WO2014030458A1 - パワー半導体モジュール - Google Patents

パワー半導体モジュール Download PDF

Info

Publication number
WO2014030458A1
WO2014030458A1 PCT/JP2013/069085 JP2013069085W WO2014030458A1 WO 2014030458 A1 WO2014030458 A1 WO 2014030458A1 JP 2013069085 W JP2013069085 W JP 2013069085W WO 2014030458 A1 WO2014030458 A1 WO 2014030458A1
Authority
WO
WIPO (PCT)
Prior art keywords
power semiconductor
conductor plate
semiconductor module
wiring board
wiring
Prior art date
Application number
PCT/JP2013/069085
Other languages
English (en)
French (fr)
Inventor
彬 三間
中津 欣也
健 徳山
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2014030458A1 publication Critical patent/WO2014030458A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0612Layout
    • H01L2224/0615Mirror array, i.e. array having only a reflection symmetry, i.e. bilateral symmetry
    • H01L2224/06154Mirror array, i.e. array having only a reflection symmetry, i.e. bilateral symmetry covering only portions of the surface to be connected
    • H01L2224/06155Covering only the peripheral area of the surface to be connected, i.e. peripheral arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Definitions

  • the present invention relates to a power semiconductor module used for converting DC power into AC power or converting AC power into DC power.
  • IGBTs Insulated Gate Bipolar Transistors
  • current return diodes are generally mounted as power switching elements
  • intelligent control modules such as drive ICs for driving the IGBTs are modularized.
  • Type power semiconductor modules are known.
  • a power circuit module in which a power circuit board on which a power semiconductor is mounted is sealed with an insulating resin in a state where lead terminals are drawn to the outside, and a control circuit board that drives and controls the power semiconductor.
  • a control circuit module embedded with an insulating resin mechanically integrated with the lead terminals of the power circuit module connected to the connection portion of the control circuit module, and the power circuit module and the control circuit module are wired. The power change device connected at is described.
  • the thermal conditions of the circuit components constituting the drive circuit may be severer than the power elements in the power semiconductor module.
  • an object of the present invention is to facilitate the mounting process and improve the reliability of the power semiconductor module.
  • the power semiconductor module includes a power semiconductor element that constitutes an inverter circuit that converts a direct current into an alternating current, a first conductor plate that faces the power semiconductor element, and the first power semiconductor element sandwiched between the first and second power semiconductor elements.
  • the wiring board is disposed so that a part of the projected portion of the wiring board overlaps with the projected portion of the first conductor plate, and is joined to the first conductor plate, and the driving element includes the driving element.
  • Projection portions are arranged so as not to overlap with the first conductive plate and the projection portion of the second conductive plate.
  • the mounting process can be facilitated and the reliability of the power semiconductor module can be improved.
  • FIG. 1A is a top view of the power semiconductor module 1 from which the mold resin material 4 is removed
  • FIG. 1B is a cross-sectional view as viewed from the direction of the arrow of the cross-section AA in FIG. (C) is sectional drawing seen from the arrow direction of the cross section BB of Fig.1 (a).
  • FIG. 3 is an overview diagram of a power semiconductor module 1 as a modification of the embodiment of FIG. 1.
  • FIG. 3 is an overview diagram of a power semiconductor module 1 as a modification of the embodiment of FIG. 1.
  • 4 is the power semiconductor module 1 from which the mold resin material 4 is removed
  • the lower structure diagram of FIG. 4 is a cross-sectional view immediately after the injection of the mold resin material 4 is completed.
  • FIG. 1A is a top view of the power semiconductor module 1 from which the mold resin material 4 is removed
  • FIG. 1B is a cross-sectional view as viewed from the direction of the arrow of the cross-section AA in FIG. (C) is sectional
  • FIG. 6 is an overview of a power semiconductor module 1 as a modification of the embodiment of FIG. 4. It is sectional drawing of the power semiconductor module 1 which shows the wiring structure of this embodiment seen from the direction of BB cross section of Fig.1 (a). It is a circuit block diagram of the power semiconductor module 1 of FIG. FIG. 8A is a top view of the power semiconductor module 1 with the mold resin material 4 removed, and FIG. 8B is a circuit configuration diagram of the power semiconductor module 1 shown in FIG. FIG. 9A is an external perspective view of the power semiconductor module 1 according to the present embodiment, and FIG. 9B is a cross-sectional view as seen from the arrow direction of the AA cross section of FIG. 9A. It is the schematic of the structure of the inverter system which concerns on this embodiment. The structural example of the inverter system at the time of using three conventional power semiconductor modules 51 is shown. An example of the structure of the inverter system which concerns on this embodiment is shown. 1 is a schematic diagram of a hybrid vehicle system.
  • FIG. 1 is a schematic structural view of a power semiconductor module 1 according to a first embodiment.
  • 1A is a top view of the power semiconductor module 1 from which the mold resin material 4 is removed
  • FIG. 1B is a cross-sectional view as viewed from the direction of the arrow of the cross-section AA in FIG. (C) is sectional drawing seen from the arrow direction of the cross section BB of Fig.1 (a).
  • the power semiconductor module 1 in the present embodiment includes IGBTs 11a and IGBTs 11b that function as power conversion elements, and diodes 13a and 13b that function as reflux elements.
  • the IGBT 11a and the diode 13a are power semiconductor elements that constitute the upper arm circuit of the inverter circuit
  • the IGBT 11b and the diode 13b are power semiconductor elements that constitute the lower arm circuit of the inverter circuit.
  • the IGBT 11a and the diode 13a are disposed in a space between the first conductor plate 14a and the second conductor plate 12a.
  • the first conductor plate 14a is connected to the collector electrode of the IGBT 11a and the anode electrode of the diode 13a via a solder material.
  • the second conductor plate 12a is connected to the emitter electrode of the IGBT 11a and the cathode electrode of the diode 13a via a solder material.
  • the IGBT 11b and the diode 13b are arranged in a space between the third conductor plate 14b and the fourth conductor plate 12b.
  • the third conductor plate 14b is connected to the collector electrode of the IGBT 11b and the anode electrode of the diode 13b via a solder material.
  • the fourth conductor plate 12b is connected to the emitter electrode of the IGBT 11b and the cathode electrode of the diode 13b via a solder material.
  • the second conductor plate 12a and the third conductor plate 14b are connected by a solder material or the like in the vicinity of the center of the power semiconductor module 1.
  • the wiring board 6 is mounted with a driving element 7a, a driving element 7b, and a pre-driver circuit 17.
  • the drive element 7 a outputs a drive signal for the IGBT 11 a based on the driver signal of the pre-driver circuit 17.
  • the drive element 7 b outputs a drive signal for the IGBT 11 b based on the driver signal of the pre-driver circuit 17.
  • the wiring board 6 is a printed wiring board, for example.
  • a part of the wiring board 6 is sandwiched between a part of the third conductor plate 14b and a part of the fourth conductor plate 12b, and an adhesive such as a solder material. Is joined to the third conductor plate 14b and the fourth conductor plate 12b.
  • a part of the third conductor plate 14b is a protrusion 140 that protrudes from the main body portion of the third conductor plate 14b toward the wiring board 6, and is integrated with the main body portion of the third conductor plate 14b from the viewpoint of improving productivity. It may be formed.
  • a part of the fourth conductor plate 12b is a protruding portion 120 that protrudes from the main body portion of the fourth conductor plate 12b toward the wiring board 6, and is integrated with the main body portion of the fourth conductor plate 12b from the viewpoint of improving productivity. It may be formed.
  • the wiring board 6 is mounted with a wiring conductor 15a wired from the side where the driving element 7a is arranged toward the IGBT 11a, and a wiring conductor 15b wired from the side where the driving element 7b is arranged toward the IGBT 11b. To do.
  • the wiring conductor 15a is connected to the pad 9a constituting the gate electrode of the IGBT 11a via the bonding wire 8a.
  • the wiring conductor 15b is connected to the pad 9b constituting the gate electrode of the IGBT 11b via the bonding wire 8b.
  • the bonding wire 8a and the bonding wire 8b function as wiring conductors.
  • the negative electrode side terminal 30 is connected to the first conductor plate 14a
  • the positive electrode side terminal 31 is connected to the third conductor plate 14b
  • the AC side terminal 32 is connected to the fourth conductor plate 12b.
  • the drive elements 7a and 7b are arranged such that the projected portions of the drive elements 7a and 7b do not overlap the projected portion of the first conductor plate 14a and the projected portion of the second conductor plate 12a.
  • the wiring board 6 is sandwiched between a part of the first conductor plate 14a and a part of the second conductor plate 12a and between a part of the third conductor plate 14b and a part of the fourth conductor plate 12b. By being sandwiched between the wiring boards, the wiring board 6 and the conductor plate can be firmly connected, and mounting with improved reliability is possible.
  • the wiring board 6 is sandwiched between a part of the first conductor plate 14a and a part of the second conductor plate 12a and the third conductor. Although sandwiched between a part of the plate 14b and a part of the fourth conductor plate 12b, the wiring board 6 has only one of the first conductor plate 14a or the second conductor plate 12a, the third conductor plate 14b or the second conductor plate 12a. It may be joined to only one of the four conductor plates 12b.
  • the second conductor plate 12a and the fourth conductor plate 12b are the projected portion of the second conductor plate 12a and the second conductor plate 12a.
  • the projected portion of the four conductor plate 12b is formed so as not to overlap the projected portion of the bonding wire 8a and the projected portion of the bonding wire 8b.
  • the first conductor plate 14a, the second conductor plate 12a, the third conductor plate 14b, the fourth conductor plate 12b, and the wiring board 6 are integrally formed of the mold resin material 4. What is sealed with the mold resin material 4 is defined as a sealing body 4a. Further, a part of the first conductor plate 14 a and a part of the second conductor plate 12 a are exposed from one surface of the mold resin material 4. A part of the third conductor plate 14 b and a part of the fourth conductor plate 12 b are exposed from the other surface of the mold resin material 4.
  • the heat radiating plate 2a is disposed at a position facing the second conductor plate 12a, the fourth conductor plate 12b, and the wiring board 6 with the insulating member 3a interposed therebetween.
  • the heat sink 2b is disposed at a position facing the first conductor plate 14a, the third conductor plate 14b, and the wiring board 6 with the insulating member 3b interposed therebetween.
  • the drive element 7a and the drive element 7b are such that the projecting portions of these drive elements are the projecting portions of the heat sink 2a and It arrange
  • the wiring board 6 can be cooled from both sides, and the cooling performance of the wiring board 6 can be improved.
  • only the heat radiating plate 2 a close to the driving element 7 a and the driving element 7 b may be formed to face the wiring board 6.
  • the plurality of input / output terminals 5 transmit signals to the wiring board 6. As shown in FIGS. 1A and 1B, the plurality of input / output terminals 5 protrude from the mold resin material 4. The plurality of input / output terminals 5 are arranged so that the upper surface of each input / output terminal 5 overlaps the virtual plane 5a.
  • the mold resin material 4 can be poured into the mold in a state in which the mold for pouring the mold resin material 4 is in contact with the plurality of input / output terminals 5, and the mold resin material 4 is difficult to leak. .
  • FIG. 4 is a view showing resin molding of the power semiconductor module 1 according to the embodiment shown in FIG. 4 is the power semiconductor module 1 from which the mold resin material 4 is removed, and the lower structure diagram of FIG. 4 is a cross-sectional view immediately after the injection of the mold resin material 4 is completed.
  • the tie bar structure 20a and the tie bar structure 20b are provided in the mold line 21a and the mold line 21b in order to prevent the mold resin material 4 from flowing out.
  • the resin can be prevented from flowing out.
  • FIG. 7 is a circuit configuration diagram of the power semiconductor module 1 of FIG.
  • the pre-driver 17 receives both a command signal from the upper control unit, and both a first drive signal for driving the power semiconductor element 11a of the upper arm and a second drive signal for driving the power semiconductor element 11b of the lower arm. Is output.
  • the drive element 7a constituting the driver IC receives the first drive signal and drives the power semiconductor element 11a, and the drive element 7b constituting the driver IC receives the second drive signal and drives the power semiconductor element 11b.
  • a dead time for turning off both the power semiconductor elements of the upper and lower arms between the first drive signal and the second drive signal so that the power semiconductor elements 11a and 11b are not simultaneously turned ON is a period.
  • the signal wiring path of the driving element 7a and the power semiconductor element 11a, the driving element 7b, and the power semiconductor are not caused by a delay in timing of the dead time provided by the pre-driver 17 due to wiring delay on the substrate.
  • the drive element 7a and the drive element 7b are arranged so that the signal wiring paths of the element 11b are substantially the same.
  • the pre-driver 17 is disposed between the driving element 7a and the driving element 7b, so that the signal wiring path of the pre-driver 17 and the driving element 7a is substantially the same as the signal wiring path of the pre-driver 17 and the driving element 7b. It is configured.
  • FIG. 10 is a schematic diagram of the configuration of the inverter system according to the present embodiment.
  • the three-phase inverter system 42 shown in FIG. 10 is configured using a total of three power semiconductor modules 1 according to the present embodiment.
  • the inverter system 42 also includes a smoothing capacitor 41.
  • a controller 43 for controlling the power semiconductor module 1 is also built in.
  • a high voltage power supply 40 is connected to the positive terminal 30 and the negative terminal 31 of the power semiconductor module 1 from the outside.
  • a low voltage power supply 45 is connected to the controller 43 from the outside.
  • the three power semiconductor modules 1 correspond to the U phase, the V phase, and the W phase, respectively.
  • the AC side terminals 32 of the power semiconductor modules 1 of the respective phases are connected to the U phase, the V phase, and the W phase of the motor 44, respectively.
  • the control signal from the controller 43 is input to the wiring board 6 built in the power semiconductor module 1 of each phase, and the power semiconductor element of each phase is driven by the control circuit.
  • the operating state of each power semiconductor module is output from the control circuit to the controller 43.
  • FIG. 11 shows an example of the structure of an inverter system when three conventional power semiconductor modules 51 are used.
  • a water channel 52 is provided in the inverter housing 50, and the power semiconductor module 51 is disposed in the water channel 52.
  • the power terminal of the power semiconductor module 52 is connected to the smoothing capacitor 41 via the bus bar 57.
  • the signal terminal 56 is connected to the driver board 53, and the driver board 53 is further connected to the controller board 43 via the signal harness 55.
  • two boards of a driver board 53 and a controller board 43 are necessary, and it is necessary to secure a large space in the inverter system, and a signal harness for connecting the two boards. 55 is also necessary, resulting in a complicated structure.
  • FIG. 12 shows an example of the structure of the inverter system according to this embodiment.
  • the power semiconductor module 1 has a structure in which the drive circuit described in the embodiments so far is built. Further, each power semiconductor module 1 is provided with a water channel 52, and the water channel of each power semiconductor module is independent.
  • the structure is as follows. Further, by using the power semiconductor module illustrated in FIG. 9 described later, the power system terminal portion of the power semiconductor module 1 is located on the opposite side of the drive signal terminal with the case of the power semiconductor module 1 interposed therebetween. It has become.
  • the drive signal terminal protrudes from one end of the power semiconductor module 1 and is connected to the controller board 43.
  • the power terminal provided on the opposite side of the drive signal terminal of the power semiconductor module 1 is connected to the smoothing capacitor 41 via the power board 60.
  • a driver board and a signal harness for connecting the driver board to the controller board are not required as compared with the conventional inverter system shown in FIG. Therefore, it can be expected that the entire inverter system will be downsized.
  • by reducing the space required for the low-voltage signal system it is possible to secure a larger space for the high-voltage signal wiring, reduce the parasitic resistance of the high-voltage signal wiring, and suppress the heat generation due to the parasitic resistance. High reliability and high efficiency of the inverter system can be expected.
  • a part of the circuit component on which the driver board is mounted is mounted in the power semiconductor module 1 and the other circuit parts are mounted on the controller board, thereby making the driver board unnecessary.
  • FIG. 13 is a schematic diagram of a hybrid automobile system.
  • the power conversion device can be applied not only to a hybrid vehicle (hereinafter referred to as HEV) but also to an electric vehicle (hereinafter referred to as EV) that runs only by a motor, and is used in general industrial machines. It can also be used as a power converter for driving a motor.
  • HEV hybrid vehicle
  • EV electric vehicle
  • the engine (ENG) 75 and the motor generator (MG) 70 generate traveling torque for the vehicle.
  • the motor generator not only generates rotational torque, but also has a function of converting mechanical energy applied from the outside to the motor generator into electric power.
  • the motor generator 70 is, for example, a synchronous machine or an induction machine, and operates as a motor or a generator depending on the operation method as described above.
  • a permanent magnet type synchronous motor using a magnet such as neodymium (Nd) is suitable.
  • the permanent magnet type synchronous motor generates less heat from the rotor than the induction motor, and is also suitable for automobiles from this viewpoint.
  • the output torque on the output side of the engine is transmitted to the motor generator 70 via the power distribution mechanism (TSM) 74, and the rotational torque from the power distribution mechanism 74 or the rotational torque generated by the motor generator 70 is transmitted to the transmission TM73 and the differential gear DEF77. Via the wheel 78.
  • TSM power distribution mechanism
  • rotational torque is transmitted from the wheels to the motor generator 70, and AC power is generated based on the supplied rotational torque.
  • the generated AC power is converted to DC power by the power converter, and the high voltage battery system 76 is charged. The charged power is used again as travel energy.
  • FIG. 2 is an overview of a power semiconductor module 1 as a modification of the embodiment of FIG.
  • FIG. 1 is different from the embodiment of FIG. 1 in that a spacer 16 for holding the wiring board 6 is provided.
  • the spacer 16 is connected to the wiring substrate 6 by an adhesive such as a solder material, and is supported by the heat sink 2b via the insulating member 3b.
  • the spacer 16 is formed so that the lower surface of the spacer 16 is disposed on the same surface as the lower surface of the third conductor plate 14b.
  • one end of the wiring board 6 is supported by the protrusion 140 and the other end of the wiring board 6 is supported by the spacer 16, so that both ends of the wiring board 6 can be stably fixed, and mounting reliability is improved. Can be improved.
  • connection part to which the spacer 16 and the wiring board 6 are connected is provided on the side opposite to the surface of the wiring board 6 on which the wiring conductor 15a and the wiring conductor 15b are provided. Thereby, it can avoid that the wiring conductor 15a and the wiring conductor 15b interfere with the connection part to which the spacer 16 and the wiring board 6 are connected.
  • FIG. 3 is a schematic view of a power semiconductor module 1 as a modification of the embodiment of FIG.
  • the wiring board 6 has a protruding portion 6a protruding toward the central portion of the fourth conductor plate 12b and the third conductor plate 14b.
  • the protrusion 6a is sandwiched between the fourth conductor plate 12b and the third conductor plate 14b.
  • the wiring board 6 is more firmly fixed.
  • FIG. 5 is an overview of a power semiconductor module 1 as a modification of the embodiment of FIG.
  • FIG. 5A is a top view of the power semiconductor module 1 with the mold resin material 4 removed.
  • FIG. 5B shows the power semiconductor module 1 immediately after the molding resin material 4 is injected, and is a cross-sectional view seen from the arrow direction of the AA cross section of FIG.
  • the fourth embodiment will be described with a focus on differences from the first embodiment.
  • the positive terminal 31 is connected to the first conductor plate 14a
  • the negative terminal 30 is connected to the fourth conductor 12b
  • the alternating terminal 32 is connected to the third conductor 14b.
  • the positive electrode side terminal 31, the negative electrode side terminal 30, and the AC side terminal 32 pass through the lower side of the wiring substrate 6 and protrude from the mold resin material 4. That is, the positive electrode side terminal 31, the negative electrode side terminal 30, and the AC side terminal 32 are arranged near the surface opposite to the surface on which the wiring conductor 15a and the wiring conductor 15b are mounted. With this configuration, it is possible to suppress the noise radiated from the positive terminal 31, the negative terminal 30, and the AC terminal 32 from being mixed into the wiring conductor 15a and the wiring conductor 15b.
  • the input / output terminal 5 protrudes in the same direction as the positive terminal 31, the negative terminal 30 and the AC terminal 32.
  • the input / output terminal 5 is partially bent and connected to the extension terminal 5 b protruding from the mold resin material 4.
  • the extension terminal 5b, the positive electrode side terminal 31, the negative electrode side terminal 30, and the AC side terminal 32 are arranged so that their upper surfaces overlap the virtual plane 5c.
  • the mold resin material 4 is poured into the mold while the mold for pouring the mold resin material 4 is in contact with the extension terminal 5b, the positive electrode side terminal 31, the negative electrode side terminal 30, and the AC side terminal 32. This makes it difficult for the mold resin material 4 to leak.
  • FIG. 6 is a cross-sectional view of the power semiconductor module 1 showing the wiring structure of the present embodiment as seen from the direction of the BB cross section of FIG.
  • the wiring board 600 on which the drive element 7a is mounted is a multilayer wiring board having at least two wiring layers.
  • the wiring substrate 600 has an internal wiring 601 in an insulating substrate.
  • the shield wiring layer 23 a is formed on the upper surface of the wiring substrate 600 while facing the internal wiring 601.
  • the shield layer 23 b faces the shield wiring layer 23 a with the internal wiring 601 interposed therebetween and is formed on the lower surface of the wiring substrate 600.
  • the shield wiring layer 23a and the shield wiring layer 23b are preferably low-voltage side power supply wirings that are relatively stable in terms of potential. With such a structure, there is an effect of shielding switching noise from the second conductor plate 12a and the first conductor plate 14a on which the power semiconductor elements are mounted, and the reliability of the low-voltage side signal can be improved. . Further, the shield wiring layer 23a and the shield wiring layer 23b may be floating in terms of potential, and even if only a metal wiring layer is disposed, there is an effect of shielding switching noise.
  • FIG. 8 is a schematic diagram of a modification of the circuit configuration of the power semiconductor module according to the present embodiment shown in FIG.
  • FIG. 8A is a top view of the power semiconductor module 1 with the mold resin material 4 removed
  • FIG. 8B is a circuit configuration diagram of the power semiconductor module 1 shown in FIG.
  • a power generation circuit 39 is disposed on the wiring board 6.
  • the power generation circuit 39 outputs the power used by the drive element 7a, the drive element 7b, and the pre-driver 17.
  • the power semiconductor module 1 can operate without providing a low-voltage power supply for driving the power semiconductor module 1 from the outside of the power semiconductor module, as long as the high-voltage power supply is provided.
  • the wiring of the power semiconductor module 1 is simplified, and it is not necessary to make a power source with the upper control board, so that the size of the entire inverter system can be expected.
  • FIG. 9A is an external perspective view of the power semiconductor module 1 according to the present embodiment
  • FIG. 9B is a cross-sectional view as seen from the arrow direction of the AA cross section of FIG. 9A.
  • the case 80 stores the sealing body 4a described in the first embodiment in the storage space.
  • the case 80 has a heat radiating plate 2a facing the one surface of the sealing body 4a across the insulating member 3a, and a heat radiating plate 2b facing the other surface of the sealing body 4a across the insulating member 3b.
  • the case 80 has a flange portion 83 connected to one end of the heat sink 2a and one end of the heat sink 2b, the other end of the heat sink 2a, and the other end of the heat sink 2b. And a flange portion 84 to be connected.
  • the fins 81 are formed on the outer surface of the heat radiating plate 2a, and the fins 82 are formed on the outer surface of the heat radiating plate 2b.
  • the flange portion 83 is a through-hole that penetrates the negative electrode side terminal 30, the positive electrode side terminal 31, and the AC side terminal 32. 84 is formed.
  • the flange portion 85 forms a through hole 86 that allows the input / output terminal 5 to pass therethrough.
  • the case 80 is disposed such that the outer surface of the heat radiating plate 2a and the outer surface of the heat radiating plate 2b are in direct contact with the cooling medium by fixing the flange portion 83 and the flange portion 85 to the flow path forming body.
  • heat generated from the power semiconductor element can be radiated by the heat radiating plate 2a and the heat radiating plate 2b, and the drive element 7a can also efficiently radiate heat by being in thermal contact with the heat radiating portion. It is possible to prevent the drive element from being deteriorated by heat.
  • the input / output terminal 5 electrically connected to the driving element protrudes from the through hole 84 provided at one end of the case 80 to the outside of the case 80, and is on the negative side that is stronger than the input / output terminal 5.
  • the terminal 30, the positive electrode side terminal 31, and the AC side terminal 32 protrude from the through hole 86 with the heat radiating plate 2 a, the heat radiating plate 2 b, the flange portion 83, and the flange portion 85 interposed therebetween.
  • the drive signal wiring electrically connected to the drive element 7a and the output signal of the power semiconductor element can be kept away, and by reducing the electrical coupling, the switching noise of the power semiconductor element can be reduced. Interference can be suppressed.
  • the present invention relates to a power converter, and is particularly applicable to an inverter system used for HEV and EV. It can also be used as a power converter for driving a motor used in general industrial machines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inverter Devices (AREA)

Abstract

 実装プロセスを容易にすること及び、パワー半導体モジュールの信頼性を向上することである。 パワー半導体素子が実装されている前記第1および第2の導体板と、前記パワー半導体素子を駆動する前記駆動素子が実装された前記配線基板を備えたパワー半導体モジュールであって、前記パワー半導体素子と対向する前記第1導体板の対向面の垂直方向から投影した場合に、前記配線基板は、当該配線基板の射影部の一部が前記第1導体板の射影部と重なるように配置されるとともに前記第1導体板に接合され、前記駆動用素子及び前記配線導体は、当該駆動用素子及び当該配線導体の射影部が前記第1導体板及び前記第2射影部の射影部と重ならないように配置されるパワー半導体モジュール。

Description

パワー半導体モジュール
 本発明は直流電力を交流電力に変換しあるいは交流電力を直流電力に変換するために使用するパワー半導体モジュールに関する。
 近年、電力変換装置の高出力・高密度化が求められ、パワー半導体モジュールの小型化が注目されている。小型化のためには、ドライブ回路などの制御回路をパワー半導体モジュールと一体化し、内蔵集積化のキー技術が必須となっている。
 パワー半導体モジュールでは、一般的に電力スイッチング用素子としてIGBT(Insulated Gate Bipolar Transistor)や電流還流用のダイオードが実装されており、そのIGBTを駆動するためのドライブICなどの制御素子をモジュール化したインテリジェント型パワー半導体モジュールが知られている。
 たとえば、特許文献1では、リード端子が外部へ引き出された状態で、パワー半導体を搭載したパワー回路基板が絶縁樹脂で封止されてなるパワー回路モジュールと、パワー半導体を駆動・制御する制御回路基板が絶縁樹脂で封埋された制御回路モジュールを備え、パワー回路モジュールのリード端子が制御回路モジュールの接続部に接続された状態で機械的に一体化され、パワー回路モジュールと制御回路モジュールとをワイヤで接続した電力変化装置が記載されている。
 一方で、ドライブ回路をパワー半導体モジュール内に搭載する際に、更なる組立性の向上が求められる。
 また、ドライブ回路を構成する回路部品は、パワー半導体モジュール内のパワー素子よりも熱的条件が厳しい場合がある。
特開2006-121861号公報 特開2011-23654号公報 特開2008-16822号公報
 そこで本発明の課題は、実装プロセスを容易にすること及び、パワー半導体モジュールの信頼性を向上することである。
 本発明に係るパワー半導体モジュールは、直流電流を交流電流に変換するインバータ回路を構成するパワー半導体素子と、前記パワー半導体素子と対向する第1導体板と、前記パワー半導体素子を挟んで前記第1導体板と対向する第2導体板と、前記パワー半導体素子を駆動する駆動用素子と、前記駆動用素子を搭載する配線基板と、前記パワー半導体素子と前記第1導体板と前記第2導体板と前記駆動用素子と前記配線基板を封止する封止材と、を備え、前記第1導体板において当該第1導体板と前記パワー半導体素子との対向面の垂直方向から投影した場合に、前記配線基板は、当該配線基板の射影部の一部が前記第1導体板の射影部と重なるように配置されるとともに前記第1導体板に接合され、前記駆動用素子は、当該駆動用素子の射影部が前記第1導体板及び前記第2導体板の射影部と重ならないように配置される。
 本発明により、実装プロセスを容易にするとともに、パワー半導体モジュールの信頼性を向上することができる。
図1(a)はモールド樹脂材4を取り除いたパワー半導体モジュール1の上面図であり、図1(b)は図1(a)の断面AAの矢印方向から見た断面図であり、図1(c)は図1(a)の断面BBの矢印方向から見た断面図である。 図1の実施形態の変形例としてのパワー半導体モジュール1の概観図である。 図1の実施形態の変形例としてのパワー半導体モジュール1の概観図である。 図4の上側の構造図はモールド樹脂材4を取り除いたパワー半導体モジュール1であり、図4の下側の構造図はモールド樹脂材4の注入が終了した直後の断面図である。 図4の実施形態の変形例としてのパワー半導体モジュール1の概観図である。 図1(a)のBB断面の方向から見た、本実施形態の配線構造を示すパワー半導体モジュール1の断面図である。 図1のパワー半導体モジュール1の回路構成図である。 図8(a)はモールド樹脂材4を取り除いたパワー半導体モジュール1の上面図であり、図8(b)は図8(a)に示されるパワー半導体モジュール1の回路構成図である。 図9(a)は本実施例に係るパワー半導体モジュール1の外観斜視図であり、図9(b)は図9(a)のAA断面の矢印方向から見た断面図である。 本実施形態に係るインバータシステムの構成の概略図である。 従来のパワー半導体モジュール51を3つ用いた場合のインバータシステムの構造例を示す。 本実施形態に係るインバータシステムの構造の一例を示す。 ハイブリット自動車システムの概略図である。
 以下、図面を参照して、本発明に係る電力変換装置(又は、パワー半導体モジュール)の実施の形態について説明する。なお、各図において同一要素については同一の符号を記し、重複する説明は省略する。
 図1を参照して、本実施形態1に係るパワー半導体モジュール1の構造について説明する。図1は実施例1に係るパワー半導体モジュール1の構造概略図を示す。図1(a)はモールド樹脂材4を取り除いたパワー半導体モジュール1の上面図であり、図1(b)は図1(a)の断面AAの矢印方向から見た断面図であり、図1(c)は図1(a)の断面BBの矢印方向から見た断面図である。
 本実施形態におけるパワー半導体モジュール1は、電力変換素子として機能するIGBT11a及びIGBT11bと、還流素子として機能するダイオード13a及びダイオード13bを有する。IGBT11a及びダイオード13aはインバータ回路の上アーム回路を構成するパワー半導体素子であり、IGBT11b及びダイオード13bはインバータ回路の下アーム回路を構成するパワー半導体素子である。
 図1(a)及び図1(c)に示されるように、IGBT11a及びダイオード13aは、第1導体板14aと第2導体板12aとの間の空間に配置される。第1導体板14aは、IGBT11aのコレクタ電極及びダイオード13aのアノード電極とはんだ材を介して接続される。第2導体板12aは、IGBT11aのエミッタ電極及びダイオード13aのカソード電極とはんだ材を介して接続される。
 図1(a)及び図1(b)に示されるように、IGBT11b及びダイオード13bは、第3導体板14bと第4導体板12bとの間の空間に配置される。第3導体板14bは、IGBT11bのコレクタ電極及びダイオード13bのアノード電極とはんだ材を介して接続される。第4導体板12bは、IGBT11bのエミッタ電極及びダイオード13bのカソード電極とはんだ材を介して接続される。
 図1(a)に示されるように、第2導体板12aと第3導体板14bは、パワー半導体モジュール1の中央部付近において、はんだ材等により接続される。
 配線基板6は、駆動素子7a、駆動素子7b及びプリドライバ回路17を搭載する。駆動素子7aは、プリドライバ回路17のドライバ信号に基づいてIGBT11aの駆動信号を出力する。駆動素子7bは、プリドライバ回路17のドライバ信号に基づいてIGBT11bの駆動信号を出力する。配線基板6は、例えばプリント配線基板である。
 図1(b)に示されるように、配線基板6の一部は、第3導体板14bの一部と第4導体板12bの一部との間に挟まれ、かつはんだ材等の接着材により第3導体板14b及び第4導体板12bに接合される。第3導体板14bの一部は、第3導体板14bの本体部から配線基板6に向かって突出する突出部140であり、生産性向上の観点から、第3導体板14bの本体部と一体に形成されていてもよい。第4導体板12bの一部は、第4導体板12bの本体部から配線基板6に向かって突出する突出部120であり、生産性向上の観点から、第4導体板12bの本体部と一体に形成されていてもよい。
 また配線基板6は、駆動素子7aが配置された側からIGBT11aに向かって配線された配線導体15aと、駆動素子7bが配置された側からIGBT11bに向かって配線された配線導体15bと、を実装する。配線導体15aは、IGBT11aのゲート電極を構成するパッド9aと、ボンディングワイヤ8aを介して接続される。配線導体15bは、IGBT11bのゲート電極を構成するパッド9bと、ボンディングワイヤ8bを介して接続される。ボンディングワイヤ8a及びボンディングワイヤ8bは、配線導体として機能する。
 負極側端子30は第1導体板14aと接続され、正極側端子31は第3導体板14bと接続され、交流側端子32は、第4導体板12bと接続される。
 第1導体板14a又は第2導体板12aとIGBT11aとの対向面の垂直方向から投影した場合に、つまり図1(a)に示される側から投影した場合に、配線基板6は、この配線基板6の射影部の一部が第1導体板14aの射影部及び第2導体板12aの射影部と重なるように配置される。そして、配線基板6は、第1導体板14a及び第2導体板12aに接合される。一方、駆動素子7a及び7bは、この駆動素子7a及び7bの射影部が第1導体板14aの射影部及び第2導体板12aの射影部と重ならないように配置される。
 このような構造により、第1導体板14a、第2導体板12a、第3導体板14b、第4導体板12b及びパワー半導体素子からの熱が駆動素子7a及び駆動素子7bに伝わり難くなり、駆動素子7a及び駆動素子7bは伝熱による信頼性の低下を抑制されることができる。また、配線基板6が第1導体板14aの一部と第2導体板12aの一部との間に挟まれかつ第3導体板14bの一部と第4導体板12bの一部との間に挟まれていることにより、配線基板6と導体板とを強固に接続することができ、信頼性を向上した実装が可能となる。
 なお図1(a)ないし図1(c)に係る実施形態においては、配線基板6は第1導体板14aの一部と第2導体板12aの一部との間に挟まれかつ第3導体板14bの一部と第4導体板12bの一部との間に挟まれているが、配線基板6が第1導体板14a又は第2導体板12aの一方のみ、第3導体板14b又は第4導体板12bの一方のみと接合されていてもよい。
 また第1導体板14a又は第2導体板12aとIGBT11aとの対向面の垂直方向から投影した場合に、第2導体板12a及び第4導体板12bは、第2導体板12aの射影部及び第4導体板12bの射影部がボンディングワイヤ8aの射影部及びボンディングワイヤ8bの射影部と重ならないように形成される。パワー半導体素子を第1導体板14a等に接合した後に、ワイヤボンディングプロセスを行うことができ、実装プロセスが簡略化することができる。
 また、本実施形態におけるパワー半導体モジュール1は、第1導体板14a、第2導体板12a、第3導体板14b、第4導体板12b及び配線基板6をモールド樹脂材4により一体に形成する。このモールド樹脂材4によって封止されたものを封止体4aと定義する。さらに第1導体板14aの一部及び第2導体板12aの一部は、モールド樹脂材4の一方の面から露出する。第3導体板14bの一部及び第4導体板12bの一部は、モールド樹脂材4の他方の面から露出する。放熱板2aは、絶縁部材3aを挟んで、第2導体板12aと第4導体板12bと配線基板6と対向する位置に配置される。また放熱板2bは、絶縁部材3bを挟んで、第1導体板14aと第3導体板14bと配線基板6と対向する位置に配置される。
 つまり、封止体4aと対向する放熱板2aの面の垂直方向から投影した場合に、駆動用素子7a及び駆動用素子7bは、これらの駆動用素子の射影部が放熱板2aの射影部及び放熱板2bの射影部と重なるように配置される。
 このような構成により、パワー半導体素子が両面から冷却されるだけでなく、配線基板6が両面から冷却することができ、配線基板6の冷却性能を向上させることができる。なお、配線基板6の両面を冷却する必要が無い場合は、駆動素子7a及び駆動素子7bに近い放熱板2aのみを配線基板6と対向させるように形成してもよい。
 また複数の入出力端子5は、配線基板6に信号を伝達する。図1(a)及び図1(b)に示されるように、複数の入出力端子5は、モールド樹脂材4から突出する。また複数の入出力端子5は、それぞれの入出力端子5の上面が仮想平面5aと重なるように並べられる。
 このような構成により、モールド樹脂材4を流し込むための型を複数の入出力端子5に接触させた状態で、この型にモールド樹脂材4を流し込むことができ、モールド樹脂材4が漏れ難くなる。
 図4は、図1に示す実施形態に係るパワー半導体モジュール1の樹脂モールド加工を示す図である。図4の上側の構造図はモールド樹脂材4を取り除いたパワー半導体モジュール1であり、図4の下側の構造図はモールド樹脂材4の注入が終了した直後の断面図である。
 モールドライン21aおよびモールドライン21bに、モールド樹脂材4の流出を防ぐために、タイバー構造20aおよびタイバー構造20bを備える。樹脂モールド加工工程では、樹脂モールド加工前のパワー半導体モジュール1を樹脂モールド冶具22で抑えて密閉性を保ちながら、一定の圧力で樹脂を注入する必要がある。本実施例のように、タイバー構造を備えることにより、樹脂の流出を防ぐことができる。
 図7は、図1のパワー半導体モジュール1の回路構成図である。
 プリドライバ17は、上位制御部からの指令信号を受けて上アームのパワー半導体素子11aを駆動するための第1駆動信号と下アームのパワー半導体素子11bを駆動するための第2駆動信号の両方を出力する。
 そして、ドライバICを構成する駆動素子7aは第1駆動信号を受けてパワー半導体素子11aを駆動し、ドライバICを構成する駆動素子7bは第2駆動信号を受けてパワー半導体素子11bを駆動する。
 さらに第1駆動信号および第2駆動信号との間には、パワー半導体素子11aおよびパワー半導体素子11bが同時にONとならないように、上下アームのパワー半導体素子の双方が遮断状態とするためのデッドタイム期間が設けられている。
 本実施形態においては、基板上の配線遅延などにより、プリドライバ17で設けたデッドタイムのタイミングずれが生じないように、駆動素子7aとパワー半導体素子11aの信号配線経路と駆動素子7bとパワー半導体素子11bの信号配線経路が略同一となるように、駆動素子7a及び駆動素子7bが配置されている。
 さらにプリドライバ17は駆動素子7aと駆動素子7bとの間に配置することにより、プリドライバ17と駆動素子7aの信号配線経路とプリドライバ17と駆動素子7bの信号配線経路が略同一となるように構成されている。
 図10を参照して、本実施形態に係るパワー半導体モジュール1を用いたインバータシステムについて説明する。図10は、本実施形態に係るインバータシステムの構成の概略図である。
 本実施形態に係るパワー半導体モジュール1を合計3つ用いて、図10に記した3相のインバータシステム42を構成する。インバータシステム42では、パワー半導体モジュール1を3つ有するほかに、平滑化コンデンサ41も内蔵している。また、パワー半導体モジュール1を制御するためのコントローラ43も内蔵している。パワー半導体モジュール1の正極側端子30、負極側端子31には、外部から高圧電源40が接続される。コントローラ43には外部から低圧電源45が接続される。
 3つのパワー半導体モジュール1はそれぞれU相、V相、W相に対応しており、各相のパワー半導体モジュール1の交流側端子32はモータ44のU相、V相、W相にそれぞれ接続される。
 コントローラ43からの制御信号は各相のパワー半導体モジュール1に内蔵する配線基板6に入力され、制御回路で各相のパワー半導体素子を駆動する。また各パワー半導体モジュールの動作状態を制御回路からコントローラ43に出力される。
 図11に従来のパワー半導体モジュール51を3つ用いた場合のインバータシステムの構造例を示す。従来のインバータシステムでは、インバータ筺体50に水路52を設け、パワー半導体モジュール51を水路52内に配置する。また、パワー半導体モジュール52のパワー端子はバスバー57を介して平滑化コンデンサ41に接続される。一方、信号端子56はドライバ基板53に接続されており、さらに前記ドライバ基板53は信号ハーネス55を介してコントローラ基板43に接続される。このような構造のインバータシステムにおいては、ドライバ基板53とコントローラ基板43の2枚の基板が必要であり、インバータシステム内に大きなスペースを確保する必要があり、2枚の基板接続するための信号ハーネス55も必要であり、複雑な構造となる。
 図12に本実施形態に係るインバータシステムの構造の一例を示す。本構造では、パワー半導体モジュール1はこれまでの実施例で述べた駆動回路を内蔵した構造となっており、さらにパワー半導体モジュール1の各々に水路52を設け、それぞれのパワー半導体モジュールの水路は独立した構造とする。また、後述する図9にて説示するパワー半導体モジュールを用いることにより、パワー半導体モジュール1のパワー系の端子部はパワー半導体モジュール1のケースを挟んで駆動信号端子の反対側に位置している構造となっている。
 また、駆動信号端子はパワー半導体モジュール1の一端から突出しており、コントローラ基板43に接続される。一方、パワー半導体モジュール1の駆動信号端子の反対側に設けたパワー端子はパワーボード60を介して平滑化コンデンサ41に接続される。また本インバータシステムの構造では、図11に示した従来のインバータシステムに比べて、ドライバ基板とこのドライバ基板をコントローラ基板に接続するための信号ハーネスを不要としたことで、より大きなスペースを必要とせず、インバータシステム全体の小型化が期待できる。また、低圧信号系の必要とするスペースを低減したことで、高圧信号配線のためにより大きなスペースを確保することができ、高圧信号配線の寄生抵抗を低減し、寄生抵抗による発熱を抑えることができ、インバータシステムの高信頼化、高効率化が期待できる。
 なお、本実施形態により、ドライバ基板の搭載される回路部品の一部をパワー半導体モジュール1内に搭載し、他の回路部品をコントローラ基板に搭載することにより、ドライバ基板を不要とすることもできる。
 図13を参照して、本実施例のパワー半導体モジュール1を用いたインバータシステムをエンジンとモータの両方を使用して走行するはハイブリット自動車(HEV)システムに適用した場合の実施例について説明する。図13はハイブリット自動車システムの概略図である。
 本実施形態に係る電力変換装置はハイブリッド自動車(以下HEVと称す)のみならず、モータのみで走行する電気自動車(以下EVと称す)にも適用可能であり、また一般産業機械に使用されているモータを駆動するための電力変換装置としても使用可能である。
 図13に示したHEVシステムでは、エンジン(ENG)75及びモータジェネレータ(MG)70は車両の走行用トルクを発生する。またモータジェネレータは回転トルクを発生するだけでなく、モータジェネレータに外部から加えられる機械エネルギを電力に変換する機能を有する。
 モータジェネレータ70は、例えば同期機あるいは誘導機であり、上述の通り、運転方法によりモータとしても発電機としても動作する。モータジェネレータ70を自動車に搭載する場合に、小型で高出力を得ることが望ましく、ネオジム(Nd)などの磁石を使用した永久磁石型の同期電動機が適している。また永久磁石型の同期電動機は、誘導電動機に比べて回転子の発熱が少なく、この観点でも自動車用として好適である。
 エンジンの出力側の出力トルクは動力分配機構(TSM)74を介してモータジェネレータ70伝達され、動力分配機構74からの回転トルクあるいはモータジェネレータ70が発生する回転トルクは、トランスミッションTM73およびディファレンシャルギアDEF77を介して車輪78に伝達される。一方回生制動の運転時には、車輪から回転トルクがモータジェネレータ70に伝達され、供給されてきた回転トルクに基づいて交流電力を発生する。発生した交流電力は電力変換装置により直流電力に変換され、高電圧用のバッテリシステム76を充電し、充電された電力は再び走行エネルギとして使用される。
 図2を参照して、本実施形態2に係るパワー半導体モジュール1について説明する。図2は、図1の実施形態の変形例としてのパワー半導体モジュール1の概観図である。
 図1の実施形態と異なるところは、配線基板6を保持するためのスペーサ16を設けたことである。スペーサ16は、配線基板6とはんだ材等の接着剤により接続されるとともに、絶縁部材3bを介して放熱板2bに支持される。
 つまりスペーサ16は、スペーサ16の下面が第3導体板14bの下面と同一面上に配置されるように形成される。
 このような構成により、配線基板6の一端は突出部140により支持され、配線基板6の他端はスペーサ16により支持されるので、配線基板6の両端を安定に固定することでき、実装信頼性の向上が図ることができる。
 なお、スペーサ16と配線基板6が接続される接続部は、配線導体15aや配線導体15bが設けられた配線基板6の面とは反対側に設けられる。これにより、配線導体15aや配線導体15bが、スペーサ16と配線基板6が接続される接続部と干渉することを避けることができる。
 図3を参照して、本実施形態3に係るパワー半導体モジュール1について説明する。図3は、図1の実施形態の変形例としてのパワー半導体モジュール1の概観図である。
 図1の実施形態と異なるところは、配線基板6は、第4導体板12b及び第3導体板14bの中央部に向かって突出する突出部6aを有することである。この突出部6aは、第4導体板12bと第3導体板14bにより挟持される。
 このような構成により、配線基板6がさらに強固に固定される。
 図5を参照して、実施例4に係るパワー半導体モジュール1について説明する。図5は、図4の実施形態の変形例としてのパワー半導体モジュール1の概観図である。図5(a)はモールド樹脂材4を取り除いたパワー半導体モジュール1の上面図である。図5(b)はモールド樹脂材4を注入した直後のパワー半導体モジュール1であり、図5(a)のAA断面の矢印方向から見た断面図である。
 本実施例4では、実施例1と異なる点を中心に説明する。正極側端子31は第1導体板14aと接続され、負極側端子30は第4導体板12bと接続され、交流側端子32は第3導体板14bと接続される。
 正極側端子31、負極側端子30及び交流側端子32は、配線基板6の下方を通って、モールド樹脂材4から突出する。つまり、正極側端子31、負極側端子30及び交流側端子32は、配線導体15a及び配線導体15bが実装された面とは反対側の面の近くに配置される。この構成により、正極側端子31、負極側端子30及び交流側端子32から放射されるノイズが配線導体15a及び配線導体15bに混入することを抑制することができる。
 また、入出力端子5は、正極側端子31、負極側端子30及び交流側端子32と同一方向に突出する。そして入出力端子5は、その一部が屈曲し、モールド樹脂材4から突出する延長端子5bと接続される。
 この延長端子5b、正極側端子31、負極側端子30及び交流側端子32は、それぞれの上面が仮想平面5cと重なるように並べられる。
 このような構成により、モールド樹脂材4を流し込むための型を延長端子5b、正極側端子31、負極側端子30及び交流側端子32に接触させた状態で、この型にモールド樹脂材4を流し込むことができ、モールド樹脂材4が漏れ難くなる。
 図6を参照して、実施例5に係るパワー半導体モジュール1における、他の実施例に係る配線基板600上の配線構造について説明する。図6は、図1(a)のBB断面の方向から見た、本実施形態の配線構造を示すパワー半導体モジュール1の断面図である。
 本実施形態では、駆動素子7aを搭載した配線基板600は少なくとも2層以上の配線層を有する多層配線基板となっている。配線基板600は、絶縁性の基板内に内部配線601を有する。シールド配線層23aは、内部配線601と対向するとともに配線基板600の上面に形成される。シールド層23bは、内部配線601を挟んでシールド配線層23aと対向するとともに配線基板600下面に形成される。
 シールド配線層23aおよびシールド配線層23bは電位的に比較的に安定である低圧側電源配線とすることが好適である。このような構造をなすことで、パワー半導体素子を搭載した第2導体板12aおよび第1導体板14aからのスイッチングノイズを遮蔽する効果があり、低圧側の信号の信頼性の向上が可能である。またシールド配線層23aおよびシールド配線層23bは電位的にフローティングであってもよく、金属配線層を配置するだけでも、スイッチングノイズの遮蔽効果がある。
 図8を参照して、実施例6に係るパワー半導体モジュールの内部回路構成について説明する。図8は、図7に示した本実施形態に係るパワー半導体モジュールの回路構成の変形例の概略図である。図8(a)はモールド樹脂材4を取り除いたパワー半導体モジュール1の上面図であり、図8(b)は図8(a)に示されるパワー半導体モジュール1の回路構成図である。
 電源生成回路39が配線基板6上に配置される。電源生成回路39は、駆動素子7a、駆動素子7bおよびプリドライバ17が使用する電源を出力する。
 このような構造により、パワー半導体モジュール1を駆動するための低圧側電源をパワー半導体モジュールの外から与えることなく、高圧側の電源さえ与えれば、パワー半導体モジュール1は動作することが可能であり、パワー半導体モジュール1の配線が簡素化されると共に、上位コントロール基板で電源を作る必要がなく、インバータシステム全体としての小型化が期待できる。
 図9を参照して、実施例7に係る本発明のパワー半導体モジュール1の構造について説明する。図9(a)は本実施例に係るパワー半導体モジュール1の外観斜視図であり、図9(b)は図9(a)のAA断面の矢印方向から見た断面図である。
 ケース80は、実施例1に説示された封止体4aを収納空間内に収納する。ケース80は、絶縁部材3aを挟んで封止体4aの一方の面と対向する放熱板2aと、絶縁部材3bを挟んで封止体4aの他方の面と対向する放熱板2bと、を有する。また、ケース80は、放熱板2aの一方の端部と放熱板2bの一方の端部に接続されるフランジ部83と、放熱板2aの他方の端部と放熱板2bの他方の端部に接続されるフランジ部84と、を有する。
 また、フィン81が放熱板2aの外面に形成され、フィン82が放熱板2bの外面に形成される
 フランジ部83は、負極側端子30、正極側端子31及び交流側端子32を貫通させる貫通孔84を形成する。フランジ部85は、入出力端子5を貫通させる貫通孔86を形成する。
 このケース80は、フランジ部83及びフランジ部85が流路形成体に固定されることにより、放熱板2aの外面及び放熱板2bの外面が冷却媒体と直接接触するように配置される。
 このような構造により、パワー半導体素子からの発熱を放熱板2a及び放熱板2bで放熱することが可能であると共に、駆動素子7aも放熱部に熱的に接触することにより効率よく放熱することができ、駆動素子が熱により劣化することを防ぐことが可能である。
 また前記駆動素子と電気的に接続される入出力端子5は、ケース80の一端に設けられた貫通孔84からケース80の外部に突出すると共に、入出力端子5よりも強電系である負極側端子30、正極側端子31及び交流側端子32は放熱板2a、放熱板2b、フランジ部83及びフランジ部85を挟んで貫通孔86から突出している。
 このような構造により、駆動素子7aに電気的に接続される駆動信号配線とパワー半導体素子の出力信号を遠ざけることができ、電気的な結合を小さくすることで、パワー半導体素子のスイッチングノイズからの干渉を抑えることが可能である。また、駆動素子とパワー配線部を物理的により遠いところに配置することが可能であり、パワー配線部からの伝熱を最小化することが可能である。
 本発明は、電力変換装置に関し、特に、HEVやEVに用いるインバータシステムに適用可能である。また、一般産業機械に使用されているモータを駆動するための電力変換装置としても使用可能である。
1 ・・・パワー半導体モジュール
2a・・・放熱板
2b・・・放熱板
3a・・・絶縁部材
3b・・・絶縁部材
4 ・・・モールド樹脂材
4a・・・封止体
5 ・・・入出力端子
5a・・・仮想平面
5b・・・延長端子
6 ・・・配線基板
6a・・・突出部
7a・・・駆動素子
7b・・・駆動素子
8a ・・・ボンディングワイヤ
8b ・・・ボンディングワイヤ
9a ・・・パッド
9b ・・・パッド
11a・・・IGBT
11b・・・IGBT
12a・・・第2導体板
12b・・・第4導体板
13a・・・ダイオード
13b・・・ダイオード
14a・・・第1導体板
14b・・・第3導体板
15a・・・配線導体
15b・・・配線導体
16・・・スペーサ
17・・・プリドライバ
20a、20b・・・タイバー構造
21a、21b・・・モールドライン
22・・・モールド冶具
23a・・・シールド配線層
23b・・・シールド配線層
30・・・負極側端子
31・・・正極側端子
32・・・交流側端子
39・・・電源生成回路
40・・・高圧電源
41・・・平滑化コンデンサ
42・・・インバータシステム
43・・・コントローラ
44・・・モータ
50・・・インバータ筺体
51・・・パワー半導体モジュール
52・・・水路
53・・・ドライバ基板
55・・・ワイヤハーネス
57・・・バスバー
60・・・パワーボード
70・・・モータジェネレータ
73・・・トランスミッション
74・・・動力分配機構
75・・・エンジン
76・・・バッテリ
77・・・ディファレンシャルギア
78・・・車輪
80・・・ケース
81・・・フィン
82・・・フィン
83・・・フランジ部
84・・・貫通孔
85・・・フランジ部
86・・・貫通孔
120・・・突出部
140・・・突出部
600・・・配線基板
601・・・内部配線

Claims (11)

  1.  直流電流を交流電流に変換するインバータ回路を構成するパワー半導体素子と、
     前記パワー半導体素子と対向する第1導体板と、
     前記パワー半導体素子を挟んで前記第1導体板と対向する第2導体板と、
     前記パワー半導体素子を駆動する駆動用素子と、
     前記駆動用素子を搭載する配線基板と、
     前記パワー半導体素子と前記第1導体板と前記第2導体板と前記駆動用素子と前記配線基板を封止する封止材と、を備え、
     前記第1導体板において当該第1導体板と前記パワー半導体素子との対向面の垂直方向から投影した場合に、
     前記配線基板は、当該配線基板の射影部の一部が前記第1導体板の射影部と重なるように配置されるとともに前記第1導体板に接合され、
     前記駆動用素子は、当該駆動用素子の射影部が前記第1導体板及び前記第2導体板の射影部と重ならないように配置されるパワー半導体モジュール。
  2.  請求項1に記載されたパワー半導体モジュールであって、
     前記パワー半導体素子のゲート端子と前記配線基板を電気的に接続する配線導体を備え、
     前記配線導体は、当該配線導体の射影部が前記第1導体板及び前記第2導体板の射影部と重ならないように配置されるパワー半導体モジュール。
  3.  請求項1に記載されたパワー半導体モジュールであって、
     前記配線基板は、当該配線基板の一部が前記第1導体板と前記第2導体板との間に挟まれる位置に配置され、
     さらに前記配線基板は、前記第1導体板と前記第2導体板により支持されるパワー半導体モジュール。
  4.  請求項1ないし3に記載されたいずれかのパワー半導体モジュールであって、
     前記封止材によって封止された前記パワー半導体素子と前記第1導体板と前記第2導体板と前記駆動用素子と前記配線基板を封止体と定義し、
     前記封止体の一方の面と対向する第1放熱板と、
     前記封止体を挟んで、前記第1放熱板と対向する第2放熱板と、を備え、
     前記封止体と対向する前記一方の面の垂直方向から投影した場合に、
     前記駆動用素子は、当該駆動用素子の射影部が前記第1放熱板の射影部及び前記第2放熱板の射影部と重なるように配置される電力変換装置。
  5.  請求項4に記載されたパワー半導体モジュールであって、
     前記配線基板と前記第2放熱板との間に配置されるスペーサを備え、
     前記スペーサは、当該スペーサの一面が前記第2導体板の一面と同一面上に配置されるように形成されるパワー半導体モジュール。
  6.  請求項1ないし5に記載されたいずれかのパワー半導体モジュールであって、
     前記パワー半導体素子は、複数設けられ、
     前記複数のパワー半導体素子は、前記インバータ回路の上アーム回路部を構成する第1パワー半導体素子と、前記インバータ回路の下アーム回路部を構成する第2パワー半導体素子と、を含んで構成され、
     前記駆動用素子は、前記第1パワー半導体素子を駆動するための第1駆動信号及び前記第2パワー半導体素子を駆動するための第2駆動信号の両方を出力するパワー半導体モジュール。
  7.  請求項6に記載されたパワー半導体モジュールであって、
     前記駆動用素子は、前記第1パワー半導体素子及び前記第2パワー半導体素子の双方を遮断状態とするためのデッドタイム期間を設けるように、前記第1駆動信号及び前記第2駆動信号を出力し、
     前記駆動用素子は、前記第1パワー半導体素子と当該駆動用素子と間の距離と前記第2パワー半導体素子と当該駆動用素子と間の距離を同じになるように配置されるパワー半導体モジュール。
  8.  請求項1ないし7に記載されたいずれかのパワー半導体モジュールであって、
     前記配線基板は、電気的絶縁性を有する基板部と、当該基板部の内部に配置されるとともに前記駆動用素子と接続される第1配線層と、当該基板部の表面に実装される第2配線層と、を有し、
     前記駆動用素子を搭載した前記配線基板の面と垂直方向から投影した場合に、前記第1配線層は、当該第1配線層の射影部が前記第2配線層の射影部と重なるように形成されるパワー半導体モジュール。
  9.  請求項8に記載されたパワー半導体モジュールであって、
     前記第2配線層は、電源トランスと電気的に接続されるとともに前記駆動用素子を駆動させる電力を伝達するパワー半導体モジュール。
  10.  請求項1ないし9に記載されたいずれかのパワー半導体モジュールであって、
     前記封止材によって封止された前記パワー半導体素子と前記第1導体板と前記第2導体板と前記駆動用素子と前記配線基板を封止体と定義し、
     前記封止体を収納するケースと、を備え、
     前記ケースは、前記封止体と対向する部分に放熱部を有し、
     前記封止体と対向する前記放熱部の対向面の垂直方向から投影した場合に、
     前記駆動用素子は、当該駆動用素子の射影部が前記放熱部の射影部と重なるように配置されるパワー半導体モジュール。
  11.  請求項1ないし10に記載されたいずれかのパワー半導体モジュールであって、
     前記封止材によって封止された前記パワー半導体素子と前記第1導体板と前記第2導体板と前記駆動用素子と前記配線基板を封止体と定義し、
     前記封止体を収納するケースと、
     前記駆動用素子と電気的に接続される制御端子と、
     前記直流電流又は前記交流電流を伝達する主端子と、を備え、
     前記ケースは、前記封止体と対向する部分に放熱部を有するとともに、第1開口部と、当該放熱部を挟んで前記第1開口部とは反対側に配置される第2開口部を形成し、
     前記制御端子は、前記ケース内部から前記第1開口部を介して前記ケース外部に突出し、
     前記主端子は、前記ケースの内部から前記第2開口部を介して前記ケースの外部に突出するパワー半導体モジュール。
PCT/JP2013/069085 2012-08-20 2013-07-12 パワー半導体モジュール WO2014030458A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-181301 2012-08-20
JP2012181301A JP5975789B2 (ja) 2012-08-20 2012-08-20 パワー半導体モジュール

Publications (1)

Publication Number Publication Date
WO2014030458A1 true WO2014030458A1 (ja) 2014-02-27

Family

ID=50149771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069085 WO2014030458A1 (ja) 2012-08-20 2013-07-12 パワー半導体モジュール

Country Status (2)

Country Link
JP (1) JP5975789B2 (ja)
WO (1) WO2014030458A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013987A1 (en) * 2014-07-23 2016-01-28 Sieva, Podjetje Za Razvoj In Trženje V Avtomobilski Industriji, D.O.O. Active rectifier for alternator
CN111668165A (zh) * 2019-03-05 2020-09-15 丰田自动车株式会社 半导体模块和具备该半导体模块的半导体装置
WO2022202292A1 (ja) * 2021-03-24 2022-09-29 株式会社日立製作所 パワー半導体装置および電力変換装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6189798B2 (ja) * 2014-07-08 2017-08-30 日立オートモティブシステムズ株式会社 電力変換装置
JP6379965B2 (ja) * 2014-10-09 2018-08-29 株式会社デンソー 電力変換装置
JP6822254B2 (ja) * 2017-03-22 2021-01-27 株式会社デンソー 半導体装置
JP7484156B2 (ja) 2019-12-18 2024-05-16 富士電機株式会社 半導体装置
DE102020108106B4 (de) 2020-03-24 2023-10-12 Avl Software And Functions Gmbh Anordnung zur Erhöhung der Leistungsfähigkeit eines Leistungsmoduls

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307721A (ja) * 1998-04-23 1999-11-05 Toshiba Corp パワーモジュール装置およびその製造方法
JP2000091499A (ja) * 1998-09-11 2000-03-31 Hitachi Ltd パワー半導体モジュール並びにそれを用いた電動機駆動システム
JP2001169560A (ja) * 1999-12-02 2001-06-22 Mitsubishi Electric Corp 電力変換装置
JP2002315358A (ja) * 2001-04-17 2002-10-25 Hitachi Ltd インバータ装置
JP2004006905A (ja) * 2003-06-02 2004-01-08 Mitsubishi Electric Corp 半導体パワーモジュール
JP2008235502A (ja) * 2007-03-20 2008-10-02 Mitsubishi Electric Corp 樹脂封止型半導体装置
JP2009295794A (ja) * 2008-06-05 2009-12-17 Mitsubishi Electric Corp 樹脂封止型半導体装置とその製造方法
JP2010258315A (ja) * 2009-04-28 2010-11-11 Hitachi Automotive Systems Ltd パワーモジュール及び電力変換装置
WO2011155165A1 (ja) * 2010-06-11 2011-12-15 パナソニック株式会社 樹脂封止型半導体装置及びその製造方法
JP2012089794A (ja) * 2010-10-22 2012-05-10 Toyota Industries Corp 半導体装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5434914B2 (ja) * 2008-06-12 2014-03-05 株式会社安川電機 パワーモジュールおよびその制御方法
JP5742623B2 (ja) * 2011-09-21 2015-07-01 トヨタ自動車株式会社 半導体装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307721A (ja) * 1998-04-23 1999-11-05 Toshiba Corp パワーモジュール装置およびその製造方法
JP2000091499A (ja) * 1998-09-11 2000-03-31 Hitachi Ltd パワー半導体モジュール並びにそれを用いた電動機駆動システム
JP2001169560A (ja) * 1999-12-02 2001-06-22 Mitsubishi Electric Corp 電力変換装置
JP2002315358A (ja) * 2001-04-17 2002-10-25 Hitachi Ltd インバータ装置
JP2004006905A (ja) * 2003-06-02 2004-01-08 Mitsubishi Electric Corp 半導体パワーモジュール
JP2008235502A (ja) * 2007-03-20 2008-10-02 Mitsubishi Electric Corp 樹脂封止型半導体装置
JP2009295794A (ja) * 2008-06-05 2009-12-17 Mitsubishi Electric Corp 樹脂封止型半導体装置とその製造方法
JP2010258315A (ja) * 2009-04-28 2010-11-11 Hitachi Automotive Systems Ltd パワーモジュール及び電力変換装置
WO2011155165A1 (ja) * 2010-06-11 2011-12-15 パナソニック株式会社 樹脂封止型半導体装置及びその製造方法
JP2012089794A (ja) * 2010-10-22 2012-05-10 Toyota Industries Corp 半導体装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013987A1 (en) * 2014-07-23 2016-01-28 Sieva, Podjetje Za Razvoj In Trženje V Avtomobilski Industriji, D.O.O. Active rectifier for alternator
CN106664028A (zh) * 2014-07-23 2017-05-10 斯意瓦汽车事业发展销售公司 用于交流发电机的有源整流器
US10326338B2 (en) 2014-07-23 2019-06-18 Sieva, Podjetje Za Razvoj In Trzenje V Avtomobilski Industriji, D.O.O. Active rectifier for alternator
CN111668165A (zh) * 2019-03-05 2020-09-15 丰田自动车株式会社 半导体模块和具备该半导体模块的半导体装置
CN111668165B (zh) * 2019-03-05 2023-08-01 株式会社电装 半导体模块和具备该半导体模块的半导体装置
WO2022202292A1 (ja) * 2021-03-24 2022-09-29 株式会社日立製作所 パワー半導体装置および電力変換装置
JP7428679B2 (ja) 2021-03-24 2024-02-06 株式会社日立製作所 パワー半導体装置および電力変換装置

Also Published As

Publication number Publication date
JP5975789B2 (ja) 2016-08-23
JP2014038973A (ja) 2014-02-27

Similar Documents

Publication Publication Date Title
JP5975789B2 (ja) パワー半導体モジュール
JP4564937B2 (ja) 電気回路装置及び電気回路モジュール並びに電力変換装置
JP5506749B2 (ja) 電力変換装置
US9362261B2 (en) Power semiconductor module
JP5647633B2 (ja) 電力変換装置
JP4751810B2 (ja) 電力変換装置
JP5957396B2 (ja) 両面冷却型電力変換装置
WO2011040153A1 (ja) 半導体装置、パワー半導体モジュール、およびパワー半導体モジュールを備えた電力変換装置
WO2010016426A1 (ja) 半導体装置および半導体装置を用いた電力変換装置
US8604608B2 (en) Semiconductor module
JP5486990B2 (ja) パワーモジュール及びそれを用いた電力変換装置
JP6039356B2 (ja) 電力変換装置
WO2013054413A1 (ja) パワー半導体モジュール、電力変換装置および電動車両
JP6219442B2 (ja) 電力変換装置
JP5978324B2 (ja) 電力変換装置
JP5687786B2 (ja) 電力変換装置
JP4581911B2 (ja) 半導体装置
JP2013183540A (ja) インバータ装置
WO2023058381A1 (ja) 電力変換装置
JP6511506B2 (ja) 半導体モジュール及びこれを備えた電力変換装置
JP2015027259A (ja) 電力変換装置
JP2019103247A (ja) 電力変換器用冷却構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13831010

Country of ref document: EP

Kind code of ref document: A1