WO2012029988A1 - 導電性、耐食性に優れる塗装金属板 - Google Patents

導電性、耐食性に優れる塗装金属板 Download PDF

Info

Publication number
WO2012029988A1
WO2012029988A1 PCT/JP2011/070414 JP2011070414W WO2012029988A1 WO 2012029988 A1 WO2012029988 A1 WO 2012029988A1 JP 2011070414 W JP2011070414 W JP 2011070414W WO 2012029988 A1 WO2012029988 A1 WO 2012029988A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
group
coating
coating film
metal plate
Prior art date
Application number
PCT/JP2011/070414
Other languages
English (en)
French (fr)
Inventor
山岡 育郎
森下 敦司
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to JP2012508708A priority Critical patent/JP5021107B2/ja
Priority to CA2809940A priority patent/CA2809940C/en
Priority to US13/819,925 priority patent/US9127367B2/en
Priority to KR1020137004369A priority patent/KR101334553B1/ko
Priority to RU2013114469/05A priority patent/RU2524937C1/ru
Priority to EP11821998.9A priority patent/EP2612753B1/en
Priority to CN201180051117.7A priority patent/CN103180136B/zh
Publication of WO2012029988A1 publication Critical patent/WO2012029988A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/423Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing cycloaliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/46Polycondensates having carboxylic or carbonic ester groups in the main chain having heteroatoms other than oxygen
    • C08G18/4676Polycondensates having carboxylic or carbonic ester groups in the main chain having heteroatoms other than oxygen containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/2806Protection against damage caused by corrosion
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08L61/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08L61/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine

Definitions

  • the present invention relates to a coated metal plate excellent in conductivity and corrosion resistance, wherein at least a part of the surface is coated with a film containing an organic resin and particles of non-oxide ceramics having an electrical resistivity in a specific range.
  • painted metal plates pre-coated metal plates coated with colored organic films
  • the coated metal plate has excellent corrosion resistance as well as workability and paint adhesion due to the combined effect of the metal itself (plated film in the case of plated metal plate) and the chemical conversion treatment of the upper layer, and the primer film of the upper layer.
  • a colored organic film is provided on the outermost surface, coating after processing can be omitted, and high productivity and a beautiful appearance can be obtained.
  • the coating layer coated on the metal plate is also molded, so that the workability of the coating is also required. Therefore, the coating layer is generally based on a resin, and the coating film of the coated metal plate is usually insulative.
  • the coating film of the coated metal plate is usually insulative.
  • a technique for imparting conductivity by coating a metal plate with a film containing conductive particles has been proposed.
  • Patent Document 1 discloses that a surface of an aluminum or aluminum alloy substrate is provided with a chromate film that reinforces the corrosion resistance of the substrate and the adhesion to the substrate.
  • a technique of precoated aluminum or aluminum alloy material for a home appliance chassis member that achieves both excellent corrosion resistance and conductivity by coating a resin film containing aluminum or aluminum alloy powder. It is described that the amount of aluminum or aluminum alloy powder used for the resin film is 10 to 50 parts by weight with respect to 100 parts by weight of the resin.
  • Patent Document 2 proposes a technique for an alloyed galvanized steel sheet having a resin-based conductive coating film containing zinc powder, and it is preferable that the zinc powder is contained in an amount of 30 to 90% by mass in the coating film.
  • the film thickness is preferably 2 to 30 ⁇ m.
  • coating is performed with a resin film having a film thickness of 5 ⁇ m or less containing 2 to 50% by weight of metal powder, 1 to 50% by weight of water, and 0.5 to 30% by weight of a surfactant as essential components.
  • Nickel powder is preferred as the metal powder
  • water-based paint is preferred as the coating material for coating.
  • Patent Document 4 proposes a technique of an organic composite plated steel sheet having an organic resin coating film thickness of 0.5 to 20 ⁇ m containing 3 to 59% by volume of a conductive material.
  • the conductive material include various metals, alloys thereof, and phosphation. Examples include iron compounds such as iron and ferrosilicon.
  • Patent Document 6 discloses a technique of a conductive pre-coated metal plate having a 0.5 to 3 ⁇ m-thick coating film containing an arbitrary conductive metal oxide. It is desirable to contain 40 to 50 parts by mass of zinc oxide of 0 ⁇ m or less and an average of 2 ⁇ m with respect to 100 parts by mass of the resin.
  • Patent Document 7 includes 10 to 30% by weight of a specific organic binder and 30 to 60% by weight of a conductive substance powder as a metal surface coating agent that can form a conductive and weldable corrosion-resistant film after curing on a metal surface.
  • Patent Document 8 discloses a resin-based second layer coating containing a rust-preventive additive and a conductive pigment on the surface of a zinc-based plated steel plate or an aluminum-based plated steel plate via a first layer coating that reinforces adhesion to plating.
  • the technology of the organic coated steel sheet for automobiles that achieves both excellent corrosion resistance and weldability by coating has been proposed.
  • the conductive pigment is contained in the film in an amount of 5 to 70% by volume, and the film thickness is 1 to 30 ⁇ m.
  • suitable conductive pigments include metals, alloys, conductive carbon, iron phosphide, carbides, and semiconductor oxides.
  • a core metal is coated with a clad layer made of a corrosion-resistant metal, and a carbon material
  • a conductive material-coated corrosion-resistant metal material excellent in corrosion resistance and conductivity coated with a surface treatment layer made of at least one conductive material selected from conductive ceramics and metal powder and any resin that binds these materials. Proposed.
  • Patent Document 2 When zinc powder is used as the conductive particles as in Patent Document 2, or when an iron-based alloy such as Fe-Si alloy, Fe-Co alloy, Fe-Mn alloy is used as the conductive particles in Patent Document 4
  • Patent Document 7 when zinc and aluminum powders are used in Patent Document 7, when a plated steel sheet containing them in a coating film is used in a normal humid environment indoors or outdoors, a rust layer or thick oxidation is formed on the surface of the zinc powder or alloy. An insulating layer was generated, and the interface between the powder and the resin was peeled off, and the conductivity of the coating film was lost.
  • Patent Document 3 also recommends the use of nickel powder. Since nickel is relatively excellent in resistance to water deterioration, even when a metal plate containing these in a coating film is used in a normal humid environment indoors or outdoors, the conductivity of the coating film is maintained to some extent. However, nickel resources are highly dependent on foreign countries, and there is a risk that they will not be available stably and inexpensively over the long term due to changes in the situation of the producing country and the oligopoly. In addition, since nickel has a specific gravity of 8.85 and is relatively heavy as conductive particles, the nickel particles in the paint settle quickly when the paint is applied to a metal plate with a roll coater or curtain coater. In many cases, the desired conductivity could not be obtained because it was difficult to enter the coating film.
  • Patent Document 3 the use of a water-based paint is recommended.
  • a water-based paint containing nickel particles the surface layer of the particles is oxidized by storage for several weeks, and the blue-green nickel oxide (II) ( NiO) was generated and released into water, and there was a difficulty in contaminating the paint.
  • II blue-green nickel oxide
  • Patent Document 7 since water-based paint for coating is used, when zinc or aluminum is used as the conductive particles, the surface of the metal powder is coated with water-based paint or water coexisting in the film, as in Patent Document 3. There was a drawback that a rust layer was formed and the conductivity deteriorated.
  • Patent Documents 1 and 4 it is not easy to obtain a coated metal plate having both sufficient conductivity and corrosion resistance without using a chromate base.
  • Nickel particles as conductive particles Is difficult to apply industrially due to the ease of settling due to the high specific gravity of nickel, unstable price, etc.
  • Patent Document 3 the corrosion resistance of the coated metal plate is maintained, and the desired color pigment is used.
  • Patent Documents 4 to 9 When coated metal plates with a reduced amount of conductive particles so that they can be colored can not be obtained (Patent Documents 4 to 9), and when base metal particles are prone to generate surface oxide films due to moisture There were various problems such as that an oxide insulating layer or a rust layer was produced during use of the steel sheet, and sufficient conductivity was not obtained (Patent Documents 2, 4, and 7).
  • the coated metal plate has both conductivity, more specifically, electric current weldability at the time of assembling the parts, and earth resistance when used for home appliances and OA equipment members, and corrosion resistance and design properties.
  • it is necessary to add a small amount of conductive particles that are stable and have good dispersibility in the paint for coating or use of the painted metal plate. It was necessary to combine desired conductivity, corrosion resistance, and colorability with a coloring pigment.
  • the present invention was made in view of the above problems, and at least a part of the surface was coated with a film containing a small amount of non-oxide ceramic particles whose electric resistivity was limited to a very low range. It relates to chromate-free conductive and corrosion-resistant coated metal plates.
  • the present inventors have an electrical resistivity of 0.1 ⁇ 10 ⁇ 6 to 185 ⁇ 10 ⁇ 6 ⁇ cm that can be obtained industrially at a relatively low cost. If a film containing a small amount of non-oxide ceramic particles selected from borides, carbides, nitrides, and silicides in organic resin is formed on the metal surface, all of the conductivity, corrosion resistance, and colorability due to coexisting color pigments will be achieved. It has been found that excellent conductive and corrosion-resistant coated metal plates can be obtained.
  • the present invention has been completed based on the above knowledge, and specifically, is as follows.
  • a coating film ( ⁇ ) containing the selected non-oxide ceramic particles (B) is formed, and the organic resin (A) and the non-oxide ceramic particles (B) in the coating film ( ⁇ ) are at 25 ° C.
  • the resin (A1) has a volume ratio of 90:10 to 99.9: 0.1, and the organic resin (A) contains at least one functional group selected from a carboxyl group and a sulfonic acid group in the structure.
  • the resin (A1) or the derivative (A2) of the resin (A1) further includes at least one functional group selected from an ester group, a urethane group, and a urea group in its structure.
  • the resin (A1) is a mixed resin of a polyurethane resin (A1u) containing a urea group in the structure and a polyester resin (A1e) containing an aromatic dicarboxylic acid as a carboxylic acid component and a sulfonic acid group in the structure.
  • the derivative (A2) of the resin (A1) is represented by the following general formula (I):
  • A1 represents a resin (A1)
  • Z- represents a hydrocarbon chain having 1 to 9 carbon atoms, 0 to 2 nitrogen atoms, and 0 to 2 oxygen atoms.
  • the notation “ ⁇ Z” indicates that “A1” and “Z” are covalently bonded via the functional group of both, “—O—” is an ether bond, and “—OH” is a hydroxyl group.
  • —X is a hydrolyzable alkoxy group having 1 to 3 carbon atoms, hydrolyzable halogeno group or hydrolyzable acetoxy group, and “—R” is an alkyl group having 1 to 3 carbon atoms.
  • the present invention it is possible to provide a coated metal plate that imparts coating film conductivity that exhibits sufficient grounding properties and weldability by simply adding a small amount of a conductive material to the coating film.
  • the coated metal plate of the present invention also has excellent corrosion resistance.
  • the coating metal plate which can be easily colored to a desired color can be provided by previously adding a coloring pigment to the aqueous or solvent-based coating composition for obtaining the coating film of the present invention.
  • FIG. 1 shows a schematic diagram of a cross section of a conductive and corrosion-resistant coated metal plate of the present invention.
  • the coated metal plate of the present invention is a metal plate coated with at least a part of the surface with a specific conductive coating, and only one side is coated even if both sides of the metal plate are coated with a coating depending on the application. Moreover, even if a part of surface is coat
  • metal plate aluminum, titanium, zinc, copper, nickel, steel, and the like can be applied as the constituent metal of the metal plate that can be used for the painted metal plate of the present invention.
  • the components of these metals are not particularly limited.
  • steel it may be ordinary steel or steel containing additive elements such as chromium.
  • the type and amount of additive elements and the metal are selected so that they are suitable for strong ironing or deep drawing. What controlled the structure
  • the surface may have a coating plating layer, but the type is not particularly limited, and examples of applicable plating layers include zinc, aluminum, cobalt, and tin.
  • plating made of any one of nickel, alloy plating containing these metal elements, and other metal elements and non-metal elements for example, plating made of zinc, alloy plating of zinc and at least one of aluminum, cobalt, tin, nickel, iron, chromium, titanium, magnesium, manganese, or other Various zinc-based alloy plating containing metal elements and non-metal elements (for example, quaternary alloy plating of zinc, aluminum, magnesium, and silicon) can be mentioned, but alloy components other than zinc are not particularly limited.
  • cobalt, molybdenum, tungsten, nickel, titanium, chromium, aluminum, manganese, iron, magnesium, lead, bismuth, antimony, tin, copper, cadmium, arsenic, etc. as a small amount of different metal elements or impurities in these plating layers
  • inorganic substances such as silica, alumina and titania are dispersed are included.
  • aluminum plating layer aluminum or alloy plating of at least one of aluminum and silicon, zinc, and magnesium (for example, aluminum and silicon alloy plating, aluminum and zinc alloy plating, aluminum, silicon, and magnesium ternary) Alloy plating) and the like.
  • multi-layer plating in combination with the above plating and other types of plating such as iron plating, iron-phosphorus alloy plating, nickel plating, cobalt plating and the like is also applicable.
  • the method for forming the plating layer is not particularly limited, and for example, electroplating, electroless plating, hot dipping, vapor deposition plating, dispersion plating, or the like can be used.
  • the plating method may be either a continuous type or a batch type.
  • post-plating treatments include zero spangle treatment, which is uniform appearance after hot dipping, annealing treatment, which is a modification treatment of the plating layer, temper rolling for surface condition and material adjustment, etc.
  • these are not particularly limited, and any of them can be applied.
  • the coating film ( ⁇ ) for coating the metal plate of the present invention is formed on at least one surface of the metal plate, and has an organic resin (A) and an electrical resistivity at 25 ° C. of 0.1 ⁇ 10 ⁇ 6 to 185 ⁇ 10 ⁇ . 6 ⁇ cm of non-oxide ceramic particles (B) selected from borides, carbides, nitrides and silicides.
  • the coating film is not limited to the type of coating solvent, the method for forming a film on the surface of a metal plate, and the curing method as long as it can be industrially produced by applying a coating composition.
  • the coating composition include a water-based resin composition and an organic solvent-based resin composition.
  • a method for forming a film on a metal plate for example, in the case of an aqueous or solvent-based composition, a known coating method such as roll coating, groove roll coating, curtain flow coating, roller curtain coating, dipping (dip), air knife squeezing, etc. The method of applying the coating composition on the metal plate and then drying the moisture and solvent of the wet coating film is preferred.
  • polymerization and curing by heating and baking of an organic resin in the coating film is preferable.
  • the resin in the coating film can be polymerized by ultraviolet rays, polymerization, curing and coating by ultraviolet irradiation are possible.
  • the resin in the film can be polymerized with an electron beam, it may be polymerized or cured by electron beam irradiation.
  • a chromate-free undercoat may be provided between the coating film and the metal plate surface.
  • the number of layers and the composition are not limited, but it is necessary to have excellent adhesion between the metal plate and the upper film so as not to impair the processing followability and corrosion resistance of the film when processing the metal plate.
  • the base film thickness is preferably 0.5 ⁇ m or less.
  • the method for forming the base film is not limited as long as it is an industrially applicable film forming method.
  • Examples of the method of painting, vapor deposition, film sticking, etc. of the coating composition can be exemplified, but from the viewpoint of film forming cost (productivity) and versatility, there are methods by coating or drying the aqueous or solvent-based coating composition. preferable.
  • a multilayer film may be formed by repeating coating and drying one layer at a time from the underlayer to the outermost layer (sequential coating method).
  • wet-on-wet coating is a method of applying a coating solution on a metal plate and then applying another coating solution on top of the solvent-containing (wet) state before the coating solution dries.
  • the solvent of the resulting laminated coating liquid is simultaneously dried and cured to form a film.
  • the multi-layer simultaneous coating method is a method in which multiple layers of coating liquid are applied simultaneously on a metal plate in a laminated state using a multilayer slide curtain coder, slot die coater, etc., and then the solvent of the laminated coating liquid is simultaneously dried and cured. It is a method to form a film.
  • the coating film ( ⁇ ) for coating the metal plate of the present invention includes an organic resin (A) described later and non-oxide ceramic particles (B) having a specific range of electrical resistivity, but in the coating film ( ⁇ ).
  • the volume ratio of the organic resin (A) and the non-oxide ceramic particles (B) at 25 ° C. is 90.0: 10.0 to 99.9: 0.1, and 95: 5 to 99.9: 0. 1 is preferable, and 97: 3 to 99.7: 0.3 is more preferable from the viewpoint of ensuring the degree of freedom in coloring the coating film and ensuring corrosion resistance. Further, the range of 99: 1 to 99.9: 0.1 is preferable from the viewpoint of securing a higher degree of coloring freedom and corrosion resistance.
  • the amount of conductive non-oxide ceramic particles (B) added to the coating film ( ⁇ ) is very small. This is a very small amount compared to the amount of conductive material in prior art conductive coatings.
  • the amount of conductive particles in the conductive coating film is 3 to 59% by volume of the coating film.
  • Patent Document 7 describes that a metal surface coating agent capable of forming a conductive and weldable corrosion-resistant coating contains 30 to 60% by mass of a conductive substance powder.
  • the amount of conductive particles in the conductive second layer film is set to 5 to 70% by volume of the film.
  • Patent Document 9 describes that the conductive surface treatment layer contains 10 to 90% by volume of a conductive material.
  • the addition of 5% by volume or less is preferable for the volume ratio of (B). Furthermore, even when 3-5% by volume of conductive particles are added to the coating, the appearance of the coating may be governed by the color of the particles if the particles are dark. The addition of 3% by volume or less is more preferable because the color tends to be difficult to color. In order to ensure a higher degree of coating coloration and corrosion resistance, addition of a small amount of 1% by volume or less is particularly preferable.
  • the thickness of the coating film ( ⁇ ) covering the metal plate of the present invention is preferably in the range of 2 to 10 ⁇ m, more preferably in the range of 2.5 to 6 ⁇ m. If the thickness is less than 2 ⁇ m, the coating film is too thin to obtain sufficient corrosion resistance, and coloration or hiding properties by the color pigment may not be obtained. On the other hand, if it exceeds 10 ⁇ m, the amount of the coating composition to be used increases, resulting in high production costs. Water-based paints may cause coating film defects such as armpits, stabilizing the appearance required for industrial products. It is not easy to get.
  • the thickness of the coating film ( ⁇ ) can be measured by observing the section of the coating film.
  • the mass of the coating film adhered to the unit area of the metal plate may be calculated by dividing by the specific gravity of the coating film or the specific gravity after drying of the coating composition.
  • the coating mass is the mass difference before and after coating, the mass difference before and after peeling of the coating after coating, or the abundance of elements whose content in the coating is known in advance by fluorescent X-ray analysis.
  • it may be appropriately selected from existing methods.
  • the specific gravity of the coating film or the specific gravity after drying of the coating composition measures the volume and mass of the isolated coating film, and measures the volume and mass after taking an appropriate amount of the coating composition into a container and drying it. Or what is necessary is just to select suitably from the existing method, such as calculating from the compounding quantity of a coating-film component, and the known specific gravity of each component.
  • the organic resin (A) of the present invention is a binder component of the coating film ( ⁇ ).
  • the organic resin (A) is a water-based or organic solvent-based resin, the resin (A1) described later, or further of the resin (A1)
  • the reaction derivative (A2) is included.
  • the coating composition ( ⁇ ) used to form the coating film ( ⁇ ) in the present invention contains a resin (A1) described later in a nonvolatile content of 50 to 100% by mass.
  • the resin (A1) is stably present in the aqueous coating composition ( ⁇ ).
  • the resin (A1) does not react and is dried as it is, or at least a part of the resin (A1) is the coating composition.
  • ( ⁇ ) contains a silane coupling agent, a curing agent, a crosslinking agent, etc., it reacts with them to form a derivative (A2) of the resin (A1).
  • the organic resin (A) that is a binder component of the coating film ( ⁇ ) includes the unreacted resin (A1) and the reaction derivative (A2) of the resin (A1).
  • the type of the resin (A1) is not particularly limited, and examples thereof include a polyester resin, a polyurethane resin, an epoxy resin, a (meth) acrylic resin, a polyolefin resin, a phenol resin, and modified products thereof. One or two or more of these may be mixed and used as the resin (A1), or one or more organic resins obtained by modifying at least one organic resin may be mixed and You may use as resin (A1).
  • the reason why the type of the resin (A1) is not particularly limited in the present invention is that the amount of the non-oxide ceramic particles (B) in the coating film ( ⁇ ) is small, and the usage environment of the metal plate This is because there is little corrosion current flowing through the non-oxide ceramic particles in the coating film, so that even if the coating film is made conductive, it is not necessary to make the binder component of the coating film a special corrosion-resistant resin. Under normal conditions of use, moisture is present in the coating ( ⁇ ), but even in such a case, water-resistant non-oxide ceramic particles that retain high conductivity are used. Even if the abundance is small, the grounding property and the weldability can be secured.
  • the resin (A1) is not particularly limited as long as it is stably present in the aqueous coating composition ( ⁇ ), but the structure includes a carboxyl group and a sulfonic acid. It is a resin containing at least one functional group selected from the group.
  • the organic resin (A) in the coating film ( ⁇ ) is a resin (A1) containing at least one functional group selected from a carboxyl group and a sulfonic acid group in the structure, or further, Resin derivative (A2) is included.
  • the resin used in the coating composition ( ⁇ ) for obtaining the coating film ( ⁇ ) is a water-soluble or solvent-soluble resin that completely dissolves in water or an organic solvent, and an emulsion or suspension.
  • a resin water-dispersible resin or solvent-dispersible resin
  • (meth) acrylic resin means acrylic resin and methacrylic resin.
  • the polyester resin is not particularly limited.
  • the polyurethane resin is not particularly limited, and examples thereof include those obtained by reacting a polyol compound and a polyisocyanate compound and then further chain extending with a chain extender. it can.
  • the polyol compound is not particularly limited as long as it is a compound containing two or more hydroxyl groups per molecule.
  • the polyisocyanate compound is not particularly limited as long as it is a compound containing two or more isocyanate groups per molecule, and examples thereof include aliphatic isocyanates such as hexamethylene diisocyanate (HDI) and fats such as isophorone diisocyanate (IPDI).
  • An aromatic diisocyanate such as cyclic diisocyanate, tolylene diisocyanate (TDI), an araliphatic diisocyanate such as diphenylmethane diisocyanate (MDI), or a mixture thereof.
  • the chain extender is not particularly limited as long as it is a compound containing one or more active hydrogens in the molecule.
  • Aliphatic polyamines such as min, aromatic polyamines such as tolylenediamine, xylylenediamine, diaminodiphenylmethane, alicyclic polyamines such as diaminocyclohexylmethane, piperazine, 2,5-dimethylpiperazine, isophoronediamine, hydrazine, Hydrazines such as succinic acid dihydrazide, adipic acid dihydrazide, phthalic acid dihydrazide, hydroxyethyldiethylenetriamine, 2-[(2-aminoethyl) amino] ethanol, 3-aminopropane Alkanolamines such as ol. These compounds can be used alone or in a mixture of two or more.
  • the (meth) acrylic resin is not particularly limited, and examples thereof include alkyl (meth) such as ethyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and n-butyl (meth) acrylate. Radicals using polymerization initiators in water together with (meth) acrylic acid and (meth) acrylic acid esters such as acrylates, hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, and alkoxysilane (meth) acrylates The thing obtained by superposing
  • polymerizing can be mentioned.
  • the polymerization initiator is not particularly limited, and for example, persulfates such as potassium persulfate and ammonium persulfate, and azo compounds such as azobiscyanovaleric acid and azobisisobutyronitrile can be used.
  • (meth) acrylate means acrylate and methacrylate
  • (meth) acrylic acid means acrylic acid and methacrylic acid.
  • the epoxy resin is not particularly limited.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, resorcin type epoxy resin, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type.
  • an epoxy resin such as an epoxy resin, a resorcinol type epoxy resin or a novolac type epoxy resin
  • an amine compound such as diethanolamine or N-methylethanolamine.
  • these are neutralized with an organic acid or inorganic acid to form an aqueous resin, or after radical polymerization of a high acid value acrylic resin in the presence of the epoxy resin, neutralized with ammonia or an amine compound to make an aqueous system.
  • the phenol resin is not particularly limited.
  • an aromatic compound such as phenol, resorcin, cresol, bisphenol A, paraxylylene dimethyl ether and formaldehyde are added in the presence of a reaction catalyst. It is obtained by reacting a phenol resin such as a methylolated phenol resin with amine compounds such as diethanolamine and N-methylethanolamine.
  • amine compounds such as diethanolamine and N-methylethanolamine.
  • the thing neutralized with the organic acid or the inorganic acid and water-ized can be mentioned.
  • the polyolefin resin is not particularly limited.
  • ethylene and unsaturated carboxylic acids such as methacrylic acid, acrylic acid, maleic acid, fumaric acid, itaconic acid, and crotonic acid are used at high temperature and high pressure.
  • the resin (A1) may be used alone or in combination of two or more.
  • two or more kinds may be collectively used as the resin (A1).
  • a curing agent or a crosslinking agent for the resin (A1) may be added.
  • a crosslinking agent may be introduced into the resin structure.
  • the crosslinking agent is not particularly limited, and examples thereof include at least one crosslinking agent selected from the group consisting of amino resins, polyisocyanate compounds, blocked polyisocyanates, epoxy compounds, carbodiimide group-containing compounds, and the like.
  • the amino resin is not particularly limited, and examples thereof include melamine resin, benzoguanamine resin, urea resin, and glycoluril resin.
  • the polyisocyanate compound is not particularly limited, and examples thereof include hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, and tolylene diisocyanate.
  • the blocked polyisocyanate is a blocked product of the polyisocyanate compound.
  • the epoxy compound is not particularly limited as long as it is a compound having a plurality of epoxy groups (oxirane rings) which are 3-membered cyclic ether groups.
  • adipic acid diglycidyl ester phthalic acid diglycidyl ester, terephthalic acid diglycidyl ester Esters, sorbitan polyglycidyl ether, pentaerythritol polyglycidyl ether, glycerin polyglycidyl ether, trimethylpropane polyglycidyl ether, neopentyl glycol polyglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polypropylene Glycol diglycidyl ether, 2,2-bis- (4′-glycidyloxyphenyl) propane, tris (2,3- Epoxypropyl) isocyanurate, bisphenol A
  • an isocyanate-terminated polycarbodiimide is synthesized by a condensation reaction involving decarbonization of a diisocyanate compound such as aromatic diisocyanate, aliphatic diisocyanate, and alicyclic diisocyanate, and then further reacted with an isocyanate group. And a compound to which a hydrophilic segment having a functional group having a property is added.
  • a diisocyanate compound such as aromatic diisocyanate, aliphatic diisocyanate, and alicyclic diisocyanate
  • the amount of these crosslinking agents is preferably 1 to 40 parts by mass with respect to 100 parts by mass of the resin (A1) for forming the coating film ( ⁇ ). If the amount is less than 1 part by mass, the effect may not be obtained because the amount is insufficient, and if it exceeds 40 parts by mass, the coating film becomes brittle due to excessive curing, and the corrosion resistance and work adhesion may be reduced. is there.
  • the organic resin (A) is represented by the following general formula (I) as the resin (A1) or a derivative thereof. particularly preferably contains 50 to 100 wt% of the resin (A2 Si) the organic resin in total (a).
  • A1 represents a resin (A1)
  • Z- represents a hydrocarbon chain having 1 to 9 carbon atoms, 0 to 2 nitrogen atoms, and 0 to 2 oxygen atoms.
  • the notation “ ⁇ Z” indicates that “A1” and “Z” are covalently bonded via the functional group of both, “—O—” is an ether bond, and “—OH” is a hydroxyl group.
  • —X is a hydrolyzable alkoxy group having 1 to 3 carbon atoms, hydrolyzable halogeno group or hydrolyzable acetoxy group
  • the coating composition ( ⁇ ) used for forming the coating film ( ⁇ ) of the present invention contains the resin (A1) in a nonvolatile content of 50 to 100% by mass.
  • Nonvolatile components other than the resin (A1) contained in the coating composition ( ⁇ ) are a silane coupling agent (s), a curing agent (C), a crosslinking agent, a polyphenol compound, phosphorus, as will be described in detail later.
  • Various rust preventives such as acids and hexafluorometal acids, phosphate compounds, and metal oxide fine particles.
  • the blending amount is adjusted so that these are within the preferable content range in the coating film ( ⁇ ) after film formation.
  • the resin (A2 Si ) contained in the organic resin (A) is, for example, a coating composition ( ⁇ ) containing the resin (A1) and the silane coupling agent (s) in the present invention. It is obtained by coating and drying.
  • silane coupling agents can be chemically bonded to metal surfaces with functional groups such as hydroxyl groups and many functional organic resins, so in the presence of metal surfaces, functional organic resins, and silane coupling agents, It is possible to crosslink between the functional organic resin and the functional organic resin between the molecules or within the molecule.
  • the coating composition ( ⁇ ) containing the resin (A1) and the silane coupling agent (s) is applied to a metal plate and dried, whereby at least a part of the functional groups of the resin (A1).
  • the resin (A2 Si) is produced.
  • At least a part of —O— (ether bond) or —OH (hydroxyl group) of the resin (A2 Si ) represented by the general formula (I) is bonded to the metal surface.
  • the portion is bonded to the base film surface.
  • the bond between the ether bond and the metal surface, and the bond between the ether bond and the base film component are covalent bonds, the bond between the hydroxyl group and the metal surface, and the bond between the hydroxyl group and the base film component. Is often a hydrogen bond or a coordination bond.
  • Such a chemical bond between the film-constituting resin and the metal surface, or a chemical bond between the upper-layer film-constituting resin and the undercoat increases the adhesion between the two, and the film has excellent process following capability when the metal plate is deformed. Therefore, the appearance of the processed part is not impaired and the corrosion resistance of the processed part is improved.
  • a multilayer coating may be formed by a sequential coating method in which coating and drying are repeated one layer at a time from the underlayer to the outermost layer.
  • ⁇ On-wet coating method and multilayer simultaneous coating method can also be used as a method for easily and efficiently forming a coating on the surface of the metal plate. In these methods, the laminated state from the lowermost layer to the outermost layer is once formed on the metal plate in a water-containing or solvent-containing (wet) state.
  • the silane coupling agent (s ) Has a high mobility, at least a part of the silane coupling agent (s) also reacts efficiently with the functional compound contained in the underlying layer.
  • These chemical bonds tend to increase the adhesion between the outermost layer and the base layer compared to the sequential coating method, and the film followability during processing deformation of the metal plate and the corrosion resistance of the processed part are sequentially increased. It may be improved compared to the case where a film is formed by a coating method.
  • the resin (A2 Si) silane coupling agent used to form (s) is are chosen from the silane coupling agent having the general formula Y-Z-SiX m R molecular structure represented by 3-m 1 type or 2 types or more.
  • the —X group which is the reaction point with the metal surface or other silane coupling agent, is a hydrolyzable alkoxy group having 1 to 3 carbon atoms or hydrolyzable. It is a halogeno group (fluoro group (—F), chloro group (—Cl), bromo group (—Br), etc.), or hydrolyzable acetoxy group (—O—CO—CH 3 ).
  • a hydrolyzable alkoxy group having 1 to 3 carbon atoms is preferable because it easily adjusts the hydrolyzability by changing the number of carbon atoms of the alkoxy group, and is preferably a methoxy group (—OCH 3 ) or an ethoxy group (— OCH 2 CH 3 ) is particularly preferred.
  • Silane coupling agents having functional groups other than those described above for the -X group are not desirable in the present invention because the hydrolyzability of the -X group is low or the hydrolyzability is too high.
  • the coating composition ( ⁇ ) is not aqueous, a small amount of water and a hydrolysis catalyst are added to the coating composition ( ⁇ ) in advance in order to decompose the hydrolyzable functional group of the silane coupling agent. There is a case.
  • the —R group in the molecular structure is an alkyl group having 1 to 3 carbon atoms.
  • the -R group is a methyl group or an ethyl group, compared to the bulky n-propyl group or isopropyl group, the -X group is relatively easy without hindering water molecules from approaching the -X group in the composition.
  • a methyl group is particularly preferable.
  • Silane coupling agents in which the -R group is a functional group other than those described above are not desirable in the present invention because the hydrolyzability of the -X group is extremely low or the reactivity is too high.
  • m indicating the number of substituents is an integer of 1 to 3.
  • the more hydrolyzable -X groups, the more reactive points with the metal surface, and therefore m representing the number of substituents is preferably 2 or 3.
  • silane coupling agent (s) is a hydrocarbon chain having 1 to 9 carbon atoms, 0 to 2 nitrogen atoms, and 0 to 2 oxygen atoms.
  • hydrocarbon chains having 2 to 5 carbon atoms, 0 or 1 nitrogen atoms, and 0 or 1 oxygen atoms have a good balance between dispersibility and reactivity of silane coupling agents in water and solvents. ,preferable.
  • the number of carbon atoms of -Z- is 10 or more, the number of nitrogen atoms is 3 or more, or the number of oxygen atoms is 3 or more, the balance between the dispersibility of the silane coupling agent in water or solvent and the reactivity is poor, This is not desirable in the present invention.
  • a -Y group that becomes a reaction point with a functional group of the resin (A1) or another coexisting resin is a resin (A1 )
  • the -SiX m group of the silane coupling agent (s) molecule represented by the molecular structure YZ-SiX m R 3-m is a metal surface or the like, and the -Y group is Upon reaction with the resin (A1) or the like, the resin (A2 Si) shown in the formula (I). That is, at least a part of —Si—X at the molecular end of the silane coupling agent (s) is hydrolyzed to produce —Si—OH (silanol group), at least a part of which is a metal surface or another silane cup.
  • Ring agent (s) is dehydrated and condensed with the hydroxyl group of the molecule and covalently bonded via an ether bond -Si-O-Me (Me is a metal atom) or -Si-O-Si *-(Si * is another silane coupling Si atoms derived from agent molecules).
  • the -Y group at the other end of the silane coupling agent (s) molecule reacts with the functional group of the resin (A1) to form a bond of A1 to Z.
  • the resin (A2 Si) having a structure shown.
  • the resin (A2 Si) is bonded to (A Si) Si atom in after generating -O -, - OH, -X, -R groups respectively a, b, c, d
  • a + b + c + d 3.
  • the notation of “A1 to Z” in the general formula (I) indicates that A1 and Z are covalently bonded via both functional groups.
  • silane coupling agent (s) include the general formula YZ-SiX m R 3-m (wherein the -X group is a hydrolyzable alkoxy group having 1 to 3 carbon atoms or a hydrolyzable halogeno group.
  • a hydrolyzable acetoxy group is an alkyl group having 1 to 3 carbon atoms, m is an integer of 1 to 3, and -Z- is 1 to 9 carbon atoms, the number of nitrogen atoms 0-2, hydrocarbon chain having 0-2 oxygen atoms, -Y group having a molecular structure shown in (resin (A1) functional group), for example, vinyltrimethoxysilane, vinyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyl Triethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, N-2- (aminopropyltri
  • the coating composition ((beta)) to be used is a silane coupling agent (100 mass parts of resin (A1)). It is preferable to contain 1 to 100 parts by mass of s). If the amount is less than 1 part by mass, the amount of the silane coupling agent (s) is small, and the crosslinked structure by the silane coupling agent does not develop so much, so that a sufficiently fine coating film cannot be obtained and the corrosion resistance may be insufficient. In addition, there is a possibility that the processing adhesion with a metal surface or the like is insufficient. On the other hand, when the amount exceeds 100 parts by mass, the effect of improving the adhesion is saturated, and an expensive silane coupling agent is used more than necessary, which is not economical and may reduce the stability of the coating composition.
  • the resin (A1) in the present invention, the resin (A1), or more preferably contains 50 to 100 wt% of the resin (A) and the resin (A2 Si) in total, the resin (A1) and the resin ( A2 Si) total and more preferably contains 75 to 100 wt% of the organic resin (a) in the. If the sum of the resin (A1) and the resin (A2 Si) is less than 50% by weight of the organic resin (A), the may be insufficient adhesion to the ⁇ property and the metal surface of the coating, the desired corrosion resistance There is a possibility that coating film adhesion and coating film followability during processing cannot be obtained.
  • identification and quantification of Si atoms forming the -C-Si-O- bond can be performed using an analysis method such as FT-IR spectrum of a coating film on a metal plate or 29 Si-NMR. it can.
  • the resin (A1) is contained in a component of the coating composition ( ⁇ ) used for forming the coating film ( ⁇ ) of the present invention as a component of 50 to 100% by mass of its nonvolatile content, and After the coating film ( ⁇ ) is formed by application to a metal plate, the organic resin (A) in the coating film is composed of the resin (A1) or further its reaction derivative (A2).
  • the resin (A1) is not particularly limited in its type and structure as long as it is stably present in the coating composition ( ⁇ ). It is a resin containing at least one functional group selected from acid groups.
  • the organic resin (A) in the coating film ( ⁇ ) is a resin (A1) containing at least one functional group selected from a carboxyl group and a sulfonic acid group in the structure, or a derivative (A2) of the resin. )including.
  • the resin (A1) is a resin containing at least one functional group selected from a carboxyl group and a sulfonic acid group in the structure will be described below.
  • the coating composition ( ⁇ ) includes a resin (A1) constituting at least a part of the organic resin (A) after film formation.
  • the low-polarity structure of the resin (A1) mainly composed of hydrocarbon chains during storage of the coating composition ( ⁇ ) or in an environment with much water immediately after coating.
  • the existing carboxyl group or sulfonic acid group portion having high polarity and extremely high hydrophilicity extends into water and hydrates with surrounding water.
  • the resin (A1) is dispersed in the coating composition ( ⁇ ). Easy to stabilize.
  • these carboxyl groups or sulfonic acid groups are adsorbed on the surface of the polar non-oxide ceramic particles (B) coexisting in the coating composition, preventing aggregation of the non-oxide ceramic particles (B), Has the effect of maintaining dispersibility.
  • water-based paints unlike organic solvent-based paints, contain a large amount of water during storage or immediately after coating, and are highly polar.However, if the water evaporates during film formation, the atmosphere in the paint becomes highly polar. Large change to low polarity.
  • the carboxyl group or a sulfonic acid group in the structure of the resin (A1), when water evaporates and the polarity rapidly decreases in the coating film formation process, at least a part of the carboxyl group or the sulfonic acid group Desorbs from hydrated water and metal surfaces and shrinks into a coil.
  • the low-polarity resin chain portion of the resin (A1) extends, forms a steric hindrance layer, and plays a role of preventing aggregation of the non-oxide ceramic particles (B).
  • the coating composition ( ⁇ ) is based on an organic solvent
  • a carboxyl group or sulfonic acid group having high polarity and extremely high hydrophilicity is present in the low polarity structure of the resin (A1) mainly composed of hydrocarbon chains. If present, these are adsorbed on the surface of the polar non-oxide ceramic particles (B) coexisting in the coating composition, and in the organic solvent, the low-polarity resin chain portion of the resin (A1) extends to form the resin. Since the carboxyl groups or sulfonic acid groups in the structure are kept away from each other, there is an effect of preventing the non-oxide ceramic particles (B) from aggregating and maintaining dispersibility in the coating composition or in the coating film forming process.
  • the resin (A1) and the organic resin (A) contain a carboxyl group or a sulfonic acid group, by containing these functional groups, a metal plate as a base material (if there is a base treatment, a base treatment layer) ), And the coating film ( ⁇ ) has improved corrosion resistance, processability (coating film adhesion, crack resistance, discoloration resistance, etc. of the processed part during metal plate processing) and scratch resistance.
  • the coating film ( ⁇ ) has improved corrosion resistance, processability (coating film adhesion, crack resistance, discoloration resistance, etc. of the processed part during metal plate processing) and scratch resistance.
  • the resin containing a carboxyl group or a sulfonic acid group is a polyester resin containing a sulfonic acid group in the structure
  • the polyol, polyvalent carboxylic acid, and sulfonic acid group-containing compound used as a synthetic raw material of the resin there is no limitation on the polyol, polyvalent carboxylic acid, and sulfonic acid group-containing compound used as a synthetic raw material of the resin.
  • the polyvalent carboxylic acid those already exemplified can be used.
  • sulfonic acid group-containing compound examples include dicarboxylic acids containing a sulfonic acid group such as 5-sulfoisophthalic acid, 4-sulfonaphthalene-2, 7-dicarboxylic acid, and 5 (4-sulfophenoxy) isophthalic acid, Alternatively, glycols such as 2-sulfo-1,4-butanediol and 2,5-dimethyl-3-sulfo-2,5-hexyldiol can be used.
  • the sulfonic acid group refers to a functional group represented by —SO 3 H, which may be neutralized with an alkali metal, an amine containing ammonia, or the like (for example, 5-sulfosodium isophthalate). Acid, 5-sulfosodium dimethyl isophthalate, etc.).
  • an alkali metal for example, 5-sulfosodium isophthalate. Acid, 5-sulfosodium dimethyl isophthalate, etc.
  • the already neutralized sulfonic acid group may be incorporated into the resin, or may be neutralized after the sulfonic acid group is incorporated into the resin.
  • the resin When the coating composition ( ⁇ ) is aqueous, the resin was uniformly and finely dispersed in water, so it was neutralized with alkali metals, amines containing ammonia, etc., compared to the number of unneutralized sulfonic acid groups. It is preferable that the number of sulfonate groups is large. This is because sulfonate groups neutralized with alkali metals, amines containing ammonia, etc. are easily ionized and hydrated in water, so resins containing many of these groups in the structure are uniformly finely dispersed in water. Because it is easy to do.
  • sulfonic acid metal bases neutralized with alkali metals such as Li, Na, and K are non-oxidized during storage of the aqueous coating composition ( ⁇ ) or in an environment with a lot of water immediately after coating. It is particularly preferable for suppressing the aggregation of the ceramic particles (B) and improving the adhesion between the coating film ( ⁇ ) and the substrate, and sulfonic acid Na base is most preferable.
  • the amount of the dicarboxylic acid or glycol containing a sulfonic acid group is preferably 0.1 to 10 mol% with respect to the total polyvalent carboxylic acid component or the total polyol component.
  • the resin containing a carboxyl group or a sulfonic acid group is dispersed and stabilized during storage of the aqueous coating composition ( ⁇ ) or in a water-rich environment immediately after coating. There are few sulfonic acid group parts, and sufficient resin dispersibility may not be obtained.
  • the amount of sulfonic acid groups adsorbed to the non-oxide ceramic particles (B) coexisting in the coating composition is small, the effect of preventing aggregation of the non-oxide ceramic particles may be insufficient.
  • the improvement effect of adhesiveness or corrosion resistance may not be acquired. If it exceeds 10 mol%, the amount of water retained by the coating film due to the sulfonic acid group increases, and the corrosion resistance may decrease. Considering the balance of performance, it is more preferably in the range of 0.5 to 5 mol%.
  • the resin containing a carboxyl group or a sulfonic acid group is a polyester resin containing a carboxyl group in the structure
  • the method for introducing the carboxyl group into the polyester resin there is no particular limitation on the method for introducing the carboxyl group into the polyester resin.
  • a polyester resin is polymerized.
  • trimellitic anhydride phthalic anhydride, pyromellitic anhydride, succinic anhydride, 1,8-naphthalic anhydride, 1,2-cyclohexanedicarboxylic anhydride, cyclohexane-1,2 , 3,4-tetracarboxylic acid-3,4-anhydride, ethylene glycol bisanhydro trimellitate, 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1 , 2-dicarboxylic anhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride, etc.
  • the carboxyl group refers to a functional group represented by —COOH, which may be neutralized with alkali metals, amines containing ammonia, or the like.
  • the already neutralized carboxyl group may be incorporated into the resin, or may be neutralized after the carboxyl group is incorporated into the resin.
  • the coating composition ( ⁇ ) is water-based, the resin is uniformly and finely dispersed in water, so it is neutralized with alkali metals, amines containing ammonia, etc., compared to the number of carboxylic acid groups that have not been neutralized. It is preferable that the number of carboxylate groups is large. This is because carboxylate bases neutralized with alkali metals, amines containing ammonia, etc. are easily ionized and hydrated in water, so resins containing many of these groups in the structure are uniformly finely dispersed in water. Because it is easy to do.
  • the amount of the carboxyl group introduced is not particularly limited, but the acid value is preferably in the range of 0.1 to 50 mgKOH / g.
  • the amount is less than 0.1 mg KOH / g, the resin containing a carboxyl group or a sulfonic acid group is dispersed and stabilized during storage of the aqueous coating composition ( ⁇ ) or in a water-rich environment immediately after coating. There are few carboxyl group parts, and sufficient resin dispersibility may not be obtained.
  • the amount of carboxyl groups adsorbed to the non-oxide ceramic particles (B) coexisting in the coating composition is small, the effect of preventing aggregation of the non-oxide ceramic particles may be insufficient.
  • the improvement effect of adhesiveness or corrosion resistance may not be acquired. If it exceeds 50 mgKOH / g, the amount of water retained by the coating film due to the carboxyl group increases, and the corrosion resistance may decrease. Considering the balance of performance, it is more preferably in the range of 0.5 to 25 mg KOH / g.
  • the organic resin (A) contains at least one functional group selected from an ester group, a urethane group, and a urea group in its structure, so that the processability, scratch resistance, and corrosion resistance of the coating film ( ⁇ ) are improved. It is preferable to increase everything.
  • the resin containing the carboxyl group or sulfonic acid group in the coating film ( ⁇ ) has at least one functional group selected from an ester group, a urethane group, and a urea group in the structure. It can be obtained by containing or by reacting the resin with a curing agent or a crosslinking agent coexisting in the coating composition ( ⁇ ) to become a derivative having an ester group, a urethane group or a urea group.
  • Resin design that is excellent in both elongation and strength and has excellent adhesion to the base metal plate (base treatment layer if there is a base treatment) in order to enhance all of the workability, scratch resistance, and corrosion resistance.
  • base treatment layer if there is a base treatment
  • Resin design with excellent shielding properties can be achieved.
  • a resin containing an ester group with moderate cohesive energy is suitable, and when emphasizing scratch resistance and corrosion resistance, urethane groups and urea having high cohesive energy are preferred. Resins containing groups in the structure are preferred.
  • a resin containing both an ester group and a urethane group, or a resin containing an ester group, a urethane group and a urea group is more preferable.
  • the resin containing at least one functional group selected from an ester group, a urethane group, and a urea group in the structure is not particularly limited.
  • a polyester resin containing an ester group, a polyurethane resin containing a urethane group, and a urethane And a polyurethane resin containing both a group and a urea group You may use these 1 type or in mixture of 2 or more types.
  • a polyester resin containing an ester group and a polyurethane resin containing both a urethane group and a urea group may be mixed and used.
  • the organic resin (A) includes at least one functional group selected from an ester group, a urethane group, and a urea group in the structure, at least one selected from an ester group, a urethane group, and a urea group in the structure.
  • the content of the resin containing a functional group is preferably 60 to 100% by mass, more preferably 80 to 100% by mass of the resin containing a carboxyl group or a sulfonic acid group. If it is less than 60% by mass, there is a possibility that processability, scratch resistance and corrosion resistance cannot be compatible.
  • the organic resin (A) is preferably a resin cured with a curing agent (C).
  • the curing agent (C) is not particularly limited as long as it cures the organic resin (A), but is one of amino resins among those already exemplified as the crosslinking agent for the resin (A1). It is preferable to use at least one crosslinking agent selected from melamine resins and polyisocyanate compounds as the curing agent (C).
  • the melamine resin is a resin obtained by etherifying a part or all of the methylol group of a product obtained by condensing melamine and formaldehyde with a lower alcohol such as methanol, ethanol, or butanol. It does not specifically limit as a polyisocyanate compound, For example, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, tolylene diisocyanate etc. which were already illustrated as a crosslinking agent of the said resin (A1) can be mentioned.
  • Examples of the blocked product include a blocked product of hexamethylene diisocyanate, a blocked product of isophorone diisocyanate, a blocked product of xylylene diisocyanate, and a blocked product of tolylene diisocyanate, which are blocked products of the polyisocyanate compound.
  • These curing agents may be used alone or in combination of two or more.
  • the content of the curing agent (C) is preferably 5 to 35% by mass of the organic resin (A). If it is less than 5% by mass, bake hardening may be insufficient, and corrosion resistance and scratch resistance may be reduced. If it exceeds 35% by mass, bake hardening will be excessive, and corrosion resistance and workability will be reduced. There is.
  • the curing agent (C) preferably contains a melamine resin (C1).
  • the content of the melamine resin (C1) is preferably 30 to 100% by mass of the curing agent (C). When it is less than 30% by mass, the scratch resistance of the obtained coating film ( ⁇ ) may be lowered.
  • Non-oxide ceramic particles (B) contained in the coating film of the present invention have an electrical resistivity (volume resistivity, specific resistance) at 25 ° C. in the range of 0.1 ⁇ 10 ⁇ 6 to 185 ⁇ 10 ⁇ 6 ⁇ cm. It must be some boride ceramic, carbide ceramic, nitride ceramic, or silicide ceramic.
  • the non-oxide ceramic here is a ceramic made of an element or compound that does not contain oxygen.
  • the boride ceramics, carbide ceramics, nitride ceramics, and silicide ceramics referred to herein are non-oxide ceramics containing boron B, carbon C, nitrogen N, and silicon Si as main nonmetallic constituent elements, respectively.
  • the non-oxide ceramic particles (B) contained in the coating film of the present invention are boride ceramics, carbide ceramics having an electrical resistivity at 25 ° C. in the range of 0.1 ⁇ 10 ⁇ 6 to 100 ⁇ 10 ⁇ 6 ⁇ cm, Nitride ceramics or silicide ceramics are preferred. These particles have higher electrical conductivity than particles in the range of electrical resistivity at 25 ° C. exceeding 100 ⁇ 10 ⁇ 6 ⁇ cm and up to 185 ⁇ 10 ⁇ 6 ⁇ cm, so that sufficient conductivity is imparted to the resin coating film. Therefore, the amount added may be smaller, and as a result, the corrosion resistance of the coated metal plate and the adverse effect on the appearance of the coating film are reduced.
  • the electrical resistivity of pure metal is in the range of 1.6 ⁇ 10 ⁇ 6 ⁇ cm (Ag simple substance) to 185 ⁇ 10 ⁇ 6 ⁇ cm (Mn simple substance), and is used as a conductive particle in the present invention. It can be seen that oxide ceramics (electrical resistivity 0.1 ⁇ 10 ⁇ 6 to 185 ⁇ 10 ⁇ 6 ⁇ cm) have excellent conductivity equivalent to that of pure metal.
  • non-oxide ceramics examples include the following. That is, as boride ceramics, transition metals or rare earth elements of group IV (Ti, Zr, Hf), group V (V, Nb, Ta), group VI (Cr, Mo, W) in the periodic table are used.
  • group IV Ti, Zr, Hf
  • group V V, Nb, Ta
  • group VI Cr, Mo, W
  • transition metals of Group IV, V and VI, rare earth elements, B or Si carbides and as nitride ceramics, transition metals of Group IV, V and VI or rare earth elements
  • Nitride and silicide ceramics of group IV, group V and group VI transition metals or rare earth elements or a mixture of two or more selected from borides, carbides, nitrides and silicides Or, a cermet obtained by mixing and sintering these ceramics with a metal binder can be exemplified.
  • the standard electrode potential of the metal constituting a part of the cermet is ⁇ 0.3 V or more and is water resistant.
  • the standard electrode potential of the metal constituting a part of the cermet is less than ⁇ 0.3 V, when a coated metal plate having this cermet powder as a coating film is used in a wet environment for a long time, a rust layer or This is because a thick oxide insulating layer is formed, and the interface between the powder and the resin may be peeled off or the conductivity of the coating film may be lost.
  • water-resistant cermet powder examples include WC-12Co, WC-12Ni, TiC-20TiN-15WC-10Mo 2 C-5Ni, and the like.
  • the standard electrode potentials of Co and Ni are ⁇ 0.28V and ⁇ 0.25V, respectively, which are nobler than ⁇ 0.3V, and both metals are resistant to water.
  • Cr-based ceramics are concerned with environmental burdens, and many of rare earth element-based and Hf-based ceramics are expensive and are not available on the market.
  • non-oxide ceramics are more preferable from the viewpoints of the presence or absence of industrial products, stable distribution in domestic and foreign markets, price, electrical resistivity, and the like. That, Mo 2 B (electrical resistivity 40 ⁇ 10 -6 ⁇ cm), MoB ( the 35 ⁇ 10 -6 ⁇ cm), MoB 2 ( same 45 ⁇ 10 -6 ⁇ cm), NbB ( the 6.5 ⁇ 10 -6 ⁇ cm), NbB 2 (10 ⁇ 10 ⁇ 6 ⁇ cm), TaB (100 ⁇ 10 ⁇ 6 ⁇ cm), TaB 2 (100 ⁇ 10 ⁇ 6 ⁇ cm), TiB (40 ⁇ 10 ⁇ 6 ⁇ cm), TiB 2 (28 ⁇ 10 ⁇ 6 ⁇ cm), VB (35 ⁇ 10 ⁇ 6 ⁇ cm), VB 2 (150 ⁇ 10 ⁇ 6 ⁇ cm), W 2 B 5 (80 ⁇ 10 ⁇ 6 ⁇ cm), ZrB 2 (60 ⁇ 10 ⁇ 6 ⁇ cm), Mo
  • non-oxide ceramics having an electrical resistivity at 25 ° C. of 0.1 ⁇ 10 ⁇ 6 to 100 ⁇ 10 ⁇ 6 ⁇ cm are particularly preferable. Because they have a higher electrical conductivity than non-oxide ceramics whose electrical resistivity at 25 ° C. is in the range of more than 100 ⁇ 10 ⁇ 6 ⁇ cm and up to 185 ⁇ 10 ⁇ 6 ⁇ cm, it is sufficient for resin coatings. This is because the amount of particles added for imparting electrical conductivity may be smaller, and only a small number of corrosion current conduction paths penetrating the coating film are formed, and the corrosion resistance is hardly lowered. In addition, the coating film appearance is not governed by the color of the conductive particles due to the addition of a very small amount of particles, and even if a coloring pigment is added, it can be easily colored to a desired color.
  • the electrical resistivity added to the non-oxide ceramic is a representative value (literature value) of what is sold and used as an industrial material. Since these electrical resistivity increases and decreases depending on the type and amount of impurity elements that have entered the crystal lattice of the non-oxide ceramics, for example, a resistivity meter Loresta EP manufactured by Mitsubishi Chemical Corporation is used in the present invention.
  • the electrical resistivity at 25 ° C. was measured in accordance with JIS K7194 using a four-terminal four-probe method (MCP-T360 type) and an ASP probe and a constant current application method, and 0.1 ⁇ 10 ⁇ 6 to 185 It may be used after confirming that it is in the range of ⁇ 10 ⁇ 6 ⁇ cm.
  • the non-oxide ceramic particles (B) may be spherical, pseudo-spherical (eg, oval, egg, rugby ball, etc.) or polyhedral (eg, soccer ball, dice, various jewels).
  • Slender shapes eg, rods, needles, fibers, etc.
  • flat shapes eg, flakes, flat plates, flakes, etc.
  • the average particle size of the non-oxide ceramic particles (B) is not particularly limited, but in the coating composition of the present invention, it is preferably present as particles having a volume average size of 0.05 to 8 ⁇ m. More preferably, it exists in the form of particles having a diameter of 0.2 to 5 ⁇ m. Dispersed particles with these volume average diameters are applied to the metal plate (base treatment layer if the metal surface has a ground treatment) during the manufacturing process, storage and transportation of the coating composition, and the base material for painting. As long as it is stably present in the coating composition in the process or the like, it may be a single particle or a secondary particle in which a plurality of single particles are strongly aggregated. In the step of coating the base material with the coating composition, the particles (B) may aggregate together with the film formation, and the volume average diameter in the coating film may increase.
  • the volume average diameter referred to here is the volume-based average diameter obtained from the volume distribution data of the particles. This may be determined using any generally known particle size distribution measurement method, but it is preferable to use the average value of the sphere volume equivalent diameter distribution measured by the Coulter method (pore electrical resistance method). preferable. This is because the Coulter method is another particle size distribution measurement method (centrifugal sedimentation method, which is calculated from the volume distribution obtained by the laser diffraction scattering method, converts the equivalent circular area diameter distribution obtained by the image analysis method into a volume distribution, This is because there is almost no difference in measurement values depending on the manufacturer and model of the measuring instrument as compared with the calculation from the obtained mass distribution, etc., and accurate and highly accurate measurement can be performed.
  • the Coulter method is another particle size distribution measurement method (centrifugal sedimentation method, which is calculated from the volume distribution obtained by the laser diffraction scattering method, converts the equivalent circular area diameter distribution obtained by the image analysis method into a volume distribution, This is because there is almost no difference
  • the test particles are suspended in an aqueous electrolyte solution, a constant current is passed through the pores of the glass tube, and the particles are set to pass through the pores by negative pressure.
  • Non-oxide ceramic particles having a volume average diameter of less than 0.05 ⁇ m are not only more expensive than non-oxide ceramic particles larger than that, but also have a very large specific surface area.
  • water-based or organic solvent-based coating compositions Even when a wetting and dispersing agent is used in a product, it is difficult to wet and disperse the particle surface.
  • non-oxide ceramic particles having a volume average diameter of more than 8 ⁇ m are more likely to settle faster in a water-based or organic solvent-based coating composition than the non-oxide ceramic particles smaller than that (obtained from the Stokes equation), Therefore, it is difficult to ensure dispersion stability, and there are cases where the particles do not float and settle in a short time, and cause problems such as aggregation and solidification.
  • FIG. 1 shows a schematic view of a cross section of a conductive and corrosion-resistant coated metal plate of the present invention.
  • (A) is an organic resin
  • (B) and (B ′) are non-oxide ceramic particles
  • (C) is a cross-linked portion by a curing agent
  • ( ⁇ ) is a metal plate.
  • (B) is a particle having a ratio c / b of a particle diameter to a thickness of 0.5 or more.
  • (B ′) is a particle having a ratio c / b of particle diameter to thickness of less than 0.5, and in this case, sufficient conductivity may not be ensured.
  • the ratio c / b of the particle diameter to the thickness exceeds 1.5, the corrosion resistance and workability may be deteriorated.
  • the organic resin (A) preferably contains a polyphenol compound as a rust inhibitor.
  • a polyphenol compound is a compound having two or more phenolic hydroxyl groups bonded to a benzene ring or a condensate thereof, which can coordinately bond to a metal surface by a chelating action and hydrogen bond with a hydrophilic group of a coexisting aqueous resin. be able to.
  • the polyphenol compound used in the present invention is not particularly limited as long as it can be uniformly dissolved or finely dispersed in the aqueous coating composition used for forming the coating film. Even if it is not water-soluble or water-dispersible, it can be used as long as it penetrates between the hydrophobic chains of the resin (A1) coexisting in the aqueous coating composition ( ⁇ ) and can be uniformly finely dispersed.
  • Examples of the compound having two or more phenolic hydroxyl groups bonded to the benzene ring include gallic acid, pyrogallol, catechol and the like.
  • the condensate of the compound having two or more phenolic hydroxyl groups bonded to the benzene ring is not particularly limited, and examples thereof include a polyphenol compound generally distributed in the plant kingdom called tannic acid.
  • Tannic acid is a general term for aromatic compounds having a complex structure having a large number of phenolic hydroxyl groups widely distributed in the plant kingdom.
  • the tannic acid may be hydrolyzable tannic acid or condensed tannic acid.
  • the tannic acid is not particularly limited, and examples thereof include hameli tannin, oyster tannin, chatannin, pentaploid tannin, gallic tannin, mylobarantannin, dibidi tannin, argarovira tannin, valonia tannin, catechin tannin and the like.
  • the said polyphenol compound may be used by 1 type, and may use 2 or more types together.
  • the polyphenol compound is preferably contained in an amount of 1 to 100 parts by mass with respect to 100 parts by mass of the organic resin (A). If the amount is less than 1 part by mass, the amount of the polyphenol compound is insufficient, so that sufficient coating film adhesion may not be obtained, and as a result, the processed part corrosion resistance may be insufficient. When the amount exceeds 100 parts by mass, the amount of the polyphenol compound in the coating film is too large, and the coating film adhesion at the time of processing, the coating film followability and the processed part corrosion resistance decrease, and the stability of the coating composition decreases. Sometimes.
  • the organic resin (A) may contain one or more selected from the group consisting of phosphoric acid and hexafluorometal acid as a rust inhibitor. preferable.
  • the phosphoric acid and hexafluorometal acid may be used alone or in combination. These acids activate the metal surface by etching and promote the action of the silane coupling agent (s) and the polyphenol compound on the metal surface.
  • phosphoric acid has a function of forming a phosphate layer on the metal surface to passivate it, thereby improving corrosion resistance.
  • hexafluorometal acid can form a stable thin film containing a metal oxide supplied from hexafluorometal acid on the metal surface forming the coating film, resulting in improved corrosion resistance.
  • the phosphoric acid that can be used in the present invention is not particularly limited.
  • orthophosphoric acid, polyphosphoric acid (a linear polymer having a degree of polymerization of orthophosphoric acid up to 6 or a mixture of two or more thereof) examples thereof include metaphosphoric acid (single cyclic polymer having a degree of polymerization of orthophosphoric acid of 3 to 6, or a mixture of two or more thereof).
  • the said phosphoric acid may be used by 1 type, and may use 2 or more types together. Since polyphosphoric acid having a degree of polymerization of more than 2 can be easily obtained industrially as a mixture of polyphosphoric acids having several degrees of polymerization, such a mixture is preferably used in the present invention.
  • hexafluorometal acid there is no particular limitation on the hexafluorometal acid that can be used in the present invention.
  • the hexafluorometal acid forms a stable thin film containing a metal oxide on the metal surface.
  • the group consisting of Ti, Si, Zr, and Nb is used as a metal. What contains the 1 type or 2 or more types of element selected more is preferable.
  • the hexafluorometal acid may be used alone or in combination of two or more.
  • One or more selected from the group consisting of phosphoric acid and hexafluorometal acid is preferably contained in an amount of 0.1 to 100 parts by mass with respect to 100 parts by mass of the organic resin (A). If the amount is less than 0.1 parts by mass, the action of these acids is insufficient, and thus the corrosion resistance may be lowered. If it exceeds 100 parts by mass, the coating film becomes brittle, and the coating film adhesion and coating film followability at the time of processing may deteriorate due to coating film cohesive failure.
  • the organic resin (A) preferably contains a phosphate compound as a rust inhibitor.
  • a poorly soluble phosphate thin film can be formed on the metal surface during coating film formation. That is, when the metal is dissolved by the phosphate ions of the phosphate, the pH rises on the metal surface, and as a result, a precipitated thin film of phosphate is formed and the corrosion resistance is improved.
  • the phosphate compound that can be used in the present invention is not particularly limited.
  • orthophosphoric acid polyphosphoric acid (a linear polymer having a degree of polymerization of orthophosphoric acid up to 6 or a combination of two or more of these) Mixture), metal salts such as metaphosphoric acid (a cyclic polymer having a degree of polymerization of orthophosphoric acid of 3 to 6 or a mixture of two or more thereof), phytic acid, phosphonic acid (phosphorous acid), phosphinic acid ( Organometallic salts such as hypophosphorous acid).
  • the cationic species is not particularly limited, and examples thereof include Cu, Co, Fe, Mn, Sn, V, Mg, Ba, Al, Ca, Sr, Nb, Y, Ni, and Zn, but Mg, Mn, Al, Ca and Ni are preferably used.
  • the said phosphate compound may be used by 1 type, and may use 2 or more types together.
  • the phosphate compound is preferably contained in an amount of 0.1 to 100 parts by mass with respect to 100 parts by mass of the organic resin (A). If the amount is less than 0.1 parts by mass, the corrosion resistance may be deteriorated because the action of the phosphate compound is insufficient. If it exceeds 100 parts by mass, the coating film becomes brittle, and the coating film adhesion and coating film followability at the time of processing may deteriorate due to coating film cohesive failure.
  • the organic resin (A) is a metal oxide comprising at least one metal element selected from the group consisting of Si, Ti, Al, and Zr as a rust inhibitor. It is preferable to contain fine particles. By adding the metal oxide fine particles, the corrosion resistance can be further improved.
  • the metal oxide fine particles examples include silica fine particles, alumina fine particles, titania fine particles, zirconia fine particles, and the like, and those having a volume average diameter of about 1 to 300 nm are preferable. These may be used alone or in combination of two or more. Among these, the silica fine particles are added when it is necessary to improve both the corrosion resistance and toughness of the coating film.
  • the silica fine particle is not particularly limited, and is preferably a silica fine particle such as colloidal silica or fumed silica having a primary particle diameter of 3 to 50 nm because the coating film is a thin film.
  • the metal oxide fine particles are preferably contained in an amount of 1 to 100 parts by mass with respect to 100 parts by mass of the organic resin (A). If the amount is less than 1 part by mass, the amount of the metal oxide fine particles is insufficient, so that the effect of improving the corrosion resistance may not be obtained. If it exceeds 100 parts by mass, the coating film becomes brittle, and the coating film adhesion and coating film followability at the time of processing may deteriorate due to coating film cohesive failure.
  • an appropriate amount of the various rust preventives is previously dissolved or dispersed and stabilized in the coating composition ( ⁇ ) and introduced into the organic resin (A) in the coating film ( ⁇ ).
  • the coating film ( ⁇ ) can further contain a color pigment.
  • the type of the color pigment is not particularly limited, and examples of the inorganic color pigment include titanium dioxide powder, alumina powder, iron oxide powder such as Venetian red and burnt senna, lead oxide powder, carbon black, graphite powder, coal dust, Talc powder, cadmium yellow, cadmium red, chrome yellow, cobalt yellow, cobalt blue, cerulean blue, cobalt green and the like can be used.
  • organic coloring pigments include phthalocyanine blue, phthalocyanine green, quinacridone, perylene, anthrapyrimidine, carbazole violet, anthrapyridine, azo orange, flavanthrone yellow, isoindoline yellow, azo yellow, indanthrone blue, and dibromanthanthrone red.
  • Perylene red, azo red, anthraquinone red and the like can be used.
  • the coating film ( ⁇ ) can be provided with an appearance such as a necessary color, gloss, and texture, it is resistant to water deterioration such as copper powder, tin powder, nickel powder and bronze (Cu-Sn alloy) powder.
  • Metal particles can be used as the color pigment, and aluminum powder, zinc powder, etc., which are slightly inferior in water resistance, can also be used as the color pigment.
  • scaly glitter materials such as aluminum flakes, mica flakes, plate-like iron oxide, glass flakes, and powdery glitter materials such as mica powder, metal-coated mica powder, titanium dioxide-coated mica powder, and titanium dioxide-coated glass powder can be used. .
  • each coating film ( ⁇ ) forming component is added to water or an organic solvent. And a method of dissolving or dispersing by stirring with a disper.
  • a known hydrophilic solvent or the like may be added, if necessary, in order to improve the solubility or dispersibility of each coating film ( ⁇ ) forming component.
  • a water-based coating composition in addition to the resin (A1) and the non-oxide ceramic particles (B), as long as it does not impair the aqueous and coating properties of the coating.
  • Various water-soluble or water-dispersible additives may be added.
  • the above-mentioned various rust preventives, surfactants such as antifoaming agents, anti-settling agents, leveling agents, wetting and dispersing agents, thickeners, viscosity modifiers, and the like may be added.
  • organic solvents defined by the Industrial Safety and Health Law Enforcement Ordinance (Organic solvent poisoning prevention regulations, Chapter 1, Article 1), etc. Add a small amount of organic solvent so that it does not fall under the category (first-class organic solvent, second-class organic solvent, third-class organic solvent, or those containing more than 5% by mass of the organic solvent). Also good.
  • the coating film ( ⁇ ) of the present invention is formed from the water-based coating composition ( ⁇ ), it is a water-based coating composition, and therefore has a higher surface tension than the organic solvent-based paint and is a base material. It is inferior in wettability to a metal plate (base treatment layer if there is a base treatment) or non-oxide ceramic particles (B), and uniform coating properties and particle dispersibility are obtained when a predetermined amount is applied to the substrate. It may not be possible. In such a case, it is preferable to add the above-mentioned wetting and dispersing agent or thickener.
  • a surfactant that lowers the surface tension can be used, but it is better to use a polymer surfactant (polymer dispersant) having a molecular weight of 2000 or more.
  • Low molecular surfactants can move relatively easily through moisture-containing resin coatings, so that water adsorbed on polar groups of surfactants and corrosive factors such as dissolved oxygen and dissolved salts can be removed via the water. It is easy to attract to the metal surface, and bleeds out on its own, so that it is easy to elute and often deteriorates the rust prevention property of the coating film.
  • polymer surfactants can be adsorbed on the surfaces of metals, ceramic particles and pigments, so that they are difficult to separate once adsorbed and are effective in improving wettability even at low concentrations.
  • the molecules are bulky, it is difficult to move through the resin coating film, and it is difficult to attract the corrosion factor to the metal surface.
  • some of the acrylic resins recommended to be added to the organic resin (A) have the function of such a polymer surfactant.
  • Thickener is sufficient when wetting and dispersing agent alone does not provide sufficient surface coverage for the repellent area of the substrate surface, or the viscosity of the aqueous coating composition is too low to ensure the required coating thickness It may be added as a countermeasure when it is not. Many have a molecular weight of several thousand to several tens of thousands, adsorbed on the surface of pigments and the like, and the thickeners themselves associate with each other to form a weak network structure, thereby increasing the viscosity of the coating composition.
  • the water-based coating composition ( ⁇ ) contains non-oxide ceramic particles or colored pigments with a high specific gravity
  • a viscosity modifier that can impart thixotropic properties (thixotropic properties) to the paint is added as necessary.
  • thixotropic properties thixotropic properties
  • a multipoint adsorption is performed on the surface of a pigment or the like in a water-based paint to form a network structure. Since the molecular weight of such a viscosity modifier is very high at hundreds of thousands to millions, it creates a strong network structure with a large yield value in water-based paints, and therefore the paint is difficult to deform at low shear rates, High viscosity.
  • a coating composition in which a resin is dissolved in an organic solvent has a relatively high viscosity and is easy to adjust the viscosity. Therefore, the viscosity of the coating composition can be easily and stably maintained at 100 mPa ⁇ s or more, which is advantageous for suppressing pigment settling.
  • non-oxide ceramics used as conductive materials are substances that also have a hydrophobic portion on the surface, they are generally easy to disperse in organic solvent-based coating compositions and are used for coating during coating. This is preferable because the non-oxide ceramic particles in the composition can be coated without settling.
  • the viscosity of the organic solvent-based coating composition ( ⁇ ) that forms the coating film is 100 to 2000 mPa ⁇ s, applied onto a metal plate with a roll coater or curtain coater, and then dried and baked, Non-oxide ceramic particles are less likely to settle and are more suitable. If the coating viscosity is less than 100 mPa ⁇ s, the non-oxide ceramic particles are likely to settle, and if it exceeds 2000 mPa ⁇ s, the viscosity is too high and there is a risk of causing poor appearance during painting, commonly called living. More preferably, it is 250 to 1000 mPa ⁇ s.
  • the viscosity of the organic solvent-based coating composition ( ⁇ ) can be measured using a B-type viscometer at the same temperature as that of the coating composition when applied by a roll coater or a curtain coater.
  • Viscosity can be adjusted by the type of organic solvent used and the amount of solvent.
  • the organic solvent generally known solvents can be used, but organic solvents having a high boiling point are preferable. In the pre-coated metal plate production line, the baking time is short, and therefore, when a solvent having a low boiling point is used, there is a possibility that a coating defect generally called boiling will occur. It is preferable to use a solvent having a boiling point of 120 ° C. or higher.
  • these organic solvents having a high boiling point generally known solvents such as cyclohexane and hydrocarbon-based organic solvents such as Solvesso can be used.
  • the coating film ( ⁇ ) of the present invention is a roll coat or groove roll when the coating composition ( ⁇ ) is an aqueous or organic solvent composition.
  • a coating composition is applied on a metal plate by a known coating method such as coating, curtain flow coating, roller curtain coating, dipping (dip) or air knife drawing, and then the moisture and solvent content of the wet coating is dried.
  • a membrane method is preferred.
  • a water-based or organic solvent-based ultraviolet curable composition or electron beam curable composition after applying to a metal plate by the above application method, moisture or solvent is dried, and ultraviolet rays or electron beams are applied. It is preferable to polymerize by irradiation.
  • the baking drying method in the case where the coating composition ( ⁇ ) is a water-based or organic solvent-based baking curable composition will be specifically described.
  • the baking and drying method is not particularly limited, either by heating the metal plate in advance or heating the metal plate after application, Or you may dry these combining these.
  • limiting in particular in a heating method A hot air, induction heating, near infrared rays, a direct fire, etc. can be used individually or in combination.
  • the metal plate surface temperature is preferably 120 ° C. to 250 ° C., and preferably 150 ° C. to 230 ° C. More preferably, it is most preferably 180 ° C to 220 ° C.
  • the coating film is not sufficiently cured and the corrosion resistance may be lowered.
  • the temperature exceeds 250 ° C. the bake hardening becomes excessive, and the corrosion resistance and workability may be lowered.
  • the baking and drying time is preferably 1 to 60 seconds, and more preferably 3 to 20 seconds. If it is less than 1 second, the bake hardening is insufficient and the corrosion resistance may be lowered, and if it exceeds 60 seconds, the productivity may be lowered.
  • the metal plate surface arrival temperature is preferably 180 ° C. to 260 ° C., more preferably 210 ° C. to 250 ° C. .
  • the coating film is not sufficiently cured and the corrosion resistance may be lowered.
  • the bake hardening becomes excessive, and the corrosion resistance and workability may be lowered.
  • the baking and drying time is preferably 10 to 80 seconds, and more preferably 40 to 60 seconds. If it is less than 10 seconds, the bake hardening is insufficient and the corrosion resistance may be lowered, and if it exceeds 80 seconds, the productivity may be lowered.
  • the coating composition ( ⁇ ) is a water-based or organic solvent-based ultraviolet curable composition or electron beam curable composition
  • the moisture and solvent content of the wet coating film are dried, and then irradiated with ultraviolet rays or electron beams. Since the coating film is cured and formed mainly from radicals generated by irradiation with ultraviolet rays or electron beams, the drying temperature may be lower than that for the bake curable composition. In the drying step, it is preferable to irradiate ultraviolet rays or electron beams after volatilizing most of the moisture and solvent at a relatively low metal surface temperature of about 80 to 120 ° C.
  • the ultraviolet irradiation for radically polymerizing and curing the ultraviolet curable resin in the coating film with ultraviolet rays is usually performed in an air atmosphere, an inert gas atmosphere, a mixed atmosphere of air and an inert gas, etc. Then, it is preferable to irradiate with ultraviolet rays in an atmosphere and inert gas mixed atmosphere in which the oxygen concentration is adjusted to 10% by volume or less, or in an inert gas atmosphere. Since oxygen is an inhibitor of radical polymerization, when the atmospheric oxygen concentration at the time of ultraviolet irradiation is low, there is little deactivation or inhibition of crosslinking reaction due to addition of oxygen to the generated radical, and the ultraviolet curable composition used in the present invention is a radical. Fully polymerized through polymerization and crosslinking.
  • the inert gas used here include nitrogen gas, carbon dioxide gas, argon gas, and mixed gas thereof.
  • the ultraviolet light source can be irradiated with ultraviolet rays by using, for example, a metal vapor discharge type high pressure mercury lamp, a metal halide lamp, a rare gas discharge type xenon lamp, an electrodeless lamp using microwaves, or the like.
  • any lamp may be used as long as the ultraviolet curable coating film can be sufficiently cured and desired corrosion resistance and conductivity can be obtained.
  • the peak illuminance and integrated light intensity of ultraviolet rays received by the coating film affect the curability of the coating film, but if the ultraviolet curing type coating film can be sufficiently cured and desired corrosion resistance is obtained,
  • the irradiation condition of ultraviolet rays is not particularly limited.
  • the coating composition ( ⁇ ) is an electron beam curable composition
  • a normal electron beam irradiation apparatus used in the fields of printing, painting, film coating, packaging, sterilization, etc. is used for electron beam curing. be able to. These are accelerated by applying a high voltage to thermoelectrons generated from a hot filament in a high vacuum, and the resulting electron stream is taken out in an inert gas atmosphere and irradiated to a polymerizable substance.
  • any device may be used as long as the electron beam curable coating film can be sufficiently cured and desired corrosion resistance and conductivity can be obtained.
  • the acceleration voltage of the electron beam absorbed by the coating film affects the depth at which the electron beam penetrates the coating film, and the absorbed dose affects the polymerization rate (curability of the coating film).
  • the electron beam irradiation conditions are not particularly limited as long as the coating film of the mold can be sufficiently cured and desired corrosion resistance can be obtained.
  • the inert gas used here include nitrogen gas, carbon dioxide gas, argon gas, and mixed gas thereof.
  • Metal plate for coating Prepare the following zinc-based plated steel plates M1 to M4, immerse them in an aqueous solution of an aqueous degreasing agent (FC-4480 manufactured by Nihon Parkerizing Co., Ltd.), degrease the surface, then wash with water and dry for coating. The metal plate.
  • FC-4480 aqueous degreasing agent manufactured by Nihon Parkerizing Co., Ltd.
  • M1 Electrogalvanized steel sheet (Shin Nippon Steel Co., Ltd. gin coat, thickness 0.8mm, plating thickness about 2.8 ⁇ m)
  • M2 Electrical Zn—Ni alloy-plated steel sheet (Zinclite manufactured by Nippon Steel Corp., plate thickness 0.8 mm, plating thickness about 2.8 ⁇ m)
  • M3 Hot-dip galvanized steel sheet (Shin Nippon Steel Co., Ltd. silver zinc, plate thickness 0.8mm, plating thickness about 7 ⁇ m)
  • M4 Hot-dip Zn-11% Al-3% Mg-0.2% Si alloy-plated steel sheet (Super Nippon, manufactured by Nippon Steel Corp., plate thickness 0.8 mm, plating thickness about 6 ⁇ m)
  • composition for water-based coating For the preparation of a composition for water-based coating, first, resin (A1), non-oxide ceramic particles (B), curing agent (C), silane coupling agent (s), rust inhibitor, coloring A pigment and a viscosity modifier were prepared.
  • Resin (A1) Resins A11 to A13 and A19 were synthesized, and commercially available resins A16 and A17 were prepared. These are all resins used in the present invention.
  • A11 Carboxyl group-containing polyester urethane resin aqueous dispersion (synthesized in Production Example 1) [Production Example 1] Into a 10 L reaction vessel equipped with a stirrer, reflux condenser, nitrogen gas inlet tube and thermometer, thermostat, 1628 g of 2,2-dimethylolbutanoic acid and 3872 g of ⁇ -caprolactone were charged, and stannous chloride as a catalyst. 27.5 mg was added, and the temperature in the reaction vessel was kept at 120 ° C. and reacted for 3 hours. As a result, a liquid carboxyl group-containing polyester diol (a11) having a hydroxyl value of 225.5 mgKOH / g and an acid value of 114.6 mgKOH / g was obtained.
  • A12 A sulfonic acid group-containing polyester urethane resin aqueous dispersion (synthesized in Production Example 2) [Production Example 2] In a pressure-resistant reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen gas introduction tube and a thermometer, and a thermostat, while stirring under a nitrogen stream, 1100 g of adipic acid, 900 g of 3methyl-1,5-pentanediol, and tetrabutyl 0.5 g of titanate was charged, the temperature in the reaction vessel was maintained at 170 ° C., and the reaction was continued until the acid value was 0.3 mg KOH / g or less.
  • the reaction was carried out under reduced pressure conditions of 180 ° C. and 5 kPa or less for 2 hours to obtain a polyester having a hydroxyl value of 112 mgKOH / g and an acid value of 0.2 mgKOH / g.
  • 280 g of the sulfonic acid group-containing polyester (a12), 200 g of polybutylene adipate, 35 g of 1,4-butanediol, 118 g of hexamethylene diisocyanate and 400 g of methyl ethyl ketone were mixed with a stirrer, a reflux condenser, a nitrogen gas inlet tube and a thermometer, and a thermostat.
  • the reaction vessel equipped was charged under a nitrogen stream, and the urethanization reaction was carried out with stirring while maintaining the liquid temperature at 75 ° C. to obtain a urethane prepolymer having an NCO content of 1%.
  • the temperature in the reaction vessel was lowered to 40 ° C., 955 g of ion-exchanged water was uniformly added dropwise with sufficient stirring, and phase inversion emulsification was performed.
  • the internal temperature was lowered to room temperature, and an adipic acid hydrazide aqueous solution in which 13 g of adipic acid hydrazide and 110 g of ion exchange water were mixed was added to perform amine elongation. After distilling off the solvent at 60 ° C.
  • A13 Carboxyl group-containing polyester resin aqueous solution having a hydroxyl group introduced (synthesized in Production Example 3)
  • Production Example 3 In a pressure-resistant reaction vessel equipped with a stirrer, reflux condenser, nitrogen gas introduction tube and thermometer, thermostat, trimethylolpropane 174 g, neopentyl glycol 327 g, adipic acid 352 g, isophthalic acid 109 g and 1,2-cyclohexanedicarboxylic acid anhydride 101 g of the product was charged and the temperature was raised from 160 ° C. to 230 ° C. over 3 hours, and then the condensed water produced was kept at 230 ° C.
  • A19 Sulfonic acid group-containing polyester resin aqueous dispersion (synthesized in Production Example 4)
  • Production Example 4 In a pressure-resistant reaction vessel equipped with a stirrer, reflux condenser, nitrogen gas inlet tube and thermometer, thermostat, stirring in a nitrogen stream, 199 g of terephthalic acid, 232 g of isophthalic acid, 199 g of adipic acid, 5-sulfosodium isophthalic acid 33 g, ethylene glycol 312 g, 2,2-dimethyl-1,3-propanediol 125 g, 1,5-pentanediol 187 g, and tetrabutyl titanate 0.41 g were charged, and the temperature in the reaction vessel was increased from 160 ° C to 230 ° C.
  • the temperature was raised over 4 hours to carry out the esterification reaction.
  • the inside of the container was gradually depressurized to 5 mmHg over 20 minutes, and further a polycondensation reaction was carried out at 260 ° C. for 40 minutes at 0.3 mmHg or less.
  • the mixture was stirred and dissolved at 80 ° C. for 2 hours, and further 213 g of ion-exchanged water was added to perform water dispersion. Thereafter, the solvent was distilled off while heating to obtain a sulfonic acid group-containing polyester resin aqueous dispersion (A19) having a solid content concentration of 30%.
  • A16 Carboxyl group and urea group-containing polyurethane resin aqueous dispersion (Takelac WS-5000 manufactured by Mitsui Chemicals Polyurethane Co., Ltd.)
  • A17 Acrylic resin aqueous dispersion (DIC Co., Ltd. Boncoat R-3380-E)
  • Resins other than A1 Comparative Example
  • A15 Nonionic polyether-based urethane resin aqueous dispersion (DIC Corporation Bondic 1520)
  • A18 Amino group-containing epoxy resin aqueous solution (Adeka Resin EM-0718 manufactured by ADEKA Corporation)
  • Non-oxide ceramic particles Commercially available fine particles (reagents) were used.
  • the electrical resistivity is 80 mm long, 50 mm wide, and 2 to 4 mm thick sintered plates made from each fine particle.
  • a resistivity meter Loresta EP MCP-T360 type
  • the measurement was performed at 25 ° C. according to JIS K7194 using the 4-terminal 4-probe method and the constant current application method used.
  • the volume average diameter was measured using Multisizer 3 (precision particle size distribution measuring apparatus based on the Coulter principle) manufactured by Beckman Coulter, Inc.
  • BC B 4 C microparticles (manufactured by Soekawa Rikagaku Co., Ltd., volume average diameter 2.2 ⁇ m, electrical resistivity 0.7 ⁇ 10 ⁇ 6 ⁇ cm)
  • TiN TiN fine particles (manufactured by Wako Pure Chemical Industries, Ltd., volume average diameter 1.6 ⁇ m, electrical resistivity 20 ⁇ 10 ⁇ 6 ⁇ cm)
  • TiB TiB 2 fine particles (TII11PB manufactured by Purifying Research Laboratory Co., Ltd., volume average diameter 2.9 ⁇ m, electrical resistivity 30 ⁇ 10 ⁇ 6 ⁇ cm)
  • VC VC fine particles (manufactured by Wako Pure Chemical Industries, Ltd., volume average diameter 2.3 ⁇ m, electrical resistivity 140 ⁇ 10 ⁇ 6 ⁇ cm)
  • ZrB ZrB 2 fine particles (manufactured by Wako Pure Chemical Industries, Ltd., volume average diameter 2.2 ⁇ m, electrical resistivity 70 ⁇ 10 ⁇ 6 ⁇ cm)
  • Non-oxide ceramic particles other than (B) (comparative example) Commercially available fine particles (reagents) were used. The electrical resistivity was measured in the same manner as (2) above.
  • TaN TaN fine particles (manufactured by Soekawa Riken Co., Ltd., volume average diameter 3.7 ⁇ m, measured value of electric resistivity 205 ⁇ 10 ⁇ 6 ⁇ cm)
  • BN BN fine particles (BBI03PB, manufactured by Purifying Research Laboratory Co., Ltd., volume average diameter of about 8 ⁇ m, electrical resistivity 2000 ⁇ 10 ⁇ 6 ⁇ cm)
  • Curing agent (C) Melamine resin (Nippon Cytec Industries, Ltd. Cymel 303)
  • C2 Isocyanate compound (Takenate WD-725 manufactured by Mitsui Chemicals Polyurethane Co., Ltd.)
  • Silane coupling agent s1 3-glycidoxypropyltrimethoxysilane (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.)
  • s2 3-aminopropyltrimethoxysilane (KBM-903 manufactured by Shin-Etsu Chemical Co., Ltd.)
  • s3 3-mercaptopropyltrimethoxysilane (KBM-803, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Rust preventive agent i1 Hexafluorotitanic acid (manufactured by Wako Pure Chemical Industries, Ltd., 60% hexafluorotitanic acid aqueous solution)
  • i2 Magnesium hydrogen phosphate (manufactured by Kanto Chemical Co., Inc.)
  • i3 Silica fine particles (Snowtex N manufactured by Nissan Chemical Industries, Ltd., silica sol having a particle diameter of 10 to 20 nm stabilized with ammonia)
  • Colored pigments p1 Solid solution of ZnO and CoO (Pigment product number 068 Cobalt Green Deep, Green Pigment, manufactured by Kusakabe Co., Ltd.)
  • p2 Potassium potassium nitrite (Pigment No. 117 aureolin (cobalt yellow), yellow pigment manufactured by Kusakabe Co., Ltd.)
  • p3 Carbon black (Special Black 6 manufactured by Evonik Industries)
  • Viscosity modifier v1 Cross-linked polyacrylic acid (Joonlon PW-111 manufactured by Toa Gosei Co., Ltd., non-neutralized)
  • a water-based paint was prepared using the resin, pigment, additive, and distilled water.
  • water-based paints were prepared using various blending ratios.
  • the aqueous coating composition is 5 parts by mass with respect to 100 parts by mass of the nonvolatile content of the resin (A1). Added.
  • the rust preventive agent i1 or i3 in any case, it was added to the coating composition so as to be 10 parts by mass with respect to 100 parts by mass of the nonvolatile content of the aqueous coating composition.
  • rust preventive agent i2 it added to the composition for coating so that it might become 5 mass parts with respect to 100 mass parts of non volatile matters of the composition for coating.
  • the color pigment p1 or p2 in this example was added to the coating composition so as to be 20 parts by mass with respect to 100 parts by mass of the nonvolatile content of the aqueous coating composition.
  • p3 in any case, it added to the coating composition so that it might become 10 mass parts with respect to 100 mass parts of non volatile matters of the aqueous coating composition.
  • Viscosity modifier that can impart thixotropic properties (thixotropic properties) to the coating composition for all aqueous coating compositions of the present example to prevent sedimentation of non-oxide ceramic particles dispersed in the aqueous coating composition v1 was added.
  • Viscosity modifier v1 was added in an amount of 0.03 to 0.1 parts by mass with respect to 100 parts by mass of the total amount including the water content and nonvolatile content of the aqueous coating composition. The amount of addition of v1 was adjusted so that when a shear stress (stirring) was applied to each coating composition, it decreased to an appropriate viscosity level.
  • Tables 1 to 13 show resins (resins other than (A1) or (A1)), non-oxide ceramic particles (non-oxide ceramic particles other than (B) or (B)), curing, contained in each water-based paint.
  • the presence or absence and type of the agent (C), the silane coupling agent (s), the rust inhibitor, the color pigment, and the viscosity modifier are shown.
  • As the resin (A1) a mixed resin having a nonvolatile mass ratio of 1: 1 between the resins A16 and A19 was also used, and was described as an A16 / A19 mixture (Table 12).
  • the ratio of non-oxide ceramic particles to the total amount of non-volatile resin and non-oxide ceramic particles is expressed by volume%.
  • curing agent (C) the ratio of the hardening
  • nonvolatile content means a component remaining after volatilizing water and solvents blended as a solvent in the paint or composition.
  • the non-volatile content concentration of the water-based coating composition was appropriately adjusted by changing the amount of water added in order to obtain the target film adhesion amount and good paintability.
  • the aqueous coating composition was prepared and each component was uniformly dispersed, and then the container was sealed and allowed to stand at 25 ° C. for 2 days. Then, it apply
  • a comparative plate for use as a comparative plate in the following “3. Performance Evaluation (5) Color Change of Coating Film by Mixing Non-oxide Ceramic Particles”, a composition for aqueous coating in which only the non-oxide ceramic particles are removed from the aqueous coating.
  • a comparative plate for evaluating color inhibition was prepared by the same film forming method as described above so that the coating thickness was the same as that of the coated metal plate to be evaluated.
  • Tables 1 to 13 show the coating thickness ( ⁇ m unit) after film formation. The coating thickness was calculated by dividing the mass difference before and after peeling of the coating after coating by the specific gravity of the coating. The specific gravity of the coating film was calculated from the blending amount of the coating film components and the known specific gravity of each component.
  • the number of hit points is 2000 points or more 3: 1000 points or more, less than 2000 points 2: 500 points or more, less than 1000 points 1: Less than 500 points Cannot be welded: Nuggets are not generated, and one point cannot be welded
  • Grounding Mitsubishi Measures the contact resistance at 10 different points on a painted metal plate using a four-terminal four-probe method and a constant current application method using a resistivity meter Loresta EP (MCP-T360 type) manufactured by Kagaku Co., Ltd. and an ESP probe. The arithmetic average value was defined as the surface contact resistance value of the coated metal plate. The superiority or inferiority of the grounding property was evaluated using the following evaluation points.
  • Plane portion corrosion resistance is less than 10 ⁇ 4 ⁇ 5: 10 ⁇ 4 ⁇ or more and less than 10 ⁇ 3 ⁇ 4: 10 ⁇ 3 ⁇ or more and less than 10 ⁇ 1 ⁇ 3: 10 ⁇ 1 ⁇ or more and less than 10 3 ⁇ 2 : 10 3 ⁇ or more, less than 10 6 ⁇ 1: 10 6 ⁇ or more (3) Plane portion corrosion resistance A test piece having a size of 50 ⁇ 100 mm was cut out from the metal plate, and the end portion of the plate was sealed, in accordance with JIS-Z2371. A salt spray test was conducted and the area ratio of white rust after 120 hours was measured. The superiority or inferiority of the planar portion corrosion resistance was evaluated using the following evaluation points.
  • White rust generation area ratio is less than 5% 4: White rust generation area ratio is 5% or more and less than 10% 3: White rust generation area ratio is 10% or more and less than 20% 2: White rust generation Area ratio 20% or more and less than 30% 1: White rust generation area ratio 30% or more
  • the color difference ⁇ E * of both plates is calculated from the L * , a * , and b * values of the coated metal plate and the comparative plate, and the color change of the coating film due to the blending of non-oxide ceramic particles is calculated using the following evaluation points. evaluated.
  • Color difference ⁇ E * is less than 0.3 5: 0.3 or more, less than 0.6 4: 0.6 or more, less than 1.0 3: 1.0 or more, less than 2.0 2: 2.0 or more, Less than 4.0 1: 4.0 or more
  • Tables 1 to 13 also show the evaluation results.
  • the coated metal plate of the present invention can achieve both excellent conductivity and corrosion resistance regardless of the types of the metal plate, resin (A1), and non-oxide ceramic particles (B). Furthermore, in the coated metal plate of the present invention example, the color of the non-oxide ceramic particles (B) regardless of whether the coating film does not contain a color pigment (clear coating film) or a coloring pigment (color coating film). It can be seen that it is difficult to adversely affect the coating color, and the non-oxide ceramic particles hardly disturb the appearance design of the coating. Such an effect is generated because only a small amount of the specific non-oxide ceramic particles (B) having excellent conductivity is blended in the coating film.
  • resin A11 (carboxyl group-containing polyester urethane) among the resins (A1) used in the examples.
  • Resin), A12 (sulfonic acid group-containing polyester urethane resin), A16 (carboxyl group, urea group-containing polyurethane resin), and A19 (sulfonic acid group-containing polyester resin) are selected from group 1 and functional group selected from group 1 Many functional groups are included in the resin structure.
  • the resin A13 (carboxyl group-containing polyester resin into which a hydroxyl group has been introduced) contains a sufficient amount of functional groups selected from Group 2, but the carboxyl groups have the amount of hydroxyl groups introduced into the structure. Therefore, it contains only a few functional groups selected from group 1.
  • the resin A17 (acrylic resin) contains only a functional group selected from Group 1.
  • the resin A15 nonionic polyether-based urethane resin
  • the resin A18 amino group-containing epoxy resin
  • the corrosion resistance of the coating film composed of the resins A11, A12, A16, and A19 including many functional groups of both Group 1 and Group 2 is not a coating film other than that, for example, Group 1 And Group 2 tend to be much better than the coating film made of Resin A18 that does not contain both.
  • the reason for this is that, as described in the section ⁇ Organic resin (A)>, if the resin structure has a carboxyl group or a sulfonic acid group, the substrate is a metal plate (a base treatment layer if there is a base treatment) In addition, there is an effect of improving the corrosion resistance and improving the corrosion resistance. In addition, if there is an ester group, urethane group, or urea group having a relatively high cohesive energy in the structure, the adhesion and corrosion factor shielding properties (of the coating film) This is thought to be due to the effect of further improving the corrosion resistance by improving the density.
  • a coating film made of A11, A12, A16, A19, or a mixed resin of A16 and A19 containing many carboxyl groups or sulfonic acid groups in the resin structure is a coating film made of A15 or A18 that does not contain these functional groups.
  • the conductivity is further improved.
  • the color of the non-oxide ceramic particles (B) is less likely to adversely affect the coating film color and does not hinder the appearance design of the coating film.
  • carboxyl groups and sulfonic acid groups are adsorbed on the surface of the polar non-oxide ceramic particles (B), and the non-oxide ceramic particles (B) are aggregated. Has the effect of preventing dispersibility.
  • the particles (B) uniformly dispersed in the coating film provide good coating film conductivity (weldability and grounding property), and at the same time, color unevenness and streak unevenness hardly occur on the coating film surface. The color change is considered to be suppressed.
  • the corrosion resistance tends to be improved as compared with the case where it is not.
  • the electrical resistivity is using the non-oxide ceramic particles of greater than 185 ⁇ 10 -6 ⁇ cm (TaN, BN), resulting coated metal plate does not have the desired conductivity.
  • the volume ratio between the resin (A1) and the non-oxide ceramic particles (B) is out of the range of the present invention, it is impossible to achieve both conductivity and corrosion resistance.
  • the desired conductivity is obtained.
  • the color of the non-oxide ceramic particles (B) tends to adversely affect the coating color.
  • the corrosion resistance tends to be low, and when it is thick, the conductivity tends to decrease.
  • a coated metal plate excellent in coating film conductivity (grounding property, weldability) and corrosion resistance can be obtained.
  • this coated metal plate has a small amount of non-oxide ceramic particles necessary for ensuring conductivity, it has excellent paint colorability due to the color pigment, and the non-oxide ceramic particles have the appearance of the paint film. Does not interfere with design. Therefore, for example, a material can be provided at a lower cost than a conventional pre-coated metal plate for applications such as indoor home appliances and interior building materials that require grounding, weldability, and corrosion resistance, and whose appearance design is important.

Abstract

導電性、耐食性に優れ、かつ安価に製造できる塗装金属板を提供する。本発明は、金属板の少なくとも片面に、有機樹脂(A)と、25℃の電気抵抗率が0.1×10-6~185×10-6Ωcmのホウ化物、炭化物、窒化物、ケイ化物から選ばれる非酸化物セラミックス粒子(B)とを含む塗膜(α)が形成されており、前記塗膜(α)中の有機樹脂(A)と非酸化物セラミックス粒子(B)の25℃での体積比が90:10~99.9:0.1であり、前記有機樹脂(A)が、カルボキシル基、スルホン酸基から選ばれる少なくとも1種の官能基を構造中に含む樹脂(A1)、または更に該樹脂(A1)の誘導体(A2)を含むことを特徴とする、導電性、耐食性塗装金属板である。

Description

導電性、耐食性に優れる塗装金属板
 本発明は、有機樹脂と、電気抵抗率が特定範囲にある非酸化物セラミックスの粒子とを含む皮膜で表面の少なくとも一部が被覆された、導電性、耐食性に優れる塗装金属板に関する。
 以下、本発明の背景技術について説明する。
 家電用、建材用、自動車用等に、成形加工後に塗装されていたポストコート金属板に代わって、着色した有機皮膜を被覆した塗装金属板(プレコート金属板)が使用されるようになってきた。塗装金属板は、多くの場合、金属自体(めっき金属板の場合はめっき皮膜)とその上層の化成処理、更にその上層のプライマー皮膜の複合効果によって、優れた耐食性と共に加工性、塗料密着性を有し、更に、多くの場合、最表面に着色した有機皮膜が設けられているため、加工後塗装を省略でき、高い生産性と美麗な外観が得られる。
 塗装金属板をプレス成形した場合、金属板上に被覆されている皮膜層も成形されるため、皮膜の加工性も要求される。そのため、皮膜層は樹脂をベースとしたものが一般的であり、塗装金属板の被覆皮膜は、通常、絶縁性である。しかしながら、塗装金属板には、部品組み立て時の通電溶接性に対するニーズや、家電、OA機器筺体に用いた場合のアース性や電磁波シールド性等の高導電化ニーズが生まれている。このような皮膜への導電性付与という課題に対し、導電性粒子を含む皮膜を金属板に被覆することにより、導電性を付与する技術が提案されている。
 これらのうち、導電性の金属粒子を用いる技術としては、例えば、特許文献1には、アルミニウムまたはアルミニウム合金基材表面に、基材の耐食性や基材との密着性を強化するクロメート皮膜を介し、アルミニウムまたはアルミニウム合金粉末を含む樹脂皮膜を被覆することによって、優れた耐食性と導電性を両立する家電製品シャーシ部材用のプレコートアルミニウムまたはアルミニウム合金材の技術が提案されている。前記樹脂皮膜に使用するアルミニウムまたはアルミニウム合金粉末の量は、前記樹脂100重量部に対して10乃至50重量部であることが記載されている。
 特許文献2には、亜鉛粉末を含む樹脂系導電性塗膜を有する合金化亜鉛めっき鋼板の技術が提案されており、亜鉛粉末が塗膜中に30~90質量%含まれるのが好ましく、塗膜厚は2~30μmが好ましいとされている。
 特許文献3には、2~50質量%の金属粉、1~50質量%の水、及び0.5~30質量%の界面活性剤を必須成分とする膜厚5μm以下の樹脂皮膜で被覆することで金属板の導電性を高める技術が提案されている。金属粉としてはニッケル粉が好適で、塗装用塗料は水系が好ましいとされている。
 また、皮膜に導電性を付与する技術のうち、金属粒子以外の導電性粒子を用いることができる技術としては、例えば、特許文献4に、クロム化合物を主体とする防錆処理層の上に、3~59体積%の導電性粉末を含む、0.5~20μm厚の有機樹脂塗膜を持つ有機複合めっき鋼板の技術が開示されている。特許文献5には、3~59体積%の導電性材料を含む樹脂系皮膜を持つ有機被覆めっき鋼板の技術が提案されており、導電性材料としては、種々の金属やそれらの合金、リン化鉄やフェロシリコン等の鉄化合物、等が例示されている。特許文献6には、任意の導電性金属酸化物を含む0.5~3μm厚の塗膜を持つ導電性プレコート金属板の技術が開示されており、導電性金属酸化物として、粒径5.0μm以下、平均2μmの酸化亜鉛を樹脂100質量部に対し40~50質量部含むのが望ましいとされている。特許文献7には、金属表面で硬化後、導電性で溶接可能な耐食性皮膜を形成できる金属表面塗装剤として、特定の有機バインダー10~30質量%と導電性物質粉末30~60質量%を含む水系塗装剤が提案されており、本塗装剤の調製に好適な導電性物質粉末の例として、亜鉛、アルミニウム、グラファイト、カーボンブラック、硫化モリブデン、リン化鉄が挙げられている。特許文献8には、亜鉛系めっき鋼板やアルミニウム系めっき鋼板表面に、めっきとの密着性を強化する第一層皮膜を介し、防錆添加剤と導電性顔料を含む樹脂系第二層皮膜を被覆することによって、優れた耐食性と溶接性を両立させる自動車用有機被覆鋼板の技術が提案されており、導電性顔料は皮膜中に5~70体積%含まれ、膜厚は1~30μmである。好適な導電性顔料として、金属、合金、導電性炭素、リン化鉄、炭化物、半導体酸化物が例示されている。
 また、金属粒子以外の導電性粒子のうち、導電性セラミックス粒子を用いる技術としては、例えば、特許文献9に、コア金属を耐食性金属からなるクラッド層で被覆し、更にその上を、カーボン材料、導電性セラミックス、金属粉末から選ばれる少なくとも1つ以上の導電材とこれらを結着する任意の樹脂からなる表面処理層で被覆した、耐食性と導電性に優れた導電材被覆耐食性金属材料の技術が提案されている。
特開2000−212764号公報 特開昭55−17508号公報 特開2004−17455号公報 特開平9−276788号公報 特開平11−138095号公報 特開平7−313930号公報 特表2003−513141号公報 特開2005−288730号公報 特開2003−268567号公報
 [背景技術]の項で述べたように、塗装金属板(プレコート金属板)には、部品組み立て時の通電溶接性に対するニーズや、家電、OA機器部材に用いた場合のアース性等の高導電化ニーズが生まれており、このような傾向は、屋内家電や内装建材向けの安価な塗装金属板にも当てはまる。ところが、このような課題の解決を目論み、特許文献1や特許文献4のような技術を用いた場合、所望の耐食性や導電性を発現させるために、クロメート皮膜やクロム化合物含有防錆処理層を下地としなければならず、6価クロムの有害性や環境負荷性を避ける現在のニーズにマッチしない。
 特許文献2のように導電性粒子として亜鉛粉末を用いた場合や、特許文献4において、導電性粒子としてFe−Si合金、Fe−Co合金、Fe−Mn合金等の鉄系合金を用いた場合、また、特許文献7において亜鉛、アルミニウム粉末を用いた場合、それらを塗膜中に含むめっき鋼板を屋内外の通常の湿潤環境下で使用すると、亜鉛粉末や合金の表面に錆層や厚い酸化絶縁層が生じ、粉末と樹脂との界面が剥離したり、塗膜の導電性が失われていく難点があった。
 特許文献3でもニッケル粉の使用が推奨されている。ニッケルは比較的耐水劣化性に優れるため、それらを塗膜中に含む金属板を屋内外の通常の湿潤環境下で使用しても、塗膜の導電性はある程度保持される。ただし、ニッケル資源は海外への依存度が高く、生産国の情勢変化や寡占化等により、今後、長期にわたり安定、安価に入手できなくなるリスクがある。また、ニッケルは、比重が8.85で導電粒子としては比較的重質のため、ロールコーターやカーテンコーター等で塗料を金属板に塗布して量産する際、塗料中のニッケル粒子が速く沈降し、塗膜中に入りにくく、所望の導電性が得られない場合が多かった。更に、特許文献3では水系塗料の使用が推奨されているが、ニッケル粒子を含む水系塗料を用いた場合、数週間程度の保管で粒子の表層が酸化して青緑色の酸化ニッケル(II)(NiO)が生成して水中に遊離し、塗料を汚染する難点があった。
 また、特許文献7では水系の塗装用塗料を用いるため、導電性粒子として亜鉛、アルミニウムを用いた場合、特許文献3の場合と同様に、水系塗料や皮膜中に共存する水により金属粉表面に錆層が生じ、導電性が劣化する欠点があった。
 このように、従来の技術では、クロメート下地を併用せずに十分な導電性と耐食性とを両立させた塗装金属板を得るのが容易でない(特許文献1、4)、導電性粒子としてニッケル粒子を用いると、ニッケルの高比重に起因する沈降し易さや、不安定な価格等のため工業的に適用しにくい(特許文献3)、塗装金属板の耐食性を保持し、かつ着色顔料で所望の色合いに着色できるよう導電性粒子の添加量を抑えた塗装金属板を得ることができない(特許文献4~9)、また、水分により表面酸化膜が発生しやすい卑な金属の粒子を選んだ場合、鋼板の使用中に酸化絶縁層や錆層が生じ十分な導電性が得られない(特許文献2、4、7)、などの種々の課題があった。
 以上述べたように、塗装金属板には、導電性、より具体的には、部品組み立て時の通電溶接性や家電、OA機器部材に用いた場合のアース性と、耐食性や意匠性との両立が求められており、このような塗装金属板を提供するには、塗装用塗料中や塗装金属板の使用中にて安定で、かつ良好な分散性が保たれた導電性粒子の少量添加で、所望の導電性、耐食性、着色顔料による着色性を兼ね備える必要があった。
 本発明は、以上のような課題に鑑みてなされたものであり、電気抵抗率を非常に低い範囲に限定した少量の非酸化物セラミックス粒子を含む皮膜で表面の少なくとも一部が被覆された、クロメートフリー導電性、耐食性塗装金属板に関する。
 本発明者らは、前記のような目的を達成するため鋭意研究を行った結果、工業的に比較的安価に入手できる、電気抵抗率が0.1×10−6~185×10−6Ωcmのホウ化物、炭化物、窒化物、ケイ化物から選ばれる非酸化物セラミックスの粒子を有機樹脂に少量含む皮膜を金属表面に形成すれば、導電性、耐食性、共存する着色顔料による着色性の全てに優れる導電性、耐食性塗装金属板が得られることを見出した。
 本発明は、以上の知見をもとに完成されたものであって、具体的には、以下の通りである。
 (1)金属板の少なくとも片面に、有機樹脂(A)と、25℃の電気抵抗率が0.1×10−6~185×10−6Ωcmのホウ化物、炭化物、窒化物、ケイ化物から選ばれる非酸化物セラミックス粒子(B)とを含む塗膜(α)が形成されており、前記塗膜(α)中の有機樹脂(A)と非酸化物セラミックス粒子(B)の25℃での体積比が90:10~99.9:0.1であり、前記有機樹脂(A)が、カルボキシル基、スルホン酸基から選ばれる少なくとも1種の官能基を構造中に含む樹脂(A1)、または更に該樹脂(A1)の誘導体(A2)を含むことを特徴とする、導電性、耐食性塗装金属板。
 (2)前記非酸化物セラミックス粒子(B)の25℃の電気抵抗率が0.1×10−6~100×10−6Ωcmであることを特徴とする、前記(1)に記載の導電性、耐食性塗装金属板。
 (3)前記塗膜(α)の膜厚が2~10μmであることを特徴とする、前記(1)または(2)に記載の導電性、耐食性塗装金属板。
 (4)前記樹脂(A1)または該樹脂(A1)の誘導体(A2)が、更にエステル基、ウレタン基、ウレア基から選ばれる少なくとも1種の官能基を構造中に含むことを特徴とする、前記(1)または(2)に記載の導電性、耐食性塗装金属板。
 (5)前記樹脂(A1)が構造中にウレア基を含むポリウレタン樹脂(A1u)であることを特徴とする、前記(4)に記載の導電性、耐食性塗装金属板。
 (6)前記樹脂(A1)が構造中にウレア基を含むポリウレタン樹脂(A1u)とカルボン酸成分として芳香族ジカルボン酸を含み、構造中にスルホン酸基を含むポリエステル樹脂(A1e)の混合樹脂であることを特徴とする、前記(5)に記載の導電性、耐食性塗装金属板。
 (7)前記樹脂(A1)の誘導体(A2)が、下記一般式(I):
Figure JPOXMLDOC01-appb-I000002
 (式中、「A1」の表記は樹脂(A1)を示し、「Z−」は炭素原子数1~9、窒素原子数0~2、酸素原子数0~2の炭化水素鎖で、「A1~Z」の表記は、「A1」と「Z」が両者の官能基を介して共有結合していることを示す。また、「−O−」はエーテル結合であり、「−OH」は水酸基であり、「−X」は炭素原子数1~3の加水分解性アルコキシ基、加水分解性ハロゲノ基または加水分解性アセトキシ基であり、「−R」は炭素原子数1~3のアルキル基であり、置換基の数を示すa、b、c、dはいずれも0~3の整数で、かつa+b+c+d=3である。)
で表される樹脂(A2Si)であることを特徴とする、前記(1)または(2)に記載の導電性、耐食性塗装金属板。
 (8)前記有機樹脂(A)が硬化剤(C)で硬化された樹脂であることを特徴とする、前記(1)または(2)に記載の導電性、耐食性塗装金属板。
 (9)前記硬化剤(C)がメラミン樹脂(C1)を含有することを特徴とする、前記(8)に記載の導電性、耐食性塗装金属板。
 (10)前記非酸化物セラミックス粒子(B)が、ホウ化物セラミックスMoB、MoB、MoB、NbB、NbB、TaB、TaB、TiB、TiB、VB、VB、W、またはZrB、炭化物セラミックスBC、MoC、MoC、NbC、NbC、SiC、TaC、TaC、TiC、VC、VC、WC、WC、またはZrC、窒化物セラミックスMoN、NbN、NbN、TaN、TiN、またはZrN、ケイ化物セラミックスMoSi、MoSi、NbSi、TaSi、TaSi、TiSi、TiSi、VSi、VSi、WSi、WSi、ZrSi、またはZrSi、または、これらから選ばれる2種以上の混合物であることを特徴とする、前記(1)または(2)に記載の導電性、耐食性塗装金属板。
 (11)前記塗膜(α)が水系塗装用組成物の塗布により形成されていることを特徴とする、(1)または(2)に記載の導電性、耐食性塗装金属板。
 本発明によれば、塗膜に少量の導電性材料を添加するだけで、十分なアース性や溶接性を発現する塗膜導電性を与える塗装金属板を提供することができる。また、本発明に塗装金属板は、優れた耐食性も有している。さらに、本発明の塗膜を得るための水系や溶剤系等の塗装用組成物に予め着色顔料を添加することで、容易に所望の色合いに着色できる塗装金属板を提供することができる。
 図1は、本発明の導電性、耐食性塗装金属板の断面の模式図を表す。
 以下、本発明について詳細に説明する。
 <金属板>
 本発明の塗装金属板は、特定の導電性塗膜で表面の少なくとも一部が被覆された金属板で、用途に応じ、金属板の両面が塗膜で被覆されていても、片面のみが被覆されていてもよく、また、表面の一部が被覆されていても、全面が被覆されていてもよい。金属板の塗膜で被覆された部位の導電性、耐食性が優れるものである。
 本発明の塗装金属板に用いることができる金属板の構成金属としては、例えば、アルミニウム、チタン、亜鉛、銅、ニッケル、そして鋼等が適用可能である。これらの金属の成分は特に限定せず、例えば、鋼を使用する場合には、普通鋼であっても、クロム等の添加元素含有鋼であってもよい。ただし、本発明の金属板を強しごき加工や深絞り加工用途に用いる場合は、いずれの金属の場合も、強しごき加工や深絞り加工に適するように、添加元素の種類と添加量、および金属組織を適正に制御したものが好ましい。また、金属板として鋼板を使用する場合、その表面には被覆めっき層があってもよいが、その種類は特に限定されず、適用可能なめっき層としては、例えば、亜鉛、アルミニウム、コバルト、錫、ニッケルのうちのいずれか1種からなるめっき、および、これらの金属元素やさらに他の金属元素、非金属元素を含む合金めっき等が挙げられる。特に、亜鉛系めっき層としては、例えば、亜鉛からなるめっき、亜鉛と、アルミニウム、コバルト、錫、ニッケル、鉄、クロム、チタン、マグネシウム、マンガンの少なくとも1種との合金めっき、または、さらに他の金属元素、非金属元素を含む種々の亜鉛系合金めっき(例えば、亜鉛と、アルミニウム、マグネシウム、シリコンの4元合金めっき)が挙げられるが、亜鉛以外の合金成分を特に限定しない。さらには、これらのめっき層に少量の異種金属元素または不純物としてコバルト、モリブデン、タングステン、ニッケル、チタン、クロム、アルミニウム、マンガン、鉄、マグネシウム、鉛、ビスマス、アンチモン、錫、銅、カドミウム、ヒ素等を含有したもの、シリカ、アルミナ、チタニア等の無機物を分散させたものが含まれる。
 アルミニウム系めっき層としては、アルミニウム、またはアルミニウムとシリコン、亜鉛、マグネシウムの少なくとも1種との合金めっき(例えば、アルミニウムとシリコンの合金めっき、アルミニウムと亜鉛の合金めっき、アルミニウム、シリコン、マグネシウムの3元合金めっき)等が挙げられる。
 更に、前記めっきと他の種類のめっき、例えば鉄めっき、鉄とリンの合金めっき、ニッケルめっき、コバルトめっき等と組み合わせた複層めっきも適用可能である。
 めっき層の形成方法も特に限定せず、例えば、電気めっき、無電解めっき、溶融めっき、蒸着めっき、分散めっき等を用いることができる。めっき処理方法は、連続式、バッチ式のいずれでもよい。また、鋼板を使用する場合、めっき後の処理として、溶融めっき後の外観均一処理であるゼロスパングル処理、めっき層の改質処理である焼鈍処理、表面状態や材質調整のための調質圧延等があり得るが、本発明においては特にこれらを限定せず、いずれを適用することも可能である。
 <塗膜(α)>
 本発明の金属板を被覆する塗膜(α)は、金属板の少なくとも片面に形成され、有機樹脂(A)と、25℃の電気抵抗率が0.1×10−6~185×10−6Ωcmのホウ化物、炭化物、窒化物、ケイ化物から選ばれる非酸化物セラミックス粒子(B)とを含んでいる。
 前記塗膜は、塗装用組成物の塗布により工業的に製造できるものであれば、塗布溶剤の種類、および、金属板表面への製膜方法、硬化方法を限定しない。該塗装用組成物としては、水系樹脂組成物、有機溶剤系樹脂組成物が挙げられる。金属板への製膜方法としては、例えば、水系や溶剤系組成物の場合は、ロールコート、グルーブロールコート、カーテンフローコート、ローラーカーテンコート、浸漬(ディップ)、エアナイフ絞り等の公知の塗装方法で金属板上に塗装用組成物を塗布し、その後、ウェット塗膜の水分や溶剤を乾燥する方法が好ましい。これらの乾燥塗膜の硬化方法としては、塗膜中の有機樹脂の加熱焼付による重合、硬化が好ましいが、塗膜中の樹脂が紫外線で重合可能であれば、紫外線照射による重合、硬化、塗膜中の樹脂が電子線で重合可能であれば、電子線照射による重合、硬化によってもよい。
 前記塗膜(α)の金属板への密着性や耐食性等を更に改善する目的で、該塗膜と金属板表面の間にクロメートフリーの下地皮膜を設けてもよい。下地皮膜を設ける場合は、その層数、組成を限定しないが、金属板を加工する際の皮膜の加工追従性や耐食性を損なわないよう、金属板と上層皮膜への密着性に優れる必要がある。また、皮膜厚方向の十分な導電性を確保するため、下地皮膜厚を0.5μm以下とするのが好ましい。
 下地皮膜を設ける場合、工業的に適用できる製膜方法であれば、下地皮膜の製膜方法を限定しない。塗装用組成物の塗装、蒸着、フィルム貼付等の方法を例示できるが、製膜コスト(生産性)や汎用性等の観点から、水系または溶剤系の塗装用組成物の塗装、乾燥による方法が好ましい。水系または溶剤系の塗装用組成物を用いる場合、下地層から最表面層まで1層ずつ塗り重ねと乾燥を繰返すこと(逐次塗装法)により複層皮膜を形成してもよいが、簡便にかつ効率的に皮膜を金属板表面に形成する方法として、金属板表面に接する最下層から最表層までの各層の皮膜を、ウェット状態で、順次または同時に複層被覆する工程(塗装用組成物のウェット・オン・ウェット塗装または多層同時塗装工程)、ウェット状態の各層皮膜の水分や溶剤を同時に乾燥させる乾燥工程、前記複層皮膜を硬化する成膜工程をこの順序で含む積層方法で成膜してもよい。ここで、ウェット・オン・ウェット塗装法とは、金属板上に塗液を塗布後、この塗液が乾燥する前の含溶媒(ウェット)状態のうちに、その上に他の塗液を塗布し、得られる積層塗液の溶媒を同時に乾燥、硬化させ、製膜する方法である。また、多層同時塗装法とは、多層スライド式カーテンコーダーやスロットダイコーター等により、複数層の塗液を積層状態で同時に金属板上に塗布後、積層塗液の溶媒を同時に乾燥、硬化させ製膜する方法である。
 本発明の金属板を被覆する塗膜(α)は、後述する有機樹脂(A)と特定範囲の電気抵抗率を有する非酸化物セラミックス粒子(B)を含むが、塗膜(α)中の有機樹脂(A)と非酸化物セラミックス粒子(B)の25℃での体積比が90.0:10.0~99.9:0.1であり、95:5~99.9:0.1であるのが好ましく、塗膜の着色自由度や耐食性確保の観点から97:3~99.7:0.3であるのがより好ましい。更に、99:1~99.9:0.1の範囲が、より高い着色自由度や耐食性確保の観点から好ましい。
 本発明の導電性、耐食性塗装金属板において、塗膜(α)中に導電性の非酸化物セラミックス粒子(B)を添加する量は、非常に少量である。これは、従来技術の導電性塗膜中の導電性材料の量と比較して、非常に少量である。例えば、特許文献4、5では導電性塗膜中の導電性粒子の量は塗膜の3~59体積%とされている。特許文献7では、導電性で溶接可能な耐食性皮膜を形成できる金属表面塗装剤中に、導電性物質粉末30~60質量%を含むことが記載されている。特許文献8では導電性の第二層皮膜中の導電性粒子の量は皮膜の5~70体積%とされている。特許文献9では、導電性の表面処理層に導電材を、10~90体積%含むことが記載されている。本発明の塗膜(α)が、導電性の非酸化物セラミックス粒子(B)が有機樹脂(A)に対して10.0%以下でも良好な導電性が得られている理由は、塗膜(α)中で、非酸化物セラミックス粒子(B)が、凝集することなく、十分に分散されており、所望の径の導電性粒子が、塗膜の面方向(厚み方向をZ軸としたときに、X−Y軸方向)に均一に並んで、塗膜面全体にわたって、下にある金属板への電気導通路を形成するからであると考えられる。導電性粒子が塗膜内で凝集をおこしていると、この電気導通路が形成されにくく、導通路を確保するためには、さらに多くの導電材料を添加しなければならない。多量の導電性材料の添加は、結果として、塗膜外観が金属粒子の色(多くの場合、黒灰色、濃灰色、灰色、こげ茶色等)に支配され、着色顔料等の着色剤を加えても、所望の色合いや光沢を持つカラー塗膜を得ることができないという欠点を生じる。また、塗膜下の金属面が美しく透けて見えるクリア塗膜を得ることは、不可能であり、そのため、従来では、美麗なカラー塗膜あるいはクリア塗膜として塗装金属板の最表面層に用いることができなかった。本発明の導電性、耐食性塗装金属板では、このような問題は全く生じない。
 (A)と(B)との総量に対する(B)の体積比が10体積%を超えると、導電性は高まるが、塗膜外観が導電性粒子の色に支配され、着色顔料を加えても所望の色合いに着色できない恐れがあるので、10体積%以下である必要がある。また、10体積%を超えると、塗膜中に分散する導電性粒子の量が多くなるため、却って通電点が増えて腐食電流が流れやすくなり、耐食性が不十分になるおそれがある。なお、塗膜の5~10体積%の導電性粒子添加でも耐食性がやや不十分となることがあり、また、塗膜外観がその粒子自体の色に支配され、着色顔料を加えても所望の色合いに着色しにくい傾向もあるため、(B)の体積比は5体積%以下の添加が好ましい。更に、塗膜の3~5体積%の導電性粒子添加でも、粒子が濃色であれば塗膜外観がその粒子自体の色に支配されることがあり、着色顔料を加えても所望の色合いに着色しにくい傾向があるため、3体積%以下の添加がより好ましい。更に高い塗膜着色自由度や耐食性を確保するには、1体積%以下の少量添加が特に好ましい。
 一方、(A)と(B)との総量に対する(B)の体積比が0.1体積%未満の場合、塗膜中に分散する非酸化物セラミックス粒子の量が僅少で、塗膜に十分な導電性を付与できない。
 本発明の金属板を被覆する塗膜(α)の厚は、2~10μm厚の範囲が好ましく、2.5~6μm厚の範囲がより好ましい。2μm未満では、塗膜が薄すぎて、十分な耐食性が得られないだけでなく、着色顔料による着色性や隠蔽性が得られないことがある。また、10μmを超えると、使用する塗装用組成物の量が増えて製造コスト高になるばかりか、水系塗料ではワキ等の塗膜欠陥が発生することがあり、工業製品として必要な外観を安定して得ることが容易でない。
 前記塗膜(α)の厚は、塗膜の断面観察等により測定できる。その他に、金属板の単位面積に付着した塗膜の質量を、塗膜の比重、または塗装用組成物の乾燥後比重で除算して算出してもよい。塗膜の付着質量は、塗装前後の質量差、塗装後の塗膜の剥離前後の質量差、または、塗膜を蛍光X線分析して予め皮膜中の含有量が分かっている元素の存在量を測定する等、既存の手法から適切に選択すればよい。塗膜の比重または塗装用組成物の乾燥後比重は、単離した塗膜の容積と質量を測定する、適量の塗装用組成物を容器に取り乾燥させた後の容積と質量を測定する、または、塗膜構成成分の配合量と各成分の既知の比重から計算する等、既存の手法から適切に選択すればよい。
 <有機樹脂(A)>
 本発明の有機樹脂(A)は、塗膜(α)のバインダー成分であり、有機樹脂(A)が水系または有機溶剤系樹脂の場合、後述する樹脂(A1)、または更に樹脂(A1)の反応誘導体(A2)を包含したものからなる。
 本発明で塗膜(α)を形成するために用いる塗装用組成物(β)は、後述する樹脂(A1)を不揮発分の50~100質量%含む。樹脂(A1)は、水系塗装用組成物(β)中で安定に存在している。このような塗装用組成物(β)を金属板に塗布、加熱乾燥すると、樹脂(A1)が反応せずそのまま乾燥するか、あるいは、樹脂(A1)の少なくとも一部が、前記塗装用組成物(β)中にシランカップリング剤、硬化剤、架橋剤等を含む場合は、それらと反応して樹脂(A1)の誘導体(A2)を形成する。従って、この場合、未反応の樹脂(A1)と樹脂(A1)の反応誘導体(A2)を包含したものが、塗膜(α)のバインダー成分である有機樹脂(A)となる。
 前記樹脂(A1)の種類としては特に限定されず、例えば、ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、(メタ)アクリル樹脂、ポリオレフィン樹脂、フェノール樹脂、またはそれらの変性体等を挙げることができる。これらの1種または2種以上を混合して前記樹脂(A1)として用いてもよいし、少なくとも1種の有機樹脂を変性することによって得られる有機樹脂を1種または2種以上混合して前記樹脂(A1)として用いてもよい。このように、本発明にて樹脂(A1)の種類を特に限定しなくてよい理由は、塗膜(α)中の非酸化物セラミックス粒子(B)の存在量が少なく、金属板の使用環境にて塗膜中の非酸化物セラミックス粒子を介して流れる腐食電流も少ないため、塗膜を導電化しても塗膜のバインダー成分を特殊な耐食性樹脂とする必要がないからである。通常の使用環境下では塗膜(α)中に水分が存在するが、そのような場合でも高い導電能を保持する耐水劣化性の非酸化物セラミックス粒子を用いているため、塗膜中での存在量が少なくても、アース性や溶接性は確保できる。
 前記樹脂(A1)は、既に述べたように、水系塗装用組成物(β)中で安定に存在するものであれば、その種類に特に制限はないが、その構造中にカルボキシル基、スルホン酸基から選ばれる少なくとも1種の官能基を含む樹脂である。詳細については後述するが、塗膜(α)中の前記有機樹脂(A)は、カルボキシル基、スルホン酸基から選ばれる少なくとも1種の官能基を構造中に含む樹脂(A1)、または更に該樹脂の誘導体(A2)を含む。
 なお、本発明において塗膜(α)を得るための塗装用組成物(β)に用いられる樹脂は、水や有機溶剤に完全溶解する水溶性や溶剤溶解型の樹脂、および、エマルションやサスペンジョン等の形態で水や溶剤中に均一に微分散している樹脂(水分散性樹脂や溶剤分散性樹脂)を含める。またここで、「(メタ)アクリル樹脂」とはアクリル樹脂とメタクリル樹脂を意味する。
 前記樹脂(A1)のうち、ポリエステル樹脂としては、特に限定されず、例えば、エチレングリコール、1,3−プロパンジオール、1,2−プロパンジオール、プロピレングリコール、ジエチレングリコール、1,6−ヘキサンジオール、ネオペンチルグリコール、トリエチレングリコール、ビスフェノールヒドロキシプロピルエーテル、2−メチル−1,3−プロパンジオール、2,2−ジメチル−1,3−プロパンジオール、2−ブチル−2−エチル1,3−プロパンジオール、1,4−ブタンジオール、2−メチル−1,4−ブタンジオール、2−メチル−3−メチル−1,4−ブタンジオール、1,5−ペンタンジオール、3−メチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,2−シクロヘキサンジメタノール、水添ビスフェノール−A、ダイマージオール、トリメチロールエタン、トリメチロールプロパン、グリセリン、ペンタエリスリトール等のポリオールと、フタル酸、無水フタル酸、テトラヒドロフタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロフタル酸、ヘキサヒドロ無水フタル酸、メチルテトラフタル酸、メチルテトラヒドロ無水フタル酸、イソフタル酸、テレフタル酸、無水コハク酸、アジピン酸、セバシン酸、マレイン酸、無水マレイン酸、イタコン酸、フマル酸、無水ハイミック酸、トリメリット酸、無水トリメリット酸、ピロメリット酸、無水ピロメリット酸、アゼライン酸、コハク酸、無水コハク酸、乳酸、ドデセニルコハク酸、ドデセニル無水コハク酸、シクロヘキサン−1,4−ジカルボン酸、無水エンド酸等の多価カルボン酸とを脱水重縮合させたもの、更に、これらをアンモニアやアミン化合物等で中和し、水系樹脂としたもの等を挙げることができる。
 前記樹脂(A1)のうち、ポリウレタン樹脂としては、特に限定されず、例えば、ポリオール化合物とポリイソシアネート化合物とを反応させ、その後に更に鎖伸長剤によって鎖伸長して得られるもの等を挙げることができる。前記ポリオール化合物としては、1分子当たり2個以上の水酸基を含有する化合物であれば特に限定されず、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、1,6−ヘキサンジオール、ネオペンチルグリコール、トリエチレングリコール、グリセリン、トリメチロールエタン、トリメチロールプロパン、ポリカーボネートポリオール、ポリエステルポリオール、ビスフェノールヒドロキシプロピルエーテル等のポリエーテルポリオール、ポリエステルアミドポリオール、アクリルポリオール、ポリウレタンポリオール、またはそれらの混合物が挙げられる。前記ポリイソシアネート化合物としては、1分子当たり2個以上のイソシアネート基を含有する化合物であれば特に限定されず、例えば、ヘキサメチレンジイソシアネート(HDI)等の脂肪族イソシアネート、イソホロンジイソシアネート(IPDI)等の脂環族ジイソシアネート、トリレンジイソシアネート(TDI)等の芳香族ジイソシアネート、ジフェニルメタンジイソシアネート(MDI)等の芳香脂肪族ジイソシアネート、またはそれらの混合物が挙げられる。前記鎖伸長剤としては、分子内に1個以上の活性水素を含有する化合物であれば特に限定されず、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、ジプロピレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン等の脂肪族ポリアミンや、トリレンジアミン、キシリレンジアミン、ジアミノジフェニルメタン等の芳香族ポリアミンや、ジアミノシクロヘキシルメタン、ピペラジン、2,5−ジメチルピペラジン、イソホロンジアミン等の脂環式ポリアミンや、ヒドラジン、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、フタル酸ジヒドラジド等のヒドラジン類や、ヒドロキシエチルジエチレントリアミン、2−[(2−アミノエチル)アミノ]エタノール、3−アミノプロパンジオール等のアルカノールアミン等が挙げられる。これらの化合物は、単独で、または2種類以上の混合物で使用することができる。
 前記樹脂(A1)のうち、(メタ)アクリル樹脂としては、特に限定されず、例えば、エチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、n−ブチル(メタ)アクリレート等のアルキル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート、アルコキシシラン(メタ)アクリレート等の(メタ)アクリル酸エステルを、(メタ)アクリル酸と共に水中で重合開始剤を用いてラジカル重合することにより得られるものを挙げることができる。前記重合開始剤としては特に限定されず、例えば、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩、アゾビスシアノ吉草酸、アゾビスイソブチロニトリル等のアゾ化合物等を使用することができる。ここで、「(メタ)アクリレート」とはアクリレートとメタクリレートを意味し、「(メタ)アクリル酸」とはアクリル酸とメタクリル酸を意味する。
 前記樹脂(A1)のうち、エポキシ樹脂としては、特に限定されず、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、レゾルシン型エポキシ樹脂、水素添加ビスフェノールA型エポキシ樹脂、水素添加ビスフェノールF型エポキシ樹脂、レゾルシン型エポキシ樹脂、ノボラック型エポキシ樹脂等のエポキシ樹脂をジエタノールアミン、N−メチルエタノールアミン等のアミン化合物と反応させて得られる。更に、これらを有機酸または無機酸で中和、水系樹脂としたものや、前記エポキシ樹脂の存在下で、高酸価アクリル樹脂をラジカル重合した後、アンモニアやアミン化合物等で中和し水系化したもの等を挙げることができる。
 前記樹脂(A1)のうち、フェノール樹脂としては、特に限定されず、例えば、フェノール、レゾルシン、クレゾール、ビスフェノールA、パラキシリレンジメチルエーテル等の芳香族化合物とホルムアルデヒドとを反応触媒の存在下で付加反応させたメチロール化フェノール樹脂等のフェノール樹脂を、ジエタノールアミン、N−メチルエタノールアミン等のアミン化合物類と反応させて得られる。更に、有機酸または無機酸で中和し水系化したもの等を挙げることができる。
 前記樹脂(A1)のうち、ポリオレフィン樹脂としては、特に限定されず、例えば、エチレンとメタクリル酸、アクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸等の不飽和カルボン酸類とを高温高圧下でラジカル重合したものや、これらを更にアンモニアやアミン化合物、KOH、NaOH、LiOH等の塩基性金属化合物あるいは前記金属化合物を含有するアンモニアやアミン化合物等で中和し、水系化したもの等を挙げることができる。
 前記樹脂(A1)は、1種または2種以上を混合して用いてもよい。また、前記塗装用組成物(β)の主成分として、少なくとも1種の樹脂(A1)の存在下で、少なくとも1種のその他の樹脂(A1)を変性することによって得られる複合樹脂の1種または2種以上を総括して樹脂(A1)として用いてもよい。
 更に、必要に応じ、前記樹脂(A1)を含む塗装用組成物(β)を調合する際、以下に詳細に述べるが、前記樹脂(A1)の硬化剤や架橋剤を添加しても良いし、樹脂構造中に架橋剤を導入してもよい。前記架橋剤としては特に限定されず、例えば、アミノ樹脂、ポリイソシアネート化合物、ブロック化ポリイソシアネート、エポキシ化合物、カルボジイミド基含有化合物等からなる群から選択される少なくとも1種の架橋剤が挙げられる。これらの架橋剤を配合することで、塗膜(α)の架橋密度や金属表面への密着性を高めることができ、耐食性や、加工時の塗膜追従性が向上する。これらの架橋剤は単独で使用してもよいし、2種以上を併用してもよい。
 前記アミノ樹脂としては、特に限定されず、例えば、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、グリコールウリル樹脂等を挙げることができる。
 前記ポリイソシアネート化合物としては、特に限定されず、例えば、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、トリレンジイソシアネート等を挙げることができる。また、ブロック化ポリイソシアネートは、前記ポリイソシアネート化合物のブロック化物である。
 前記エポキシ化合物は、3員環の環状エーテル基であるエポキシ基(オキシラン環)を複数有する化合物であれば特に限定されず、例えば、アジピン酸ジグリシジルエステル、フタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル、ソルビタンポリグルシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、グリセリンポリグリシジルエーテル、トリメチルプロパンポリグリシジルエーテル、ネオペンチルグリコールポリグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、2,2−ビス−(4’−グリシジルオキシフェニル)プロパン、トリス(2,3−エポキシプロピル)イソシアヌレート、ビスフェノールAジグリシジルエーテル、水素添加ビスフェノールAジグリシジルエーテル等を挙げることができる。これらのエポキシ化合物の多くは、エポキシ基に1基の−CH−が付加したグリシジル基を持つため、化合物名の中に「グリシジル」という語を含む。
 前記カルボジイミド基含有化合物としては、例えば、芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネート等のジイソシアネート化合物の脱二酸化炭素を伴う縮合反応によりイソシアネート末端ポリカルボジイミドを合成した後、更にイソシアネート基との反応性を有する官能基を持つ親水系セグメントを付加した化合物等を挙げることができる。
 これらの架橋剤の量は、塗膜(α)を形成するための樹脂(A1)100質量部に対して1~40質量部が好ましい。1質量部未満の場合、量が不十分で添加効果が得られない可能性があり、40質量部を超える量では過剰硬化で塗膜が脆くなり、耐食性や加工密着性が低下する可能性がある。
 既に述べたように、本発明では塗膜(α)中の非酸化物セラミックス粒子(B)の存在量が少ないため、金属板の使用環境にて、塗膜中の非酸化物セラミックス粒子を介して流れる腐食電流が少なく、塗膜の導電化に伴い、塗膜構成樹脂を特定の高耐食性樹脂とする必要が特にない。しかしながら、塗膜の耐食性を高めて本発明の塗装金属板の適用範囲を広げるため、前記有機樹脂(A)は、前記樹脂(A1)と、または更にその誘導体で下記一般式(I)に示す樹脂(A2Si)を合計で前記有機樹脂(A)の50~100質量%含有するのが特に好ましい。
Figure JPOXMLDOC01-appb-I000003
 (式中、「A1」の表記は樹脂(A1)を示し、「Z−」は炭素原子数1~9、窒素原子数0~2、酸素原子数0~2の炭化水素鎖で、「A1~Z」の表記は、「A1」と「Z」が両者の官能基を介して共有結合していることを示す。また、「−O−」はエーテル結合であり、「−OH」は水酸基であり、「−X」は炭素原子数1~3の加水分解性アルコキシ基、加水分解性ハロゲノ基または加水分解性アセトキシ基であり、「−R」は炭素原子数1~3のアルキル基であり、置換基の数を示すa、b、c、dはいずれも0~3の整数で、かつa+b+c+d=3である。)
 既に述べたように、本発明の塗膜(α)の形成に用いる塗装用組成物(β)は、樹脂(A1)を不揮発分の50~100質量%含む。前記塗装用組成物(β)に含まれる樹脂(A1)以外の不揮発成分は、後に詳述するような、シランカップリング剤(s)、硬化剤(C)、架橋剤や、ポリフェノール化合物、リン酸およびヘキサフルオロ金属酸、リン酸塩化合物、金属酸化物微粒子等の種々の防錆剤等である。製膜後の塗膜(α)におけるこれらの化合物の含有量には、後述するように、前記樹脂(A1)と(A2Si)の合計質量に対し好ましい範囲があるため、これらの化合物を含む塗装用組成物(β)を調合する際、製膜後の塗膜(α)中でこれらが好ましい含有量範囲に収まるように配合量を調節する。
 本発明にて有機樹脂(A)に含まれる樹脂(A2Si)は、例えば、樹脂(A1)とシランカップリング剤(s)を含む塗装用組成物(β)を、本発明で用いる金属板に塗布、乾燥することにより得られる。一般に、シランカップリング剤は、水酸基などの官能基を持つ金属表面や、多くの官能性有機樹脂に化学結合できるため、金属表面、官能性有機樹脂、シランカップリング剤の共存下で、金属表面と官能性有機樹脂の架橋や、官能性有機樹脂どうしの分子間あるいは分子内架橋が可能である。本発明においては、前記樹脂(A1)とシランカップリング剤(s)を含む塗装用組成物(β)を金属板に塗布、乾燥することにより、前記樹脂(A1)の官能基の少なくとも一部と、金属表面の官能基の少なくとも一部がそれぞれシランカップリング剤(s)と反応し、樹脂(A2Si)が生成する。前記一般式(I)に示す樹脂(A2Si)の−O−(エーテル結合)または−OH(水酸基)の少なくとも一部は、金属表面と結合している。前記塗膜(α)と金属板表面の間に下地皮膜を設ける場合は、前記一般式(I)に示す樹脂(A2Si)の−O−(エーテル結合)または−OH(水酸基)の少なくとも一部が、下地皮膜面と結合している。前記エーテル結合と金属表面との結合、および、前記エーテル結合と下地皮膜構成成分との結合は共有結合であり、前記水酸基と金属表面との結合、および、前記水酸基と下地皮膜構成成分との結合は、多くの場合、水素結合または配位結合である。このような、皮膜構成樹脂と金属表面との化学結合、あるいは、上層皮膜構成樹脂と下地皮膜との化学結合により、両者の密着性が高まり、金属板の加工変形時に皮膜が優れた加工追従性を示すため、加工部の外観を損なわず、かつ、加工部の耐食性が向上する。
 前記シランカップリング剤(s)を含む塗装用組成物(β)の塗布、乾燥で得られる塗膜(α)と金属板表面の間に、更に下地皮膜を設ける場合、既に述べたように、下地層から最表層まで1層ずつ塗り重ねと乾燥を繰返す逐次塗装法により複層皮膜を形成してもよいが、簡便にかつ効率的に皮膜を金属板表面に形成する方法として、前記のウェット・オン・ウェット塗装法や多層同時塗装法を用いることもできる。これらの方法では、最下層から最表層までの積層状態を含水または含溶剤(ウェット)状態で金属板上に一旦形成するが、そのような状態では、最表層に含まれるシランカップリング剤(s)の移動度が高いため、シランカップリング剤(s)の少なくとも一部が、その直下の下地層に含まれる官能性化合物とも効率的に反応する。これらの化学結合(層間架橋の促進)により、最表層と下地層の密着性が逐次塗装法の場合より高まる傾向があり、金属板の加工変形時の皮膜追従性や、加工部の耐食性が逐次塗装法で製膜した場合より向上することがある。
 本発明にて、樹脂(A2Si)を形成するために用いるシランカップリング剤(s)は、一般式Y−Z−SiX3−mで示される分子構造を持つシランカップリング剤から選ばれる1種または2種以上である。前記分子構造中の各官能基のうち、主として金属表面や他のシランカップリング剤との反応点となる−X基は、炭素原子数1~3の加水分解性アルコキシ基、または、加水分解性ハロゲノ基(フルオロ基(−F)、クロロ基(−Cl)、ブロモ基(−Br)など)、または、加水分解性アセトキシ基(−O−CO−CH)である。これらのうち、炭素原子数1~3の加水分解性アルコキシ基が、アルコキシ基の炭素原子数を変えることにより加水分解性を調整しやすいため好ましく、メトキシ基(−OCH)またはエトキシ基(−OCHCH)が特に好ましい。−X基が前記以外の官能基のシランカップリング剤は、−X基の加水分解性が低いか、または加水分解性が高すぎるため、本発明では望ましくない。なお、塗装用組成物(β)が水系でない場合、シランカップリング剤の加水分解性の官能基を分解させるため、塗装用組成物(β)に予め少量の水、更に加水分解用触媒を加える場合がある。
 前記分子構造中の−R基は、炭素原子数1~3のアルキル基である。−R基がメチル基またはエチル基の場合、嵩高いn−プロピル基やイソプロピル基に比べ、組成物中で前記−X基への水分子の接近を妨げず、−X基が比較的容易に加水分解するため好ましく、中でもメチル基が特に好ましい。−R基が前記以外の官能基であるシランカップリング剤は、−X基の加水分解性が極端に低いか、または反応性が高すぎるため、本発明では望ましくない。
 前記分子構造にて、置換基の数を示すmは1~3の整数である。加水分解性の−X基が多いほど金属表面との反応点が多いため、置換基の数を示すmは、2または3が好ましい。
 前記シランカップリング剤(s)の分子構造中の−Z−は、炭素原子数1~9、窒素原子数0~2、酸素原子数0~2の炭化水素鎖である。これらのうち、炭素原子数2~5、窒素原子数0または1、酸素原子数0または1の炭化水素鎖が、シランカップリング剤の水や溶剤への分散性と反応性のバランスが良いため、好ましい。−Z−の炭素原子数が10以上、窒素原子数が3以上、または酸素原子数が3以上の場合、シランカップリング剤の水や溶剤への分散性と反応性のバランスが不良のため、本発明では望ましくない。
 シランカップリング剤(s)の前記分子構造Y−Z−SiX3−mにて、樹脂(A1)や他の共存樹脂の官能基との反応点となる−Y基は、樹脂(A1)や他の共存樹脂と反応するものであれば特に制限がないが、反応性の高さから、エポキシ基、アミノ基、メルカプト基、またはメチリデン基(HC=)が好ましく、エポキシ基またはアミノ基が特に好ましい。
 本発明の被覆塗膜形成時に、前記分子構造Y−Z−SiX3−mで示されるシランカップリング剤(s)分子の−SiX基が金属表面等と、また、−Y基が樹脂(A1)等と反応すると、前記一般式(I)に示す樹脂(A2Si)となる。即ち、前記シランカップリング剤(s)分子末端の−Si−Xの少なくとも一部が加水分解して−Si−OH(シラノール基)を生成し、その少なくとも一部が金属表面や他のシランカップリング剤(s)分子の水酸基と脱水縮合し、エーテル結合を介した共有結合−Si−O−Me(Meは金属原子)や−Si−O−Si*−(Si*は他のシランカップリング剤分子由来のSi原子)を生成する。一方、前記シランカップリング剤(s)分子の他端にある−Y基が樹脂(A1)の官能基と反応し、A1~Zの結合を生成し、その結果、下記一般式(I)に示す構造を持つ樹脂(A2Si)となる。これらの反応が終わり、樹脂(A2Si)が生成した後に(ASi)中のSi原子に結合している−O−、−OH、−X、−R基数をそれぞれa、b、c、dとすると、a+b+c=m、また、前記シランカップリング剤(s)の−R基は前記反応に関与せず樹脂(A2)に残るため、−R基数d=3−m=3−(a+b+c)、a+b+c+d=3である。なお、一般式(I)の「A1~Z」の表記は、A1とZが両者の官能基を介して共有結合していることを示す。
 前記シランカップリング剤(s)の具体例としては、前記一般式Y−Z−SiX3−m(−X基は炭素原子数1~3の加水分解性アルコキシ基、加水分解性ハロゲノ基、または加水分解性アセトキシ基、−R基は炭素原子数1~3のアルキル基、置換基の数を示すmは1~3の整数、−Z−は炭素原子数1~9、窒素原子数0~2、酸素原子数0~2の炭化水素鎖、−Y基は樹脂(A1)と反応する官能基)に示す分子構造を持つものとして、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、N−フェニルー3−アミノプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン等を挙げることができる。
 本発明にて、有機樹脂(A)を含む塗膜(α)を金属表面に形成する時、用いる塗装用組成物(β)は、樹脂(A1)100質量部に対し、シランカップリング剤(s)を1~100質量部含有するのが好ましい。1質量部未満ではシランカップリング剤(s)の量が少なく、シランカップリング剤による架橋構造があまり発達しないため、十分に繊密な塗膜が得られず耐食性が不十分になる可能性や、金属表面等との加工密着性が不十分になる可能性がある。一方、100質量部を超えると、密着性向上効果が飽和し、高価なシランカップリング剤を必要以上に用いるため不経済なだけでなく、塗装用組成物の安定性を低下させることがある。
 本発明における有機樹脂(A)は、前記樹脂(A1)、または更に前記樹脂(A2Si)を合計で樹脂(A)の50~100質量%含有するのが好ましく、樹脂(A1)と樹脂(A2Si)の合計で有機樹脂(A)の75~100質量%含有するのがより好ましい。樹脂(A1)と樹脂(A2Si)の合計が有機樹脂(A)の50質量%未満の場合、塗膜の繊密性や金属表面との密着性が不足する可能性があり、所望の耐食性や塗膜密着性、加工時の塗膜追従性が得られない可能性がある。
 本発明にて、樹脂(A1)と樹脂(A2Si)を含む塗膜(α)は、前記樹脂(A1)と(A2Si)の合計100質量部に対し、前記樹脂(A2Si)中の−C−Si−O−結合を形成するSi原子を0.1~30質量部含むのが好ましい。0.1質量部未満では、塗膜の繊密性、金属表面等との密着性、金属板を加工する時の塗膜加工追従性を左右する−C−Si−O−結合の量が少なく、十分な耐食性や密着性が得られない可能性がある。また、30質量部を超えると、金属表面等との密着性向上効果が飽和し、塗膜形成のために高価なシランカップリング剤を必要以上に用いるため、不経済であったり、塗装用組成物の安定性を低下させることがある。なお、前記−C−Si−O−結合を形成するSi原子の同定や定量は、金属板上の塗膜のFT−IRスペクトルや、29Si−NMR等の分析方法を利用して行うことができる。
 既に述べたように、前記樹脂(A1)は、本発明の塗膜(α)の形成に用いる塗装用組成物(β)の1成分としてその不揮発分の50~100質量%含まれ、かつ、金属板への塗布により塗膜(α)形成後は、塗膜中の有機樹脂(A)は、前記樹脂(A1)、または更にその反応誘導体(A2)からなる。前記樹脂(A1)は、既に述べたように、塗装用組成物(β)中で安定に存在するものであれば、その種類や構造に特に制限はないが、その構造中にカルボキシル基、スルホン酸基から選ばれる少なくとも1種の官能基を含む樹脂である。即ち、塗膜(α)中の前記有機樹脂(A)は、カルボキシル基、スルホン酸基から選ばれる少なくとも1種の官能基を構造中に含む樹脂(A1)、または更に該樹脂の誘導体(A2)を含む。
 前記樹脂(A1)が、その構造中にカルボキシル基、スルホン酸基から選ばれる少なくとも1種の官能基を含む樹脂である理由について、以下に述べる。
 塗装用組成物(β)には、製膜後の有機樹脂(A)の少なくとも一部を構成する樹脂(A1)が含まれている。塗装用組成物(β)が水系の場合、塗装用組成物(β)の保管中や塗装直後の水の多い環境下で、炭化水素鎖を主体とする樹脂(A1)の低極性構造中に存在する、高極性で極めて高い親水性を示すカルボキシル基またはスルホン酸基部分が水中に伸び、周辺の水と水和し、その結果、樹脂(A1)は塗装用組成物(β)中で分散安定化し易い。また、これらのカルボキシル基またはスルホン酸基は、塗装用組成物中に共存する極性の非酸化物セラミックス粒子(B)の表面に吸着し、非酸化物セラミックス粒子(B)同士の凝集を防ぎ、分散性を保つ効果がある。
 一般に、水系塗料は、有機溶剤系塗料と異なり、塗料の保管中や塗装直後は多量の水を含んでいて高極性だが、塗膜形成過程で水が蒸発すると、塗料中の雰囲気が高極性から低極性へ大きく変化する。本発明の場合、前記樹脂(A1)の構造中にカルボキシル基またはスルホン酸基があるため、塗膜形成過程で水が蒸発し極性が急激に低下すると、カルボキシル基またはスルホン酸基の少なくとも一部は水和水や金属表面から脱着してコイル状に縮む。その一方で、樹脂(A1)の低極性の樹脂鎖部分が伸び、立体障害層を形成し、非酸化物セラミックス粒子(B)同士の凝集を防ぐ役割を果たす。
 このように、炭化水素鎖を主体とする樹脂(A1)の低極性構造中に、高極性で極めて高い親水性を示すカルボキシル基またはスルホン酸基があれば、水系塗料の保管中や塗膜形成時の塗料(塗膜)中の極性変化に応じてその極性にマッチした基や鎖が伸び、非酸化物セラミックス粒子の分散性を保ち易くなる。
 一方、塗装用組成物(β)が有機溶剤系の場合、炭化水素鎖を主体とする樹脂(A1)の低極性構造中に、高極性で極めて高い親水性を示すカルボキシル基またはスルホン酸基があれば、これらが塗装用組成物中に共存する極性の非酸化物セラミックス粒子(B)の表面に吸着し、かつ、有機溶剤中では樹脂(A1)の低極性の樹脂鎖部分が伸びて樹脂構造中のカルボキシル基またはスルホン酸基同士を互いに遠ざけるため、塗装用組成物中や塗膜形成過程で、非酸化物セラミックス粒子(B)同士の凝集を防ぎ、分散性を保つ効果がある。
 樹脂(A1)、有機樹脂(A)がカルボキシル基やスルホン酸基を含むその他のメリットとしては、これらの官能基を含むことで、基材である金属板(下地処理がある場合は下地処理層)との密着性が向上し、塗膜(α)の耐食性、加工性(金属板加工時の加工部の塗膜密着性、耐亀裂性、耐色落ち性等)、耐傷付き性が向上することが挙げられる。
 前記カルボキシル基やスルホン酸基を含む樹脂が、構造中にスルホン酸基を含むポリエステル樹脂の場合、樹脂の合成原料として用いるポリオール、多価カルボン酸、スルホン酸基含有化合物に制限はなく、ポリオールと多価カルボン酸としては、既に例示したものを使用できる。また、スルホン酸基含有化合物としては、例えば、5−スルホイソフタル酸、4−スルホナフタレン−2、7−ジカルボン酸、5(4−スルホフェノキシ)イソフタル酸等のスルホン酸基を含有するジカルボン酸類、または2−スルホ−1,4−ブタンジオール、2,5−ジメチル−3−スルホ−2,5−ヘキシルジオール等のグリコール類等を使用できる。
 前記スルホン酸基は−SOHで表される官能基を指し、それがアルカリ金属類、アンモニアを含むアミン類等で中和されたものであっても構わない(例えば、5−スルホナトリウムイソフタル酸、5−スルホナトリウムイソフタル酸ジメチル等)。中和する場合は、すでに中和されたスルホン酸基を樹脂中に組み込んでもよいし、スルホン酸基を樹脂中に組み込んだ後に中和してもよい。塗装用組成物(β)が水系の場合、樹脂を水中に均一微細分散させるため、中和されていないスルホン酸基の基数に比べ、アルカリ金属類、アンモニアを含むアミン類等で中和されたスルホン酸塩基の基数が多い方が好ましい。何故なら、アルカリ金属類、アンモニアを含むアミン類等で中和されたスルホン酸塩基は、水中で容易に電離し水和するため、これらの基を構造中に多く含む樹脂は水中に均一微細分散しやすいからである。これらの中で、Li、Na、Kなどのアルカリ金属類で中和されたスルホン酸金属塩基が、水系塗装用組成物(β)の保管中や、塗装直後の水の多い環境下で非酸化物セラミックス粒子(B)の凝集を抑止したり、塗膜(α)と基材との密着性を高める上で特に好ましく、スルホン酸Na塩基が最も好ましい。
 前記スルホン酸基を含有するジカルボン酸またはグリコールの使用量は、全多価カルボン酸成分または全ポリオール成分に対し、0.1~10モル%含有することが好ましい。0.1モル%未満であると、水系塗装用組成物(β)の保管中や、塗装直後の水の多い環境下にて、カルボキシル基やスルホン酸基を含む樹脂を分散安定化するためのスルホン酸基部分が少なく、十分な樹脂分散性が得られない可能性がある。また、塗装用組成物中に共存する非酸化物セラミックス粒子(B)に吸着するスルホン酸基の量が少ないため、非酸化物セラミックス粒子どうしの凝集を防ぐ効果が不足する場合がある。また、基材である金属板(下地処理がある場合は下地処理層)に作用するスルホン酸基の量が少ないため、密着性や耐食性の向上効果が得られない場合がある。10モル%超であると、スルホン酸基により塗膜が保持する水分量が増え、耐食性が低下する場合がある。性能のバランスを考慮すると、0.5~5モル%の範囲にあるのがより好ましい。
 前記カルボキシル基やスルホン酸基を含む樹脂が、構造中にカルボキシル基を含むポリエステル樹脂の場合、ポリエステル樹脂に前記カルボキシル基を導入する場合の方法としては特に制限はないが、例えば、ポリエステル樹脂を重合した後に、常圧、窒素雰囲気下、無水トリメリット酸、無水フタル酸、無水ピロメリット酸、無水コハク酸、無水1,8−ナフタル酸、無水1,2−シクロヘキサンジカルボン酸、シクロヘキサン−1,2,3,4−テトラカルボン酸−3,4−無水物、エチレングリコールビスアンヒドロトリメリテート、5−(2,5−ジオキソテトラヒドロ−3−フラニル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、ナフタレン−1,4,5,8−テトラカルボン酸ニ無水物などから1種または2種以上を選択し、後付加する方法やポリエステルを高分子量化する前のオリゴマー状態のものにこれらの酸無水物を投入し、次いで減圧下の重縮合により高分子量化する方法等が挙げられる。
 前記カルボキシル基は−COOHで表される官能基を指し、それがアルカリ金属類、アンモニアを含むアミン類等で中和されたものであっても構わない。中和する場合は、すでに中和されたカルボキシル基を樹脂中に組み込んでもよいし、カルボキシル基を樹脂中に組み込んだ後に中和してもよい。塗装用組成物(β)が水系の場合、樹脂を水中に均一微細分散させるため、中和されていないカルボキシル酸基の基数に比べ、アルカリ金属類、アンモニアを含むアミン類等で中和されたカルボン酸塩基の基数が多い方が好ましい。何故なら、アルカリ金属類、アンモニアを含むアミン類等で中和されたカルボン酸塩基は、水中で容易に電離し水和するため、これらの基を構造中に多く含む樹脂は水中に均一微細分散しやすいからである。
 前記カルボキシル基の導入量としては特に制限はないが、酸価で0.1~50mgKOH/gの範囲にあることが好ましい。0.1mgKOH/g未満であると、水系塗装用組成物(β)の保管中や、塗装直後の水の多い環境下にて、カルボキシル基やスルホン酸基を含む樹脂を分散安定化するためのカルボキシル基部分が少なく、十分な樹脂分散性が得られない可能性がある。また、塗装用組成物中に共存する非酸化物セラミックス粒子(B)に吸着するカルボキシル基の量が少ないため、非酸化物セラミックス粒子同士の凝集を防ぐ効果が不足する場合がある。また、基材である金属板(下地処理がある場合は下地処理層)に作用するカルボキシル基の量が少ないため、密着性や耐食性の向上効果が得られない場合がある。50mgKOH/g超であると、カルボキシル基により塗膜が保持する水分量が増え、耐食性が低下する場合がある。性能のバランスを考慮すると、0.5~25mgKOH/gの範囲にあるのがより好ましい。
 また、前記有機樹脂(A)は、エステル基、ウレタン基、ウレア基から選ばれる少なくとも1種の官能基を構造中に含むのが、塗膜(α)の加工性、耐傷付き性、耐食性のすべてを高める上で好ましい。このような塗膜(α)は、塗膜(α)中の前記カルボキシル基やスルホン酸基を含む樹脂が、エステル基、ウレタン基、ウレア基から選ばれる少なくとも1種の官能基を構造中に含むことで、または該樹脂が塗装用組成物(β)中に共存する硬化剤や架橋剤等と反応してエステル基、ウレタン基、ウレア基を有する誘導体となることで得ることができる。
 加工性、耐傷付き性、耐食性のすべてを高めるためには、伸びと強度の両方に優れ、且つ基材である金属板(下地処理がある場合は下地処理層)との密着性に優れる樹脂設計が重要であるが、構造中に比較的高い凝集エネルギーを持つ官能基を導入することで、優れた加工性と耐傷付き性をもたらす伸びと強度、かつ、優れた耐食性をもたらす密着性や腐食因子遮蔽性(塗膜の緻密性)にも優れる樹脂設計ができる。中でも、加工性と耐食性を重視する場合は適度な凝集エネルギーを持つエステル基を構造中に含有する樹脂が好適であり、耐傷付き性と耐食性を重視する場合は高い凝集エネルギーを持つウレタン基やウレア基を構造中に含有する樹脂が好適である。加工性と耐傷付き性と耐食性をすべて高めるためには、エステル基とウレタン基の両方を含有する樹脂、もしくは、エステル基とウレタン基とウレア基とを含有する樹脂がより好適である。構造中にエステル基、ウレタン基、ウレア基から選ばれる少なくとも1種の官能基を含む樹脂としては、特に限定されないが、例えば、エステル基を含有するポリエステル樹脂、ウレタン基を含有するポリウレタン樹脂、ウレタン基とウレア基の両方を含有するポリウレタン樹脂等が挙げられる。これらは1種または2種以上混合して用いてもよい。例えば、エステル基を含有するポリエステル樹脂とウレタン基とウレア基の両方を含有するポリウレタン樹脂を混合して使用してもよい。
 前記有機樹脂(A)が、エステル基、ウレタン基、ウレア基から選ばれる少なくとも1種の官能基を構造中に含む場合、構造中にエステル基、ウレタン基、ウレア基から選ばれる少なくとも1種の官能基を含む樹脂の含有量は、前記カルボキシル基やスルホン酸基を含む樹脂の60~100質量%が好ましく、80~100質量%がより好ましい。60質量%未満であると、加工性と耐傷付き性、耐食性を両立できない可能性がある。
 前記有機樹脂(A)は、硬化剤(C)で硬化された樹脂であることが好ましい。前記硬化剤(C)は、前記有機樹脂(A)を硬化させるものであれば特に制限はないが、前記樹脂(A1)の架橋剤として既に例示したものの中で、アミノ樹脂の1つであるメラミン樹脂やポリイソシアネート化合物から選択される少なくとも1種の架橋剤を前記硬化剤(C)として用いるのがよい。
 メラミン樹脂は、メラミンとホルムアルデヒドとを縮合して得られる生成物のメチロール基の一部またはすべてをメタノール、エタノール、ブタノールなどの低級アルコールでエーテル化した樹脂である。ポリイソシアネート化合物としては特に限定されず、例えば、前記樹脂(A1)の架橋剤として既に例示したヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、トリレンジイソシアネート等を挙げることができる。また、そのブロック化物は、前記ポリイソシアネート化合物のブロック化物であるヘキサメチレンジイソシアネートのブロック化物、イソホロンジイソシアネートのブロック化物、キシリレンジイソシアネートのブロック化物、トリレンジイソシアネートのブロック化物等を挙げることができる。これらの硬化剤は1種で使用してもよいし、2種以上を併用してもよい。
 前記硬化剤(C)の含有量は、前記有機樹脂(A)の5~35質量%であることが好ましい。5質量%未満であると、焼付硬化が不十分で、耐食性、耐傷付き性が低下する場合があり、35質量%超であると、焼付硬化が過剰になり、耐食性、加工性が低下する場合がある。
 塗膜(α)の耐傷付き性の観点から、前記硬化剤(C)にはメラミン樹脂(C1)を含有することが好ましい。メラミン樹脂(C1)の含有量は、前記硬化剤(C)の30~100質量%であることが好ましい。30質量%未満であると、得られた塗膜(α)の耐傷付き性が低下する場合がある。
 <非酸化物セラミックス粒子(B)>
 本発明の塗膜に含まれる非酸化物セラミックス粒子(B)は、25℃の電気抵抗率(体積抵抗率、比抵抗)が0.1×10−6~185×10−6Ωcmの範囲にあるホウ化物セラミックス、炭化物セラミックス、窒化物セラミックス、またはケイ化物セラミックスでなければならない。ここでいう非酸化物セラミックスとは、酸素を含まない元素や化合物からなるセラミックスのことである。また、ここでいうホウ化物セラミックス、炭化物セラミックス、窒化物セラミックス、ケイ化物セラミックスとは、それぞれ、ホウ素B、炭素C、窒素N、ケイ素Siを主要な非金属構成元素とする非酸化物セラミックスのことである。これらのうち、25℃の電気抵抗率が0.1×10−6Ωcm未満のものは見当たらない。また、25℃の電気抵抗率(体積抵抗率、比抵抗)が185×10−6Ωcmを超える場合、樹脂塗膜に十分な導電性を付与するために多量添加が必要となり、本発明の塗装金属板の使用中に、塗膜を貫通する腐食電流の導通路が沢山形成され、耐食性が劣悪になるため不適である。また、多量添加では塗膜外観が多量の導電性粒子の色に支配され、着色顔料を加えても所望の色合いに着色できない。
 本発明の塗膜に含まれる非酸化物セラミックス粒子(B)は、25℃の電気抵抗率が0.1×10−6~100×10−6Ωcmの範囲にあるホウ化物セラミックス、炭化物セラミックス、窒化物セラミックス、またはケイ化物セラミックスが好ましい。これらの粒子は、25℃の電気抵抗率が100×10−6Ωcmを超え185×10−6Ωcmまでの範囲にある粒子より高い導電性を有するため、樹脂塗膜に十分な導電性を付与するための添加量がより少ない量でよく、その結果、塗装金属板の耐食性や塗膜外観への悪影響がより少なくなる。なお、参考までに、純金属の電気抵抗率は1.6×10−6Ωcm(Ag単体)~185×10−6Ωcm(Mn単体)の範囲にあり、本発明で導電性粒子として用いる非酸化物セラミックス(電気抵抗率0.1×10−6~185×10−6Ωcm)は、純金属と同程度の優れた導電性を持つことがわかる。
 本発明にて用いることができる非酸化物セラミックスとしては、以下を例示できる。即ち、ホウ化物セラミックスとしては、周期律表のIV族(Ti、Zr、Hf)、V族(V、Nb、Ta)、VI族(Cr、Mo、W)の各遷移金属または希土類元素のホウ化物、炭化物セラミックスとしては、IV族、V族、VI族の各遷移金属、希土類元素、BまたはSiの炭化物、窒化物セラミックスとしては、IV族、V族、VI族の各遷移金属または希土類元素の窒化物、ケイ化物セラミックスとしては、IV族、V族、VI族の各遷移金属または希土類元素のケイ化物、または、これらホウ化物、炭化物、窒化物、ケイ化物から選ばれる2種以上の混合物、または、これらのセラミックスを金属の結合材と混合して焼結したサーメット等を例示できる。
 塗膜(α)を、水系塗料から作成する場合は、サーメットの一部を構成する金属の標準電極電位は−0.3V以上で耐水劣化性であることが好ましい。サーメットの一部を構成する金属の標準電極電位が−0.3V未満の場合、このサーメット粉末を塗膜に持つ塗装金属板が長期間湿潤環境下で用いられると、粉末の表面に錆層や厚い酸化絶縁層が生じ、粉末と樹脂との界面が剥離したり、塗膜の導電性が失われる恐れがあるからである。このような耐水劣化性のサーメット粉末の例としては、WC−12Co、WC−12Ni、TiC−20TiN−15WC−10MoC−5Ni等が挙げられる。Co、Niの標準電極電位はそれぞれ−0.28V、−0.25Vでいずれも−0.3Vより貴であり、いずれの金属も耐水劣化性である。
 前記の非酸化物セラミックスのうち、Cr系セラミックスは環境負荷への懸念から、また、希土類元素系、Hf系セラミックスの多くは高価格であったり、市場に流通していないため、本発明においては、上記の群からこれらを除いたTi、Zr、V、Nb、Ta、MoまたはWのホウ化物、炭化物、窒化物またはケイ化物、または、BまたはSiの炭化物、または、これらから選ばれる2種以上の混合物を用いるのが好ましい。
 更に、工業製品の有無や国内外市場での安定流通性、価格、電気抵抗率等の観点から、以下の非酸化物セラミックスがより好ましい。即ち、MoB(電気抵抗率40×10−6Ωcm)、MoB(同35×10−6Ωcm)、MoB(同45×10−6Ωcm)、NbB(同6.5×10−6Ωcm)、NbB(同10×10−6Ωcm)、TaB(同100×10−6Ωcm)、TaB(同100×10−6Ωcm)、TiB(同40×10−6Ωcm)、TiB(同28×10−6Ωcm)、VB(同35×10−6Ωcm)、VB(同150×10−6Ωcm)、W(同80×10−6Ωcm)、ZrB(同60×10−6Ωcm)、BC(同0.3×10−6Ωcm)、MoC(同97×10−6Ωcm)、MoC(同100×10−6Ωcm)、NbC(同144×10−6Ωcm)、NbC(同74×10−6Ωcm)、SiC(同107×10−6Ωcm)、TaC(同49×10−6Ωcm)、TaC(同30×10−6Ωcm)、TiC(同180×10−6Ωcm)、VC(同140×10−6Ωcm)、VC(同150×10−6Ωcm)、WC(同80×10−6Ωcm)、WC(同80×10−6Ωcm)、ZrC(同70×10−6Ωcm)、MoN(同20×10−6Ωcm)、NbN(同142×10−6Ωcm)、NbN(同54×10−6Ωcm)、TaN(同135×10−6Ωcm)、TiN(同22×10−6Ωcm)、ZrN(同14×10−6Ωcm)、MoSi(同22×10−6Ωcm)、MoSi(同22×10−6Ωcm)、NbSi(同6.3×10−6Ωcm)、TaSi(同124×10−6Ωcm)、TaSi(同8.5×10−6Ωcm)、TiSi(同63×10−6Ωcm)、TiSi(同123×10−6Ωcm)、VSi(同115×10−6Ωcm)、VSi(同9.5×10−6Ωcm)、WSi(同93×10−6Ωcm)、WSi(同33×10−6Ωcm)、ZrSi(同49×10−6Ωcm)、ZrSi(同76×10−6Ωcm)、または、これらから選ばれる2種以上の混合物を用いるのが好ましい。
 これらの中でも、25℃の電気抵抗率が0.1×10−6~100×10−6Ωcmにある、非酸化物セラミックスは、特に好ましい。何故なら、これらは、25℃の電気抵抗率が100×10−6Ωcmを超え185×10−6Ωcmまでの範囲にある非酸化物セラミックスより高い導電性を有するため、樹脂塗膜に十分な導電性を付与するための粒子添加量がより少ない量でよく、塗膜を貫通する腐食電流の導通路が僅かしか形成されず、耐食性が殆ど低下しないからである。また、極少量の粒子添加のため塗膜外観が導電性粒子の色に支配されず、着色顔料を加えても容易に所望の色合いに着色できるからである。
 前記の非酸化物セラミックスに付記した電気抵抗率は、それぞれ、工業用素材として販売され使用されているものの代表値(文献値)である。これらの電気抵抗率は、非酸化物セラミックスの結晶格子に入り込んだ不純物元素の種類や量により増減するため、本発明での使用に際しては、例えば、三菱化学(株)製の抵抗率計ロレスタEP(MCP−T360型)とASPプローブを用いた4端子4探針法、定電流印加方式で、JIS K7194に準拠して25℃の電気抵抗率を実測し、0.1×10−6~185×10−6Ωcmの範囲にあることを確認してから使用すればよい。
 前記非酸化物セラミックス粒子(B)の粒子形状は、球状粒子、または、擬球状粒子(例えば楕円球体状、鶏卵状、ラグビーボール状等)や多面体粒子(例えばサッカーボール状、サイコロ状、各種宝石のブリリアントカット形状等)のような、球に近い形状が好ましい。細長い形状(例えば棒状、針状、繊維状等)や平面形状(例えばフレーク状、平板状、薄片状等)のものは、塗装過程で塗膜面に平行に配列したり、基材と塗膜の界面付近に沈積したりして、塗膜の厚方向を貫く有効な通電路を形成しにくいため、本発明の用途に適さない。
 前記非酸化物セラミックス粒子(B)の平均粒子径は特に限定しないが、本発明の塗装用組成物中にて、体積平均径が0.05~8μmの粒子で存在するのが好ましく、体積平均径が0.2~5μmの粒子で存在するのがより好ましい。これらの体積平均径を持つ分散粒子は、塗装用組成物の製造工程、保管・運搬時や、塗装用基材である金属板(金属面に下地処理がある場合は下地処理層)への塗装工程等にて、塗装用組成物中で安定に存在すれば、単一粒子であっても、複数の単一粒子が強く凝集した二次粒子であってもよい。塗装用組成物の基材への塗装工程にて、製膜に伴い前記(B)粒子が凝集し、塗膜中での体積平均径が大きくなっても差支えない。
 なお、ここで言う体積平均径とは、粒子の体積分布データから求めた体積基準の平均径のことである。これは、一般に知られているどのような粒子径分布測定方法を用いて求めても良いが、コールター法(細孔電気抵抗法)により測定される球体積相当径分布の平均値を用いるのが好ましい。何故なら、コールター法は、他の粒子径分布測定方法(レーザー回折散乱法で得た体積分布から算出する、画像解析法で得た円面積相当径分布を体積分布に換算する、遠心沈降法で得た質量分布から算出する、等)に比べ、測定機メーカーや機種による測定値の違いが殆どなく、正確で高精度な測定ができるからである。コールター法では、電解質水溶液中に被験粒子を懸濁させ、ガラス管の細孔に一定の電流を流し、陰圧により粒子が細孔を通過するように設定する。粒子が細孔を通過すると、粒子が排除した電解質水溶液の体積(=粒子の体積)によって、細孔の電気抵抗が増加する。一定電流を印加すれば、粒子通過時の抵抗変化が電圧パルス変化に反映されるため、この電圧パルス高を1個ずつ計測処理することにより、個々の粒子の体積を直接測定できる。粒子は不規則形状の場合が多いので、粒子と同一体積の球体を仮定し、その球体の径(=球体積相当径)に換算する。このようなコールター法による球体積相当径の測定方法は、よく知られており、例えば文献:ベックマン・コールター株式会社インターネット公式サイト上のウェブページ〔http://www.beckmancoulter.co.jp/product/product03/Multisizer3.html(精密粒度分布測定装置Multisizer3〕に、詳細に記載されている。
 体積平均径が0.05μm未満の非酸化物セラミックス粒子は、それより大きな非酸化物セラミックス粒子より高価なだけでなく、比表面積が非常に大きいため、例えば、水系または有機溶剤系の塗装用組成物中で湿潤分散剤を用いても、粒子表面を濡らし分散させるのが困難である。また、体積平均径が8μmを超える非酸化物セラミックス粒子は、それより小さな非酸化物セラミックス粒子より、水系または有機溶剤系の塗装用組成物中で速く沈降しやすく(ストークスの式により明らか)、従って、分散安定性を確保することが難しく、粒子が浮遊せず短時間で沈降し、凝集・固化する等の不具合を生じる場合がある。
 前記塗膜(α)中に分散されている前記非酸化物セラミックス粒子(B)の体積平均径をcμm、前記塗膜(α)の厚みをbμmとした時、0.5≦c/b≦1.5の関係を満足することが好ましい。図1は、本発明の導電性、耐食性塗装金属板の断面の模式図を表す。(A)は有機樹脂、(B)、(B’)は、非酸化物セラミックス粒子、(C)は硬化剤による架橋部を表し、(γ)は金属板を表す。(B)は厚みに対する粒径の比c/bが0.5以上となっている粒子であり、この場合厚み方向の導電性は確保される。(B’)は、厚みに対する粒径の比c/bが0.5未満の粒子であり、この場合、導電性が十分に確保されない場合がある。厚みに対する粒径の比c/bが1.5を超えると、耐食性、加工性が低下する場合がある。
 <防錆剤>
 水系塗装用組成物の場合、有機樹脂(A)は、防錆剤として、ポリフェノール化合物を含有することが好ましい。ポリフェノール化合物は、ベンゼン環に結合したフェノール性水酸基を2基以上有する化合物又その縮合物であって、金属表面にキレート作用で配位結合でき、また、共存する水系樹脂の親水基と水素結合することができる。このようなポリフェノール化合物を配合することにより、基材である金属板(下地処理がある場合は下地処理層)と塗膜(α)との密着性や加工時の塗膜追従性を飛躍的に向上させ、ひいては加工部耐食性も向上させる。
 本発明にて用いるポリフェノール化合物は、被覆塗膜形成に用いる水系塗装用組成物に均一に溶解または微細分散できるものであれば、特に制限はない。水溶性または水分散性でなくても、水系塗装用組成物(β)中に共存する樹脂(A1)の疎水鎖間に浸入し、均一に微細分散できるものであれば用いることができる。
 前記ベンゼン環に結合したフェノール性水酸基を2基以上有する化合物としては、例えば、没食子酸、ピロガロール、カテコール等を挙げることができる。ベンゼン環に結合したフェノール性水酸基を2基以上有する化合物の縮合物としては特に限定されず、例えば、通常タンニン酸と呼ばれる植物界に広く分布するポリフェノール化合物等を挙げることができる。タンニン酸は、広く植物界に分布する多数のフェノール性水酸基を有する複雑な構造の芳香族化合物の総称である。前記タンニン酸は、加水分解性タンニン酸でも縮合型タンニン酸でもよい。前記タンニン酸としては特に限定されず、例えば、ハマメリタンニン、カキタンニン、チャタンニン、五倍子タンニン、没食子タンニン、ミロバランタンニン、ジビジビタンニン、アルガロビラタンニン、バロニアタンニン、カテキンタンニン等を挙げることができる。前記ポリフェノール化合物は1種で使用しても良く、2種以上を併用してもよい。
 前記ポリフェノール化合物は、有機樹脂(A)100質量部に対し、1~100質量部含有することが好ましい。1質量部未満ではポリフェノール化合物の量が不十分であるため、十分な塗膜密着性が得られなかったり、その結果、加工部耐食性が不十分となる可能性がある。100質量部を超えると塗膜中のポリフェノール化合物の量が多すぎて、加工時の塗膜密着性、塗膜追従性や加工部耐食性が低下したり、塗装用組成物の安定性を低下させることがある。
 水系および有機溶剤系塗装用組成物の場合、前記有機樹脂(A)は、防錆剤として、リン酸およびヘキサフルオロ金属酸からなる群より選択される1種または2種以上を含有することが好ましい。このリン酸とヘキサフルオロ金属酸は、それぞれ単独で用いてもよいし、併用してもよい。これらの酸は、金属表面をエッチングにより活性化し、前記シランカップリング剤(s)や前記ポリフェノール化合物の金属面への作用を促進させる。また、リン酸は、前記作用のほかに、金属表面にリン酸塩層を形成して不働態化する作用を持つため、耐食性を向上させる。また、ヘキサフルオロ金属酸は、前記作用のほかに、塗膜を形成する金属表面に、ヘキサフルオロ金属酸から供給される金属の酸化物を含む安定な薄膜を形成でき、その結果、耐食性を向上させる。本発明で用いることができるリン酸には特に制限はなく、例えば、オルトリン酸、ポリリン酸(オルトリン酸の重合度6までの直鎖状重合体の単体、またはこれらの2種以上の混合物)、メタリン酸(オルトリン酸の重合度3~6までの環状重合体の単体、またはこれらの2種以上の混合物)を挙げることができる。前記リン酸は1種で用いてもよく、2種以上を併用してもよい。重合度が2より大きなポリリン酸は、幾つかの重合度のポリリン酸の混合物として工業的に容易に得られるため、本発明では、このような混合物を用いるのがよい。
 本発明で用いることができるヘキサフルオロ金属酸にも特に制限はなく、例えば、ヘキサフルオロリン酸、ヘキサフルオロチタン酸、ヘキサフルオロジルコン酸、ヘキサフルオロけい酸、ヘキサフルオロニオブ酸、ヘキサフルオロアンチモン酸やそれらのアンモニウム塩、カリウム塩、ナトリウム塩、カルシウム塩、マグネシウム塩等が挙げられる。ヘキサフルオロ金属酸は、前記のように、金属表面に金属酸化物を含む安定な薄膜を形成するが、そのような効果をもたらすには、金属としてTi、Si、Zr、Nbの中からなる群より選択される1種または2種以上の元素を含むものが好ましい。前記ヘキサフルオロ金属酸は、1種で用いてもよく、2種以上を併用してもよい。
 リン酸およびヘキサフルオロ金属酸からなる群より選択される1種または2種以上は、有機樹脂(A)100質量部に対し、0.1~100質量部含有することが好ましい。0.1質量部未満ではこれらの酸による作用が不十分であるため、耐食性が低下することがある。100質量部を超えると塗膜が脆くなり、塗膜凝集破壊により加工時の塗膜密着性や塗膜追従性が低下することがある。
 水系および有機溶剤系塗装用組成物の場合、前記有機樹脂(A)は、防錆剤として、リン酸塩化合物を含有することが好ましい。このリン酸塩化合物を配合することにより、塗膜形成時に、金属表面に難溶性のリン酸塩薄膜を形成できる。即ち、リン酸塩のリン酸イオンにより金属が溶解すると、金属表面でpHが上昇し、その結果、リン酸塩の沈殿薄膜が形成され、耐食性が向上する。
 本発明で用いることができるリン酸塩化合物には、特に制限はなく、例えば、オルトリン酸、ポリリン酸(オルトリン酸の重合度6までの直鎖状重合体の単体、またはこれらの2種以上の混合物)、メタリン酸(オルトリン酸の重合度3~6までの環状重合体の単体、またはこれらの2種以上の混合物)などの金属塩、フィチン酸、ホスホン酸(亜リン酸)、ホスフィン酸(次亜リン酸)などの有機金属塩が挙げられる。カチオン種としては特に制限はなく、例えば、Cu、Co、Fe、Mn、Sn、V、Mg、Ba、Al、Ca、Sr、Nb、Y、NiおよびZn等が挙げられるが、Mg、Mn、Al、Ca、Niを用いるのが好ましい。前記リン酸塩化合物は、1種で用いてもよく、2種以上を併用してもよい。
 前記リン酸塩化合物は、有機樹脂(A)100質量部に対し、0.1~100質量部含有することが好ましい。0.1質量部未満ではリン酸塩化合物の作用が不十分なため、耐食性が低下することがある。100質量部を超えると塗膜が脆くなり、塗膜凝集破壊により加工時の塗膜密着性や塗膜追従性が低下することがある。
 水系および有機溶剤系塗装用組成物の場合、前記有機樹脂(A)は、防錆剤として、Si、Ti、Al、Zrからなる群より選択される少なくとも1種の金属元素からなる金属酸化物微粒子を含有することが好ましい。この金属酸化物微粒子を配合することにより、耐食性をより高めることができる。
 本発明で用いることができる前記金属酸化物微粒子としては、例えば、シリカ微粒子、アルミナ微粒子、チタニア微粒子、ジルコニア微粒子等を挙げることができ、体積平均径が1~300nm程度のものが好適である。これらは単独で用いてもよく、2種以上を併用してもよい。これらのうち、シリカ微粒子は、塗膜の耐食性向上および強靭化の両方が必要な場合に添加する。シリカ微粒子としては特に制限なく、塗膜が薄膜であることから、一次粒子径が3~50nmのコロイダルシリカ、ヒュームドシリカ等のシリカ微粒子であることが好ましい。
 前記金属酸化物微粒子は、有機樹脂(A)100質量部に対し、1~100質量部含有することが好ましい。1質量部未満では金属酸化物微粒子の量が不十分であるため、耐食性を高める効果が得られないことがある。100質量部を超えると塗膜が脆くなり、塗膜凝集破壊により加工時の塗膜密着性や塗膜追従性が低下することがある。
 前記の各種防錆剤は、塗装用組成物(β)に適量を予め溶解、あるいは分散安定化させ、塗膜(α)中の有機樹脂(A)に導入するのが好ましい。
 <着色顔料>
 前記塗膜(α)には、着色顔料を更に含有することができる。着色顔料の種類としては特に限定されず、無機着色顔料としては、例えば、二酸化チタン粉、アルミナ粉、ベネチアンレッドやバーントシェンナ等の酸化鉄粉、酸化鉛粉、カーボンブラック、グラファイト粉、コールダスト、タルク粉、カドミウムイエロー、カドミウムレッド、クロムイエロー、コバルトイエロー、コバルトブルー、セルリアンブルー、コバルトグリーン等を使用できる。有機着色顔料としては、例えば、フタロシアニンブルー、フタロシアニングリーン、キナクリドン、ペリレン、アンスラピリミジン、カルバゾールバイオレット、アントラピリジン、アゾオレンジ、フラバンスロンイエロー、イソインドリンイエロー、アゾイエロー、インダスロンブルー、ジブロムアンザスロンレッド、ペリレンレッド、アゾレッド、アントラキノンレッド等を使用できる。また、塗膜(α)に必要な色合いや光沢、風合い等の外観を与えることができるなら、例えば銅粉、錫粉、ニッケル粉、ブロンズ(Cu−Sn系合金)粉等の耐水劣化性の金属粒子を着色顔料として使用できるし、耐水性にやや劣るアルミニウム粉や亜鉛粉等も、着色顔料として用いることができる。また、アルミフレーク、マイカフレーク、板状酸化鉄、ガラスフレーク等の鱗片状光輝材、マイカ粉、金属コーティングマイカ粉、二酸化チタンコーティングマイカ粉、二酸化チタンコーティングガラス粉等の粉状光輝材も使用できる。
 <塗装用組成物(β)の調製>
 本発明の塗膜(α)を形成するのに用いる塗装用組成物(β)の製造方法は特に限定されないが、例えば、水中または有機溶剤中に各々の塗膜(α)形成成分を添加し、ディスパーで攪拌し、溶解もしくは分散する方法が挙げられる。水系塗装用組成物の場合、各々の塗膜(α)形成成分の溶解性、もしくは分散性を向上させるために、必要に応じて、公知の親水性溶剤等を添加してもよい。
 特に、水系の塗装用組成物(β)の場合には、前記樹脂(A1)、前記非酸化物セラミックス粒子(B)に加えて必要に応じ、塗料の水性や塗工性を損なわない範囲で種々の水溶性または水分散性の添加剤を添加してもよい。例えば、前記の種々の防錆剤や、消泡剤、沈降防止剤、レベリング剤、湿潤分散剤等の界面活性剤、および、増粘剤、粘度調整剤等などを添加してもよい。更に、樹脂や他の有機化合物など塗装用組成物の構成成分の安定化等のために、労働安全衛生法施行令(有機溶剤中毒予防規則第一章第一条)で定義される有機溶剤等(第1種有機溶剤、第2種有機溶剤、第3種有機溶剤、または、前記有機溶剤を、5質量%を超えて含有するもの)に該当しないように、少量の有機溶剤を添加してもよい。
 本発明の塗膜(α)を、水系の塗装用組成物(β)から形成する場合、水系塗装用組成物であるため、有機溶剤系塗料に比較して表面張力が高く、基材である金属板(下地処理がある場合は下地処理層)や非酸化物セラミックス粒子(B)への濡れ性に劣り、基材に所定量の塗布を行う場合、均一な塗装性や粒子分散性が得られないことがある。そのような場合は、前記の湿潤分散剤や増粘剤を添加するのがよい。湿潤分散剤としては、表面張力を低下させる界面活性剤を用いることができるが、分子量が2000以上の高分子界面活性剤(高分子分散剤)を用いる方がよい。低分子界面活性剤は、湿気を含む樹脂塗膜中を比較的容易に移動できるため、界面活性剤の極性基に吸着した水や、その水を介して溶存酸素、溶存塩等の腐食因子を金属面に呼び込み易く、また、自らブリードアウトして、溶出し易いため、塗膜の防錆性を劣化させることが多い。一方、高分子界面活性剤は、金属、セラミックス粒子や顔料の表面に多点吸着できるため一旦吸着すると離れにくく、低濃度でも濡れ性改善に有効である。その上、分子が嵩高いため樹脂塗膜中を移動しにくく、腐食因子を金属面に呼び込みにくい。前記<有機樹脂(A)>の項にて、有機樹脂(A)への添加を推奨しているアクリル樹脂の一部には、このような高分子界面活性剤の機能があり、水系塗料中で、非酸化物セラミックス粒子(B)や着色顔料等の沈降を抑止し、かつ均一に分散させる効果がある。
 増粘剤は、基材表面のはじき箇所に対して湿潤分散剤だけでは十分な表面被覆性が得られない場合、または、水系塗装用組成物の粘度が低すぎて必要な塗膜厚が確保されない場合の対策として添加することがある。分子量が数千~数万のものが多く、顔料等の表面に多点吸着し、増粘剤自身は互いに会合して弱い網目構造を形成し、塗装用組成物の粘度を高める。
 水系塗装用組成物(β)が高比重の非酸化物セラミックス粒子や着色顔料等を含む場合、必要に応じ、塗料にチクソトロピックな性質(揺変性)を付与できる粘度調整剤を添加するのがよい。前記増粘剤の場合と同様に、水系塗料中で顔料等の表面に多点吸着し、網目構造を作る。このような粘度調整剤の分子量は数十万~数百万で非常に高いため、水系塗料中で大きな降伏値を持つ強固な網目構造を作り、従って、塗料は低剪断速度では変形しにくく、高粘度である。一方、降伏値を上回る大きな剪断応力が塗料に加われば、網目構造が崩壊して粘度が急激に下がる。従って、粘度調整剤を添加すれば、水系塗装用組成物がほぼ静止状態を保つ保管時や運送時には、塗装用組成物の粘度を高めて重質顔料類の沈降を抑止し、一方、塗装工場で配管内を流動する時や、基材への塗装時等、高い剪断応力(高剪断速度)が加わる際には塗料粘度を下げて流動し易くする。
 有機溶剤系の塗装用組成物(β)の場合には、有機溶剤に樹脂を溶解させた塗装用組成物は比較的粘度が高く、かつ、粘度を調整しやすい。そのため、塗装用組成物粘度を、顔料沈降抑制に有利とされる100mPa・s以上に容易にかつ安定的に保持することができる。また、導電性材料として用いる非酸化物セラミックスは表面に疎水性部位も持つ物質であることから、一般的に、有機溶剤系の塗装用組成物への分散も容易であり、塗工時に塗装用組成物中の非酸化物セラミックス粒子が沈降することなく塗装できるため、好適である。
 塗膜を形成する有機溶剤系の塗装用組成物(β)の粘度が、100~2000mPa・sである塗装用組成物をロールコーターまたはカーテンコーターにて金属板上に塗布した後に乾燥焼付けすると、非酸化物セラミックス粒子が沈降しにくく、より好適である。塗料粘度が100mPa・s未満であると、非酸化物セラミックス粒子が沈降しやすく、2000mPa・sを超える場合では、粘度が高すぎて一般にリビングなどと呼ばれる塗装時の外観不良を起こす恐れがある。より好ましくは、250~1000mPa・sである。有機溶剤系の塗装用組成物(β)の粘度は、ロールコーターまたはカーテンコーターで塗布する際の塗装用組成物の温度と同じ温度でB型粘度計を用いて測定することができる。
 粘度調整は、使用する有機溶剤の種類、溶媒量で調整することができる。有機溶剤は、一般に公知の溶剤を用いることができるが、沸点の高い有機溶剤が好ましい。プレコート金属板の製造ラインでは、焼付け時間が短いため、沸点の低い溶剤を用いると、一般にボイリングと呼ばれる塗装欠陥が発生する恐れがある。溶剤の沸点は、120℃以上のものを用いると好ましい。これらの沸点の高い有機溶剤は、一般に公知の溶剤、例えば、シクロヘキサン、炭化水素系有機溶剤であるソルベッソなどを用いることができる。
 <塗膜(α)の形成>
 本発明の前記塗膜(α)は、<塗膜(α)>の項で述べたように、塗装用組成物(β)が水系や有機溶剤系組成物の場合は、ロールコート、グルーブロールコート、カーテンフローコート、ローラーカーテンコート、浸漬(ディップ)、エアナイフ絞り等の公知の塗装方法で金属板上に塗装用組成物を塗布し、その後、ウェット塗膜の水分や溶剤分を乾燥する製膜方法が好ましい。これらのうち、水系や有機溶剤系の紫外線硬化型組成物や電子線硬化型組成物の場合は、前記の塗布方法で金属板に塗布後、水分または溶剤分を乾燥し、紫外線や電子線を照射して重合させるのが好ましい。
 塗装用組成物(β)が水系または有機溶剤系の焼付硬化型組成物の場合の焼付乾燥方法について、具体的に述べる。塗装用組成物(β)が水系または有機溶剤系の焼付硬化型組成物の場合、焼付乾燥方法は特に制限はなく、あらかじめ金属板を加熱しておくか、塗布後に金属板を加熱するか、或いはこれらを組み合わせて乾燥を行ってもよい。加熱方法に特に制限はなく、熱風、誘導加熱、近赤外線、直火等を単独もしくは組み合わせて使用することができる。
 焼付乾燥温度については、塗装用組成物(β)が水系の焼付硬化型組成物の場合、金属板表面到達温度で120℃~250℃であることが好ましく、150℃~230℃であることが更に好ましく、180℃~220℃であることが最も好ましい。到達温度が120℃未満では、塗膜硬化が不十分で、耐食性が低下する場合があり、250℃超であると、焼付硬化が過剰になり、耐食性や加工性が低下する場合がある。焼付乾燥時間は1~60秒であることが好ましく、3~20秒であることが更に好ましい。1秒未満であると、焼付硬化が不十分で、耐食性が低下する場合があり、60秒を超えると、生産性が低下する場合がある。
 また、塗装用組成物(β)が有機溶剤系の焼付硬化型組成物の場合、金属板表面到達温度が180℃~260℃であることが好ましく、210℃~250℃であることが更に好ましい。到達温度が180℃未満では、塗膜硬化が不十分で、耐食性が低下する場合があり、260℃超であると、焼付硬化が過剰になり、耐食性や加工性が低下する場合がある。焼付乾燥時間は10~80秒であることが好ましく、40~60秒であることが更に好ましい。10秒未満であると、焼付硬化が不十分で、耐食性が低下する場合があり、80秒を超えると、生産性が低下する場合がある。
 次に、塗装用組成物(β)が、水系または有機溶剤系の紫外線硬化型組成物や電子線硬化型組成物の場合の製膜方法について具体的に述べる。これらの組成物を、前記の水系や有機溶剤系組成物の場合と同様な方法で塗布後、ウェット塗膜の水分や溶剤分を乾燥し、その後、紫外線または電子線を照射する。塗膜は、主に紫外線または電子線照射で生成するラジカルを起点に硬化製膜するため、乾燥温度は、焼付硬化型組成物の場合より低い乾燥温度でよい。乾燥工程にて、80~120℃程度の比較的低い金属表面到達温度で水分や溶剤の多くを揮発させてから紫外線または電子線照射するのが好ましい。
 塗膜中の紫外線硬化型樹脂を紫外線でラジカル重合し硬化する紫外線照射は、通常、大気雰囲気中、不活性ガス雰囲気中、大気と不活性ガスの混合雰囲気中等で行うが、本発明の紫外線硬化では、酸素濃度を10体積%以下に調整した大気と不活性ガスの混合雰囲気や、不活性ガス雰囲気中で紫外線照射するのが好ましい。酸素はラジカル重合の禁止剤となるため、紫外線照射時の雰囲気酸素濃度が低い場合、生成ラジカルへの酸素付加による失活や架橋反応阻害が少なく、本発明に用いる紫外線硬化型組成物が、ラジカル重合や架橋を経て十分に高分子化する。そのため、非酸化物セラミックス粒子や金属板への密着性が高まり、結果として、大気雰囲気中での紫外線硬化の場合より、塗膜の耐食性が向上する。ここで用いる不活性ガスとしては、窒素ガス、炭酸ガス、アルゴンガス、およびこれらの混合ガス等を例示できる。
 紫外光源としては、例えば、金属蒸気放電方式の高圧水銀ランプ、メタルハライドランプ等、希ガス放電方式のキセノンランプ等、マイクロ波を用いた無電極ランプ等を用いることにより、紫外線を照射できる。本発明の塗装金属板において、紫外線硬化型の塗膜を十分に硬化でき、所望の耐食性や導電性が得られるものであれば、どのようなランプを用いてもよい。また、一般に、塗膜が受光する紫外線のピーク照度や積算光量は塗膜の硬化性を左右するが、紫外線硬化型の塗膜を十分に硬化でき、所望の耐食性が得られるものであれば、紫外線の照射条件を特に限定しない。
 塗装用組成物(β)が、電子線硬化型組成物の場合、電子線硬化には、印刷、塗装、フィルムコーティング、包装、滅菌等の分野で用いられている通常の電子線照射装置を用いることができる。これらは、高真空中で熱フィラメントから発生した熱電子に高電圧をかけて加速し、得られた電子流を不活性ガス雰囲気中に取り出し、重合性物質に照射するものである。本発明の塗装金属板において、電子線硬化型の塗膜を十分に硬化でき、所望の耐食性や導電性が得られるものであれば、どのような装置を用いてもよい。また、一般に、塗膜が吸収する電子線の加速電圧は、電子線が塗膜を浸透する深さを左右し、吸収線量は重合速度(塗膜の硬化性)を左右するが、電子線硬化型の塗膜を十分に硬化でき、所望の耐食性が得られるものであれば、電子線の照射条件を特に限定しない。ただし、電子線によるラジカル重合の場合、微量の酸素が存在しても、生成ラジカルへの酸素付加による失活や架橋反応阻害が生じ、硬化が不十分になるため、酸素濃度が500ppm以下の不活性ガス雰囲気中で電子線照射するのが好ましい。ここで用いる不活性ガスとしては、窒素ガス、炭酸ガス、アルゴンガス、およびこれらの混合ガス等を例示できる。
 以下、水系塗装用組成物を用いた実施例により本発明を具体的に説明する。
 1.塗装用金属板
 以下の亜鉛系めっき鋼板M1~M4を準備し、水系脱脂剤(日本パーカライジング(株)製FC−4480)の水溶液に浸漬して表面を脱脂した後、水洗、乾燥して塗装用の金属板とした。
 M1:電気亜鉛めっき鋼板
 (新日本製鐵(株)製ジンコート、板厚0.8mm、めっき厚約2.8μm)
 M2:電気Zn−Ni合金めっき鋼板
 (新日本製鐵(株)製ジンクライト、板厚0.8mm、めっき厚約2.8μm)
 M3:溶融亜鉛めっき鋼板
 (新日本製鐵(株)製シルバージンク、板厚0.8mm、めっき厚約7μm)
 M4:溶融Zn−11%Al−3%Mg−0.2%Si合金めっき鋼板
 (新日本製鐵(株)製スーパーダイマ、板厚0.8mm、めっき厚約6μm)
 2.水系塗装用組成物
 水系塗装用組成物の調製のため、まず、樹脂(A1)、非酸化物セラミックス粒子(B)、硬化剤(C)、シランカップリング剤(s)、防錆剤、着色顔料、粘度調整剤を準備した。
 (1)樹脂(A1)
 樹脂A11~A13、A19を合成し、また、市販樹脂A16、A17を準備した。これらはいずれも本発明に用いる樹脂である。
 A11:カルボキシル基含有ポリエステル系ウレタン樹脂水分散液(製造例1で合成)
 [製造例1]
 攪拌装置、還流冷却器、窒素ガス導入管および温度計、サーモスタットを備えた10Lの反応容器に、2,2−ジメチロールブタン酸1628gとε−カプロラクトン3872gとを仕込み、触媒としての塩化第一錫27.5mgを添加して、反応容器内の温度を120℃に保持し、3時間反応させた。これにより、水酸基価225.5mgKOH/g、酸価114.6mgKOH/gの液状のカルボキシル基含有ポリエステルジオール(a11)を得た。
 次に、攪拌装置、還流冷却器、窒素ガス導入管および温度計、サーモスタットを備えた2Lの反応容器に、2,4−トリレンジイソシアネート149.9gとアセトン140.0gとを仕込み、窒素気流下で攪拌しながら、前記カルボキシル基含有ポリエステルジオール(a11)124.6g、数平均分子量1000のポリカプロラクトンジオール(ダイセル化学工業(株)製PLACCEL210)273.1gおよび1,4−ブタンジオール12.4gを加えた。反応容器内の温度を60℃に4時間保持してウレタン化反応を進行させ、NCO基末端ウレタンプレポリマーを調製した。このウレタンプレポリマー168.3gを攪拌しながら、トリエチルアミン6.1gを添加したイオン交換水230gを添加し、さらにヘキサメチレンジアミン1.67gを添加したイオン交換水230gを添加した。次いで、減圧下、60℃にて3時間かけてアセトンを溜去し、固形分濃度35%、酸価24.6mgKOH/g(固形分換算)のカルボキシル基含有ポリエステル系ウレタン樹脂水分散液(A11)を得た。
 A12:スルホン酸基含有ポリエステル系ウレタン樹脂水分散液(製造例2で合成)
 [製造例2]
 攪拌装置、還流冷却器、窒素ガス導入管および温度計、サーモスタットを備えた耐圧反応容器に、窒素気流下で攪拌しながら、アジピン酸1100gと3メチル−1,5−ペンタンジオール900gと、テトラブチルチタネート0.5gとを仕込み、反応容器内の温度を170℃に保持し、酸価が0.3mgKOH/g以下になるまで反応させた。次に、180℃、5kPa以下の減圧条件下で2時間反応を行い、水酸基価112mgKOH/g、酸価0.2mgKOH/gのポリエステルを得た。
 次に、上記反応容器と同じ装置の付いた別の反応容器に、このポリエステルポリオール500g、5−スルホナトリウムイソフタル酸ジメチル134gとテトラブチルチタネート2gを仕込み、上記と同じようにして、窒素気流下で攪拌しながら、反応容器内の温度を180℃に保持してエステル化反応を行い、最終的に分子量2117、水酸基価53mgKOH/g、酸価0.3mgKOH/gのスルホン酸基含有ポリエステル(a12)を得た。
 前記スルホン酸基含有ポリエステル(a12)280g、ポリブチレンアジペート200g、1,4−ブタンジオール35g、ヘキサメチレンジイソシアネート118gおよびメチルエチルケトン400gを、攪拌装置、還流冷却器、窒素ガス導入管および温度計、サーモスタットを備えた反応容器に窒素気流下で仕込み、攪拌しながら液温を75℃に保持してウレタン化反応を行い、NCO含有率が1%のウレタンプレポリマーを得た。続いて、上記反応容器中の温度を40℃に下げて、十分攪拌しながらイオン交換水955gを均一に滴下し、転相乳化を行った。次に、内部温度を室温に下げて、アジピン酸ヒドラジド13gとイオン交換水110gとを混合したアジピン酸ヒドラジド水溶液を添加してアミン伸長を行った。若干の減圧下、60℃にて溶剤を溜去した後、イオン交換水を追加し、固形分濃度35%、酸価11mgKOH/g(固形分換算)のスルホン酸基含有ポリエステル系ウレタン樹脂水分散液(A12)を得た。
 A13:水酸基を導入したカルボキシル基含有ポリエステル樹脂水溶液(製造例3で合成)
 [製造例3]
 攪拌装置、還流冷却器、窒素ガス導入管および温度計、サーモスタットを備えた耐圧反応容器に、トリメチロールプロパン174g、ネオペンチルグリコール327g、アジピン酸352g、イソフタル酸109gおよび1,2−シクロヘキサンジカルボン酸無水物101gを仕込み、160℃から230℃まで3時間かけて昇温させた後、生成した縮合水を水分離器により留去させながら230℃で保持し、酸価が3mgKOH/g以下となるまで反応させた。この反応生成物に、無水トリメリット酸59gを添加し、170℃で30分間付加反応を行った後、50℃以下に冷却し、2−(ジメチルアミノ)エタノールを酸基に対して当量添加し中和してから、脱イオン交換水を徐々に添加することにより、固形分濃度45%、酸価35mgKOH/g、水酸基価128mgKOH/g、重量平均分子量13,000の水酸基を導入したカルボキシル基含有ポリエステル樹脂水溶液(A13)を得た。
 A19:スルホン酸基含有ポリエステル樹脂水分散液(製造例4で合成)
 [製造例4]
 攪拌装置、還流冷却器、窒素ガス導入管および温度計、サーモスタットを備えた耐圧反応容器に、窒素気流下で攪拌しながら、テレフタル酸199gとイソフタル酸232gとアジピン酸199g、5−スルホナトリウムイソフタル酸33g、エチレングリコール312gと2,2−ジメチル−1,3−プロパンジオール125gと1,5−ペンタンジオール187g、テトラブチルチタネート0.41gとを仕込み、反応容器内の温度を160℃から230℃まで4時間かけて昇温し、エステル化反応を行った。次いで、容器内を20分かけて徐々に5mmHgまで減圧し、更に0.3mmHg以下で、260℃にて40分間重縮合反応を行った。得られた共重合ポリエステル樹脂100gに、ブチルセロソルブ20g、メチルエチルケトン42gを添加した後、80℃で2時間攪拌溶解を行い、更に213gのイオン交換水を添加し、水分散を行った。その後、加熱しながら溶剤を留去し、固形分濃度30%のスルホン酸基含有ポリエステル樹脂水分散液(A19)を得た。
 A16:カルボキシル基、ウレア基含有ポリウレタン樹脂水分散液(三井化学ポリウレタン(株)製タケラックWS−5000)
 A17:アクリル樹脂水分散液(DIC(株)製ボンコートR−3380−E)
(2)A1以外の樹脂(比較例)
 A15:ノニオン性ポリエーテル系ウレタン樹脂水分散液(DIC(株)製ボンディック1520)
 A18:アミノ基含有エポキシ樹脂水溶液((株)ADEKA製アデカレジンEM−0718)
 (3)非酸化物セラミックス粒子(B)
 市販の微粒子(試薬)を用いた。電気抵抗率は、各微粒子から長さ80mm、幅50mm、厚さ2~4mmの焼結板を作成し、三菱化学(株)製の抵抗率計ロレスタEP(MCP−T360型)とASPプローブを用いた4端子4探針法、定電流印加方式で、JIS K7194に準拠して25℃で測定した。体積平均径は、ベックマン・コールター(株)製Multisizer3(コールター原理による精密粒度分布測定装置)を用いて測定した。
 BC:BC微粒子(添川理化学(株)製、体積平均径2.2μm、電気抵抗率0.7×10−6Ωcm)
 TiN:TiN微粒子(和光純薬工業(株)製、体積平均径1.6μm、電気抵抗率20×10−6Ωcm)
 TiB:TiB微粒子((株)高純度化研究所製TII11PB、体積平均径2.9μm、電気抵抗率30×10−6Ωcm)
 VC:VC微粒子(和光純薬工業(株)製、体積平均径2.3μm、電気抵抗率140×10−6Ωcm)
 ZrB:ZrB微粒子(和光純薬工業(株)製、体積平均径2.2μm、電気抵抗率70×10−6Ωcm)
 SiC:SiC微粒子((株)高純度化研究所製SII01PB、体積平均径2.9μm、電気抵抗率125×10−6Ωcm)
 (4)(B)以外の非酸化物セラミックス粒子(比較例)
 市販の微粒子(試薬)を用いた。電気抵抗率は、前記(2)と同様にして測定した。
TaN:TaN微粒子(添川理化学(株)製、体積平均径3.7μm、電気抵抗率の実測値205×10−6Ωcm)
 BN:BN微粒子((株)高純度化研究所製BBI03PB、体積平均径約8μm、電気抵抗率2000×10−6Ωcm)
 (5)硬化剤(C)
 C1:メラミン樹脂(日本サイテックインダストリーズ(株)製サイメル303)
 C2:イソシアネート化合物(三井化学ポリウレタン(株)製タケネートWD−725)
 (6)シランカップリング剤
 s1:3−グリシドキシプロピルトリメトキシシラン(信越化学工業(株)製KBM−403)
 s2:3−アミノプロピルトリメトキシシラン(信越化学工業(株)製KBM−903)
 s3:3−メルカプトプロピルトリメトキシシラン(信越化学工業(株)製KBM−803)
 (7)防錆剤
 i1:ヘキサフルオロチタン酸(和光純薬工業(株)製、ヘキサフルオロチタン酸60%水溶液)
 i2:リン酸水素マグネシウム(関東化学(株)製)
 i3:シリカ微粒子(日産化学工業(株)製スノーテックスN、アンモニアで安定化された粒子径10~20nmのシリカゾル)
 (8)着色顔料
 p1:ZnOとCoOの固溶体((株)クサカベ製ピグメント品番068コバルトグリーンディープ、緑色顔料)
 p2:亜硝酸第二コバルトカリウム((株)クサカベ製ピグメント品番117オーレオリン(コバルトイエロー)、黄色顔料)
 p3:カーボンブラック(エボニックインダストリーズ社製Special Black 6)
 (9)粘度調整剤
 v1:架橋型ポリアクリル酸(東亜合成(株)製ジュンロンPW−111、未中和)
 次に、前記の樹脂、顔料や添加剤と蒸留水とを用いて、水系塗料を調製した。
 樹脂(A1)、非酸化物セラミックス粒子、硬化剤(C)については、種々の配合比率を用いて水系塗料を調製した。
 本実施例にてシランカップリング剤s1、s2またはs3を用いる場合は、いずれの場合も、前記樹脂(A1)の不揮発分100質量部に対し5質量部となるように水系塗装用組成物に添加した。
 本実施例にて防錆剤i1またはi3を用いる場合は、いずれの場合も、水系塗装用組成物の不揮発分100質量部に対し10質量部となるように塗装用組成物に添加した。防錆剤i2を用いる場合は、塗装用組成物の不揮発分100質量部に対し5質量部となるように塗装用組成物に添加した。
 本実施例にて着色顔料p1またはp2を用いる場合は、水系塗装用組成物の不揮発分100質量部に対し20質量部となるように塗装用組成物に添加した。p3を用いる場合は、いずれの場合も、水系塗装用組成物の不揮発分100質量部に対し10質量部となるように塗装用組成物に添加した。
 水系塗料中に分散した非酸化物セラミックス粒子の沈降を抑止するため、本実施例のすべての水系塗装用組成物に、塗装用組成物にチクソトロピックな性質(揺変性)を付与できる粘度調整剤v1を添加した。水系塗装用組成物の水分と不揮発分とを含めた全体量の100質量部に対し、粘度調整剤v1を0.03~0.1質量部添加した。v1の添加量は、それぞれの塗装用組成物に剪断応力(攪拌)を加えた場合に適度な粘度レベルに下がるように調整した。
 表1~表13に、各水系塗料に含まれる樹脂((A1)または(A1)以外の樹脂)、非酸化物セラミックス粒子((B)または(B)以外の非酸化物セラミックス粒子)、硬化剤(C)、シランカップリング剤(s)、防錆剤、着色顔料、粘度調整剤の有無や種類を示す。樹脂(A1)として、前記樹脂A16とA19の不揮発分質量比1:1の混合樹脂も用い、A16/A19混合物と記した(表12)。また、非酸化物セラミックス粒子については、樹脂不揮発分と非酸化物セラミックス粒子の総量に対する非酸化物セラミックス粒子の比率を体積%で示した。硬化剤(C)については、樹脂不揮発分と硬化剤(C)の総量に対する硬化剤(C)の比率を質量%で示した。
 ここで、「不揮発分」とは、塗料や組成物に溶媒として配合されている水や溶剤類を揮発させた後に残る成分のことを意味する。
 水系塗装用組成物の不揮発分濃度は、狙いの皮膜付着量や良好な塗装性を得るため、水の添加量を変えて適宜調整した。
 前記水系塗装用組成物を調製し各成分を均一に分散後、容器を密栓し、25℃で2日間静置した。その後、前記の塗装用金属板にロールコーターを用いて塗布し、これを熱風炉にて金属表面到達温度200℃で乾燥し、水冷、風乾した。また、下記の「3.性能評価(5)非酸化物セラミックス粒子配合による塗膜の色変化」での比較板とするため、前記水系塗料から非酸化物セラミックス粒子のみを抜いた水系塗装用組成物を別に調製し、前記と同様の製膜方法で、評価対象の塗装金属板と同様の塗膜厚となるように着色阻害性評価用の比較板を作成した。表1~表13に、製膜後の塗膜厚(μm単位)を示した。なお、前記塗膜厚は、塗装後の塗膜の剥離前後の質量差を塗膜比重で除算して算出した。塗膜比重は、塗膜構成成分の配合量と各成分の既知比重から計算した。
 3.性能評価
 前記の方法で作成した塗装金属板を用い、溶接性、表面接触抵抗、耐食性、非酸化物セラミックス粒子配合による塗膜の色変化について評価を行った。以下に、各試験と評価の方法を示す。
 (1)スポット溶接性
 先端径5mm、R40のCF型Cr−Cu電極を用い、加圧力1.96kN、溶接電流8kA、通電時間12サイクル/50Hzにて連続打点性の溶接試験を行い、ナゲット径が3√t(tは板厚)を切る直前の打点数を求めた。以下の評価点を用いてスポット溶接性の優劣を評価した。
 4: 打点数が2000点以上
 3: 1000点以上、2000点未満
 2: 500点以上、1000点未満
 1: 500点未満
 溶接不可: ナゲットが生成せず1点も溶接できない
 (2)アース性
 三菱化学(株)製の抵抗率計ロレスタEP(MCP−T360型)とESPプローブを用いた4端子4探針法、定電流印加方式で、塗装金属板上の異なる10点での接触抵抗を測定し、相加平均値をその塗装金属板の表面接触抵抗値とした。以下の評価点を用いてアース性の優劣を評価した。
 6: 表面接触抵抗が10−4Ω未満
 5: 10−4Ω以上、10−3Ω未満
 4: 10−3Ω以上、10−1Ω未満
 3: 10−1Ω以上、10Ω未満
 2: 10Ω以上、10Ω未満
 1: 10Ω以上
 (3)平面部耐食性
 前記金属板から50×100mmサイズの試験片を切り出し、板の端部をシール後、JIS−Z2371に準拠した塩水噴霧試験を行い、120時間後の白錆発生面積率を測定した。以下の評価点を用いて平面部耐食性の優劣を評価した。
 6: 白錆発生なし
 5: 白錆発生面積率3%未満
 4: 白錆発生面積率3%以上5%未満
 3: 白錆発生面積率5%以上10%未満
 2: 白錆発生面積率10%以上20%未満
 1: 白錆発生面積率20%以上
 (4)加工部耐食性
 前記金属板から50×100mmサイズの試験片を切り出し、エリクセン試験機で塗装面の裏側から7mm高さの張出し加工を行い、板の端部をシール後、JIS−Z2371に準拠した塩水噴霧試験を行い、120時間後の凸部の白錆発生面積率を測定した。以下の評価点を用いて加工部耐食性の優劣を評価した。
 6: 凸部に白錆発生なし
 5: 白錆発生面積率5%未満
 4: 白錆発生面積率5%以上10%未満
 3: 白錆発生面積率10%以上20%未満
 2: 白錆発生面積率20%以上30%未満
 1: 白錆発生面積率30%以上
 (5)非酸化物セラミックス粒子配合による塗膜の色変化
 前記塗装金属板と着色阻害性評価用の比較板(前記塗装金属板の塗膜から非酸化物セラミックス粒子のみを抜いたもの)のそれぞれから測定片を20枚切出し、スガ試験機(株)製分光測色計SC−T45を用い、それぞれの測定片についてL表色系の明度L、色度a、bを測定した。20枚の測定結果の相加平均値をその塗装金属板のL、a、b値とした。前記塗装金属板と比較板のL、a、b値から両板の色差ΔEを算出し、以下の評価点を用いて、非酸化物セラミックス粒子の配合による塗膜の色変化を評価した。
 6: 色差ΔEが0.3未満
 5: 0.3以上、0.6未満
 4: 0.6以上、1.0未満
 3: 1.0以上、2.0未満
 2: 2.0以上、4.0未満
 1: 4.0以上
 表1~表13に評価結果を併せて示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 本発明例の塗装金属板では、金属板、樹脂(A1)、非酸化物セラミックス粒子(B)の種類に関わらず、優れた導電性と耐食性を両立できる。更に、本発明例の塗装金属板では、塗膜が着色顔料を含まない場合(クリア塗膜)、着色顔料を含む場合(カラー塗膜)に関わらず、非酸化物セラミックス粒子(B)の色が塗膜色に悪影響を与えにくく、非酸化物セラミックス粒子が塗膜の外観設計を殆ど妨げないことがわかる。このような効果は、優れた導電性を保持する特定の非酸化物セラミックス粒子(B)を、塗膜に少量だけ配合しているために生じる。
 カルボキシル基、スルホン酸基のグループをグループ1、エステル基、ウレタン基、ウレア基のグループをグループ2とすると、実施例で用いた樹脂(A1)の中で、樹脂A11(カルボキシル基含有ポリエステル系ウレタン樹脂)、A12(スルホン酸基含有ポリエステル系ウレタン樹脂)、A16(カルボキシル基、ウレア基含有ポリウレタン樹脂)、A19(スルホン酸基含有ポリエステル樹脂)は、グループ1から選ばれる官能基とグループ2から選ばれる官能基の両方を樹脂構造中に沢山含む。また、樹脂(A1)の中で、樹脂A13(水酸基を導入したカルボキシル基含有ポリエステル樹脂)は、グループ2から選ばれる官能基は十分に含むが、構造中に導入した水酸基の分だけカルボキシル基が減っており、従ってグループ1から選ばれる官能基は少ししか含まない。樹脂(A1)の中で、樹脂A17(アクリル樹脂)はグループ1から選ばれる官能基しか含まない。
 一方、樹脂A15(ノニオン性ポリエーテル系ウレタン樹脂)はグループ2から選ばれる官能基しか含まず、樹脂A18(アミノ基含有エポキシ樹脂)は、グループ1、グループ2のいずれの官能基も含まず、いずれも本発明の樹脂(A1)ではない。このような樹脂構造の特徴を反映して、グループ1とグループ2の両方の官能基を沢山含む樹脂A11、A12、A16、A19からなる塗膜の耐食性は、そうでない塗膜、例えば、グループ1とグループ2の両方共含まない樹脂A18からなる塗膜よりかなり優れる傾向にある。
 この理由は、<有機樹脂(A)>の項で述べたように、樹脂構造にカルボキシル基やスルホン酸基があれば、基材である金属板(下地処理がある場合は下地処理層)との密着性が向上して耐食性を高める効果があり、加えて、構造中に比較的高い凝集エネルギーを持つエステル基、ウレタン基、ウレア基があれば、密着性や腐食因子遮蔽性(塗膜の緻密性)が向上して耐食性を更に高める効果があるため、と考えられる。
 また、カルボキシル基またはスルホン酸基を樹脂構造中に沢山含むA11、A12、A16、A19、またはA16とA19の混合樹脂からなる塗膜は、これらの官能基を含まないA15やA18からなる塗膜より導電性が向上している。また、非酸化物セラミックス粒子(B)の色は、塗膜色に悪影響を与えにくく、塗膜の外観設計を妨げにくい。<有機樹脂(A)>の項で述べたように、カルボキシル基やスルホン酸基は、極性の非酸化物セラミックス粒子(B)の表面に吸着し、非酸化物セラミックス粒子(B)どうしの凝集を防ぎ分散性を保つ効果がある。そのため、塗膜中に均一に分散した粒子(B)が良好な塗膜導電性(溶接性やアース性)をもたらし、同時に、塗膜表面に色むらや筋むら等が生じにくく、結果として目立った色変化が抑えられると考えられる。
 塗装用組成物に硬化剤(C)、シランカップリング剤、防錆剤を、それぞれ配合すると、そうでない場合に比べ、耐食性が向上する傾向がある。
 電気抵抗率が185×10−6Ωcmを超える非酸化物セラミックスの粒子(TaN、BN)を用いた場合、得られた塗装金属板は所望の導電性を有しない。
 樹脂(A1)と非酸化物セラミックス粒子(B)との体積比が本発明の範囲を外れる場合、導電性と耐食性を両立できない。特に、非酸化物セラミックス粒子(B)が多すぎる場合(樹脂(A1)と非酸化物セラミックス粒子(B)の総量に対する(B)の体積比が10体積%を超える場合)、所望の導電性は得られるが、非酸化物セラミックス粒子(B)の色が塗膜色に悪影響を与えやすくなる。
 塗膜厚が好ましい厚み範囲より薄い場合、耐食性が低い傾向があり、厚い場合は導電性が低下する傾向がある。
 以上述べてきたように、本発明によれば、塗膜導電性(アース性、溶接性)と耐食性に優れる塗装金属板が得られる。また、この塗装金属板は、導電性確保に必要な非酸化物セラミックス粒子の塗膜への配合量が少ないため、着色顔料による塗膜着色性に優れ、非酸化物セラミックス粒子が塗膜の外観設計を妨げない。そのため、例えば、アース性や溶接性、耐食性が必要で外観設計も重要な屋内家電部材や内装建材等の用途として、従来のプレコート金属板より安価に素材を提供することができる。

Claims (11)

  1.  金属板の少なくとも片面に、有機樹脂(A)と、25℃の電気抵抗率が0.1×10−6~185×10−6Ωcmのホウ化物、炭化物、窒化物、ケイ化物から選ばれる非酸化物セラミックス粒子(B)とを含む塗膜(α)が形成されており、前記塗膜(α)中の有機樹脂(A)と非酸化物セラミックス粒子(B)の25℃での体積比が90:10~99.9:0.1であり、前記有機樹脂(A)が、カルボキシル基、スルホン酸基から選ばれる少なくとも1種の官能基を構造中に含む樹脂(A1)、または更に該樹脂(A1)の誘導体(A2)を含むことを特徴とする、導電性、耐食性塗装金属板。
  2.  前記非酸化物セラミックス粒子(B)の25℃の電気抵抗率が0.1×10−6~100×10−6Ωcmであることを特徴とする、請求項1に記載の導電性、耐食性塗装金属板。
  3.  前記塗膜(α)の膜厚が2~10μmであることを特徴とする、請求項1または2に記載の導電性、耐食性塗装金属板。
  4.  前記樹脂(A1)または該樹脂(A1)の誘導体(A2)が、更にエステル基、ウレタン基、ウレア基から選ばれる少なくとも1種の官能基を構造中に含むことを特徴とする、請求項1または2に記載の導電性、耐食性塗装金属板。
  5.  前記樹脂(A1)が構造中にウレア基を含むポリウレタン樹脂(A1u)であることを特徴とする、請求項4に記載の導電性、耐食性塗装金属板。
  6.  前記樹脂(A1)が構造中にウレア基を含むポリウレタン樹脂(A1u)と、カルボン酸成分として芳香族ジカルボン酸を含み、構造中にスルホン酸基を含むポリエステル樹脂(A1e)との混合樹脂であることを特徴とする、請求項5に記載の導電性、耐食性塗装金属板。
  7.  前記樹脂(A1)の誘導体(A2)が、下記一般式(I):
    Figure JPOXMLDOC01-appb-I000001
     (式中、「A1」の表記は樹脂(A1)を示し、「Z−」は炭素原子数1~9、窒素原子数0~2、酸素原子数0~2の炭化水素鎖で、「A1~Z」の表記は、「A1」と「Z」が両者の官能基を介して共有結合していることを示す。また、「−O−」はエーテル結合であり、「−OH」は水酸基であり、「−X」は炭素原子数1~3の加水分解性アルコキシ基、加水分解性ハロゲノ基または加水分解性アセトキシ基であり、「−R」は炭素原子数1~3のアルキル基であり、置換基の数を示すa、b、c、dはいずれも0~3の整数で、かつa+b+c+d=3である。)
    で表される樹脂(A2Si)であることを特徴とする、請求項1または2に記載の導電性、耐食性塗装金属板。
  8.  前記有機樹脂(A)が硬化剤(C)で硬化された樹脂であることを特徴とする、請求項1または2に記載の導電性、耐食性塗装金属板。
  9.  前記硬化剤(C)がメラミン樹脂(C1)を含有することを特徴とする、請求項8に記載の導電性、耐食性塗装金属板。
  10.  前記非酸化物セラミックス粒子(B)が、ホウ化物セラミックス、MoB、MoB、MoB、NbB、NbB、TaB、TaB、TiB、TiB、VB、VB、W、またはZrB、炭化物セラミックスBC、MoC、MoC、NbC、NbC、SiC、TaC、TaC、TiC、VC、VC、WC、WC、またはZrC、窒化物セラミックスMoN、NbN、NbN、TaN、TiN、またはZrN、ケイ化物セラミックスMoSi、MoSi、NbSi、TaSi、TaSi、TiSi、TiSi、VSi、VSi、WSi、WSi、ZrSi、またはZrSi、または、これらから選ばれる2種以上の混合物であることを特徴とする、請求項1または2に記載の導電性、耐食性塗装金属板。
  11.  前記塗膜(α)が水系塗装用組成物の塗布により形成されていることを特徴とする、請求項1または2に記載の導電性、耐食性塗装金属板。
PCT/JP2011/070414 2010-09-02 2011-09-01 導電性、耐食性に優れる塗装金属板 WO2012029988A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012508708A JP5021107B2 (ja) 2010-09-02 2011-09-01 導電性、耐食性に優れる塗装金属板
CA2809940A CA2809940C (en) 2010-09-02 2011-09-01 Precoated metal sheet excellent in conductivity and corrosion resistance
US13/819,925 US9127367B2 (en) 2010-09-02 2011-09-01 Precoated metal sheet excellent in conductivity and corrosion resistance
KR1020137004369A KR101334553B1 (ko) 2010-09-02 2011-09-01 도전성, 내식성이 우수한 도장 금속판
RU2013114469/05A RU2524937C1 (ru) 2010-09-02 2011-09-01 Металлический лист c предварительно нанесённым покрытием с превосходной проводимостью и коррозионной стойкостью
EP11821998.9A EP2612753B1 (en) 2010-09-02 2011-09-01 Coated metal plate having excellent conductivity and corrosion resistance
CN201180051117.7A CN103180136B (zh) 2010-09-02 2011-09-01 导电性、耐腐蚀性优异的涂装金属板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-196902 2010-09-02
JP2010196902 2010-09-02

Publications (1)

Publication Number Publication Date
WO2012029988A1 true WO2012029988A1 (ja) 2012-03-08

Family

ID=45773056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070414 WO2012029988A1 (ja) 2010-09-02 2011-09-01 導電性、耐食性に優れる塗装金属板

Country Status (10)

Country Link
US (1) US9127367B2 (ja)
EP (1) EP2612753B1 (ja)
JP (1) JP5021107B2 (ja)
KR (1) KR101334553B1 (ja)
CN (1) CN103180136B (ja)
CA (1) CA2809940C (ja)
MY (1) MY159292A (ja)
RU (1) RU2524937C1 (ja)
TW (1) TWI452094B (ja)
WO (1) WO2012029988A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015202686A (ja) * 2014-04-16 2015-11-16 新日鐵住金株式会社 抵抗溶接性、耐食性、成形性に優れる自動車用塗装金属板
EP2823959A4 (en) * 2012-03-06 2015-11-18 Nippon Steel & Sumitomo Metal Corp COATED METAL PLATE FOR VEHICLES WITH EXCELLENT RESISTANCE TO WELDING, CORROSION RESISTANCE AND FORMABILITY
JP2017121778A (ja) * 2016-01-08 2017-07-13 新日鐵住金株式会社 被覆鋼板
WO2018092244A1 (ja) 2016-11-17 2018-05-24 新日鐵住金株式会社 表面処理鋼板および塗装部材
CN108284649A (zh) * 2012-03-30 2018-07-17 日新制钢株式会社 涂装金属原料型材
TWI679303B (zh) * 2016-03-09 2019-12-11 日商日本製鐵股份有限公司 表面處理鋼板及表面處理鋼板的製造方法
WO2020202461A1 (ja) 2019-04-02 2020-10-08 日本製鉄株式会社 金属-炭素繊維強化樹脂材料複合体および金属-炭素繊維強化樹脂材料複合体の製造方法
JP2021134280A (ja) * 2020-02-27 2021-09-13 トヨタ自動車株式会社 導電性皮膜を形成するための組成物及び導電性皮膜の製造方法
JP2022509926A (ja) * 2018-11-12 2022-01-25 ポスコ 有機/無機複合コーティング組成物及びこれを利用して表面処理された亜鉛めっき鋼板
US11969969B2 (en) 2019-04-02 2024-04-30 Nippon Steel Corporation Metal-carbon fiber reinforced resin material composite and method for manufacturing metal-carbon fiber reinforced resin material composite

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011079813A1 (de) * 2011-07-26 2013-01-31 Siemens Aktiengesellschaft Spannungsbegrenzende Zusammensetzung
WO2015052546A1 (fr) * 2013-10-09 2015-04-16 ArcelorMittal Investigación y Desarrollo, S.L. Tôle à revêtement znaimg à flexibilité améliorée et procédé de réalisation correspondant
CN104259752B (zh) * 2014-08-07 2016-08-31 兰宝琴 一种烤漆铝合金板的制造方法
GB2538899B (en) * 2014-09-03 2017-04-12 Schlumberger Holdings A Method of Corrosion inhibition of Duplex Steel
CN106661304B (zh) * 2014-09-11 2019-12-27 旭化成株式会社 热板非接触熔接用甲基丙烯酸系树脂组合物、成型体及其制造方法
US10913860B2 (en) 2014-09-30 2021-02-09 Nippon Steel Corporation Coated metal sheet for automobile excellent in rust resistance in low temperature running environments
JP6531955B2 (ja) * 2014-11-11 2019-06-19 国立研究開発法人物質・材料研究機構 タンニン酸誘導体を含む皮膜形成性組成物
KR101704141B1 (ko) * 2014-12-24 2017-02-07 현대자동차주식회사 고경도 클리어 코팅재
RU2578243C1 (ru) * 2015-03-30 2016-03-27 Николай Николаевич Петров Способ диагностирования скрытого коррозионного дефекта под покрытием
EP3279369B1 (en) * 2015-03-31 2020-09-23 Nippon Steel Corporation Surface-treated metal sheet, coated member and method for producing coated member
KR101786346B1 (ko) * 2016-05-20 2017-10-17 현대자동차주식회사 클래드강 코팅 방법 및 코팅액
US9957394B2 (en) * 2016-09-07 2018-05-01 Ppg Industries Ohio, Inc. Methods for preparing powder coating compositions
US10246623B2 (en) * 2016-09-21 2019-04-02 NAiEEL Technology Resin composition, article prepared by using the same, and method of preparing the same
WO2018081613A1 (en) 2016-10-28 2018-05-03 Ppg Industries Ohio, Inc. Coatings for increasing near-infrared detection distances
CN108384448B (zh) * 2017-05-17 2019-10-29 东华大学 一种仿贝壳结构的复合纳米防腐涂层及其制备方法
CN107083162A (zh) * 2017-06-01 2017-08-22 宁海仁元电子材料有限公司 一种导电涂料
JP6953260B2 (ja) * 2017-09-29 2021-10-27 大日本塗料株式会社 塗料組成物及び塗装方法
KR102131512B1 (ko) * 2018-09-28 2020-07-07 주식회사 포스코 연료탱크 강판용 복합수지 조성물, 이를 이용한 복합수지코팅강판 및 그 제조방법
US11461607B2 (en) 2018-11-13 2022-10-04 Ppg Industries Ohio, Inc. Method of detecting a concealed pattern
CN109627747A (zh) * 2018-12-05 2019-04-16 湖北大学 一种耐热及抗静电水性聚氨酯/二硼化钛复合材料的制备
RU2689567C1 (ru) * 2018-12-21 2019-05-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Композиция для покрытия рулонного и листового металла, предназначенного для изготовления консервной тары
CN109880500A (zh) * 2019-01-28 2019-06-14 南京林业大学 纳米碳化硼改性水性聚氨酯高耐磨涂料的制备方法
KR102091969B1 (ko) * 2019-03-29 2020-03-23 오현철 전도성 도료 조성물
CN112048115B (zh) * 2019-06-06 2023-09-26 神华(北京)新材料科技有限公司 金属与聚烯烃的复合材料及其制备方法和容器
CN110562982B (zh) * 2019-10-16 2021-08-24 陕西科技大学 一种纳米碳化二钨颗粒及其制备方法和应用
JP2021160117A (ja) * 2020-03-31 2021-10-11 株式会社日立製作所 積層体、金属めっき液、および積層体の製造方法
KR102597641B1 (ko) * 2020-05-29 2023-11-06 주식회사 젠픽스 흡음용 불연 천장재 및 그 제조 방법

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517508A (en) 1978-07-25 1980-02-07 Kawasaki Steel Co Compound coating steel plate for high anticorrosive working that have excellent adherence property
JPH07313930A (ja) 1994-05-24 1995-12-05 Nippon Steel Corp 導電性プレコート金属板
JPH08267656A (ja) * 1995-04-03 1996-10-15 Nippon Steel Corp 無塗油型有機被覆金属板
JPH09276788A (ja) 1996-04-18 1997-10-28 Nippon Steel Corp 耐食性およびプレス成形性に優れる抵抗溶接可能有機複合めっき鋼板
JPH10128906A (ja) * 1996-10-29 1998-05-19 Nkk Corp 耐食性と加工性に優れた溶接可能な自動車用プレプライムド鋼板
JPH11138095A (ja) 1997-11-06 1999-05-25 Nippon Steel Corp 燃料タンク用有機被覆鋼板
JP2000212764A (ja) 1999-01-27 2000-08-02 Kobe Steel Ltd シャ―シ用プレコ―トアルミニウム又はアルミニウム合金材
JP2003513141A (ja) 1999-10-23 2003-04-08 日本パーカライジング株式会社 導電性有機塗料
JP2003268567A (ja) 2002-03-19 2003-09-25 Hitachi Cable Ltd 導電材被覆耐食性金属材料
JP2004017455A (ja) 2002-06-14 2004-01-22 Furukawa Electric Co Ltd:The 樹脂被覆金属板材、それを用いた電気・電子機器
JP2005288730A (ja) 2004-03-31 2005-10-20 Jfe Steel Kk 溶接可能な自動車用有機被覆鋼板

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4079163A (en) * 1974-11-29 1978-03-14 Nippon Steel Corporation Weldable coated steel sheet
JP2000203588A (ja) * 1998-10-19 2000-07-25 Nisshin Steel Co Ltd 燃料タンク用Al系めっき鋼板およびその鋼板による燃料タンクの製造方法
US6465114B1 (en) * 1999-05-24 2002-10-15 Nippon Steel Corporation -Zn coated steel material, ZN coated steel sheet and painted steel sheet excellent in corrosion resistance, and method of producing the same
US20050137291A1 (en) * 2003-12-17 2005-06-23 Schneider John R. Coating compositions with enhanced corrosion resistance and appearance
EP1753798B1 (en) * 2004-05-24 2021-01-27 Hontek Corporation Abrasion resistant coatings
US20080171211A1 (en) * 2004-08-03 2008-07-17 Chemetall Gmbh Method For Protecting A Metal Surface By Means Of A Corrosion-Inhibiting Coating
DK1917111T3 (en) * 2005-08-24 2015-04-27 A M Ramp & Co Gmbh A process for the preparation of articles with electrically conductive coating
US7699916B1 (en) 2008-05-28 2010-04-20 The United States Of America As Represented By The United States Department Of Energy Corrosion-resistant, electrically-conductive plate for use in a fuel cell stack
TWI393755B (zh) * 2008-11-28 2013-04-21 Ind Tech Res Inst 粉體塗裝之塗料及方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517508A (en) 1978-07-25 1980-02-07 Kawasaki Steel Co Compound coating steel plate for high anticorrosive working that have excellent adherence property
JPH07313930A (ja) 1994-05-24 1995-12-05 Nippon Steel Corp 導電性プレコート金属板
JPH08267656A (ja) * 1995-04-03 1996-10-15 Nippon Steel Corp 無塗油型有機被覆金属板
JPH09276788A (ja) 1996-04-18 1997-10-28 Nippon Steel Corp 耐食性およびプレス成形性に優れる抵抗溶接可能有機複合めっき鋼板
JPH10128906A (ja) * 1996-10-29 1998-05-19 Nkk Corp 耐食性と加工性に優れた溶接可能な自動車用プレプライムド鋼板
JPH11138095A (ja) 1997-11-06 1999-05-25 Nippon Steel Corp 燃料タンク用有機被覆鋼板
JP2000212764A (ja) 1999-01-27 2000-08-02 Kobe Steel Ltd シャ―シ用プレコ―トアルミニウム又はアルミニウム合金材
JP2003513141A (ja) 1999-10-23 2003-04-08 日本パーカライジング株式会社 導電性有機塗料
JP2003268567A (ja) 2002-03-19 2003-09-25 Hitachi Cable Ltd 導電材被覆耐食性金属材料
JP2004017455A (ja) 2002-06-14 2004-01-22 Furukawa Electric Co Ltd:The 樹脂被覆金属板材、それを用いた電気・電子機器
JP2005288730A (ja) 2004-03-31 2005-10-20 Jfe Steel Kk 溶接可能な自動車用有機被覆鋼板

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2823959A4 (en) * 2012-03-06 2015-11-18 Nippon Steel & Sumitomo Metal Corp COATED METAL PLATE FOR VEHICLES WITH EXCELLENT RESISTANCE TO WELDING, CORROSION RESISTANCE AND FORMABILITY
CN108284649A (zh) * 2012-03-30 2018-07-17 日新制钢株式会社 涂装金属原料型材
JP2015202686A (ja) * 2014-04-16 2015-11-16 新日鐵住金株式会社 抵抗溶接性、耐食性、成形性に優れる自動車用塗装金属板
JP2017121778A (ja) * 2016-01-08 2017-07-13 新日鐵住金株式会社 被覆鋼板
TWI679303B (zh) * 2016-03-09 2019-12-11 日商日本製鐵股份有限公司 表面處理鋼板及表面處理鋼板的製造方法
US11091839B2 (en) 2016-03-09 2021-08-17 Nippon Steel Corporation Surface-treated steel sheet and method for producing surface-treated steel sheet
WO2018092244A1 (ja) 2016-11-17 2018-05-24 新日鐵住金株式会社 表面処理鋼板および塗装部材
KR20190082862A (ko) 2016-11-17 2019-07-10 닛폰세이테츠 가부시키가이샤 표면 처리 강판 및 도장 부재
US11555125B2 (en) 2016-11-17 2023-01-17 Nippon Steel Corporation Coated steel sheet and painted member
JP2022509926A (ja) * 2018-11-12 2022-01-25 ポスコ 有機/無機複合コーティング組成物及びこれを利用して表面処理された亜鉛めっき鋼板
JP7216355B2 (ja) 2018-11-12 2023-02-01 ポスコホールディングス インコーポレーティッド 有機/無機複合コーティング組成物及びこれを利用して表面処理された亜鉛めっき鋼板
WO2020202461A1 (ja) 2019-04-02 2020-10-08 日本製鉄株式会社 金属-炭素繊維強化樹脂材料複合体および金属-炭素繊維強化樹脂材料複合体の製造方法
US11969969B2 (en) 2019-04-02 2024-04-30 Nippon Steel Corporation Metal-carbon fiber reinforced resin material composite and method for manufacturing metal-carbon fiber reinforced resin material composite
JP2021134280A (ja) * 2020-02-27 2021-09-13 トヨタ自動車株式会社 導電性皮膜を形成するための組成物及び導電性皮膜の製造方法
JP7388947B2 (ja) 2020-02-27 2023-11-29 トヨタ自動車株式会社 導電性皮膜を形成するための組成物及び導電性皮膜の製造方法

Also Published As

Publication number Publication date
CN103180136B (zh) 2014-07-16
EP2612753A4 (en) 2014-10-08
TW201221594A (en) 2012-06-01
CN103180136A (zh) 2013-06-26
JPWO2012029988A1 (ja) 2013-10-31
JP5021107B2 (ja) 2012-09-05
CA2809940C (en) 2014-07-08
RU2524937C1 (ru) 2014-08-10
CA2809940A1 (en) 2012-03-08
TWI452094B (zh) 2014-09-11
US20130161062A1 (en) 2013-06-27
KR20130039336A (ko) 2013-04-19
US9127367B2 (en) 2015-09-08
EP2612753A1 (en) 2013-07-10
KR101334553B1 (ko) 2013-11-28
MY159292A (en) 2016-12-30
EP2612753B1 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
JP5021107B2 (ja) 導電性、耐食性に優れる塗装金属板
JP5940097B2 (ja) 抵抗溶接性、耐食性、成形性に優れる自動車用塗装金属板
JP6023613B2 (ja) 表面処理鋼板の製造方法
AU2012330587B2 (en) Chromate-free coated metal sheet having metallic appearance and water-based coating composition used in the same
JP5765249B2 (ja) 導電性と耐食性に優れる塗膜形成用の水系組成物
JPH05331412A (ja) 塗料組成物
JP6366333B2 (ja) 抵抗溶接性、耐食性、成形性に優れる自動車用塗装金属板
JP5799770B2 (ja) クロメートフリー塗装めっき鋼板
JP5640924B2 (ja) 導電性、耐食性に優れる塗装金属板
JP6123868B2 (ja) クロメートフリー着色塗装金属板の製造方法
JP5927857B2 (ja) クロメートフリー着色塗装金属板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012508708

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821998

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011821998

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137004369

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2809940

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13819925

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013114469

Country of ref document: RU

Kind code of ref document: A