WO2011155165A1 - 樹脂封止型半導体装置及びその製造方法 - Google Patents

樹脂封止型半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2011155165A1
WO2011155165A1 PCT/JP2011/003135 JP2011003135W WO2011155165A1 WO 2011155165 A1 WO2011155165 A1 WO 2011155165A1 JP 2011003135 W JP2011003135 W JP 2011003135W WO 2011155165 A1 WO2011155165 A1 WO 2011155165A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
resin
die pad
lead frame
semiconductor device
Prior art date
Application number
PCT/JP2011/003135
Other languages
English (en)
French (fr)
Inventor
南尾 匡紀
井島 新一
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP11792124.7A priority Critical patent/EP2581937B1/en
Priority to CN201180002487.1A priority patent/CN102473700B/zh
Priority to JP2011543751A priority patent/JP5478638B2/ja
Priority to US13/382,244 priority patent/US8471373B2/en
Publication of WO2011155165A1 publication Critical patent/WO2011155165A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49537Plurality of lead frames mounted in one device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4901Structure
    • H01L2224/4903Connectors having different sizes, e.g. different diameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Definitions

  • the present invention relates to a resin-encapsulated semiconductor device and a manufacturing method thereof.
  • a first lead frame on which a power element is mounted and a second lead frame on which a control element for controlling the power element is three-dimensionally arranged and sealed in an exterior body made of a resin material.
  • the resin-encapsulated semiconductor device is reduced in size and weight (for example, see Patent Document 1).
  • a power chip and a control chip that controls the power chip are directly connected by a wire without using a pad, and further encapsulated by a mold resin material. Yes.
  • the die pad portion of the lead holding the control chip is three-dimensionally arranged so as to be higher than the die pad portion of the lead holding the power chip. Thereby, the length of the wire is shortened.
  • the power chip and the control chip are directly connected by the wire, the reliability is improved. Furthermore, since the two die pad portions are arranged so that their edges overlap each other when viewed from above (in plan view), the resin-encapsulated semiconductor device can be reduced in size.
  • control chip and the power chip that are three-dimensionally arranged so as to overlap each other in plan view.
  • control chip and the power chip are arranged so as to overlap each other in plan view, the control chip and the power chip cannot be directly connected with a wire. That is, there is a problem that the configuration of the conventional resin-encapsulated semiconductor device cannot be further reduced in size.
  • An object of the present invention is to solve the above problems and to further reduce the size of a semiconductor device while adopting a three-dimensional structure in a resin-encapsulated semiconductor device that seals a plurality of chips and a manufacturing method thereof. .
  • a resin-encapsulated semiconductor device includes a first element and a second element, a first die pad portion that holds the first element on the upper surface, and a plurality of first leads.
  • the first lead and the second lead are directly connected to each other at the first joint portion inside the exterior body. And is electrically connected.
  • a first protrusion is formed in advance on one of the plurality of first leads in the first lead frame.
  • the first lead frame is placed on the lower mold, and the first convex portion is the first hole.
  • the second lead frame is placed on the first lead frame so as to be inserted into the first lead frame, and a weight is applied to the first convex portion inserted into the first hole by the insertion pin provided in the upper mold,
  • An exterior body made of a sealing resin material is formed by joining the first protrusion and the first hole and injecting a sealing resin material between the lower mold and the upper mold. To do.
  • the semiconductor device can be further miniaturized while adopting a three-dimensional structure.
  • FIG. 1 is a plan view showing a resin-encapsulated semiconductor device according to the first embodiment of the present invention.
  • FIG. 2 is a bottom view showing the resin-encapsulated semiconductor device according to the first embodiment of the present invention.
  • 3 is a cross-sectional view taken along line III-III in FIG.
  • FIG. 4 is an enlarged partial cross-sectional view of region B in FIG.
  • FIG. 5 is a plan view showing the internal structure of the resin-encapsulated semiconductor device according to the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of one step showing the method for manufacturing the resin-encapsulated semiconductor device according to the first embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of one step showing the method for manufacturing the resin-encapsulated semiconductor device according to the first embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of one process showing the method for manufacturing the resin-encapsulated semiconductor device according to the first embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of one step showing the method for manufacturing the resin-encapsulated semiconductor device according to the first embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of one process showing the method for manufacturing the resin-encapsulated semiconductor device according to the first embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of one step showing the method for manufacturing the resin-encapsulated semiconductor device according to the first embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of one step showing the method for manufacturing the resin-encapsulated semiconductor device according to the first embodiment of the present invention.
  • FIG. 13 is a cross-sectional view of one step showing the method for manufacturing the resin-encapsulated semiconductor device according to the first embodiment of the present invention.
  • FIG. 14 is a sectional view showing a resin-encapsulated semiconductor device according to the second embodiment of the present invention.
  • FIG. 15 is a plan view showing the internal structure of the resin-encapsulated semiconductor device according to the second embodiment of the present invention.
  • FIG. 16 is a sectional view showing a resin-encapsulated semiconductor device according to the third embodiment of the present invention.
  • FIG. 17 is a plan view showing the internal structure of a resin-encapsulated semiconductor device according to the third embodiment of the present invention.
  • FIG. 18 is a cross-sectional view of one process showing a method for manufacturing a resin-encapsulated semiconductor device according to the third embodiment of the present invention.
  • the resin-encapsulated semiconductor device includes a first lead frame 3 that holds a power element 1 as a first element on a first die pad portion 3A, A second lead frame 5 that holds the two control elements 4 on the second die pad portion 5A; a heat radiating plate 2 fixed to the lower surface of the first lead frame 3 with an insulating sheet 10 interposed therebetween; It is comprised from the exterior body 6 which consists of resin materials.
  • the exterior body 6 covers one end of the first lead frame 3 including the power element 1 and one end of the second lead frame 5 including the control element 4 and exposes the lower surface of the heat sink 2. Formed as follows.
  • At least a part of the first die pad portion 3A and the second die pad portion 5A overlap each other in plan view in order to reduce the size of the resin-encapsulated semiconductor device. Furthermore, at least a part of the power element 1 and the control element 4 are arranged so as to overlap each other in plan view.
  • the power element 1 and the control element 4 cannot be directly connected by the wire 32 made of, for example, gold (Au). Therefore, in the resin-encapsulated semiconductor device according to the present embodiment, in the first lead frame 1, one of the plurality of leads is used as the power element relay lead 21. In the second lead frame 5, one of the plurality of leads is used as a control element relay lead 22. The ends of the power element relay lead 21 and the control element relay lead 22 are joined together by a joint 23 (first joint).
  • the power element 1 and the control element 4 on the power element 1 form a pair.
  • the resin-encapsulated semiconductor device according to the present embodiment employs a configuration including two or more pairs of the power element 1 and the control element 4.
  • the present invention is effective even if the power element 1 and the control element 4 have only one pair.
  • the pair of elements is not limited to a combination of a power element and a control element.
  • the first lead frame 3 is made of a highly conductive metal such as copper (Cu).
  • the first lead frame 3 has a plurality of leads including the first die pad portion 3A.
  • an IGBT insulated gate bipolar transistor
  • a power MOSFET metal oxide field effect transistor
  • the power element 1 is fixed to the upper surface of the first die pad portion 3 ⁇ / b> A of the first lead frame 3 with a brazing material 8. Bonding pads (not shown) in the power element 1 and the plurality of leads of the first lead frame 3 are electrically connected to each other by wires 31 as shown in FIGS.
  • wires 31 for example, aluminum (Al) can be used.
  • the wire 31 may be a ribbon made of Al or a clip made of copper (Cu) instead of the wire. Since a ribbon made of aluminum and a clip made of copper (Cu) can have a larger cross-sectional area than a wire, the wiring resistance value can be reduced and power loss can be reduced.
  • the heat sink 2 can be made of a metal having high thermal conductivity such as copper (Cu) or aluminum (Al).
  • the insulating sheet 10 provided between the heat sink 2 and the first die pad portion 3A is made of an insulating material having thermal conductivity.
  • the insulating sheet 10 has, for example, a three-layer structure in which an insulating layer is sandwiched from above and below by an adhesive layer. With this insulating sheet 10, the heat generated by the power element 1 can be effectively transferred to the heat radiating plate 2 while electrically insulating the heat radiating plate 2 and the first die pad portion 3 ⁇ / b> A.
  • the second lead frame 5 is made of a highly conductive metal such as copper (Cu) or 42 alloy (Fe-42% Ni).
  • the second lead frame 5 has a plurality of leads including the second die pad portion 5A.
  • the control element 4 is an element (chip) that controls the power element 1 and includes a drive circuit and an overcurrent prevention circuit.
  • the control element 4 is fixed to the upper surface of the second die pad portion 5A of the second lead frame 5 with, for example, a silver (Ag) paste material.
  • a bonding pad (not shown) of the control element 4 and the plurality of leads of the second lead frame 5 are electrically connected to each other by a wire 32 made of gold (Au).
  • the second die pad portion 5 ⁇ / b> A that holds the control element 4 is spaced apart from the upper side of the power element 1 and is substantially parallel to the upper surface of the power element 1. Further, the second die pad portion 5 ⁇ / b> A covers at least a part of the wire 31 connected to the power element 1. As a result, the second die pad portion 5A is disposed between the control element 4 and the wire 31 connected to the power element 1 in a direction perpendicular to the upper surface of the power element 1 (in plan view). For this reason, at least a part of the electromagnetic wave noise generated by the wire 31 that is the output signal line of the power element 1 and propagated to the control element 4 can be shielded by the second die pad portion 5A. As a result, malfunction due to electromagnetic wave noise of the control element 4 can be prevented.
  • a plating layer made of a magnetic material such as nickel (Ni) may be formed on at least a part of the second die pad portion 5A, preferably on the lower surface of the second die pad portion 5A.
  • Ni nickel
  • the plating layer is formed in this manner, electromagnetic wave noise generated from the power element 1 can be absorbed by the plating layer. Therefore, by forming the plating layer, the influence of electromagnetic wave noise on the control element 4 can be further reduced.
  • control element 4 needs to be electrically connected to the power element 1 in order to control the power element 1.
  • the second die pad portion 5A that holds the control element 4 is three-dimensionally disposed above the power element 1. Therefore, a bonding pad for input signals from the control element 4 of the power element 1 (hereinafter referred to as power element electrode) and a bonding pad for output signals to the power element 1 of the control element 4 (hereinafter referred to as control element electrode) It is difficult to connect them directly by a wire or the like.
  • the elements are arranged three-dimensionally, in order to connect the power element 1 and the control element 4 with a wire, it is necessary to connect the power element electrode and the control element electrode via a separately provided relay member. is there. Such a joining method is unstable and has a complicated configuration, and thus connection reliability using wires cannot be ensured.
  • the first lead frame 3 is provided with the power element relay lead 21, and the second lead frame 5 is provided with the control element relay lead 22,
  • the power element relay lead 21 and the control element relay lead 22 are joined together by a joint 23.
  • the power element 1 and the control element 4 are electrically connected by joining the leads.
  • the power element electrode and the power element relay lead 21 which is one of the plurality of leads of the first lead frame 3 are electrically connected by a wire 32.
  • the power element relay lead 21 is bent at the end and has a convex portion 21 a (first convex portion) whose upper surface protrudes.
  • a metal plating layer made of a metal having a low contact resistance such as nickel (Ni) or gold (Au) is formed on the surface of the convex portion 21a.
  • the power element relay lead 21 is fixed to the upper surface of the heat sink 2 with the insulating sheet 10 interposed therebetween.
  • control element electrode and the control element relay lead 22 which is one of the plurality of leads of the second lead frame 5 are electrically connected by a wire 32.
  • a hole 22 a (first hole) is formed at the end of the control element relay lead 22.
  • the convex portion 21a of the power element relay lead 21 is fitted into the hole portion 22a of the control element relay lead 22, and the top portion of the convex portion 21a is outside the peripheral portion of the hole portion 22a. It is being crushed toward.
  • a joint portion 23 is formed by the crushed convex portion 21a and the hole portion 22a. That is, the joint 23 between the power element relay lead 21 and the control element relay lead 22 is formed by caulking joint by pressing.
  • the first die pad portion and the second die pad portion are arranged in a three-dimensional structure, that is, so as to overlap each other in plan view, and the first element and the second element cannot be connected to each other with wires.
  • one lead of the plurality of first leads and one lead of the plurality of second leads are directly joined inside the exterior body, Are electrically connected to each other. Therefore, the resin-encapsulated semiconductor device can be sufficiently downsized to such an extent that the first element and the second element cannot be connected to each other with a wire.
  • the hole 22a provided in the relay lead 22 for control elements is formed by punching from below with a press. This is because, if formed by punching in this direction, the outer edge portion of the lower surface of the hole portion 22a is rounded and no burr is formed on the outer extending portion of the lower surface of the hole portion 22a. It is because it becomes easy to insert 21a.
  • connection distance of the wire 31 connecting the power element electrode and the power element relay lead 21 and the connection distance of the wire 32 connecting the control element electrode and the control element relay lead 22 should be as short as possible. Is desirable.
  • connection distance of the wire 32 is shortened, the gate loop length between the power element 1 and the control element 4 is shortened, so that the inductance (L) value is decreased and the influence of noise can be reduced. As a result, malfunction of the control element 4 can be prevented.
  • the exterior body 6 is made of, for example, a thermosetting resin material (sealing resin material) such as epoxy.
  • the exterior body 6 includes the power element 1 and the first die pad part 3A, at least a part (for example, an end part) of the first lead frame 3 including the power element relay lead 21, the control element 4 and the second die pad part 5A, At least a part (for example, an end) of the second lead frame 5 including the control element relay lead 22 and the side surface of the heat sink 2 are covered.
  • the exterior body 6 is intended to integrate the first lead frame 3 and the second lead frame 5 and protect the power element 1 and the control element 4.
  • the lower surface of the heat sink 2 made of copper or aluminum is exposed from the lower surface of the exterior body 6. For this reason, the heat generated from the power element 1 can be efficiently transmitted to the outside. Further, since the side surface of the heat radiating plate 2 is covered with the exterior body 6, the bonding between the heat radiating plate 2 and the first lead frame 3 becomes strong.
  • the other ends of the first lead frame 3 and the second lead frame 5 exposed from the exterior body 6 are connected to a circuit such as an inverter control device as a mounting terminal of the resin-encapsulated semiconductor device.
  • connection state can be inspected from the outside of the exterior body 6.
  • a punching hole may be formed in the second die pad portion 5A by punching. Since the sealing resin material constituting the exterior body 6 is also filled in the punched hole, the second lead frame 5 is more firmly connected to the exterior body 6.
  • the convex part 21 a is formed by bending, for example, at the inner end (die pad part side) of the power element relay lead 21. Form. Subsequently, the power element 1 is fixed to the first die pad portion 3 ⁇ / b> A of the first lead frame 3 by the brazing material 8. Thereafter, a plurality of leads including the relay lead 21 for power element in the first lead frame 3 and the power element electrode of the power element 1 are respectively connected by the wires 31 and 32.
  • a hole 22 a is formed, for example, by pressing at the inner end (die pad side) of the control element relay lead 22.
  • the control element 4 is fixed on the second die pad portion 5A of the second lead frame 5 with a silver paste material.
  • the plurality of leads including the relay lead 22 for the control element in the second lead frame 5 and the control element electrode of the control element 4 are respectively connected by the wire 32.
  • the heat sink 2 to which the insulating sheet 10 is temporarily bonded is placed on the lower mold 12 with the insulating sheet 10 facing up.
  • the first lead frame 3 is placed on the lower mold 12 so that the lower surface of the first die pad portion 3A of the first lead frame 3 and the lower surface of the power element relay lead 21 are in contact with the insulating sheet 10, respectively.
  • the second lead frame 5 is placed so that the hole 22a of the control element relay lead 22 in the second lead frame 5 and the convex portion 21a of the power element relay lead 21 in the first lead frame 3 face each other. It is placed on the first lead frame 3.
  • the second lead frame 5 is pushed in the direction shown by the arrow 51a in FIG. 7, and the convex portion 21a of the power element relay lead 21 is inserted into the hole 22a of the control element relay lead 22.
  • the thickness of the first lead frame 1 that holds the power element relay lead 21 and the power element 1 is larger than the thickness of the second lead frame 1 that holds the control element relay lead 22 and the control element 4.
  • a thicker one is preferred. If it does in this way, the intensity
  • the top of the convex portion 21 a of the power element relay lead 21 can reliably protrude from the hole 22 a of the control element relay lead 22.
  • the first die frame 3 and the second lead frame 5 are moved by the upper die 13 and the lower die 12 by bringing the upper die 13 close to the lower die 12 in the direction indicated by the arrow 51b in FIG. Clamp.
  • the first mold insertion pin 14 is disposed so as to face the convex portion 21 a of the power element relay lead 21.
  • the second mold insertion pin 15 is disposed so as to face a part of the first die pad portion 3A.
  • the first mold insertion pin 14 is lowered in the direction indicated by the arrow 51c in FIG. 9, and the top surface of the convex portion 21 of the power element relay lead 21 protruding from the hole 22a of the control element relay lead 22 is obtained. Is pressed downward.
  • the second die insertion pin 15 is lowered in the direction indicated by the arrow 51d in FIG. 9, and the upper surface of the first die pad portion 3A is pressed downward.
  • the insulating sheet 10 is bonded to the lower surfaces of the first die pad 3 ⁇ / b> A and the power element relay lead 21 in the first lead frame 3.
  • the top of the convex portion 21a of the power element relay lead 21 protruding from the hole 22a of the control element relay lead 22 is removed. Crush.
  • the distal end portion of the first mold insertion pin 14 has a conical shape with the lower portion as the top portion. Since the first mold insertion pin 14 has a conical shape, the top surface of the convex portion 21a of the crushed power element relay lead 21 is formed in the hole 22a of the control element relay lead 22 as shown in FIG. Deforms to spread around the top surface.
  • a sealing resin material 6A such as epoxy is injected between the upper mold 13 and the lower mold 12 in the direction of the arrow 51f by the transfer mold method.
  • the first lead frame 3 and the second lead frame 5 are integrated by fitting the convex portion 21 a of the power element relay lead 21 and the hole 22 a of the control element relay lead 22.
  • the lead frames 3 and 5 do not flutter or bend during the sealing process.
  • the sealing resin material 6 ⁇ / b> A does not leak to the lower surface side of the heat sink 2. Accordingly, the sealing resin material 6A does not go around the lower surface side of the heat sink 2 after resin sealing. As a result, heat radiation from the lower surface side of the heat radiating plate 2 is effectively performed.
  • the mold insertion pins 14 and 15 are raised in the directions of arrows 51g and 51h. At this time, the mold insertion pins 14 and 15 are left for a predetermined time at a position where the lower end surfaces of the mold insertion pins 14 and 15 are aligned with the inner surface of the upper mold 13. Thereby, the curing of the sealing resin material 6 ⁇ / b> A is promoted by the heat propagated from the lower mold 12 and the upper mold 13.
  • an adhesive layer (not shown) constituting the insulating sheet 10 provided between the first die pad portion 3A of the first lead frame 3 and the heat sink 2 is melted and cured. Thereby, the adhesion between the insulating sheet 10 and the lower surface of the first die pad portion 3A and the heat radiating plate 2 is strengthened.
  • the exterior body 6 made of the sealing resin material 6 ⁇ / b> A is taken out from the lower mold 12.
  • the outer end portions of the first lead frame 3 and the second lead frame 5 protrude from the extracted exterior body 6.
  • the first lead frame 3 that holds the power element 1 on the first die pad portion 3A and the second lead frame 5 that holds the control element 4 on the second die pad portion 5A Means that the die pad portions 3A and 5A overlap each other in plan view. Furthermore, since the second die pad portion 5A covers almost the entire surface of the power element 1 positioned below the second die pad portion 5A, the control element 4 held on the second die pad portion 5A has an electromagnetic wave noise from the power element 1. It is shielded by the second die pad portion 5A. Note that the second die pad portion 5A has a higher shielding effect on the control element 4 of electromagnetic noise from the power element 1 when the entire upper surface of the power element 1 is covered.
  • the power element relay lead 21 that is one of the plurality of leads of the first lead frame 3, and the control element relay lead 22 that is one of the plurality of leads of the second lead frame 5, Are joined directly and electrically by the joint 23.
  • the joint 23 it is possible to achieve a three-dimensional arrangement until the first die pad portion 3A holding the power element 1 and the second die pad portion 5A holding the control element 4 overlap each other in plan view. Therefore, the resin-encapsulated semiconductor device can be greatly reduced in size.
  • the power element 1 as the first element is held on the second die pad 5A, and the control element 4 as the second element is held on the first die pad.
  • a configuration in which 3A is held is also possible.
  • the second die pad portion 5A covers the upper side of the power element 1, and the second die pad portion 5A has the first lead frame 3 side.
  • Side surface of the first lead frame 3 has a protruding portion 41 extending toward the first lead frame 3 side.
  • the protruding portion 41 is bent toward the first die pad portion 3A of the first lead frame 3 and joined to the first die pad portion 3A.
  • the protruding portion 41 of the second die pad portion 5A is provided with a hole 41a (second hole).
  • the first lead frame 3 has a convex portion 3c (second convex portion) whose upper surface protrudes upward by bending at the periphery (near) of the first die pad portion 3A for holding the power element 1. Is formed.
  • the convex portion 3c of the first die pad portion 3A and the hole portion 41a of the protruding portion 41 of the second die pad portion 5A are placed on the lower mold 12 so that they face each other, and the convex portion 3c is inserted by a mold insertion pin. Press the top surface.
  • the protruding portion 41 of the second die pad portion 5A and the first die pad portion 3A are mechanically and electrically bonded to form the bonding portion 24 (second bonding portion). Since the joint portion 24 according to the present embodiment is formed in the same manner as the joint portion 23 according to the first embodiment described above, a detailed description of the forming method is omitted.
  • the hole 41a of the protruding portion 41 of the second die pad portion 5A may be formed at the same time in the pressing step of forming the hole 22a of the control element relay lead 22.
  • the convex portion 3c is provided on the first die pad portion 3A itself.
  • a convex portion is provided on a lead portion (not shown) protruding in parallel from the side surface of the first die pad portion 3A. It may be provided and joined to the hole 41a of the protrusion 41 of the second die pad portion 5A.
  • the electromagnetic wave noise generated by the power element 1 is shielded by the second die pad part 5A.
  • a convex portion that forms a joint 25 (third joint) on the GND terminal lead 3 ⁇ / b> B of the plurality of leads constituting the first lead frame 3. 3d (third convex portion) is provided.
  • the joint portion 25 is formed from the convex portion 3d provided on the GND terminal lead 3B and the hole portion 41b (third hole portion) provided in the protruding portion 41 of the second die pad portion 5A. ing.
  • the protrusion 41 provided on the second die pad portion 5A is not bent toward the first die pad portion 3A, the length of the bent portion of the protrusion 41 is shortened. be able to. For this reason, the area of 5 A of 2nd die pad parts can be enlarged.
  • the power element 1 can be covered with the second die pad portion 5A having a larger area, the amount of electromagnetic noise reaching the control element 4 from the power element 1 is further reduced. Thereby, the occurrence of malfunction of the control element 4 is suppressed, and the reliability of the operation of the control element 4 can be further enhanced.
  • the part which forms the junction part 25 in the protrusion part 41 of the second die pad part 5A is bent upward so that the height of the upper surface of the GND terminal lead 3B and the upper surface of the second die pad part 5A coincide with each other. This is to make it happen. In this way, the heights of the upper surfaces of the first lead frame 3 and the second lead frame 5 protruding sideways from the exterior body 6 can be made equal to each other.
  • the third die insertion pin 16 is inserted in the direction of the arrow 51k, and the third die insertion pin 16 is disposed on the lower surface of the GND terminal lead 3B where the convex portion 3d is formed. Subsequently, the convex portion 3d formed on the GND terminal lead 3B is fitted into the hole 41b formed in the protruding portion 41 of the second die pad portion 5A. Subsequently, the fourth mold insertion pin 17 is lowered in the direction of the arrow 51j from above the hole 41b, and the tip of the convex portion 3d is crushed. As a result, the GND terminal lead 3B and the second die pad portion 5A are mechanically and electrically joined to form the joint portion 25.
  • the hole 41b of the protruding portion 41 of the second die pad portion 5A may be formed by a pressing process for forming the hole 22a of the control element relay lead 22.
  • a processing method is not restricted to a bending process. That is, it may be a convex shape, and may be formed by, for example, half cutting.
  • the half-cutting process is a half-cut state immediately before punching into a circular shape, for example, by stopping the punching process by pressing from the lower surface of the relay lead 21 for the power element, and the circular part is connected to the lead.
  • the hole portions 22a, 41a, and 41b are formed in the control element relay lead 22 and the protruding portion 41 of the second die pad 5A, respectively.
  • the hole is not limited to the configuration in which the hole is provided.
  • each joining of this recessed part and convex part 21a, 3c, and 3d is not restricted to the crimping joining by press, You may join using Ag paste etc.
  • the resin-encapsulated semiconductor device and the manufacturing method thereof according to the present invention can be further miniaturized while adopting a three-dimensional structure, and are useful for high-power semiconductor devices and the like.

Abstract

 樹脂封止型半導体装置は、パワー素子(1)及び制御素子(4)と、パワー素子(1)を保持する第1ダイパッド部(3A)を含む第1リードフレーム(3)と、制御素子(4)を保持する第2ダイパッド部(5A)を含む第2リードフレーム(5)と、パワー素子、第1ダイパッド部、第2素子及び第2ダイパッド部を封止する樹脂材からなる外装体(6)とを有している。第2ダイパッド部の下面は、パワー素子の上面よりも高く配置され、第1ダイパッド部の少なくとも一部と第2ダイパッド部の少なくとも一部とは、平面視で互いに重なっている。複数の第1リードのうちの1つのリードと、複数の第2リードのうちの1つのリードとは、外装体の内部で直接に接合された接合部(23)により、互いに電気的に接続されている。

Description

樹脂封止型半導体装置及びその製造方法
 本発明は、樹脂封止型半導体装置及びその製造方法に関する。
 近年、例えばインバータ制御機器においては、さらなる小型化及び軽量化が要望されている。その要望に応え、インバータ制御機器の内部に実装される樹脂封止型半導体装置(パワーモジュール)も、小型化及び軽量化を図っている。
 具体的には、パワー素子を搭載した第1リードフレームと、パワー素子を制御する制御素子を搭載した第2リードフレームとを3次元的に配置して、樹脂材からなる外装体に封入する。このように構成することにより、樹脂封止型半導体装置の小型化及び軽量化を図っている(例えば、特許文献1を参照。)。
 特許文献1に記載された従来の樹脂封止型半導体装置は、パワーチップとそれを制御する制御チップとが、パッドを介することなくワイヤにより直接に接続され、さらにモールド樹脂材により封止されている。制御チップを保持するリードのダイパッド部は、パワーチップを保持するリードのダイパッド部よりも高くなるように、立体的に配置されている。これにより、ワイヤの長さの短縮化を図っている。
 従って、パワーチップと制御チップとは、ワイヤにより直接に接続されることから、信頼性が向上する。さらに、両者のダイパッド部は、上方から見て(平面視で)互いの縁部が重なるように配置されることから、樹脂封止型半導体装置の小型化を図ることができる。
特開2005-150595号公報
 ところで、上述した樹脂封止型半導体装置のさらなる小型化を図ろうとすると、立体的に配置された制御チップとパワーチップとを、平面視で互いに重なるように配置する必要が生じる。
 しかしながら、制御チップとパワーチップとが平面視で互いに重なるように配置されると、制御チップとパワーチップとをワイヤで直接に接続することができなくなる。すなわち、従来の樹脂封止型半導体装置の構成では、これ以上の小型化は不可能であるという問題が生じる。
 本発明は、前記の問題を解決し、複数のチップを封止する樹脂封止型半導体装置及びその製造方法において、立体構造を採用しながら、半導体装置のさらなる小型化を図ることを目的とする。
 前記の目的を達成するため、本発明の樹脂封止型半導体装置は、第1素子及び第2素子と、上面に第1素子を保持する第1ダイパッド部及び複数の第1リードを有する第1リードフレームと、上面に第2素子を保持する第2ダイパッド部及び複数の第2リードを有する第2リードフレームと、第1素子、第1ダイパッド部及び第1リードの少なくとも一部、並びに第2素子、第2ダイパッド部及び第2リードの少なくとも一部を封止する樹脂材からなる外装体とを備え、第1リードと第2リードとは、外装体の内部において、第1接合部で直接に接合して電気的に接続されたことを特徴とする。
 また、前記の目的を達成するため、本発明の樹脂封止型半導体装置の製造方法は、予め、第1リードフレームにおける複数の第1リードのうちの1つのリードに第1凸部を形成すると共に、第2リードフレームにおける複数の第2リードのうちの1つのリードに第1孔部を形成した後、下金型に第1リードフレームを載置し、第1凸部が第1孔部に嵌入するように、第1リードフレームに第2リードフレームを載置し、上金型に設けられた挿入ピンにより、第1孔部に嵌入された第1凸部に加重を印加して、第1凸部と第1孔部とを接合し、下金型と上金型との間に封止樹脂材を注入することにより、封止樹脂材からなる外装体を形成することを特徴とする。
 本発明に係る樹脂封止型半導体装置及びその製造方法によると、立体構造を採用しながら、半導体装置のさらなる小型化を図ることができる。
図1は本発明の第1の実施形態に係る樹脂封止型半導体装置を示す平面図である。 図2は本発明の第1の実施形態に係る樹脂封止型半導体装置を示す底面図である。 図3は図1のIII-III線における断面図である。 図4は図3の領域Bを拡大した部分断面図である。 図5は本発明の第1の実施形態に係る樹脂封止型半導体装置における内部構造を示す平面図である。 図6は本発明の第1の実施形態に係る樹脂封止型半導体装置の製造方法を示す一工程の断面図である。 図7は本発明の第1の実施形態に係る樹脂封止型半導体装置の製造方法を示す一工程の断面図である。 図8は本発明の第1の実施形態に係る樹脂封止型半導体装置の製造方法を示す一工程の断面図である。 図9は本発明の第1の実施形態に係る樹脂封止型半導体装置の製造方法を示す一工程の断面図である。 図10は本発明の第1の実施形態に係る樹脂封止型半導体装置の製造方法を示す一工程の断面図である。 図11は本発明の第1の実施形態に係る樹脂封止型半導体装置の製造方法を示す一工程の断面図である。 図12は本発明の第1の実施形態に係る樹脂封止型半導体装置の製造方法を示す一工程の断面図である。 図13は本発明の第1の実施形態に係る樹脂封止型半導体装置の製造方法を示す一工程の断面図である。 図14は本発明の第2の実施形態に係る樹脂封止型半導体装置を示す断面図である。 図15は本発明の第2の実施形態に係る樹脂封止型半導体装置における内部構造を示す平面図である。 図16は本発明の第3の実施形態に係る樹脂封止型半導体装置を示す断面図である。 図17は本発明の第3の実施形態に係る樹脂封止型半導体装置における内部構造を示す平面図である。 図18は本発明の第3の実施形態に係る樹脂封止型半導体装置の製造方法を示す一工程の断面図である。
 以下、本発明の実施形態について図面を用いて説明する。なお、本発明は、本明細書に記載された特徴に基づく限り、以下に記載した内容に限定されない。
 (第1の実施形態)
 本発明の第1の実施形態について、図1~図5を参照しながら説明する。
 図1~図5に示すように、本実施形態に係る樹脂封止型半導体装置は、第1素子であるパワー素子1を第1ダイパッド部3Aの上に保持する第1リードフレーム3と、第2素子である制御素子4を第2ダイパッド部5Aの上に保持する第2リードフレーム5と、第1リードフレーム3の下面に絶縁シート10を介在して固着された放熱板2と、封止樹脂材からなる外装体6とから構成されている。
 外装体6は、パワー素子1を含む第1リードフレーム3の一方の端部と、制御素子4を含む第2リードフレーム5の一方の端部とを覆うと共に、放熱板2の下面を露出するように形成される。
 図3及び図5に示すように、第1ダイパッド部3Aの少なくとも一部と第2ダイパッド部5Aとは、樹脂封止型本半導体装置の小型化を図るべく、平面視で互いに重なっている。さらに、パワー素子1の少なくとも一部と制御素子4とは、平面視で互いに重なるように配置されている。
 このため、本実施形態においては、パワー素子1と制御素子4とは、例えば金(Au)からなるワイヤ32では直接に接続することができない。そこで、本実施形態に係る樹脂封止型半導体装置では、第1リードフレーム1においては、複数のリードのうちの1つをパワー素子用中継リード21としている。また、第2リードフレーム5においては、複数のリードのうちの1つを制御素子用中継リード22としている。これらパワー素子用中継リード21及び制御素子用中継リード22の端部同士を接合部23(第1接合部)により接合している。
 なお、図5において、パワー素子1とその上の制御素子4とは、1個ずつが対を成している。図示はしていないが、本実施形態に係る樹脂封止型半導体装置は、パワー素子1と制御素子4との対を2対以上含む構成を採る。但し、パワー素子1と制御素子4との1対のみの構成であっても、本発明は有効である。また、1対の素子は、パワー素子と制御素子との組み合わせに限られないことはいうまでもない。
 以下、本実施形態に係る樹脂封止型半導体装置の詳細を説明する。
 図5に示すように、第1リードフレーム3は、例えば銅(Cu)等の導電性が高い金属からなる。第1リードフレーム3は、第1ダイパッド部3Aを含む複数のリードを有している。
 パワー素子1は、例えばIGBT(絶縁ゲート型バイポーラトランジスタ)又はパワーMOSFET(金属酸化膜型電界効果トランジスタ)を用いることができる。
 図3に示すように、パワー素子1は、第1リードフレーム3の第1ダイパッド部3Aの上面にろう材8により固着されている。パワー素子1におけるボンディングパッド(図示せず)と第1リードフレーム3の複数のリードとは、図3及び図5に示すように、ワイヤ31により相互に且つ電気的に接続されている。ワイヤ31には、例えばアルミニウム(Al)を用いることができる。また、ワイヤ31は、ワイヤに代えて、Alからなるリボン又は銅(Cu)からなるクリップを用いてもよい。アルミニウムからなるリボン及び銅(Cu)からなるクリップは、ワイヤと比べて断面積を大きくすることができるため、配線抵抗値を小さくでき、パワー損失を低減することができる。
 放熱板2は、例えば銅(Cu)又はアルミニウム(Al)等の熱伝導性が高い金属を用いることができる。放熱板2と第1ダイパッド部3Aとの間に設けられる絶縁シート10は、熱伝導性を有する絶縁性材料からなる。絶縁シート10は、例えば、絶縁層を接着層により上下から挟む3層構造を有している。この絶縁シート10により、放熱板2と第1ダイパッド部3Aとを電気的に絶縁しつつ、パワー素子1が発生する熱を放熱板2に効果的に伝達することができる。
 図3及び図5に示すように、第2リードフレーム5は、例えば銅(Cu)又は42アロイ(Fe-42%Ni)等の導電性が高い金属からなる。第2リードフレーム5は、第2ダイパッド部5Aを含む複数のリードを有している。
 制御素子4は、パワー素子1を制御する素子(チップ)であり、駆動回路及び過電流防止回路等を含む。該制御素子4は、第2リードフレーム5の第2ダイパッド部5Aの上面に、例えば銀(Ag)ペースト材により固着されている。制御素子4のボンディングパッド(図示せず)と第2リードフレーム5の複数のリードとは、金(Au)からなるワイヤ32によって互いに電気的に接続されている。
 図3に示すように、制御素子4を保持する第2ダイパッド部5Aは、パワー素子1の上方と間隔を空け、且つパワー素子1の上面とほぼ平行に配置されている。また、第2ダイパッド部5Aは、パワー素子1と接続されたワイヤ31の少なくとも一部を覆っている。これにより、パワー素子1の上面に対して垂直な方向(平面視)において、パワー素子1と接続されたワイヤ31と制御素子4との間に、第2ダイパッド部5Aが配置される。このため、パワー素子1の出力信号線であるワイヤ31により生じて制御素子4に伝播する電磁波ノイズの少なくとも一部を、第2ダイパッド部5Aによって遮蔽することができる。その結果、制御素子4の電磁波ノイズによる誤動作を防ぐことができる。
 なお、第2ダイパッド部5Aの少なくとも一部、好ましくは第2ダイパッド部5Aの下面にニッケル(Ni)等の磁性材料によるメッキ層を形成してもよい。このようにメッキ層を形成すると、該メッキ層によって、パワー素子1から発生する電磁波ノイズを吸収することができる。そのため、メッキ層を形成することにより、制御素子4への電磁波ノイズの影響をより一層小さくすることができる。
 ところで、制御素子4は、パワー素子1を制御するために、パワー素子1と電気的に接続される必要がある。しかしながら、本実施形態においては、パワー素子1の上方に、制御素子4を保持する第2ダイパッド部5Aを立体的に配置している。このため、パワー素子1の制御素子4からの入力信号用ボンディングパッド(以下、パワー素子電極という)と、制御素子4のパワー素子1への出力信号用ボンディングパッド(以下、制御素子電極という)とをワイヤ等により直接に接続することは困難である。素子を立体的に配置している場合、パワー素子1と制御素子4とをワイヤにより接続するためには、別途設けた中継部材を介して、パワー素子電極と制御素子電極とを接続する必要がある。このような接合方法は、不安定で且つ複雑な構成となるため、ワイヤによる接続信頼性を確保することができない。
 そこで、図3~図5に示すように、本実施形態においては、第1リードフレーム3にパワー素子用中継リード21を設けると共に、第2リードフレーム5に制御素子用中継リード22を設け、該パワー素子用中継リード21と該制御素子用中継リード22とを接合部23によって互いに接合している。このリード同士の接合により、本実施形態では、パワー素子1と制御素子4とを電気的に接続している。
 具体的には、パワー素子電極と、第1リードフレーム3の複数のリードの1つであるパワー素子用中継リード21とは、ワイヤ32により電気的に接続されている。パワー素子用中継リード21は、図4に示すように、端部に曲げ加工が施されており、上面が突出する凸部21a(第1凸部)を有している。凸部21aの表面には例えばニッケル(Ni)又は金(Au)等の接触抵抗が小さい金属による金属メッキ層が形成されている。また、パワー素子用中継リード21は、絶縁シート10を介在して放熱板2の上面に固着されている。
 一方、制御素子電極と、第2リードフレーム5の複数のリードの1つである制御素子用中継リード22とは、ワイヤ32により電気的に接続されている。制御素子用中継リード22の端部には孔部22a(第1孔部)が形成されている。該孔部22aの内壁及び上面の周縁部には、例えばニッケル(Ni)又は金(Au)等の接触抵抗が小さい金属による金属メッキ層が形成されている。
 ここで、図4に示すように、パワー素子用中継リード21の凸部21aは、制御素子用中継リード22の孔部22aに嵌入され、凸部21aの頂部が孔部22aの周縁部の外方に向かって押しつぶされている。この押しつぶされた凸部21aと孔部22aとによって、接合部23が形成されている。すなわち、パワー素子用中継リード21と制御素子用中継リード22との接合部23は、押圧によるカシメ接合により形成されている。
 パワー素子用中継リード21の凸部21aの表面、並びに制御素子用中継リード22の孔部22aの内壁及び上面周縁部には、Niメッキ等の接触抵抗が小さい金属メッキ層が形成されている。このため、パワー素子用中継リード21と制御素子用中継リード22とは、機械的に接続されるだけでなく、電気的にも確実に接続される。この構成により、パワー素子1と制御素子4とは、ワイヤ32、パワー素子用中継リード21及び制御素子用中継リード22を介して相互に電気的に接続される。
 このように、第1ダイパッド部と第2ダイパッド部とが立体構造に、すなわち平面視で重なるように配置されて、第1素子と第2素子とが互いにワイヤで接続できない配置となる場合であっても、本発明は、複数の第1リードのうちの1つのリードと、複数の第2リードのうちの1つのリードとが、外装体の内部で直接に接合された第1接合部により、互いに電気的に接続される。このため、第1素子と第2素子とが互いにワイヤで接続できない程度にまで、樹脂封止型半導体装置を十分に小型化することができる。
 なお、制御素子用中継リード22に設ける孔部22aは、下方から上方に向けてプレスによって打ち抜いて形成されることが好ましい。なぜなら、この方向に打ち抜いて形成すると、孔部22aの下面の外縁部が丸みを帯びると共に、孔部22aの下面の外延部にバリが形成されないため、パワー素子用中継リード21に設けた凸部21aを嵌入させ易くなるからである。
 また、パワー素子電極とパワー素子用中継リード21とを接続するワイヤ31の接続距離と、制御素子電極と制御素子用中継リード22とを接続するワイヤ32の接続距離とは、できる限り短くすることが望ましい。ワイヤ32の接続距離を短くすると、パワー素子1と制御素子4とのゲートループ長が短くなるため、インダクタンス(L)値が小さくなって、ノイズの影響を低減することができる。その結果、制御素子4の誤動作を防止することができる。
 外装体6は、例えばエポキシ等の熱硬化型の樹脂材(封止樹脂材)からなる。外装体6は、パワー素子1及び第1ダイパッド部3A、パワー素子用中継リード21を含む第1リードフレーム3の少なくとも一部(例えば、端部)、並びに制御素子4及び第2ダイパッド部5A、制御素子用中継リード22を含む第2リードフレーム5の少なくとも一部(例えば、端部)、さらに放熱板2の側面を覆っている。このように覆うことにより、外装体6は、第1リードフレーム3及び第2リードフレーム5の一体化と、パワー素子1と制御素子4との保護を図っている。
 上述のように、銅又はアルミニウムからなる放熱板2の下面は、外装体6の下面から露出している。このため、パワー素子1から生じる熱を外部に効率的に伝達することができる。また、放熱板2の側面は外装体6によって覆われているため、該放熱板2と第1リードフレーム3との接合が強固となる。
 外装体6からそれぞれ露出する第1リードフレーム3及び第2リードフレーム5の他の端部は、樹脂封止型半導体装置の実装端子として、インバータ制御機器等の回路と接続される。
 また、パワー素子用中継リード21と制御素子用中継リード22との他の端部を外装体6から露出させることにより、パワー素子用中継リード21と制御素子用中継リード22との接合部23の接続状態を、外装体6の外部から検査することができる。
 また、第2ダイパッド部5Aに、パンチングによる打ち抜き孔(貫通孔)を形成してもよい。外装体6を構成する封止樹脂材が打ち抜き孔の内部にも充填されるため、第2リードフレーム5が外装体6とより強固に接続される。
 (製造方法)
 以下、本実施形態に係る樹脂封止型半導体装置の製造方法について、図6~図13を参照しながら説明する。
 まず、パワー素子1を保持するための第1リードフレーム3を構成する複数のリードのうち、パワー素子用中継リード21の内側(ダイパッド部側)の端部に、例えば曲げ加工により凸部21aを形成する。続いて、第1リードフレーム3の第1ダイパッド部3Aの上に、ろう材8によりパワー素子1を固着する。その後、ワイヤ31、32によって第1リードフレーム3におけるパワー素子用中継リード21を含む複数のリードとパワー素子1のパワー素子電極とをそれぞれ接続する。
 一方、制御素子4を保持するための第2リードフレーム5を構成する複数のリードのうち、制御素子用中継リード22の内側(ダイパッド部側)の端部に、例えばプレス加工により孔部22aを形成する。続いて、第2リードフレーム5の第2ダイパッド部5Aの上に、銀ペースト材により制御素子4を固着する。その後、ワイヤ32によって第2リードフレーム5における制御素子用中継リード22を含む複数のリードと制御素子4の制御素子電極とを、それぞれ接続する。
 次に、図6に示すように、上金型13と下金型12との間において、絶縁シート10を仮接着した放熱板2を下金型12に絶縁シート10を上にして載置する。続いて、第1リードフレーム3を、該第1リードフレーム3の第1ダイパッド部3Aの下面及びパワー素子用中継リード21の下面が絶縁シート10とそれぞれ接するように下金型12に載置する。その後、第2リードフレーム5における制御素子用中継リード22の孔部22aと、第1リードフレーム3におけるパワー素子用中継リード21の凸部21aとが互いに対向するように、第2リードフレーム5を第1リードフレーム3の上に載置する。
 次に、図7の矢印51aで示す方向に第2リードフレーム5を押下して、制御素子用中継リード22の孔部22aに、パワー素子用中継リード21の凸部21aを嵌入する。
 なお、ここで、パワー素子用中継リード21及びパワー素子1を保持する第1リードフレーム1の厚さは、制御素子用中継リード22及び制御素子4を保持する第2リードフレーム1の厚さよりも厚い方が好ましい。このようにすると、プレスによる打ち抜きで形成された凸部21aの強度を高くでき、孔部22aへの凸部21aの嵌入を安定させることができる。その上、パワー素子用中継リード21の凸部21aの頂部が、制御素子用中継リード22の孔部22aから確実に突き出すことができる。
 次に、図8の矢印51bで示す方向に上金型13を下金型12に近づけることで、第1リードフレーム3及び第2リードフレーム5を、上金型13と下金型12とによってクランプする。ここで、上金型13には、第1金型挿入ピン14がパワー素子用中継リード21の凸部21aと対向するように配置されている。一方、第2金型挿入ピン15は、第1ダイパッド部3Aの一部と対向するように配置されている。
 次に、図9の矢印51cで示す方向に第1金型挿入ピン14を下降させて、制御素子用中継リード22の孔部22aから突き出したパワー素子用中継リード21の凸部21の頂面を、下方に押圧する。これと同時に、図9の矢印51dで示す方向に第2金型挿入ピン15を下降させて、第1ダイパッド部3Aの上面を下方に押圧する。このとき、第1リードフレーム3における第1ダイパッド部3A及びパワー素子用中継リード21の各下面には、絶縁シート10が貼り合わされている。このため、各金型挿入ピン14、15によって押圧されると、絶縁シート10が変形して、第1リードフレーム3における第1ダイパッド部3Aの厚さのばらつき、及びパワー素子用中継リード21の凸部21aの高さのばらつきを、吸収することができる。
 さらに、図10の矢印51eで示す方向に第1金型挿入ピン14を下降させることにより、制御素子用中継リード22の孔部22aから突き出したパワー素子用中継リード21の凸部21aの頂部を、押しつぶす。ここで、第1金型挿入ピン14の先端部は、下方を頂部とする円錐形状をしている。第1金型挿入ピン14が円錐形状であるため、押しつぶされたパワー素子用中継リード21の凸部21aの頂面は、図4に示すように、制御素子用中継リード22の孔部22aの上面の周囲に拡がるように変形する。
 次に、図11に示すように、トランスファモールド法により、上金型13と下金型12との間に、エポキシ等の封止樹脂材6Aを、矢印51fの方向に注入する。第1リードフレーム3と第2リードフレーム5とは、パワー素子用中継リード21の凸部21aと制御素子用中継リード22の孔部22aとが嵌合することにより一体化されている。このため、封止工程中において、各リードフレーム3、5は、ばたついたり、撓んだりすることがない。その結果、ワイヤ32等が断線するという不具合を回避することができる。なお、封止工程中は、放熱板2が第2金型挿入ピン15により下金型12に押圧されているため、封止樹脂材6Aが放熱板2の下面側に漏れ出すことはない。従って、樹脂封止後の放熱板2の下面側は、封止樹脂材6Aが回り込むことはない。その結果、放熱板2の下面側からの放熱は効果的に行われる。
 次に、図12に示すように、注入された封止樹脂材6Aの硬化が始まる前に、各金型挿入ピン14、15を、矢印51g及び51hの方向に上昇させる。このとき、各金型挿入ピン14、15の下端面が上金型13の内面と揃う位置で、所定の時間だけ放置する。これにより、下金型12及び上金型13から伝播する熱により、封止樹脂材6Aの硬化が促進される。これと同時に、第1リードフレーム3の第1ダイパッド部3Aと放熱板2との間に設けた絶縁シート10を構成する接着層(図示せず)が溶融して硬化する。これにより、絶縁シート10と第1ダイパッド部3Aの下面及び放熱板2との接着が強固となる。
 次に、上金型13を上昇させた後、図13に示すように、下金型12から、封止樹脂材6Aからなる外装体6を取り出す。ここで、取り出された外装体6からは、第1リードフレーム3と第2リードフレーム5とのそれぞれの外側の端部が、突き出している。
 この後は、第1リードフレーム3と第2リードフレーム5とのそれぞれのフレームを切断し、さらに、各リードを上方に屈曲させることにより、図3に示す樹脂封止型半導体装置を得る。
 このように、本実施形態によると、第1ダイパッド部3Aの上にパワー素子1を保持する第1リードフレーム3と、第2ダイパッド部5Aの上に制御素子4を保持する第2リードフレーム5とは、互いのダイパッド部3A、5Aが平面視で重なっている。さらに、第2ダイパッド部5Aは、その下方に位置するパワー素子1のほぼ全面を覆っているため、第2ダイパッド部5Aの上に保持される制御素子4は、パワー素子1からの電磁波ノイズが第2ダイパッド部5Aによって遮蔽される。なお、第2ダイパッド部5Aは、パワー素子1の上方の全面を覆う構成とする方が、パワー素子1からの電磁波ノイズの制御素子4に対する遮蔽効果が高くなる。
 また、本実施形態では、第1リードフレーム3の複数のリードの1つであるパワー素子用中継リード21と、第2リードフレーム5の複数のリードの1つである制御素子用中継リード22とを、接合部23により直接的且つ電気的に接合している。この構成を採ることにより、パワー素子1を保持する第1ダイパッド部3Aと制御素子4を保持する第2ダイパッド部5Aとが平面視で互いに重なるまでの立体配置とすることが可能となる。よって、該樹脂封止型半導体装置の大幅な小型化を図ることができる。
 なお、装置の小型化を図るという観点及び電磁波ノイズを遮蔽するという観点からは、第1素子であるパワー素子1を第2ダイパッド5Aに保持し、第2素子である制御素子4を第1ダイパッド3Aに保持する構成も可能である。但し、放熱性の観点からは、放熱板2と放熱経路を持つ第1ダイパッド5Aにパワー素子1を保持するという構成が好ましい。すなわち、第1素子及び第2素子の電気的特性及び物理的特性によって、それらを保持するダイパッド部3A、5A(リードフレーム3、5)を決定すればよい。
 (第2の実施形態)
 以下、本発明の第2の実施形態に係る樹脂封止型半導体装置について、図14及び図15を参照しながら説明する。なお、第2の実施形態において、前述の第1の実施形態と同一の構成部材には同一の符号を付すことにより、説明を簡略化している。
 図14及び図15に示すように、本実施形態に係る第2リードフレーム5は、第2ダイパッド部5Aがパワー素子1の上方を覆うと共に、該第2ダイパッド部5Aにおける第1リードフレーム3側の側面が該第1リードフレーム3側に延びる突出部41を有している。突出部41は、第1リードフレーム3の第1ダイパッド部3Aに向かって屈曲して、第1ダイパッド部3Aと接合されている。
 第2ダイパッド部5Aの突出部41には、孔部41a(第2孔部)が設けられている。一方、第1リードフレーム3には、パワー素子1を保持するための第1ダイパッド部3Aの周辺部(近傍)に、曲げ加工によって上面が上方に突出する凸部3c(第2凸部)が形成されている。
 第1ダイパッド部3Aの凸部3cと第2ダイパッド部5Aの突出部41の孔部41aとを、これらが対向するように下金型12に載置し、金型挿入ピンによって凸部3cの頂面を押圧する。これにより、第2ダイパッド部5Aの突出部41と第1ダイパッド部3Aとを機械的且つ電気的に接合して、接合部24(第2接合部)を形成する。本実施形態に係る接合部24は、前述の第1の実施形態に係る接合部23と同様に形成されるため、詳しい形成方法の説明は省略する。
 なお、第1ダイパッド部3Aの凸部3cは、パワー素子用中継リード21の凸部21aを形成する曲げ工程で、同時に形成すればよい。また、第2ダイパッド部5Aの突出部41の孔部41aは、制御素子用中継リード22の孔部22aを形成するプレス工程で、同時に形成すればよい。
 また、本実施形態においては、第1ダイパッド部3A自体に凸部3cを設けたが、これに限られず、第1ダイパッド部3Aの側面から平行に突き出すリード部(図示せず)に凸部を設け、第2ダイパッド部5Aの突出部41の孔部41aと接合してもよい。
 以上のように、本実施形態によると、パワー素子1は、第2リードフレーム5の第2ダイパッド部5Aに覆われるため、パワー素子1が発生する電磁波ノイズが第2ダイパッド部5Aにより遮蔽される。
 その上、パワー素子1が発生する電磁波ノイズの一部が第2ダイパッド部5Aを介して第1リードフレーム3に流れる。このため、制御素子4に達する電磁波ノイズの量が減少し、制御素子4の誤動作の発生が抑制されて、該制御素子4の動作の信頼性を高めることができる。
 (第3の実施形態)
 以下、本発明の第3の実施形態に係る樹脂封止型半導体装置について、図16~図18を参照しながら説明する。なお、第3の実施形態において、前述の第1及び第2の実施形態と同一の構成部材には同一の符号を付すことにより、説明を簡略化している。
 図16及び図17に示すように、本実施形態においては、第1リードフレーム3を構成する複数のリードのうちのGND端子リード3Bに、接合部25(第3接合部)を形成する凸部3d(第3凸部)を設けている。
 本実施形態においては、GND端子リード3Bに設けられた凸部3dと、第2ダイパッド部5Aの突出部41に設けられた孔部41b(第3孔部)とから、接合部25を形成している。前述の第2の実施形態と比較すると、第2ダイパッド部5Aに設けられた突出部41が第1ダイパッド部3Aに向かって屈曲していないため、突出部41の折り曲げ部の長さを短くすることができる。このため、第2ダイパッド部5Aの面積を大きくすることができる。その結果、さらに大面積の第2ダイパッド部5Aでパワー素子1を覆うことができるので、パワー素子1から制御素子4に達する電磁波ノイズの量がさらに減少する。これにより、制御素子4の誤動作の発生が抑制されて、該制御素子4の動作の信頼性をさらに高めることができる。
 なお、第2ダイパッド部5Aの突出部41における接合部25を形成する部分が、上方に屈曲しているのは、GND端子リード3Bの上面と第2ダイパッド部5Aの上面との高さを一致させるためである。このようにすれば、第1リードフレーム3と第2リードフレーム5とのそれぞれの外装体6からの側方への突き出し部分の上面の高さを、互いに等しくすることができる。
 以下、本実施形態に係る樹脂封止型半導体装置の製造方法の要部について、図18を参照しながら説明する。
 矢印51kの方向に第3金型挿入ピン16を挿入して、凸部3dが形成されたGND端子リード3Bの下面に、第3金型挿入ピン16を配置する。続いて、第2ダイパッド部5Aの突出部41に形成された孔部41bにGND端子リード3Bに形成された凸部3dを嵌入する。続いて、孔部41bの上方から第4金型挿入ピン17を矢印51jの方向に下降させて、凸部3dの先端部を押しつぶす。これにより、GND端子リード3Bと第2ダイパッド部5Aを機械的且つ電気的に接合して、接合部25を形成する。
 なお、GND端子リード3Bの凸部3dは、パワー素子用中継リード21の凸部21aを形成する曲げ工程により形成すればよい。また、第2ダイパッド部5Aの突出部41の孔部41bは、制御素子用中継リード22の孔部22aを形成するプレス工程により形成すればよい。
 ところで、各実施形態においては、パワー素子用中継リード21の凸部21aと制御素子用中継リード22の孔部22aとを、放熱板2の上側の領域で接合したが、本発明は、この構成に限られない。例えば、外装体6の内部であって、放熱板2の上側部分を除く領域で接合しても構わない。このようにすると、中継リード21、22等の各リードの設計の自由度を上げることができる。
 また、各実施形態において、凸部21a、凸部3c及び凸部3dは、それぞれ曲げ加工により形成したが、加工法は曲げ加工に限られない。すなわち、凸部形状であればよく、例えば、半切断加工等により形成しても構わない。半切断加工とは、例えばパワー素子用中継リード21の下面からのプレスによる打ち抜き加工を途中で停止し、円形に打ち抜く直前の半切断状態であり、円形部分がリードに接続された状態とする加工法をいう。
 また、各実施形態において、接合部23、24及び25を形成する際に、制御素子用中継リード22及び第2ダイパッド5Aの突出部41には、それぞれ孔部22a、41a及び41bを形成したが、いずれも孔部を設ける構成に限られない。例えば、制御素子用中継リード22及び第2ダイパッド5Aの突出部41の下面に、半切断加工又はコイニング等により、凹部を形成しても構わない。また、該凹部と凸部21a、3c及び3dとのそれぞれの接合は、押圧によるカシメ接合に限られず、Agペースト等を用いて接合してもよい。
 本発明に係る樹脂封止型半導体装置及びその製造方法は、立体構造を採用しながら、さらなる小型化を図ることができ、大電力用の半導体装置等に有用である。
  1   パワー素子
  2   放熱板
  3   第1リードフレーム
  3A  第1ダイパッド部
  3B  GND端子リード
  3c  凸部
  3d  凸部
  4   制御素子
  5   第2リードフレーム
  5A  第2ダイパッド部
  6   外装体
  6A  封止樹脂材
  8   ろう材
 10  絶縁シート(絶縁部材)
 12  下金型
 13  上金型
 14  第1金型挿入ピン
 15  第2金型挿入ピン
 16  第3金型挿入ピン
 17  第4金型挿入ピン
 21  パワー素子用中継リード
 21a 凸部
 22  制御素子用中継リード
 22a 孔部
 23  接合部
 24  接合部
 31  ワイヤ
 32  ワイヤ
 41  突出部
 41a 孔部
 41b 孔部

Claims (19)

  1.  第1素子及び第2素子と、
     上面に前記第1素子を保持する第1ダイパッド部及び複数の第1リードを有する第1リードフレームと、
     上面に前記第2素子を保持する第2ダイパッド部及び複数の第2リードを有する第2リードフレームと、
     前記第1素子、第1ダイパッド部及び前記第1リードの少なくとも一部、並びに前記第2素子、第2ダイパッド部及び前記第2リードの少なくとも一部を封止する樹脂材からなる外装体とを備え、
     前記第1リードと、前記第2リードとは、前記外装体の内部において、第1接合部で直接に接合して電気的に接続された樹脂封止型半導体装置。
  2.  請求項1において、
     前記第1リードと前記第2リードとをカシメ接合して前記第1接合部が形成された樹脂封止型半導体装置。
  3.  請求項1又は2において、
     前記第2ダイパッド部の下面は、前記第1素子の上面よりも高く配置され、
     前記第1ダイパッド部の少なくとも一部と前記第2ダイパッド部の少なくとも一部とは、平面視で互いに重なる樹脂封止型半導体装置。
  4.  請求項1~3のいずれか1項において、
     前記第1孔部は、前記第2素子を保持する面とは反対側の面から打ち抜いて形成された樹脂封止型半導体装置。
  5.  請求項1~4のいずれか1項において、
     前記第1素子の少なくとも一部と前記第2素子の少なくとも一部とは、平面視で互いに重なるように配置されている樹脂封止型半導体装置。
  6.  請求項1~5のいずれか1項において、
     下面が前記外装体から露出すると共に、前記第1リードフレームの下面に絶縁部材を介在して設けられた放熱板をさらに備えた樹脂封止型半導体装置。
  7.  請求項1~6のいずれか1項において、
     前記第1接合部は、前記第1リードに形成された凸部が、前記第2リードに形成された孔部に嵌合され、且つ前記凸部の頂面が前記孔部の周囲に拡がるように形成された樹脂封止型半導体装置。
  8.  請求項1~7のいずれか1項において、
     前記第1リードフレームの厚さは、前記第2リードフレームの厚さよりも厚い樹脂封止型半導体装置。
  9.  請求項1~8のいずれか1項において、
     前記第2素子を保持するための前記第2ダイパッド部の周辺部に貫通孔が形成されている樹脂封止型半導体装置。
  10.  請求項1~9のいずれか1項において、
     前記第2ダイパッド部の少なくとも下面にメッキ層が形成された樹脂封止型半導体装置。
  11.  請求項10において、
     前記メッキ層は磁性材料からなる樹脂封止型半導体装置。
  12.  請求項1~11のいずれか1項において、
     前記第2リードフレームは、前記第2ダイパッド部の側面から延びる突出部を有し、
     前記第2リードフレームの突出部と前記第1ダイパッド部とは、前記外装体の内部において、第2接合部で直接に接合して電気的に接続された樹脂封止型半導体装置。
  13.  請求項1~11のいずれか1項において、
     前記第2リードフレームは、前記第2ダイパッド部の側面から延びる突出部を有し、
     前記第2リードフレームの突出部と前記第1リードとは、前記外装体の内部において、第3接合部で直接に接合して電気的に接続された樹脂封止型半導体装置。
  14.  予め、第1リードフレームにおける複数の第1リードのうちの1つのリードに第1凸部を形成すると共に第2リードフレームにおける複数の第2リードのうちの1つのリードに第1孔部を形成した後、
     下金型に前記第1リードフレームを載置し、
     前記第1凸部が前記第1孔部に嵌入するように、前記第1リードフレームに前記第2リードフレームを載置し、
     上金型に設けられた挿入ピンにより、前記第1孔部に嵌入された前記第1凸部に加重を印加して、前記第1リードと前記第2リードとを直接に接合し、
     前記下金型と前記上金型との間に封止樹脂材を注入することにより、前記封止樹脂材からなる外装体を形成する樹脂封止型半導体装置の製造方法。
  15.  請求項14において、
     前記第1凸部を押しつぶすことにより、前記第1リードと前記第2リードとをカシメ接合する樹脂封止型半導体装置の製造方法。
  16.  請求項14又は15において、
     第2素子を保持する前記第2リードの面と反対側の面から打ち抜いて前記第1孔部を形成する樹脂封止型半導体装置の製造方法。
  17.  請求項14~15のいずれか1項において、
     前記下金型に前記第1リードフレームを載置する前に、前記下金型に金属からなる放熱板を載置し、
     前記下金型に前記第1リードフレームを載置する際に、前記第1リードフレームを、前記放熱板の上に絶縁部材を介在させて載置する樹脂封止型半導体装置の製造方法。
  18.  請求項14~17のいずれか1項において、
     予め、第2素子を保持する前記第2リードの第2ダイパッド部の周辺部に第2孔部を形成すると共に、前記第1素子を保持する前記第1リードの第1ダイパッド部の周辺部に第2凸部を形成した後、
     前記第1リードフレームに前記第2リードフレームを載置する際に、前記第1リードに形成された前記第1凸部及び第2凸部が、前記第2リードに形成された前記第1孔部及び第2孔部にそれぞれ陥入するように前記第2リードフレームを載置し、
     前記上金型に設けられた複数の挿入ピンにより、前記第1孔部及び第2孔部にそれぞれ嵌入された前記第1凸部及び第2凸部にそれぞれ加重を印加して、前記第1凸部を前記第1孔部に接合すると共に、前記第2凸部を前記第2孔部に接合する樹脂封止型半導体装置の製造方法。
  19.  請求項18において、
     前記第1リードに前記第1凸部と前記第2凸部とを同時に形成し、前記第2リードに前記第1孔部と前記第2孔部とを同時に形成する樹脂封止型半導体装置の製造方法。
PCT/JP2011/003135 2010-06-11 2011-06-03 樹脂封止型半導体装置及びその製造方法 WO2011155165A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11792124.7A EP2581937B1 (en) 2010-06-11 2011-06-03 Resin-sealed semiconductor device and method for manufacturing same
CN201180002487.1A CN102473700B (zh) 2010-06-11 2011-06-03 树脂封装型半导体装置及其制造方法
JP2011543751A JP5478638B2 (ja) 2010-06-11 2011-06-03 樹脂封止型半導体装置及びその製造方法
US13/382,244 US8471373B2 (en) 2010-06-11 2011-06-03 Resin-sealed semiconductor device and method for fabricating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010133638 2010-06-11
JP2010-133638 2010-06-11

Publications (1)

Publication Number Publication Date
WO2011155165A1 true WO2011155165A1 (ja) 2011-12-15

Family

ID=45097782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003135 WO2011155165A1 (ja) 2010-06-11 2011-06-03 樹脂封止型半導体装置及びその製造方法

Country Status (5)

Country Link
US (1) US8471373B2 (ja)
EP (1) EP2581937B1 (ja)
JP (1) JP5478638B2 (ja)
CN (1) CN102473700B (ja)
WO (1) WO2011155165A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030458A1 (ja) * 2012-08-20 2014-02-27 日立オートモティブシステムズ株式会社 パワー半導体モジュール
JP2015511073A (ja) * 2012-03-23 2015-04-13 日本テキサス・インスツルメンツ株式会社 モジュールとして構成されるマルチレベルリードフレームを有するパッケージングされた半導体デバイス
JP2016503240A (ja) * 2013-01-09 2016-02-01 日本テキサス・インスツルメンツ株式会社 集積回路モジュール
DE112016007419T5 (de) 2016-11-08 2019-07-25 Mitsubishi Electric Corporation Halbleitermodul und Halbleitervorrichtung
JP2020136369A (ja) * 2019-02-15 2020-08-31 富士電機株式会社 半導体モジュール及び半導体モジュールの製造方法
US20210043466A1 (en) * 2019-08-06 2021-02-11 Texas Instruments Incorporated Universal semiconductor package molds

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101581610B1 (ko) * 2012-03-22 2016-01-11 미쓰비시덴키 가부시키가이샤 반도체 장치 및 그 제조 방법
US8836092B2 (en) * 2012-10-29 2014-09-16 Freescale Semiconductor, Inc. Semiconductor device with thermal dissipation lead frame
CN104658984A (zh) * 2013-11-19 2015-05-27 西安永电电气有限责任公司 塑封式智能功率模块
CN105336631B (zh) * 2014-06-04 2019-03-01 恩智浦美国有限公司 使用两个引线框架组装的半导体装置
EP3018710B1 (en) * 2014-11-10 2020-08-05 Nxp B.V. Arrangement of semiconductor dies
DE102015104995B4 (de) * 2015-03-31 2020-06-04 Infineon Technologies Austria Ag Verbindungshalbleitervorrichtung mit einem mehrstufigen Träger
DE102015104990B4 (de) 2015-03-31 2020-06-04 Infineon Technologies Austria Ag Verbindungshalbleitervorrichtung mit einem Abtastlead
DE112016006381T5 (de) * 2016-02-09 2018-10-18 Mitsubishi Electric Corporation Leistungshalbleitervorrichtung und herstellungsverfahren dafür
CN110959191B (zh) * 2017-08-24 2023-10-20 新电元工业株式会社 半导体装置
JP7006024B2 (ja) * 2017-08-30 2022-01-24 富士電機株式会社 半導体装置及びその製造方法
JP6780635B2 (ja) * 2017-12-22 2020-11-04 三菱電機株式会社 半導体モジュール
US11270969B2 (en) * 2019-06-04 2022-03-08 Jmj Korea Co., Ltd. Semiconductor package
CN116631989A (zh) * 2019-06-14 2023-08-22 华为数字能源技术有限公司 一种封装模块及金属板
US20210335689A1 (en) * 2020-04-24 2021-10-28 Vitesco Technologies USA, LLC Semiconductor power device with press-fit mounting
JP7463909B2 (ja) * 2020-08-25 2024-04-09 株式会社デンソー 半導体装置及びその製造方法
US11652030B2 (en) * 2020-12-29 2023-05-16 Semiconductor Components Industries, Llc Power module and related methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307721A (ja) * 1998-04-23 1999-11-05 Toshiba Corp パワーモジュール装置およびその製造方法
JP2001250911A (ja) * 2000-03-07 2001-09-14 Mitsubishi Electric Corp 樹脂封止形電力用半導体装置
JP2005150595A (ja) 2003-11-19 2005-06-09 Mitsubishi Electric Corp 電力用半導体装置
JP2005150209A (ja) * 2003-11-12 2005-06-09 Denso Corp 電子装置およびその製造方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2708320B2 (ja) * 1992-04-17 1998-02-04 三菱電機株式会社 マルチチップ型半導体装置及びその製造方法
JP3299421B2 (ja) * 1995-10-03 2002-07-08 三菱電機株式会社 電力用半導体装置の製造方法およびリードフレーム
JP3970377B2 (ja) * 1997-04-25 2007-09-05 沖電気工業株式会社 光半導体装置およびその製造方法
JPH11233712A (ja) * 1998-02-12 1999-08-27 Hitachi Ltd 半導体装置及びその製法とそれを使った電気機器
JP2000003988A (ja) * 1998-06-15 2000-01-07 Sony Corp リードフレームおよび半導体装置
US6677665B2 (en) * 1999-01-18 2004-01-13 Siliconware Precision Industries Co., Ltd. Dual-die integrated circuit package
JP4637380B2 (ja) * 2001-02-08 2011-02-23 ルネサスエレクトロニクス株式会社 半導体装置
US6396129B1 (en) * 2001-03-05 2002-05-28 Siliconware Precision Industries Co., Ltd. Leadframe with dot array of silver-plated regions on die pad for use in exposed-pad semiconductor package
US7057273B2 (en) * 2001-05-15 2006-06-06 Gem Services, Inc. Surface mount package
JP3828036B2 (ja) * 2002-03-28 2006-09-27 三菱電機株式会社 樹脂モールド型デバイスの製造方法及び製造装置
JP2004022601A (ja) * 2002-06-12 2004-01-22 Mitsubishi Electric Corp 半導体装置
JP2004241757A (ja) * 2003-01-17 2004-08-26 Sharp Corp 光結合半導体装置とその製造方法
JP2005019948A (ja) * 2003-06-03 2005-01-20 Himeji Toshiba Ep Corp リードフレーム及びそれを用いた電子部品
US6919625B2 (en) * 2003-07-10 2005-07-19 General Semiconductor, Inc. Surface mount multichip devices
US7250672B2 (en) * 2003-11-13 2007-07-31 International Rectifier Corporation Dual semiconductor die package with reverse lead form
KR100630741B1 (ko) * 2005-03-04 2006-10-02 삼성전자주식회사 다중 몰딩에 의한 적층형 반도체 패키지 및 그 제조방법
US8022522B1 (en) * 2005-04-01 2011-09-20 Marvell International Ltd. Semiconductor package
JP2006318996A (ja) * 2005-05-10 2006-11-24 Matsushita Electric Ind Co Ltd リードフレームおよび樹脂封止型半導体装置
US7352058B2 (en) * 2005-11-01 2008-04-01 Sandisk Corporation Methods for a multiple die integrated circuit package
KR100814433B1 (ko) * 2006-11-22 2008-03-18 삼성전자주식회사 리드 프레임 유닛, 이를 갖는 반도체 패키지 및 이의 제조방법, 이를 포함하는 반도체 스택 패키지 및 이의 제조방법
US7642638B2 (en) * 2006-12-22 2010-01-05 United Test And Assembly Center Ltd. Inverted lead frame in substrate
JP2008300672A (ja) 2007-05-31 2008-12-11 Sanyo Electric Co Ltd 半導体装置
JP5147295B2 (ja) 2007-05-31 2013-02-20 オンセミコンダクター・トレーディング・リミテッド 半導体装置
KR101418397B1 (ko) * 2007-11-05 2014-07-11 페어차일드코리아반도체 주식회사 반도체 패키지 및 그의 제조방법
KR101561934B1 (ko) * 2007-11-16 2015-10-21 페어차일드코리아반도체 주식회사 반도체 패키지 및 그의 제조방법
JP2009295959A (ja) * 2008-05-09 2009-12-17 Panasonic Corp 半導体装置及びその製造方法
US20100149773A1 (en) * 2008-12-17 2010-06-17 Mohd Hanafi Mohd Said Integrated circuit packages having shared die-to-die contacts and methods to manufacture the same
US8722466B2 (en) * 2010-03-12 2014-05-13 Alpha & Omega Semiconductor, Inc. Semiconductor packaging and fabrication method using connecting plate for internal connection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307721A (ja) * 1998-04-23 1999-11-05 Toshiba Corp パワーモジュール装置およびその製造方法
JP2001250911A (ja) * 2000-03-07 2001-09-14 Mitsubishi Electric Corp 樹脂封止形電力用半導体装置
JP2005150209A (ja) * 2003-11-12 2005-06-09 Denso Corp 電子装置およびその製造方法
JP2005150595A (ja) 2003-11-19 2005-06-09 Mitsubishi Electric Corp 電力用半導体装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015511073A (ja) * 2012-03-23 2015-04-13 日本テキサス・インスツルメンツ株式会社 モジュールとして構成されるマルチレベルリードフレームを有するパッケージングされた半導体デバイス
JP2018137466A (ja) * 2012-03-23 2018-08-30 日本テキサス・インスツルメンツ株式会社 モジュールとして構成されるマルチレベルリードフレームを有するパッケージングされた半導体デバイス
WO2014030458A1 (ja) * 2012-08-20 2014-02-27 日立オートモティブシステムズ株式会社 パワー半導体モジュール
JP2016503240A (ja) * 2013-01-09 2016-02-01 日本テキサス・インスツルメンツ株式会社 集積回路モジュール
DE112016007419T5 (de) 2016-11-08 2019-07-25 Mitsubishi Electric Corporation Halbleitermodul und Halbleitervorrichtung
US11152287B2 (en) 2016-11-08 2021-10-19 Mitsubishi Electric Corporation Semiconductor module and semiconductor device
US11854950B2 (en) 2016-11-08 2023-12-26 Mitsubishi Electric Corporation Semiconductor module and semiconductor device
JP2020136369A (ja) * 2019-02-15 2020-08-31 富士電機株式会社 半導体モジュール及び半導体モジュールの製造方法
JP7298177B2 (ja) 2019-02-15 2023-06-27 富士電機株式会社 半導体モジュール及び半導体モジュールの製造方法
US20210043466A1 (en) * 2019-08-06 2021-02-11 Texas Instruments Incorporated Universal semiconductor package molds
US11791170B2 (en) 2019-08-06 2023-10-17 Texas Instruments Incorporated Universal semiconductor package molds

Also Published As

Publication number Publication date
US8471373B2 (en) 2013-06-25
JP5478638B2 (ja) 2014-04-23
CN102473700B (zh) 2015-05-20
JPWO2011155165A1 (ja) 2013-08-01
EP2581937A1 (en) 2013-04-17
US20120112332A1 (en) 2012-05-10
EP2581937A4 (en) 2014-10-01
EP2581937B1 (en) 2017-09-06
CN102473700A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5478638B2 (ja) 樹脂封止型半導体装置及びその製造方法
JP5683600B2 (ja) 半導体装置およびその製造方法
JP5339800B2 (ja) 半導体装置の製造方法
CN1790697B (zh) 强大的功率半导体封装
JP5873998B2 (ja) 半導体装置及びその製造方法
JP2005191240A (ja) 半導体装置及びその製造方法
KR20170086828A (ko) 메탈범프를 이용한 클립 본딩 반도체 칩 패키지
JP4530863B2 (ja) 樹脂封止型半導体装置
KR102228945B1 (ko) 반도체 패키지 및 이의 제조방법
JP2008160163A (ja) 半導体装置及びその製造方法、並びに電子装置
US20100123243A1 (en) Flip-chip chip-scale package structure
KR102199360B1 (ko) 반도체 패키지
JP5271778B2 (ja) 半導体装置の製造方法
KR101644913B1 (ko) 초음파 용접을 이용한 반도체 패키지 및 제조 방법
JP4100332B2 (ja) 電子装置およびその製造方法
JP5553766B2 (ja) 半導体装置とその製造方法
CN110892526B (zh) 半导体装置的制造方法
JP5512845B2 (ja) 半導体装置
JP2013187268A (ja) 半導体モジュール
JP5145596B2 (ja) 半導体装置
JP6791794B2 (ja) 半導体装置
JP2023036447A (ja) リードフレーム一体型基板、半導体装置、リードフレーム一体型基板の製造方法、及び半導体装置の製造方法
JP4241408B2 (ja) 半導体装置およびその製造方法
JP2021145037A (ja) 半導体装置の製造方法及び半導体装置
JP2007194379A (ja) リードフレームおよび半導体装置および半導体装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002487.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011543751

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13382244

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011792124

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011792124

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE