WO2012056705A1 - 半導体素子およびその製造方法 - Google Patents

半導体素子およびその製造方法 Download PDF

Info

Publication number
WO2012056705A1
WO2012056705A1 PCT/JP2011/006020 JP2011006020W WO2012056705A1 WO 2012056705 A1 WO2012056705 A1 WO 2012056705A1 JP 2011006020 W JP2011006020 W JP 2011006020W WO 2012056705 A1 WO2012056705 A1 WO 2012056705A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
concentration
silicon carbide
semiconductor layer
conductivity type
Prior art date
Application number
PCT/JP2011/006020
Other languages
English (en)
French (fr)
Inventor
内田 正雄
康太郎 田中
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/878,742 priority Critical patent/US8563988B2/en
Priority to EP11835849.8A priority patent/EP2620983B1/en
Priority to JP2012540686A priority patent/JP5395275B2/ja
Priority to CN201180051610.9A priority patent/CN103180959B/zh
Publication of WO2012056705A1 publication Critical patent/WO2012056705A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • H01L29/7828Vertical transistors without inversion channel, e.g. vertical ACCUFETs, normally-on vertical MISFETs

Definitions

  • the present invention relates to a semiconductor element and a manufacturing method thereof.
  • the present invention relates to a silicon carbide semiconductor element (power semiconductor device) used for high breakdown voltage and large current.
  • Silicon carbide (silicon carbide: SiC) is a high-hardness semiconductor material with a larger band gap than silicon (Si), and is applied to various semiconductor devices such as power elements, environmental elements, high-temperature operating elements, and high-frequency elements. Has been. In particular, application to power devices having switching and rectifying functions has attracted attention.
  • a power element using SiC has advantages such as a significant reduction in power loss compared to a Si power element.
  • the SiC power element can realize a smaller semiconductor device as compared with the Si power element by utilizing such characteristics.
  • a typical semiconductor element among power elements using SiC is a metal-insulator-semiconductor field-effect transistor (MISFET).
  • MISFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • FIG. 12A is a plan view showing an outline of the semiconductor element 1000.
  • Semiconductor element 1000 is mainly composed of a silicon carbide (SiC) semiconductor.
  • the semiconductor element 1000 has a unit cell region 1000ul having an element function (switching in the case of a transistor, rectification in the case of a diode, etc.) and a termination region 1000f that complements the breakdown voltage of the element function.
  • a plurality of unit cells are arranged in the unit cell area 1000ul.
  • the termination region 1000f is disposed around the unit cell region 1000ul.
  • a source electrode and a gate electrode of a unit cell which will be described later, are connected in parallel to the unit cell region 1000ul, a gate pad for supplying an electric signal to the semiconductor element 1000, and a source for supplying a current A pad is arranged but not shown here.
  • FIG. 12 (b) is a cross-sectional view showing a single unit cell arranged in the unit cell region 1000ul.
  • Unit cell 1000u is disposed on low resistance n-type semiconductor substrate (for example, SiC substrate) 1010, silicon carbide semiconductor layer 1020 disposed on the main surface of semiconductor substrate 1010, and silicon carbide semiconductor layer 1020.
  • n-type semiconductor substrate for example, SiC substrate
  • SiC substrate silicon carbide semiconductor layer 1020 disposed on the main surface of semiconductor substrate 1010
  • silicon carbide semiconductor layer 1020 silicon carbide semiconductor layer 1020.
  • the electrode 1100 is provided.
  • Silicon carbide semiconductor layer 1020 has a body region 1030 having a conductivity type (here, p-type) different from that of SiC substrate 1010 and a drift located in a portion of silicon carbide semiconductor layer 1020 where body region 1030 is not disposed.
  • Drift region 1020d is, for example, an n ⁇ -type silicon carbide semiconductor layer containing n-type impurities at a lower concentration than SiC substrate 1010.
  • An n-type source region 1040 containing n-type impurities at a high concentration and a p + -type contact region 1050 containing p-type impurities at a higher concentration than the body region 1030 are arranged inside the body region 1030.
  • the source region 1040 and the drift region 1020d are connected via the channel layer 1060.
  • a channel is formed in a portion of the channel layer 1060 in contact with the upper surface of the body region 1030 by a voltage applied to the gate electrode 1080.
  • the contact region 1050 and the source region 1040 are in ohmic contact with the source electrode 1090, respectively. Therefore, body region 1030 is electrically connected to source electrode 1090 through contact region 1050.
  • the unit cell 1000u has a pn junction between the body region 1030 and the drift region 1020d. Therefore, when a positive voltage is applied to the drain electrode 1100 with respect to the source electrode 1090, the unit cell 1000u has several hundred volts to several thousand volts (for example, 600V). Withstand voltage of about 10 kV). However, electric field concentration occurs around the unit cell region 1000ul, and the design withstand voltage may not be obtained. For this reason, in a general power element, a structure for compensating the breakdown voltage is provided in the termination region 1000f. For example, a structure such as FLR (Field Limiting Ring), JTE (Junction Termination Edge or Extension), and RESURF is formed in the termination region 1000f (Patent Documents 1 to 5).
  • FLR Field Limiting Ring
  • JTE Joint Termination Edge or Extension
  • RESURF RESURF
  • FIG. 12C is a cross-sectional view of the termination region 1000f when the FLR structure is adopted as the termination structure, and shows a cross-sectional structure along the line EF in the plan view shown in FIG.
  • each ring region 1030f surrounds the unit cell region 1000ul in a ring shape.
  • the plurality of ring regions 1030f can alleviate electric field concentration in the unit cell region 1000ul and suppress a decrease in breakdown voltage.
  • a diode region 1150d may be provided between the unit cell region 1000ul and the termination region 1000f.
  • p-type region 1030d is provided in silicon carbide semiconductor layer 1020.
  • a p-n junction is formed by p-type region 1030d and n ⁇ -type drift region 1020d.
  • a structure that compensates the breakdown voltage including the ring region 1030f and the diode region 1150d is referred to as a “termination structure”.
  • the ring region 1030f is usually formed by implanting p-type impurity ions into the silicon carbide semiconductor layer 1020.
  • p-type impurity ions In power elements using silicon carbide, for example, Al ions or B ions are used as p-type impurity ions.
  • the implantation conditions at this time are set so that the impurity concentration profile in the depth direction of the ring region 1030f is as constant as possible.
  • Patent Document 4 and Patent Document 5 disclose disposing a guard ring designed to have a certain density difference in the termination region.
  • Japanese Patent No. 4367508 Special table 2009-524217 Japanese Patent No. 4356767 JP 2003-163351 A JP 2009-289904 A
  • the breakdown voltage of the termination structure using a semiconductor pn junction is determined from the impurity concentration of the semiconductor, the breakdown electric field of the semiconductor, and the like.
  • a power element having a desired breakdown voltage cannot be obtained according to the termination structure (for example, Patent Documents 1 to 3) shown in FIG.
  • the present inventors have examined the termination structures proposed in Patent Document 4 and Patent Document 5, the ratio of the area of the termination region to the chip area may increase as will be described in detail later. I understood.
  • the present invention has been made in view of the above circumstances, and a main object of the present invention is to provide a semiconductor device that can suppress a reduction in device breakdown voltage and can be miniaturized.
  • a semiconductor element is a semiconductor element that includes a substrate and a first silicon carbide semiconductor layer that is located on a main surface of the substrate and includes a drift region of a first conductivity type. When viewed from the normal direction of the main surface of the semiconductor device, a unit cell region, and a termination region located between the unit cell region and an end of the semiconductor element, the termination region is the first silicon carbide.
  • the semiconductor layer has a second conductivity type ring region disposed so as to be in contact with the drift region, the ring region including a high concentration ring region in contact with a surface of the first silicon carbide semiconductor layer, and the high concentration A low-concentration ring region containing a second conductivity type impurity at a lower concentration than the ring region and contacting the first silicon carbide semiconductor layer at the bottom surface, and the side surface of the high-concentration ring region includes the drift region and
  • the semiconductor When viewed from the normal direction of the principal surface of the substrate, the said high density ring region and the low concentration ring region has the same contour.
  • a method of manufacturing a semiconductor device is a method of manufacturing the semiconductor device described above, wherein the first carbonization is performed using the same implantation mask for the high-concentration ring region and the low-concentration ring region. It includes a step of forming by implanting impurity ions of the second conductivity type into part of the silicon semiconductor layer.
  • a method for manufacturing a semiconductor device is a method for manufacturing the semiconductor device described above, wherein the high-concentration ring region, the low-concentration ring region, the high-concentration region, and the low-concentration region are Forming a second conductivity type impurity ion into a part of the first silicon carbide semiconductor layer using the same implantation mask.
  • a method for manufacturing a semiconductor device is a method for manufacturing the semiconductor device described above, wherein the high-concentration ring region, the low-concentration ring region, the first body region, and the second body. Forming a region by implanting second conductivity type impurity ions into a part of the first silicon carbide semiconductor layer using the same implantation mask;
  • a method of manufacturing a semiconductor device is a method of manufacturing the semiconductor device, wherein the semiconductor device includes a diode region located between the unit cell region and the termination region.
  • the diode region further includes a second conductivity type region disposed in contact with the drift region in the first silicon carbide semiconductor layer, and the second conductivity type region is the first silicon carbide semiconductor.
  • a method of manufacturing the semiconductor device comprising: a high concentration region in contact with a surface of the layer; and a low concentration region containing a second conductivity type impurity at a lower concentration than the high concentration region and in contact with the drift region at a bottom surface.
  • the high-concentration ring region, the low-concentration ring region, the first body region, the second body region, the high-concentration region, and the low-concentration region are formed in front using the same implantation mask. Comprising the step of forming by implanting impurity ions of the second conductivity type in a portion of the first silicon carbide semiconductor layer.
  • Still another method of manufacturing a semiconductor device is a method of manufacturing the semiconductor device, wherein the second silicon carbide semiconductor layer is formed while changing an impurity concentration of the first body region of the semiconductor device.
  • a semiconductor device is a semiconductor device comprising a substrate and a first silicon carbide semiconductor layer that is located on the main surface of the substrate and includes a drift region of a first conductivity type, The unit cell region and a termination region located between the unit cell region and an end of the semiconductor element when viewed from the normal direction of the main surface of the substrate, the termination region is the first region
  • the silicon carbide semiconductor layer has a second conductivity type ring region disposed so as to be in contact with the drift region, and the ring region includes a high-concentration ring region in contact with a surface of the first silicon carbide semiconductor layer;
  • the high-concentration ring region and the low-concentration ring region have the same contour when
  • Each unit cell includes a second conductivity type body region disposed adjacent to the drift region in the first silicon carbide semiconductor layer, and a first conductivity type impurity region located in the body region.
  • a gate insulating film disposed on the first silicon carbide semiconductor layer; a gate electrode disposed on the gate insulating film; a first ohmic electrode electrically connected to the impurity region;
  • a second ohmic electrode provided on a surface opposite to the main surface of the substrate, and adjusting an impurity concentration and a thickness of the second silicon carbide semiconductor layer while changing an impurity concentration of the first body region Do
  • a current is passed from the first ohmic electrode to the second ohmic electrode. It is designed by controlling the absolute value of the voltage at which current begins to flow.
  • FIG. 1A is a schematic plan view of the semiconductor device 100 according to the first embodiment of the present invention
  • (b) is a cross-sectional view of the semiconductor device 100 taken along the line II ′, showing a termination structure.
  • Is shown. 3 is a diagram illustrating an example of an ion implantation profile in a depth direction of a ring region 103f of a semiconductor element 100.
  • FIG. 2A and 2B are diagrams illustrating an example in which the semiconductor element 100 is a MISFET, where FIG. 1A is a plan view of the semiconductor element 100, FIG. 1B is a cross-sectional view of a unit cell 100u in the semiconductor element 100, and FIG. FIG. FIG.
  • FIG. 2 is a diagram showing the arrangement of unit cells 100u, where (a) is a cross-sectional view showing two adjacent unit cells 100u, and (b1) and (b2) are arrangements of a plurality of rectangular unit cells 100u, respectively.
  • FIG. 4 is a process cross-sectional view for explaining a method for manufacturing the semiconductor element 100, wherein (a1) to (a3) show unit cell regions, and (b1) to (b3) show diode regions and termination regions.
  • FIG. 4 is a process cross-sectional view for explaining a method for manufacturing the semiconductor element 100, wherein (a1) to (a3) show unit cell regions, and (b1) to (b3) show diode regions and termination regions.
  • FIG. 4 is a process cross-sectional view for explaining a method for manufacturing the semiconductor element 100, wherein (a1) to (a3) show unit cell regions, and (b1) to (b3) show diode regions and termination regions.
  • FIG. 4 is a process cross-sectional view for explaining a method for manufacturing the semiconductor element 100, wherein (a1) to (a3) show unit cell regions, and (b1) to (b3) show diode regions and termination regions.
  • FIG. 4 is a process cross-sectional view for explaining a method for manufacturing the semiconductor element 100, wherein (a1) to (a3) show unit cell regions, and (b1) to (b3) show diode regions and termination regions.
  • FIG. 4 is a process cross-sectional view for explaining a method for manufacturing the semiconductor element 100, wherein (a1) to (a3) show unit cell regions, and (b1) to (b3) show diode regions and termination regions. It is a cumulative frequency distribution figure which shows the proof pressure by the termination
  • FIG. 6 is a diagram showing a rising voltage Vf0 of a channel diode when the concentration of the body region is changed and the threshold voltage Vth of the semiconductor element 100 is kept constant.
  • (A) is a plan view of a conventional semiconductor element 1000
  • (b) is a sectional view of a unit cell 1000u in the semiconductor element 1000
  • (c) is a sectional view of a termination structure of the semiconductor element 1000.
  • the electric field concentration at the termination of the semiconductor element 1000 can be reduced, but as a result of the electric field concentration occurring locally in the ring region 1030f, the desired breakdown voltage may not be obtained. is there.
  • Patent Document 4 and Patent Document 5 disclose that each ring is composed of two layers having different concentrations. According to the termination structures disclosed in these patent documents, each ring is designed to have a concentration difference in the depth direction and in a direction parallel to the substrate surface. For this reason, in order to ensure a desired withstand voltage, it is necessary to ensure a sufficient interval between the plurality of rings, which may increase the area of the termination region of the power element.
  • the present inventor has intensively studied a termination structure of a semiconductor element capable of suppressing a decrease in element breakdown voltage, and has reached the present invention.
  • FIG. 1A is a plan view showing an outline of the semiconductor element 100 of this embodiment.
  • FIG. 1B is a cross-sectional view showing a termination region 100 f in the semiconductor element 100.
  • the semiconductor element 100 is mainly composed of a silicon carbide (SiC) semiconductor.
  • the semiconductor element 100 includes a semiconductor substrate 101 and a first silicon carbide semiconductor layer 102 deposited on the semiconductor substrate 101.
  • the semiconductor element 100 when viewed from the normal direction of the main surface of the semiconductor substrate 101, the semiconductor element 100 is a unit cell having an element function (switching in the case of a transistor, rectification in the case of a diode, etc.).
  • the region 100ul and a termination region 100f having a structure that complements the breakdown voltage of the element function are included.
  • a source electrode and a gate electrode of a unit cell which will be described later, are connected in parallel to the unit cell region 1000ul, a gate pad for supplying an electric signal to the semiconductor element 1000, and a source for supplying a current A pad is arranged but not shown here.
  • the termination region 100f is arranged so as to surround the unit cell region 100ul, but the termination region 100f is at least one between the unit cell region 100ul and the end portion (chip end) of the semiconductor element 100. If it is disposed in the portion, the withstand voltage in the vicinity of the termination region 100f is supplemented. Further, for example, when the termination region 100f is arranged along the four sides of the rectangular unit cell region 100ul, the termination region 100f is formed even if the termination region 100f of each side is separated at the corner of the unit cell region 100ul. If the depletion layers to be connected are connected at the corners, the breakdown voltage of the entire semiconductor element 100 can be suitably secured.
  • the semiconductor substrate 101 may be, for example, an n + type silicon carbide substrate (impurity concentration: for example, 1 ⁇ 10 19 cm ⁇ 3 ).
  • the first silicon carbide semiconductor layer 102 includes an n ⁇ -type drift region 102d (n-type impurity concentration: for example, about 1 ⁇ 10 16 cm ⁇ 3 , thickness: for example, 10 ⁇ m).
  • the first silicon carbide semiconductor layer 102 includes a drift region 102d and a plurality of p-type ring regions that are spaced from each other in the drift region 102d. 103f.
  • the illustrated example four (FIG. 1B) ring regions 103f are provided in the termination region 100f, but the number of ring regions 103f is not particularly limited.
  • Each ring region 103f has a high-concentration ring region 103af and a low-concentration ring region 103bf in which the concentration of p-type impurities is lower than that of the high-concentration ring region 103af.
  • High concentration ring region 103af is in contact with the surface of first silicon carbide semiconductor layer 102.
  • the side surface of the high-concentration ring region 103af is in contact with the drift region 102d.
  • Low concentration ring region 103bf is provided at a position deeper than high concentration ring region 103af, and is in contact with first silicon carbide semiconductor layer 102 (here, drift region 102d) at the bottom surface. Further, when viewed from the normal direction of the surface of the semiconductor substrate 101, the high-concentration ring region 103af and the low-concentration ring region 103bf have the same contour.
  • each ring region 103f is a continuous region in a ring shape, but may not be in a ring shape.
  • each ring region 103f has a structure in which a plurality of spaced regions are arranged in a ring shape or a linear shape. May be. In that case, it is preferable that the interval between the plurality of regions is set so narrow that the depletion layers extending from the respective regions are connected to each other, since a desired breakdown voltage can be ensured more reliably.
  • FIG. 2 is a diagram illustrating an ion implantation profile in the depth direction of the ring region 103f shown in FIG.
  • the “depth direction” here refers to the direction of the normal line (AB line shown in FIG. 1B) of the main surface of the semiconductor substrate 101.
  • the impurity concentration (dopant concentration) profile and the ion implantation profile are strictly different. In many cases, the impurity concentration is lower than the concentration of the implanted impurity ions. This is due to the activation rate of the implanted impurity ions. If the activation rate is 100%, the ion implantation profile and the impurity concentration profile are almost equal. If the activation rate is ⁇ %, for example, the dose during ion implantation may be increased by 1 / ( ⁇ / 100) so that the designed impurity concentration can be obtained.
  • Al is selected as the implantation type.
  • SiC since the diffusion coefficient of Al in silicon carbide is small, the change in the concentration profile due to diffusion is almost negligible.
  • B boron
  • the ion implantation energy and implantation amount are set so that a desired impurity concentration profile can be obtained after grasping the activation rate and diffusion coefficient in advance. It is preferable to select.
  • the activation rate is 100% and the impurity concentration profile and the ion implantation profile are substantially the same. That is, description will be made assuming that the profile shown in FIG. 2 indicates the impurity concentration profile in the depth direction of the ring region 103f (the high concentration ring region 103af and the low concentration ring region 103bf).
  • the high concentration ring region 103af and the low concentration ring region 103bf are formed by, for example, a plurality of ion implantation steps with different implantation energies.
  • the profile of impurity ions implanted in each ion implantation step has a peak and a tail.
  • the peak is a maximum value of the concentration in the ion implantation range Rp
  • the tail is a portion where the concentration decreases from the maximum value toward a deeper direction.
  • the ion implantation profile shown in FIG. 2 is a combination of profiles formed by, for example, four ion implantation steps.
  • the implantation energy and dose amount in each ion implantation step are, for example, as follows. 30 keV: 3.0 ⁇ 10 13 cm ⁇ 2 70 keV: 6.0 ⁇ 10 13 cm ⁇ 2 150 keV: 1.5 ⁇ 10 14 cm ⁇ 2 350 keV: 4.0 ⁇ 10 13 cm ⁇ 2
  • the portion where the depth from the upper surface of the first silicon carbide semiconductor layer 102 is shallower than the boundary surface is the high-concentration ring region 103af.
  • the portion deeper than the boundary surface is the low-concentration ring region 103bf.
  • the impurity concentration of the high-concentration ring region 103af and the low-concentration ring region 103bf is about 1 ⁇ 10 19 cm ⁇ 3 and about 2 ⁇ 10 10 at the maximum, respectively. 18 cm ⁇ 3 .
  • the activation rate is 100%, these values are the maximum impurity concentrations of the high-concentration ring region 103af and the low-concentration ring region 103bf.
  • the average impurity concentration of the high-concentration ring region 103af and the low-concentration ring region 103bf is, for example, about 9.7 ⁇ 10 18 cm ⁇ 3 and, for example, about 1.5 ⁇ 10 18 cm ⁇ 3 .
  • the thickness (depth) of the high concentration ring region 103af and the low concentration ring region 103bf along the normal line of the main surface of the semiconductor substrate 101 is about 300 nm.
  • the average impurity concentration is defined as the average value of the region where the impurity concentration is 2 ⁇ 10 18 cm ⁇ 3 or more for the high concentration ring region 103af.
  • the low-concentration ring region 103bf is defined as an average value of a region where the impurity concentration is 5 ⁇ 10 17 cm ⁇ 3 or more and less than 2 ⁇ 10 18 cm ⁇ 3 .
  • the definitions of “2 ⁇ 10 18 cm ⁇ 3 or more” and “5 ⁇ 10 17 cm ⁇ 3 or more” are provided. May be changed.
  • the average impurity concentration of the high-concentration ring region 103af is preferably not less than 2 times and not more than 100 times the average impurity concentration of the low-concentration ring region 103bf.
  • the concentration profile has a substantially flat first region and a second region that is deeper than the first region and has a lower concentration than the first region.
  • the high concentration ring region 103af includes a first region
  • the low concentration ring region 103bf includes a second region.
  • the density profile is not limited to the illustrated example.
  • the shape of the concentration profile can change depending on the ion implantation conditions and the number of implantation steps.
  • each ring region 103af, 103bf thickness along the normal line of the main surface of the semiconductor substrate 101 is not particularly limited to the above example.
  • the thickness of the high concentration ring region 103af is, for example, 15 nm or more
  • the thickness of the low concentration ring region 103bf is, for example, 100 nm or more.
  • the electric field concentration occurring at the corner of the bottom of the ring region 103 can be more reliably mitigated.
  • a depletion layer that connects the adjacent ring regions 103af can be more reliably formed.
  • the semiconductor element 100 may further include a diode region 115d between the unit cell region 100ul and the termination region 100f.
  • the diode region 115d is arranged in a ring shape so as to surround the unit cell region 100ul, but the diode region 115d is located between the unit cell region 100ul and the termination region 100f. It may be arranged discretely. Further, it may be provided only at a part of the periphery of the unit cell region 100ul.
  • the first silicon carbide semiconductor layer 102 includes a second conductivity type region (here, a high concentration region 103ad and a low concentration region 103bd).
  • p-type region) 103d is arranged.
  • the second conductivity type region 103d forms a pn junction diode with the drift region 102d.
  • Each of the regions 103ad and 103bd has a concentration profile similar to that of the high concentration ring region 103af and the low concentration ring region 103bf, respectively.
  • the high concentration region 103ad is in contact with the surface of the first silicon carbide semiconductor layer 102, and the low concentration region 103bd is provided at a position deeper than the high concentration region 103ad and has an impurity concentration lower than that of the high concentration region 103ad. ing.
  • the bottom surface of the low concentration region 103bd is in contact with the drift region 102d. Further, it is preferable that at least a portion of the side surfaces of the low concentration region 103bd and the high concentration region 103ad facing the ring region 103f is in contact with the drift region 102d.
  • the second conductivity type region 103d is electrically connected to an electrode layer (for example, a source electrode layer) provided above the first silicon carbide semiconductor layer 102. This is different from the ring region 103f having the same conductivity type.
  • an electrode layer for example, a source electrode layer
  • the second conductivity type region 103d is disposed outside a unit cell (referred to as a “peripheral cell”) that defines the periphery of the unit cell region 100ul when viewed from the normal direction of the main surface of the semiconductor substrate 101, and the peripheral cell. May be separated by a drift region 102d.
  • a part of the body region 103 in the peripheral cell may be used as the second conductivity type region 103d.
  • the impurity region 104 may be formed only in a portion functioning as a unit cell without forming the impurity region (source region) 104 in a portion used as the second conductivity type region 103 d in the body region 103.
  • An ohmic electrode (referred to as a “second ohmic electrode”) 110 is disposed on the back surface of the semiconductor substrate 101 (the surface opposite to the main surface on which the first silicon carbide semiconductor layer 102 is formed).
  • the second ohmic electrode 110 functions as, for example, a drain electrode in the unit cell region 100ul.
  • a potential of zero volts is applied to the second conductivity type region 103ad and a positive voltage is applied to the drain electrode 110, a reverse bias is applied to the pn junction formed between the low concentration region 103bd and the drift region 102d.
  • each ring region 103f was arranged in the termination region 100f with an interval of about 1 to 4 ⁇ m.
  • the withstand voltage was calculated from the electric field strength of this structure.
  • the side surface of each ring region 103 f was substantially perpendicular to the surface of the semiconductor substrate 101.
  • the width of each ring region 103f (the maximum width of the upper surface of the ring region 103f) was 1 ⁇ m, the depth was 0.6 ⁇ m, and the impurity concentration profile of the ring region 103f was the same as the profile shown in FIG.
  • the second conductivity type region 103d disposed in the diode region 115d has the same concentration distribution and the same depth as the ring region 103f.
  • the breakdown voltage was 865V.
  • the breakdown voltage due to the ring region 1030f of the conventional semiconductor element 1000 was calculated (comparative example).
  • the concentration of the ring region 1030f is constant in the depth direction, and the depth is 0.6 ⁇ m.
  • the number, interval, and width of the ring regions 1030f were the same as those of the ring region 103f of the example.
  • the p-type region 1030d has the same concentration distribution and the same depth as the ring region 1030f.
  • the breakdown voltage was 852V.
  • the breakdown voltage when the dopant concentration of the ring region 1030f is high was also calculated. For example, when the dopant concentration is 5 ⁇ 10 18 cm ⁇ 3 , 1 ⁇ 10 19 cm ⁇ 3 , and 2 ⁇ 10 19 cm ⁇ 3 , the breakdown voltages are 804 V, 794 V, and 772 V, respectively. From this calculation result, it was found that in the comparative example, if the dopant concentration and thickness of the drift region 1020d are constant, the breakdown voltage of the diode region 1150d and the termination region 1000f deteriorates as the concentration of the ring region 1030f increases. .
  • the impurity concentration of the ring region 1030f is set low (for example, the same concentration as the low concentration ring region 103bf of the embodiment), it is high (for example, the same concentration as the high concentration ring region 103af). It was found that even with the setting, a high breakdown voltage cannot be obtained as in the example. Therefore, according to the Example, it was confirmed that pressure
  • the concentration of the ring region 1030f of the comparative example is set to 2 ⁇ 10 18 cm ⁇ 3 , for example, electric field concentration occurs at the corner (the arrow 2000 shown in FIG. 12) of the ring region 1030f, thereby determining the breakdown voltage.
  • the electric field applied to the corner of the ring region 103f is relaxed in a direction parallel to the substrate surface. The For this reason, the electric field concentration generated in the corner portion is alleviated, and the breakdown voltage deterioration due to the pn junction in the diode region 115d and the termination region 100f is suppressed.
  • the concentration of the ring region 1030f of the comparative example is set to a higher concentration, for example, 2 ⁇ 10 19 cm ⁇ 3 , the breakdown voltage becomes 772 V, and even if the concentration of the ring region 1030f is simply increased, deterioration of the breakdown voltage cannot be suppressed. I understand that. Rather, simply increasing the concentration of the ring region 1030f promotes deterioration of the breakdown voltage. This is considered because a higher electric field is applied to the corner of the ring region 1030f.
  • the breakdown voltage is higher than both when the entire ring region is set to a low concentration and when it is set to a high concentration. Can be realized.
  • the high-concentration ring region 103af has the effect of suppressing the breakdown voltage degradation as described above if it has a higher dopant concentration than the low-concentration ring region 103bf.
  • the concentration of the high concentration ring region 103af is preferably twice or more that of the low concentration ring region 103bf. Thereby, pressure
  • the high-concentration ring region 103af in the present embodiment is in direct contact with the drift region 102d on its side surface.
  • the entire side surface of high-concentration ring region 103af is in contact with drift region 102d.
  • the interval between adjacent ring regions 103f can be further reduced.
  • the higher the concentration of the side surface of the ring region 103f the greater the thickness of the depletion layer extending from the side surface in the direction parallel to the substrate. For this reason, even if the interval between the adjacent ring regions 103f is narrowed, the depletion layers can be connected to each other, and a desired breakdown voltage can be ensured more reliably.
  • the termination region 100f that complements the breakdown voltage of the element function does not basically contribute to electrical conduction in the ON state of the MISFET. Therefore, if the purpose of securing the breakdown voltage is achieved, the area of the termination region 100f (semiconductor substrate) The area of the termination region 100f as viewed from the normal direction of the main surface 101 is desirably as small as possible. By reducing the area of the termination region 100f, the chip area of the semiconductor element 100 can be reduced, and the cost of the semiconductor element 100 can be further reduced.
  • FIG. 3 is a diagram illustrating an example of the semiconductor element 100 of the present embodiment.
  • the semiconductor element 100 shown in FIG. 3 is a vertical MISFET.
  • FIG. 3A is a view as seen from the upper surface of the semiconductor element 100 and is the same as FIG.
  • FIG. 3B is a schematic cross-sectional view of the unit cell 100u in the semiconductor element 100 of this embodiment.
  • FIG. 3C is a schematic cross-sectional view of the termination region 100 f and the diode region 115 d in the semiconductor element 100.
  • Semiconductor element 100 includes a first conductivity type semiconductor substrate 101 and a first silicon carbide semiconductor layer (drift layer) 102 located on the main surface of substrate 101.
  • the first conductivity type is n-type and the second conductivity type is p-type.
  • the first conductivity type may be p-type and the second conductivity type may be n-type.
  • Semiconductor substrate 101 has n + type conductivity and is made of silicon carbide.
  • First silicon carbide semiconductor layer 102 includes an n ⁇ -type drift region 102d.
  • the “+” or “ ⁇ ” on the right shoulder of the n or p conductivity type represents the relative concentration of impurities.
  • N + means that the n-type impurity concentration is higher than “n”
  • n ⁇ means that the n-type impurity concentration is lower than “n”.
  • body region 103 of the second conductivity type is arranged so as to be adjacent to drift region 102d.
  • a region other than body region 103 in first silicon carbide semiconductor layer 102 is drift region 102d.
  • the body region 103 includes a first body region 103a of the second conductivity type and a second body region 103b of the second conductivity type.
  • First body region 103a is in contact with the surface of first silicon carbide semiconductor layer 102
  • second body region 103b is in contact with first silicon carbide semiconductor layer 102 (here, drift region 102d) at the lower end thereof.
  • the first body region 103a and the second body region 103b have a thickness of at least 15 nm and 100 nm in a direction perpendicular to the main surface of the semiconductor substrate 101, respectively.
  • the first body region 103a is p + type
  • the second body region 103b is p type.
  • the average impurity concentration of the first body region 103a is preferably at least twice the average impurity concentration of the second body region 103b.
  • the body region 103 is formed by introducing a second conductivity type impurity into the first conductivity type first silicon carbide semiconductor layer 102.
  • the body region 103 includes a first conductivity type impurity and a second conductivity type impurity, and the second conductivity type impurity concentration is higher than the first conductivity type impurity concentration. It is prescribed.
  • the first conductivity type impurity concentration of first silicon carbide semiconductor layer 102 in contact with body region 103 is equal to the second conductivity type impurity concentration of second body region 103b.
  • the outer periphery (contour) of the first body region 103a and the outer periphery of the second body region 103b are the same.
  • an impurity region 104 of the first conductivity type is located in the body region 103. More specifically, impurity region 104 is provided in first body region 103 a so as to be in contact with the surface of first silicon carbide semiconductor layer 102. Impurity region 104 is n + type.
  • a second conductivity type contact region 105 is disposed in the first body region 103a.
  • Contact region 105 is preferably p + type.
  • Contact region 105 is in contact with at least first body region 103a.
  • it also contacts second body region 103b.
  • a first ohmic electrode 109 is provided on the impurity region 104.
  • the first ohmic electrode 109 is disposed on the impurity region 104 and the contact region 105, and is in electrical contact with both the impurity region 104 and the contact region 105.
  • the contact region 105 may not be provided.
  • a contact trench exposing the first body region 103a is provided in the impurity region 104, and the first ohmic electrode 109 is disposed in the trench so that the first body region 103a and the first ohmic electrode 109 are in direct contact with each other. May be.
  • a region 102j adjacent to the body region 103 that is, a region 102j sandwiched between the body regions 103 of two adjacent unit cells is referred to as a JFET (Junction Field-Effect Transistor). ) Area.
  • This region is constituted by the drift region 102 d of the first silicon carbide semiconductor layer 102.
  • the impurity concentration of the JFET region 102j may be the same as the impurity concentration of the region other than the JFET region 102j in the drift region 102d. Alternatively, the impurity concentration may be made higher than other regions of the drift region 102d in order to reduce the resistance in the JFET region 102j.
  • Such a JFET region 102j can be formed, for example, by introducing a first conductivity type impurity (here, n-type) into a predetermined region of the drift region 102d by ion implantation or the like.
  • a first conductivity type impurity here, n-type
  • the concentration of the JFET region 102j is, for example, 1 ⁇ 10 17 cm ⁇ 3 .
  • a second conductivity type second silicon carbide semiconductor layer 106 may be provided in contact with at least part of the body region 103 and the impurity region 104, respectively. More preferably, second silicon carbide semiconductor layer 106 is electrically connected to impurity region 104 and drift region 102d (JFET region 102j), and is disposed on first body region 103a.
  • the second silicon carbide semiconductor layer 106 is formed by epitaxial growth.
  • Second silicon carbide semiconductor layer 106 includes a channel region 106c in a region in contact with first body region 103a.
  • the length of the channel region 106c corresponds to the length L indicated by the bidirectional arrow shown in FIG. That is, the “channel length” of the MISFET is defined by the horizontal size of the upper surface (surface in contact with the second silicon carbide semiconductor layer 106) of the first body region 103a in the drawing.
  • a gate insulating film 107 is disposed on the second silicon carbide semiconductor layer 106.
  • a gate electrode 108 is disposed on the gate insulating film 107.
  • the gate electrode 108 is located at least above the channel region 106c. Note that the gate insulating film 107 may be provided in contact with the first silicon carbide semiconductor layer 102 without forming the second silicon carbide semiconductor layer 106. In this case, a channel (inversion channel) is formed on the surface portion of the first body region 103a.
  • An interlayer insulating film 111 is disposed so as to cover the gate electrode 108, and an upper wiring electrode 112 is provided on the interlayer insulating film 111.
  • the upper wiring electrode 112 is connected to the first ohmic electrode 109 through a contact hole 111 c provided in the interlayer insulating film 111.
  • a second ohmic electrode 110 is disposed on the back surface of the semiconductor substrate 101.
  • a back wiring electrode 113 may be further disposed on the second ohmic electrode 110.
  • the unit cell 100u of the semiconductor element 100 has, for example, a square shape.
  • the unit cell 100u may have a rectangular shape, a rectangular shape other than a quadrangular shape, or a polygonal shape.
  • FIG. 4A shows a cross-sectional structure when the unit cells 100u are arranged in parallel.
  • the unit cells 100u are two-dimensionally arranged in the x and y directions, for example, and the arrangement in the y direction may be alternately shifted by 1 ⁇ 2. , They may be aligned as shown in FIG.
  • the unit cells 100u have a shape that is long in one direction, they may be arranged in parallel as shown in FIG.
  • a plurality of unit cells 100u arranged in this manner constitute a unit cell region 100ul of a semiconductor element.
  • a termination region 100f and a diode region 115d are arranged around the unit cell region 100ul.
  • the basic configuration of these areas is the same as that shown in FIG. 1B, but is shown more specifically here. However, details of the same symbols are omitted to avoid duplication.
  • a second conductivity type region 103d including a second conductivity type high concentration region 103ad and a second conductivity type low concentration region 103bd is disposed in the diode region 115d.
  • a second conductivity type contact region 105 is disposed in the second conductivity type region 103d.
  • the contact region 105 is electrically connected to at least the high concentration region 103ad.
  • the second conductivity type high concentration region 103ad and the second conductivity type low concentration region 103bd are substantially the same impurity concentration in the depth direction as the first body region 103a and the second body region 103b, respectively. Has a profile.
  • the first ohmic electrode 109 is in contact with the high concentration region 103ad and the contact region 105 in the second conductivity type region 103d.
  • the contact region 105 is not necessarily required when the dopant concentration of the high concentration region 103ad is sufficiently high.
  • a contact trench may be provided in the high concentration region 103ad, and the first ohmic electrode 109 may be formed in the trench so that the high concentration region 103ad and the first ohmic electrode 109 are in direct contact with each other.
  • the second silicon carbide semiconductor layer 106, the gate insulating film 107, and the gate electrode 108 formed in the unit cell region 100ul may be extended to a part of the diode region 115d.
  • the source region is not disposed in the second conductivity type region 103d.
  • the portion located on the terminal region 100f side in the body region 103 of the peripheral cell may function as the second conductivity type region 103d.
  • the source region 104 is arranged only in a portion located on the unit cell region 100ul side in the body region 103 of the peripheral cell.
  • the second conductivity type region 103 d is in contact with the first ohmic electrode 109 in the opening formed in the interlayer insulating film 111.
  • the first ohmic electrode 109 is connected to the upper wiring electrode 112. Therefore, the second conductivity type region 103d is electrically connected to the unit cell region 100ul in parallel by the upper wiring electrode 112.
  • the diode region 115d is preferably formed using the structure of each unit cell 100u in the unit cell region 100ul.
  • the diode region 115d may have the same configuration as that of the unit cell 100u, for example, except that the second silicon carbide semiconductor layer 106, the impurity region 104, and the like are not included. That is, the region corresponding to the body region 103 of the unit cell 100u is the second conductivity type region 103d.
  • the p-type layer disposed in the unit cell region 100ul may be formed by extending to the diode region 115d.
  • each of the regions 103ad and 103bd of the second conductivity type region 103d is not particularly limited, but the thickness of the high concentration region 103ad is, for example, 15 nm or more, and the thickness of the low concentration region 103bd is, for example, 100 nm or more. preferable. Thereby, the electric field concentration generated at the corner of the bottom of the second conductivity type region 103d can be more reliably mitigated.
  • the ring region 103f (high concentration ring region 103af) is covered with an interlayer insulating film 111.
  • the first conductivity type stopper region 104f, the upper wiring 112f, and the stopper region 104f and the upper wiring 112f that suppress the depletion layer due to the pn junction from reaching the chip end are electrically connected.
  • a contact electrode 109f to be connected may be disposed.
  • the upper wiring 112f and the contact electrode 109f are provided in the opening of the interlayer insulating film 111.
  • the upper wiring electrode 112 and the upper wiring 112f are not in direct contact. Note that the upper wiring electrode 112 and the upper wiring 112f may be formed using the same conductive film.
  • the stopper region 104f may be an n + type region having the same impurity concentration as the source region 104.
  • a passivation film 114 is provided so as to cover the entire upper wiring 112f and a part of the upper wiring electrode 112.
  • the passivation film 114 may cover at least a part of the unit cell 100u on the unit cell region 100ul.
  • the back surface wiring electrode 113 may be disposed on the second ohmic electrode 110.
  • (a1) to (a3) are process cross-sectional views of the unit cell region 100ul
  • (b1) to (b3) are process cross-sectional views of the termination region 100f, respectively. This corresponds to the step shown in (a1).
  • the semiconductor substrate 101 is prepared.
  • the semiconductor substrate 101 is, for example, an n-type 4H—SiC offcut substrate having a low resistance (resistivity 0.02 ⁇ cm).
  • a high-resistance first silicon carbide semiconductor layer 102 is epitaxially grown on a semiconductor substrate 101.
  • a buffer layer made of SiC having a high impurity concentration may be deposited on the semiconductor substrate 101.
  • the buffer layer is not shown for simplicity.
  • the impurity concentration of the buffer layer is, for example, 1 ⁇ 10 18 cm ⁇ 3 and the thickness is 1 ⁇ m.
  • the first silicon carbide semiconductor layer 102 is made of, for example, n-type 4H—SiC, and has an impurity concentration and a film thickness of, for example, 1 ⁇ 10 16 cm ⁇ 3 and 10 ⁇ m, respectively.
  • a mask 201 made of, for example, SiO 2 is formed on the first silicon carbide semiconductor layer 102.
  • Al ions are implanted into portions of the first silicon carbide semiconductor layer 102 where the body region, the diode region, and the ring region are to be formed.
  • first body implantation region 103a ′ formed at a high concentration in a shallow region of first silicon carbide semiconductor layer 102 and first region in a region deeper than first body implantation region 103a ′
  • a second body implantation region 103b ′ formed at a lower concentration than the body implantation region 103a ′ is formed.
  • the termination region 100f includes a high-concentration ring implantation region 103af ′ and a low-concentration ring implantation region 103bf ′ that later become the ring region 103f, and a high-concentration implantation region 103ad ′ and a low concentration that later become the second conductivity type region 103d.
  • the implantation region 103bd ′ is formed at the same time. Therefore, as described above, it is possible to form a ring region capable of suppressing the breakdown voltage degradation in the termination region 100f. Further, the process can be simplified by simultaneously performing the ion implantation for forming such a ring region and the ion implantation for forming the body region.
  • the first body implantation region 103a 'and the second body implantation region 103b' become the first body region 103a and the second body region 103b, respectively, by activating the implanted ions.
  • a region other than the first body region 103 a and the second body region 103 b becomes the drift region 102 d.
  • the implantation profile of the body region 103 at this time may be the same as the profile shown in FIG. 2, for example.
  • the mask 201 is used to form the high-concentration regions 103a ′, 103ad ′, and 103af ′ and the low-concentration regions 103b ′, 103bd ′, and 103bf ′.
  • This also simplifies the process here.
  • the outline of the high concentration region and the outline of the low concentration region are substantially the same because the same mask 201 is used. Therefore, it is possible to keep the interval of the body region 103 between adjacent unit cells small.
  • the interval between the body regions 103 can be set to a desired value (for example, 1 ⁇ m).
  • the termination structure As in the JTE structure, it is extremely difficult to form the unit cell and the termination region simultaneously as shown here, or to form them with high accuracy.
  • the high-concentration region and the low-concentration region are formed by different processes, mask rearrangement, mask shape change, etc. are involved, and the body region interval (the width of the subsequent JFET region) is set to a desired value. Cannot be set to.
  • the first body implantation region 103a 'and the second body implantation region 103b' are formed by different processes using different masks, there is a possibility that an implantation shift occurs in a direction parallel to the substrate surface.
  • the interval between the adjacent ring regions 103f can be reduced.
  • the area required for the region 100f can be reduced, and the chip area can be suppressed.
  • the area required for the diode region 115d can be reduced.
  • a mask 202 is deposited on the entire surface so as to cover the mask 201.
  • a resist is patterned to cover the termination region, the diode region, and a region where a contact region will be formed later, and a resist mask 203 is formed.
  • the mask 201 and the mask 202 are preferably formed using a material that can have a selection ratio in a dry etching process.
  • the material of the mask 201 may be SiO 2 and the material of the mask 202 may be polysilicon.
  • the first silicon carbide semiconductor layer 102 is covered with both the masks 201 and 202 and the sidewall 202 ′.
  • N ions are doped in the non-existing portion to form the source implantation region 104 ′.
  • ion implantation conditions such as implantation energy and dose are selected so that an n-type region having an impurity concentration of about 5 ⁇ 10 19 cm ⁇ 3 is formed with a thickness of about 200 to 300 nm. To do.
  • the source injection region 104 ′ is formed inside the first body injection region 103a ′.
  • the width of the portion corresponding to the channel of the MISFET that is, the distance L ′ that defines the gate length L later in FIG. 6 (a3) can be accurately controlled.
  • the distance L or L ′ is defined by the width of the sidewall 202 ′ and is, for example, about 0.5 ⁇ m.
  • a source is accurately formed in the first silicon carbide semiconductor layer 102 using a self-alignment process as shown in FIG. It is preferable to form implantation region 104 ′ and body implantation region 103 ′. If the source injection region 104 ′ and the body injection region 103 ′ are formed without using the self-alignment process as described above, for example, misalignment may occur in the unit cell, and a predetermined gate length L may not be obtained. . In some cases, the gate length L becomes too small due to misalignment, and the channel of the transistor may be short-circuited.
  • the gate length L may be set sufficiently large in consideration of misalignment of the mask. However, if the gate length L is made sufficiently large, the channel resistance of the transistor increases, and as a result, there is a concern that the on-resistance increases. Therefore, here, it is preferable to apply a self-alignment process to the formation of the masks 201 and 202 for forming the source region.
  • a new mask 204 is formed on the first silicon carbide semiconductor layer 102.
  • the mask 204 has an opening on a region where a stopper region in the termination region is to be formed.
  • N ions are implanted into the first silicon carbide semiconductor layer 102, thereby forming the stopper implantation region 104f '.
  • the implantation conditions at this time may be the same as the conditions for forming the source implantation region 104 ', for example.
  • the mask 204 is removed, and a new mask 205 is formed on the first silicon carbide semiconductor layer 102 as shown in FIGS. 7 (a2) and (b2).
  • the mask 205 has an opening on a region where a contact region is to be formed.
  • Al ions are implanted into the first silicon carbide semiconductor layer 102 to form a contact implantation region 105 ′.
  • contact injection regions 105 ′ are formed in the interior of the rear body region and the rear diode region, respectively.
  • the implantation conditions at this time can be selected, for example, so that the dopant concentration is about 1 ⁇ 10 20 cm ⁇ 3 and the depth is about 400 nm.
  • the contact implantation region 105 ′ is formed in the first body implantation region 103a ′, but preferably reaches the second body implantation region 103b ′ as shown. That is, the contact implantation region 105 ′ is preferably in contact with the first body implantation region 103a ′ at the upper portion of the side surface and the second body implantation region 103b ′ at the lower and bottom surfaces of the side surface. Thereafter, the mask 205 is removed.
  • a mask 206 having an opening on a region to be a JFET region is formed on the first silicon carbide semiconductor layer 102 as necessary, and drift is achieved.
  • N ions are implanted into the region 102d to form a JFET implantation region 102j ′.
  • the dopant concentration of the JFET implantation region 102j ′ is, for example, about 1 ⁇ 10 17 cm ⁇ 3 and the implantation depth is, for example, about 0.6 to 1 ⁇ m.
  • the implantation region forming step by ion implantation described so far is preferably performed by heating the semiconductor substrate 101 to 200 ° C. or higher.
  • the mask 206 is removed. Subsequently, activation annealing is performed at a high temperature of about 1600 to 1900.
  • activation annealing is performed at a high temperature of about 1600 to 1900.
  • the first A first body region 103a, a second body region 103b, a high concentration region 103ad, a low concentration region 103bd, a high concentration ring region 103af, a low concentration ring region 103bf, an impurity region 104, a contact region 105, and a stopper region 104f are formed.
  • first silicon carbide semiconductor layer 102 the surface where the implantation region is formed
  • a carbon film (not shown) on the surface of first silicon carbide semiconductor layer 102 (the surface where the implantation region is formed) and perform activation annealing in that state. Thereby, surface roughness of first silicon carbide semiconductor layer 102 due to activation annealing can be suppressed.
  • first silicon carbide semiconductor layer 102 may be slightly oxidized and cleaned by removing the obtained thermal oxide film (thickness: about 15 nm, for example).
  • a second silicon carbide layer is formed on the entire surface of first silicon carbide semiconductor layer 102 including first body region 103a, impurity region 104, and contact region 105.
  • a second silicon carbide semiconductor layer 106 ′ to be a semiconductor layer (channel layer) is epitaxially grown.
  • the thickness of the second silicon carbide semiconductor layer 106 ′ is set so that the impurity concentration N (cm ⁇ 3 ) and the thickness d (nm) of the second silicon carbide semiconductor layer later satisfy the following conditions, for example. The thickness and impurity concentration are appropriately adjusted.
  • the thickness d ′ of the second silicon carbide semiconductor layer 106 ′ is d + d 0 with respect to the thickness d of the second silicon carbide semiconductor layer later.
  • d0 represents a film reduction amount of the second silicon carbide semiconductor layer by thermal oxidation or the like, which will be described later.
  • the thickness reduction d0 is 50 nm
  • the thickness d ′ of the second silicon carbide semiconductor layer 106 ′ is 80 nm.
  • a predetermined portion of the second silicon carbide semiconductor layer 106 ' is removed by dry etching to obtain the second silicon carbide semiconductor layer 106.
  • portions of the second silicon carbide semiconductor layer 106 ′ located in the termination region and the diode region are removed.
  • gate insulating film 107 is formed on the surface of second silicon carbide semiconductor layer 106 by, for example, thermal oxidation.
  • a gate electrode 108 is formed on a desired region of the gate insulating film 107.
  • the gate insulating film 107 is formed in consideration of the thickness lost by the thermal oxidation.
  • the thickness of the second silicon carbide semiconductor layer 106 ′ (FIG. 8 (b1)) is adjusted so that the thickness of the subsequent second silicon carbide semiconductor layer 106 becomes the thickness d.
  • the thickness of the second silicon carbide semiconductor layer 106 ′ is set to be about 50 nm larger than the thickness d, the cleaning process of the second silicon carbide semiconductor layer 106 performed before the gate insulating film 107 is formed.
  • the thickness of second silicon carbide semiconductor layer 106 obtained after the gate insulating film 107 formation step is approximately the same as predetermined thickness d.
  • gate electrode 108 for example, a polycrystalline silicon film doped with phosphorus of about 7 ⁇ 10 20 cm ⁇ 3 is deposited on the gate insulating film 107, and the polycrystalline silicon film is dry-etched using a mask (not shown). Can be formed.
  • the thickness of the polycrystalline silicon film is, for example, about 500 nm.
  • Gate electrode 108 is disposed so as to cover at least a portion to be a channel in second silicon carbide semiconductor layer 106.
  • the source region 104 and the body region 103 are formed by using the self-alignment process shown in FIG. 6A2, and the second silicon carbide semiconductor layer 106 to be a channel layer is formed thereon, the MISFET The portion to be a channel is formed with good control.
  • the self-alignment process for the body region cannot be applied. There is concern about an increase in on-resistance. Therefore, it is preferable to form second silicon carbide semiconductor layer 106 on source region 104 and body region 103 formed by a self-alignment process.
  • an interlayer insulating film 111 is deposited by, for example, a CVD method so as to cover the surface of the gate electrode 108 and the surface of the first silicon carbide semiconductor layer 102.
  • the interlayer insulating film 111 is formed using, for example, SiO 2 .
  • the thickness of the interlayer insulating film 111 is, for example, 1 ⁇ m.
  • a part of the surface of the impurity region 104 and the surface of the contact region 105 are formed on the interlayer insulating film 111, the gate insulating film 107, and the second silicon carbide semiconductor layer 106 by dry etching using a mask (not shown).
  • a contact hole 111A exposing the surface of the high concentration region 103ad and a contact hole 111B exposing the surface of the contact region 105, and a contact hole 111C exposing a portion of the surface of the stopper region 104f.
  • the first ohmic electrode 109 is formed in the contact holes 111A and 111B, and the contact electrode 109f is formed in the contact hole 111C. Further, the second ohmic electrode 110 is formed on the surface (back surface) opposite to the main surface of the semiconductor substrate 101.
  • a metal film such as a nickel film having a thickness of about 100 nm is formed in the interlayer insulating film 111 and the contact holes 111A, 111B, and 111B.
  • a heat treatment is performed, for example, at a temperature of 950 ° C. for 5 minutes in an inert atmosphere to cause the metal film (here, nickel film) to react with the silicon carbide surface.
  • the nickel film on interlayer insulating film 111 and nickel that has not reacted with silicon carbide in contact holes 111A, 111B, and 111C are removed.
  • a first ohmic electrode 109 made of metal silicide (here, nickel silicide) is formed in the contact holes 111A and 111B.
  • a contact electrode 109f made of nickel silicide is formed in the contact hole 111C.
  • the second ohmic electrode 110 can be similarly formed by depositing, for example, a nickel film on the entire back surface of the semiconductor substrate 101 and reacting with the silicon carbide surface of the semiconductor substrate 101 by heat treatment. Note that before performing the heat treatment for forming the first ohmic electrode, a metal film may be formed on the back surface of the semiconductor substrate 101 and the heat treatment for forming the first ohmic electrode and the second ohmic electrode may be performed simultaneously.
  • a conductive film (eg, an aluminum film) having a thickness of, for example, about 4 ⁇ m is deposited on the interlayer insulating film 111 and in the contact holes 111A, 111B, and 111C, and etched into a desired pattern.
  • the upper wiring electrode 112 is formed on the interlayer insulating film 111 and in the contact holes 111A and 111B, and on the interlayer insulating film 111 and the contact hole 111C.
  • Upper wiring 112f is formed.
  • the passivation film 114 may be formed so as to cover the exposed portion of the interlayer insulating film 111, the upper wiring electrode 112, and the upper wiring 112f.
  • the passivation film 114 is provided on the termination region 100f and the diode region 115d.
  • the passivation film 114 is, for example, a SiN film, and the thickness thereof is, for example, about 1.5 ⁇ m.
  • a gate wiring (or gate pad) electrically connected to the gate electrode 108 is formed in another region at the chip end.
  • a back surface wiring electrode 113 for die bonding may be formed on the back surface of the second ohmic electrode 110.
  • the backside wiring electrode 113 may be a laminated film in which, for example, a Ti film, a Ni film, and an Ag film are laminated in this order from the second ohmic electrode 110 side. In this case, the Ti film is in contact with the second ohmic electrode 110. In this way, the semiconductor element 100 shown in FIG. 3 is obtained.
  • the semiconductor element 100 of this embodiment includes a ring region 103f having a high concentration ring region 103af and a low concentration ring region 103bf in the termination region 100f. Therefore, it is possible to suppress a decrease in breakdown voltage as compared with the conventional semiconductor element 1000 (FIG. 12) provided with the ring region 1030f having a substantially uniform concentration distribution. Further, according to the method described above with reference to FIGS. 5 to 9, when the high concentration ring region 103af and the low concentration ring region 103bf are formed, the first body region 103a and the second body region 103b in the unit cell region The high concentration region 103ad and the low concentration region 103bd in the diode region are formed simultaneously.
  • the high-concentration ring region 103af and the low-concentration ring region 103bf are formed simultaneously with at least one of the first body region 103a and the second body region 103b and the high-concentration region 103ad and the low-concentration region 103bd. This simplifies the effect.
  • the high-concentration region and the low-concentration region are continuously formed using the same mask, so that the high-concentration region and the high-concentration region are viewed from the normal direction of the main surface of the semiconductor substrate 101.
  • a low concentration region can be formed in the same region. Accordingly, it is not necessary to design a large gap between the ring regions 103f in consideration of pattern misalignment when the high concentration ring region 103af and the low concentration ring region 103bf are formed by different processes. Can be reduced. Further, it is possible to avoid the problem that the JFET region (interval between adjacent body regions) becomes narrow due to the pattern misalignment when the first body region 103a and the second body region 103b are formed by different processes. As a result, an increase in on-resistance of the MISFET due to the narrowing of the JFET region can be suppressed.
  • the corner of the bottom of the body region 1030 is similar to the ring region 1030f. Electric field concentration occurs in the portion 3000, and a desired breakdown voltage may not be obtained.
  • the dopant concentration of the body region 1030 is substantially constant in the depth direction, and the depth of the body region 1030 is 0.6 ⁇ m.
  • the concentration of the drift region 1020d is 1 ⁇ 10 16 cm ⁇ 3 .
  • the breakdown voltage in the unit cell region when the average dopant concentration in the body region 1030 is 2 ⁇ 10 18 cm ⁇ 3 is 262 V larger than the breakdown voltage in the case of 2 ⁇ 10 19 cm ⁇ 3 . From this result, it was found that the higher the concentration of the body region 1030, the greater the electric field concentration and the lower the breakdown voltage.
  • the average dopant in the body region 1030 in the conventional semiconductor element 1000 is shown. It was confirmed that the breakdown voltage deterioration can be suppressed by about 16 V compared to the case where the concentration is set to 2 ⁇ 10 18 cm ⁇ 3 .
  • the dopant concentration of the high concentration region 103ad and the high concentration ring region 103af is 2 ⁇ 10 19 cm ⁇ 3
  • the dopant concentration of the low concentration region 103bd and the low concentration ring region 103bf is about 2 ⁇ 10 18 cm ⁇ . 3
  • the breakdown voltage of the termination structure having the second conductivity type region 103d and the ring region 103f was obtained.
  • the breakdown voltage of the termination structure having the p-type region 1030d and the ring region 1030f having a substantially uniform concentration distribution in the depth direction was obtained.
  • the dopant concentration of the p-type region 1030d and the ring region 1030f was about 2 ⁇ 10 18 cm ⁇ 3 .
  • the second conductivity type region 103d of the example and the p type region 1030d of the comparative example have the same appearance such as depth and width.
  • the depth, width, and number of the ring regions 103f and 1030f in the example and the comparative example are the same.
  • FIG. 10 is a graph showing the cumulative frequency distribution of the device breakdown voltage by the termination structures (pn junction diodes) of the example and the comparative example. From this graph, when the dopant concentration of the diode region and the ring region is increased at the upper part (shallow portion) (Example), the device having a higher breakdown voltage than when the diode region and the entire ring region have the same dopant concentration (Comparative Example) It became clear that can be realized. When compared with the median value, the device breakdown voltage obtained by the termination structure of the comparative example is 671 V, whereas the device breakdown voltage of 728 V is obtained by the termination structure of the example.
  • the device breakdown voltage is suppressed by including the body region 103 having the first body region 103a and the second body region 103b having different concentrations. Furthermore, the following effects can be obtained by independently controlling the dopant concentrations of the upper and lower layers of the body region 103.
  • the threshold voltage Vth of the transistor is positive (that is, no threshold).
  • the first ohmic electrode (source electrode) 109 It is possible to operate as a diode for passing current to the second ohmic electrode (drain electrode) 110 through the second silicon carbide semiconductor layer 106 (channel layer).
  • the average dopant concentration of the first body region 103a is 2 ⁇ 10 19 cm ⁇ 3
  • the impurity concentration and film thickness of the second silicon carbide semiconductor layer 106 are 2.3 ⁇ 10 18 cm ⁇ 3 and 30 nm, respectively
  • the gate insulating film 107 The film thickness is set to 70 nm.
  • the voltage between the two ohmic electrodes (drains) 110 can be set to about 0.5 V, for example, which is clearly different from a pn diode (the rising voltage is about 2.5 V) constituted by the body region 103 and the drift region 102d. Has current-voltage characteristics. As described above, when the semiconductor element 100 is operated as a diode, the diode is referred to as a “channel diode” for convenience.
  • the potential of the second ohmic electrode D based on the potential of the first ohmic electrode S is Vds
  • the potential of the gate electrode G based on the potential of the first ohmic electrode S is Vgs
  • the second ohmic electrode The direction of current flowing from D to the first ohmic electrode S is defined as “forward direction”
  • the direction of current flowing from the first ohmic electrode S to the second ohmic electrode D is defined as “reverse direction”.
  • the unit of potential and voltage is volt (V).
  • the second body region 103b that affects the device breakdown voltage and the first body region 103a that affects the threshold voltage Vth of the transistor and the rising voltage Vf0 of the channel diode can be controlled independently. it can. Therefore, the channel diode can be used as a free-wheeling diode that is connected in reverse parallel to the transistor in the inverter circuit, and a semiconductor element having high breakdown voltage and reliability can be realized. While maintaining the element breakdown voltage, the rising voltage
  • the average impurity concentration of the second body region 103b smaller than the average impurity concentration of the first body region 103a. If the rising voltage of the channel diode is designed to be 1V or less, it is possible to replace the Schottky diode made of SiC, which is a candidate for the freewheeling diode, and if the rising voltage of the channel diode is designed to be 0.6V or less, it is fast made of Si. A recovery diode can be substituted. That is, without using these freewheeling diodes, only the semiconductor element 100 can have the function of a freewheeling diode.
  • a large current can be obtained without substantially flowing a current through a body diode having a pn junction constituted by the body region 103 and the drift region 102d.
  • a large current continues to flow through the pn junction, defects in SiC grow to increase the on-resistance of the semiconductor element and the resistance of the body diode.
  • the body diode can have a diode function with almost no current flowing, crystal defects do not increase, and high reliability can be maintained.
  • the threshold voltage Vth of the forward current is preferably 2V or more.
  • a semiconductor element generally used in an inverter circuit which is a power circuit is preferably normally off (Vth> 0 V). This is because even if the gate control circuit fails for some reason and the gate voltage becomes 0V, the drain current can be cut off, which is safe. Further, the threshold voltage of the MISFET decreases as the temperature rises. For example, in the case of a SiC-MISFET, there is a case where the temperature is lowered by about 1 V with a temperature rise of 100 ° C.
  • the noise margin is 1 V so that the gate is not turned on by noise, it is preferable to set Vth at room temperature to 2 V (1 V + 1 V) or more.
  • the threshold voltage is too high, the gate voltage when the transistor is turned on also increases accordingly, and there are more restrictions on the power source that generates the gate voltage. Therefore, the threshold voltage is practically set to 8 V or less. It is preferable.
  • FIG. 11 shows the threshold voltage of the transistor when the dopant concentration (here, the dopant concentration of the first body region 103a) of the body region 103 in contact with the second silicon carbide semiconductor layer 106 (channel layer) is changed. Vth and the rising voltage Vf0 of the channel diode are shown. When the dopant concentration in the first body region 103a is changed, the threshold voltage Vth also changes. Here, the threshold voltage Vth is set to about 3 V by appropriately changing the dopant concentration in the second silicon carbide semiconductor layer 106. Is set.
  • the dopant concentration of the first body region 103a should be as high as possible in order to keep the rising voltage Vf0 of the channel diode small while maintaining the threshold voltage Vth of the transistor.
  • the present embodiment it is possible to independently control the element breakdown voltage, the rising voltage of the built-in diode, and the threshold voltage of the transistor.
  • the threshold voltage Vth of the semiconductor element 100 is kept constant by adjusting the impurity concentration and thickness of the second silicon carbide semiconductor layer 106 while changing the impurity concentration of the first body region 103a.
  • the absolute voltage at which the current starts to flow is maintained. It is preferable to perform a step of controlling the value and select the impurity concentration and thickness of each region.
  • Silicon carbide may be a polytype other than 4H—SiC (6H—SiC, 3C—SiC, 15R—SiC, etc.).
  • the main surface of the semiconductor substrate 101 is a main surface that is off-cut from the (0001) plane, but other surfaces ((11-20) plane, (1-100) plane, (000 ⁇ 1) surface) and these off-cut surfaces may be used.
  • the semiconductor element 100 may have a heterojunction.
  • a Si substrate may be used as the semiconductor substrate 101, and a silicon carbide semiconductor layer (3C—SiC) may be formed on the Si substrate as the first silicon carbide semiconductor layer 102.
  • the present invention it is possible to provide a silicon carbide semiconductor element capable of suppressing a breakdown voltage failure in the termination region. Further, it is possible to provide a method for manufacturing a semiconductor element that can suppress an increase in on-resistance and that can be easily processed. Therefore, the present invention can be applied to various semiconductor devices using silicon carbide, and can be suitably used particularly for power semiconductor devices used as switching elements such as inverter circuits.
  • 100 semiconductor element 100ul unit cell region 100f termination region 101 semiconductor substrate 102 first silicon carbide semiconductor layer 102d drift region 102j JFET region 103 body region 103a first body region 103b second body region 103f ring region 103af high concentration ring region 103bf low concentration Ring region 103d Diode region 103ad High concentration region 103bd Low concentration region 104 Impurity region (source region) 105 Contact region 106 Second silicon carbide semiconductor layer (channel layer) 107 Gate insulating film 108 Gate electrode 109 First ohmic electrode (source electrode) 110 Second ohmic electrode (drain electrode) 111 Interlayer insulating film 112 Upper wiring electrode 113 Back wiring electrode 115d Diode region

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

 半導体素子100は、基板101の主面の法線方向から見て、ユニットセル領域100ulと、ユニットセル領域と半導体素子の端部との間に位置する終端領域100fとを含み、終端領域100fは、第1炭化珪素半導体層102にドリフト領域102dと接するように配置された第2導電型のリング領域103fを有し、リング領域は、第1炭化珪素半導体層の表面に接する高濃度リング領域103afと、高濃度リング領域よりも低い濃度で第2導電型の不純物を含み、底面で第1炭化珪素半導体層に接する低濃度リング領域103bfとを含んでおり、高濃度リング領域103afの側面は、ドリフト領域102dと接し、半導体基板の主面の法線方向から見て、高濃度リング領域と低濃度リング領域とは同一の輪郭を有している。

Description

半導体素子およびその製造方法
 本発明は、半導体素子およびその製造方法に関する。特に、高耐圧、大電流用に使用される、炭化珪素半導体素子(パワー半導体デバイス)に関する。
 炭化珪素(シリコンカーバイド:SiC)は、珪素(Si)に比べてバンドギャップの大きな高硬度の半導体材料であり、パワー素子、耐環境素子、高温動作素子、高周波素子等の種々の半導体装置に応用されている。なかでも、スイッチングや整流機能を有するパワー素子への応用が注目されている。SiCを用いたパワー素子は、Siパワー素子よりも電力損失を大幅に低減できるなどの利点がある。SiCパワー素子は、そのような特性を活かして、Siパワー素子と比較して、より小型の半導体装置を実現することができる。
 SiCを用いたパワー素子のうち代表的な半導体素子は金属-絶縁体-半導体電界効果トランジスタ(Metal-Insulator-Semiconductor Field-Effect Transistor:MISFET)である。金属-酸化物-半導体電界効果トランジスタ(Metal-Oxide-Semiconductor Field-Effect Transistor:MOSFET)は、MISFETの一種である。
 以下、図面を参照しながら、SiCを用いたパワー素子の一般的な構造を、MISFETを例に説明する。
 図12(a)は、半導体素子1000の概略を示す平面図である。半導体素子1000は、主に炭化珪素(SiC)半導体から構成されている。半導体素子1000は、素子機能(トランジスタの場合はスイッチング、ダイオードの場合は整流性など)を有するユニットセル領域1000ulと、素子機能の耐圧を補完する終端領域1000fとを有する。ユニットセル領域1000ulには、複数のユニットセルが配列されている。図示する例では、終端領域1000fは、ユニットセル領域1000ulの周囲に配置されている。なお、MISFETを構成する場合、ユニットセル領域1000ulには、後述するユニットセルのソース電極およびゲート電極を並列に接続し、半導体素子1000へ電気信号を与えるためのゲートパッドおよび電流を流すためのソースパッドを配置するが、ここでは図示しない。
 図12(b)は、ユニットセル領域1000ulに配置された単一のユニットセルを示す断面図である。
 ユニットセル1000uは、低抵抗のn型の半導体基板(例えばSiC基板)1010と、半導体基板1010の主面上に配置された炭化珪素半導体層1020と、炭化珪素半導体層1020の上に配置されたチャネル層1060と、チャネル層1060の上方にゲート絶縁膜1070を介して設けられたゲート電極1080と、炭化珪素半導体層1020の表面に接するソース電極1090と、半導体基板1010の裏面に設けられたドレイン電極1100とを備えている。
 炭化珪素半導体層1020は、SiC基板1010の導電型と異なる導電型(ここではp型)を有するボディ領域1030と、炭化珪素半導体層1020のうちボディ領域1030が配置されていない部分に位置するドリフト領域1020dとを有している。ドリフト領域1020dは、例えば、SiC基板1010よりも低い濃度でn型不純物を含むn-型の炭化珪素半導体層である。ボディ領域1030の内部には、高濃度でn型不純物を含むn型ソース領域1040、および、ボディ領域1030よりも高い濃度でp型不純物を含むp+型のコンタクト領域1050が配置されている。
 ソース領域1040とドリフト領域1020dとは、チャネル層1060を介して接続されている。ゲート電極1080に印加する電圧により、チャネル層1060のうちボディ領域1030の上面に接する部分には、チャネルが形成される。
 コンタクト領域1050およびソース領域1040は、それぞれ、ソース電極1090とオーミック接触を形成している。従って、ボディ領域1030は、コンタクト領域1050を介してソース電極1090と電気的に接続される。
 ユニットセル1000uは、ボディ領域1030とドリフト領域1020dとの間にpn接合を有するため、ソース電極1090に対してドレイン電極1100に正の電圧を印加した際、数百V~数千V(例えば600V~10kV程度)の耐圧を有する。しかし、ユニットセル領域1000ulの周辺に電界集中が生じて、設計耐圧が得られないおそれがある。このため、一般的なパワー素子では、終端領域1000fに耐圧を補償する構造を設ける。例えば、FLR(電界緩和リング:Field Limiting Ring)、JTE(Junction Termination Edge または Extension)、リサーフなどの構造が終端領域1000fに形成される(特許文献1~5)。
 図12(c)は、終端構造としてFLR構造を採用した場合の終端領域1000fの断面図であり、図12(a)に示す平面図のE-F線に沿った断面構造を示す。
 終端領域1000fでは、炭化珪素半導体層1020の上部に、複数のp型の電界緩和リング(FLR)領域1030fが形成されている。図示する例では、各リング領域1030fは、ユニットセル領域1000ulをリング状に囲っている。これらの複数のリング領域1030fによって、ユニットセル領域1000ulの電界集中を緩和し、耐圧低下を抑制することができる。
 ユニットセル領域1000ulと終端領域1000fとの間に、ダイオード領域1150dが設けられている場合がある。ダイオード領域1150dでは、炭化珪素半導体層1020にp型領域1030dが設けられている。p型領域1030dとn-型のドリフト領域1020dとによってpn接合が形成される。本明細書では、リング領域1030fおよびダイオード領域1150dを含む耐圧を補償する構造を「終端構造」と呼ぶ。
 リング領域1030fは、通常、炭化珪素半導体層1020にp型の不純物イオンを注入することにより形成される。炭化珪素を用いたパワー素子においては、p型の不純物イオンとして、例えばAlイオンまたはBイオンが用いられる。このときの注入条件は、リング領域1030fの深さ方向における不純物濃度プロファイルができるだけ一定になるように設定される。
 一方、特許文献4および特許文献5は、一定の濃度差を有するように設計されたガードリングを終端領域に配置することが開示されている。
特許第4367508号公報 特表2009-524217号公報 特許第4356767号公報 特開2003-163351号公報 特開2009-289904号公報
 半導体のpn接合を利用した終端構造の耐圧は、半導体の不純物濃度や半導体の絶縁破壊電界等から決定される。しかしながら、本発明者が検討したところ、図12(c)に示す終端構造(例えば特許文献1~3)によると、所望の耐圧を有するパワー素子が得られない場合がある。また、特許文献4および特許文献5に提案された終端構造について、本発明者が検討したところ、後で詳述するように、チップ面積に占める終端領域の面積の割合が増大するおそれがあることが分かった。
 本発明は、上記事情に鑑みてなされたものであり、その主な目的は、素子耐圧の低下を抑制でき、かつ小型化が可能な半導体素子を提供することにある。
 本発明の実施形態の半導体素子は、基板と、前記基板の主面上に位置し、第1導電型のドリフト領域を含む第1炭化珪素半導体層とを備えた半導体素子であって、前記基板の前記主面の法線方向から見て、ユニットセル領域と、前記ユニットセル領域と前記半導体素子の端部との間に位置する終端領域とを含み、前記終端領域は、前記第1炭化珪素半導体層に、前記ドリフト領域と接するように配置された第2導電型のリング領域を有し、前記リング領域は、前記第1炭化珪素半導体層の表面に接する高濃度リング領域と、前記高濃度リング領域よりも低い濃度で第2導電型の不純物を含み、底面で前記第1炭化珪素半導体層に接する低濃度リング領域とを含んでおり、前記高濃度リング領域の側面は、前記ドリフト領域と接し、前記半導体基板の前記主面の法線方向から見て、前記高濃度リング領域と前記低濃度リング領域とは同一の輪郭を有している。
 本発明の実施形態の半導体素子の製造方法は、上記の半導体素子を製造する方法であって、前記高濃度リング領域および前記低濃度リング領域を、同一の注入マスクを用いて、前記第1炭化珪素半導体層の一部に第2導電型の不純物イオンを注入することによって形成する工程を包含する。
 本発明の他の実施形態の半導体素子の製造方法は、上記の半導体素子を製造する方法であって、前記高濃度リング領域、前記低濃度リング領域、前記高濃度領域および前記低濃度領域を、同一の注入マスクを用いて、前記第1炭化珪素半導体層の一部に第2導電型の不純物イオンを注入することによって形成する工程を包含する。
 本発明のさらに他の実施形態の半導体素子の製造方法は、上記の半導体素子を製造する方法であって、前記高濃度リング領域、前記低濃度リング領域、前記第1ボディ領域および前記第2ボディ領域を、同一の注入マスクを用いて、前記第1炭化珪素半導体層の一部に第2導電型の不純物イオンを注入することによって形成する工程を包含する。
 本発明のさらに他の実施形態の半導体素子の製造方法は、上記の半導体素子を製造する方法であって、前記半導体素子は、前記ユニットセル領域と前記終端領域との間に位置するダイオード領域をさらに備え、前記ダイオード領域は、前記第1炭化珪素半導体層に、前記ドリフト領域と接するように配置された第2導電型領域を有し、前記第2導電型領域は、前記第1炭化珪素半導体層の表面に接する高濃度領域と、前記高濃度領域よりも低い濃度で第2導電型の不純物を含み、底面で前記ドリフト領域に接する低濃度領域とを含んでおり、前記半導体素子の製造方法は、前記高濃度リング領域、前記低濃度リング領域、前記第1ボディ領域、前記第2ボディ領域、前記高濃度領域および前記低濃度領域を、同一の注入マスクを用いて、前記第1炭化珪素半導体層の一部に第2導電型の不純物イオンを注入することによって形成する工程を包含する。
 本発明のさらに他の半導体素子の製造方法は、上記の半導体素子を製造する方法であって、前記半導体素子の前記第1ボディ領域の不純物濃度を変化させながら、前記第2炭化珪素半導体層の不純物濃度および厚さを調整することにより、前記半導体素子の閾値電圧を一定に保ちつつ、前記第1オーミック電極と前記ゲート電極との間の電位が等しいときに、前記第1オーミック電極から前記第2オーミック電極に向かって電流を流すときの、電流が流れ始める電圧の絶対値を制御する工程を包含する。
 本発明の他の実施形態の半導体素子は、基板と、前記基板の主面上に位置し、第1導電型のドリフト領域を含む第1炭化珪素半導体層とを備えた半導体素子であって、前記基板の前記主面の法線方向から見て、ユニットセル領域と、前記ユニットセル領域と前記半導体素子の端部との間に位置する終端領域とを含み、前記終端領域は、前記第1炭化珪素半導体層に、前記ドリフト領域と接するように配置された第2導電型のリング領域を有し、前記リング領域は、前記第1炭化珪素半導体層の表面に接する高濃度リング領域と、前記高濃度リング領域よりも低い濃度で第2導電型の不純物を含み、底面で前記第1炭化珪素半導体層に接する低濃度リング領域とを含んでおり、前記高濃度リング領域の側面は、前記ドリフト領域と接し、前記半導体基板の前記主面の法線方向から見て、前記高濃度リング領域と前記低濃度リング領域とは同一の輪郭を有しており、前記ユニットセル領域は、複数のユニットセルを含んでおり、各ユニットセルは、前記第1炭化珪素半導体層内において、前記ドリフト領域に隣接して配置された第2導電型のボディ領域と、前記ボディ領域内に位置する第1導電型の不純物領域と、前記第1炭化珪素半導体層の上に配置されたゲート絶縁膜と、前記ゲート絶縁膜の上に配置されたゲート電極と、前記不純物領域と電気的に接続された第1オーミック電極と、前記基板の前記主面と反対側の面に設けられた第2オーミック電極とを備え、前記第1ボディ領域の不純物濃度を変化させながら、前記第2炭化珪素半導体層の不純物濃度および厚さを調整することにより、前記半導体素子の閾値電圧を一定に保ちつつ、前記第1オーミック電極と前記ゲート電極との間の電位が等しいときに、前記第1オーミック電極から前記第2オーミック電極に向かって電流を流すときの、電流が流れ始める電圧の絶対値を制御することによって設計されている。
(a)は、本発明による第1の実施形態の半導体素子100の模式的な平面図であり、(b)は、半導体素子100のI-I’線に沿った断面図であり、終端構造を示している。 半導体素子100のリング領域103fの深さ方向におけるイオン注入プロファイルの一例を示す図である。 半導体素子100がMISFETである例を示す図であり、(a)は半導体素子100の平面図、(b)は半導体素子100におけるユニットセル100uの断面図、(c)は半導体素子100の終端構造を示す断面図である。 ユニットセル100uの配置を示す図であって、(a)は、隣接する2個のユニットセル100uを示す断面図、(b1)および(b2)は、それぞれ、複数の矩形のユニットセル100uの配置例を示す平面図、(c)は、複数のストライプ状のユニットセルの配置例を示す平面図である。 半導体素子100の製造方法を説明するための工程断面図であり、(a1)~(a3)はユニットセル領域、(b1)~(b3)はダイオード領域および終端領域を示す。 半導体素子100の製造方法を説明するための工程断面図であり、(a1)~(a3)はユニットセル領域、(b1)~(b3)はダイオード領域および終端領域を示す。 半導体素子100の製造方法を説明するための工程断面図であり、(a1)~(a3)はユニットセル領域、(b1)~(b3)はダイオード領域および終端領域を示す。 半導体素子100の製造方法を説明するための工程断面図であり、(a1)~(a3)はユニットセル領域、(b1)~(b3)はダイオード領域および終端領域を示す。 半導体素子100の製造方法を説明するための工程断面図であり、(a1)~(a3)はユニットセル領域、(b1)~(b3)はダイオード領域および終端領域を示す。 実施例および比較例の終端構造(pnダイオード)による耐圧を示す累積度数分布図である。 ボディ領域の濃度を変化させ、半導体素子100の閾値電圧Vthを一定に保持した際の、チャネルダイオードの立ち上がり電圧Vf0を示す図である。 (a)は従来の半導体素子1000の平面図、(b)は半導体素子1000におけるユニットセル1000uの断面図、(c)は半導体素子1000の終端構造の断面図である。
 上述したように、従来の終端構造によると、所望の耐圧が得られない場合がある。以下、再び図12を参照しながら、従来の終端構造の問題点について、本発明者が検討した結果を説明する。
 本発明者がシミュレーションにて確認したところ、半導体素子1000では、リング領域1030fとドリフト領域1020dとの界面の一部に電界集中が生じることがわかった。具体的には、電界集中は、リング領域1030fの底部における、素子端部側の角部(図12(c)の矢印2000で示す角部)に生じる。
 従って、終端領域1000fにリング領域1030fを配置することにより、半導体素子1000の終端における電界集中を緩和できるものの、リング領域1030fの局所で電界集中が生じる結果、所望の耐圧が得られない可能性がある。
 一方、例えば特許文献4および特許文献5には、各リングを濃度の異なる2層から構成することが開示されている。これらの特許文献に開示された終端構造によると、各リングが、深さ方向および基板表面に平行な方向に濃度差を有するように設計されている。このため、所望の耐圧を確保するために、複数のリングの間隔を十分に確保する必要があり、パワー素子の終端領域の面積を増大させる可能性がある。
 そこで、本発明者は、素子耐圧の低下を抑制できる半導体素子の終端構造について鋭意検討を行い、本発明に至った。
 以下、図面を参照しながら、本発明による半導体素子の実施形態を説明する。
 図1(a)は本実施形態の半導体素子100の概略を示す平面図である。図1(b)は、半導体素子100における終端領域100fを示す断面図である。
 半導体素子100は、主に炭化珪素(SiC)半導体から構成されている。半導体素子100は、半導体基板101と、半導体基板101の上に堆積された第1炭化珪素半導体層102とを有している。図1(a)に示すように、半導体基板101の主面の法線方向から見て、半導体素子100は、素子機能(トランジスタの場合はスイッチング、ダイオードの場合は整流性など)を有するユニットセル領域100ulと、素子機能の耐圧を補完する構造を有する終端領域100fとを含んでいる。なお、MISFETを構成する場合、ユニットセル領域1000ulには、後述するユニットセルのソース電極およびゲート電極を並列に接続し、半導体素子1000へ電気信号を与えるためのゲートパッドおよび電流を流すためのソースパッドを配置するが、ここでは図示しない。
 図示する例では、終端領域100fは、ユニットセル領域100ulを包囲するように配置されているが、終端領域100fはユニットセル領域100ulと半導体素子100の端部(チップ端)との間の少なくとも一部に配置されていれば、当該終端領域100fの近傍における耐圧が補完される。また、例えば、矩形のユニットセル領域100ulの四辺に沿って終端領域100fが配置される場合、ユニットセル領域100ulの角部において各辺の終端領域100fが離間していても、終端領域100fによって形成される空乏層が角部において繋がっていれば、半導体素子100全体の耐圧を好適に確保できる。
 半導体基板101は、例えばn+型の炭化珪素基板(不純物濃度:例えば1×1019cm-3)であってもよい。第1炭化珪素半導体層102は、n-型のドリフト領域102d(n型不純物濃度:例えば約1×1016cm-3、厚さ:例えば10μm)を含んでいる。
 図1(b)に示すように、終端領域100fにおいて、第1炭化珪素半導体層102には、ドリフト領域102dと、ドリフト領域102d内に互いに間隔を空けて配置された複数のp型のリング領域103fとが設けられている。図示する例では、終端領域100fに4本(図1(b))のリング領域103fが設けられているが、リング領域103fの数は特に限定されない。各リング領域103fは、高濃度リング領域103afと、高濃度リング領域103afよりもp型不純物の濃度が低い低濃度リング領域103bfとを有している。高濃度リング領域103afは、第1炭化珪素半導体層102の表面と接している。また、高濃度リング領域103afの側面はドリフト領域102dと接している。低濃度リング領域103bfは、高濃度リング領域103afよりも深い位置に設けられており、底面で第1炭化珪素半導体層102(ここではドリフト領域102d)と接している。さらに、半導体基板101の表面の法線方向から見て、高濃度リング領域103afと低濃度リング領域103bfとは同一の輪郭を有している。
 なお、本実施形態では、上記構造を有するリング領域103fを少なくとも1つ有していればよく、終端領域100f内に異なる構造を有する他のリング領域を有していても構わない。図示する例では、各リング領域103fはリング状に連続した領域であるが、リング状でなくてもよく、例えば、複数の離間した領域がリング状または線状に配列された構造を有していてもよい。その場合、複数の領域の間隔が、それぞれの領域から延びる空乏層同士が繋がる程度に狭く設定されていると、より確実に所望の耐圧を確保できるので好ましい。
 ここで、リング領域103fの深さ方向におけるイオン注入プロファイルの一例を説明する。本実施形態では、リング領域103fはイオン注入により形成されている。図2は、図1(b)に示すリング領域103fの深さ方向におけるイオン注入プロファイルを例示する図である。ここでいう「深さ方向」は、半導体基板101の主面の法線(図1(b)に示すA-B線)の方向を指す。
 なお、不純物濃度(ドーパント濃度)のプロファイルとイオン注入プロファイルとは厳密には異なる。多くの場合、注入された不純物イオンの濃度に対して不純物濃度の方が低くなる。これは、注入された不純物イオンの活性化率に起因する。活性化率が100%であれば、イオン注入プロファイルと不純物濃度プロファイルとはほぼ等しくなる。仮に活性化率がα%とすれば、設計された不純物濃度が得られるように、例えばイオン注入時のドーズ量を1/(α/100)倍すればよい。
 本実施形態では、注入種として例えばAlを選択する。SiCでは、炭化珪素中でのAlの拡散係数が小さいため、拡散による濃度プロファイルの変化はほとんど無視できる。一方、B(ボロン)をボディ領域103の不純物として用いる場合は、あらかじめ活性化率や拡散係数を把握した上で、所望の不純物濃度のプロファイルが得られるように、イオン注入のエネルギーと注入量を選択することが好ましい。以下、活性化率が100%と仮定し、不純物濃度プロファイルとイオン注入プロファイルとがほぼ同じであるとして説明を行う。すなわち、図2に示すプロファイルが、リング領域103f(高濃度リング領域103afおよび低濃度リング領域103bf)の深さ方向における不純物濃度プロファイルを示しているとして説明する。
 高濃度リング領域103afおよび低濃度リング領域103bfは、例えば注入エネルギーの異なる複数回のイオン注入工程により形成されている。各イオン注入工程で注入される不純物イオンのプロファイルはピークおよびテールを有している。ここで、ピークとは、イオン注入の飛程Rpにおける濃度の極大値であり、テールとは、その極大値から深い方向に向かって濃度が下がっていく部分を示す。図2に示すイオン注入プロファイルは、例えば4回のイオン注入工程によって形成されたプロファイルを足し合わせたものである。各イオン注入工程における注入エネルギーおよびドーズ量は例えば以下の通りである。
        30keV:3.0×1013cm-2
        70keV:6.0×1013cm-2
        150keV:1.5×1014cm-2
        350keV:4.0×1013cm-2
 この場合、図2において実線で示すように、第1炭化珪素半導体層102の上面からの深さが境界面(境界面の深さ:例えば0.3μm)よりも浅い部分が高濃度リング領域103afであり、境界面よりも深い部分が低濃度リング領域103bfである。上述したように活性化率が100%であると仮定した場合、高濃度リング領域103afおよび低濃度リング領域103bfの不純物濃度は、それぞれ、最大で約1×1019cm-3および約2×1018cm-3である。活性化率が100%であれば、これらの値が、高濃度リング領域103afおよび低濃度リング領域103bfの最大不純物濃度となる。また、高濃度リング領域103afおよび低濃度リング領域103bfの平均不純物濃度は、それぞれ、例えば約9.7×1018cm-3、および例えば約1.5×1018cm-3である。高濃度リング領域103afおよび低濃度リング領域103bfの、半導体基板101の主面の法線に沿った厚さ(深さ)はそれぞれ約300nmである。
 ここで、平均不純物濃度とは、高濃度リング領域103afについては、その不純物濃度が2×1018cm-3以上となる領域の平均値と定義する。また、低濃度リング領域103bfについては、その不純物濃度が5×1017cm-3以上2×1018cm-3未満となる領域の平均値と定義する。本実施形態では、平均不純物濃度を明確化するために、「2×1018cm-3以上」および「5×1017cm-3以上」という定義を設けたが、設計する素子によってはこの値を変更しても良い。このとき、高濃度リング領域103afの平均不純物濃度は、低濃度リング領域103bfの平均不純物濃度の2倍以上、100倍以下であることが望ましい。なお、本実施形態における、「2×1018cm-3以上」および「5×1017cm-3以上」という基準は、高濃度リング領域103afおよび低濃度リング領域103bfの境界付近における不純物濃度Csに基づいている。具体的には、Cs=1×1018cm-3と定義し、「Cs×2以上」および「Cs/2以上」として、上記平均不純物濃度を算出するための領域を決定している。
 図2に示す例では、濃度プロファイルは、略平坦な第1領域と、第1領域よりも深い位置にあり、第1領域よりも低い濃度を有する第2領域とを有している。高濃度リング領域103afは第1領域を含み、低濃度リング領域103bfは第2領域を含む。なお、濃度プロファイルは図示する例に限定されない。イオン注入条件や注入工程の回数により、濃度プロファイルの形状は変化し得る。
 各リング領域103af、103bfの厚さ(半導体基板101の主面の法線に沿った厚さ)は上記の例に特に限定されない。好ましくは、高濃度リング領域103afの厚さは例えば15nm以上であり、低濃度リング領域103bfの厚さは例えば100nm以上である。これにより、リング領域103の底部の角に生じる電界集中をより確実に緩和できる。また、隣接するリング領域103afの間を繋ぐ空乏層をより確実に形成できる。
 再び図1を参照する。半導体素子100は、ユニットセル領域100ulと終端領域100fとの間に、ダイオード領域115dをさらに備えていてもよい。図1(a)に示す例では、ダイオード領域115dは、ユニットセル領域100ulを包囲するようにリング状に配置されているが、ダイオード領域115dは、ユニットセル領域100ulと終端領域100fとの間に離散的に配置されていても良い。また、ユニットセル領域100ulの周縁の一部のみに設けられていてもよい。
 図1(b)に示すように、本実施形態では、ダイオード領域115dにおいて、第1炭化珪素半導体層102には、高濃度領域103adと低濃度領域103bdとを含む第2導電型領域(ここではp型領域)103dが配置されている。第2導電型領域103dは、ドリフト領域102dとpn接合ダイオードを形成している。各領域103ad、103bdは、それぞれ、高濃度リング領域103afおよび低濃度リング領域103bfと同様の濃度プロファイルを有している。すなわち、高濃度領域103adは、第1炭化珪素半導体層102の表面に接し、低濃度領域103bdは、高濃度領域103adよりも深い位置に設けられ、高濃度領域103adよりも低い不純物濃度を有している。低濃度領域103bdの底面はドリフト領域102dと接している。また、低濃度領域103bdおよび高濃度領域103adの側面のうち少なくともリング領域103fと対向する部分はドリフト領域102dと接していることが好ましい。
 図示していないが、第2導電型領域103dは、第1炭化珪素半導体層102の上方に設けられた電極層(例えばソース電極層)に電気的に接続されている。この点で、同じ導電型のリング領域103fとは異なっている。
 第2導電型領域103dは、半導体基板101の主面の法線方向から見て、ユニットセル領域100ulの周縁を規定するユニットセル(「周縁セル」と称する。)の外側に配置され、周縁セルとはドリフト領域102dによって分離されていてもよい。あるいは、周縁セルにおけるボディ領域103の一部(終端領域100f側に位置する部分)を、第2導電型領域103dとして用いてもよい。その場合、ボディ領域103のうち第2導電型領域103dとして用いる部分には不純物領域(ソース領域)104を形成せず、ユニットセルとして機能させる部分にのみ不純物領域104を形成してもよい。
 半導体基板101の裏面(第1炭化珪素半導体層102が形成された主面とは反対側の面)には、オーミック電極(「第2オーミック電極」と称する。)110が配置されている。第2オーミック電極110は、ユニットセル領域100ulにおいて、例えばドレイン電極として機能する。第2導電型領域103adにゼロボルトの電位を与え、ドレイン電極110に対して正の電圧を印加すると、低濃度領域103bdとドリフト領域102dとの間に形成されるpn接合に対して逆バイアスがかかる。
 以下に、本実施形態における終端構造による耐圧効果を、従来の構造と比較しながら説明する。
 終端領域100fに、例えば20本のリング領域103fを1~4μm程度の間隔を開けて配置した構造を「実施例」とし、この構造の電界強度から耐圧を算出した。なお、各リング領域103fの側面は、半導体基板101の表面に略垂直とした。さらに、各リング領域103fの幅(リング領域103fの上面の最大幅)を1μm、深さを0.6μmとし、リング領域103fの不純物濃度プロファイルは、図2に示すプロファイルと同様とした。ダイオード領域115dに配置される第2導電型領域103dは、リング領域103fと同じ濃度分布および同じ深さを有するものとした。この実施例では、耐圧は865Vとなった。
 比較のため、従来の半導体素子1000(図12)のリング領域1030fによる耐圧を算出した(比較例)。比較例では、リング領域1030fの濃度は深さ方向に一定とし、その深さは0.6μmとした。リング領域1030fの個数、間隔および幅は、実施例のリング領域103fと同様とした。p型領域1030dは、リング領域1030fと同じ濃度分布および同じ深さを有するものとした。比較例では、リング領域1030fの平均ドーパント濃度が2×1018cm-3のとき、耐圧は852Vとなった。同様に、リング領域1030fのドーパント濃度が高くなった場合の耐圧も算出した。例えばドーパント濃度が5×1018cm-3、1×1019cm-3、2×1019cm-3のとき、耐圧は、それぞれ、804V、794V、772Vとなった。この計算結果から、比較例では、ドリフト領域1020dのドーパント濃度及び厚さが一定であれば、リング領域1030fの濃度が高くなるにつれて、ダイオード領域1150dおよび終端領域1000fの耐圧が劣化することがわかった。
 上記の結果から、比較例では、リング領域1030fの不純物濃度を低く(例えば実施例の低濃度リング領域103bfと同じ濃度に)設定しても、高く(例えば高濃度リング領域103afと同じ濃度に)設定しても、実施例のように高い耐圧を得ることはできないことが分かった。従って、実施例によると、比較例と比べて耐圧劣化が抑制されることが確認された。
 この理由は次のように考えられる。比較例のリング領域1030fの濃度を例えば2×1018cm-3に設定すると、リング領域1030fの角部(図12で示した矢印2000)で電界集中が生じ、これにより、耐圧が決定される。これに対し、実施例では、リング領域103fの上部のドーパント濃度が角部のドーパント濃度よりも高められているので、リング領域103fの角部にかかる電界が、基板面に平行な方向に緩和される。このため、角部に生じる電界集中が緩和され、ダイオード領域115dおよび終端領域100fにおけるpn接合による耐圧の劣化が抑制される。
 一方、例えば比較例のリング領域1030fの濃度を、より高い濃度、例えば2×1019cm-3に設定すると、耐圧は772Vとなり、単にリング領域1030fを高濃度化しても、耐圧劣化を抑制できないことがわかる。むしろ、単なるリング領域1030fの高濃度化は耐圧劣化を促進する。これは、リング領域1030fの角部に、より高い電界がかかるためと考えられる。これに対し、実施例のように、リング領域103fの底部の濃度を上部よりも低く設定することにより、リング領域全体を低濃度に設定する場合および高濃度に設定する場合の何れよりも高い耐圧を実現できる。
 なお、高濃度リング領域103afは、低濃度リング領域103bfよりも高いドーパント濃度を有していれば、上述したような耐圧劣化を抑制する効果を有する。ただし、高濃度リング領域103afの濃度は、低濃度リング領域103bfの2倍以上であることが好ましい。これにより、より効果的に耐圧劣化を抑制できる。
 また、本実施形態における高濃度リング領域103afは、図1(b)に示すように、その側面でドリフト領域102dと直接接している。好ましくは、高濃度リング領域103afの側面全体がドリフト領域102dと接している。この構成により、隣り合うリング領域103fの間隔をより小さくすることが可能となる。リング領域103fの側面の濃度が高いほど、側面から基板と平行な方向に広がる空乏層の厚さが大きくなる。このため、隣接するリング領域103fの間隔を狭くしても空乏層同士を繋げることができ、所望の耐圧をより確実に確保できるからである。素子機能の耐圧を補完する終端領域100fは、MISFETのON状態での電気伝導には基本的に寄与しないため、耐圧を確保するという目的が達せられるのであれば、終端領域100fの面積(半導体基板101の主面の法線方向から見た終端領域100fの面積)はできるだけ小さいことが望ましい。終端領域100fの面積を小さくすることにより、半導体素子100のチップ面積を小さくでき、半導体素子100のコストをより低く抑えることが可能となる。
 次いで、上記の終端構造をMISFETに適用した例を具体的に説明する。
 図3は、本実施形態の半導体素子100の一例を示す図である。図3に示す半導体素子100は縦型のMISFETである。図3(a)は半導体素子100の上面からみた図であり、図1(a)と同様であるので詳細は割愛する。半導体素子100のユニットセル領域100ulには、複数のユニットセル100uが二次元に配置されている。図3(b)は、本実施形態の半導体素子100におけるユニットセル100uの模式的な断面図である。図3(c)は、半導体素子100における終端領域100fおよびダイオード領域115dの模式的な断面図である。
 半導体素子100は、第1導電型の半導体基板101と、基板101の主面上に位置する第1炭化珪素半導体層(ドリフト層)102とを備える。本実施形態では、第1導電型がn型であり第2導電型がp型である。しかし、第1導電型がp型であり第2導電型がn型であってもよい。半導体基板101は、n+型の導電性を有し炭化珪素によって構成される。第1炭化珪素半導体層102は、n-型のドリフト領域102dを含んでいる。nまたはpの導電型の右肩の「+」又は「-」は、不純物の相対的な濃度を表している。「n+」は「n」よりもn型不純物濃度が高いことを意味し、「n-」は「n」よりもn型不純物濃度が低いことを意味している。
 まず、図3(b)を参照しながら、ユニットセル100uの構成を説明する。
 第1炭化珪素半導体層102内には、ドリフト領域102dに隣接するように第2導電型のボディ領域103が配置されている。この例では、第1炭化珪素半導体層102のうちボディ領域103以外の領域がドリフト領域102dである。ボディ領域103は、第2導電型の第1ボディ領域103aと第2導電型の第2ボディ領域103bとを含む。第1ボディ領域103aは、第1炭化珪素半導体層102の表面に接しており、第2ボディ領域103bは、その下端で第1炭化珪素半導体層102(ここではドリフト領域102d)に接している。第1ボディ領域103aおよび第2ボディ領域103bは、それぞれ、半導体基板101の主面と垂直な方向に少なくとも15nm、100nmの厚さを有している。図示する例では、ボディ領域103は、第1ボディ領域103aおよび第2ボディ領域103bによって構成されており、少なくとも115nm(=15nm+100nm)の厚さ(深さ)を有している。本実施形態では、第1ボディ領域103aはp+型であり、第2ボディ領域103bはp型である。以下において詳細に説明するように、第1ボディ領域103aの平均不純物濃度は、第2ボディ領域103bの平均不純物濃度の2倍以上であることが好ましい。
 ボディ領域103は、第1導電型の第1炭化珪素半導体層102に第2導電型の不純物を導入することにより形成される。このため、ボディ領域103は、第1導電型の不純物および第2導電型の不純物を含んでおり、第2導電型の不純物濃度の方が第1導電型の不純物濃度より高くなっている領域として規定される。ボディ領域103の底面103uでは、ボディ領域103と接する第1炭化珪素半導体層102の第1導電型の不純物濃度と、第2ボディ領域103bの第2導電型の不純物濃度とが等しくなっている。また、半導体基板101の主面に垂直な方向から見た場合、第1ボディ領域103aの外周(輪郭)と第2ボディ領域103bの外周とは一致している。
 ボディ領域103内には、第1導電型の不純物領域104が位置している。より具体的には、第1炭化珪素半導体層102の表面に接するように、第1ボディ領域103a内に不純物領域104が設けられている。不純物領域104はn+型である。
 好ましくは、第1ボディ領域103aには第2導電型のコンタクト領域105が配置されている。コンタクト領域105は、p+型であることが好ましい。コンタクト領域105は、少なくとも第1ボディ領域103aに接している。好ましくは第2ボディ領域103bにも接している。不純物領域104上には第1オーミック電極109が設けられている。ここでは、第1オーミック電極109は、不純物領域104およびコンタクト領域105上に配置され、不純物領域104およびコンタクト領域105の両方と電気的に接触している。第1ボディ領域103aの不純物濃度が十分に大きい場合には、コンタクト領域105を設けなくてもよい。この場合、不純物領域104に、第1ボディ領域103aを露出するコンタクトトレンチを設け、トレンチ内に第1オーミック電極109を配置することにより第1ボディ領域103aと第1オーミック電極109とを直接接させてもよい。
 ドリフト領域102dのうち、ボディ領域103と隣接する領域102j、つまり、隣接する2つのユニットセルの各ボディ領域103間に挟まれる領域102jを、説明を簡便にするためにJFET(Junction Field-Effect Transistor)領域と呼ぶこととする。この領域は第1炭化珪素半導体層102のドリフト領域102dによって構成されている。JFET領域102jの不純物濃度は、ドリフト領域102dのうちJFET領域102j以外の領域の不純物濃度と同じであってもよい。あるいは、JFET領域102jにおける抵抗低減のために、ドリフト領域102dの他の領域よりも不純物濃度を高くしてもよい。そのようなJFET領域102jは、例えば、ドリフト領域102dの所定の領域に第1導電型の不純物(ここではn型)をイオン注入等により導入することにより形成できる。ドリフト領域102dのうちJFET領域102j以外の領域のドーパント濃度が例えば5×1015cm-3程度のとき、JFET領域102jの濃度は例えば1×1017cm-3である。
 第1炭化珪素半導体層102上には、ボディ領域103および不純物領域104の少なくとも一部にそれぞれ接する第1導電型の第2炭化珪素半導体層106が設けられていてもよい。第2炭化珪素半導体層106は、より好ましくは、不純物領域104およびドリフト領域102d(JFET領域102j)と電気的に接続されており、かつ、第1ボディ領域103a上に配置されている。
 本実施形態では、第2炭化珪素半導体層106は、エピタキシャル成長によって形成されている。第2炭化珪素半導体層106は、第1ボディ領域103aに接する領域内にチャネル領域106cを含んでいる。チャネル領域106cの長さ(チャネル長L)は、図3(b)に示されている双方向矢印で示される長さLに相当する。すなわち、MISFETの「チャネル長」は、図面上における、第1ボディ領域103aの上面(第2炭化珪素半導体層106と接する表面)の水平方向サイズで規定される。
 第2炭化珪素半導体層106の上にはゲート絶縁膜107が配置されている。ゲート絶縁膜107の上にはゲート電極108が配置されている。ゲート電極108は少なくともチャネル領域106cの上方に位置している。なお、第2炭化珪素半導体層106を形成せずに、第1炭化珪素半導体層102と接するようにゲート絶縁膜107を設けてもよい。この場合、第1ボディ領域103aの表面部分にチャネル(反転チャネル)が形成される。
 ゲート電極108を覆うように層間絶縁膜111が配置され、層間絶縁膜111上に上部配線電極112が設けられている。上部配線電極112は層間絶縁膜111に設けられたコンタクトホール111cを介して第1オーミック電極109に接続されている。半導体基板101の裏面には、第2オーミック電極110が配置されている。第2オーミック電極110にはさらに裏面配線電極113が配置されていてもよい。
 半導体素子100のユニットセル100uは、上部配線電極112側から半導体素子100を見た場合、例えば正方形状を有している。ユニットセル100uは、長方形や、4角形以外の長方形、多角形形状を有していてもよい。図4(a)は、ユニットセル100uを並列に配置したときの断面構造を示している。また、図4(b1)に示すように、ユニットセル100uは、例えば、xおよびy方向に2次元に配列されており、y方向の配列は交互に1/2ずつシフトしていてもよいし、図4(b2)に示したように整列していてもよい。ユニットセル100uが一方向に長い形状を有する場合は、図4(c)に示すように並列に配置してもよい。このように配置された複数のユニットセル100uによって、半導体素子のユニットセル領域100ulが構成される。
 ユニットセル領域100ulの周囲には、図3(c)で示すように、終端領域100fおよびダイオード領域115dが配置されている。これらの領域の基本構成は図1(b)で示した図と同様であるが、ここではより具体的に示す。ただし同一記号については重複を避けるため詳細を割愛する。
 ダイオード領域115dには、第2導電型の高濃度領域103adと第2導電型の低濃度領域103bdとを含む第2導電型領域103dが配置されている。また、第2導電型領域103d内には第2導電型のコンタクト領域105が配置されている。コンタクト領域105は、少なくとも高濃度領域103adと電気的に接続している。図示する例では、第2導電型の高濃度領域103adおよび第2導電型の低濃度領域103bdは、それぞれ、第1ボディ領域103aおよび第2ボディ領域103bと、深さ方向において、略同じ不純物濃度プロファイルを有している。第1オーミック電極109は第2導電型領域103dにおける高濃度領域103adおよびコンタクト領域105と接している。先に説明したように、高濃度領域103adのドーパント濃度が十分に高い場合は、コンタクト領域105は必ずしも必要ではない。この場合、高濃度領域103adに、コンタクトトレンチを設け、トレンチ内に第1オーミック電極109を形成することにより高濃度領域103adと第1オーミック電極109とを直接接させてもよい。また、ユニットセル領域100ulで形成されている、第2炭化珪素半導体層106、ゲート絶縁膜107、ゲート電極108が、ダイオード領域115dの一部まで延伸されていてもよい。ただし、第2導電型領域103d内にはソース領域が配置されていないため、チャネルは形成されない。なお、周縁セルのボディ領域103のうち終端領域100f側に位置する部分のみを第2導電型領域103dとして機能させてもよい。その場合には、周縁セルのボディ領域103のうちユニットセル領域100ul側に位置する部分のみにソース領域104を配置する。
 第2導電型領域103dは、層間絶縁膜111に形成された開口部内で、第1オーミック電極109と接している。第1オーミック電極109は上部配線電極112に接続されている。従って、第2導電型領域103dは、上部配線電極112により、ユニットセル領域100ulと電気的に並列に接続されている。
 ダイオード領域115dは、ユニットセル領域100ulにおける各ユニットセル100uの構造を利用して形成されることが好ましい。ダイオード領域115dは、例えば、第2炭化珪素半導体層106や不純物領域104などを有しない点以外はユニットセル100uと同様の構成を有していてもよい。すなわち、ユニットセル100uのボディ領域103に相当する領域が第2導電型領域103dとなる。また、例えばトレンチ構造を有するMISFETのように、ユニットセル領域100ulにおける第1炭化珪素半導体層102の表面領域全体にp型層が配置される場合、ユニットセル領域100ulに配置されたp型層が、ダイオード領域115dまで延伸されて第2導電型領域103dを構成してもよい。
 第2導電型領域103dの各領域103ad、103bdの厚さは特に限定されないが、高濃度領域103adの厚さは例えば15nm以上であり、低濃度領域103bdの厚さは例えば100nm以上であることが好ましい。これにより、第2導電型領域103dの底部の角に生じる電界集中をより確実に緩和できる。
 リング領域103f(高濃度リング領域103af)は層間絶縁膜111で覆われている。半導体素子100のチップ端には、pn接合による空乏層がチップ端に達するのを抑制する第1導電型のストッパー領域104f、上部配線112f、および、ストッパー領域104fと上部配線112fとを電気的に接続するコンタクト電極109fが配置されていてもよい。上部配線112fおよびコンタクト電極109fは層間絶縁膜111の開口部に設けられている。上部配線電極112と上部配線112fとは直接接していない。なお、上部配線電極112と上部配線112fとは同じ導電膜を用いて形成されていてもよい。ストッパー領域104fは、ソース領域104と同じ不純物濃度を有するn+型領域であってもよい。
 上部配線112fの全体、および、上部配線電極112の一部を覆うように、パッシベーション膜114が設けられている。パッシベーション膜114はユニットセル領域100ul上のユニットセル100uの少なくとも一部を覆っていても良い。また、ユニットセル領域100ulと同様に、第2オーミック電極110上に裏面配線電極113が配置されていてもよい。
 次に、図5から図9を参照しながら、本実施形態の半導体素子100の製造方法を詳述する。各図の(a1)~(a3)は、それぞれ、ユニットセル領域100ulの工程断面図であり、(b1)~(b3)は、それぞれ、終端領域100fの工程断面図であり、(a1)~(a1)に示す工程と対応している。
 まず、半導体基板101を準備する。半導体基板101は、例えば、低抵抗(抵抗率0.02Ωcm)のn型4H-SiCオフカット基板である。
 図5(a1)および(b1)に示すように、半導体基板101の上に高抵抗の第1炭化珪素半導体層102をエピタキシャル成長する。第1炭化珪素半導体層102を形成する前に、半導体基板101上に、高不純物濃度のSiCによって構成されるバッファー層を堆積してもよい。本実施の形態では、簡単化のため、バッファー層の図示を省略する。バッファー層の不純物濃度は、例えば、1×1018cm-3であり、厚さは1μmである。第1炭化珪素半導体層102は、例えば、n型4H-SiCによって構成され、不純物濃度および膜厚は、例えばそれぞれ1×1016cm-3および10μmである。
 次に、図5(a2)および(b2)に示すように、第1炭化珪素半導体層102の上に、例えばSiO2からなるマスク201を形成する。この後、図5(a3)および(b3)に示すように、第1炭化珪素半導体層102のうちボディ領域、ダイオード領域およびリング領域を形成しようとする部分に、例えばAlイオンを注入する。これにより、ユニットセル領域100ulでは、第1炭化珪素半導体層102の浅い領域に高濃度に形成された第1ボディ注入領域103a’と、第1ボディ注入領域103a’よりも深い領域に、第1ボディ注入領域103a’よりも低濃度に形成された第2ボディ注入領域103b’とを形成する。また、終端領域100fには、後にリング領域103fとなる高濃度リング注入領域103af’および低濃度リング注入領域103bf’と、後に第2導電型領域103dとなる、高濃度注入領域103ad’および低濃度注入領域103bd’とを同時に形成する。従って、先に説明したように、終端領域100fにおける耐圧劣化を抑制可能なリング領域を形成できる。また、そのようなリング領域を形成するためのイオン注入を、ボディ領域を形成するためのイオン注入とを同時に行うことにより、プロセスの簡略化が可能となる。
 第1ボディ注入領域103a’および第2ボディ注入領域103b’は、注入されたイオンを活性化させることにより、それぞれ、第1ボディ領域103aおよび第2ボディ領域103bとなる。第1炭化珪素半導体層102’のうち、第1ボディ領域103aおよび第2ボディ領域103b以外の領域はドリフト領域102dとなる。このときのボディ領域103の注入プロファイルは、例えば図2に示したプロファイルと同様であってもよい。
 本実施形態では、マスク201を用いて、高濃度な領域103a’、103ad’、103af’の形成と、低濃度な領域103b’、103bd’、103bf’の形成とを行う。このため、ここでもプロセスの簡略化が図れる。この場合、半導体基板101の主面の法線方向から見て、高濃度な領域の輪郭と、低濃度な領域の輪郭とは、同一マスク201を用いているため略同一となる。従って、隣接するユニットセル間のボディ領域103の間隔を小さく抑えることが可能となる。例えば、ボディ領域103の間隔を所望の値(例えば1μm)に設定できる。終端構造として、JTE構造のように、領域の異なる注入層を複数設ける場合は、ここに示したような、ユニットセルと終端領域の同時形成や、精度良く形成することは極めて困難である。高濃度な領域と低濃度な領域とを別プロセスで形成する場合、マスクの再配置やマスクの形状変化等をともなうことになり、ボディ領域の間隔(後のJFET領域の幅)を所望の値に設定できなくなる。例えば、第1ボディ注入領域103a’と第2ボディ注入領域103b’とを異なるマスクを用いて別プロセスで形成すると、基板面に平行な方向に注入ズレを生じる恐れがある。その結果、半導体基板101の主面の法線方向から見て、第1ボディ注入領域103a’と第2ボディ注入領域103b’との輪郭がずれて、JFET領域が狭くなることが懸念される。これは、MISFETのオン抵抗の増加に繋がる。よって、本実施形態では、第1ボディ注入領域103a’と第2ボディ注入領域103b’とを、同一のマスク201を用いて形成することが好ましい。同様に、後にリング領域103fとなる高濃度リング注入領域103af’と低濃度リング注入領域103bf’とを、同一のマスク201を用いて形成すると、隣接するリング領域103fの間隔を小さくできるので、終端領域100fに要する面積を低減でき、チップ面積を抑えることができる。また、後に第2導電型領域103dとなる、高濃度注入領域103ad’および低濃度注入領域103bd’とを同一のマスク201を用いて形成することにより、ダイオード領域115dに要する面積を低減できる。
 次に、図6(a1)および(b1)に示すように、マスク201を覆うように、マスク202を全面に堆積する。次いで、終端領域、ダイオード領域および後にコンタクト領域を形成する領域を覆うようにレジストをパターニングし、レジストマスク203を形成する。マスク201とマスク202とは、ドライエッチング工程において選択比をとれる材料を用いて形成されることが好ましい。たとえば、マスク201の材料をSiO2、マスク202の材料をポリシリコンとしてもよい。
 次に、図6(a2)および(b2)に示すように、レジストマスク203をエッチングマスクとして、マスク202に対しドライエッチングを行う。これにより、ユニットセル領域では、いわゆるセルフアラインプロセスにより、マスク201の側面上にマスク202の一部が残り、サイドウォール202’が形成される(図6(a2))。終端領域およびダイオード領域では、マスク202は、レジストマスク203によって覆われており、エッチングされない(図6(b2))。
 次に、図6(a3)および(b3)に示すように、レジストマスク203を除去した後に、第1炭化珪素半導体層102のうちマスク201、202およびサイドウォール202’のいずれにも覆われていない部分に、例えばNイオンをドーピングし、ソース注入領域104’を形成する。イオン注入で形成する場合、不純物濃度が例えば5×1019cm-3程度のn型領域が200~300nm程度の厚さで形成されるように、注入エネルギーやドーズ量などのイオン注入条件を選択する。これにより、第1ボディ注入領域103a’の内部にソース注入領域104’が形成される。このように、本実施形態によると、MISFETのチャネルに相当する部分の幅、すなわち図6(a3)における、後にゲート長Lを規定する距離L’を精度良く制御できる。距離LまたはL’は、サイドウォール202’の幅によって規定され、例えば0.5μm程度である。
 チャネル層を有するMISFETにおいて、ゲート長Lを所望の値に設定するためには、図6(a2)に示したようなセルフアラインプロセスを用いて、第1炭化珪素半導体層102内に精度良くソース注入領域104’およびボディ注入領域103’を形成しておくことが好ましい。ソース注入領域104’およびボディ注入領域103’を、上記のようなセルフアラインプロセスを用いずに形成すると、例えばユニットセル内でも合わせずれが生じ、所定のゲート長Lが得られない可能性がある。場合によっては、ゲート長Lが合わせズレにより小さくなりすぎて、トランジスタのチャネルがショートしてしまう恐れがある。これを避けるためには、上記セルフアラインプロセスを用いることが好ましい。なお、セルフアラインプロセスを用いる代わりに、マスクの合わせズレを考慮した上でゲート長Lを十分に大きく設定してもよい。しかし、ゲート長Lを十分に大きくすると、トランジスタのチャネル抵抗が大きくなり、その結果、オン抵抗が増加してしまう懸念がある。よって、ここでは、ソース領域形成用のマスク201、202の形成にセルフアラインプロセスを適用することが好ましい。
 次に、図7(a1)および(b1)に示すように、マスク201、202、202’を全て除去した後、第1炭化珪素半導体層102上に新たなマスク204を形成する。マスク204は、終端領域におけるストッパー領域を形成しようとする領域上に開口部を有する。続いて、マスク204を注入マスクとして用いて、第1炭化珪素半導体層102に例えばNイオンを注入することにより、ストッパー注入領域104f’を形成する。この時の注入条件は、例えばソース注入領域104’を形成する際の条件と同様であってもよい。
 次に、マスク204を除去し、図7(a2)および(b2)に示すように、第1炭化珪素半導体層102上に新たなマスク205を形成する。マスク205は、コンタクト領域を形成しようとする領域上に開口部を有する。マスク205を注入マスクとして用いて、第1炭化珪素半導体層102に、例えばAlイオンを注入することによって、コンタクト注入領域105’を形成する。ここでは、後のボディ領域の内部および後のダイオード領域の内部に、それぞれ、コンタクト注入領域105’が形成される。このときの注入条件は、例えばドーパント濃度が約1×1020cm-3、深さが約400nm程度となるように選択され得る。ユニットセル領域では、コンタクト注入領域105’は第1ボディ注入領域103a’内に形成されるが、図示するように、第2ボディ注入領域103b’内に到達することが好ましい。すなわち、コンタクト注入領域105’は、側面の上部で第1ボディ注入領域103a’、側面の下部および底面で第2ボディ注入領域103b’とそれぞれ接することが好ましい。この後、マスク205を除去する。
 次いて、図7(a3)および(b3)に示すように、必要に応じて、第1炭化珪素半導体層102上に、JFET領域となる領域上に開口部を有するマスク206を形成し、ドリフト領域102dに例えばNイオンを注入することによって、JFET注入領域102j’を形成する。JFET注入領域102j’のドーパント濃度は例えば1×1017cm-3程度、注入深さは例えば0.6~1μm程度である。
 なお、ここまでで述べたイオン注入による注入領域形成工程は、半導体基板101を200℃以上に加熱して行うことが好ましい。
 これらのイオン注入領域を形成した後、マスク206を除去する。続いて、約1600~1900程度の高温下で活性化アニールを行う。これにより、図8(a1)および(b1)に示すように、注入領域103a’、103b’、103ad’、103bd’、103af’、103bf’、104’、105’、104f’から、それぞれ、第1ボディ領域103a、第2ボディ領域103b、高濃度領域103ad、低濃度領域103bd、高濃度リング領域103af、低濃度リング領域103bf、不純物領域104、コンタクト領域105およびストッパー領域104fが形成される。なお、第1炭化珪素半導体層102の表面(注入領域が形成された表面)にカーボン膜(図示せず)を堆積し、その状態で活性化アニールを行うことが好ましい。これにより、活性化アニールに起因する第1炭化珪素半導体層102の表面荒れを抑制できる。
 活性化アニールの後、表面にカーボン膜を堆積した場合はそのカーボン膜を除去する。カーボン膜は、例えば酸素プラズマにさらして除去され得る。この後、必要に応じて、第1炭化珪素半導体層102の表面をわずかに酸化し、得られた熱酸化膜(厚さ:例えば15nm程度)を除去することによって、清浄化してもよい。
 次に、図8(a2)および(b2)に示すように、第1ボディ領域103a、不純物領域104およびコンタクト領域105を含む第1炭化珪素半導体層102の表面全体に、後の第2炭化珪素半導体層(チャネル層)となる第2炭化珪素半導体層106’をエピタキシャル成長させる。本実施形態では、後の第2炭化珪素半導体層の不純物濃度N(cm-3)および厚さd(nm)が、例えば以下の条件を満たすように、第2炭化珪素半導体層106’の厚さおよび不純物濃度を適宜調整する。
  N=2×1018
  d=30
 例えば、後の第2炭化珪素半導体層の厚さdに対して、第2炭化珪素半導体層106’の厚さd’は、d+d0とする。ここでd0は、後述する、熱酸化等による第2炭化珪素半導体層の膜減り量を示す。例えば、その膜減り量d0が50nmであれば、第2炭化珪素半導体層106’の厚さd’は80nmである。
 次いで、図8(a3)および(b3)に示すように、第2炭化珪素半導体層106’の所定部位をドライエッチングで除去し、第2炭化珪素半導体層106を得る。ここでは、第2炭化珪素半導体層106’のうち終端領域およびダイオード領域に位置する部分が除去される。この後、例えば熱酸化によって、第2炭化珪素半導体層106の表面にゲート絶縁膜107を形成する。続いて、ゲート絶縁膜107の所望の領域上に、ゲート電極108を形成する。
 ゲート絶縁膜107を熱酸化により形成する場合、第2炭化珪素半導体層106の一部がゲート絶縁膜107になってしまうため、熱酸化により消失する厚さを考慮し、ゲート絶縁膜107の形成後の第2炭化珪素半導体層106の厚さが上記厚さdとなるように、第2炭化珪素半導体層106’(図8(b1))の厚さを調整する。例えば、第2炭化珪素半導体層106’の厚さを上記厚さdよりも約50nm程度大きくなるように設定すると、ゲート絶縁膜107の形成前に行う第2炭化珪素半導体層106の清浄化工程と、ゲート絶縁膜107の形成工程とを経た後に得られる第2炭化珪素半導体層106の厚さは、所定の厚さdと同程度になる。
 ゲート電極108は、例えば、リンを7×1020cm-3程度ドーピングした多結晶シリコン膜をゲート絶縁膜107上に堆積し、多結晶シリコン膜をマスク(不図示)を用いてドライエッチングすることにより形成され得る。多結晶シリコン膜の厚さは、例えば、500nm程度である。ゲート電極108は、第2炭化珪素半導体層106のうちチャネルとなる部分を少なくとも覆うように配置される。
 ここでは、図6(a2)で示したセルフアラインプロセスを用いてソース領域104およびボディ領域103を形成し、その上にチャネル層となる第2炭化珪素半導体層106を形成しているため、MISFETのチャネルとなる部分が制御よく形成される。例えば、特許文献1の図1に開示されているように、チャネル層に相当する層の上からソース領域に相当する部分を形成すると、ボディ領域に対するセルフアラインプロセスが適用できないため、チャネルのショートやオン抵抗増加の懸念がある。よって、セルフアラインプロセスで形成したソース領域104およびボディ領域103の上に、第2炭化珪素半導体層106を形成することが好ましい。
 続いて、図9(a1)および(b1)に示すように、ゲート電極108の表面および第1炭化珪素半導体層102の表面を覆うように、例えばCVD法によって層間絶縁膜111を堆積する。層間絶縁膜111は例えばSiO2を用いて形成される。層間絶縁膜111の厚さは、例えば1μmである。次に、マスク(不図示)を用いて、ドライエッチングにより、層間絶縁膜111、ゲート絶縁膜107および第2炭化珪素半導体層106に、不純物領域104の表面の一部とコンタクト領域105の表面とを露出するコンタクトホール111A、高濃度領域103adの表面の一部とコンタクト領域105の表面とを露出するコンタクトホール111B、および、ストッパー領域104fの表面の一部を露出するコンタクトホール111Cを形成する。
 その後、図9(a2)および(b2)に示すように、コンタクトホール111A、111B内に第1オーミック電極109を形成し、コンタクトホール111C内にコンタクト電極109fを形成する。さらに、半導体基板101の主面と反対側の面(裏面)に第2オーミック電極110を形成する。
 ここでは、層間絶縁膜111およびコンタクトホール111A、111B、111B内に、例えば厚さが100nm程度のニッケル膜などの金属膜を形成する。次いで、不活性雰囲気中で例えば950℃の温度で5分間の熱処理を行うことにより、金属膜(ここではニッケル膜)を炭化珪素表面と反応させる。この後、層間絶縁膜111上のニッケル膜と、コンタクトホール111A、111B、111C内において炭化珪素と反応しなかったニッケルとを除去する。コンタクトホール111A、111B内に金属シリサイド(ここではニッケルシリサイド)で構成される第1オーミック電極109が形成される。同時に、コンタクトホール111C内にニッケルシリサイドで構成されるコンタクト電極109fが形成される。さらに、第2オーミック電極110も、同様に、半導体基板101の裏面全面に例えばニッケル膜を堆積し、熱処理によって半導体基板101の炭化珪素表面と反応させることによって形成され得る。なお、第1オーミック電極形成のための熱処理を実施する前に、半導体基板101の裏面に金属膜を形成し、第1オーミック電極と第2オーミック電極形成のための熱処理を同時におこなってもよい。
 続いて、層間絶縁膜111上およびコンタクトホール111A、111B、111C内に、例えば厚さが4μm程度の導電膜(例えばアルミニウム膜)を堆積し、これを所望のパターンにエッチングする。これにより、図9(a3)および(b3)に示すように、層間絶縁膜111上およびコンタクトホール111A、111B内に上部配線電極112を形成し、層間絶縁膜111上およびコンタクトホール111C内におよび上部配線112fを形成する。層間絶縁膜111の露出部分、上部配線電極112および上部配線112fを覆うように、パッシベーション膜114を形成してもよい。図示する例では、パッシベーション膜114は、終端領域100fおよびダイオード領域115d上に設けられている。パッシベーション膜114は例えばSiN膜であり、その厚さは例えば約1.5μmである。
 図示しないが、チップ端における他の領域に、ゲート電極108と電気的に接続されたゲート配線(またはゲートパッド)を形成する。さらに、第2オーミック電極110の裏面に、ダイボンド用の裏面配線電極113を形成してもよい。裏面配線電極113は、例えば第2オーミック電極110側からTi膜、Ni膜およびAg膜がこの順で積層された積層膜であってもよい。この場合、Ti膜が第2オーミック電極110と接する。このようにして、図3に示した半導体素子100が得られる。
 本実施形態の半導体素子100は、終端領域100fに、高濃度リング領域103afと低濃度リング領域103bfとを有するリング領域103fを備えている。このため、略均一の濃度分布を有するリング領域1030fを備えた従来の半導体素子1000(図12)に比べて、耐圧低下を抑制することができる。また、図5~図9を参照しながら前述した方法によると、高濃度リング領域103afおよび低濃度リング領域103bfを形成する際に、ユニットセル領域における第1ボディ領域103aおよび第2ボディ領域103bと、ダイオード領域における高濃度領域103adおよび低濃度領域103bdとを同時に形成する。これにより、プロセスの簡便化を図ることができる。なお、高濃度リング領域103afおよび低濃度リング領域103bfを、第1ボディ領域103aおよび第2ボディ領域103bと高濃度領域103adおよび低濃度領域103bdとのうち少なくともいずれか一方と同時に形成すれば、プロセスの簡便化の効果が得られる。
 また、上記方法では、同一マスクを用いて、高濃度な領域と低濃度な領域とを連続的に形成することにより、半導体基板101の主面の法線方向から見て、高濃度な領域と低濃度な領域とを同じ領域内に形成できる。従って、高濃度リング領域103afと低濃度リング領域103bfとを別プロセスで形成した際のパターンの合わせズレを考慮してリング領域103fの間隔を大きく設計しなくてもよいので、終端領域100fの面積を小さくできる。また、第1ボディ領域103aと第2ボディ領域103bとを別プロセスで形成した際のパターンの合わせズレによって、JFET領域(隣接するボディ領域の間隔)が狭くなるという問題を回避できる。この結果、JFET領域が狭くなることによるMISFETのオン抵抗の増加も抑制できる。
 <ボディ領域103の構造による効果の検討>
 さらに、発明者による検討の結果、半導体素子100のように、終端領域100fに高濃度リング領域103afと低濃度リング領域103bfとを形成する際に、同時に、第1ボディ領域103aと第2ボディ領域103bとを形成すると、ユニットセル領域100ulにおける耐圧劣化も抑制できることが明らかとなった。
 例えば、図12に示した従来の半導体素子1000においては、ボディ領域1030はそのドーパント濃度が深さ方向にほぼ一定に形成されているため、リング領域1030fと同様に、ボディ領域1030の底部の角部3000で電界集中が起こり、所望の耐圧が得られないおそれがある。
 本発明者による検討結果をより具体的に説明する。従来の半導体素子1000において、ボディ領域1030のドーパント濃度を深さ方向に対してほぼ一定とし、ボディ領域1030の深さを0.6μmとする。また、ドリフト領域1020dの濃度を1×1016cm-3とする。ボディ領域1030の平均ドーパント濃度が2×1018cm-3のときのユニットセル領域における耐圧は、2×1019cm-3のときの耐圧よりも262V大きくなる。この結果から、ボディ領域1030の濃度が高いほど、電界集中が大きくなり、耐圧が劣化することが明らかとなった。これに対し、本実施形態の半導体素子100において、例えば図2に示したリング領域103fの深さ方向の濃度プロファイルを、ボディ領域103に適用すると、従来の半導体素子1000においてボディ領域1030の平均ドーパント濃度を2×1018cm-3に設定した場合よりも、耐圧劣化を約16V抑制できることが確認された。
 <ダイオード領域115dおよび終端領域100fの構造による効果の検討>
 さらに、本発明者は、第2導電型領域103dおよびリング領域103fとドリフト領域102dとによって構成されるpn接合ダイオードによる素子耐圧劣化抑制効果を具体的に検討したので、以下に説明する。
 ここでは、実施例として、高濃度領域103adおよび高濃度リング領域103afのドーパント濃度を2×1019cm-3、低濃度領域103bdおよび低濃度リング領域103bfのドーパント濃度を約2×1018cm-3とし、第2導電型領域103dおよびリング領域103fを有する終端構造の耐圧を求めた。また、比較例として、図12(c)に示すように、深さ方向における濃度分布が略均一であるp型領域1030dおよびリング領域1030fを有する終端構造の耐圧を求めた。p型領域1030dおよびリング領域1030fのドーパント濃度は約2×1018cm-3とした。また、実施例の第2導電型領域103dおよび比較例のp型領域1030dの深さや幅などの外観は同じとした。同様に、実施例および比較例のリング領域103f、1030fの深さ、幅、個数を同じとした。
 図10は、実施例および比較例の終端構造(pn接合ダイオード)による素子耐圧の累積度数分布を示すグラフである。このグラフから、ダイオード領域およびリング領域のドーパント濃度を上部(浅い部分)で高くすると(実施例)、ダイオード領域およびリング領域全体が同じドーパント濃度を有する場合(比較例)よりも、高耐圧な素子を実現できることが明らかとなった。メディアン値で比較すると、比較例の終端構造によって得られる素子耐圧は671Vであるのに対し、実施例の終端構造によると728Vの素子耐圧が得られた。
 本実施形態における各ユニットセル100uでは、濃度の異なる第1ボディ領域103aと第2ボディ領域103bとを有するボディ領域103を備えることによって、素子耐圧の抑制を実現している。さらに、ボディ領域103の上層と下層とのドーパント濃度を独立して制御することにより、次のような効果も得られる。
 第1ボディ領域103aのドーパント濃度と、第2炭化珪素半導体層106のドーパント濃度および膜厚、ゲート絶縁膜107の膜厚を適切に選択することにより、トランジスタの閾値電圧Vthを正(つまり、ノーマリーオフ)に維持しながら、第1オーミック電極109の電位を基準とするゲート電極108の電位がゼロ以上であってトランジスタの閾値電圧Vth未満の場合に、第1オーミック電極(ソース電極)109から第2炭化珪素半導体層106(チャネル層)を介して第2オーミック電極(ドレイン電極)110に電流を流すダイオードとして動作させることが可能である。例えば第1ボディ領域103aの平均ドーパント濃度を2×1019cm-3、第2炭化珪素半導体層106の不純物濃度および膜厚をそれぞれ2.3×1018cm-3および30nm、ゲート絶縁膜107の膜厚を70nmとする。このように設定された半導体素子100では、トランジスタの閾値を正に維持しながら、ダイオードの立ち上がり電圧(ダイオードに絶対値で1mA電流を流すのに必要な、第1オーミック電極(ソース)109-第2オーミック電極(ドレイン)110間の電圧)を例えば0.5V程度にすることができ、ボディ領域103およびドリフト領域102dによって構成されるpnダイオード(立ち上がり電圧は2.5V程度)とは明らかに異なる電流-電圧特性を有する。このように、半導体素子100をダイオードとして動作させる場合、そのダイオードを便宜上「チャネルダイオード」と称する。
 本願明細書では、第1オーミック電極Sの電位を基準とする第2オーミック電極Dの電位をVds、第1オーミック電極Sの電位を基準とするゲート電極Gの電位をVgsとし、第2オーミック電極Dから第1オーミック電極Sへ流れる電流の向きを「順方向」、第1オーミック電極Sから第2オーミック電極Dへ流れる電流の向きを「逆方向」と定義する。なお、電位および電圧の単位は、いずれも、ボルト(V)である。
 本発明の半導体素子100では、素子耐圧に影響を与える第2ボディ領域103bと、トランジスタの閾値電圧Vthおよびチャネルダイオードの立ち上がり電圧Vf0に影響を与える第1ボディ領域103aとを独立に制御することができる。このためチャネルダイオードを、インバータ回路でトランジスタに逆並列接続させる還流ダイオードとして用いることができ、高い耐圧および信頼性を有する半導体素子を実現できる。素子耐圧を維持したまま、チャネルダイオードの立ち上がり電圧|Vf0|を小さくし(好ましくは1V以下、さらに好ましくは0.6V以下)、かつトランジスタの閾値電圧Vthを正に維持(好ましくは2V以上8V以下)するために、第1ボディ領域103aの平均不純物濃度よりも第2ボディ領域103bの平均不純物濃度を小さくしておくことが好ましい。チャネルダイオードの立ち上がり電圧を1V以下に設計すれば、環流ダイオードの候補であるSiCからなるショットキーダイオードの代替が可能となり、チャネルダイオードの立ち上がり電圧を0.6V以下に設計すれば、Siからなるファストリカバリーダイオードの代替が可能となる。つまり、これらの環流ダイオードを使用することなく、半導体素子100のみで、環流ダイオードの機能を併せ持つことができる。
 低立ち上がり電圧(例えば1V以下)のチャネルダイオードが機能すると、ボディ領域103およびドリフト領域102dによって構成されるpn接合を有するボディダイオードに電流をほとんど流すことなく、大電流を得ることができる。従来の半導体素子では、pn接合に大電流を流し続けると、SiC中の欠陥が成長して半導体素子のオン抵抗や、ボディダイオードの抵抗が増加するという問題があるが、本実施形態の半導体素子100においては、ボディダイオードにほとんど電流を流さずにダイオード機能を持たせることができるため、結晶欠陥が増加することがなく、高信頼性を維持できる。
 順方向電流の閾値電圧Vthは2V以上であることが好ましい。パワー回路であるインバータ回路に一般的に使用する半導体素子は、ノーマリーオフ(Vth>0V)であることが好ましい。なぜならば、何らかの要因でゲート制御回路が故障し、ゲート電圧が0Vになってしまっても、ドレイン電流を遮断することができるので、安全だからである。また、MISFETの閾値電圧は高温になると低下する。例えば、SiC-MISFETの場合、100℃の温度上昇で約1V低下する場合がある。ここで、ノイズでゲートがオンになってしまわないようにノイズマージンを1Vとすれば、室温でのVthは2V(1V+1V)以上に設定することが好ましい。また、閾値電圧が高すぎると、トランジスタをオンする際のゲート電圧もその分大きくなってしまい、ゲート電圧を発生させる電源の制約が多くなるため、実用上、閾値電圧は8V以下に設定されることが好ましい。
 図11は、ボディ領域103のうち第2炭化珪素半導体層106(チャネル層)と接する部分のドーパント濃度(ここでは、第1ボディ領域103aのドーパント濃度)を変化させたときの、トランジスタの閾値電圧Vthおよび、チャネルダイオードの立ち上がり電圧Vf0を示している。第1ボディ領域103aのドーパント濃度を変化させると、閾値電圧Vthも変化するが、ここでは、第2炭化珪素半導体層106のドーパント濃度を適宜変更することにより、閾値電圧Vthが約3Vとなるように設定している。
 図11からわかるように、閾値電圧Vthを一定とすると、立ち上がり電圧Vf0は、第1ボディ領域103aのドーパント濃度が高くなるほど小さくなる傾向を示している。従って、トランジスタの閾値電圧Vthを維持しながら、チャネルダイオードの立ち上がり電圧Vf0を小さく抑えるためには、第1ボディ領域103aのドーパント濃度はできるだけ大きい方がよいことが分かる。
 このように、本実施形態によると、素子耐圧と、内蔵ダイオードの立ち上がり電圧やトランジスタの閾値電圧を独立に制御することが可能になる。半導体素子100の設計の際に、第1ボディ領域103aの不純物濃度を変化させながら、第2炭化珪素半導体層106の不純物濃度および厚さを調整することにより、半導体素子100の閾値電圧Vthを一定に保ちつつ、第1オーミック電極109とゲート電極108との間の電位が等しいときに、第1オーミック電極109から第2オーミック電極110に向かって電流を流すときの、電流が流れ始める電圧の絶対値を制御する工程を行い、各領域の不純物濃度や厚さを選択することが好ましい。
 なお、本発明は上述した実施形態に限定されない。炭化珪素は、4H-SiC以外のポリタイプ(6H-SiC、3C-SiC、15R-SiCなど)であっても差し支えない。また、上記実施形態では、半導体基板101の主面は、(0001)面からオフカットした主面であるが、他の面((11-20)面や(1-100)面、(000-1)面)およびこれらのオフカット面でも差し支えない。さらに、半導体素子100はヘテロ接合を有していてもよい。例えば、半導体基板101としてSi基板を用い、第1炭化珪素半導体層102として炭化珪素半導体層(3C-SiC)がSi基板上に形成されていてもよい。
 本発明によれば、終端領域における耐圧不良を抑制可能な炭化珪素半導体素子を提供することができる。また、オン抵抗増加を抑制でき、プロセスが簡便な半導体素子の製造方法を提供できる。このため、本発明は、炭化珪素を用いた種々の半導体装置に適用可能であり、特に、インバータ回路などのスイッチング素子として用いられるパワー半導体デバイスに好適に用いることができる。
  100 半導体素子
  100ul ユニットセル領域
  100f 終端領域
  101 半導体基板
  102 第1炭化珪素半導体層
  102d ドリフト領域
  102j JFET領域
  103  ボディ領域
  103a 第1ボディ領域
  103b 第2ボディ領域
  103f リング領域
  103af 高濃度リング領域
  103bf 低濃度リング領域
  103d ダイオード領域
  103ad 高濃度領域
  103bd 低濃度領域
  104 不純物領域(ソース領域)
  105 コンタクト領域
  106 第2炭化珪素半導体層(チャネル層)
  107 ゲート絶縁膜
  108 ゲート電極
  109 第1オーミック電極(ソース電極)
  110 第2オーミック電極(ドレイン電極)
  111 層間絶縁膜
  112 上部配線電極
  113 裏面配線電極
  115d ダイオード領域

Claims (21)

  1.  基板と、前記基板の主面上に位置し、第1導電型のドリフト領域を含む第1炭化珪素半導体層とを備えた半導体素子であって、
     前記基板の前記主面の法線方向から見て、ユニットセル領域と、前記ユニットセル領域と前記半導体素子の端部との間に位置する終端領域とを含み、
     前記終端領域は、前記第1炭化珪素半導体層に、前記ドリフト領域と接するように配置された第2導電型のリング領域を有し、
     前記リング領域は、前記第1炭化珪素半導体層の表面に接する高濃度リング領域と、前記高濃度リング領域よりも低い濃度で第2導電型の不純物を含み、底面で前記第1炭化珪素半導体層に接する低濃度リング領域とを含んでおり、
     前記高濃度リング領域の側面は、前記ドリフト領域と接し、
     前記半導体基板の前記主面の法線方向から見て、前記高濃度リング領域と前記低濃度リング領域とは同一の輪郭を有している半導体素子。
  2.  前記高濃度リング領域の平均不純物濃度は、前記低濃度不純物領域の平均不純物濃度の2倍以上である請求項1に記載の半導体素子。
  3.  前記高濃度リング領域における前記基板の前記主面の法線に沿った厚さは15nm以上であり、前記低濃度リング領域における前記基板の前記主面の法線に沿った厚さは100nm以上である請求項1または2に記載の半導体素子。
  4.  前記基板の前記主面の法線方向から見て、前記ユニットセル領域と前記終端領域との間に位置するダイオード領域をさらに含み、
     前記ダイオード領域は、前記第1炭化珪素半導体層に、前記ドリフト領域と接するように配置された第2導電型領域を有し、
     前記第2導電型領域は、前記第1炭化珪素半導体層の表面に接する高濃度領域と、前記高濃度領域よりも低い濃度で第2導電型の不純物を含み、底面で前記ドリフト領域に接する低濃度領域とを含んでおり、
     前記半導体基板の前記主面の法線方向から見て、前記高濃度領域と前記低濃度領域とは同一の輪郭を有している請求項1から3のいずれかに記載の半導体素子。
  5.  前記高濃度領域の平均不純物濃度は、前記低濃度領域の平均不純物濃度の2倍以上である請求項4に記載の半導体素子。
  6.  前記高濃度領域における前記基板の前記主面の法線に沿った厚さは15nm以上であり、前記低濃度領域における前記基板の前記主面の法線に沿った厚さは100nm以上である請求項4または5に記載の半導体素子。
  7.  前記リング領域の深さ方向における不純物濃度プロファイルと、前記第2導電型領域の深さ方向における不純物濃度プロファイルとは略等しい請求項4から6のいずれかに記載の半導体素子。
  8.  前記ユニットセル領域は、複数のユニットセルを含んでおり、
     各ユニットセルは、
      前記第1炭化珪素半導体層内において、前記ドリフト領域に隣接して配置された第2導電型のボディ領域と、
      前記ボディ領域内に位置する第1導電型の不純物領域と、
      前記第1炭化珪素半導体層の上に配置されたゲート絶縁膜と、
      前記ゲート絶縁膜の上に配置されたゲート電極と、
      前記不純物領域と電気的に接続された第1オーミック電極と、
      前記基板の前記主面と反対側の面に設けられた第2オーミック電極と
     をさらに備える請求項1から7のいずれかに記載の半導体素子。
  9.  前記各ユニットセルは、前記第1炭化珪素半導体層上に、前記ボディ領域の少なくとも一部および前記不純物領域の少なくとも一部にそれぞれ接して配置された第1導電型の第2炭化珪素半導体層をさらに備える請求項8に記載の半導体素子。
  10.  前記ボディ領域は、
      前記第1炭化珪素半導体層の表面に接する第1ボディ領域と、
      前記第1ボディ領域よりも低い濃度で第2導電型の不純物を含み、底面で前記第1炭化珪素半導体層に接する第2ボディ領域と
    を含む請求項8または9に記載の半導体素子。
  11.  前記ボディ領域の深さ方向における不純物濃度プロファイルと、前記リング領域の深さ方向における不純物濃度プロファイルとは略等しい請求項10に記載の半導体素子。
  12.  前記基板の前記主面の法線方向から見て、前記第1ボディ領域と前記第2ボディ領域とは同一の輪郭を有している請求項10または11に記載の半導体素子。
  13.  前記高濃度リング領域および前記低濃度リング領域は、同一の注入マスクを用いて、前記第1炭化珪素半導体層の一部に第2導電型の不純物イオンを注入することによって形成されている請求項1から12のいずれかに記載の半導体素子。
  14.  前記高濃度領域および前記低濃度領域は、同一の注入マスクを用いて、前記第1炭化珪素半導体層の一部に第2導電型の不純物イオンを注入することによって形成されている請求項4から7のいずれかに記載の半導体素子。
  15.  前記第1ボディ領域および前記第2ボディ領域は、同一の注入マスクを用いて、前記第1炭化珪素半導体層の一部に第2導電型の不純物イオンを注入することによって形成されている請求項10から12のいずれかに記載の半導体素子。
  16.  請求項1から請求項12に記載の半導体素子の製造方法であって、
     前記高濃度リング領域および前記低濃度リング領域を、同一の注入マスクを用いて、前記第1炭化珪素半導体層の一部に第2導電型の不純物イオンを注入することによって形成する工程を包含する半導体素子の製造方法。
  17.  請求項4から請求項7に記載の半導体素子の製造方法であって、
     前記高濃度リング領域、前記低濃度リング領域、前記高濃度領域および前記低濃度領域を、同一の注入マスクを用いて、前記第1炭化珪素半導体層の一部に第2導電型の不純物イオンを注入することによって形成する工程を包含する半導体素子の製造方法。
  18.  請求項10から12のいずれかに記載の半導体素子の製造方法であって、
     前記高濃度リング領域、前記低濃度リング領域、前記第1ボディ領域および前記第2ボディ領域を、同一の注入マスクを用いて、前記第1炭化珪素半導体層の一部に第2導電型の不純物イオンを注入することによって形成する工程を包含する半導体素子の製造方法。
  19.  請求項10から12のいずれかに記載の半導体素子の製造方法であって、
     前記半導体素子は、前記ユニットセル領域と前記終端領域との間に位置するダイオード領域をさらに備え、前記ダイオード領域は、前記第1炭化珪素半導体層に、前記ドリフト領域と接するように配置された第2導電型領域を有し、前記第2導電型領域は、前記第1炭化珪素半導体層の表面に接する高濃度領域と、前記高濃度領域よりも低い濃度で第2導電型の不純物を含み、底面で前記ドリフト領域に接する低濃度領域とを含んでおり、
     前記半導体素子の製造方法は、
      前記高濃度リング領域、前記低濃度リング領域、前記第1ボディ領域、前記第2ボディ領域、前記高濃度領域および前記低濃度領域を、同一の注入マスクを用いて、前記第1炭化珪素半導体層の一部に第2導電型の不純物イオンを注入することによって形成する工程を包含する半導体素子の製造方法。
  20.  請求項10から12のいずれかに記載の半導体素子の製造方法であって、
     前記半導体素子の前記第1ボディ領域の不純物濃度を変化させながら、前記第2炭化珪素半導体層の不純物濃度および厚さを調整することにより、前記半導体素子の閾値電圧を一定に保ちつつ、前記第1オーミック電極と前記ゲート電極との間の電位が等しいときに、前記第1オーミック電極から前記第2オーミック電極に向かって電流を流すときの、電流が流れ始める電圧の絶対値を制御する工程を包含する半導体素子の製造方法。
  21.  基板と、前記基板の主面上に位置し、第1導電型のドリフト領域を含む第1炭化珪素半導体層とを備えた半導体素子であって、
     前記基板の前記主面の法線方向から見て、ユニットセル領域と、前記ユニットセル領域と前記半導体素子の端部との間に位置する終端領域とを含み、
     前記終端領域は、前記第1炭化珪素半導体層に、前記ドリフト領域と接するように配置された第2導電型のリング領域を有し、
     前記リング領域は、前記第1炭化珪素半導体層の表面に接する高濃度リング領域と、前記高濃度リング領域よりも低い濃度で第2導電型の不純物を含み、底面で前記第1炭化珪素半導体層に接する低濃度リング領域とを含んでおり、
     前記高濃度リング領域の側面は、前記ドリフト領域と接し、
     前記半導体基板の前記主面の法線方向から見て、前記高濃度リング領域と前記低濃度リング領域とは同一の輪郭を有しており、
     前記ユニットセル領域は、複数のユニットセルを含んでおり、
     各ユニットセルは、
      前記第1炭化珪素半導体層内において、前記ドリフト領域に隣接して配置された第2導電型のボディ領域と、
      前記ボディ領域内に位置する第1導電型の不純物領域と、
      前記第1炭化珪素半導体層の上に配置されたゲート絶縁膜と、
      前記ゲート絶縁膜の上に配置されたゲート電極と、
      前記不純物領域と電気的に接続された第1オーミック電極と、
      前記基板の前記主面と反対側の面に設けられた第2オーミック電極と
     を備え、
     前記第1ボディ領域の不純物濃度を変化させながら、前記第2炭化珪素半導体層の不純物濃度および厚さを調整することにより、前記半導体素子の閾値電圧を一定に保ちつつ、前記第1オーミック電極と前記ゲート電極との間の電位が等しいときに、前記第1オーミック電極から前記第2オーミック電極に向かって電流を流すときの、電流が流れ始める電圧の絶対値を制御することによって設計された半導体素子。
PCT/JP2011/006020 2010-10-29 2011-10-27 半導体素子およびその製造方法 WO2012056705A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/878,742 US8563988B2 (en) 2010-10-29 2011-10-27 Semiconductor element and manufacturing method therefor
EP11835849.8A EP2620983B1 (en) 2010-10-29 2011-10-27 Semiconductor element and manufacturing method therefor
JP2012540686A JP5395275B2 (ja) 2010-10-29 2011-10-27 半導体素子およびその製造方法
CN201180051610.9A CN103180959B (zh) 2010-10-29 2011-10-27 半导体元件及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010243137 2010-10-29
JP2010-243137 2010-10-29

Publications (1)

Publication Number Publication Date
WO2012056705A1 true WO2012056705A1 (ja) 2012-05-03

Family

ID=45993449

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/006019 WO2012056704A1 (ja) 2010-10-29 2011-10-27 半導体素子および半導体装置
PCT/JP2011/006020 WO2012056705A1 (ja) 2010-10-29 2011-10-27 半導体素子およびその製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006019 WO2012056704A1 (ja) 2010-10-29 2011-10-27 半導体素子および半導体装置

Country Status (5)

Country Link
US (2) US8563988B2 (ja)
EP (2) EP2620983B1 (ja)
JP (2) JP5015361B2 (ja)
CN (3) CN103180959B (ja)
WO (2) WO2012056704A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104856A (ja) * 2009-04-30 2012-05-31 Panasonic Corp 半導体素子、半導体装置および電力変換器
CN103579300A (zh) * 2012-07-31 2014-02-12 株式会社东芝 半导体设备及其制造方法
WO2014083771A1 (ja) * 2012-11-28 2014-06-05 パナソニック株式会社 半導体素子及びその製造方法
JP2014107500A (ja) * 2012-11-29 2014-06-09 Sumitomo Electric Ind Ltd 炭化珪素半導体装置およびその製造方法
JP2014157956A (ja) * 2013-02-18 2014-08-28 Mitsubishi Electric Corp 炭化珪素半導体装置の製造方法
JP2016208016A (ja) * 2015-04-15 2016-12-08 パナソニックIpマネジメント株式会社 半導体素子およびその製造方法
JP2017112171A (ja) * 2015-12-15 2017-06-22 株式会社日立製作所 半導体装置、パワーモジュール、電力変換装置、自動車および鉄道車両
US9773924B2 (en) 2015-04-22 2017-09-26 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device having barrier region and edge termination region enclosing barrier region
US9865591B2 (en) * 2014-05-23 2018-01-09 Panasonic Intellectual Property Management Co., Ltd. Silicon carbide semiconductor device
WO2018135146A1 (ja) * 2017-01-17 2018-07-26 富士電機株式会社 半導体装置および半導体装置の製造方法
US10134920B2 (en) 2015-10-30 2018-11-20 Mitsubishi Electric Corporation Silicon carbide semiconductor device
JP2020205295A (ja) * 2019-06-14 2020-12-24 国立研究開発法人産業技術総合研究所 炭化珪素半導体装置
US11049963B2 (en) 2017-12-19 2021-06-29 Mitsubishi Electric Corporation Silicon carbide semiconductor device and power converter
US11508840B2 (en) 2017-12-19 2022-11-22 Mitsubishi Electric Corporation Silicon carbide semiconductor device and power converter

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8772788B2 (en) * 2011-05-30 2014-07-08 Panasonic Corporation Semiconductor element and method of manufacturing thereof
WO2013046908A1 (ja) * 2011-09-28 2013-04-04 三菱電機株式会社 半導体装置
CN104303314B (zh) * 2012-05-17 2017-05-24 通用电气公司 具有结终端扩展的半导体器件
US8558308B1 (en) * 2012-06-14 2013-10-15 Infineon Technologies Austria Ag Method of manufacturing a semiconductor device using a contact implant and a metallic recombination element and semiconductor
JP5501539B1 (ja) * 2012-09-13 2014-05-21 パナソニック株式会社 半導体装置
JP5577478B1 (ja) * 2012-10-30 2014-08-20 パナソニック株式会社 半導体装置
US9006748B2 (en) 2012-12-03 2015-04-14 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device and method for manufacturing same
WO2014087522A1 (ja) * 2012-12-06 2014-06-12 三菱電機株式会社 半導体装置
KR20140076762A (ko) * 2012-12-13 2014-06-23 삼성전기주식회사 전력 반도체 소자 및 그 제조 방법
US9142668B2 (en) 2013-03-13 2015-09-22 Cree, Inc. Field effect transistor devices with buried well protection regions
US9240476B2 (en) * 2013-03-13 2016-01-19 Cree, Inc. Field effect transistor devices with buried well regions and epitaxial layers
US10347489B2 (en) * 2013-07-02 2019-07-09 General Electric Company Semiconductor devices and methods of manufacture
US9768259B2 (en) * 2013-07-26 2017-09-19 Cree, Inc. Controlled ion implantation into silicon carbide using channeling and devices fabricated using controlled ion implantation into silicon carbide using channeling
CN103996714A (zh) * 2014-05-09 2014-08-20 东南大学 一种n型碳化硅纵向金属氧化物半导体管
US10483389B2 (en) * 2014-07-02 2019-11-19 Hestia Power Inc. Silicon carbide semiconductor device
US10418476B2 (en) 2014-07-02 2019-09-17 Hestia Power Inc. Silicon carbide semiconductor device
US10192961B2 (en) * 2015-02-20 2019-01-29 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device
US9670648B2 (en) 2015-08-10 2017-06-06 Caterpillar Inc. Replaceable tip systems for a tine
US9691759B2 (en) 2015-10-01 2017-06-27 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device including semiconductor substrate, silicon carbide semiconductor layer, unit cells, source, and gate
JP6477912B2 (ja) * 2015-11-12 2019-03-06 三菱電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP6490017B2 (ja) * 2016-01-19 2019-03-27 三菱電機株式会社 パワーモジュール、3相インバータシステム、およびパワーモジュールの検査方法
JP6926869B2 (ja) * 2017-09-13 2021-08-25 富士電機株式会社 半導体装置
JP6782213B2 (ja) * 2017-09-19 2020-11-11 株式会社東芝 半導体装置
JP6469795B2 (ja) * 2017-09-21 2019-02-13 アルディーテック株式会社 絶縁ゲート型電界効果トランジスタ
CN111466031B (zh) 2017-12-19 2023-06-30 三菱电机株式会社 碳化硅半导体装置以及电力变换装置
JP6592119B2 (ja) * 2018-01-25 2019-10-16 株式会社日立製作所 半導体スイッチング素子および炭化珪素半導体装置の製造方法
CN109742136A (zh) * 2018-12-30 2019-05-10 芜湖启迪半导体有限公司 一种肖特基二极管结构及其制造方法
EP3748851B1 (en) * 2019-06-07 2023-03-15 Infineon Technologies AG Semiconductor device and semiconductor arrangement comprising semiconductor devices
US11955567B2 (en) 2022-02-16 2024-04-09 Leap Semiconductor Corp. Wide-band gap semiconductor device and method of manufacturing the same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003163351A (ja) 2001-11-27 2003-06-06 Nec Kansai Ltd 絶縁ゲート型半導体装置およびその製造方法
JP2004363328A (ja) * 2003-06-04 2004-12-24 Fuji Electric Device Technology Co Ltd 半導体装置およびその製造方法
JP2007173705A (ja) * 2005-12-26 2007-07-05 Toyota Central Res & Dev Lab Inc 窒化物半導体装置
JP2007227806A (ja) * 2006-02-24 2007-09-06 Denso Corp 半導体装置
JP2008010506A (ja) * 2006-06-27 2008-01-17 Matsushita Electric Ind Co Ltd 半導体装置
JP2008159927A (ja) * 2006-12-25 2008-07-10 Toyota Motor Corp Iii族窒化物半導体装置とその製造方法
JP2009065185A (ja) * 1996-05-15 2009-03-26 Siliconix Inc シンクロナス整流器或いは電圧クランプ用の3端子パワーmosfetスイッチ
JP2009524217A (ja) 2006-01-12 2009-06-25 クリー インコーポレイテッド 炭化ケイ素デバイス用のエッジ終端構造およびエッジ終端構造を含む炭化ケイ素デバイスの製造方法
JP4356767B2 (ja) 2007-05-10 2009-11-04 株式会社デンソー ジャンクションバリアショットキーダイオードを備えた炭化珪素半導体装置
JP4367508B2 (ja) 2007-03-13 2009-11-18 株式会社デンソー 炭化珪素半導体装置およびその製造方法
JP2009289904A (ja) 2008-05-28 2009-12-10 Toshiba Corp 半導体装置
WO2010125819A1 (ja) * 2009-04-30 2010-11-04 パナソニック株式会社 半導体素子、半導体装置および電力変換器
WO2011141981A1 (ja) * 2010-05-10 2011-11-17 株式会社日立製作所 半導体装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974674A (ja) * 1982-10-22 1984-04-27 Hitachi Ltd 絶縁ゲ−ト半導体装置とその製造法
JP2542448B2 (ja) * 1990-05-24 1996-10-09 シャープ株式会社 電界効果トランジスタおよびその製造方法
JPH06104564B2 (ja) 1991-06-12 1994-12-21 工業技術院長 膜状層間化合物及びその製造法
US5233215A (en) * 1992-06-08 1993-08-03 North Carolina State University At Raleigh Silicon carbide power MOSFET with floating field ring and floating field plate
JPH11220127A (ja) * 1998-02-03 1999-08-10 Sharp Corp 絶縁ゲート型半導体装置及びその製造方法
JP2000252456A (ja) * 1999-03-02 2000-09-14 Hitachi Ltd 半導体装置並びにそれを用いた電力変換器
JP4595144B2 (ja) * 1999-09-21 2010-12-08 株式会社デンソー 炭化珪素半導体装置及びその製造方法
JP3484690B2 (ja) * 1999-10-27 2004-01-06 関西日本電気株式会社 縦型電界効果トランジスタ
JP4802378B2 (ja) * 2001-03-12 2011-10-26 株式会社デンソー 炭化珪素半導体装置の製造方法
JP4197400B2 (ja) 2001-03-29 2008-12-17 三菱電機株式会社 炭化珪素半導体からなる半導体装置
JP3941641B2 (ja) 2002-09-18 2007-07-04 日産自動車株式会社 炭化珪素半導体装置の製造方法とその製造方法によって製造される炭化珪素半導体装置
JP3637052B2 (ja) 2002-11-29 2005-04-06 松下電器産業株式会社 SiC−MISFET及びその製造方法
US6940110B2 (en) * 2002-11-29 2005-09-06 Matsushita Electric Industrial Co., Ltd. SiC-MISFET and method for fabricating the same
JP4289123B2 (ja) * 2003-10-29 2009-07-01 富士電機デバイステクノロジー株式会社 半導体装置
CN101233615B (zh) * 2005-07-25 2012-01-04 松下电器产业株式会社 半导体元件和电气设备
JP2007066959A (ja) * 2005-08-29 2007-03-15 Mitsubishi Electric Corp 炭化珪素半導体装置の製造方法
CN101449384B (zh) * 2006-05-18 2011-06-08 松下电器产业株式会社 半导体元件及其制造方法
JP2008017237A (ja) 2006-07-07 2008-01-24 Mitsubishi Electric Corp 電子部品およびその電子部品を用いた電力変換器
US7598567B2 (en) * 2006-11-03 2009-10-06 Cree, Inc. Power switching semiconductor devices including rectifying junction-shunts
JP4483918B2 (ja) * 2007-09-18 2010-06-16 株式会社デンソー 半導体装置
JP2009130266A (ja) * 2007-11-27 2009-06-11 Toshiba Corp 半導体基板および半導体装置、半導体装置の製造方法
JP5206541B2 (ja) * 2008-04-01 2013-06-12 株式会社デンソー 半導体装置およびその製造方法
JP4435864B2 (ja) 2008-05-13 2010-03-24 パナソニック株式会社 半導体素子
WO2010044226A1 (ja) * 2008-10-17 2010-04-22 パナソニック株式会社 半導体装置およびその製造方法
JP4915481B2 (ja) * 2009-06-11 2012-04-11 トヨタ自動車株式会社 半導体装置
WO2011013364A1 (ja) * 2009-07-28 2011-02-03 パナソニック株式会社 半導体素子の製造方法
WO2011027523A1 (ja) * 2009-09-03 2011-03-10 パナソニック株式会社 半導体装置およびその製造方法
JP5002693B2 (ja) * 2010-09-06 2012-08-15 株式会社東芝 半導体装置
US8772788B2 (en) * 2011-05-30 2014-07-08 Panasonic Corporation Semiconductor element and method of manufacturing thereof

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065185A (ja) * 1996-05-15 2009-03-26 Siliconix Inc シンクロナス整流器或いは電圧クランプ用の3端子パワーmosfetスイッチ
JP2003163351A (ja) 2001-11-27 2003-06-06 Nec Kansai Ltd 絶縁ゲート型半導体装置およびその製造方法
JP2004363328A (ja) * 2003-06-04 2004-12-24 Fuji Electric Device Technology Co Ltd 半導体装置およびその製造方法
JP2007173705A (ja) * 2005-12-26 2007-07-05 Toyota Central Res & Dev Lab Inc 窒化物半導体装置
JP2009524217A (ja) 2006-01-12 2009-06-25 クリー インコーポレイテッド 炭化ケイ素デバイス用のエッジ終端構造およびエッジ終端構造を含む炭化ケイ素デバイスの製造方法
JP2007227806A (ja) * 2006-02-24 2007-09-06 Denso Corp 半導体装置
JP2008010506A (ja) * 2006-06-27 2008-01-17 Matsushita Electric Ind Co Ltd 半導体装置
JP2008159927A (ja) * 2006-12-25 2008-07-10 Toyota Motor Corp Iii族窒化物半導体装置とその製造方法
JP4367508B2 (ja) 2007-03-13 2009-11-18 株式会社デンソー 炭化珪素半導体装置およびその製造方法
JP4356767B2 (ja) 2007-05-10 2009-11-04 株式会社デンソー ジャンクションバリアショットキーダイオードを備えた炭化珪素半導体装置
JP2009289904A (ja) 2008-05-28 2009-12-10 Toshiba Corp 半導体装置
WO2010125819A1 (ja) * 2009-04-30 2010-11-04 パナソニック株式会社 半導体素子、半導体装置および電力変換器
WO2011141981A1 (ja) * 2010-05-10 2011-11-17 株式会社日立製作所 半導体装置

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104856A (ja) * 2009-04-30 2012-05-31 Panasonic Corp 半導体素子、半導体装置および電力変換器
CN103579300A (zh) * 2012-07-31 2014-02-12 株式会社东芝 半导体设备及其制造方法
WO2014083771A1 (ja) * 2012-11-28 2014-06-05 パナソニック株式会社 半導体素子及びその製造方法
JP2014107500A (ja) * 2012-11-29 2014-06-09 Sumitomo Electric Ind Ltd 炭化珪素半導体装置およびその製造方法
US9224802B2 (en) 2012-11-29 2015-12-29 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and method for manufacturing same
JP2014157956A (ja) * 2013-02-18 2014-08-28 Mitsubishi Electric Corp 炭化珪素半導体装置の製造方法
US9865591B2 (en) * 2014-05-23 2018-01-09 Panasonic Intellectual Property Management Co., Ltd. Silicon carbide semiconductor device
USRE49195E1 (en) 2014-05-23 2022-08-30 Panasonic Intellectual Property Management Co., Ltd. Silicon carbide semiconductor device
JP2016208016A (ja) * 2015-04-15 2016-12-08 パナソニックIpマネジメント株式会社 半導体素子およびその製造方法
US9773924B2 (en) 2015-04-22 2017-09-26 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device having barrier region and edge termination region enclosing barrier region
US10134920B2 (en) 2015-10-30 2018-11-20 Mitsubishi Electric Corporation Silicon carbide semiconductor device
JP2017112171A (ja) * 2015-12-15 2017-06-22 株式会社日立製作所 半導体装置、パワーモジュール、電力変換装置、自動車および鉄道車両
WO2018135146A1 (ja) * 2017-01-17 2018-07-26 富士電機株式会社 半導体装置および半導体装置の製造方法
JPWO2018135146A1 (ja) * 2017-01-17 2019-06-27 富士電機株式会社 半導体装置および半導体装置の製造方法
US10868168B2 (en) 2017-01-17 2020-12-15 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US11049963B2 (en) 2017-12-19 2021-06-29 Mitsubishi Electric Corporation Silicon carbide semiconductor device and power converter
US11508840B2 (en) 2017-12-19 2022-11-22 Mitsubishi Electric Corporation Silicon carbide semiconductor device and power converter
JP2020205295A (ja) * 2019-06-14 2020-12-24 国立研究開発法人産業技術総合研究所 炭化珪素半導体装置

Also Published As

Publication number Publication date
US8809871B2 (en) 2014-08-19
JP5395275B2 (ja) 2014-01-22
US8563988B2 (en) 2013-10-22
CN102668094A (zh) 2012-09-12
WO2012056704A1 (ja) 2012-05-03
CN103180959A (zh) 2013-06-26
US20130214291A1 (en) 2013-08-22
EP2610914A4 (en) 2013-08-28
EP2610914A1 (en) 2013-07-03
JPWO2012056705A1 (ja) 2014-03-20
EP2610914B1 (en) 2015-01-07
JPWO2012056704A1 (ja) 2014-03-20
JP5015361B2 (ja) 2012-08-29
CN102668094B (zh) 2015-02-25
EP2620983A4 (en) 2013-08-28
CN202394977U (zh) 2012-08-22
CN103180959B (zh) 2014-07-23
EP2620983A1 (en) 2013-07-31
US20120286290A1 (en) 2012-11-15
EP2620983B1 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
JP5395275B2 (ja) 半導体素子およびその製造方法
USRE49195E1 (en) Silicon carbide semiconductor device
JP5481605B2 (ja) 半導体素子
US8772788B2 (en) Semiconductor element and method of manufacturing thereof
US9029874B2 (en) Semiconductor device having a first silicon carbide semiconductor layer and a second silicon carbide semiconductor layer
US9691759B2 (en) Semiconductor device including semiconductor substrate, silicon carbide semiconductor layer, unit cells, source, and gate
US10665679B2 (en) Silicon carbide semiconductor device and method for manufacturing same
US20150279983A1 (en) Semiconductor device
WO2018037701A1 (ja) 半導体装置
WO2012131768A1 (ja) 炭化珪素半導体装置およびその製造方法
WO2014083771A1 (ja) 半導体素子及びその製造方法
WO2011089861A1 (ja) 半導体装置およびその製造方法
JP2006324517A (ja) 半導体装置及びその製造方法
WO2016013182A1 (ja) 炭化珪素半導体素子およびその製造方法
JP5400252B2 (ja) 半導体素子、半導体装置、およびその製造方法
WO2020021298A1 (ja) 半導体装置及びその製造方法
JP6822088B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
WO2015111177A1 (ja) 半導体装置,パワーモジュール,電力変換装置,および鉄道車両
JP7113386B2 (ja) 半導体装置
CN108335965B (zh) SiC-MOSFET的制造方法
CN113330578A (zh) 半导体装置及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835849

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2012540686

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13878742

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011835849

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE