ポリカーボネート難燃性樹脂組成物
JP2014047343A (ja) * 2012-09-04 2014-03-17 Asahi Kasei Chemicals Corp 樹脂組成物および光反射部品用成形体
JP2014112648A (ja) * 2012-11-09 2014-06-19 Toyoda Gosei Co Ltd 発光装置
US10174196B2 (en) 2013-04-17 2019-01-08 Asahi Kasei Kabushiki Kaisha Resin composition and molded article
US9617419B2 (en) 2013-04-17 2017-04-11 Asahi Kasei Kabushiki Kaisha Resin composition and molded article
JPWO2014171461A1 (ja) * 2013-04-17 2017-02-23 旭化成株式会社 樹脂組成物及び成形品
WO2014171461A1 (ja) * 2013-04-17 2014-10-23 旭化成ケミカルズ株式会社 樹脂組成物及び成形品
JP6068622B2 (ja) * 2013-04-17 2017-01-25 旭化成株式会社 樹脂組成物及び成形品
JP2015034199A (ja) * 2013-08-07 2015-02-19 旭化成ケミカルズ株式会社 ポリフェニレンエーテル樹脂組成物
JP2016176072A (ja) * 2015-03-20 2016-10-06 旭化成株式会社 光反射部品及び自動車ランプ反射部品
JP2018028061A (ja) * 2016-08-10 2018-02-22 旭化成株式会社 樹脂組成物及び成形体
JP2021038321A (ja) * 2019-09-03 2021-03-11 旭化成株式会社 ポリフェニレンエーテル系樹脂組成物及び車両用灯具エクステンション
US11186715B2 (en) 2019-09-03 2021-11-30 Asahi Kasei Kabushiki Kaisha Polyphenylene ether resin composition and vehicle lighting fixture bezel
JP7297605B2 (ja) 2019-09-03 2023-06-26 旭化成株式会社 ポリフェニレンエーテル系樹脂組成物及び車両用灯具エクステンション

Also Published As

Publication number Publication date
CN103221484A (zh) 2013-07-24
CN103221484B (zh) 2016-04-13
MY161180A (en) 2017-04-14
US20130267641A1 (en) 2013-10-10
US8895655B2 (en) 2014-11-25
EP2644655A4 (en) 2017-03-08
JPWO2012070592A1 (ja) 2014-05-19
MX355310B (es) 2018-04-16
EP2644655A1 (en) 2013-10-02
JP5868871B2 (ja) 2016-02-24
MX2013005424A (es) 2013-07-05
EP2644655B1 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
JP5868871B2 (ja) 自動車ランプエクステンション成形体
KR101875867B1 (ko) 내염성 폴리에스테르-폴리카보네이트 조성물, 그의 제조 방법 및 그의 물품
JP4090893B2 (ja) 難燃性熱可塑性樹脂組成物
JP2009197057A (ja) 樹脂成形用材料
CN114072461B (zh) 热塑性树脂组合物、成型品和产品
JP2008542471A (ja) 無機充填ポリエステルポリカーボネート組成物
JP6043523B2 (ja) ポリフェニレンエーテル/ポリカーボネート難燃性樹脂組成物
JP5965188B2 (ja) 光反射成形体
US20080306205A1 (en) Black-colored thermoplastic compositions, articles, and methods
KR20010102144A (ko) 제진성 열가소성 수지 조성물 및 성형품
JP6010403B2 (ja) 樹脂組成物および光反射部品用成形体
EP3851495B1 (en) Thermoplastic polycarbonate compositions with improved hydrolytic stability and electrical tracking resistance and shaped articles thereof
JP4080851B2 (ja) 難燃性樹脂組成物
TW201809097A (zh) 一種抗靜電熱塑性模塑組成物
WO2023281602A1 (ja) 熱可塑性樹脂組成物、成形品および製品
JP2019119874A (ja) 熱可塑性樹脂組成物およびこれを用いた成形品
US11186715B2 (en) Polyphenylene ether resin composition and vehicle lighting fixture bezel
JPH09221588A (ja) 熱可塑性樹脂組成物
JP6861868B2 (ja) 熱可塑性樹脂組成物、成形品および製品
JP6059053B2 (ja) 樹脂組成物の製造方法
JP2001164040A (ja) 熱可塑性樹脂組成物
JP2008088334A (ja) 熱可塑性樹脂組成物
JP2004352823A (ja) 熱可塑性樹脂組成物
JP2003238782A (ja) 熱可塑性ポリエステル樹脂組成物
JP2001164106A (ja) 熱可塑性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843397

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012545773

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011843397

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/005424

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13884025

Country of ref document: US