WO2012032840A1 - 電子部品の表面実装方法及び電子部品が実装された基板 - Google Patents

電子部品の表面実装方法及び電子部品が実装された基板 Download PDF

Info

Publication number
WO2012032840A1
WO2012032840A1 PCT/JP2011/065485 JP2011065485W WO2012032840A1 WO 2012032840 A1 WO2012032840 A1 WO 2012032840A1 JP 2011065485 W JP2011065485 W JP 2011065485W WO 2012032840 A1 WO2012032840 A1 WO 2012032840A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
metal layer
conductive circuit
thermoplastic resin
resist
Prior art date
Application number
PCT/JP2011/065485
Other languages
English (en)
French (fr)
Inventor
川井若浩
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to KR1020147025794A priority Critical patent/KR20140123595A/ko
Priority to CN201180034819.4A priority patent/CN103004294B/zh
Priority to EP11823319.6A priority patent/EP2615891A4/en
Priority to US13/810,689 priority patent/US20130175074A1/en
Priority to KR1020137000772A priority patent/KR20130039328A/ko
Publication of WO2012032840A1 publication Critical patent/WO2012032840A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/06Mountings specially adapted for mounting on a printed-circuit support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/04Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the partial melting of at least one layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/244Finish plating of conductors, especially of copper conductors, e.g. for pads or lands
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/303Surface mounted components, e.g. affixing before soldering, aligning means, spacing means
    • H05K3/305Affixing by adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0129Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10636Leadless chip, e.g. chip capacitor or resistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0285Using ultrasound, e.g. for cleaning, soldering or wet treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0562Details of resist
    • H05K2203/0571Dual purpose resist, e.g. etch resist used as solder resist, solder resist used as plating resist
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1189Pressing leads, bumps or a die through an insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1461Applying or finishing the circuit pattern after another process, e.g. after filling of vias with conductive paste, after making printed resistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electronic component surface mounting method for mounting various electronic components such as resistors and capacitors on a printed wiring board on which a conductive circuit is formed, and a substrate on which the electronic component is mounted.
  • FIG. 5 is a process diagram showing a surface mounting procedure according to Conventional Example 1.
  • a substrate in which a copper foil 220 having a thickness of about 12 ⁇ m to 35 ⁇ m is laminated on the surface of a base material 210 made of a heat-resistant glass epoxy resin or polyimide resin is used (FIG. 5A). )reference).
  • a conductive circuit 221 is formed on the substrate by using a conventionally known photolithography method and etching method (see FIG. 5B).
  • plating 230 such as Sn is applied to produce the printed wiring board 200 (see FIG. 3C).
  • cream solder 240 is supplied onto the plating 230 in the conductive circuit 221 by screen printing or the like. And the electrode part 310 of the electronic component 300 is arrange
  • Patent Literature a method using a connection sheet obtained by laminating a flux film on a sheet-like solder material, a method using an anisotropic conductive sheet, an anisotropic conductive paste, etc. have been proposed (Patent Literature). 1).
  • Patent Literature a method using a connection sheet obtained by laminating a flux film on a sheet-like solder material, a method using an anisotropic conductive sheet, an anisotropic conductive paste, etc.
  • FIG. 6 is a schematic cross-sectional view of a substrate on which electronic components are mounted, obtained by the surface mounting method according to Conventional Example 2.
  • FIG. 7 is a process diagram showing a surface mounting procedure according to Conventional Example 2.
  • a substrate in which a metal foil 420 is laminated on an insulating base material 410 made of glass epoxy resin or the like is used (see FIG. 7A).
  • a thermoplastic resin material (hereinafter referred to as a resist) configured as an ink material is applied onto the substrate surface so as to have a required pattern shape (see FIG. 5B).
  • the exposed portion of the metal not covered with the resist 430 is removed by etching, so that the conductive circuit 421 is formed.
  • a printed wiring board 400 on which the conductive circuit 421 is formed is obtained (see FIG. 3C).
  • a protruding electrode 450 is formed on the surface of the electrode 510 of the electronic component 500 by plating or a conventionally known stud bump method (see FIG. 4D).
  • the electronic component 500 is pressed against the resist 430 on the surface of the printed wiring board 400 heated to about 60 ° C. in a state where ultrasonic vibration is applied so that the protruding electrode 450 is in contact (see FIG. 5E). .
  • the pressed portion of the tip of the protruding electrode 450 in the resist 430 is melted and removed by the friction generated between the protruding electrode 450 and the resist 430.
  • a metal fusion part 460 is formed between the tip of the protruding electrode 450 and the conductive circuit 421 by friction caused by ultrasonic vibration.
  • the resist 430 made of a thermoplastic resin is cooled and cured again, so that the electrode 510 and the conductive circuit 421 of the electronic component 500 are connected to the protruding electrode 450 and the metal. They are electrically connected through the fusion part 460 (see FIG. 6F and FIG. 6).
  • the mechanism of bonding using ultrasonic vibration is performed in the order of relative sliding friction at the bonding interface, destruction of the surface oxide film, generation of metal diffusion, and completion of bonding.
  • these series of flows do not occur simultaneously at the entire bonding interface, and a load due to ultrasonic vibration may be continuously applied even to a portion where the bonding has already been completed.
  • stress due to ultrasonic vibration cannot escape due to slippage at the interface, and shear stress acts on the joint.
  • the deformation strength of the welded portion is usually increased, cracks are likely to occur near the joint portion.
  • the above mounting method has a problem that the cost of forming the protruding electrode 450 is high.
  • An object of the present invention is to provide a surface mounting method of an electronic component and a substrate on which the electronic component is mounted, which can suppress the occurrence of cracks at the joint interface without using a solder material.
  • the present invention employs the following means in order to solve the above problems.
  • the surface mounting method of the first electronic component is On the substrate body, providing a conductive circuit and a thermoplastic resin layer formed on the surface side of the conductive circuit; Providing a metal layer on the surface of the electrode of the electronic component; While pressing the metal layer of the electronic component against the thermoplastic resin layer, by applying a load due to ultrasonic vibration that vibrates in a direction substantially parallel to the surface of the metal layer, the thermoplastic resin is partially melted.
  • a surface mounting method for an electronic component comprising: The metal layer is formed of a thin layer made of a material whose shear strength is lower than that of the material constituting the conductive circuit.
  • the connection between the electrode of the electronic component and the metal layer (referred to as a first connection for convenience of description), the metal layer and the conductive circuit It is possible to suppress a load due to shear stress on the joint portion (referred to as a second joint portion for convenience of description). The reason is as follows.
  • the second bonding is performed.
  • the area of the part is large and the shear stress can be reduced.
  • the thickness in the case of the present invention, the thickness of the layer in the metal layer, which corresponds to the protruding amount in the case of the protruding electrode
  • the stress moment generated between the two joint portions can be reduced, and the shear stress at each joint portion can be reduced.
  • the elastic deformation region is increased and the ductility is increased, so that the shear stress is easily absorbed.
  • the present invention it is possible to suppress the breakage of the conductive circuit and to suppress the load due to the shear stress on each joint portion, and thus it is possible to suppress the occurrence of cracks at the joint interface.
  • thermoplastic resin layer particles made of a material whose Mohs hardness is larger than the Mohs hardness of the material constituting the conductive circuit may be dispersed.
  • the second invention Providing a conductive circuit and a metal layer formed on the surface side of the conductive circuit on the substrate body; Providing a thermoplastic resin layer on the surface side of the metal layer; While pressing the electrode surface of the electronic component against the thermoplastic resin layer, by applying a load by ultrasonic vibration that vibrates in a direction substantially parallel to the electrode surface, the thermoplastic resin is partially removed by melting. Bonding the electrode and the metal layer, then removing the load caused by ultrasonic vibration and curing the molten thermoplastic resin by cooling; and A surface mounting method for an electronic component comprising: The metal layer is formed of a thin layer made of a material whose shear strength is lower than that of the material constituting the conductive circuit.
  • the substrate on which the electronic component of the present invention is mounted is characterized in that the electronic component is mounted on the substrate body by the surface mounting method of the electronic component described in any one of the above.
  • FIG. 5 is a process diagram showing a surface mounting procedure according to Conventional Example 1.
  • FIG. 6 is a schematic cross-sectional view of a substrate on which electronic components are mounted, obtained by the surface mounting method according to Conventional Example 2.
  • FIG. 7 is a process diagram showing a surface mounting procedure according to Conventional Example 2.
  • Example 1 With reference to FIG.1 and FIG.2, the surface mounting method of the electronic component which concerns on Example 1 of this invention and the board
  • the substrate 100 on which the electronic component according to the present embodiment is mounted includes an insulating base material 10 as a substrate body, a conductive circuit 21 formed on the surface of the insulating base material 10, and a pair of electronic components 40.
  • the metal layer 50 is provided on the surface of the electrode 41 and fixed in a state of being electrically connected to the conductive circuit 21.
  • the substrate 100 is also provided with a resin fixing portion 31 that exhibits a function of reinforcing the fixing between the insulating base material 10 and the electronic component 40.
  • a glass epoxy resin can be mentioned as a suitable example of the material of the insulating base material 10.
  • various electronic components that can be mounted by surface mounting such as resistors and capacitors, can be applied as the electronic component 40.
  • Step 1 Metal foil 20 is laminated on the surface of insulating substrate 10 (see FIG. 2A).
  • a metal foil 20 made of hard aluminum having a thickness of 35 ⁇ m is stacked on one side of a glass epoxy insulating substrate (glass epoxy prepreg) 10 having a thickness of 50 ⁇ m, and these are bonded by hot pressing. To do. Since this bonding method is a known technique, a detailed description thereof will be omitted.
  • the metal foil 20 is laminated on the surface of the insulating substrate 10 is obtained.
  • an 18 ⁇ m copper foil can be exemplified.
  • Step 2 A resist 30 having a desired pattern shape (conductive circuit shape) is formed on the surface of the metal foil 20 with an ink material made of a thermoplastic resin (see FIG. 5B).
  • a resist 30 (thermoplastic resin layer) having a desired pattern shape is formed on the surface of the metal foil 20 by using a polyolefin-based thermoplastic adhesive or the like that melts at a temperature of about 150 ° C.
  • the resist 30 is formed by applying a thickness of about 2 to 3 ⁇ m by a method such as gravure printing.
  • Step 3 The exposed portion of the metal foil 20 that is not covered with the resist 30 is removed by etching to form a conductive circuit 21.
  • the surface of the conductive circuit 21 is covered with a resist 30 as a thermoplastic resin layer (see FIG. 3C).
  • NaOH 120 g / l
  • a polyester-based plastic resin instead of the polyolefin-based resin used as the resist 30, a polyester-based plastic resin can also be used.
  • acid-based FeCl 2 is used as an etchant during etching.
  • the area of the joint portion of the conductive circuit 21 can be made smaller than the area of the joint portion of the electrode 41 of the electronic component 40. Therefore, compared to the conventional mounting method using a solder material (for example, in the case of a 1.0 mm ⁇ 0.5 mm size chip capacitor, an area of about twice the electrode area is required), the area of the joint portion of the conductive circuit 21 Can be reduced.
  • a metal layer 50 that is a thin layer of about 1 ⁇ m is formed by plating or the like on the entire surface of the electrode 41 of the electronic component 40 that is joined to the conductive circuit 21 (see FIG. 4D).
  • the material constituting the metal layer 50 a material whose shear strength (shear resistance) is lower than the shear strength of the material constituting the conductive circuit 21 is used. Further, both surfaces of the metal layer 50 are formed to be flat surfaces.
  • a shear strength of 1600 kg / cm is formed on the entire surface on the joint side with the conductive circuit 21.
  • the metal layer 50 is formed using 2 gold by a conventionally known gold plating method so as to have a thickness of about 1 ⁇ m.
  • the shear strength of the metal layer 50 is lower than the shear strength of the conductive circuit 21.
  • the metal layer 50 is provided only on the surface of the electrode 41 on the joint side with the conductive circuit 21 is shown, but the metal layer 50 may be formed on the entire exposed surface of the electrode 41. . In this case, it is not necessary to prevent plating on surfaces (upper surface and side surfaces) other than the bonding-side surface of the electrode 41, and the process of forming the metal layer 50 can be simplified.
  • Step 4 While pressing the metal layer 50 provided on the surface of the electrode 41 of the electronic component 40 against the resist 30 as a thermoplastic resin layer, a load is applied by ultrasonic vibration that vibrates in a direction substantially parallel to the surface of the metal layer 50. (See (E) in the same figure). In this step, the insulating base material 10 in which the resist 30 is formed on the conductive circuit 21 is heated to about 60 ° C.
  • a part of the resist 30 made of a thermoplastic resin is removed from the surface of the conductive circuit 21 due to mechanical friction due to ultrasonic vibration. Removed. That is, a part of the resist 30 is melted by frictional heat, and the resin melted by pressurization is pushed away in a direction perpendicular to the direction in which the pressure is applied, and the surface of the metal layer 50 is electrically conductive. It is removed from the area between the surface of the circuit 21.
  • the oxide layer on the surface of the conductive circuit 21 is also mechanically removed, so that the surface of the metal layer 50 on the electrode 41 and the surface of the conductive circuit 21 are in contact with each other, and further, friction caused by ultrasonic vibration is caused. Thus, a metal fusion part is formed between these surfaces.
  • thermoplastic resin melted by heat is cured again by cooling.
  • fixed part 31 which exhibits the function which reinforces fixation of the insulating base material 10 and the electronic component 40 is formed (refer the same figure (F)).
  • the process of applying these loads is performed for about 0.3 seconds.
  • the chip capacitor can be firmly fixed on the insulating base material 10, and the electrode 41 in the chip capacitor and the conductive circuit 21 on the insulating base material 10 are connected via the metal layer 50. Can be electrically connected. Note that, as described above, since the metal fusion part is formed between the metal layer 50 and the conductive circuit 21, they are firmly fixed.
  • the material of the metal layer 50 is not restricted to gold.
  • the material of the metal layer 50 needs to have electrical conductivity and its shear strength (shear resistance) is lower than the shear strength of the material constituting the conductive circuit 21. Therefore, according to the material which comprises the conductive circuit 21, aluminum, zinc, nickel, copper, or the alloy which combined these suitably other than gold
  • the insulating base material 10 As an example of the insulating base material 10, a glass epoxy material having a thickness of 50 ⁇ m is shown, but the material and thickness of the insulating base material 10 are not limited to this.
  • a PET film for example, 25 ⁇ m thick
  • a melting point of about 120 ° C. can be used as the insulating substrate 10.
  • the area of the conductive circuit 21 can be reduced. Since the fillet formation for ensuring the solder joint reliability is not necessary, the area of the conductive circuit 21 can be reduced. There are no problems concerning the wettability of the material constituting the solder material and the conductive circuit 21, the plating on the surface of the conductive circuit 21 can be reduced, and inexpensive aluminum can be adopted as the material of the conductive circuit 21. Cost can be reduced. Since a high-temperature heat treatment that melts the solder material is unnecessary, an inexpensive low heat resistant material such as PET (polyethylene terephthalate) can be used as the base material (insulating base material 10) in the printed wiring board. By reducing the equipment and energy used for high-temperature heat treatment, the manufacturing cost can be further reduced. In addition, the burden on the environment can be reduced by reducing the energy used or the solder material and flux material required in the conventional method.
  • PET polyethylene terephthalate
  • the metal layer 50 provided on the surface of the electronic component 40 is a thin layer (conductive circuit) made of a material whose shear strength is lower than the shear strength of the material constituting the conductive circuit 21. 21 side is a layer which becomes a flat surface). Therefore, the following effects can be obtained.
  • the present embodiment by adopting the above configuration as the metal layer 50, it is possible to prevent the conductive circuit 21 from being damaged even when a load is applied by ultrasonic vibration. . This is because the shear strength is higher in the conductive circuit 21 than in the metal layer 50 and the surface of the metal layer 50 is a flat surface.
  • a joint portion between the electrode 41 of the electronic component 40 and the metal layer 50 (referred to as a first joint portion for convenience of description), the metal layer 50, It is possible to suppress a load caused by shear stress on a joint portion with the conductive circuit 21 (referred to as a second joint portion for convenience of description). The reason is as follows.
  • the second bonding is performed.
  • the area of the part is large and the shear stress can be reduced.
  • the thickness in the present embodiment, the thickness of the metal layer 50, corresponding to the protruding amount in the case of the protruding electrode
  • the first joint portion The stress moment generated between the first and second joint portions can be reduced, and the shear stress at each joint portion can be reduced.
  • the metal layer 50 according to the present embodiment has a larger elastic deformation range and a higher ductility than the projecting electrode, so that it is easy to absorb shear stress.
  • the step of forming a plating mask or the like is necessary to form the protruding electrode, whereas according to the present embodiment, the step Therefore, the surface mounting of the electronic component can be performed at a low cost of about 50% compared with the conventional method.
  • FIG. 3 shows a second embodiment of the present invention.
  • the case where particles made of a hard material are dispersed in a thermoplastic resin layer (resist) in the configuration shown in the above-described example 1 is shown. Since other configurations and operations are the same as those in the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.
  • a material whose shear strength is lower than that of the material constituting the conductive circuit 21 can be adopted.
  • tin (Sn) having a shear strength of about 200 kg / cm 2 .
  • thermoplastic resin resist 30
  • the oxide layer on the surface of the conductive circuit 21 must be removed.
  • the Mohs hardness of tin is about 1.5, which is lower than that of aluminum or copper.
  • the Mohs hardness of aluminum is 2.75, and the Mohs hardness of copper is 2.5 to 3.0.
  • a metal fusion part is preferably provided between the metal layer 50 and the conductive circuit 21. A technique that can be formed will be described.
  • the resist 30a has a Mohs hardness in the thermoplastic resin layer of about 2 ⁇ m to 3 ⁇ m larger than the Mohs hardness of the material constituting the metal layer 50, and the conductive circuit 21.
  • a configuration in which particles 30b made of a material larger than the Mohs hardness of the constituent material is dispersed is employed (see FIG. 3A).
  • thermoplastic resin a polyolefin-type thing can be mentioned.
  • FIG. 3B shows a state in which a load due to ultrasonic vibration is being applied, in which a part of the thermoplastic resin is melted and removed, and the metal layer 50 and the conductive circuit 21 are separated. A state before contact is shown in a schematic cross-sectional view.
  • 3C is a schematic cross-sectional view (schematic cross-sectional view showing a state after a step of applying a load by ultrasonic vibration) of the substrate on which the electronic component is mounted.
  • the thermoplastic resin that was melted by heat is cured again by cooling, and functions to reinforce the fixing between the insulating substrate 10 and the electronic component 40.
  • the resin fixing part 31a to be formed is formed.
  • the metal layer 50 and the conductive circuit 21 are brought into frictional contact by ultrasonic vibration, if there is a difference in the Mohs hardness of both, the surface oxide film on the higher Mohs hardness side is destroyed.
  • the particles 30b dispersed in the thermoplastic resin become an interface between the metal layer 50 and the conductive circuit 21, so that both surface oxides are uniformly destroyed. It is possible to suitably form the metal fusion part.
  • the metal layer 50 is not formed between the metal layer 50 and the conductive circuit 21.
  • a fused part can be formed suitably.
  • FIG. 4 shows a third embodiment of the present invention.
  • Example 1 the case where the metal layer is provided on the electrode side of the electronic component is shown.
  • the metal layer is provided on the insulating base side.
  • the case where it provides is shown. Since other basic configurations and operations are the same as those of the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the case where the metal layer 50 is provided on the surface of the electrode 41 of the electronic component 40 in the stage before the electronic component 40 is fixed to the insulating substrate 10 is shown.
  • the surface of the electrode 41 on the bonding side with respect to the conductive circuit 21 has a sufficient area, the alignment of the electronic component 40 with respect to the conductive circuit 21 is performed with high accuracy in step 4 in the first embodiment. There is no need.
  • the metal layer is placed on the insulating substrate 10 side (more specifically, the surface of the conductive circuit 21) before the electronic component 40 is fixed to the insulating substrate 10 for the purpose of reducing the cost. It can also be provided.
  • Step 1 Similarly to the case of Example 1, the metal foil 20 is laminated on the surface of the insulating substrate 10 (see FIG. 4A).
  • a metal foil (copper foil) 20 having a thickness of 18 ⁇ m is stacked on one side of a glass epoxy insulating substrate (glass epoxy prepreg) 10 having a thickness of 50 ⁇ m, and these are bonded by hot pressing. To do. In this way, a product in which the metal foil 20 is laminated on the surface of the insulating substrate 10 is obtained.
  • Step 2 After a plating resist having a required pattern shape is formed on the surface of the metal foil 20, a conventionally known plating treatment (electroless plating or electrolysis is applied to the exposed portion of the metal foil 20 that is not covered with the plating resist.
  • a metal layer 55 is formed by plating).
  • the material constituting the metal layer 55 a material whose shear strength (shear resistance) is lower than that of the material constituting the conductive circuit 21 is used as in the case of the first embodiment. Further, both surfaces of the metal layer 55 are formed to be flat surfaces.
  • the metal layer 55 is formed of a thin layer of about 1 ⁇ m, as in the case of the first embodiment. Further, the material of the metal layer 55 is also gold, aluminum, zinc, nickel, copper, or an alloy appropriately combined with these in accordance with the material constituting the conductive circuit 21 as in the case of the first embodiment. Can be adopted.
  • the plating resist is peeled off from the surface of the metal foil 20 (see FIG. 5B). In FIG. 4, the plating resist is not shown.
  • Step 3 A resist 35 having a desired pattern shape (conducting circuit shape) is formed on the surface including the portion provided with the metal layer 55 on the metal foil 20 with an ink material made of a thermoplastic resin (FIG. 3C). reference).
  • Resist 35 having a desired pattern shape is formed on a surface including a portion provided with metal layer 55 on metal foil 20 with a polyolefin-based thermoplastic adhesive or the like that melts at a temperature of about 150 ° C. (Thermoplastic resin layer) is formed.
  • the resist 30 is formed by applying a thickness of about 2 to 3 ⁇ m by a method such as gravure printing.
  • Step 4 The exposed portion of the metal foil 20 that is not covered with the resist 35 is removed by etching to form the conductive circuit 21.
  • the surface of the conductive circuit 21 is covered with a resist 35 as a thermoplastic resin layer, and the portion where the metal layer 55 is provided is covered with the resist 35 so as to sandwich the metal layer 55. (See (D) in the figure).
  • Step 5 While pressing the surface of the electrode 41 of the electronic component 40 against the resist 35 as a thermoplastic resin layer, a load is applied by ultrasonic vibration that vibrates in a direction substantially parallel to the surface of the electrode 41 (see FIG. 5E). . In this step, the insulating base material 10 having the resist 35 and the like formed on the conductive circuit 21 is heated to about 60 ° C.
  • the mechanism by which the electrode 41 of the electronic component 40 and the metal layer 55 are electrically joined by applying a load due to this ultrasonic vibration is the same as in the case of the first embodiment.
  • a part of the resist 35 made of thermoplastic resin is removed from the surface of the metal layer 55 by mechanical friction due to ultrasonic vibration. . That is, a part of the resist 35 is melted by frictional heat, and the resin melted by pressurization is pushed away in a direction perpendicular to the direction in which the pressure is applied, so that the surface of the electrode 41 of the electronic component 40 is And the region between the surface of the metal layer 55.
  • the oxide layer on the surface of the electrode 41 is also mechanically removed, so that the surface of the electrode 41 and the surface of the metal layer 55 are in contact with each other. A metal fusion part is formed.
  • thermoplastic resin melted by heat is cured again by cooling.
  • fixed part 36 which exhibits the function which reinforces fixation of the insulating base material 10 and the electronic component 40 is formed (refer FIG.4 (F)).
  • step 5 the specific example of the pressure for pressing the electronic component 40, the frequency of ultrasonic vibration, and the time for applying the load is the same as in the case of the first embodiment, and the description thereof will be omitted. .
  • the thickness of the metal layers 50 and 55 in each of the above embodiments is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the reason for setting the thicknesses of the metal layers 50 and 55 to 1 ⁇ m or more is that the amount scraped off by ultrasonic friction is taken into consideration.
  • the thickness of the metal layers 50 and 55 is set to less than 1 ⁇ m, there is a possibility that the metal serving as an electrode does not exist in the interface, and the possibility of causing a bonding defect increases.
  • the upper limit of the thickness of the metal layers 50 and 55 is about 3 ⁇ m is preferable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)

Abstract

 はんだ材を用いることなく、接合界面のクラックの発生の抑制を図ることのできる電子部品の表面実装方法及び電子部品が実装された基板を提供する。 絶縁性基材10上に、導電性回路21と、導電性回路21の表面側に形成される熱可塑性樹脂で構成されるレジスト30とを設ける工程と、電子部品40の電極41の表面に金属層50を設ける工程と、電子部品40の金属層50を、レジスト30に押し当てながら、金属層50の表面に略平行な方向に振動する超音波振動による負荷を与えることで、レジスト30を溶融により部分的に除去させて金属層50と導電性回路21とを接合させ、その後、超音波振動による負荷をなくして、溶融した熱可塑性樹脂を冷却により硬化させる工程と、を備える電子部品40の表面実装方法であって、金属層50は、そのせん断強度が導電性回路21を構成する材料のせん断強度よりも低い材料からなる薄い層で構成される。

Description

電子部品の表面実装方法及び電子部品が実装された基板
 本発明は、抵抗やコンデンサなどの各種電子部品を、導電回路が形成されたプリント配線基板上に表面実装するための電子部品の表面実装方法及び電子部品が実装された基板に関する。
 一般的に、抵抗やコンデンサなどの各種電子部品を基板上に表面実装する場合には、はんだ材を用いる方法で行われている。かかる従来技術について、図5を参照して説明する。図5は従来例1に係る表面実装手順を示す工程図である。
 この従来例においては、基板として、耐熱性のガラスエポキシ樹脂やポリイミド樹脂からなる基材210の表面に、12μm~35μm程度の厚みの銅箔220を積層したものを用いている(図5(A)参照)。この基板に対して、従来公知のフォトリソ法及びエッチング法を用いて導電性回路221を形成する(同図(B)参照)。さらに電子部品300を接続する位置に、はんだ材との濡れ性を付与するために、Snなどのめっき230を施して、プリント配線基板200を作製する(同図(C)参照)。
 次に、導電性回路221におけるめっき230上に、クリームはんだ240をスクリーン印刷等により供給する。そして、電子部品300の電極部310をはんだ240上に配置する(同図(D)参照)。電子部品300を配置した状態で、260~270℃で数秒間加熱して、はんだ240を溶融し、フィレット241を形成後、冷却により硬化させる。その後、はんだ240内にあったフラックス材を洗浄により除去することで、導電性回路221上への電子部品300の実装が完了する。
 ところで、近年、電子機器の小型化に伴って、プリント配線基板のより一層の小型化や基板に対する電子部品のより高密度な実装が要求されている。そのため、導電回路の面積が縮小し、はんだ材の供給不足による接合不良や、はんだ材のはみ出しによる隣接回路間の短絡という不具合発生のリスクが高くなっている。はんだの接合信頼性を確保するフィレットの形成のためには、導電回路面積をある程度確保する必要があり、上記の実装方法では、小型化に限界がある。
 このような問題を解消するために、シート状のはんだ材にフラックスフィルムを積層した接続シートを用いる方法、異方導電性シートや異方導電性ペースト等を用いる方法が提案されている(特許文献1参照)。しかしながら、かかる方法では、はんだ材等をフィルム化すること、あるいは、異方導電性材の使用で材料コストが増加し、加熱工程が削減することができないことから、低コスト化という需要には対応できない。
 また、小型化及び低コスト化の需要に同時に対応できる方法として、本願の出願人は、はんだ材を用いない表面実装方法を既に提案している(特許文献2参照)。かかる方法について、図6及び図7を参照して説明する。図6は従来例2に係る表面実装方法によって得られた、電子部品が実装された基板の模式的断面図である。図7は従来例2に係る表面実装手順を示す工程図である。
 この従来例においては、基板として、ガラスエポキシ樹脂等からなる絶縁性基材410上に金属箔420が積層されたものを用いている(図7(A)参照)。この基板表面上に、インク材として構成される熱可塑性の樹脂材(以下、レジストと称する)を所要パターン形状となるように塗布する(同図(B)参照)。そして、レジスト430により覆われていない露出した部分の金属をエッチング除去して導電性回路421を形成する。このようにして、導電性回路421が形成されたプリント配線基板400が得られる(同図(C)参照)。
 また、別工程において、電子部品500の電極510の表面上に突起状の突出電極450をめっき、あるいは従来公知のスタッドバンプ法等により形成する(同図(D)参照)。
 そして、この電子部品500を、60℃程度に加熱したプリント配線基板400表面のレジスト430上に、突出電極450が当るように超音波振動を付加した状態で押し当てる(同図(E)参照)。これにより、突出電極450とレジスト430との間で生じる摩擦によって、レジスト430における突出電極450の先端の押し当てられた部位が溶融し除去される。そして、突出電極450の先端と導電性回路421との間に、超音波振動に伴う摩擦による金属融着部460が形成される。その後、超音波振動を停止させることで、熱可塑性樹脂で構成されているレジスト430が冷却されて、再び硬化して、電子部品500の電極510と導電性回路421とが、突出電極450及び金属融着部460を介して電気的に接続される(同図(F)及び図6参照)。
 以上のような表面実装方法により、はんだ材を用いる必要がなく、小型化及び低コスト化の需要に同時に対応することが可能となる。
 しかしながら、かかる表面実装方法の場合、超音波振動を付加している工程中に、電子部品500の電極510と突出電極450との間の界面や、突出電極450と金属融着部460との間の界面にクラックが生じるリスクが高いという問題がある。
 すなわち、超音波振動を利用した接合のメカニズムは、接合界面の相対すべり摩擦、表面酸化膜の破壊、金属拡散の発生、接合の完了の順で行われる。しかしながら、これら一連の流れが、接合界面全体で同時に起こる訳ではなく、既に、接合が完了した部位に対しても、超音波振動による負荷が継続的にかかる場合がある。この場合、超音波振動による応力が界面のすべりで逃げることができず、接合部にせん断応力が作用してしまう。これにより、通常、溶接部の変形強度は大きくなっているために、接合部近傍でクラックが発生し易くなる。
 また、上記の実装方法においては、突起状の突出電極450を形成するコストが高いという問題もある。
特開2005-203693号公報 特許第3584404号公報
 本発明の目的は、はんだ材を用いることなく、接合界面のクラックの発生の抑制を図ることのできる電子部品の表面実装方法及び電子部品が実装された基板を提供することにある。
 本発明は、上記課題を解決するために以下の手段を採用した。
 すなわち、第一の電子部品の表面実装方法は、
 基板本体上に、導電性回路と、該導電性回路の表面側に形成される熱可塑性樹脂層とを設ける工程と、
 電子部品の電極の表面に金属層を設ける工程と、
 前記電子部品の前記金属層を前記熱可塑性樹脂層に押し当てながら、該金属層の表面に略平行な方向に振動する超音波振動による負荷を与えることで、熱可塑性樹脂を溶融により部分的に除去させて前記金属層と前記導電性回路とを接合させ、その後、超音波振動による負荷をなくして、溶融した熱可塑性樹脂を冷却により硬化させる工程と、
 を備える電子部品の表面実装方法であって、
 前記金属層は、そのせん断強度が前記導電性回路を構成する材料のせん断強度よりも低い材料からなる薄い層で構成されることを特徴とする。
 本発明によれば、はんだ材を用いることなく、電子部品の表面実装を行うことが可能となる。
 また、金属層として、そのせん断強度が導電性回路を構成する材料のせん断強度よりも低い材料からなる薄い層で構成されるものを採用したことによって、超音波振動により負荷が与えられている場合でも、導電性回路が破損してしまうことを抑制できる。
 また、金属層として、上記のような構成を採用したことにより、電子部品の電極と金属層との接合部分(説明の便宜上、第1接合部分と称する)や、金属層と導電性回路との接合部分(説明の便宜上、第2接合部分と称する)に対するせん断応力による負荷を抑制することができる。その理由は、次の通りである。
 すなわち、第一に、超音波振動を利用して、突出電極の先端により熱可塑性樹脂層を部分的に除去して、突出電極と導電性回路とを接合する場合に比して、第2接合部分の面積が広く、せん断応力を軽減させることができる。第二に、突出電極の場合に比して、厚み(本発明の場合には金属層における層の厚み、突出電極の場合には突出量に相当)を薄くできるため、第1接合部分と第2接合部分との間で生じる応力モーメントを小さくすることができ、各接合部分におけるせん断応力を軽減させることができる。第三に、突出電極の場合に比して、弾性変形域が大きくなり、延性が増すため、せん断応力を吸収し易くなる。
 以上のように、本発明によれば、導電性回路の破損を抑止し、かつ各接合部分に対するせん断応力による負荷を抑制できるため、接合界面のクラックの発生を抑制することが可能となる。
 前記熱可塑性樹脂層の中に、そのモース硬さが前記導電性回路を構成する材料のモース硬さよりも大きな材料からなる粒子を分散させるとよい。
 こうすることによって、超音波振動による負荷を与える際の振動によって、熱可塑性樹脂層の中に分散された粒子により金属表面に傷を付ける「やすり効果」が発揮される。これにより、金属表面の不活性層(酸化膜)が除去され、金属接合が開始される。従って、金属層のモース硬さが導電性回路のモース硬さよりも低い場合であっても、導電性回路表面の酸化膜破壊による接合を適切に行わせることができる。
 また、第二の発明は、
 基板本体上に、導電性回路と、該導電性回路の表面側に形成される金属層とを設ける工程と、
 前記金属層の表面側に熱可塑性樹脂層を設ける工程と、
 電子部品の電極表面を、前記熱可塑性樹脂層に押し当てながら、前記電極表面に略平行な方向に振動する超音波振動による負荷を与えることで、熱可塑性樹脂を溶融により部分的に除去させて前記電極と前記金属層とを接合させ、その後、超音波振動による負荷をなくして、溶融した熱可塑性樹脂を冷却により硬化させる工程と、
 を備える電子部品の表面実装方法であって、
 前記金属層は、そのせん断強度が前記導電性回路を構成する材料のせん断強度よりも低い材料からなる薄い層で構成されることを特徴とする。
 かかる第二の発明においても、第一の発明の場合と同様の理由により、導電性回路の破損を抑止し、かつ各接合部分に対するせん断応力による負荷を抑制できるため、接合界面のクラックの発生を抑制することが可能となる。
 また、本発明の電子部品が実装された基板は、上記のいずれか一つに記載の電子部品の表面実装方法によって、基板本体上に電子部品が実装されたことを特徴とする。
 以上説明したように、本発明によれば、はんだ材を用いることなく、接合界面のクラックの発生の抑制を図ることができる。
本発明の実施例1に係る電子部品が実装された基板の模式的断面図である。 本発明の実施例1に係る電子部品の表面実装方法における表面実装手順を示す工程図である。 本発明の実施例2に係る電子部品の表面実装方法を説明する図である。 本発明の実施例3に係る電子部品の表面実装方法における表面実装手順を示す工程図である。 図5は従来例1に係る表面実装手順を示す工程図である。 図6は従来例2に係る表面実装方法によって得られた、電子部品が実装された基板の模式的断面図である。 図7は従来例2に係る表面実装手順を示す工程図である。
 以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に詳しく説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
 (実施例1)
 図1及び図2を参照して、本発明の実施例1に係る電子部品の表面実装方法及び電子部品が実装された基板について説明する。
 <電子部品が実装された基板>
 特に、図1を参照して、本発明の実施例1に係る電子部品の表面実装方法によって得られる、電子部品が実装された基板について説明する。
 本実施例に係る電子部品が実装された基板100は、基板本体としての絶縁性基材10と、絶縁性基材10の表面上に形成された導電性回路21と、電子部品40における一対の電極41の表面に設けられ、かつ導電性回路21と電気的に接続した状態で固定される金属層50とを備えている。また、基板100においては、絶縁性基材10と電子部品40との固定をより補強する機能を発揮する樹脂固定部31も設けられている。
 なお、絶縁性基材10の材料の好適例として、ガラスエポキシ樹脂を挙げることができる。また、本実施例においては、電子部品40としては、抵抗やコンデンサなど、表面実装によって実装可能な種々の電子部品を適用できる。
 <電子部品の表面実装方法>
 特に、図2を参照して、本実施例に係る電子部品の表面実装方法について説明する。
 <<工程1>>
 絶縁性基材10の表面に金属箔20を積層する(図2(A)参照)。
 (具体的な一例)50μmの厚みのガラスエポキシ製の絶縁性基材(ガラエポプリプレグ)10の片面に、35μmの厚みの硬質アルミからなる金属箔20を重ねて、熱間プレスによって、これらを接着する。なお、この接着方法については、公知技術であるので、その詳細説明は省略する。
 このようにして、絶縁性基材10の表面に金属箔20が積層されたものが得られる。なお、金属箔20の他の具体例としては、18μmの銅箔を挙げることができる。
 <<工程2>>
 金属箔20の表面に、所望のパターン形状(導電性回路の形状)のレジスト30を、熱可塑性樹脂からなるインク材によって形成する(同図(B)参照)。
 (具体的な一例)金属箔20の表面上に、150℃程度の温度で溶融するポリオレフィン系の熱可塑性接着剤等により、所望のパターン形状のレジスト30(熱可塑性樹脂層)を形成する。このレジスト30は、グラビア印刷等の方法によって2~3μm厚程度塗布することにより形成する。
 <<工程3>>
 レジスト30によって覆われていない露出した部位の金属箔20をエッチングにより除去して、導電性回路21を形成する。この導電性回路21の表面は、熱可塑性樹脂層としてのレジスト30によって覆われている(同図(C)参照)。
 (具体的な一例)エッチング処理に際しては、エッチング液としてNaOH(120g/l)を50℃の条件にて使用するとよい。ここで、レジスト30として用いたポリオレフィン系樹脂の代わりにポリエステル系の可塑性樹脂を用いることもできる。この場合、エッチング時のエッチング液には、酸系のFeClを用いる。
 尚、本実施例においては、導電性回路21の接合部の面積は、電子部品40の電極41における接合部の面積より小さくすることが可能である。そのため、従来のはんだ材による実装方法(例えば、1.0mm×0.5mmサイズのチップコンデンサの場合、電極面積の2倍程度の面積が必要)に比べて、導電性回路21の接合部の面積を小さくすることができる。
 <<別工程>>
 別工程において、電子部品40の電極41における導電性回路21との接合側の全面に、1μm程度の薄い層となる金属層50をめっき等により形成する(同図(D)参照)。ここで、この金属層50を構成する材料は、そのせん断強度(せん断抵抗)が、導電性回路21を構成する材料のせん断強度よりも低いものを用いている。また、金属層50の両面は平坦な面となるように形成している。
 (具体的な一例)1.0mm×0.5mmサイズのチップコンデンサ(電子部品40)における一対の電極41のそれぞれに対して、導電性回路21との接合側の全面に、せん断強度1600kg/cmの金を用いて、従来公知の金メッキ法などによって1μm程度の厚みとなるように金属層50を形成する。
 ここで、導電性回路21がアルミニウムで構成される場合、せん断強度は2000~3000kg/cm程度であり、銅で構成される場合、せん断強度は3000kg/cm以上である。従って、いずれの場合であっても、金属層50のせん断強度は、導電性回路21のせん断強度よりも低くなる。
 なお、本実施例においては、電極41における導電性回路21との接合側の面にのみ金属層50を設ける場合を示したが、電極41における露出面全体に金属層50を形成してもよい。この場合、電極41における接合側の面以外の面(上面及び側面)にめっきが施されないようにする必要がなく、金属層50を形成する工程を簡略化できる。
 <<工程4>>
 電子部品40の電極41の表面に設けられた金属層50を、熱可塑性樹脂層としてのレジスト30に押し当てながら、金属層50の表面に略平行な方向に振動する超音波振動による負荷を与える(同図(E)参照)。この工程においては、導電性回路21上にレジスト30が形成されている絶縁性基材10を60℃程度に加熱した状態で行う。
 このように、圧力による負荷をかけつつ、超音波振動による負荷を与えることによって、熱可塑性樹脂からなるレジスト30は、その一部が、超音波振動による機械的摩擦により導電性回路21の表面から除去される。すなわち、レジスト30は、摩擦熱によって、その一部が溶融し、かつ加圧によって、溶融した樹脂は、圧力がかかる方向に対して垂直な方向に押しのけられて、金属層50の表面と導電性回路21の表面との間の領域から除去される。
 また、導電性回路21の表面の酸化物層も同じく機械的に除去されることで、電極41上の金属層50の表面と導電性回路21の表面が接触し、更に、超音波振動による摩擦により、これらの表面間には金属融着部が形成される。
 その後、超音波振動による負荷をなくすことで、熱により溶融していた熱可塑性樹脂は冷却により再び硬化する。これにより、絶縁性基材10と電子部品40との固定をより補強する機能を発揮する樹脂固定部31が形成される(同図(F)参照)。
 (具体的な一例)チップコンデンサ(電子部品40)の電極41に設けられた金属層50を、圧力0.2kg/mmの条件下でレジスト30に押し当てながら、振動数63KHzの超音波振動の負荷を与える。
 これらの負荷を与える工程は0.3秒程度行う。これにより、チップコンデンサを絶縁性基材10上に強固に固定することができ、かつ、チップコンデンサにおける電極41と、絶縁性基材10上の導電性回路21とを、金属層50を介して電気的に接続することができる。なお、上記の通り、金属層50と導電性回路21との間には金属融着部が形成されるため、これらは強固に固定される。
 なお、金属層50の材料の一例として、金の場合を示したが、金属層50の材料は金に限られるものではない。金属層50の材料は、導電性を備え、かつそのせん断強度(せん断抵抗)が、導電性回路21を構成する材料のせん断強度よりも低ければよい。従って、導電性回路21を構成する材料に応じて、金の他、アルミニウム、亜鉛、ニッケル、銅、またはこれらを適宜組み合わせた合金などを採用することができる。
 また、絶縁性基材10の一例として、50μm厚のガラスエポキシ製のものを示したが、絶縁性基材10の材料や厚みは、これに限られるものではない。
 本実施例において、超音波振動の負荷を与える時間は非常に短時間で済むため、摩擦による熱は、絶縁性基材10までは伝わらない。従って、絶縁性基材10として、耐熱性の低い、融点120℃程度のPETフィルム(例えば25μm厚)を使用することもできる。
 <本実施例に係る電子部品の表面実装方法の優れた点>
 <<はんだ材が不要であることの効果>>
 上記の通り、本実施例に係る表面実装方法によれば、はんだ材を用いることなく、電子部品40を絶縁性基材10に実装することができる。従って、次のような効果を得ることができる。
 はんだ材の供給不足やはみ出し等に伴う断線や短絡の問題がなく、導電性回路21の面積を小さくできる。はんだ接合信頼性を確保するためのフィレット形成が必要ではないため、導電性回路21の面積を小さくできる。はんだ材と導電性回路21を構成する材料のぬれ性に関する問題がなく、導電性回路21の表面のめっきが削減できたり、導電性回路21の材料として安価なアルミニウムを採用できたりするなど、材料コストを削減できる。はんだ材を溶融させるような高温度の熱処理が不要なため、プリント配線基板における基材(絶縁性基材10)として、PET(ポリエチレンテレフタレート)等の安価な低耐熱材料を使用することもできる。高温度の熱処理に必要な装置、及び使用エネルギを削減することで、さらなる製造コストの低下を図れる。また、使用エネルギ、あるいは従来の工法で必要であったはんだ材やフラックス材を削減することで、環境に対する負荷を軽減できる。
 また、はんだ材の使用に伴う、クラック,ボイド,ウイスカの発生の問題がなく、電子部品の浮きなどの品質的な低下の問題がない。更に、従来工法で必要であった、エッチングレジスト剥離,レジスト塗布,めっき,はんだ材の供給,熱処理、及びフラックス材の洗浄などの作業が不要となり、加工工数を大幅に削減することができる。これに伴い、製造コストの削減、及び生産性の向上が可能となる。
 <<金属層をせん断強度の低い材料からなる薄い層で構成したことによる効果>>
 上記の通り、本実施例においては、電子部品40の表面に設けられる金属層50は、そのせん断強度が導電性回路21を構成する材料のせん断強度よりも低い材料からなる薄い層(導電性回路21側は平坦な面となる層)で構成される。従って、次のような効果を得ることができる。
 すなわち、本実施例においては、金属層50として、上記のような構成を採用したことにより、超音波振動により負荷が与えられている場合でも、導電性回路21が破損してしまうことを抑制できる。これは、せん断強度が、金属層50よりも導電性回路21の方が高いことや、金属層50の表面が平坦な面であることに起因する。
 また、金属層50として、上記のような構成を採用したことにより、電子部品40の電極41と金属層50との接合部分(説明の便宜上、第1接合部分と称する)や、金属層50と導電性回路21との接合部分(説明の便宜上、第2接合部分と称する)に対するせん断応力による負荷を抑制することができる。その理由は、次の通りである。
 すなわち、第一に、超音波振動を利用して、突出電極の先端により熱可塑性樹脂層を部分的に除去して、突出電極と導電性回路とを接合する場合に比して、第2接合部分の面積が広く、せん断応力を軽減させることができる。
 第二に、突出電極の場合に比して、厚み(本実施例の場合には金属層50における層の厚み、突出電極の場合には突出量に相当)を薄くできるため、第1接合部分と第2接合部分との間で生じる応力モーメントを小さくすることができ、各接合部分におけるせん断応力を軽減させることができる。
 第三に、突出電極の場合に比して、本実施例に係る金属層50の方が、弾性変形域が大きくなり、延性が増すため、せん断応力を吸収し易くなる。
 以上のように、本実施例によれば、導電性回路21の破損を抑止し、かつ各接合部分に対するせん断応力による負荷を抑制できるため、接合界面のクラックの発生を抑制することが可能となる。
 また、従来のように突出電極を採用する場合には、当該突出電極を形成するために、メッキマスク等を形成する工程が必要であったのに対して、本実施例によれば、当該工程が不要となるため、従来工法比で50%程度の低コストで電子部品の表面実装が可能となる。
 (実施例2)
 図3には、本発明の実施例2が示されている。本実施例においては、上記実施例1で示した構成において、熱可塑性樹脂層(レジスト)の中に、硬い材料からなる粒子を分散させた場合を示す。その他の構成および作用については実施例1と同一なので、同一の構成部分については同一の符号を付して、その説明は省略する。
 上記実施例1で説明した通り、金属層50の材料としては、そのせん断強度が導電性回路21を構成する材料のせん断強度よりも低いものを採用できる。例えば、せん断強度が約200kg/cmの錫(Sn)を使用することも可能である。
 しかしながら、金属層50と導電性回路21とを電気的に接続させるためには、超音波振動による負荷を与えることで、金属層50によって、熱可塑性樹脂(レジスト30)の一部を溶融させ、除去させると共に、導電性回路21の表面の酸化物による層も除去しなければならない。
 ここで、錫のモース硬度は1.5程度であり、アルミニウムや銅のモース硬度に比べて低い。なお、アルミニウムのモース硬度は2.75、銅のモース硬度は2.5~3.0である。
 従って、導電性回路21の材料として、銅やアルミニウムが用いられた場合に、金属層50の材料として錫を採用すると、超音波摩擦による導電性回路21の表面の酸化物の層の除去は進行し難く、金属層50と導電性回路21との間の金属融着部の形成が進み難いという問題がある。
 本実施例においては、金属層50の材料として、錫などのモース硬度の小さなものを採用した場合であっても、金属層50と導電性回路21との間に、金属融着部を好適に形成させることができる手法を説明する。
 すなわち、本実施例においては、レジスト30aとして、2μm~3μm程度の熱可塑性樹脂層の中に、そのモース硬さが金属層50を構成する材料のモース硬さよりも大きく、かつ導電性回路21を構成する材料のモース硬さよりも大きな材料からなる粒子30bを分散させた構成を採用している(図3(A)参照)。
 なお、熱可塑性樹脂の好適な例としては、ポリオレフィン系のものを挙げることができる。また、粒子30bの好適な例としては、SiO、Al、SiC等のセラミック、あるいは、ニッケル、銅、マンガン、鉄、チタン等の金属からなる直径が0.3μm以上0.5μm以下の略球形の粒子を挙げることができる。
 なお、表面実装方法(工程)については、上記実施例1と同一であるので、その説明は省略する。
 本実施例においては、上記の通り、熱可塑性樹脂層の中に、モース硬さが大きな粒子30bを分散させたレジスト30aを採用している。従って、実施例1で説明した工程4の超音波振動による負荷を与える工程において、金属層50や導電性回路21に対して粒子30bによる摩擦力が加わる点が実施例1とは異なる。なお、図3(B)は、超音波振動による負荷を与えている最中であって、熱可塑性樹脂の一部が溶融し、除去されており、かつ金属層50と導電性回路21とが接する前の状態を模式的断面図にて示している。また、図3(C)は、電子部品が実装された基板の模式的断面図(超音波振動による負荷を与える工程後の状態を示す模式的断面図)である。図示のように、上記実施例1の場合と同様に、熱により溶融していた熱可塑性樹脂は冷却により再び硬化され、絶縁性基材10と電子部品40との固定をより補強する機能を発揮する樹脂固定部31aが形成される。
 実施例1で説明した工程4において、金属層50と導電性回路21が超音波振動によって摩擦接触する際、双方のモース硬度に差があると、モース硬度の高い側の表面酸化膜の破壊が進まず、金属融着部が形成し難い問題が生じる。しかし、本実施例によれば、熱可塑性樹脂中に分散されている粒子30bが、金属層50と導電性回路21との界面にするようになるため、双方の表面酸化物を均一に破壊し、金属融着部を好適に形成させることが可能となる。
 以上のように、本実施例によれば、金属層50の材料として、錫などのモース硬度の小さなものを採用した場合であっても、金属層50と導電性回路21との間に、金属融着部を好適に形成させることができる。
 (実施例3)
 図4には、本発明の実施例3が示されている。電子部品を絶縁性基材に固定する前の段階において、上記実施例1では、金属層を電子部品の電極側に設ける場合を示したが、本実施例では、金属層を絶縁性基材側に設ける場合を示す。その他の基本的な構成及び作用については実施例1と同一なので、同一の構成部分については同一の符号を付して、その説明は省略する。
 上記実施例1においては、電子部品40を絶縁性基材10に固定する前の段階において、金属層50を電子部品40の電極41の表面に設ける場合を示した。しかし、電極41における導電性回路21に対する接合側の面は、十分な面積を持っているため、実施例1における工程4において、電子部品40の導電性回路21に対する位置合わせは、高精度に行う必要はない。
 従って、低コスト化等を目的として、電子部品40を絶縁性基材10に固定する前の段階において、金属層を絶縁性基材10側(より具体的には、導電性回路21の表面)に設けるようにすることもできる。
 <電子部品の表面実装方法>
 特に、図4を参照して、本実施例に係る電子部品の表面実装方法について説明する。
 <<工程1>>
 実施例1の場合と同様に、絶縁性基材10の表面に金属箔20を積層する(図4(A)参照)。
 (具体的な一例)50μmの厚みのガラスエポキシ製の絶縁性基材(ガラエポプリプレグ)10の片面に、18μmの厚みの金属箔(銅箔)20を重ねて、熱間プレスによって、これらを接着する。このようにして、絶縁性基材10の表面に金属箔20が積層されたものが得られる。
 <<工程2>>
 金属箔20の表面上に、所要パタ-ン形状のめっき用レジストを形成した後、該めっき用レジストによって覆われていない金属箔20の露出部分に、従来公知のめっき処理(無電解めっきや電解めっき処理)により、金属層55を形成する。この金属層55を構成する材料は、実施例1の場合と同様に、そのせん断強度(せん断抵抗)が、導電性回路21を構成する材料のせん断強度よりも低いものを用いている。また、金属層55の両面は平坦な面となるように形成している。また、この金属層55は、実施例1の場合と同様に、1μm程度の薄い層により構成される。更に、この金属層55の材料についても、実施例1の場合と同様に、導電性回路21を構成する材料に応じて、金、アルミニウム、亜鉛、ニッケル、銅、またはこれらを適宜組み合わせた合金などを採用することができる。
 金属層55を形成した後に、めっき用レジストを金属箔20の表面から剥離する(同図(B)参照)。なお、図4においては、めっき用レジストについては図示していない。
 <<工程3>>
 金属箔20上における金属層55が設けられた部位を含む表面に、所望のパターン形状(導電性回路の形状)のレジスト35を、熱可塑性樹脂からなるインク材によって形成する(同図(C)参照)。
 (具体的な一例)金属箔20上における金属層55が設けられた部位を含む表面上に、150℃程度の温度で溶融するポリオレフィン系の熱可塑性接着剤等により、所望のパターン形状のレジスト35(熱可塑性樹脂層)を形成する。このレジスト30は、グラビア印刷等の方法によって2~3μm厚程度塗布することにより形成する。
 <<工程4>>
 レジスト35によって覆われていない露出した部位の金属箔20をエッチングにより除去して、導電性回路21を形成する。この導電性回路21の表面は、熱可塑性樹脂層としてのレジスト35によって覆われており、かつ金属層55が設けられている部位においては、当該金属層55を挟むようにしてレジスト35に覆われている(同図(D)参照)。
 <<工程5>>
 電子部品40の電極41の表面を、熱可塑性樹脂層としてのレジスト35に押し当てながら、電極41の表面に略平行な方向に振動する超音波振動による負荷を与える(同図(E)参照)。この工程においては、導電性回路21上にレジスト35等が形成されている絶縁性基材10を60℃程度に加熱した状態で行う。
 この超音波振動による負荷を与えることによって、電子部品40の電極41と金属層55が電気的に接合するメカニズムについては、上記実施例1の場合と同様である。
 すなわち、圧力による負荷をかけつつ、超音波振動による負荷を与えることによって、熱可塑性樹脂からなるレジスト35は、その一部が、超音波振動による機械的摩擦により金属層55の表面から除去される。すなわち、レジスト35は、摩擦熱によって、その一部が溶融し、かつ加圧によって、溶融した樹脂は、圧力がかかる方向に対して垂直な方向に押しのけられて、電子部品40の電極41の表面と金属層55の表面との間の領域から除去される。
 また、電極41の表面の酸化物層も同じく機械的に除去されることで、電極41の表面と金属層55の表面が接触し、更に、超音波振動による摩擦により、これらの表面間には金属融着部が形成される。
 その後、超音波振動による負荷をなくすことで、熱により溶融していた熱可塑性樹脂は冷却により再び硬化する。これにより、絶縁性基材10と電子部品40との固定をより補強する機能を発揮する樹脂固定部36が形成される(図4(F)参照)。
 なお、工程5において、電子部品40を押し当てる圧力、超音波振動の振動数、負荷を与える時間の具体例については、上記実施例1で示した場合と同様であるので、その説明は省略する。
 以上のように、本実施例においても、上記実施例1の場合と同様の効果を得ることができる。また、本実施例においても、上記実施例2で説明したように、熱可塑性樹脂層(レジスト35)の中に、硬い材料からなる粒子を分散させることで、超音波振動による負荷を与えている際の摩擦力を高めるようにすることができる。
 (その他)
 上記各実施例における金属層50,55の層の厚さは、1μm以上3μm以下とするのが好適である。金属層50,55の厚さを1μm以上に設定する理由は、超音波摩擦によって削り取られる量を考慮したものである。金属層50,55の厚さを1μm未満に設定した場合には、界面内に電極となる金属が存在しなくなってしまう虞があり、接合欠陥を生じる可能性が高くなってしまう。また、金属層50,55の厚さを厚くすることはコストアップの要因となり、かつ厚すぎると金属層内にクラックが発生するリスクがあることから、金属層50,55の厚さの上限は3μm程度が好適である。
 10 絶縁性基材
 20 金属箔
 21 導電性回路
 30 レジスト
 30a レジスト
 30b 粒子
 31 樹脂固定部
 35 レジスト
 40 電子部品
 41 電極
 50 金属層
 55 金属層
 100 基板

Claims (4)

  1.  基板本体上に、導電性回路と、該導電性回路の表面側に形成される熱可塑性樹脂層とを設ける工程と、
     電子部品の電極の表面に金属層を設ける工程と、
     前記電子部品の前記金属層を前記熱可塑性樹脂層に押し当てながら、該金属層の表面に略平行な方向に振動する超音波振動による負荷を与えることで、熱可塑性樹脂を溶融により部分的に除去させて前記金属層と前記導電性回路とを接合させ、その後、超音波振動による負荷をなくして、溶融した熱可塑性樹脂を冷却により硬化させる工程と、
     を備える電子部品の表面実装方法であって、
     前記金属層は、そのせん断強度が前記導電性回路を構成する材料のせん断強度よりも低い材料からなる薄い層で構成されることを特徴とする電子部品の表面実装方法。
  2.  前記熱可塑性樹脂層の中に、そのモース硬さが前記導電性回路を構成する材料のモース硬さよりも大きな材料からなる粒子を分散させることを特徴とする請求項1に記載の電子部品の表面実装方法。
  3.  基板本体上に、導電性回路と、該導電性回路の表面側に形成される金属層とを設ける工程と、
     前記金属層の表面側に熱可塑性樹脂層を設ける工程と、
     電子部品の電極表面を、前記熱可塑性樹脂層に押し当てながら、前記電極表面に略平行な方向に振動する超音波振動による負荷を与えることで、熱可塑性樹脂を溶融により部分的に除去させて前記電極と前記金属層とを接合させ、その後、超音波振動による負荷をなくして、溶融した熱可塑性樹脂を冷却により硬化させる工程と、
     を備える電子部品の表面実装方法であって、
     前記金属層は、そのせん断強度が前記導電性回路を構成する材料のせん断強度よりも低い材料からなる薄い層で構成されることを特徴とする電子部品の表面実装方法。
  4.  請求項1,2または3に記載の電子部品の表面実装方法によって、基板本体上に電子部品が実装されたことを特徴とする電子部品が実装された基板。
PCT/JP2011/065485 2010-09-07 2011-07-06 電子部品の表面実装方法及び電子部品が実装された基板 WO2012032840A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147025794A KR20140123595A (ko) 2010-09-07 2011-07-06 전자 부품의 표면 실장 방법 및 전자 부품이 실장된 기판
CN201180034819.4A CN103004294B (zh) 2010-09-07 2011-07-06 电子部件的表面安装方法以及安装有电子部件的基板
EP11823319.6A EP2615891A4 (en) 2010-09-07 2011-07-06 METHOD FOR THE SURFACE MOUNTING OF AN ELECTRONIC COMPONENT AND SUBSTRATE WITH THE ELECTRONIC COMPONENT MOUNTED THEREFROM
US13/810,689 US20130175074A1 (en) 2010-09-07 2011-07-06 Method for surface mounting electronic component, and substrate having electronic component mounted thereon
KR1020137000772A KR20130039328A (ko) 2010-09-07 2011-07-06 전자 부품의 표면 실장 방법 및 전자 부품이 실장된 기판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-199832 2010-09-07
JP2010199832A JP5644286B2 (ja) 2010-09-07 2010-09-07 電子部品の表面実装方法及び電子部品が実装された基板

Publications (1)

Publication Number Publication Date
WO2012032840A1 true WO2012032840A1 (ja) 2012-03-15

Family

ID=45810445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065485 WO2012032840A1 (ja) 2010-09-07 2011-07-06 電子部品の表面実装方法及び電子部品が実装された基板

Country Status (6)

Country Link
US (1) US20130175074A1 (ja)
EP (1) EP2615891A4 (ja)
JP (1) JP5644286B2 (ja)
KR (2) KR20130039328A (ja)
CN (1) CN103004294B (ja)
WO (1) WO2012032840A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142423A1 (ja) * 2018-01-17 2019-07-25 セメダイン株式会社 実装体

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6164228B2 (ja) * 2013-01-25 2017-07-19 株式会社村田製作所 モジュールおよびその製造方法
JP6694235B2 (ja) * 2015-01-29 2020-05-13 Tdk株式会社 電子部品
DE112017000497T5 (de) * 2016-03-29 2018-11-15 Sekisui Polymatech Co., Ltd. Flexible Leiterplatte und Verfahren zur Herstellung einer flexiblen Leiterplatte
KR101932337B1 (ko) 2017-04-12 2018-12-26 한국과학기술원 도전 입자의 이동을 제한하는 폴리머 층을 포함하는 이방성 전도 필름 및 수직 방향 초음파를 이용한 그 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156110A (ja) * 1999-11-24 2001-06-08 Omron Corp 半導体チップの実装方法、並びに、電磁波読み取り可能なデータキャリアの製造方法
JP2004200281A (ja) * 2002-12-17 2004-07-15 Omron Corp 電子部品モジュールの製造方法、並びに電磁波読み取り可能なデータキャリアの製造方法。
JP3584404B2 (ja) 2003-01-17 2004-11-04 オムロン株式会社 半導体チップの実装方法
JP2005203693A (ja) 2004-01-19 2005-07-28 Mitsubishi Electric Corp 接続シートおよび実装部品の実装方法
JP2005275802A (ja) * 2004-03-24 2005-10-06 Omron Corp 電波読み取り可能なデータキャリアの製造方法および該製造方法に用いる基板並びに電子部品モジュール

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629642A (ja) * 1985-07-05 1987-01-17 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
JPS63169793A (ja) * 1987-01-07 1988-07-13 株式会社村田製作所 プリント基板へのチツプ部品の取付構造
EP0393206B1 (en) * 1988-10-14 1996-05-08 Matsushita Electric Industrial Co., Ltd. Image sensor and method of producing the same
GB9222460D0 (en) * 1992-10-26 1992-12-09 Hughes Microelectronics Europa Radio frequency baggage tag
US5821627A (en) * 1993-03-11 1998-10-13 Kabushiki Kaisha Toshiba Electronic circuit device
US5311405A (en) * 1993-08-02 1994-05-10 Motorola, Inc. Method and apparatus for aligning and attaching a surface mount component
JP3141692B2 (ja) * 1994-08-11 2001-03-05 松下電器産業株式会社 ミリ波用検波器
EP0732107A3 (en) * 1995-03-16 1997-05-07 Toshiba Kk Screen device for circuit substrate
US5629241A (en) * 1995-07-07 1997-05-13 Hughes Aircraft Company Microwave/millimeter wave circuit structure with discrete flip-chip mounted elements, and method of fabricating the same
US5686318A (en) * 1995-12-22 1997-11-11 Micron Technology, Inc. Method of forming a die-to-insert permanent connection
US5821456A (en) * 1996-05-01 1998-10-13 Motorola, Inc. Microelectronic assembly including a decomposable encapsulant, and method for forming and reworking same
US6558979B2 (en) * 1996-05-21 2003-05-06 Micron Technology, Inc. Use of palladium in IC manufacturing with conductive polymer bump
US20010000157A1 (en) * 1997-10-16 2001-04-05 Rohm Co., Ltd. Semiconductor device and method of making the same
US6926796B1 (en) * 1999-01-29 2005-08-09 Matsushita Electric Industrial Co., Ltd. Electronic parts mounting method and device therefor
US6546420B1 (en) * 1999-03-31 2003-04-08 Cisco Technology, Inc. Aggregating information about network message flows
JP3928682B2 (ja) * 1999-06-22 2007-06-13 オムロン株式会社 配線基板同士の接合体、配線基板同士の接合方法、データキャリアの製造方法、及び電子部品モジュールの実装装置
JP3227444B2 (ja) * 1999-11-10 2001-11-12 ソニーケミカル株式会社 多層構造のフレキシブル配線板とその製造方法
JP2001257239A (ja) * 2000-03-13 2001-09-21 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
TW569424B (en) * 2000-03-17 2004-01-01 Matsushita Electric Ind Co Ltd Module with embedded electric elements and the manufacturing method thereof
US6512183B2 (en) * 2000-10-10 2003-01-28 Matsushita Electric Industrial Co., Ltd. Electronic component mounted member and repair method thereof
JP3866058B2 (ja) * 2001-07-05 2007-01-10 シャープ株式会社 半導体装置、配線基板及びテープキャリア
US6800946B2 (en) * 2002-12-23 2004-10-05 Motorola, Inc Selective underfill for flip chips and flip-chip assemblies
JP2005033053A (ja) * 2003-07-08 2005-02-03 Lintec Corp 半導体装置の製造方法及び半導体装置
JP4344952B2 (ja) * 2003-10-06 2009-10-14 日本電気株式会社 電子デバイスおよびその製造方法
US7902678B2 (en) * 2004-03-29 2011-03-08 Nec Corporation Semiconductor device and manufacturing method thereof
JP4251104B2 (ja) * 2004-03-31 2009-04-08 株式会社日立製作所 Rfidタグの製造方法
JP4536430B2 (ja) * 2004-06-10 2010-09-01 イビデン株式会社 フレックスリジッド配線板
KR100580329B1 (ko) * 2004-06-25 2006-05-16 삼성전자주식회사 범프가 형성된 배선 필름, 이를 이용한 필름 패키지 및 그제조 방법
JP4146826B2 (ja) * 2004-09-14 2008-09-10 カシオマイクロニクス株式会社 配線基板及び半導体装置
US7312403B2 (en) * 2004-09-24 2007-12-25 Matsushita Electric Industrial Co., Ltd. Circuit component mounting device
JP2006165517A (ja) * 2004-11-11 2006-06-22 Sharp Corp フレキシブル配線基板、それを用いた半導体装置および電子機器、並びにフレキシブル配線基板の製造方法
JP4618298B2 (ja) * 2005-03-29 2011-01-26 株式会社村田製作所 電子部品の実装構造
KR101210006B1 (ko) * 2005-06-13 2012-12-07 파나소닉 주식회사 반도체 소자 접합 장치 및 이를 이용한 반도체 소자 접합방법
CN101263752B (zh) * 2005-09-20 2010-06-09 株式会社村田制作所 内装元器件的组件的制造方法及内装元器件的组件
JP5113346B2 (ja) * 2006-05-22 2013-01-09 日立電線株式会社 電子装置用基板およびその製造方法、ならびに電子装置およびその製造方法
CN101347052B (zh) * 2006-08-07 2012-02-15 日本亚比欧尼克斯股份有限公司 印刷配线板的连接方法及连接装置
DE102006054085A1 (de) * 2006-11-16 2008-05-29 Epcos Ag Bauelement-Anordnung
WO2008084811A1 (ja) * 2007-01-10 2008-07-17 Hitachi Chemical Company, Ltd. 回路部材接続用接着剤及びこれを用いた半導体装置
US7783141B2 (en) * 2007-04-04 2010-08-24 Ibiden Co., Ltd. Substrate for mounting IC chip and device for optical communication
JP2009009994A (ja) * 2007-06-26 2009-01-15 Shinko Electric Ind Co Ltd 半導体装置およびその製造方法
EP2193533B1 (en) * 2007-06-29 2011-05-25 Koninklijke Philips Electronics N.V. Electrical contact for a cadmium tellurium component
JP4962217B2 (ja) * 2007-08-28 2012-06-27 富士通株式会社 プリント配線基板及び電子装置製造方法
JP2009105276A (ja) * 2007-10-24 2009-05-14 Omron Corp 半導体チップの実装方法及び半導体搭載用配線基板
JP5150518B2 (ja) * 2008-03-25 2013-02-20 パナソニック株式会社 半導体装置および多層配線基板ならびにそれらの製造方法
JP5407667B2 (ja) * 2008-11-05 2014-02-05 株式会社村田製作所 半導体装置
JP5535570B2 (ja) * 2009-10-13 2014-07-02 ルネサスエレクトロニクス株式会社 固体撮像装置の製造方法
KR20110058061A (ko) * 2009-11-25 2011-06-01 삼성전기주식회사 다이 실장기판 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156110A (ja) * 1999-11-24 2001-06-08 Omron Corp 半導体チップの実装方法、並びに、電磁波読み取り可能なデータキャリアの製造方法
JP2004200281A (ja) * 2002-12-17 2004-07-15 Omron Corp 電子部品モジュールの製造方法、並びに電磁波読み取り可能なデータキャリアの製造方法。
JP3584404B2 (ja) 2003-01-17 2004-11-04 オムロン株式会社 半導体チップの実装方法
JP2005203693A (ja) 2004-01-19 2005-07-28 Mitsubishi Electric Corp 接続シートおよび実装部品の実装方法
JP2005275802A (ja) * 2004-03-24 2005-10-06 Omron Corp 電波読み取り可能なデータキャリアの製造方法および該製造方法に用いる基板並びに電子部品モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2615891A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142423A1 (ja) * 2018-01-17 2019-07-25 セメダイン株式会社 実装体
JPWO2019142423A1 (ja) * 2018-01-17 2021-01-14 セメダイン株式会社 実装体

Also Published As

Publication number Publication date
US20130175074A1 (en) 2013-07-11
EP2615891A1 (en) 2013-07-17
JP2012059816A (ja) 2012-03-22
CN103004294B (zh) 2015-04-29
EP2615891A4 (en) 2016-05-04
CN103004294A (zh) 2013-03-27
KR20140123595A (ko) 2014-10-22
JP5644286B2 (ja) 2014-12-24
KR20130039328A (ko) 2013-04-19

Similar Documents

Publication Publication Date Title
WO2007052584A1 (ja) 積層回路基板の製造方法、回路板およびその製造方法
JP5644286B2 (ja) 電子部品の表面実装方法及び電子部品が実装された基板
KR20120049144A (ko) 전자부품을 가진 배선기판 및 그 제조방법
JP5172275B2 (ja) 部品内蔵プリント配線基板および部品内蔵プリント配線基板の製造方法
WO2009107342A1 (ja) 電子部品モジュールの製造方法
JP5505307B2 (ja) 機能素子内蔵基板及びその製造方法、並びに電子機器
JP2009147026A (ja) 回路基板およびその製造方法
JP2007088058A (ja) 多層基板、及びその製造方法
JP4312148B2 (ja) 中継基板と立体配線構造体
JPWO2019230524A1 (ja) 樹脂多層基板および電子機器
JP4417294B2 (ja) プローブカード用部品内蔵基板とその製造方法
US12036776B2 (en) Resin multilayer substrate and method for manufacturing resin multilayer substrate
JP2004006705A (ja) 半導体装置の実装構造および回路基板
JP2008016651A (ja) 部品内蔵配線板、部品内蔵配線板の製造方法。
JP5003528B2 (ja) 電子部品モジュールの製造方法
KR102520768B1 (ko) 이방성 도전 필름을 이용한 회로장치의 초음파 접합방법
JP4069588B2 (ja) テープキャリア及びそれを用いた半導体装置
TW201230914A (en) Method for manufacturing printed wiring board, printed wiring board, and electronic device
JP2010262960A (ja) インターポーザ及び半田接合部の接合構造
JP2011018728A (ja) 積層配線基板及びその製造方法
JP2008071700A (ja) 電気接続部材
JP2011066122A (ja) 回路基板
JP2003243573A (ja) 多層基板及びその製造方法
JP3429743B2 (ja) 配線基板
JP2004311804A (ja) 配線基板及びその製造方法、素子実装基板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823319

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011823319

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137000772

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13810689

Country of ref document: US