WO2012046305A1 - 電池の製造方法 - Google Patents

電池の製造方法 Download PDF

Info

Publication number
WO2012046305A1
WO2012046305A1 PCT/JP2010/067477 JP2010067477W WO2012046305A1 WO 2012046305 A1 WO2012046305 A1 WO 2012046305A1 JP 2010067477 W JP2010067477 W JP 2010067477W WO 2012046305 A1 WO2012046305 A1 WO 2012046305A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
material layer
thickener
paste
negative electrode
Prior art date
Application number
PCT/JP2010/067477
Other languages
English (en)
French (fr)
Inventor
極 小林
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2012537512A priority Critical patent/JP5561567B2/ja
Priority to KR1020137011543A priority patent/KR101530791B1/ko
Priority to PCT/JP2010/067477 priority patent/WO2012046305A1/ja
Priority to US13/877,688 priority patent/US9608258B2/en
Priority to CN201080069403.1A priority patent/CN103155233B/zh
Publication of WO2012046305A1 publication Critical patent/WO2012046305A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0411Methods of deposition of the material by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a method of manufacturing a battery, and in particular, an electrode having an active material layer formed by applying an active material layer-forming paste containing an active material, a thickener, and water on a current collector and drying the paste.
  • the present invention relates to a method for manufacturing a provided battery.
  • lithium secondary batteries nickel metal hydride batteries, and other secondary batteries have become increasingly important as on-vehicle power supplies or personal computers and portable terminals.
  • a lithium secondary battery that is lightweight and has a high energy density is expected to be preferably used as a high-output power source for mounting on a vehicle.
  • an electrode having a configuration in which a material (electrode active material) capable of reversibly occluding and releasing lithium ions is formed on a conductive member (electrode current collector).
  • the negative electrode active material used for the negative electrode includes a carbon-based material such as graphite.
  • examples of the electrode current collector (hereinafter also referred to as “negative electrode current collector”) used for the negative electrode include a long sheet-like member mainly composed of copper or a copper alloy.
  • Such a negative electrode for a battery is prepared, for example, by preparing a negative electrode active material layer forming paste in which a negative electrode active material and a thickener are dispersed in an appropriate solvent (for example, water) and kneaded, and this is applied to a negative electrode current collector.
  • an appropriate solvent for example, water
  • Patent Documents 1 to 3 are known as conventional techniques relating to the manufacture of this type of electrode.
  • Patent Document 1 in forming a paste for forming a negative electrode coating film, an aqueous solution of a thickening agent is added to graphite (negative electrode active material) and kneaded (solid kneaded), and then the kneaded product is added with an aqueous thickener solution. Dilution kneading is disclosed.
  • a paste for forming a negative electrode coating film in which a thickener and graphite are uniformly dispersed is obtained.
  • a new thickener is introduced after solidification, the viscosity of the paste There was a problem that the paste viscosity was difficult to control.
  • the present invention has been made in view of the above points, and its main object is to manufacture a battery that can avoid poor coating of the active material layer forming paste and can manufacture an electrode having excellent quality stability. Is to provide a method.
  • the inventors of the present application kneaded the thickener aqueous solution and the active material, and then diluted with an aqueous solvent without increasing the viscosity of the paste.
  • the present invention was completed by finding that an active material layer-forming paste having a very good dispersibility of the adhesive and the active material (that is, the thickener and the active material uniformly dispersed) can be produced.
  • the battery manufacturing method provided by the present invention is an electrode having an active material layer obtained by applying an active material layer forming paste containing an active material, a thickener, and an aqueous solvent on a current collector and drying the paste.
  • a method of manufacturing a battery comprising: This manufacturing method is obtained by dissolving a thickener in an aqueous solvent to prepare a thickener aqueous solution, a kneading step in which an active material is added to the prepared thickener aqueous solution and kneading, and the kneading step.
  • the solid paste is diluted with an aqueous solvent, so that the thickener and the active material are not increased without increasing the paste viscosity.
  • An active material layer forming paste having extremely good dispersibility that is, a thickener and an active material are uniformly dispersed
  • the active material is strongly adsorbed by the thickener, so that the adhesive strength between the active materials or between the active material and the current collector can be improved.
  • the coating property when the paste is applied to the current collector is improved, and it is possible to eliminate the occurrence of streaks and uneven thickness on the coated surface. Therefore, according to the present invention, it is possible to avoid an application failure of the active material layer forming paste, and it is possible to manufacture an optimum battery excellent in quality stability.
  • the paste for forming an active material layer obtained according to the present invention does not increase the paste viscosity even if it has a high solid content, and can have good coatability.
  • the viscosity when measured by rotating the rotor at 1 rpm after adjusting the liquid temperature to 25 ° C. is approximately 10000 mPa ⁇ s or less (for example, 1000 to 10000 mPa ⁇ s).
  • the solid content can be appropriately selected according to the purpose, but it is usually preferably 50% or more, which is easy to dry, for example, a range of 50 to 70% by mass is appropriate. More preferably, it is in the range of 50 to 65% by mass, still more preferably in the range of 52 to 65% by mass, and particularly preferably in the range of 52 to 60% by mass.
  • the active material layer forming paste disclosed herein include a paste having a viscosity of 10,000 mPa ⁇ s or less and a solid content in the range of 50 to 70% by mass, and a paste having a viscosity of 8000 mPa ⁇ s.
  • the solid content rate is in the range of 50 to 65% by mass
  • the paste viscosity is 5000 mPa ⁇ s or less
  • the solid content is in the range of 52 to 65% by mass
  • the paste viscosity In which the solids content is in the range of 52 to 60% by mass.
  • the active material layer forming paste having both the viscosity and the solid content within the predetermined range for example, the amount of the aqueous solvent charged into the thickener aqueous solution, the amount of the aqueous solvent charged in the dilution step, Can be realized by appropriately selecting the ratio (division ratio). That is, in the technique disclosed here, the aqueous solvent of the active material layer forming paste is added in two stages, that is, a thickener aqueous solution and a dilution process. In this case, the final paste solids ratio is the same by changing the ratio of the amount of aqueous solvent added to the thickener aqueous solution and the amount of aqueous solvent added in the dilution step. , Pastes with different viscosities can be made.
  • the proportion of the aqueous solvent charged into the thickener aqueous solution is 67 mass% to 76 mass%. If the amount is more than this range, the viscosity of the paste increases, and the coating property when the paste is applied to the current collector may be impaired. On the other hand, if the amount is less than this range, the viscosity of the aqueous solution of the thickener increases, and the liquid permeability when the aqueous solution of the thickener is passed through the filter may be impaired.
  • the proportion of the aqueous solvent added to the thickener aqueous solution is generally about 67 to 76% by mass, preferably 67.5 to It is 75.5% by mass, more preferably 68-74% by mass, and particularly preferably 70-73% by mass.
  • the thickener aqueous solution is passed through a filter before the kneading step.
  • a filter By passing the aqueous solution of the thickener through the filter, it is possible to remove undissolved components and mixed foreign substances of the thickener that may cause coating defects.
  • the viscosity of the above thickener aqueous solution is generally about 1000 mPa ⁇ s to 10000 mPa ⁇ s. If the viscosity of the thickener aqueous solution is too high, it cannot be passed through a filter, and undissolved components and mixed foreign substances may not be removed.
  • the viscosity range of the thickener aqueous solution preferable from the viewpoint of the liquid permeability of the filter is exemplified. For example, using a commercially available E-type viscometer, the liquid temperature is adjusted to 25 ° C. and then the rotor is rotated at 1 rpm.
  • the viscosity is about 10000 mPa ⁇ s or less, preferably 8000 mPa ⁇ sm or less, more preferably 6000 mPa ⁇ sm or less, and particularly preferably 4000 mPa ⁇ sm or less.
  • the active material layer forming paste includes one or two or more materials (other active materials) used for the active material layer forming paste in general electrode production.
  • Other active materials used for the active material layer forming paste in general electrode production.
  • Such materials include binders and conductive materials.
  • the binder and the conductive material are preferably added to the active material layer forming paste after the dilution step. In this case, the paste viscosity can be controlled more easily.
  • a cellulose polymer is used as the thickener. Since the cellulosic polymer has a high thickening effect even in a small amount, it is preferably used as a thickening agent for an active material layer forming paste used in battery applications in which the thickening agent can be a resistance component. In addition, since the cellulose polymer is poorly soluble and the undissolved component tends to remain in the paste when charged as a powder, the invention of removing the undissolved component by passing the thickener aqueous solution through a filter. The effect of can be exhibited particularly well.
  • the electrode is a negative electrode for a lithium secondary battery, and a carbon-based material is used as the active material.
  • a carbon-based material is used as the active material.
  • foil-like copper or a copper alloy is used as the current collector.
  • a battery for example, a lithium secondary battery
  • an electrode manufactured by any of the manufacturing methods disclosed herein. Since such a battery is constructed using an electrode having an active material layer having excellent quality stability and good adhesiveness as described above, it exhibits better battery performance (for example, in terms of quality stability). It is possible to provide a battery that satisfies at least one (preferably all) of excellent, high cycle durability, good productivity, low manufacturing cost, and high-rate charge / discharge performance.
  • Such a battery is suitable as a battery mounted on a vehicle such as an automobile. Therefore, according to the present invention, there is provided a vehicle including any of the batteries disclosed herein (which may be in the form of an assembled battery in which a plurality of batteries are connected).
  • the battery is a lithium secondary battery (typically a lithium ion battery), and the lithium secondary battery is used as a power source (typically a hybrid vehicle or an electric vehicle).
  • a vehicle for example, an automobile
  • a power source of the vehicle is preferable.
  • FIG. 1 is a diagram showing a manufacturing flow of an electrode according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing a coating apparatus according to an embodiment of the present invention.
  • FIG. 3 is a diagram schematically showing a battery according to an embodiment of the present invention.
  • FIG. 4 is a view showing a manufacturing flow of the active material layer forming paste according to Comparative Example 1.
  • FIG. 5 is a diagram showing a manufacturing flow of the active material layer forming paste according to Comparative Example 2.
  • FIG. 6 is a diagram schematically showing an apparatus for measuring peel strength.
  • FIG. 7 is a graph showing the relationship between the water split ratio and the viscosity.
  • FIG. 8 is a side view schematically showing a vehicle equipped with a battery according to an embodiment of the present invention.
  • a negative electrode (negative electrode sheet) for a lithium secondary battery typically a lithium ion battery
  • a copper foil-shaped negative electrode current collector copper foil
  • an active material layer formed by applying and drying an active material layer forming paste containing an active material, a thickener, and an aqueous solvent on a current collector is provided. It is a manufacturing method of the negative electrode (negative electrode sheet) which has.
  • a thickener aqueous solution is prepared by dissolving a thickener in an aqueous solvent (step S10), and the prepared thickener aqueous solution is prepared.
  • the active material is charged into the kneaded mixture (step S20).
  • the obtained kneaded material is diluted with an aqueous solvent to produce an active material layer forming paste from the kneaded material (step S30), and the active material layer forming paste is applied onto a current collector and dried.
  • a negative electrode (negative electrode sheet) having an active material layer formed on the current collector is obtained (step S40).
  • step S10 a thickener aqueous solution is prepared by dissolving a thickener in an aqueous solvent.
  • an aqueous solvent As the solvent used in the above thickener aqueous solution, it is preferable to use an aqueous solvent from various viewpoints such as reduction of environmental burden, reduction of material cost, simplification of equipment, reduction of waste, and improvement of handleability.
  • water or a mixed solvent mainly composed of water is preferably used.
  • a solvent component other than water constituting such a mixed solvent one or more organic solvents (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water can be appropriately selected and used.
  • a particularly preferred example is an aqueous solvent substantially consisting of water.
  • various polymers that function as a thickener for the paste for forming an active material layer can be preferably used.
  • Preferable examples include cellulose polymers such as carboxymethylcellulose (CMC), methylcellulose (MC), hydroxypropylmethylcellulose (HPMC), ethylcellulose (EC), hydroxyethylmethylcellulose (HEMC) and the like.
  • CMC carboxymethylcellulose
  • MC methylcellulose
  • HPMC hydroxypropylmethylcellulose
  • EC ethylcellulose
  • HEMC hydroxyethylmethylcellulose
  • PVA polyvinyl alcohol
  • EVOH ethylene-vinyl alcohol copolymer
  • polyacrylate oxidized starch
  • phosphorylated starch casein and the like
  • the operation (step) for dissolving such a thickener in an aqueous solvent can be performed using, for example, a powder suction dissolution apparatus. Since the powder suction and dissolution apparatus sucks and mixes the thickener (powder) under a negative pressure, the thickener (powder) having a high viscosity can be uniformly dissolved.
  • the thickener aqueous solution and the active material are kneaded and then diluted with an aqueous solvent. As a result, a small amount of the aqueous solvent is added to the thickener aqueous solution, and the concentration of the thickener aqueous solution (extended The viscosity) increases.
  • Such a high-viscosity thickener has poor solubility, and when it is added as a powder, coarse undissolved components are generated, which may cause a coating defect (pinhole or the like) in the active material layer.
  • a powder suction dissolution apparatus such a high-concentration thickener (powder) can be uniformly dissolved, and generation of coarse undissolved components can be prevented.
  • an aqueous solution of thickener may be passed through the filter in order to remove undissolved substances and mixed foreign substances that may cause coating defects.
  • a size for example, a diameter of 500 ⁇ m or more, preferably 300 ⁇ m or more, particularly preferably 100 ⁇ m or more
  • the filter may be configured to capture undissolved components and contaminants having a diameter of, for example, 500 ⁇ m or more (preferably 300 ⁇ m or more, particularly preferably 100 ⁇ m or more).
  • the liquid passing treatment is performed using a folding filter in which the filter medium is folded in a zigzag manner. Since the foldable filter has a larger filtration area (surface area) than that of the flat filter, even a high-viscosity thickener aqueous solution can be easily passed through.
  • the viscosity of the above thickener aqueous solution is generally about 1000 mPa ⁇ s to 10000 mPa ⁇ s. If the viscosity of the thickener aqueous solution is too high, it cannot be passed through a filter, and undissolved components and mixed foreign substances may not be removed.
  • the viscosity range of the thickener aqueous solution preferable from the viewpoint of the liquid permeability of the filter is exemplified. For example, using a commercially available E-type viscometer, the liquid temperature is adjusted to 20 ° C. and then the rotor is rotated at 20 rpm.
  • the viscosity is about 10000 mPa ⁇ s or less, preferably 8000 mPa ⁇ sm or less, more preferably 6000 mPa ⁇ sm or less, and particularly preferably 4000 mPa ⁇ sm or less.
  • the negative electrode active material is then added to the prepared thickener aqueous solution and kneaded (solid kneaded) (step S20 shown in FIG. 1: kneading step).
  • the negative electrode active material used in the present embodiment one or more materials conventionally used in lithium secondary batteries can be used without particular limitation.
  • Preferable examples include carbon-based materials such as graphite carbon and amorphous carbon, lithium transition metal composite oxides (lithium titanium composite oxides, etc.), lithium transition metal composite nitrides, and the like.
  • a material typically in particulate form
  • a material powder prepared by a conventionally known method can be used as it is.
  • a material powder substantially composed of particles having an average particle diameter based on the laser diffraction / scattering method in the range of about 1 ⁇ m to 25 ⁇ m can be preferably used as the negative electrode active material.
  • kneading such a negative electrode active material and a thickener aqueous solution
  • kneading such a negative electrode active material and a thickener aqueous solution
  • a preferable kneading time in the kneading process may be a time until the active material and the thickener are uniformly dispersed.
  • the kneading (solidifying) time is usually 10 minutes to 3 hours, preferably 10 minutes to 30 minutes.
  • the active material and the thickener are kneaded with a strong force (for example, shearing force). Therefore, the dispersion of the thickener proceeds (the active material and the thickener are dispersed to form a uniform state), and the active material is strongly adsorbed by the thickener.
  • Step S30 shown in FIG. 1 dilution step
  • the operation of diluting the kneaded product with an aqueous solvent is performed by, for example, using an appropriate stirring kneader (planetary mixer, homodisper, clear mix, fill mix, etc.), and uniformly mixing the kneaded product and the aqueous solvent. It can carry out by stirring until it does.
  • a preferable stirring time in the stirring treatment may be a time until the kneaded product and the aqueous solvent are uniformly mixed.
  • the thickener aqueous solution and the active material are kneaded and then diluted with an aqueous solvent to produce an active material layer forming paste.
  • a paste for forming an active material layer with extremely good dispersibility of the thickener and the active material that is, the thickener and the active material are uniformly dispersed
  • the paste for forming an active material layer thus obtained does not increase the paste viscosity even if it has a high solid content, and can have good coatability.
  • the viscosity when measured by rotating the rotor at 1 rpm after adjusting the liquid temperature to 25 ° C. is approximately 10000 mPa ⁇ s or less (for example, 1000 to 10000 mPa ⁇ s).
  • the solid content rate can be appropriately selected according to the purpose, but from the viewpoint of drying properties, the higher the solid content rate, the better.
  • the viscosity increases as the solid content increases, so it was necessary to keep the solid content to around 40% at the maximum, but according to this technology, the paste viscosity increases even at a high solid content. Therefore, a high solid content ratio of 50% or more can be easily realized.
  • a paste having a viscosity of 10,000 mPa ⁇ s or less and a solid content of 50% or more for example, in the range of 50 to 70%
  • the viscosity is 8000 mPa ⁇ s or less and the solid content is 50% or more (for example, in the range of 50 to 65%)
  • the viscosity of the paste is 5000 mPa ⁇ s or less
  • the solid content is 52% or more
  • the active material layer forming paste having both the viscosity and the solid content ratio within the predetermined range is, for example, an amount A of an aqueous solvent to be added to the thickener aqueous solution and a dilution step.
  • This can be realized by appropriately selecting a ratio (division ratio) with the amount B of the aqueous solvent to be added. That is, in the technique disclosed here, the aqueous solvent of the active material layer forming paste is added in two stages, that is, a thickener aqueous solution and a dilution process.
  • the final paste solids ratio is the same by changing the ratio between the amount A of the aqueous solvent introduced into the aqueous thickener solution and the amount B of the aqueous solvent introduced in the dilution step. Regardless, pastes with different viscosities can be made.
  • the proportion of the aqueous solvent added to the thickener aqueous solution is 67% by mass to 76% by mass. If the amount is more than this range, the viscosity of the paste increases, and the coating property when the paste is applied to the current collector may be impaired. On the other hand, if the amount is less than this range, the viscosity of the aqueous solution of the thickener increases, and the liquid permeability when the aqueous solution of the thickener is passed through the filter may be impaired.
  • the ratio (division ratio) of the aqueous solvent added to the aqueous solution of the thickener is generally about 67 to 76% by mass, preferably 67.5 to 75%. 0.5% by mass, more preferably 68-74% by mass, and particularly preferably 70-73% by mass.
  • the active material layer forming paste includes one or more materials (others) used for the active material layer forming paste in general electrode manufacturing.
  • the active material layer forming component can be contained as required.
  • Representative examples of such materials include binders and conductive materials.
  • the binder polymers such as styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), polytetrafluoroethylene (PTFE), polyethylene (PE), polyacrylic acid (PAA), and the like can be used.
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • PTFE polytetrafluoroethylene
  • PE polyethylene
  • PAA polyacrylic acid
  • carbon powder such as carbon black (acetylene black or the like), conductive metal powder such as nickel powder, or the like can be used. These materials may be added to the active material layer forming paste after the dilution step.
  • the negative electrode active material layer was then formed on the negative electrode current collector by applying the active material layer forming paste onto the negative electrode current collector and drying.
  • a negative electrode is obtained (step S40 shown in FIG. 1).
  • the operation of applying such an active material layer forming paste to the negative electrode current collector can be performed in the same manner as in the case of producing a conventional negative electrode for a lithium secondary battery.
  • a suitable coating device die coater, slit coater, comma coater, etc.
  • a predetermined amount of the active material layer forming paste is applied to the negative electrode current collector to a uniform thickness. Can be done.
  • the coated material is dried (typically 70 ° C. to 200 ° C.) by an appropriate drying means.
  • a coating apparatus 200 As an apparatus for applying the active material layer forming paste to the negative electrode current collector, for example, a coating apparatus 200 as shown in FIG.
  • this coating apparatus 200 while the long sheet-like negative electrode current collector 210 is conveyed by the rotation of the backup roll 220, the gap between the backup roll 220 and the die 230 is passed, and the negative electrode current collector 210 has an active material.
  • the layer forming paste 240 is applied.
  • the solvent (for example, water) in the active material layer forming paste 240 is volatilized through the drying furnace 250 to produce a long sheet-like negative electrode.
  • the solid content of the active material layer forming paste 240 it is desirable to increase the solid content of the active material layer forming paste 240.
  • the paste dries quickly, so that the drying time (time for passing through the drying furnace 250) can be shortened and the coating apparatus 200 can be operated efficiently.
  • the paste viscosity increases, so that the applicability when the paste is applied to the negative electrode current collector 210 is significantly impaired.
  • the paste 240 does not move smoothly from the die 230 and the behavior of the paste 240 becomes unstable, which may be a cause of streaks and uneven thickness on the coated surface.
  • the paste for forming an active material layer obtained by this configuration does not increase the paste viscosity even at a high solid content (for example, 50% by mass or more), and the paste is discharged from the die 230 to the current collector 210.
  • the coating property during coating is kept good. Therefore, the drying time of the paste can be shortened while suppressing an increase in coating failure (the line speed can be increased). Therefore, drying time can be shortened and the coating apparatus 200 can be operated efficiently, and the productivity of an electrode becomes favorable.
  • the capital investment in the drying process can be greatly reduced, and the manufacturing cost can be reduced.
  • the solvent in the active material layer forming paste is volatilized in the drying furnace 250 to remove the solvent in the active material layer forming paste.
  • a negative electrode active material layer containing a negative electrode active material is formed.
  • a negative electrode (negative electrode sheet) in which a negative electrode active material layer is formed on a negative electrode current collector can be obtained.
  • the thickness and density of a negative electrode active material layer can be suitably adjusted by performing an appropriate press process (for example, roll press process) as needed.
  • the kneaded product is diluted with an aqueous solvent, so that the viscosity is increased without increasing the paste viscosity.
  • An active material layer-forming paste having a very good dispersibility of the agent and the active material (that is, the thickener and the active material are uniformly dispersed) can be produced.
  • the active material is strongly adsorbed by the thickener, so that the adhesive strength between the active materials or between the active material and the current collector can be improved.
  • the coating property when the paste is applied to the current collector is improved, and it is possible to eliminate the occurrence of streaks and uneven thickness on the coated surface. Therefore, according to this structure, the coating defect of the active material layer forming paste can be avoided, and an optimum electrode (for example, negative electrode) excellent in quality stability can be manufactured.
  • the electrode for example, the negative electrode
  • the configuration of various types of battery components or electrode bodies incorporated in the battery It can be preferably used as an element (for example, a negative electrode).
  • a negative electrode manufactured by any of the methods disclosed herein, a positive electrode (which may be a positive electrode manufactured by applying the present invention), an electrolyte disposed between the positive and negative electrodes, Can be preferably used as a component of a lithium secondary battery including a separator that separates the positive and negative electrodes (can be omitted in a battery using a solid or gel electrolyte).
  • Structure for example, a metal housing or laminate film structure
  • size of an outer container constituting such a battery or an electrode body structure (for example, a wound structure or a laminated structure) having a positive / negative electrode current collector as a main component
  • the lithium secondary battery 100 includes a case 40 made of metal (a resin or a laminate film is also suitable).
  • the case (outer container) 40 includes a flat rectangular parallelepiped case main body 42 whose upper end is opened, and a lid body 44 that closes the opening.
  • a positive electrode terminal 92 that is electrically connected to the positive electrode of the wound electrode body 80
  • a negative electrode terminal 94 that is electrically connected to the negative electrode of the electrode body 80 are provided. .
  • a long sheet-like positive electrode (positive electrode sheet) 50 and a long sheet-like negative electrode (negative electrode sheet) 60 are laminated together with a total of two long sheet-like separators (separator sheets) 70.
  • a flat wound electrode body 80 produced by winding and then crushing the resulting wound body from the side direction and kidnapping is housed.
  • Each of the positive electrode sheet 50 and the negative electrode sheet 60 has a configuration in which an electrode active material layer mainly composed of an electrode active material is provided on both surfaces of a long sheet-shaped electrode current collector. At one end in the width direction of these electrode sheets 50, 60, an electrode active material layer non-formed portion in which the electrode active material layer is not provided on any surface is formed.
  • the positive electrode sheet 50 and the negative electrode active material layer non-formed portion of the positive electrode sheet 50 and the negative electrode active material layer non-formed portion of the negative electrode sheet 60 protrude from both sides of the separator sheet 70 in the width direction.
  • the negative electrode sheet 60 is overlaid with a slight shift in the width direction.
  • the electrode active material layer non-forming portions of the positive electrode sheet 50 and the negative electrode sheet 60 are respectively wound core portions (that is, the positive electrode active material layer forming portion of the positive electrode sheet 50).
  • the negative electrode active material layer forming part of the negative electrode sheet 60 and the two separator sheets 70 are closely wound).
  • a positive electrode lead terminal 96 and a negative electrode lead terminal 98 are attached to the protruding portion (that is, the portion where the positive electrode active material layer is not formed) 82 and the negative electrode side protruding portion (that is, the portion where the negative electrode active material layer is not formed) 84, respectively.
  • the constituent elements constituting the wound electrode body 80 may be the same as those of a conventional lithium secondary battery except for the manufacturing process of the negative electrode sheet, and are not particularly limited.
  • the positive electrode sheet 50 has a positive electrode active material layer formed on the surface of a long positive electrode current collector.
  • an aluminum foil (this embodiment) or other metal foil suitable for the positive electrode is preferably used.
  • the positive electrode active material one kind or two or more kinds of substances conventionally used in lithium secondary batteries can be used without any particular limitation.
  • a material mainly composed of a lithium transition metal composite oxide containing lithium and one or more transition metal elements as constituent metal elements, such as LiMn 2 O 4 , LiCoO 2 , and LiNiO 2 is preferably used. It is done.
  • the negative electrode sheet 60 has a negative electrode active material layer formed on the surface of a long negative electrode current collector.
  • a copper foil (this embodiment) or other metal foil suitable for the negative electrode is preferably used.
  • the negative electrode active material one or more of materials conventionally used in lithium secondary batteries can be used without any particular limitation. Preferable examples include carbon-based materials such as graphite carbon and amorphous carbon, lithium-containing transition metal oxides and transition metal nitrides.
  • separator sheet 70 used between the positive and negative electrode sheets 50 and 60 one made of a porous polyolefin resin can be mentioned.
  • a porous separator sheet made of synthetic resin for example, made of polyolefin such as polyethylene
  • a separator may not be necessary (that is, in this case, the electrolyte itself can function as a separator).
  • the wound electrode body 80 having such a configuration is accommodated in the case main body 42, and an appropriate nonaqueous electrolytic solution is disposed (injected) into the case main body 42.
  • an appropriate nonaqueous electrolytic solution is disposed (injected) into the case main body 42.
  • the non-aqueous electrolyte accommodated in the case main body 42 together with the wound electrode body 80 the same non-aqueous electrolyte used in conventional lithium ion batteries can be used without any particular limitation.
  • Such a nonaqueous electrolytic solution typically has a composition in which a supporting salt is contained in a suitable nonaqueous solvent.
  • a mixed solvent containing ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) in a volume ratio of 3: 4: 3 contains LiPF 6 as a supporting salt at a concentration of about 1 mol / liter.
  • a nonaqueous electrolyte solution can be used.
  • the non-aqueous electrolyte is housed in the case body 42 together with the wound electrode body 80, and the opening of the case body 42 is sealed with the lid body 44, thereby constructing the lithium ion secondary battery 100 according to this embodiment ( Assembly) is completed.
  • Assembly the sealing process of the case main body 42 and the arrangement
  • the battery constructed in this way is constructed using an electrode (for example, a negative electrode) having an active material layer having excellent quality stability and good adhesion as described above, it has excellent battery performance. Is shown. For example, by constructing a battery using the above electrode, at least one (preferably all) of high cycle durability, good productivity, low manufacturing cost, and good high-rate charge / discharge performance is satisfied. A battery can be provided.
  • an electrode for example, a negative electrode
  • the carbon powder negative electrode active material
  • CMC powder thickener
  • SBR binder
  • Example 1 ⁇ Preparation of thickener aqueous solution>
  • the above-mentioned CMC powder and water are put into a commercially available powder suction dissolution apparatus (Damanizer: manufactured by Izumi Food Machinery Co., Ltd.), and dispersed and mixed for 30 minutes at a circulation flow rate of 3000 L / h and a stirring speed of 100 rpm, whereby a thickener aqueous solution is obtained.
  • a thickener aqueous solution was passed through the folding filter to remove insoluble matters of 100 ⁇ m or more.
  • the thickener concentration (mass percent concentration) of the aqueous thickener solution was adjusted to 1.46%.
  • the negative electrode active material layer forming paste was prepared by charging the thickener without dissolving it as a powder. Specifically, as shown in FIG. 4, carbon powder, CMC powder, and water were put into a commercially available stirring kneader (Hibis Disper Mix: manufactured by Primics) and kneaded at a rotation speed of 50 rpm for 0.5 hours ( Kneading step). Next, water was added to the stirring kneader and stirred for 10 minutes at a rotation speed of 50 rpm (dilution step). Thereafter, the SBR solution was added and stirred for 10 minutes at a rotation speed of 50 rpm. Thus, the target paste for negative electrode active material layer formation was obtained. The solid content rate and the water split ratio X of the negative electrode active material layer forming paste were the same as those in Example 1.
  • a thickener aqueous solution was prepared in the same manner as in Example 1, and a part of the thickener aqueous solution and carbon powder were mixed with a commercially available stirring kneader (Hibis Disper Mix: Primix Co., Ltd.) and kneaded for 0.5 hour at a rotation speed of 50 rpm (kneading step).
  • a commercially available stirring kneader Hibis Disper Mix: Primix Co., Ltd.
  • the remaining amount of the thickener aqueous solution was charged into a stirring kneader and stirred for 10 minutes at a rotation speed of 50 rpm, thereby producing an active material layer forming paste from the kneaded product (dilution step). Thereafter, the SBR solution was put into a stirring kneader and stirred for 10 minutes at a rotation speed of 50 rpm. Thus, the target paste for negative electrode active material layer formation was obtained.
  • the solid content ratio and the water split ratio X of the negative electrode active material layer forming paste were the same as those in Example 1.
  • ⁇ Paste viscosity> The viscosity of the negative electrode active material layer forming paste according to Example 1 and Comparative Examples 1 and 2 obtained above was measured with an E-type viscometer. Here, the liquid temperature was adjusted to 25 ° C. and then measured by rotating the rotor at 1 rpm.
  • the negative electrode sheet was produced using the paste for various negative electrode active material layer formation, and the characteristic was evaluated.
  • the negative electrode sheet was produced as follows.
  • Various pastes for forming a negative electrode active material layer were applied in a strip shape on one side of a copper foil (negative electrode current collector) and dried to prepare a negative electrode sheet having a negative electrode active material layer provided on one side of the negative electrode current collector.
  • the coating amount (one side) of the negative electrode active material layer forming paste was adjusted to be about 3.75 mg / cm 2 (based on solid content).
  • it pressed so that the thickness of a negative electrode active material layer might be set to about 80 micrometers.
  • peel strengths of the various negative electrode sheets were measured. Specifically, as shown in FIG. 6, the negative electrode sheet 60 is placed on a measuring table 68, and the surface on the negative electrode active material layer 62 side is fixed to a jig 65 with a double-sided tape ( ⁇ 10) 66. The film was pulled in a direction perpendicular to the surface of the negative electrode current collector 64 (peeling angle was 90 ⁇ 5 °) and continuously peeled at a speed of 0.5 mm per second. And the average value of the load until the negative electrode active material layer 62 peeled from the negative electrode collector 64 was measured as peeling strength.
  • Comparative Example 1 in which the thickener was added without dissolving the thickener had a low paste viscosity and a high peel strength, but had very many pinholes in the active material layer.
  • Comparative Example 2 in which the thickener aqueous solution and the active material were kneaded and then the thickener aqueous solution was added, although there were few pinholes in the active material layer, the peel strength slightly decreased. Further, the paste viscosity was 20000 mPa ⁇ s, and the coating property when the paste was applied to the current collector was poor.
  • Example 1 diluted with water after kneading the thickener aqueous solution and the active material has a low paste viscosity of 2500 mPa ⁇ s, and is applied when the paste is applied to the current collector.
  • the property was good.
  • Example 2 A negative electrode active material layer forming paste was prepared in the same manner as in Example 1 except that the thickener concentration of the thickener aqueous solution was 1.28% and the water split ratio X was changed to 71.9%. .
  • Example 3 A negative electrode active material layer forming paste was prepared in the same manner as in Example 1, except that the thickener concentration of the thickener aqueous solution was 1.18% and the water split ratio X was changed to 78.2%. .
  • the viscosity of the negative electrode active material layer forming paste and the thickener aqueous solution according to Examples 1 to 3 obtained above was measured with an E-type viscometer. Here, the liquid temperature was adjusted to 25 ° C. and then measured by rotating the rotor at 1 rpm. The results are shown in Table 2 and the graph of FIG.
  • Example 3 in which the water split ratio X was 78.2%, the paste viscosity was 10000 mPa ⁇ s or more, and the coating was performed when the paste was applied to the current collector. The properties were worse than those of Examples 1 and 2.
  • Example 1 in which the water split ratio X was 63.2%, the viscosity of the thickener aqueous solution was 15000 mPa ⁇ s although the paste viscosity was low, and the thickener aqueous solution was passed through the filter. The liquid permeability was worse than those in Examples 2 and 3.
  • the water split ratio X is appropriately 67 to 76%, preferably 67.5 to 75.5%, more Preferably it is 68 to 74%, and particularly preferably 70 to 73%.
  • an active material layer forming paste having a good coating property of 10,000 mPa ⁇ s or less could be realized by setting the division ratio X to 76% or less.
  • a thickener aqueous solution having a good filter liquid permeability of 10,000 mPa ⁇ s or less could be realized.
  • the present invention has been described with reference to the preferred embodiments and examples. However, such description is not a limitation and, of course, various modifications can be made.
  • the embodiment and examples described above have mainly described the case of manufacturing a negative electrode for a lithium secondary battery, the present invention is not limited to this. The present invention can be applied without distinguishing between positive and negative electrodes.
  • the type of battery is not limited to the above-described lithium secondary battery, and may be batteries having various contents with different electrode body constituent materials and electrolytes, for example, a nickel hydrogen battery and a nickel cadmium battery.
  • the present invention it is possible to provide a battery manufacturing method capable of avoiding poor coating of the active material layer forming paste and manufacturing a high-performance battery excellent in quality stability and durability.
  • any of the batteries 100 disclosed herein may have a performance suitable as a battery mounted on a vehicle. Therefore, according to the present invention, as shown in FIG. 8, a vehicle 1 including any battery 100 disclosed herein is provided.
  • a vehicle (for example, an automobile) 1 including the battery 100 as a power source (typically a power source of a hybrid vehicle or an electric vehicle) is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

 本発明によって提供される電池の製造方法は、水系溶媒に増粘剤を溶かした増粘剤水溶液を調製する工程(S10)と、調製した増粘剤水溶液に活物質を投入て混練を行う混練工程(S20)と、混練工程で得られた混練物に水系溶媒を添加し希釈することによって該混練物から活物質層形成用ペーストを得る希釈工程(S30)と、活物質層形成用ペーストを集電体上に塗布し乾燥させることによって集電体上に活物質層が形成された電極を得る工程(S40)とを包含する。

Description

電池の製造方法
 本発明は、電池を製造する方法に関し、特に活物質と増粘剤と水とを含む活物質層形成用ペーストを集電体上に塗布、乾燥して形成された活物質層を有する電極を備えた電池の製造方法に関する。
 近年、リチウム二次電池、ニッケル水素電池その他の二次電池は、車両搭載用電源、或いはパソコンおよび携帯端末の電源として重要性が高まっている。特に軽量で高エネルギー密度が得られるリチウム二次電池は車両搭載用高出力電源として好ましく用いられるものとして期待されている。
 リチウム二次電池の一つの典型的な構成では、リチウムイオンを可逆的に吸蔵および放出し得る材料(電極活物質)が導電性部材(電極集電体)の上に形成された構成の電極を備える。例えば、負極に用いられる負極活物質としては、黒鉛等の炭素系材料が挙げられる。また、負極に用いられる電極集電体(以下「負極集電体」ともいう。)としては、銅または銅合金を主体とする長尺シート状の部材が挙げられる。このような電池用負極は、例えば、負極活物質と増粘剤を適当な溶媒(例えば水)に分散させて混練した負極活物質層形成用ペーストを調製し、これを負極集電体に塗工して乾燥することにより製造されている。この種の電極の製造に関する従来技術としては特許文献1~3が挙げられる。
日本国特許出願公開2006-092760号公報 日本国特許出願公開2000-323125号公報 日本国特許出願公開2001-056524号公報
 特許文献1には、負極塗膜形成用ペーストを形成するにあたって、黒鉛(負極活物質)に増粘剤の水溶液を添加して混練(固練り)した後、該混練物を増粘剤水溶液で希釈混練することが開示されている。しかしながら、特許文献1に開示された技術では、増粘剤及び黒鉛が均一に分散した負極塗膜形成用ペーストが得られるものの、固練り後に新たな増粘剤が投入されるため、ペーストの粘度が変化し、ペースト粘度をコントロールしにくいという問題があった。特に活物質層形成用ペーストを速く乾かすために、ペーストの固形分率を高めようとすると、該ペーストの粘度が著しく増大する。そのため、該ペーストを集電体に塗工する際の塗工性が損なわれ、塗工面にスジや厚みムラが生じる一因となっていた。
 本発明はかかる点に鑑みてなされたものであり、その主な目的は、活物質層形成用ペーストの塗工不良を回避し得、品質安定性に優れた電極を製造することができる電池製造方法を提供することである。
 本願発明者は、上記課題を解決するために鋭意検討を行った結果、増粘剤水溶液と活物質とを混練した後、水系溶媒で希釈することによって、ペーストの粘度を上昇させることなく、増粘剤及び活物質の分散性が極めて良好な(即ち増粘剤及び活物質が均一に分散した)活物質層形成用ペーストを作製できることを見出し、本発明を完成した。
 即ち、本発明によって提供される電池の製造方法は、集電体上に、活物質と増粘剤と水系溶媒を含む活物質層形成用ペーストを塗布し乾燥してなる活物質層を有する電極を備えた電池の製造方法である。この製造方法は、水系溶媒に増粘剤を溶かして増粘剤水溶液を調製する工程と、前記調製した増粘剤水溶液に活物質を投入し混練を行う混練工程と、前記混練工程で得られた混練物に水系溶媒を添加し希釈することによって該混練物から活物質層形成用ペーストを得る希釈工程と、前記活物質層形成用ペーストを集電体上に塗布し乾燥させることによって前記集電体上に活物質層が形成された電極を得る工程とを包含する。
 本発明に係る電池製造方法によれば、増粘剤水溶液と活物質とを混練した後、該固練物を水系溶媒で希釈するので、ペースト粘度を上昇させることなく、増粘剤及び活物質の分散性が極めて良好な(即ち増粘剤及び活物質が均一に分散した)活物質層形成用ペーストを作製することができる。このような活物質層形成用ペーストを用いれば、活物質が増粘剤に強く吸着されるため、活物質間や活物質と集電体との間の接着強度を向上させることができる。また、ペーストを集電体に塗工する際の塗工性が良好となり、塗工面にスジや厚みムラが生じることを解消することができる。従って、本発明によれば、活物質層形成用ペーストの塗工不良を回避し得、品質安定性に優れた最適な電池を製造することができる。
 本発明により得られた活物質層形成用ペーストは、高固形分率であってもペースト粘度が上昇せず、塗工性の良好なものであり得る。例えば市販されるE型粘度計を用い、液温を25℃に調整してからロータを1rpmで回転させて測定したときの粘度が、概ね10000mPa・s以下(例えば1000~10000mPa・s)であり、好ましくは8000mPa・sm以下であり、より好ましくは5000mPa・sm以下であり、特に好ましくは3000mPa・sm以下である。また、その固形分率は、目的に応じて適宜固形分率を選択することができるが、通常は乾きやすくなる50%以上とすることが好ましく、例えば50~70質量%の範囲が適当であり、より好ましくは50~65質量%の範囲であり、さらに好ましくは52~65質量%の範囲であり、特に好ましくは52~60質量%の範囲である。
 ここで開示される活物質層形成用ペーストの好適例として、ペーストの粘度が10000mPa・s以下であり、かつ固形分率が50~70質量%の範囲であるもの、ペーストの粘度が8000mPa・s以下であり、かつ固形分率が50~65質量%の範囲であるもの、ペーストの粘度が5000mPa・s以下であり、かつ固形分率が52~65質量%の範囲であるもの、ペーストの粘度が3000mPa・s以下であり、かつ固形分率が52~60質量%の範囲であるもの、等が挙げられる。このような所定範囲内の粘度及び固形分率を両立して有することにより、従来得ることができなかった良好な塗工性と高い乾燥効率の双方を満足する活物質層形成用ペーストとすることができる。
 上記所定範囲内の粘度及び固形分率を両立して有する活物質層形成用ペーストは、例えば、増粘剤水溶液に投入される水系溶媒の量と、希釈工程で投入される水系溶媒の量との割合(分割比率)を適切に選択することにより実現され得る。即ち、ここで開示される技術では、活物質層形成用ペーストの水系溶媒は、増粘剤水溶液と希釈工程の2段階に分割して投入される。この場合、増粘剤水溶液に投入される水系溶媒の量と、希釈工程で投入される水系溶媒の量との割合を変えることで、最終的なペースト固形分率は同じであるにもかかわらず、異なる粘度のペーストを作製することができる。
 好ましくは、活物質層形成用ペースト中の水系溶媒の総量のうち、増粘剤水溶液に投入された水系溶媒の占める割合が67質量%~76質量%である。この範囲よりも多すぎると、ペーストの粘度が上昇して該ペーストを集電体に塗工する際の塗工性が損なわれることがある。一方、この範囲よりも少なすぎると、増粘剤水溶液の粘度が上昇して該増粘剤水溶液をフィルタに通す際の通液性が損なわれることがある。ペーストの塗工性と増粘剤水溶液の通液性の兼ね合いからは、増粘剤水溶液に投入された水系溶媒の割合は、概ね67~76質量%が適当であり、好ましくは67.5~75.5質量%であり、より好ましくは68~74質量%であり、特に好ましく70~73質量%である。
 ここに開示される電池製造方法の好ましい一態様では、上記混練工程を行う前に、上記増粘剤水溶液をフィルタに通液する。増粘剤水溶液をフィルタに通液することによって、塗工欠陥になり得る増粘剤の未溶解成分や混入異物を取り除くことができる。
 上記増粘剤水溶液の粘度としては、概ね1000mPa・s~10000mPa・s程度が適当である。増粘剤水溶液の粘度が大きすぎるとフィルタに通すことができず、未溶解成分や混入異物を除去できない場合がある。フィルタの通液性の観点から好ましい増粘剤水溶液の粘度の範囲を例示すると、例えば市販されるE型粘度計を用い、液温を25℃に調整してからロータを1rpmで回転させて測定したときの粘度が、概ね10000mPa・s以下であり、好ましくは8000mPa・sm以下であり、より好ましくは6000mPa・sm以下であり、特に好ましくは4000mPa・sm以下である。
 上記活物質層形成用ペーストは、活物質、増粘剤及び水系溶媒の他に、一般的な電極の製造において活物質層形成用のペーストに用いられる一種または二種以上の材料(他の活物質層形成成分)を必要に応じて含有することができる。そのような材料の代表例として結着剤および導電材が挙げられる。上記結着剤および導電材は、希釈工程の後、活物質層形成用ペーストに投入することが好ましい。この場合、ペースト粘度をより容易に制御できる。
 ここに開示される電池製造方法の好ましい一態様では、上記増粘剤として、セルロース系ポリマーを使用する。セルロース系ポリマーは、少量でも増粘作用が高いため、該増粘剤が抵抗成分となり得る電池用途で使用される活物質層形成用ペーストの増粘剤として好ましく用いられる。また、セルロース系ポリマーは、溶解性に乏しく、粉体で投入すると未溶解成分がペースト中に残留しやすいことから、増粘剤水溶液をフィルタに通液することによって未溶解成分を除去するという発明の効果が特によく発揮され得る。
 ここに開示される電池製造方法の好ましい一態様では、上記電極はリチウム二次電池用負極であり、上記活物質として炭素系材料を使用する。また好ましくは、上記集電体として箔状の銅または銅合金を使用する。
 本発明によると、また、ここに開示される何れかの製造方法により製造された電極を備えた電池(例えばリチウム二次電池)が提供される。かかる電池は、上記のように品質安定性に優れ、かつ接着性のよい活物質層を備えた電極を用いて構築されていることから、より優れた電池性能を示す(例えば、品質安定性に優れる、サイクル耐久性が高い、生産性が良好である、製造コストが安い、ハイレート充放電性能がよい、の少なくとも一つ(好ましくは全部)を満たす)電池を提供することができる。
 このような電池は、例えば自動車等の車両に搭載される電池として好適である。したがって本発明によると、ここに開示されるいずれかの電池(複数の電池が接続された組電池の形態であり得る。)を備える車両が提供される。特に、軽量で高容量が得られることから、上記電池がリチウム二次電池(典型的にはリチウムイオン電池)であって、該リチウム二次電池を動力源(典型的には、ハイブリッド車両または電気車両の動力源)として備える車両(例えば自動車)が好適である。
図1は本発明の一実施形態に係る電極の製造フローを示す図である。 図2は本発明の一実施形態に係る塗工装置を模式的に示す図である。 図3は本発明の一実施形態に係る電池を模式的に示す図である。 図4は比較例1に係る活物質層形成用ペーストの製造フローを示す図である。 図5は比較例2に係る活物質層形成用ペーストの製造フローを示す図である。 図6は剥離強度を測定するための装置を模式的に示す図である。 図7は水の分割比率と粘度との関係を示すグラフである。 図8は本発明の一実施形態に係る電池を搭載した車両を模式的に示す側面図である。
 以下、図面を参照しながら、本発明による実施の形態を説明する。以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。なお、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、電極活物質の製造方法、セパレータや電解質の構成および製法、リチウム二次電池その他の電池の構築に係る一般的技術等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。
 特に限定することを意図したものではないが、以下では主として銅製の箔状負極集電体(銅箔)を有するリチウム二次電池(典型的にはリチウムイオン電池)用の負極(負極シート)を例として、図1に示すフローチャートを参照しつつ、本発明を詳細に説明する。
 本実施形態に係るリチウム二次電池用電極の製造方法は、集電体上に、活物質と増粘剤と水系溶媒を含む活物質層形成用ペーストを塗布、乾燥してなる活物質層を有する負極(負極シート)の製造方法である。
 図1に示すように、ここに開示されるリチウム二次電池用負極製造方法では、水系溶媒に増粘剤を溶かして増粘剤水溶液を調製し(ステップS10)、その調製した増粘剤水溶液に活物質を投入して混練を行う(ステップS20)。そして、得られた混練物を水系溶媒で希釈することによって該混練物から活物質層形成用ペーストを作製し(ステップS30)、該活物質層形成用ペーストを集電体上に塗布し乾燥させることによって、集電体上に活物質層が形成された負極(負極シート)を得る(ステップS40)。
 ステップS10の工程では、水系溶媒に増粘剤を溶かして増粘剤水溶液を調製する。
 上記増粘剤水溶液に用いられる溶媒としては、環境負荷の軽減、材料費の低減、設備の簡略化、廃棄物の減量、取扱性の向上等の種々の観点から、水系溶媒の使用が好ましい。水系溶媒としては、水または水を主体とする混合溶媒が好ましく用いられる。かかる混合溶媒を構成する水以外の溶媒成分としては、水と均一に混合し得る有機溶媒(低級アルコール、低級ケトン等)の一種または二種以上を適宜選択して用いることができる。例えば、該水系溶媒の80質量%以上(より好ましくは90質量%以上、さらに好ましくは95質量%以上)が水である水系溶媒の使用が好ましい。特に好ましい例として、実質的に水からなる水系溶媒が挙げられる。
 上記増粘剤としては、活物質層形成用ペーストの増粘剤として機能する各種ポリマーを好ましく用いることができる。好適例として、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、ヒドロキシプロピルメチルセルロース(HPMC)、エチルセルロース(EC)、ヒドロキシエチルメチルセルロース(HEMC)、等のセルロース系ポリマーが例示される。あるいはポリビニルアルコール(PVA)、エチレン‐ビニルアルコール共重合体(EVOH)、ポリアクリル酸塩、酸化スターチ、リン酸化スターチ、カゼイン等を用いることもできる。上述した材料はそれぞれ単独であるいは適宜組み合わせて使用することができる。
 このような増粘剤を水系溶媒に溶解させる操作(工程)は、例えば粉体吸引溶解装置を用いて行うことができる。粉体吸引溶解装置は、増粘剤(粉体)を負圧下で吸引し混合するので、高粘度となるような増粘剤(粉体)も均一に溶解できる。本実施形態では、増粘剤水溶液と活物質とを固練りした後、水系溶媒で希釈するため、結果として増粘剤水溶液に投入される水系溶媒が少量となり、増粘剤水溶液の濃度(延いては粘度)が上昇する。このような高粘度増粘剤は溶解性に乏しく、粉体で投入すると粗大未溶解成分が発生し、活物質層に塗工欠陥(ピンホール等)が生じる要因になり得る。しかし、粉体吸引溶解装置を用いることで、このような高濃度増粘剤(粉体)を均一に溶解でき、粗大未溶解成分の発生を防止することができる。
 なお、塗工欠陥になり得る未溶解物や混入異物を取り除くために、増粘剤水溶液をフィルタに通液してもよい。増粘剤水溶液をフィルタに通液することによって、塗工欠陥になり得るサイズ(例えば直径500μm以上、好ましくは300μm以上、特に好ましくは100μm以上)の未溶解成分や混入異物を確実に取り除くことができる。該フィルタは、例えば直径500μm以上(好ましくは300μm以上、特に好ましくは100μm以上)のサイズの未溶解成分や混入異物を捕捉し得るように構成するとよい。ここに開示される好ましい技術では、濾材をジグザグに折り畳んだ折り畳み式フィルタを用いて通液処理を行う。折り畳み式フィルタは濾過面積(表面積)が平面フィルタに比べて大きいので、高粘度増粘剤水溶液であっても通液処理を容易に行うことができる。
 上記増粘剤水溶液の粘度としては、概ね1000mPa・s~10000mPa・s程度が適当である。増粘剤水溶液の粘度が大きすぎるとフィルタに通すことができず、未溶解成分や混入異物を除去できない場合がある。フィルタの通液性の観点から好ましい増粘剤水溶液の粘度の範囲を例示すると、例えば市販されるE型粘度計を用い、液温を20℃に調整してからロータを20rpmで回転させて測定したときの粘度が、概ね10000mPa・s以下であり、好ましくは8000mPa・sm以下であり、より好ましくは6000mPa・sm以下であり、特に好ましくは4000mPa・sm以下である。
 このようにして増粘剤水溶液を調製したら、次に、調製した増粘剤水溶液に負極活物質を投入し混練(固練り)を行う(図1に示すステップS20:混練工程)。
 本実施形態で用いられる負極活物質としては、従来からリチウム二次電池に用いられる物質の一種または二種以上を特に限定することなく使用することができる。好適例として、グラファイトカーボン、アモルファスカーボン等の炭素系材料、リチウム遷移金属複合酸化物(リチウムチタン複合酸化物等)、リチウム遷移金属複合窒化物等が挙げられる。このような材料(典型的には粒子状)としては、例えば、従来公知の方法で調製される材料粉末をそのまま使用することができる。例えば、レーザー回折・散乱法に基づく平均粒径が凡そ1μm~25μmの範囲にある粒子によって実質的に構成された材料粉末を負極活物質として好ましく用いることができる。
 このような負極活物質と増粘剤水溶液とを固練り(混練)する操作は、従来の一般的なリチウム二次電池において活物質層形成用ペーストを作製する場合と同様にして行うことができる。例えば、適当な攪拌混練機(プラネタリーミキサー、ホモディスパー、クレアミックス、フィルミックス等)を使用して、活物質と増粘剤とが均一に分散するまで混練(固練り)を行うとよい。上記混練処理における好ましい混練時間は、活物質と増粘剤とが均一に分散するまでの時間とすればよい。装置構成や混練条件によっても異なり得るが、混練(固練り)時間は通常は10分~3時間であり、好ましくは10分~30分である。この固練り工程においては、粘度が比較的高い状態にあるので、活物質と増粘剤とが強い力(例えば剪断力)で練られる。そのため、増粘剤の分散が進み(活物質と増粘剤とが分散されて均一な状態となり)、活物質が増粘剤に強く吸着される。
 このようにして負極活物質と増粘剤水溶液とを固練り(混練)したら、次いで、得られた混練物に水系溶媒を添加し希釈することにより該混練物から活物質層形成用ペーストを得る(図1に示すステップS30:希釈工程)。
 上記混練物を水系溶媒で希釈する操作は、例えば、適当な攪拌混練機(プラネタリーミキサー、ホモディスパー、クレアミックス、フィルミックス等)を使用して、上記混練物と水系溶媒とが均一に混合するまで攪拌することにより行うことができる。上記攪拌処理における好ましい攪拌時間は、混練物と水系溶媒とが均一に混合するまでの時間とすればよい。
 ここで、上記固練りした後に増粘剤水溶液を投入して活物質層形成用ペーストを作製するという従来の方法では、増粘剤及び活物質が均一に分散した活物質層形成用ペーストが得られるものの、固練り後に新たな増粘剤が投入されるため、ペーストの粘度が変化し、ペースト粘度をコントロールしにくいという問題があった。特に活物質層形成用ペーストを速く乾かすために、ペーストの固形分率を高めようとすると、該ペーストの粘度が著しく増大する。そのため、該ペーストを集電体に塗工する際の塗工性が損なわれ、塗工面にスジや厚みムラが生じる一因となっていた。
 これに対し、本実施形態では、増粘剤水溶液と活物質とを固練りした後、水系溶媒で希釈して活物質層形成用ペーストを作製する。これにより、ペースト粘度を上昇させることなく、増粘剤及び活物質の分散性が極めて良好な(即ち増粘剤及び活物質が均一に分散した)活物質層形成用ペーストを作製することができる。このようにして得られた活物質層形成用ペーストは、高固形分率であってもペースト粘度が上昇せず、塗工性の良好なものであり得る。例えば市販されるE型粘度計を用い、液温を25℃に調整してからロータを1rpmで回転させて測定したときの粘度が、概ね10000mPa・s以下(例えば1000~10000mPa・s)であり、好ましくは8000mPa・sm以下であり、より好ましくは5000mPa・sm以下であり、特に好ましくは3000mPa・sm以下である。また、その固形分率は、目的に応じて適宜固形分率を選択することができるが、乾燥性の観点からは固形分率は高ければ高いほど好ましい。通常は乾きやすくなる40%以上とすることが好ましく、例えば45%以上が適当であり、より好ましくは50%以上であり、さらに好ましくは52%以上(例えば52~90%、またはそれ以上の範囲)である。従来の技術では固形分率を上げると粘度が高くなるため、固形分率を最大でも40%前後に抑える必要があったが、本技術によると、高固形分率であってもペースト粘度が上昇しないため、50%以上の高固形分率を容易に実現できる。
 ここで開示される活物質層形成用ペーストの好適例として、ペーストの粘度が10000mPa・s以下であり、かつ固形分率が50%以上(例えば50~70%の範囲)であるもの、ペーストの粘度が8000mPa・s以下であり、かつ固形分率が50%以上(例えば50~65%の範囲)であるもの、ペーストの粘度が5000mPa・s以下であり、かつ固形分率が52%以上(例えば52~65%の範囲)であるもの、ペーストの粘度が3000mPa・s以下であり、かつ固形分率が52%以上(例えば52~60%の範囲)であるもの、等が挙げられる。このような所定範囲内の粘度及び固形分率を両立して有することにより、従来得ることができなかった良好な塗工性と高い乾燥効率の双方を満足する活物質層形成用ペーストとすることができる。
 上記所定範囲内の粘度及び固形分率を両立して有する活物質層形成用ペーストは、図1に示すように、例えば、増粘剤水溶液に投入される水系溶媒の量Aと、希釈工程で投入される水系溶媒の量Bとの割合(分割比率)を適切に選択することにより実現され得る。即ち、ここで開示される技術では、活物質層形成用ペーストの水系溶媒は、増粘剤水溶液と希釈工程の2段階に分割して投入される。この場合、増粘剤水溶液に投入される水系溶媒の量Aと、希釈工程で投入される水系溶媒の量Bとの割合を変えることで、最終的なペースト固形分率は同じであるにもかかわらず、異なる粘度のペーストを作製することができる。
 好ましくは、活物質層形成用ペースト中の水系溶媒の総量のうち、増粘剤水溶液に投入された水系溶媒の割合が67質量%~76質量%である。この範囲よりも多すぎると、ペーストの粘度が上昇して該ペーストを集電体に塗工する際の塗工性が損なわれることがある。一方、この範囲よりも少なすぎると、増粘剤水溶液の粘度が上昇して該増粘剤水溶液をフィルタに通す際の通液性が損なわれることがある。塗工性と通液性の双方の兼ね合いからは、増粘剤水溶液に投入された水系溶媒の割合(分割比率)は、概ね67~76質量%が適当であり、好ましくは67.5~75.5質量%であり、より好ましくは68~74質量%であり、特に好ましく70~73質量%である。
 なお、上記活物質層形成用ペーストは、活物質、増粘剤及び水系溶媒の他に、一般的な電極の製造において活物質層形成用のペーストに用いられる一種または二種以上の材料(他の活物質層形成成分)を必要に応じて含有することができる。そのような材料の代表例として結着剤および導電材が挙げられる。上記結着剤としては、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ポリテトラフルオロエチレン(PTFE)、ポリエチレン(PE)、ポリアクリル酸(PAA)、等のポリマーを用いることができる。上記導電材としては、カーボンブラック(アセチレンブラック等)のような炭素粉末、ニッケル粉末等の導電性金属粉末等を用いることができる。これらの材料は上記希釈工程の後、活物質層形成用ペーストに投入するとよい。
 このようにして活物質層形成用ペーストを形成したら、次いで、該活物質層形成用ペーストを負極集電体上に塗布し乾燥することによって負極集電体上に負極活物質層が形成された負極を得る(図1に示すステップS40)。
 このような活物質層形成用ペーストを負極集電体に塗布する操作は、従来の一般的なリチウム二次電池用負極を作製する場合と同様にして行うことができる。例えば、適当な塗工装置(ダイコーター、スリットコーター、コンマコーター等)を使用して、上記負極集電体に所定量の上記活物質層形成用ペーストを均一な厚さに塗布することにより製造され得る。塗布後、適当な乾燥手段で塗布物を乾燥(典型的には70℃~200℃)する。
 負極集電体に活物質層形成用ペーストを塗工する装置としては、例えば図2に示すような塗工装置200が挙げられる。この塗工装置200では、長尺シート状の負極集電体210をバックアップロール220の回転により搬送しつつ、バックアップロール220とダイ230との隙間を通過させ、該負極集電体210に活物質層形成用ペースト240を塗工する。そして、乾燥炉250を通して活物質層形成用ペースト240中の溶媒(例えば水)を揮発させ、長尺シート状の負極を製造する。
 ここで、上記塗工装置200の稼働効率を高めるためには、活物質層形成用ペースト240の固形分率を高めることが望ましい。活物質層形成用ペーストの固形分率を高めると、ペーストが速く乾くため、乾燥時間(乾燥炉250を通過させる時間)を短縮して塗工装置200を効率よく稼働させることができる。しかし、活物質層形成用ペーストの固形分率を高めると、ペースト粘度が上昇するため、該ペーストを負極集電体210に塗布する際の塗布性が著しく損なわれる。例えば、ダイ230からペースト240が滑らかに離れずペースト240の挙動が不安定となり、塗工面にスジや厚みムラが生じる一因となり得る。
 これに対し、本構成により得られた活物質層形成用ペーストは、高固形分率(例えば50質量%以上)であってもペースト粘度が上昇せず、該ペーストをダイ230から集電体210に塗工する際の塗工性が良好に保たれる。したがって、塗工不良の増加を抑えつつペーストの乾燥時間を短縮し得る(ラインスピードを上昇させ得る)。したがって、乾燥時間を短縮して塗工装置200を効率よく稼働させることができ、電極の生産性が良好となる。また、乾燥工程の設備投資額を大幅に削減でき、製造コストを安価にできる。
 その後、乾燥炉250で活物質層形成用ペースト中の溶媒(ここでは水)を揮発させることによって、活物質層形成用ペースト中の溶媒を除去する。活物質層形成用ペーストから溶媒を除去することによって、負極活物質を含む負極活物質層が形成される。
 このようにして、負極集電体上に負極活物質層が形成された負極(負極シート)を得ることができる。なお、乾燥後、必要に応じて適当なプレス処理(例えばロールプレス処理)を施すことによって、負極活物質層の厚みや密度を適宜調整することができる。
 本実施形態に係る電池製造方法によれば、増粘剤水溶液と活物質とを混練(固練り)した後、該固練物を水系溶媒で希釈するので、ペースト粘度を上昇させることなく、増粘剤及び活物質の分散性が極めて良好な(即ち増粘剤及び活物質が均一に分散した)活物質層形成用ペーストを作製することができる。このような活物質層形成用ペーストを用いれば、活物質が増粘剤に強く吸着されるため、活物質間や活物質と集電体との間の接着強度を向上させることができる。また、ペーストを集電体に塗工する際の塗工性が良好となり、塗工面にスジや厚みムラが生じることを解消することができる。従って、本構成によれば、活物質層形成用ペーストの塗工不良を回避し得、品質安定性に優れた最適な電極(例えば負極)を製造することができる。
 本実施形態に係る電極(例えば負極)は、上記のように塗工不良が解消され、品質安定性に優れることから、種々の形態の電池の構成要素または該電池に内蔵される電極体の構成要素(例えば負極)として好ましく利用され得る。例えば、ここに開示されるいずれかの方法により製造された負極と、正極(本発明を適用して製造された正極であり得る。)と、該正負極間に配置される電解質と、典型的には正負極間を離隔するセパレータ(固体状またはゲル状の電解質を用いた電池では省略され得る。)と、を備えるリチウム二次電池の構成要素として好ましく使用され得る。かかる電池を構成する外容器の構造(例えば金属製の筐体やラミネートフィルム構造物)やサイズ、あるいは正負極集電体を主構成要素とする電極体の構造(例えば捲回構造や積層構造)等について特に制限はない。
 以下、本発明の方法を適用して製造されたシート状負極(負極シート)を用いて構築されるリチウム二次電池の一実施形態につき、図3に示す模式図を参照しつつ説明する。
 図示するように、本実施形態に係るリチウム二次電池100は、金属製(樹脂製又はラミネートフィルム製も好適である。)のケース40を備える。このケース(外容器)40は、上端が開放された扁平な直方体状のケース本体42と、その開口部を塞ぐ蓋体44とを備える。ケース40の上面(すなわち蓋体44)には、捲回電極体80の正極と電気的に接続する正極端子92および該電極体80の負極と電気的に接続する負極端子94が設けられている。ケース40の内部には、例えば長尺シート状の正極(正極シート)50および長尺シート状の負極(負極シート)60を計二枚の長尺シート状セパレータ(セパレータシート)70とともに積層して捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって作製される扁平形状の捲回電極体80が収容される。
 正極シート50および負極シート60は、それぞれ、長尺シート状の電極集電体の両面に電極活物質を主成分とする電極活物質層が設けられた構成を有する。これらの電極シート50、60の幅方向の一端には、いずれの面にも上記電極活物質層が設けられていない電極活物質層非形成部分が形成されている。上記積層の際には、正極シート50の正極活物質層非形成部分と負極シート60の負極活物質層非形成部分とがセパレータシート70の幅方向の両側からそれぞれはみ出すように、正極シート50と負極シート60とを幅方向にややずらして重ね合わせる。その結果、捲回電極体80の捲回方向に対する横方向において、正極シート50および負極シート60の電極活物質層非形成部分がそれぞれ捲回コア部分(すなわち正極シート50の正極活物質層形成部分と負極シート60の負極活物質層形成部分と二枚のセパレータシート70とが密に捲回された部分)から外方にはみ出ている。かかる正極側はみ出し部分(すなわち正極活物質層の非形成部分)82および負極側はみ出し部分(すなわち負極活物質層の非形成部分)84には、正極リード端子96および負極リード端子98がそれぞれ付設されており、上述の正極端子92および負極端子94とそれぞれ電気的に接続される。
 かかる捲回電極体80を構成する構成要素は、負極シートの製造プロセスを除いては、従来のリチウム二次電池の電極体と同様でよく、特に制限はない。例えば、正極シート50は、長尺状の正極集電体の表面に正極活物質層が形成されている。正極集電体にはアルミニウム箔(本実施形態)その他の正極に適する金属箔が好適に使用される。正極活物質は従来からリチウム二次電池に用いられる物質の一種または二種以上を特に限定することなく使用することができる。好適例として、LiMn、LiCoO、LiNiO等の、リチウムと一種または二種以上の遷移金属元素とを構成金属元素として含むリチウム遷移金属複合酸化物を主成分とするものが好ましく用いられる。
 負極シート60も正極シート50と同様に、長尺状の負極集電体の表面に負極活物質層が形成されている。負極集電体には銅箔(本実施形態)その他の負極に適する金属箔が好適に使用される。負極活物質は従来からリチウム二次電池に用いられる物質の一種または二種以上を特に限定することなく使用することができる。好適例として、グラファイトカーボン、アモルファスカーボン等の炭素系材料、リチウム含有遷移金属酸化物や遷移金属窒化物等が挙げられる。
 また、正負極シート50,60間に使用されるセパレータシート70の好適例としては、多孔質ポリオレフィン系樹脂で構成されたものが挙げられる。例えば、合成樹脂製(例えばポリエチレン等のポリオレフィン製)多孔質セパレータシートを好適に使用し得る。なお、電解質として固体電解質もしくはゲル状電解質を使用する場合には、セパレータが不要な場合(すなわちこの場合には電解質自体がセパレータとして機能し得る。)があり得る。
 かかる構成の捲回電極体80をケース本体42に収容し、そのケース本体42内に適当な非水電解液を配置(注液)する。ケース本体42内に上記捲回電極体80と共に収容される非水電解液としては、従来のリチウムイオン電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。かかる非水電解液は、典型的には、適当な非水溶媒に支持塩を含有させた組成を有する。例えば、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とを3:4:3の体積比で含む混合溶媒に支持塩としてのLiPFを約1mol/リットルの濃度で含有させた非水電解液を用いることができる。
 上記非水電解液を捲回電極体80とともにケース本体42に収容し、ケース本体42の開口部を蓋体44で封止することにより、本実施形態に係るリチウムイオン二次電池100の構築(組み立て)が完成する。なお、ケース本体42の封止プロセスや電解液の配置(注液)プロセスは、従来のリチウムイオン二次電池の製造で行われている手法と同様にして行うことができる。
 このようにして構築された電池は、上記のように品質安定性に優れ、かつ接着性のよい活物質層を備えた電極(例えば負極)を用いて構築されていることから、優れた電池性能を示すものである。例えば、上記電極を用いて電池を構築することにより、サイクル耐久性が高い、生産性が良好である、製造コストが安い、ハイレート充放電性能がよい、の少なくとも一つ(好ましくは全部)を満たす電池を提供することができる。
 以下、本実施形態を実施例に基づいてさらに詳細に説明する。
 負極活物質層形成用ペーストの作製を目的として、その原料であるカーボン粉末(負極活物質)とCMC粉末(増粘剤)とSBR(結着剤)とを固形分組成比が98.7:0.7:0.7となるように秤量して用意した。
[実施例1]
<増粘剤水溶液の調製>
 上記CMC粉末と水とを市販の粉体吸引溶解装置(ダマナイザー:イズミフードマシナリ社製)に投入し、循環流量3000L/h、攪拌速度100rpmで30分、分散混合することにより、増粘剤水溶液を調製した。その後、増粘剤水溶液を折り畳み式フィルタに通液し、100μm以上の不溶解物を取り除いた。増粘剤水溶液の増粘剤濃度(質量パーセント濃度)は1.46%となるように調整した。
<負極活物質層形成用ペーストの作製>
 上記増粘剤水溶液とカーボン粉末とを市販の攪拌混練機(ハイビスディスパーミックス:プライミクス社製)に投入し、回転数50rpmで0.5時間固練りした(混練工程)。次いで、攪拌混練機に水を投入し、回転数50rpmで10分間攪拌することによって、該混練物から活物質層形成用ペーストを作製した(希釈工程)。その後、攪拌混練機にSBR溶液を投入し、回転数50rpmで10分間攪拌した。このようにして、目的の負極活物質層形成用ペーストを得た。
 なお、本例では、最終的な負極活物質層形成用ペーストの固形分率が54質量%となるように調整した。また、水の分割比率X(=[混練工程に投入された水の量/活物質層形成用ペースト中の水の総量]×100)が63.2%となるように調整した。
[比較例1]
 本例では、増粘剤を溶解せずに粉体で投入して負極活物質層形成用ペーストを作製した。具体的には、図4に示すように、カーボン粉末とCMC粉末と水とを市販の攪拌混練機(ハイビスディスパーミックス:プライミクス社製)に投入し、回転数50rpmで0.5時間混練した(混練工程)。次いで、攪拌混練機に水を投入し、回転数50rpmで10分間攪拌した(希釈工程)。その後、SBR溶液を投入し、回転数50rpmで10分間攪拌した。このようにして、目的の負極活物質層形成用ペーストを得た。なお、負極活物質層形成用ペーストの固形分率及び水の分割比率Xは実施例1と同様とした。
[比較例2]
 本例では、増粘剤水溶液と活物質とを固練りした後、増粘剤水溶液を投入して負極活物質層形成用ペーストを作製した。具体的には、図5に示すように、実施例1と同様にして増粘剤水溶液を調製し、該増粘剤水溶液の一部とカーボン粉末とを市販の攪拌混練機(ハイビスディスパーミックス:プライミクス社製)に投入し、回転数50rpmで0.5時間固練りした(混練工程)。次いで、攪拌混練機に増粘剤水溶液の残量を投入し、回転数50rpmで10分間攪拌することによって、該混練物から活物質層形成用ペーストを作製した(希釈工程)。その後、攪拌混練機にSBR溶液を投入し、回転数50rpmで10分間攪拌した。このようにして、目的の負極活物質層形成用ペーストを得た。なお、負極活物質層形成用ペーストの固形分率及び水の分割比率Xは実施例1と同様とした。
<ペースト粘度>
 上記得られた実施例1及び比較例1,2に係る負極活物質層形成用ペーストの粘度をE型粘度計により測定した。ここでは液温を25℃に調整してからロータを1rpmで回転させて測定した。
<負極シート>
 また、各種の負極活物質層形成用ペーストを用いて負極シートを作製し、その特性を評価した。負極シートの作製は、以下のようにして行った。
 各種の負極活物質層形成用ペーストを銅箔(負極集電体)の片面に帯状に塗布して乾燥し、負極集電体の片面に負極活物質層が設けられた負極シートを作製した。負極活物質層形成用ペーストの塗布量(片面)は、約3.75mg/cm(固形分基準)となるように調節した。また、乾燥後、負極活物質層の厚みが約80μmとなるようにプレスした。
<剥離強度>
 上記各種の負極シートの剥離強度を測定した。具体的には、図6に示すように、負極シート60を測定台68に載せ、負極活物質層62側の面を両面テープ(φ10)66で治具65に固定し、該治具65を負極集電体64の面に対して垂直(剥離角度が90±5°)となる方向に引っ張り、毎秒0.5mmの速度で連続的に剥がした。そして、負極活物質層62が負極集電体64から剥がれるまでの荷重の平均値を剥離強度として測定した。
<スケ(ピンホール)量>
 上記各種の負極活物質層の表面を市販の表面欠陥検査装置(型名アイリス:株式会社アヤハエンジニアリング社製)により検査し、負極シート100mあたりに生じたスケ(ピンホール)の個数を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、増粘剤を溶解せずに粉体で投入した比較例1は、ペースト粘度が低く、剥離強度も高かったが、活物質層のピンホールが非常に多かった。一方、増粘剤水溶液と活物質とを固練りした後、増粘剤水溶液を投入した比較例2は、活物質層のピンホールは少なかったものの、剥離強度が若干低下した。また、ペースト粘度が20000mPa・sとなり、該ペーストを集電体に塗工する際の塗工性が悪かった。これに対し、増粘剤水溶液と活物質とを固練りした後、水で希釈した実施例1は、ペースト粘度が2500mPa・sと低く、該ペーストを集電体に塗工する際の塗工性が良好であった。また、剥離強度も1.5kgf(1kgf=9.80665N)と高く、密着性のよい活物質層を形成し得ることが確認できた。さらに、活物質層のピンホールも少なく、ピンホールの発生を抑制し得ることが確認できた。
[実施例2]
 増粘剤水溶液の増粘剤濃度を1.28%とし、水の分割比率Xを71.9%に変更したこと以外は、実施例1と同様にして負極活物質層形成用ペーストを作製した。
[実施例3]
 増粘剤水溶液の増粘剤濃度を1.18%とし、水の分割比率Xを78.2%に変更したこと以外は、実施例1と同様にして負極活物質層形成用ペーストを作製した。
 上記得られた実施例1~3に係る負極活物質層形成用ペースト及び増粘剤水溶液の粘度をE型粘度計により測定した。ここでは液温を25℃に調整してからロータを1rpmで回転させて測定した。結果を表2及び図7のグラフに示す。
Figure JPOXMLDOC01-appb-T000002
 表2及び図7から明らかなように、水の分割比率Xを78.2%とした実施例3はペースト粘度が10000mPa・s以上となり、該ペーストを集電体に塗工する際の塗工性が実施例1、2よりも悪かった。一方、水の分割比率Xを63.2%とした実施例1は、ペースト粘度は低かったものの、増粘剤水溶液の粘度が15000mPa・sとなり、該増粘剤水溶液をフィルタに通液する際の通液性が実施例2、3よりも悪かった。ペーストの塗工性と増粘剤水溶液の通液性との兼ね合いからは、水の分割比率Xは概ね67~76%が適当であり、好ましくは67.5~75.5%であり、より好ましくは68~74%であり、特に好ましく70~73%である。ここで供試した負極シートの場合、分割比率Xを76%以下にすることによって、10000mPa・s以下という塗工性の良好な活物質層形成用ペーストを実現できた。また、分割比率Xを67%以上にすることによって、10000mPa・s以下というフィルタ通液性の良好な増粘剤水溶液を実現できた。
 以上、本発明を好適な実施形態及び実施例により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。例えば、上述した実施形態及び実施例では主としてリチウム二次電池用負極を製造する場合について説明してきたが、これに限定されない。本発明は電極の正負の区別なく適用することができる。また、電池の種類は上述したリチウム二次電池に限られず、電極体構成材料や電解質が異なる種々の内容の電池、例えば、ニッケル水素電池、ニッケルカドミウム電池であってもよい。
 本発明によれば、活物質層形成用ペーストの塗工不良を回避し得、品質安定性と耐久性に優れた高性能な電池を製造することができる電池製造方法を提供することができる。
 なお、ここに開示されるいずれかの電池100は、車両に搭載される電池として適した性能を備えたものであり得る。したがって本発明によると、図8に示すように、ここに開示されるいずれかの電池100を備えた車両1が提供される。特に、該電池100を動力源(典型的には、ハイブリッド車両または電気車両の動力源)として備える車両(例えば自動車)1が提供される。

Claims (10)

  1.  集電体上に、活物質と増粘剤と水系溶媒とを含む活物質層形成用ペーストを塗布し乾燥してなる活物質層を有する電極を備えた電池の製造方法であって、
     水系溶媒に増粘剤を溶かした増粘剤水溶液を調製する工程と、
     前記調製した増粘剤水溶液に活物質を投入し混練を行う混練工程と、
     前記混練工程で得られた混練物に水系溶媒を添加し希釈することによって該混練物から活物質層形成用ペーストを得る希釈工程と、
     前記活物質層形成用ペーストを集電体上に塗布し乾燥させることによって前記集電体上に活物質層が形成された電極を得る工程と
     を包含する、電池の製造方法。
  2.  前記混練工程を行う前に、前記増粘剤水溶液をフィルタに通液する、請求項1に記載の電池製造方法。
  3.  前記希釈工程の後、前記活物質層形成用ペーストに結着剤を投入する、請求項1または2に記載の電池製造方法。
  4.  前記活物質層形成用ペースト中の水系溶媒の総量のうち、前記増粘剤水溶液に投入された水系溶媒の占める割合が67質量%~76質量%である、請求項1から3の何れか一つに記載の電池製造方法。
  5.  前記活物質層形成用ペーストの粘度を1000mPa・s~10000mPa・sに形成する、請求項1から4の何れか一つに記載の電池製造方法。
  6.  前記活物質層形成用ペーストの固形分率を50質量%~70質量%に形成する、請求項1から5の何れか一つに記載の電池製造方法。
  7.  前記増粘剤水溶液の粘度を1000mPa・s~10000mPa・sに形成する、請求項1から6の何れか一つに記載の電池製造方法。
  8.  前記増粘剤として、セルロース系ポリマーを使用する、請求項1から7の何れか一つに記載の電池製造方法。
  9.  前記電極はリチウム二次電池用負極であり、
     前記活物質として、炭素系材料を使用する、請求項1から8の何れか一つに記載の電池製造方法。
  10.  前記集電体として、箔状の銅または銅合金を使用する、請求項9に記載の電池製造方法。
PCT/JP2010/067477 2010-10-05 2010-10-05 電池の製造方法 WO2012046305A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012537512A JP5561567B2 (ja) 2010-10-05 2010-10-05 電池の製造方法
KR1020137011543A KR101530791B1 (ko) 2010-10-05 2010-10-05 전지의 제조 방법
PCT/JP2010/067477 WO2012046305A1 (ja) 2010-10-05 2010-10-05 電池の製造方法
US13/877,688 US9608258B2 (en) 2010-10-05 2010-10-05 Battery manufacturing method
CN201080069403.1A CN103155233B (zh) 2010-10-05 2010-10-05 电池的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/067477 WO2012046305A1 (ja) 2010-10-05 2010-10-05 電池の製造方法

Publications (1)

Publication Number Publication Date
WO2012046305A1 true WO2012046305A1 (ja) 2012-04-12

Family

ID=45927323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067477 WO2012046305A1 (ja) 2010-10-05 2010-10-05 電池の製造方法

Country Status (5)

Country Link
US (1) US9608258B2 (ja)
JP (1) JP5561567B2 (ja)
KR (1) KR101530791B1 (ja)
CN (1) CN103155233B (ja)
WO (1) WO2012046305A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013257978A (ja) * 2012-06-11 2013-12-26 Toyota Motor Corp 負極ペースト及び負極ペーストの製造方法
JP2014078357A (ja) * 2012-10-09 2014-05-01 Toyota Motor Corp 電極ペーストの製造方法
CN103985844A (zh) * 2013-02-12 2014-08-13 株式会社捷太格特 蓄电材料的制造装置以及制造方法
JP2014179314A (ja) * 2013-02-12 2014-09-25 Jtekt Corp 蓄電材料の製造装置および製造方法
CN104779363A (zh) * 2014-01-14 2015-07-15 株式会社捷太格特 蓄电材料的制造装置以及制造方法
JP2015162299A (ja) * 2014-02-26 2015-09-07 株式会社ジェイテクト 蓄電材料の製造装置および製造方法
JP2015207471A (ja) * 2014-04-21 2015-11-19 日産自動車株式会社 非水電解質二次電池用負極活物質スラリーの製造方法
JP2016004625A (ja) * 2014-06-13 2016-01-12 株式会社ジェイテクト 蓄電材料の製造装置及び製造方法
JP2016189305A (ja) * 2015-03-30 2016-11-04 株式会社Gsユアサ 蓄電素子
WO2017154776A1 (ja) * 2016-03-08 2017-09-14 Necエナジーデバイス株式会社 リチウムイオン電池用増粘剤粉末、水系電極スラリー、リチウムイオン電池用電極、リチウムイオン電池、リチウムイオン電池用水系電極スラリーの製造方法およびリチウムイオン電池用電極の製造方法
KR101938236B1 (ko) * 2015-11-11 2019-01-14 주식회사 엘지화학 분산성 향상 및 저항 감소를 위한 이차전지용 음극 슬러리 및 이를 포함하는 음극
CN114094169A (zh) * 2021-11-26 2022-02-25 西南石油大学 一种基于羟丙基甲基纤维素内建准固态电解质的高安全性锂离子电池

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6291903B2 (ja) * 2014-02-26 2018-03-14 株式会社ジェイテクト 混練装置
CN103956455B (zh) * 2014-05-07 2016-04-27 东莞市安德丰电池有限公司 一种锂电正、负极浆料低粘度处理方法
JP6442943B2 (ja) * 2014-09-12 2018-12-26 株式会社ジェイテクト 蓄電材料の製造装置及び製造方法
CN104362303B (zh) * 2014-10-30 2017-02-15 陕西德飞新能源科技有限公司大荔分公司 一种镍氢动力电池负极极片的制备方法
KR102002405B1 (ko) * 2016-03-29 2019-07-23 주식회사 엘지화학 전극 슬러리의 제조방법
KR102248864B1 (ko) * 2017-04-06 2021-05-06 주식회사 엘지화학 이차 전지용 음극 및 이의 제조 방법
JP2019075306A (ja) * 2017-10-17 2019-05-16 トヨタ自動車株式会社 リチウムイオン二次電池の充電装置、及び、リチウムイオン二次電池の充放電方法
KR102245127B1 (ko) * 2018-01-08 2021-04-28 주식회사 엘지화학 전극기재의 건조 상태를 모니터링하는 방법 및 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006092760A (ja) * 2004-09-21 2006-04-06 Matsushita Electric Ind Co Ltd 非水系二次電池の負極用電極板の製造方法
JP2010080297A (ja) * 2008-09-26 2010-04-08 Sanyo Electric Co Ltd 非水電解質二次電池用負極、非水電解質二次電池及び非水電解質二次電池用負極の製造方法
JP2010165493A (ja) * 2009-01-14 2010-07-29 Sanyo Electric Co Ltd 非水電解質二次電池用負極、非水電解質二次電池及び非水電解質二次電池用負極の製造方法
JP2010211975A (ja) * 2009-03-09 2010-09-24 Toyota Motor Corp 二次電池用の電極の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69132403T2 (de) * 1990-03-27 2001-03-29 Toray Industries Zusammengesetzte membran
JP2000323125A (ja) 1999-05-17 2000-11-24 Gs Melcotec Kk 非水電解質電池用負極活物質スラリーおよびこれを用いた非水電解質電池
JP2001056524A (ja) 1999-08-20 2001-02-27 Fuji Photo Film Co Ltd 熱現像画像記録材料およびその製造方法
CN100337350C (zh) * 2004-06-07 2007-09-12 松下电器产业株式会社 非水系二次电池的正极用电极板及该电极板的制造方法
JP4852836B2 (ja) 2004-10-05 2012-01-11 パナソニック株式会社 非水系二次電池の負極用電極板の製造方法
JP2011034962A (ja) * 2009-07-07 2011-02-17 Nippon Zeon Co Ltd リチウムイオン二次電池電極の製造方法、及びリチウムイオン二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006092760A (ja) * 2004-09-21 2006-04-06 Matsushita Electric Ind Co Ltd 非水系二次電池の負極用電極板の製造方法
JP2010080297A (ja) * 2008-09-26 2010-04-08 Sanyo Electric Co Ltd 非水電解質二次電池用負極、非水電解質二次電池及び非水電解質二次電池用負極の製造方法
JP2010165493A (ja) * 2009-01-14 2010-07-29 Sanyo Electric Co Ltd 非水電解質二次電池用負極、非水電解質二次電池及び非水電解質二次電池用負極の製造方法
JP2010211975A (ja) * 2009-03-09 2010-09-24 Toyota Motor Corp 二次電池用の電極の製造方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013257978A (ja) * 2012-06-11 2013-12-26 Toyota Motor Corp 負極ペースト及び負極ペーストの製造方法
JP2014078357A (ja) * 2012-10-09 2014-05-01 Toyota Motor Corp 電極ペーストの製造方法
CN103985844A (zh) * 2013-02-12 2014-08-13 株式会社捷太格特 蓄电材料的制造装置以及制造方法
JP2014179313A (ja) * 2013-02-12 2014-09-25 Jtekt Corp 蓄電材料の製造装置および製造方法
JP2014179314A (ja) * 2013-02-12 2014-09-25 Jtekt Corp 蓄電材料の製造装置および製造方法
CN104779363A (zh) * 2014-01-14 2015-07-15 株式会社捷太格特 蓄电材料的制造装置以及制造方法
JP2015133252A (ja) * 2014-01-14 2015-07-23 株式会社ジェイテクト 蓄電材料の製造装置および製造方法
US10374217B2 (en) 2014-02-26 2019-08-06 Jtekt Corporation Apparatus and process for producing electricity storage material
JP2015162299A (ja) * 2014-02-26 2015-09-07 株式会社ジェイテクト 蓄電材料の製造装置および製造方法
JP2015207471A (ja) * 2014-04-21 2015-11-19 日産自動車株式会社 非水電解質二次電池用負極活物質スラリーの製造方法
JP2016004625A (ja) * 2014-06-13 2016-01-12 株式会社ジェイテクト 蓄電材料の製造装置及び製造方法
US10076855B2 (en) 2014-06-13 2018-09-18 Jtekt Corporation Apparatus and method for manufacturing an electricity storage material
JP2016189305A (ja) * 2015-03-30 2016-11-04 株式会社Gsユアサ 蓄電素子
US10644316B2 (en) 2015-11-11 2020-05-05 Lg Chem, Ltd. Anode slurry for secondary battery for improving dispersibility and reducing resistance, and anode comprising same
KR101938236B1 (ko) * 2015-11-11 2019-01-14 주식회사 엘지화학 분산성 향상 및 저항 감소를 위한 이차전지용 음극 슬러리 및 이를 포함하는 음극
WO2017154776A1 (ja) * 2016-03-08 2017-09-14 Necエナジーデバイス株式会社 リチウムイオン電池用増粘剤粉末、水系電極スラリー、リチウムイオン電池用電極、リチウムイオン電池、リチウムイオン電池用水系電極スラリーの製造方法およびリチウムイオン電池用電極の製造方法
JPWO2017154776A1 (ja) * 2016-03-08 2019-01-10 Necエナジーデバイス株式会社 リチウムイオン電池用増粘剤粉末、水系電極スラリー、リチウムイオン電池用電極、リチウムイオン電池、リチウムイオン電池用水系電極スラリーの製造方法およびリチウムイオン電池用電極の製造方法
JP6993960B2 (ja) 2016-03-08 2022-01-14 株式会社エンビジョンAescジャパン リチウムイオン電池用増粘剤粉末、水系電極スラリー、リチウムイオン電池用電極、リチウムイオン電池、リチウムイオン電池用水系電極スラリーの製造方法およびリチウムイオン電池用電極の製造方法
US11329289B2 (en) 2016-03-08 2022-05-10 Envision Aesc Japan Ltd. Thickener powder for lithium-ion battery, water-based electrode slurry, electrode for lithium-ion battery, lithium-ion battery, method for manufacturing water-based electrode slurry for lithium-ion battery, and method for manufacturing electrode for lithium-ion battery
CN114094169A (zh) * 2021-11-26 2022-02-25 西南石油大学 一种基于羟丙基甲基纤维素内建准固态电解质的高安全性锂离子电池
CN114094169B (zh) * 2021-11-26 2024-01-26 西南石油大学 一种基于羟丙基甲基纤维素内建准固态电解质的高安全性锂离子电池

Also Published As

Publication number Publication date
JPWO2012046305A1 (ja) 2014-02-24
JP5561567B2 (ja) 2014-07-30
US9608258B2 (en) 2017-03-28
KR20130096750A (ko) 2013-08-30
CN103155233A (zh) 2013-06-12
US20130202781A1 (en) 2013-08-08
CN103155233B (zh) 2015-05-13
KR101530791B1 (ko) 2015-06-22

Similar Documents

Publication Publication Date Title
JP5561567B2 (ja) 電池の製造方法
CN111919315B (zh) 用于包含微粒非原纤化粘结剂的干电极膜的组合物和方法
JP5594548B2 (ja) 電池用電極の製造方法
JP5614578B2 (ja) 水性組成物の製造方法
WO2013179924A1 (ja) リチウムイオン二次電池の電極及びこれを用いたリチウムイオン二次電池
US20200274153A1 (en) Particulate active material power storage device positive electrode power storage device and production method for particulate active material
KR20150027026A (ko) 리튬 이온 2차 전지의 전극 및 그 전극용 페이스트의 조제 방법 그리고 그 전극의 제작 방법
JP5652666B2 (ja) 二次電池用電極の製造方法
JP2012138217A (ja) 電池の製造方法
JP5483092B2 (ja) 電池と電池用電極およびその製造方法
TWI686002B (zh) 蓄電裝置用集電體、其製造方法及用於其製造之塗佈液
KR101170172B1 (ko) 리튬 2차전지용 정극합재도료의 제작방법 및 리튬2차전지용 정극
JP2011253684A (ja) 電池の製造方法
JP5605614B2 (ja) リチウム二次電池の製造方法
JP2017091701A (ja) 非水電解質二次電池用電極の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
JP2014143064A (ja) 二次電池およびその製造方法
JP2010211975A (ja) 二次電池用の電極の製造方法
JP7301082B2 (ja) 二次電池用電極の製造方法および二次電池の製造方法
JP5072061B2 (ja) 非水二次電池用正極の製造方法、および非水二次電池
JP2016126900A (ja) 二次電池用電極の製造方法
JP2005285461A (ja) 非水電解質二次電池用負極の製造方法およびこの製造法による負極を備えた非水電解質二次電池
JP4933752B2 (ja) リチウム二次電池用正極合材塗料の作製方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080069403.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012537512

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13877688

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137011543

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10858113

Country of ref document: EP

Kind code of ref document: A1