WO2012032840A1 - 電子部品の表面実装方法及び電子部品が実装された基板 - Google Patents
電子部品の表面実装方法及び電子部品が実装された基板 Download PDFInfo
- Publication number
- WO2012032840A1 WO2012032840A1 PCT/JP2011/065485 JP2011065485W WO2012032840A1 WO 2012032840 A1 WO2012032840 A1 WO 2012032840A1 JP 2011065485 W JP2011065485 W JP 2011065485W WO 2012032840 A1 WO2012032840 A1 WO 2012032840A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electronic component
- metal layer
- conductive circuit
- thermoplastic resin
- resist
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 71
- 239000000758 substrate Substances 0.000 title claims abstract description 38
- 229910052751 metal Inorganic materials 0.000 claims abstract description 135
- 239000002184 metal Substances 0.000 claims abstract description 135
- 239000000463 material Substances 0.000 claims abstract description 101
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 46
- 238000001816 cooling Methods 0.000 claims abstract description 9
- 238000003825 pressing Methods 0.000 claims abstract description 9
- 238000002844 melting Methods 0.000 claims abstract description 4
- 230000008018 melting Effects 0.000 claims abstract description 4
- 239000002245 particle Substances 0.000 claims description 11
- 238000005304 joining Methods 0.000 claims description 3
- 229910000679 solder Inorganic materials 0.000 abstract description 27
- 229920005989 resin Polymers 0.000 abstract description 8
- 239000011347 resin Substances 0.000 abstract description 8
- 239000011888 foil Substances 0.000 description 18
- 230000008569 process Effects 0.000 description 16
- 238000007747 plating Methods 0.000 description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 10
- 230000004927 fusion Effects 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 238000005530 etching Methods 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- 239000004593 Epoxy Substances 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 2
- 238000007646 gravure printing Methods 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G2/00—Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
- H01G2/02—Mountings
- H01G2/06—Mountings specially adapted for mounting on a printed-circuit support
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/04—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the partial melting of at least one layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/228—Terminals
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/11—Printed elements for providing electric connections to or between printed circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/06—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/24—Reinforcing the conductive pattern
- H05K3/244—Finish plating of conductors, especially of copper conductors, e.g. for pads or lands
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/303—Surface mounted components, e.g. affixing before soldering, aligning means, spacing means
- H05K3/305—Affixing by adhesive
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0104—Properties and characteristics in general
- H05K2201/0129—Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10613—Details of electrical connections of non-printed components, e.g. special leads
- H05K2201/10621—Components characterised by their electrical contacts
- H05K2201/10636—Leadless chip, e.g. chip capacitor or resistor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/02—Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
- H05K2203/0285—Using ultrasound, e.g. for cleaning, soldering or wet treatment
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/05—Patterning and lithography; Masks; Details of resist
- H05K2203/0562—Details of resist
- H05K2203/0571—Dual purpose resist, e.g. etch resist used as solder resist, solder resist used as plating resist
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/11—Treatments characterised by their effect, e.g. heating, cooling, roughening
- H05K2203/1189—Pressing leads, bumps or a die through an insulating layer
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/14—Related to the order of processing steps
- H05K2203/1461—Applying or finishing the circuit pattern after another process, e.g. after filling of vias with conductive paste, after making printed resistors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to an electronic component surface mounting method for mounting various electronic components such as resistors and capacitors on a printed wiring board on which a conductive circuit is formed, and a substrate on which the electronic component is mounted.
- FIG. 5 is a process diagram showing a surface mounting procedure according to Conventional Example 1.
- a substrate in which a copper foil 220 having a thickness of about 12 ⁇ m to 35 ⁇ m is laminated on the surface of a base material 210 made of a heat-resistant glass epoxy resin or polyimide resin is used (FIG. 5A). )reference).
- a conductive circuit 221 is formed on the substrate by using a conventionally known photolithography method and etching method (see FIG. 5B).
- plating 230 such as Sn is applied to produce the printed wiring board 200 (see FIG. 3C).
- cream solder 240 is supplied onto the plating 230 in the conductive circuit 221 by screen printing or the like. And the electrode part 310 of the electronic component 300 is arrange
- Patent Literature a method using a connection sheet obtained by laminating a flux film on a sheet-like solder material, a method using an anisotropic conductive sheet, an anisotropic conductive paste, etc. have been proposed (Patent Literature). 1).
- Patent Literature a method using a connection sheet obtained by laminating a flux film on a sheet-like solder material, a method using an anisotropic conductive sheet, an anisotropic conductive paste, etc.
- FIG. 6 is a schematic cross-sectional view of a substrate on which electronic components are mounted, obtained by the surface mounting method according to Conventional Example 2.
- FIG. 7 is a process diagram showing a surface mounting procedure according to Conventional Example 2.
- a substrate in which a metal foil 420 is laminated on an insulating base material 410 made of glass epoxy resin or the like is used (see FIG. 7A).
- a thermoplastic resin material (hereinafter referred to as a resist) configured as an ink material is applied onto the substrate surface so as to have a required pattern shape (see FIG. 5B).
- the exposed portion of the metal not covered with the resist 430 is removed by etching, so that the conductive circuit 421 is formed.
- a printed wiring board 400 on which the conductive circuit 421 is formed is obtained (see FIG. 3C).
- a protruding electrode 450 is formed on the surface of the electrode 510 of the electronic component 500 by plating or a conventionally known stud bump method (see FIG. 4D).
- the electronic component 500 is pressed against the resist 430 on the surface of the printed wiring board 400 heated to about 60 ° C. in a state where ultrasonic vibration is applied so that the protruding electrode 450 is in contact (see FIG. 5E). .
- the pressed portion of the tip of the protruding electrode 450 in the resist 430 is melted and removed by the friction generated between the protruding electrode 450 and the resist 430.
- a metal fusion part 460 is formed between the tip of the protruding electrode 450 and the conductive circuit 421 by friction caused by ultrasonic vibration.
- the resist 430 made of a thermoplastic resin is cooled and cured again, so that the electrode 510 and the conductive circuit 421 of the electronic component 500 are connected to the protruding electrode 450 and the metal. They are electrically connected through the fusion part 460 (see FIG. 6F and FIG. 6).
- the mechanism of bonding using ultrasonic vibration is performed in the order of relative sliding friction at the bonding interface, destruction of the surface oxide film, generation of metal diffusion, and completion of bonding.
- these series of flows do not occur simultaneously at the entire bonding interface, and a load due to ultrasonic vibration may be continuously applied even to a portion where the bonding has already been completed.
- stress due to ultrasonic vibration cannot escape due to slippage at the interface, and shear stress acts on the joint.
- the deformation strength of the welded portion is usually increased, cracks are likely to occur near the joint portion.
- the above mounting method has a problem that the cost of forming the protruding electrode 450 is high.
- An object of the present invention is to provide a surface mounting method of an electronic component and a substrate on which the electronic component is mounted, which can suppress the occurrence of cracks at the joint interface without using a solder material.
- the present invention employs the following means in order to solve the above problems.
- the surface mounting method of the first electronic component is On the substrate body, providing a conductive circuit and a thermoplastic resin layer formed on the surface side of the conductive circuit; Providing a metal layer on the surface of the electrode of the electronic component; While pressing the metal layer of the electronic component against the thermoplastic resin layer, by applying a load due to ultrasonic vibration that vibrates in a direction substantially parallel to the surface of the metal layer, the thermoplastic resin is partially melted.
- a surface mounting method for an electronic component comprising: The metal layer is formed of a thin layer made of a material whose shear strength is lower than that of the material constituting the conductive circuit.
- the connection between the electrode of the electronic component and the metal layer (referred to as a first connection for convenience of description), the metal layer and the conductive circuit It is possible to suppress a load due to shear stress on the joint portion (referred to as a second joint portion for convenience of description). The reason is as follows.
- the second bonding is performed.
- the area of the part is large and the shear stress can be reduced.
- the thickness in the case of the present invention, the thickness of the layer in the metal layer, which corresponds to the protruding amount in the case of the protruding electrode
- the stress moment generated between the two joint portions can be reduced, and the shear stress at each joint portion can be reduced.
- the elastic deformation region is increased and the ductility is increased, so that the shear stress is easily absorbed.
- the present invention it is possible to suppress the breakage of the conductive circuit and to suppress the load due to the shear stress on each joint portion, and thus it is possible to suppress the occurrence of cracks at the joint interface.
- thermoplastic resin layer particles made of a material whose Mohs hardness is larger than the Mohs hardness of the material constituting the conductive circuit may be dispersed.
- the second invention Providing a conductive circuit and a metal layer formed on the surface side of the conductive circuit on the substrate body; Providing a thermoplastic resin layer on the surface side of the metal layer; While pressing the electrode surface of the electronic component against the thermoplastic resin layer, by applying a load by ultrasonic vibration that vibrates in a direction substantially parallel to the electrode surface, the thermoplastic resin is partially removed by melting. Bonding the electrode and the metal layer, then removing the load caused by ultrasonic vibration and curing the molten thermoplastic resin by cooling; and A surface mounting method for an electronic component comprising: The metal layer is formed of a thin layer made of a material whose shear strength is lower than that of the material constituting the conductive circuit.
- the substrate on which the electronic component of the present invention is mounted is characterized in that the electronic component is mounted on the substrate body by the surface mounting method of the electronic component described in any one of the above.
- FIG. 5 is a process diagram showing a surface mounting procedure according to Conventional Example 1.
- FIG. 6 is a schematic cross-sectional view of a substrate on which electronic components are mounted, obtained by the surface mounting method according to Conventional Example 2.
- FIG. 7 is a process diagram showing a surface mounting procedure according to Conventional Example 2.
- Example 1 With reference to FIG.1 and FIG.2, the surface mounting method of the electronic component which concerns on Example 1 of this invention and the board
- the substrate 100 on which the electronic component according to the present embodiment is mounted includes an insulating base material 10 as a substrate body, a conductive circuit 21 formed on the surface of the insulating base material 10, and a pair of electronic components 40.
- the metal layer 50 is provided on the surface of the electrode 41 and fixed in a state of being electrically connected to the conductive circuit 21.
- the substrate 100 is also provided with a resin fixing portion 31 that exhibits a function of reinforcing the fixing between the insulating base material 10 and the electronic component 40.
- a glass epoxy resin can be mentioned as a suitable example of the material of the insulating base material 10.
- various electronic components that can be mounted by surface mounting such as resistors and capacitors, can be applied as the electronic component 40.
- Step 1 Metal foil 20 is laminated on the surface of insulating substrate 10 (see FIG. 2A).
- a metal foil 20 made of hard aluminum having a thickness of 35 ⁇ m is stacked on one side of a glass epoxy insulating substrate (glass epoxy prepreg) 10 having a thickness of 50 ⁇ m, and these are bonded by hot pressing. To do. Since this bonding method is a known technique, a detailed description thereof will be omitted.
- the metal foil 20 is laminated on the surface of the insulating substrate 10 is obtained.
- an 18 ⁇ m copper foil can be exemplified.
- Step 2 A resist 30 having a desired pattern shape (conductive circuit shape) is formed on the surface of the metal foil 20 with an ink material made of a thermoplastic resin (see FIG. 5B).
- a resist 30 (thermoplastic resin layer) having a desired pattern shape is formed on the surface of the metal foil 20 by using a polyolefin-based thermoplastic adhesive or the like that melts at a temperature of about 150 ° C.
- the resist 30 is formed by applying a thickness of about 2 to 3 ⁇ m by a method such as gravure printing.
- Step 3 The exposed portion of the metal foil 20 that is not covered with the resist 30 is removed by etching to form a conductive circuit 21.
- the surface of the conductive circuit 21 is covered with a resist 30 as a thermoplastic resin layer (see FIG. 3C).
- NaOH 120 g / l
- a polyester-based plastic resin instead of the polyolefin-based resin used as the resist 30, a polyester-based plastic resin can also be used.
- acid-based FeCl 2 is used as an etchant during etching.
- the area of the joint portion of the conductive circuit 21 can be made smaller than the area of the joint portion of the electrode 41 of the electronic component 40. Therefore, compared to the conventional mounting method using a solder material (for example, in the case of a 1.0 mm ⁇ 0.5 mm size chip capacitor, an area of about twice the electrode area is required), the area of the joint portion of the conductive circuit 21 Can be reduced.
- a metal layer 50 that is a thin layer of about 1 ⁇ m is formed by plating or the like on the entire surface of the electrode 41 of the electronic component 40 that is joined to the conductive circuit 21 (see FIG. 4D).
- the material constituting the metal layer 50 a material whose shear strength (shear resistance) is lower than the shear strength of the material constituting the conductive circuit 21 is used. Further, both surfaces of the metal layer 50 are formed to be flat surfaces.
- a shear strength of 1600 kg / cm is formed on the entire surface on the joint side with the conductive circuit 21.
- the metal layer 50 is formed using 2 gold by a conventionally known gold plating method so as to have a thickness of about 1 ⁇ m.
- the shear strength of the metal layer 50 is lower than the shear strength of the conductive circuit 21.
- the metal layer 50 is provided only on the surface of the electrode 41 on the joint side with the conductive circuit 21 is shown, but the metal layer 50 may be formed on the entire exposed surface of the electrode 41. . In this case, it is not necessary to prevent plating on surfaces (upper surface and side surfaces) other than the bonding-side surface of the electrode 41, and the process of forming the metal layer 50 can be simplified.
- Step 4 While pressing the metal layer 50 provided on the surface of the electrode 41 of the electronic component 40 against the resist 30 as a thermoplastic resin layer, a load is applied by ultrasonic vibration that vibrates in a direction substantially parallel to the surface of the metal layer 50. (See (E) in the same figure). In this step, the insulating base material 10 in which the resist 30 is formed on the conductive circuit 21 is heated to about 60 ° C.
- a part of the resist 30 made of a thermoplastic resin is removed from the surface of the conductive circuit 21 due to mechanical friction due to ultrasonic vibration. Removed. That is, a part of the resist 30 is melted by frictional heat, and the resin melted by pressurization is pushed away in a direction perpendicular to the direction in which the pressure is applied, and the surface of the metal layer 50 is electrically conductive. It is removed from the area between the surface of the circuit 21.
- the oxide layer on the surface of the conductive circuit 21 is also mechanically removed, so that the surface of the metal layer 50 on the electrode 41 and the surface of the conductive circuit 21 are in contact with each other, and further, friction caused by ultrasonic vibration is caused. Thus, a metal fusion part is formed between these surfaces.
- thermoplastic resin melted by heat is cured again by cooling.
- fixed part 31 which exhibits the function which reinforces fixation of the insulating base material 10 and the electronic component 40 is formed (refer the same figure (F)).
- the process of applying these loads is performed for about 0.3 seconds.
- the chip capacitor can be firmly fixed on the insulating base material 10, and the electrode 41 in the chip capacitor and the conductive circuit 21 on the insulating base material 10 are connected via the metal layer 50. Can be electrically connected. Note that, as described above, since the metal fusion part is formed between the metal layer 50 and the conductive circuit 21, they are firmly fixed.
- the material of the metal layer 50 is not restricted to gold.
- the material of the metal layer 50 needs to have electrical conductivity and its shear strength (shear resistance) is lower than the shear strength of the material constituting the conductive circuit 21. Therefore, according to the material which comprises the conductive circuit 21, aluminum, zinc, nickel, copper, or the alloy which combined these suitably other than gold
- the insulating base material 10 As an example of the insulating base material 10, a glass epoxy material having a thickness of 50 ⁇ m is shown, but the material and thickness of the insulating base material 10 are not limited to this.
- a PET film for example, 25 ⁇ m thick
- a melting point of about 120 ° C. can be used as the insulating substrate 10.
- the area of the conductive circuit 21 can be reduced. Since the fillet formation for ensuring the solder joint reliability is not necessary, the area of the conductive circuit 21 can be reduced. There are no problems concerning the wettability of the material constituting the solder material and the conductive circuit 21, the plating on the surface of the conductive circuit 21 can be reduced, and inexpensive aluminum can be adopted as the material of the conductive circuit 21. Cost can be reduced. Since a high-temperature heat treatment that melts the solder material is unnecessary, an inexpensive low heat resistant material such as PET (polyethylene terephthalate) can be used as the base material (insulating base material 10) in the printed wiring board. By reducing the equipment and energy used for high-temperature heat treatment, the manufacturing cost can be further reduced. In addition, the burden on the environment can be reduced by reducing the energy used or the solder material and flux material required in the conventional method.
- PET polyethylene terephthalate
- the metal layer 50 provided on the surface of the electronic component 40 is a thin layer (conductive circuit) made of a material whose shear strength is lower than the shear strength of the material constituting the conductive circuit 21. 21 side is a layer which becomes a flat surface). Therefore, the following effects can be obtained.
- the present embodiment by adopting the above configuration as the metal layer 50, it is possible to prevent the conductive circuit 21 from being damaged even when a load is applied by ultrasonic vibration. . This is because the shear strength is higher in the conductive circuit 21 than in the metal layer 50 and the surface of the metal layer 50 is a flat surface.
- a joint portion between the electrode 41 of the electronic component 40 and the metal layer 50 (referred to as a first joint portion for convenience of description), the metal layer 50, It is possible to suppress a load caused by shear stress on a joint portion with the conductive circuit 21 (referred to as a second joint portion for convenience of description). The reason is as follows.
- the second bonding is performed.
- the area of the part is large and the shear stress can be reduced.
- the thickness in the present embodiment, the thickness of the metal layer 50, corresponding to the protruding amount in the case of the protruding electrode
- the first joint portion The stress moment generated between the first and second joint portions can be reduced, and the shear stress at each joint portion can be reduced.
- the metal layer 50 according to the present embodiment has a larger elastic deformation range and a higher ductility than the projecting electrode, so that it is easy to absorb shear stress.
- the step of forming a plating mask or the like is necessary to form the protruding electrode, whereas according to the present embodiment, the step Therefore, the surface mounting of the electronic component can be performed at a low cost of about 50% compared with the conventional method.
- FIG. 3 shows a second embodiment of the present invention.
- the case where particles made of a hard material are dispersed in a thermoplastic resin layer (resist) in the configuration shown in the above-described example 1 is shown. Since other configurations and operations are the same as those in the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.
- a material whose shear strength is lower than that of the material constituting the conductive circuit 21 can be adopted.
- tin (Sn) having a shear strength of about 200 kg / cm 2 .
- thermoplastic resin resist 30
- the oxide layer on the surface of the conductive circuit 21 must be removed.
- the Mohs hardness of tin is about 1.5, which is lower than that of aluminum or copper.
- the Mohs hardness of aluminum is 2.75, and the Mohs hardness of copper is 2.5 to 3.0.
- a metal fusion part is preferably provided between the metal layer 50 and the conductive circuit 21. A technique that can be formed will be described.
- the resist 30a has a Mohs hardness in the thermoplastic resin layer of about 2 ⁇ m to 3 ⁇ m larger than the Mohs hardness of the material constituting the metal layer 50, and the conductive circuit 21.
- a configuration in which particles 30b made of a material larger than the Mohs hardness of the constituent material is dispersed is employed (see FIG. 3A).
- thermoplastic resin a polyolefin-type thing can be mentioned.
- FIG. 3B shows a state in which a load due to ultrasonic vibration is being applied, in which a part of the thermoplastic resin is melted and removed, and the metal layer 50 and the conductive circuit 21 are separated. A state before contact is shown in a schematic cross-sectional view.
- 3C is a schematic cross-sectional view (schematic cross-sectional view showing a state after a step of applying a load by ultrasonic vibration) of the substrate on which the electronic component is mounted.
- the thermoplastic resin that was melted by heat is cured again by cooling, and functions to reinforce the fixing between the insulating substrate 10 and the electronic component 40.
- the resin fixing part 31a to be formed is formed.
- the metal layer 50 and the conductive circuit 21 are brought into frictional contact by ultrasonic vibration, if there is a difference in the Mohs hardness of both, the surface oxide film on the higher Mohs hardness side is destroyed.
- the particles 30b dispersed in the thermoplastic resin become an interface between the metal layer 50 and the conductive circuit 21, so that both surface oxides are uniformly destroyed. It is possible to suitably form the metal fusion part.
- the metal layer 50 is not formed between the metal layer 50 and the conductive circuit 21.
- a fused part can be formed suitably.
- FIG. 4 shows a third embodiment of the present invention.
- Example 1 the case where the metal layer is provided on the electrode side of the electronic component is shown.
- the metal layer is provided on the insulating base side.
- the case where it provides is shown. Since other basic configurations and operations are the same as those of the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.
- the case where the metal layer 50 is provided on the surface of the electrode 41 of the electronic component 40 in the stage before the electronic component 40 is fixed to the insulating substrate 10 is shown.
- the surface of the electrode 41 on the bonding side with respect to the conductive circuit 21 has a sufficient area, the alignment of the electronic component 40 with respect to the conductive circuit 21 is performed with high accuracy in step 4 in the first embodiment. There is no need.
- the metal layer is placed on the insulating substrate 10 side (more specifically, the surface of the conductive circuit 21) before the electronic component 40 is fixed to the insulating substrate 10 for the purpose of reducing the cost. It can also be provided.
- Step 1 Similarly to the case of Example 1, the metal foil 20 is laminated on the surface of the insulating substrate 10 (see FIG. 4A).
- a metal foil (copper foil) 20 having a thickness of 18 ⁇ m is stacked on one side of a glass epoxy insulating substrate (glass epoxy prepreg) 10 having a thickness of 50 ⁇ m, and these are bonded by hot pressing. To do. In this way, a product in which the metal foil 20 is laminated on the surface of the insulating substrate 10 is obtained.
- Step 2 After a plating resist having a required pattern shape is formed on the surface of the metal foil 20, a conventionally known plating treatment (electroless plating or electrolysis is applied to the exposed portion of the metal foil 20 that is not covered with the plating resist.
- a metal layer 55 is formed by plating).
- the material constituting the metal layer 55 a material whose shear strength (shear resistance) is lower than that of the material constituting the conductive circuit 21 is used as in the case of the first embodiment. Further, both surfaces of the metal layer 55 are formed to be flat surfaces.
- the metal layer 55 is formed of a thin layer of about 1 ⁇ m, as in the case of the first embodiment. Further, the material of the metal layer 55 is also gold, aluminum, zinc, nickel, copper, or an alloy appropriately combined with these in accordance with the material constituting the conductive circuit 21 as in the case of the first embodiment. Can be adopted.
- the plating resist is peeled off from the surface of the metal foil 20 (see FIG. 5B). In FIG. 4, the plating resist is not shown.
- Step 3 A resist 35 having a desired pattern shape (conducting circuit shape) is formed on the surface including the portion provided with the metal layer 55 on the metal foil 20 with an ink material made of a thermoplastic resin (FIG. 3C). reference).
- Resist 35 having a desired pattern shape is formed on a surface including a portion provided with metal layer 55 on metal foil 20 with a polyolefin-based thermoplastic adhesive or the like that melts at a temperature of about 150 ° C. (Thermoplastic resin layer) is formed.
- the resist 30 is formed by applying a thickness of about 2 to 3 ⁇ m by a method such as gravure printing.
- Step 4 The exposed portion of the metal foil 20 that is not covered with the resist 35 is removed by etching to form the conductive circuit 21.
- the surface of the conductive circuit 21 is covered with a resist 35 as a thermoplastic resin layer, and the portion where the metal layer 55 is provided is covered with the resist 35 so as to sandwich the metal layer 55. (See (D) in the figure).
- Step 5 While pressing the surface of the electrode 41 of the electronic component 40 against the resist 35 as a thermoplastic resin layer, a load is applied by ultrasonic vibration that vibrates in a direction substantially parallel to the surface of the electrode 41 (see FIG. 5E). . In this step, the insulating base material 10 having the resist 35 and the like formed on the conductive circuit 21 is heated to about 60 ° C.
- the mechanism by which the electrode 41 of the electronic component 40 and the metal layer 55 are electrically joined by applying a load due to this ultrasonic vibration is the same as in the case of the first embodiment.
- a part of the resist 35 made of thermoplastic resin is removed from the surface of the metal layer 55 by mechanical friction due to ultrasonic vibration. . That is, a part of the resist 35 is melted by frictional heat, and the resin melted by pressurization is pushed away in a direction perpendicular to the direction in which the pressure is applied, so that the surface of the electrode 41 of the electronic component 40 is And the region between the surface of the metal layer 55.
- the oxide layer on the surface of the electrode 41 is also mechanically removed, so that the surface of the electrode 41 and the surface of the metal layer 55 are in contact with each other. A metal fusion part is formed.
- thermoplastic resin melted by heat is cured again by cooling.
- fixed part 36 which exhibits the function which reinforces fixation of the insulating base material 10 and the electronic component 40 is formed (refer FIG.4 (F)).
- step 5 the specific example of the pressure for pressing the electronic component 40, the frequency of ultrasonic vibration, and the time for applying the load is the same as in the case of the first embodiment, and the description thereof will be omitted. .
- the thickness of the metal layers 50 and 55 in each of the above embodiments is preferably 1 ⁇ m or more and 3 ⁇ m or less.
- the reason for setting the thicknesses of the metal layers 50 and 55 to 1 ⁇ m or more is that the amount scraped off by ultrasonic friction is taken into consideration.
- the thickness of the metal layers 50 and 55 is set to less than 1 ⁇ m, there is a possibility that the metal serving as an electrode does not exist in the interface, and the possibility of causing a bonding defect increases.
- the upper limit of the thickness of the metal layers 50 and 55 is about 3 ⁇ m is preferable.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
- Wire Bonding (AREA)
Abstract
Description
基板本体上に、導電性回路と、該導電性回路の表面側に形成される熱可塑性樹脂層とを設ける工程と、
電子部品の電極の表面に金属層を設ける工程と、
前記電子部品の前記金属層を前記熱可塑性樹脂層に押し当てながら、該金属層の表面に略平行な方向に振動する超音波振動による負荷を与えることで、熱可塑性樹脂を溶融により部分的に除去させて前記金属層と前記導電性回路とを接合させ、その後、超音波振動による負荷をなくして、溶融した熱可塑性樹脂を冷却により硬化させる工程と、
を備える電子部品の表面実装方法であって、
前記金属層は、そのせん断強度が前記導電性回路を構成する材料のせん断強度よりも低い材料からなる薄い層で構成されることを特徴とする。
基板本体上に、導電性回路と、該導電性回路の表面側に形成される金属層とを設ける工程と、
前記金属層の表面側に熱可塑性樹脂層を設ける工程と、
電子部品の電極表面を、前記熱可塑性樹脂層に押し当てながら、前記電極表面に略平行な方向に振動する超音波振動による負荷を与えることで、熱可塑性樹脂を溶融により部分的に除去させて前記電極と前記金属層とを接合させ、その後、超音波振動による負荷をなくして、溶融した熱可塑性樹脂を冷却により硬化させる工程と、
を備える電子部品の表面実装方法であって、
前記金属層は、そのせん断強度が前記導電性回路を構成する材料のせん断強度よりも低い材料からなる薄い層で構成されることを特徴とする。
図1及び図2を参照して、本発明の実施例1に係る電子部品の表面実装方法及び電子部品が実装された基板について説明する。
特に、図1を参照して、本発明の実施例1に係る電子部品の表面実装方法によって得られる、電子部品が実装された基板について説明する。
特に、図2を参照して、本実施例に係る電子部品の表面実装方法について説明する。
絶縁性基材10の表面に金属箔20を積層する(図2(A)参照)。
金属箔20の表面に、所望のパターン形状(導電性回路の形状)のレジスト30を、熱可塑性樹脂からなるインク材によって形成する(同図(B)参照)。
レジスト30によって覆われていない露出した部位の金属箔20をエッチングにより除去して、導電性回路21を形成する。この導電性回路21の表面は、熱可塑性樹脂層としてのレジスト30によって覆われている(同図(C)参照)。
別工程において、電子部品40の電極41における導電性回路21との接合側の全面に、1μm程度の薄い層となる金属層50をめっき等により形成する(同図(D)参照)。ここで、この金属層50を構成する材料は、そのせん断強度(せん断抵抗)が、導電性回路21を構成する材料のせん断強度よりも低いものを用いている。また、金属層50の両面は平坦な面となるように形成している。
電子部品40の電極41の表面に設けられた金属層50を、熱可塑性樹脂層としてのレジスト30に押し当てながら、金属層50の表面に略平行な方向に振動する超音波振動による負荷を与える(同図(E)参照)。この工程においては、導電性回路21上にレジスト30が形成されている絶縁性基材10を60℃程度に加熱した状態で行う。
<<はんだ材が不要であることの効果>>
上記の通り、本実施例に係る表面実装方法によれば、はんだ材を用いることなく、電子部品40を絶縁性基材10に実装することができる。従って、次のような効果を得ることができる。
上記の通り、本実施例においては、電子部品40の表面に設けられる金属層50は、そのせん断強度が導電性回路21を構成する材料のせん断強度よりも低い材料からなる薄い層(導電性回路21側は平坦な面となる層)で構成される。従って、次のような効果を得ることができる。
図3には、本発明の実施例2が示されている。本実施例においては、上記実施例1で示した構成において、熱可塑性樹脂層(レジスト)の中に、硬い材料からなる粒子を分散させた場合を示す。その他の構成および作用については実施例1と同一なので、同一の構成部分については同一の符号を付して、その説明は省略する。
図4には、本発明の実施例3が示されている。電子部品を絶縁性基材に固定する前の段階において、上記実施例1では、金属層を電子部品の電極側に設ける場合を示したが、本実施例では、金属層を絶縁性基材側に設ける場合を示す。その他の基本的な構成及び作用については実施例1と同一なので、同一の構成部分については同一の符号を付して、その説明は省略する。
特に、図4を参照して、本実施例に係る電子部品の表面実装方法について説明する。
実施例1の場合と同様に、絶縁性基材10の表面に金属箔20を積層する(図4(A)参照)。
金属箔20の表面上に、所要パタ-ン形状のめっき用レジストを形成した後、該めっき用レジストによって覆われていない金属箔20の露出部分に、従来公知のめっき処理(無電解めっきや電解めっき処理)により、金属層55を形成する。この金属層55を構成する材料は、実施例1の場合と同様に、そのせん断強度(せん断抵抗)が、導電性回路21を構成する材料のせん断強度よりも低いものを用いている。また、金属層55の両面は平坦な面となるように形成している。また、この金属層55は、実施例1の場合と同様に、1μm程度の薄い層により構成される。更に、この金属層55の材料についても、実施例1の場合と同様に、導電性回路21を構成する材料に応じて、金、アルミニウム、亜鉛、ニッケル、銅、またはこれらを適宜組み合わせた合金などを採用することができる。
金属箔20上における金属層55が設けられた部位を含む表面に、所望のパターン形状(導電性回路の形状)のレジスト35を、熱可塑性樹脂からなるインク材によって形成する(同図(C)参照)。
レジスト35によって覆われていない露出した部位の金属箔20をエッチングにより除去して、導電性回路21を形成する。この導電性回路21の表面は、熱可塑性樹脂層としてのレジスト35によって覆われており、かつ金属層55が設けられている部位においては、当該金属層55を挟むようにしてレジスト35に覆われている(同図(D)参照)。
電子部品40の電極41の表面を、熱可塑性樹脂層としてのレジスト35に押し当てながら、電極41の表面に略平行な方向に振動する超音波振動による負荷を与える(同図(E)参照)。この工程においては、導電性回路21上にレジスト35等が形成されている絶縁性基材10を60℃程度に加熱した状態で行う。
上記各実施例における金属層50,55の層の厚さは、1μm以上3μm以下とするのが好適である。金属層50,55の厚さを1μm以上に設定する理由は、超音波摩擦によって削り取られる量を考慮したものである。金属層50,55の厚さを1μm未満に設定した場合には、界面内に電極となる金属が存在しなくなってしまう虞があり、接合欠陥を生じる可能性が高くなってしまう。また、金属層50,55の厚さを厚くすることはコストアップの要因となり、かつ厚すぎると金属層内にクラックが発生するリスクがあることから、金属層50,55の厚さの上限は3μm程度が好適である。
20 金属箔
21 導電性回路
30 レジスト
30a レジスト
30b 粒子
31 樹脂固定部
35 レジスト
40 電子部品
41 電極
50 金属層
55 金属層
100 基板
Claims (4)
- 基板本体上に、導電性回路と、該導電性回路の表面側に形成される熱可塑性樹脂層とを設ける工程と、
電子部品の電極の表面に金属層を設ける工程と、
前記電子部品の前記金属層を前記熱可塑性樹脂層に押し当てながら、該金属層の表面に略平行な方向に振動する超音波振動による負荷を与えることで、熱可塑性樹脂を溶融により部分的に除去させて前記金属層と前記導電性回路とを接合させ、その後、超音波振動による負荷をなくして、溶融した熱可塑性樹脂を冷却により硬化させる工程と、
を備える電子部品の表面実装方法であって、
前記金属層は、そのせん断強度が前記導電性回路を構成する材料のせん断強度よりも低い材料からなる薄い層で構成されることを特徴とする電子部品の表面実装方法。 - 前記熱可塑性樹脂層の中に、そのモース硬さが前記導電性回路を構成する材料のモース硬さよりも大きな材料からなる粒子を分散させることを特徴とする請求項1に記載の電子部品の表面実装方法。
- 基板本体上に、導電性回路と、該導電性回路の表面側に形成される金属層とを設ける工程と、
前記金属層の表面側に熱可塑性樹脂層を設ける工程と、
電子部品の電極表面を、前記熱可塑性樹脂層に押し当てながら、前記電極表面に略平行な方向に振動する超音波振動による負荷を与えることで、熱可塑性樹脂を溶融により部分的に除去させて前記電極と前記金属層とを接合させ、その後、超音波振動による負荷をなくして、溶融した熱可塑性樹脂を冷却により硬化させる工程と、
を備える電子部品の表面実装方法であって、
前記金属層は、そのせん断強度が前記導電性回路を構成する材料のせん断強度よりも低い材料からなる薄い層で構成されることを特徴とする電子部品の表面実装方法。 - 請求項1,2または3に記載の電子部品の表面実装方法によって、基板本体上に電子部品が実装されたことを特徴とする電子部品が実装された基板。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137000772A KR20130039328A (ko) | 2010-09-07 | 2011-07-06 | 전자 부품의 표면 실장 방법 및 전자 부품이 실장된 기판 |
KR1020147025794A KR20140123595A (ko) | 2010-09-07 | 2011-07-06 | 전자 부품의 표면 실장 방법 및 전자 부품이 실장된 기판 |
CN201180034819.4A CN103004294B (zh) | 2010-09-07 | 2011-07-06 | 电子部件的表面安装方法以及安装有电子部件的基板 |
EP11823319.6A EP2615891A4 (en) | 2010-09-07 | 2011-07-06 | METHOD FOR THE SURFACE MOUNTING OF AN ELECTRONIC COMPONENT AND SUBSTRATE WITH THE ELECTRONIC COMPONENT MOUNTED THEREFROM |
US13/810,689 US20130175074A1 (en) | 2010-09-07 | 2011-07-06 | Method for surface mounting electronic component, and substrate having electronic component mounted thereon |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010199832A JP5644286B2 (ja) | 2010-09-07 | 2010-09-07 | 電子部品の表面実装方法及び電子部品が実装された基板 |
JP2010-199832 | 2010-09-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012032840A1 true WO2012032840A1 (ja) | 2012-03-15 |
Family
ID=45810445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/065485 WO2012032840A1 (ja) | 2010-09-07 | 2011-07-06 | 電子部品の表面実装方法及び電子部品が実装された基板 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20130175074A1 (ja) |
EP (1) | EP2615891A4 (ja) |
JP (1) | JP5644286B2 (ja) |
KR (2) | KR20130039328A (ja) |
CN (1) | CN103004294B (ja) |
WO (1) | WO2012032840A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019142423A1 (ja) * | 2018-01-17 | 2019-07-25 | セメダイン株式会社 | 実装体 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014115358A1 (ja) * | 2013-01-25 | 2014-07-31 | 株式会社村田製作所 | モジュールおよびその製造方法 |
JP6694235B2 (ja) * | 2015-01-29 | 2020-05-13 | Tdk株式会社 | 電子部品 |
JP6953018B2 (ja) * | 2016-03-29 | 2021-10-27 | 積水ポリマテック株式会社 | フレキシブル回路基板及びフレキシブル回路基板の製造方法 |
KR101932337B1 (ko) | 2017-04-12 | 2018-12-26 | 한국과학기술원 | 도전 입자의 이동을 제한하는 폴리머 층을 포함하는 이방성 전도 필름 및 수직 방향 초음파를 이용한 그 제조 방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001156110A (ja) * | 1999-11-24 | 2001-06-08 | Omron Corp | 半導体チップの実装方法、並びに、電磁波読み取り可能なデータキャリアの製造方法 |
JP2004200281A (ja) * | 2002-12-17 | 2004-07-15 | Omron Corp | 電子部品モジュールの製造方法、並びに電磁波読み取り可能なデータキャリアの製造方法。 |
JP3584404B2 (ja) | 2003-01-17 | 2004-11-04 | オムロン株式会社 | 半導体チップの実装方法 |
JP2005203693A (ja) | 2004-01-19 | 2005-07-28 | Mitsubishi Electric Corp | 接続シートおよび実装部品の実装方法 |
JP2005275802A (ja) * | 2004-03-24 | 2005-10-06 | Omron Corp | 電波読み取り可能なデータキャリアの製造方法および該製造方法に用いる基板並びに電子部品モジュール |
Family Cites Families (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS629642A (ja) * | 1985-07-05 | 1987-01-17 | Matsushita Electric Ind Co Ltd | 半導体装置の製造方法 |
JPS63169793A (ja) * | 1987-01-07 | 1988-07-13 | 株式会社村田製作所 | プリント基板へのチツプ部品の取付構造 |
US5065006A (en) * | 1988-10-14 | 1991-11-12 | Matsushita Electric Industrial Co., Inc. | Image sensors with simplified chip mounting |
GB9222460D0 (en) * | 1992-10-26 | 1992-12-09 | Hughes Microelectronics Europa | Radio frequency baggage tag |
US5821627A (en) * | 1993-03-11 | 1998-10-13 | Kabushiki Kaisha Toshiba | Electronic circuit device |
US5311405A (en) * | 1993-08-02 | 1994-05-10 | Motorola, Inc. | Method and apparatus for aligning and attaching a surface mount component |
JP3141692B2 (ja) * | 1994-08-11 | 2001-03-05 | 松下電器産業株式会社 | ミリ波用検波器 |
EP0732107A3 (en) * | 1995-03-16 | 1997-05-07 | Toshiba Kk | Screen device for circuit substrate |
US5629241A (en) * | 1995-07-07 | 1997-05-13 | Hughes Aircraft Company | Microwave/millimeter wave circuit structure with discrete flip-chip mounted elements, and method of fabricating the same |
US5686318A (en) * | 1995-12-22 | 1997-11-11 | Micron Technology, Inc. | Method of forming a die-to-insert permanent connection |
US5821456A (en) * | 1996-05-01 | 1998-10-13 | Motorola, Inc. | Microelectronic assembly including a decomposable encapsulant, and method for forming and reworking same |
US6558979B2 (en) * | 1996-05-21 | 2003-05-06 | Micron Technology, Inc. | Use of palladium in IC manufacturing with conductive polymer bump |
US20010000157A1 (en) * | 1997-10-16 | 2001-04-05 | Rohm Co., Ltd. | Semiconductor device and method of making the same |
KR100502222B1 (ko) * | 1999-01-29 | 2005-07-18 | 마츠시타 덴끼 산교 가부시키가이샤 | 전자부품의 실장방법 및 그 장치 |
US6546420B1 (en) * | 1999-03-31 | 2003-04-08 | Cisco Technology, Inc. | Aggregating information about network message flows |
JP3928682B2 (ja) * | 1999-06-22 | 2007-06-13 | オムロン株式会社 | 配線基板同士の接合体、配線基板同士の接合方法、データキャリアの製造方法、及び電子部品モジュールの実装装置 |
JP3227444B2 (ja) * | 1999-11-10 | 2001-11-12 | ソニーケミカル株式会社 | 多層構造のフレキシブル配線板とその製造方法 |
JP2001257239A (ja) * | 2000-03-13 | 2001-09-21 | Matsushita Electric Ind Co Ltd | 半導体装置の製造方法 |
TW569424B (en) * | 2000-03-17 | 2004-01-01 | Matsushita Electric Ind Co Ltd | Module with embedded electric elements and the manufacturing method thereof |
US6512183B2 (en) * | 2000-10-10 | 2003-01-28 | Matsushita Electric Industrial Co., Ltd. | Electronic component mounted member and repair method thereof |
JP3866058B2 (ja) * | 2001-07-05 | 2007-01-10 | シャープ株式会社 | 半導体装置、配線基板及びテープキャリア |
US6800946B2 (en) * | 2002-12-23 | 2004-10-05 | Motorola, Inc | Selective underfill for flip chips and flip-chip assemblies |
JP2005033053A (ja) * | 2003-07-08 | 2005-02-03 | Lintec Corp | 半導体装置の製造方法及び半導体装置 |
WO2005034231A1 (ja) * | 2003-10-06 | 2005-04-14 | Nec Corporation | 電子デバイスおよびその製造方法 |
WO2005093817A1 (ja) * | 2004-03-29 | 2005-10-06 | Nec Corporation | 半導体装置及びその製造方法 |
JP4251104B2 (ja) * | 2004-03-31 | 2009-04-08 | 株式会社日立製作所 | Rfidタグの製造方法 |
JP4536430B2 (ja) * | 2004-06-10 | 2010-09-01 | イビデン株式会社 | フレックスリジッド配線板 |
KR100580329B1 (ko) * | 2004-06-25 | 2006-05-16 | 삼성전자주식회사 | 범프가 형성된 배선 필름, 이를 이용한 필름 패키지 및 그제조 방법 |
JP4146826B2 (ja) * | 2004-09-14 | 2008-09-10 | カシオマイクロニクス株式会社 | 配線基板及び半導体装置 |
US7312403B2 (en) * | 2004-09-24 | 2007-12-25 | Matsushita Electric Industrial Co., Ltd. | Circuit component mounting device |
JP2006165517A (ja) * | 2004-11-11 | 2006-06-22 | Sharp Corp | フレキシブル配線基板、それを用いた半導体装置および電子機器、並びにフレキシブル配線基板の製造方法 |
WO2006104032A1 (ja) * | 2005-03-29 | 2006-10-05 | Murata Manufacturing Co., Ltd. | 電子部品の実装構造 |
CN101128914B (zh) * | 2005-06-13 | 2011-03-16 | 松下电器产业株式会社 | 半导体器件键合装置以及使用该装置键合半导体器件的方法 |
JP4766049B2 (ja) * | 2005-09-20 | 2011-09-07 | 株式会社村田製作所 | 部品内蔵モジュールの製造方法および部品内蔵モジュール |
JP5113346B2 (ja) * | 2006-05-22 | 2013-01-09 | 日立電線株式会社 | 電子装置用基板およびその製造方法、ならびに電子装置およびその製造方法 |
WO2008018160A1 (fr) * | 2006-08-07 | 2008-02-14 | Nippon Avionics Co., Ltd. | Procédé et appareil permettant de connecter des cartes de circuit imprimé |
DE102006054085A1 (de) * | 2006-11-16 | 2008-05-29 | Epcos Ag | Bauelement-Anordnung |
KR20110074634A (ko) * | 2007-01-10 | 2011-06-30 | 히다치 가세고교 가부시끼가이샤 | 회로 부재 접속용 접착제 및 이것을 이용한 반도체 장치 |
US7783141B2 (en) * | 2007-04-04 | 2010-08-24 | Ibiden Co., Ltd. | Substrate for mounting IC chip and device for optical communication |
JP2009009994A (ja) * | 2007-06-26 | 2009-01-15 | Shinko Electric Ind Co Ltd | 半導体装置およびその製造方法 |
WO2009004522A1 (en) * | 2007-06-29 | 2009-01-08 | Koninklijke Philips Electronics N.V. | Electrical contact for a cadmium tellurium component |
JP4962217B2 (ja) * | 2007-08-28 | 2012-06-27 | 富士通株式会社 | プリント配線基板及び電子装置製造方法 |
JP2009105276A (ja) * | 2007-10-24 | 2009-05-14 | Omron Corp | 半導体チップの実装方法及び半導体搭載用配線基板 |
JP5150518B2 (ja) * | 2008-03-25 | 2013-02-20 | パナソニック株式会社 | 半導体装置および多層配線基板ならびにそれらの製造方法 |
JP5407667B2 (ja) * | 2008-11-05 | 2014-02-05 | 株式会社村田製作所 | 半導体装置 |
JP5535570B2 (ja) * | 2009-10-13 | 2014-07-02 | ルネサスエレクトロニクス株式会社 | 固体撮像装置の製造方法 |
KR20110058061A (ko) * | 2009-11-25 | 2011-06-01 | 삼성전기주식회사 | 다이 실장기판 및 그 제조방법 |
-
2010
- 2010-09-07 JP JP2010199832A patent/JP5644286B2/ja not_active Expired - Fee Related
-
2011
- 2011-07-06 WO PCT/JP2011/065485 patent/WO2012032840A1/ja active Application Filing
- 2011-07-06 EP EP11823319.6A patent/EP2615891A4/en not_active Withdrawn
- 2011-07-06 US US13/810,689 patent/US20130175074A1/en not_active Abandoned
- 2011-07-06 CN CN201180034819.4A patent/CN103004294B/zh not_active Expired - Fee Related
- 2011-07-06 KR KR1020137000772A patent/KR20130039328A/ko active Application Filing
- 2011-07-06 KR KR1020147025794A patent/KR20140123595A/ko active Search and Examination
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001156110A (ja) * | 1999-11-24 | 2001-06-08 | Omron Corp | 半導体チップの実装方法、並びに、電磁波読み取り可能なデータキャリアの製造方法 |
JP2004200281A (ja) * | 2002-12-17 | 2004-07-15 | Omron Corp | 電子部品モジュールの製造方法、並びに電磁波読み取り可能なデータキャリアの製造方法。 |
JP3584404B2 (ja) | 2003-01-17 | 2004-11-04 | オムロン株式会社 | 半導体チップの実装方法 |
JP2005203693A (ja) | 2004-01-19 | 2005-07-28 | Mitsubishi Electric Corp | 接続シートおよび実装部品の実装方法 |
JP2005275802A (ja) * | 2004-03-24 | 2005-10-06 | Omron Corp | 電波読み取り可能なデータキャリアの製造方法および該製造方法に用いる基板並びに電子部品モジュール |
Non-Patent Citations (1)
Title |
---|
See also references of EP2615891A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019142423A1 (ja) * | 2018-01-17 | 2019-07-25 | セメダイン株式会社 | 実装体 |
JPWO2019142423A1 (ja) * | 2018-01-17 | 2021-01-14 | セメダイン株式会社 | 実装体 |
Also Published As
Publication number | Publication date |
---|---|
CN103004294A (zh) | 2013-03-27 |
EP2615891A4 (en) | 2016-05-04 |
US20130175074A1 (en) | 2013-07-11 |
CN103004294B (zh) | 2015-04-29 |
KR20140123595A (ko) | 2014-10-22 |
KR20130039328A (ko) | 2013-04-19 |
JP2012059816A (ja) | 2012-03-22 |
EP2615891A1 (en) | 2013-07-17 |
JP5644286B2 (ja) | 2014-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007052584A1 (ja) | 積層回路基板の製造方法、回路板およびその製造方法 | |
JP5644286B2 (ja) | 電子部品の表面実装方法及び電子部品が実装された基板 | |
KR20120049144A (ko) | 전자부품을 가진 배선기판 및 그 제조방법 | |
JP5172275B2 (ja) | 部品内蔵プリント配線基板および部品内蔵プリント配線基板の製造方法 | |
US12036776B2 (en) | Resin multilayer substrate and method for manufacturing resin multilayer substrate | |
WO2009107342A1 (ja) | 電子部品モジュールの製造方法 | |
JP5505307B2 (ja) | 機能素子内蔵基板及びその製造方法、並びに電子機器 | |
JP2009147026A (ja) | 回路基板およびその製造方法 | |
JP2007088058A (ja) | 多層基板、及びその製造方法 | |
TWI412313B (zh) | 多層印刷配線板及其製法 | |
JPWO2019230524A1 (ja) | 樹脂多層基板および電子機器 | |
JP4417294B2 (ja) | プローブカード用部品内蔵基板とその製造方法 | |
JP2006173152A (ja) | 中継基板と立体配線構造体 | |
JPH07312468A (ja) | フレキシブル回路基板 | |
JP2004006705A (ja) | 半導体装置の実装構造および回路基板 | |
TWI454201B (zh) | 用於製造印刷線路板之方法、印刷線路板及電子裝置 | |
JP2008016651A (ja) | 部品内蔵配線板、部品内蔵配線板の製造方法。 | |
JP5003528B2 (ja) | 電子部品モジュールの製造方法 | |
KR102520768B1 (ko) | 이방성 도전 필름을 이용한 회로장치의 초음파 접합방법 | |
JP4069588B2 (ja) | テープキャリア及びそれを用いた半導体装置 | |
JP2010262960A (ja) | インターポーザ及び半田接合部の接合構造 | |
JP2011018728A (ja) | 積層配線基板及びその製造方法 | |
JP2008071700A (ja) | 電気接続部材 | |
JP2003243573A (ja) | 多層基板及びその製造方法 | |
JP3429743B2 (ja) | 配線基板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11823319 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011823319 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137000772 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13810689 Country of ref document: US |