WO2011145462A1 - 非水電解質電池用正極体及びその製造方法、並びに非水電解質電池 - Google Patents

非水電解質電池用正極体及びその製造方法、並びに非水電解質電池 Download PDF

Info

Publication number
WO2011145462A1
WO2011145462A1 PCT/JP2011/060612 JP2011060612W WO2011145462A1 WO 2011145462 A1 WO2011145462 A1 WO 2011145462A1 JP 2011060612 W JP2011060612 W JP 2011060612W WO 2011145462 A1 WO2011145462 A1 WO 2011145462A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
coating layer
active material
electrode active
electrode body
Prior art date
Application number
PCT/JP2011/060612
Other languages
English (en)
French (fr)
Inventor
進啓 太田
光靖 小川
良子 神田
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2012515816A priority Critical patent/JPWO2011145462A1/ja
Priority to US13/698,150 priority patent/US20130059209A1/en
Priority to CN2011800240616A priority patent/CN102893431A/zh
Priority to DE112011101681T priority patent/DE112011101681T5/de
Priority to KR1020127028369A priority patent/KR20130076810A/ko
Publication of WO2011145462A1 publication Critical patent/WO2011145462A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49204Contact or terminal manufacturing

Definitions

  • the present invention relates to a positive electrode body for a non-aqueous electrolyte battery suitable for a Li-ion secondary battery, a method for producing the same, and a non-aqueous electrolyte battery.
  • Non-aqueous electrolyte batteries are used as power sources for relatively small electric devices such as portable devices.
  • the non-aqueous electrolyte battery includes a positive electrode layer, a negative electrode layer, and an electrolyte layer disposed between both electrode layers.
  • a typical example of such a nonaqueous electrolyte battery is a Li ion secondary battery that performs charge and discharge by exchanging Li ions between the positive electrode layer and the negative electrode layer via the electrolyte layer.
  • the all-solid-state Li-ion battery uses a solid electrolyte layer as an electrolyte layer, and can eliminate problems associated with using an organic solvent-based electrolyte, such as leakage of the electrolyte.
  • a sulfide-based material having high Li ion conductivity and excellent insulating properties is widely used.
  • Patent Document 1 discloses that 70% or more of the surface of the positive electrode active material particles is covered with a coating layer having Li ion conductivity. And the positive electrode body which mixed the positive electrode active material particle
  • Patent Document 2 discloses that a conductive layer is mixed with a coating layer having Li ion conductivity that covers the surface of the positive electrode active material particles, thereby providing the coating layer with electronic conductivity.
  • the positive electrode active material particles and the solid electrolyte particles are partially in contact with each other. A high resistance layer is formed at this contact location, and the interface resistance increases.
  • the coating layer does not have electronic conductivity, and therefore conduction between the positive electrode active material particles and current collection from the positive electrode active material particles cannot be obtained. It cannot function as a Li-ion secondary battery.
  • the conductive agent particles are mixed in the coating layer to provide electronic conductivity.
  • the conductive agent particles May need to be in contact with each other, and contact between the conductive agent particles may not be obtained.
  • the conductive layer is detached and the coating layer is peeled off due to the strength reduction of the coating layer.
  • the present invention has been made in view of the above circumstances, and one of its purposes is to suppress the formation of a high resistance layer at the contact interface between the positive electrode active material particles and the solid electrolyte particles, thereby reducing the interface resistance.
  • An object of the present invention is to provide a positive electrode body for a non-aqueous electrolyte battery, a method for manufacturing the same, and a non-aqueous electrolyte battery capable of suppressing the increase and stably ensuring sufficient Li ion conductivity and electron conductivity for charging and discharging of the battery. .
  • the present invention achieves the above object by providing the coating layer covering the surface of the positive electrode active material particles with electron conductivity as well as Li ion conductivity without using additive particles such as a conductive agent.
  • the positive electrode body for a non-aqueous electrolyte battery of the present invention is a mixture of coated positive electrode active material particles in which the surface of the positive electrode active material particles is coated with a coating layer having Li ion conductivity, and sulfide solid electrolyte particles.
  • the present invention relates to a positive electrode body for a non-aqueous electrolyte battery.
  • the coating layer is formed of an amorphous oxide having oxygen vacancies.
  • the coating layer since the coating layer has oxygen deficiency, the coating layer itself can be provided with electronic conductivity, and the entire surface of the positive electrode active material particles is coated with the coating layer. However, it is possible to stably secure sufficient current collection of the positive electrode body for charging and discharging the battery. And since the entire surface of the positive electrode active material particles can be covered with the coating layer, it is possible to suppress the generation of a high resistance layer at the contact interface between the positive electrode active material particles and the solid electrolyte particles, and to suppress an increase in interface resistance. Can do.
  • the positive electrode Current collection from the active material particles can be performed stably.
  • heat treatment described later is performed when heat treatment is performed at a high temperature.
  • mutual diffusion occurs between the coating layer and the positive electrode active material particles, and Li ion conductivity is increased.
  • a low low conductivity layer may be formed. Therefore, since it is necessary to perform heat treatment at a low temperature in order to suppress the reaction between the coating layer and the positive electrode active material particles, the coating layer is in an amorphous state. Since the coating layer is in an amorphous state, it can have high Li ion conductivity.
  • the amorphous oxide contains Li and at least one element selected from Nb, Ta, and Ti.
  • the soot coating layer can have high Li ion conductivity in an amorphous state by containing Li and at least one element selected from Nb, Ta, and Ti.
  • the oxygen deficiency ratio ⁇ may be 0 ⁇ ⁇ 0.05.
  • the ratio ⁇ of oxygen deficiency greatly affects Li ion conductivity and electron conductivity.
  • the coating layer is a Li ion conductor and has substantially no electronic conductivity.
  • the coating layer having oxygen vacancies has electron conductivity, but it is presumed that the electron conductivity increases and the Li ion conductivity tends to decrease with the increase of the oxygen deficiency ratio ⁇ . Since the coating layer must have electronic conductivity, ⁇ must be greater than zero. On the other hand, if ⁇ is too large, Li ion conductivity is considered to decrease. Therefore, if ⁇ is 0.05 or less, it is possible to stably ensure sufficient Li ion conductivity and electronic conductivity for charging and discharging of the battery. it can.
  • the coating layer has a thickness of 5 nm to 20 nm.
  • the thickness of the soot coating layer is as thin as possible within a range that can suppress the formation of a high resistance layer at the contact interface between the positive electrode active material particles and the sulfide solid electrolyte particles.
  • the thickness of the coating layer By setting the thickness of the coating layer to 20 nm or less, the resistance of the coating layer itself can be reduced.
  • the thickness of the coating layer is too thin, a portion where the coating layer is not coated on the positive electrode active material particles tends to occur, and a high resistance layer is generated in this portion and the interface resistance increases.
  • the thickness is 5 nm or more, generation of a high resistance layer can be suppressed and increase in interface resistance can be suppressed.
  • One form of the present invention is that the coated positive electrode active material particles and the sulfide solid electrolyte particles are mixed in a weight ratio of 50:50 to 80:20.
  • coated positive electrode active material particles and sulfide solid electrolyte particles are mixed.
  • the sulfide solid electrolyte particles are necessary for mediating the conduction of Li ions in the positive electrode body.
  • the amount of the positive electrode active material particles is smaller than the amount of the sulfide solid electrolyte particles, the amount of the positive electrode active material particles is reduced and the battery capacity is reduced in the whole positive electrode body.
  • the amount of the positive electrode active material particles is excessively larger than the amount of the solid electrolyte particles, it becomes difficult to mediate the conduction of Li ions in the positive electrode body. Therefore, a preferred range for the mixing ratio between the coated positive electrode active material particles and the sulfide solid electrolyte particles is a weight ratio of 50:50 to 80:20.
  • the method for producing a positive electrode body for a non-aqueous electrolyte battery comprises the following steps.
  • the coating layer can have two characteristics of Li ion conductivity and electron conductivity.
  • the coating layer can be coated on the entire surface of the positive electrode active material particles, the formation of a high resistance layer at the contact interface between the positive electrode active material particles and the sulfide solid electrolyte particles is suppressed, and an increase in interface resistance is suppressed. can do. Then, by appropriately mixing the coated positive electrode active material particles and the solid electrolyte particles, Li ions and electrons can be stably exchanged through the coating layer in the positive electrode body.
  • the oxygen deficiency forming step includes the steps of forming a positive electrode active material particle coated with the precursor coating layer from 300 to 300 in a hydrogen-containing atmosphere. Heat treatment at 400 ° C can be mentioned.
  • the ratio ⁇ of oxygen deficiency can be changed depending on the temperature of the heat treatment. By setting this temperature to 300 ° C. or higher, the dehydration treatment of the film by the sol-gel method can be completed and desired oxygen vacancies can be generated. On the other hand, if the temperature is too high, mutual diffusion occurs between the coating layer and the positive electrode active material particles, and a low conductive layer with low Li ion conductivity may be formed. The reaction between the coating layer and the positive electrode active material particles can be suppressed. Moreover, by setting it as 400 degrees C or less, crystallization of a coating layer can be suppressed and the coating layer which has Li ion conductivity and electronic conductivity sufficient for charging / discharging of a battery can be obtained.
  • the oxygen deficiency formation process includes the positive electrode active material particles coated with the precursor coating layer having a hydrogen concentration of 50% by volume or more. Heat treatment is performed in an atmosphere containing hydrogen.
  • the ratio ⁇ of oxygen deficiency can be changed by the hydrogen concentration.
  • the hydrogen concentration By setting the hydrogen concentration to 50% by volume or more, desired oxygen vacancies can be generated, and a coating layer having Li ion conductivity and electron conductivity sufficient for charge / discharge of the battery can be obtained.
  • the mixing step is performed by suspending and mixing the coated positive electrode active material particles and the sulfide solid electrolyte particles in an organic solvent. Can be mentioned.
  • both the particles, particularly the coated positive electrode active material particles are not subjected to a large mechanical impact. It is possible to prevent the coating layer formed on the substance particles from being peeled off or destroyed. Therefore, since the state in which the coating layer is coated on the entire surface of the positive electrode active material particles can be maintained, the generation of a high resistance layer at the contact interface between the positive electrode active material particles and the solid electrolyte particles is suppressed, and the interface resistance is increased. Can be suppressed.
  • the nonaqueous electrolyte battery of the present invention is a nonaqueous electrolyte battery comprising a positive electrode body, a negative electrode body, and a solid electrolyte layer disposed between the two electrode bodies.
  • a positive electrode body for a nonaqueous electrolyte battery of the invention is mentioned.
  • the nonaqueous electrolyte battery of the present invention uses the above-described positive electrode body for a nonaqueous electrolyte battery to exchange Li ions between the positive electrode active material particles and the solid electrolyte particles through the coating layer, or to positive electrode active material particles. Since the exchange of electrons between each other and the current collection from the positive electrode active material particles can be performed stably, the output characteristics of the battery can be improved.
  • the positive electrode body for a non-aqueous electrolyte battery of the present invention can be provided with a lithium ion conductivity and an electronic conductivity in a coating layer covering the surface of the positive electrode active material particles, and the entire surface of the positive electrode active material particles can be covered with the coating layer. Even in this case, it is possible to stably secure sufficient current collection of the positive electrode body for charging and discharging the battery. And since the entire surface of the positive electrode active material particles can be covered with the coating layer, it is possible to suppress the generation of a high resistance layer at the contact interface between the positive electrode active material particles and the solid electrolyte particles, and to suppress an increase in interface resistance. Can do.
  • the nonaqueous electrolyte battery using the positive electrode body for a nonaqueous electrolyte battery can exchange Li ions between the positive electrode active material particles and the solid electrolyte particles and the electrons between the positive electrode active material particles via the coating layer. Exchange, the current collection from the positive electrode active material particles can be performed stably, and the output characteristics of the battery can be improved.
  • the nonaqueous electrolyte battery 100 includes a positive electrode body 1 (positive electrode body 1) for a nonaqueous electrolyte battery, a negative electrode body 2, and a solid electrolyte layer disposed between both electrode bodies. With three. Furthermore, a positive electrode current collector 4 having a current collecting function of the positive electrode body 1 and a negative electrode current collector 5 having a current collecting function of the negative electrode body 2 are provided.
  • the most characteristic feature of the present invention resides in the configuration of the positive electrode body 1.
  • the configuration of the positive electrode body 1 of the present invention and the manufacturing method thereof will be described with reference to FIG. Next, the configuration other than the positive electrode body 1 will be described.
  • the positive electrode body 1 for a non-aqueous electrolyte battery of the present invention comprises a coated positive electrode active material particle 10 in which the surface of a positive electrode active material particle 10a is coated with a coating layer 10b having Li ion conductivity, and a sulfide solid electrolyte particle 11 Prepare.
  • the covering layer 10b is made of an amorphous oxide having oxygen vacancies.
  • the coated positive electrode active material particles 10 and the sulfide solid electrolyte particles 11 are mixed at a predetermined weight ratio.
  • the surface of the positive electrode active material particle 10a is coated with a coating layer 10b having Li ion conductivity.
  • the covering layer 10b is made of an amorphous oxide having oxygen vacancies, so that the covering layer 10b has electronic conductivity.
  • the positive electrode active material particles 10a include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), cobalt-aluminum-added lithium nickelate (LiNi 0.8 Co 0.15 Al 0.05 O 2 ), Lithium nickel manganese cobaltate (LiNi 0.33 Mn 0.33 Co 0.33 O 2 ) and olivine-type lithium iron phosphate (LiFePO 4 ), manganese oxide (MnO 2 ), and the like.
  • sulfur (S), one sulfide selected from iron sulfide (FeS), iron disulfide (FeS 2 ), lithium sulfide (Li 2 S), and titanium sulfide (TiS 2 ) may be used.
  • iron sulfide FeS
  • FeS 2 iron disulfide
  • Li 2 S lithium sulfide
  • TiS 2 titanium sulfide
  • lithium metal oxides, particularly LiCoO 2 are excellent because of their excellent electron conductivity.
  • a preferable average particle diameter of the positive electrode active material particles 10a is 1 to 10 ⁇ m.
  • the covering layer 10b is formed of an amorphous oxide having oxygen vacancies.
  • represents the ratio of oxygen deficiency and greatly affects Li ion conductivity and electron conductivity.
  • oxygen vacancies are generated in the coating layer 10b, oxygen ion vacancies are formed, but electrons are introduced into the vacancies in order to maintain electrical neutrality. It is considered that the coating layer 10b can have electron conductivity by this electron movement.
  • the conductivity that falls within the preferable range of ⁇ is 10 ⁇ 7 S / cm to 10 ⁇ 3 S / cm. .
  • the value of ⁇ is a common value regardless of the material of the coating layer 10b.
  • heat treatment described later is performed.
  • heat treatment is performed at a high temperature, mutual diffusion occurs between the coating layer 10b and the positive electrode active material particles 10a, and Li ion conductivity May have a low conductivity layer.
  • the coating layer 10b is in an amorphous state. Since the coating layer 10b is in an amorphous state, it can have high Li ion conductivity. LiNbO 3- ⁇ , LiTaO 3- ⁇ , and the like mentioned as the material of the coating layer 10b have high Li ion conductivity in an amorphous state.
  • the thickness of the coating layer 10b is preferably as thin as possible as long as it can suppress the formation of a high resistance layer at the contact interface between the positive electrode active material particles 10a and the sulfide solid electrolyte particles 11, and the preferred range is 5 nm to 20 nm. It is.
  • the sulfide solid electrolyte particles 11 are composed of a sulfide solid electrolyte having high Li ion conductivity.
  • sulfide-based solid electrolytes include Li 2 SP 2 S 5 system, Li 2 S-SiS 2 system, Li 2 SB 2 S 3 system, and P 2 O 5 and Li 3 PO 4 are added. Also good.
  • a preferable average particle diameter of the sulfide solid electrolyte particles 11 is 0.1 to 5 ⁇ m.
  • the manufacturing method of the nonaqueous electrolyte battery electrode body 1 of the present invention includes the following steps. (a) Coating process of covering the surface of the positive electrode active material particle 10a with a precursor coating layer having Li ion conductivity (b) Oxygen deficiency formation process in which oxygen deficiency is generated in the precursor coating layer to form the coating layer 10b (c) Mixing process of mixing the coated positive electrode active material particles 10 coated with the coating layer 10b and the sulfide solid electrolyte particles 11
  • the coating process is a process in which the surface of the positive electrode active material particle 10a is coated with a precursor coating layer having Li ion conductivity.
  • a metal alkoxide for example, an equimolar ratio of LiOEt and Nb (OEt) 5
  • a solvent for example, ethyl alcohol
  • the precursor coating layer solution is spray-coated while applying ultrasonic vibration to the positive electrode active material particles 10a to coat the entire surface of the positive electrode active material particles 10a.
  • the solvent is evaporated to form the precursor coating layer.
  • Spray coating is preferably performed so that the thickness of the precursor coating layer is 5 nm to 20 nm.
  • the method for forming the precursor coating layer is not limited to the above method.
  • the oxygen vacancy formation process is a process in which the oxygen vacancy is generated in the precursor coating layer coated in the above coating process to form the coating layer 10b.
  • the oxygen deficiency ratio ⁇ can be changed depending on the hydrogen concentration and the heating temperature. For example, when the positive electrode active material particles 10a coated with the precursor coating layer are heated at 300 ° C.
  • 0.01 and hydrogen with a hydrogen concentration of 100% by volume.
  • 0.01
  • the mixing process is a process of mixing the coated positive electrode active material particles 10 coated with the coating layer 10b formed in the oxygen vacancy forming process and the sulfide solid electrolyte particles 11.
  • the coated positive electrode active material particles 10 and the sulfide solid electrolyte particles 11 are preferably mixed at a weight ratio of 50:50 to 80:20.
  • a wet method By mixing by a wet method, a large mechanical impact on the coated positive electrode active material particles 10 and the sulfide solid electrolyte particles 11, particularly the coated positive electrode active material particles 10, can be reduced.
  • a method of suspending and mixing the coated positive electrode active material particles 10 and the sulfide solid electrolyte particles 11 in an organic solvent (for example, diethyl carbonate) and then evaporating the organic solvent can be mentioned.
  • an organic solvent for example, diethyl carbonate
  • the positive electrode current collector 4 collects current from the positive electrode body.
  • Examples of the material of the positive electrode current collector 4 include aluminum (Al), nickel (Ni), gold (Au), alloys thereof, and stainless steel.
  • the negative electrode body 2 includes negative electrode active material particles.
  • the negative electrode active material particles in addition to metallic lithium (Li metal simple substance) or lithium alloy (alloy composed of Li and an additive element), for example, carbon (C) such as graphite, silicon (Si), and indium (In) are listed. It is done. Among them, a material containing lithium, particularly metallic lithium, is advantageous in terms of increasing the capacity and voltage of the battery, and is preferable.
  • an additive element of the lithium alloy aluminum (Al), silicon (Si), tin (Sn), bismuth (Bi), zinc (Zn), indium (In), or the like can be used.
  • the negative electrode current collector 5 collects current from the negative electrode body.
  • Examples of the material of the negative electrode current collector 5 include copper (Cu), nickel (Ni), iron (Fe), chromium (Cr), and alloys thereof.
  • the negative electrode body 2 is made of a highly conductive material, the negative electrode current collector 5 can be omitted.
  • the solid electrolyte layer 3 is made of a solid electrolyte, and is preferably made of a sulfide-based solid electrolyte having high Li ion conductivity.
  • the sulfide solid electrolyte include Li 2 SP 2 S 5 series, Li 2 S-SiS 2 series, Li 2 SB 2 S 3 series, and even if P 2 O 5 or Li 3 PO 4 is added. Good.
  • the same material as that of the sulfide solid electrolyte particle 11 which is a constituent material of the positive electrode body 1 may be used.
  • you may comprise by oxide type solid electrolytes, such as LiPON.
  • the coating layer 10b since the coating layer 10b has oxygen deficiency, the coating layer 10b itself can be provided with electron conductivity as well as Li ion conductivity, and the positive electrode active material particles 10a Even when the entire surface is covered with the coating layer 10b, it is possible to stably secure the current collection of the positive electrode body 1 sufficient for charging and discharging the battery. Since the entire surface of the positive electrode active material particles 10a can be covered with the coating layer 10b, the generation of a high resistance layer at the contact interface between the positive electrode active material particles 10a and the solid electrolyte particles 11 is suppressed, and the interface resistance is increased. Can be suppressed.
  • a nonaqueous electrolyte battery 100 was produced using the positive electrode body 1 for a nonaqueous electrolyte battery of the present invention as shown in FIG. 1, and the current dependency of the discharge characteristics of the nonaqueous electrolyte battery 100 was evaluated.
  • a positive electrode body for a non-aqueous electrolyte battery in which coated positive electrode active material particles 10 coated with a coating layer 10b having no oxygen deficiency on the surface of positive electrode active material particles 10a and sulfide solid electrolyte particles 11 is mixed.
  • a nonaqueous electrolyte battery 100 was produced, and the current dependency of the discharge characteristics of the nonaqueous electrolyte battery 100 was evaluated.
  • the positive electrode body 1 is manufactured.
  • Coating process LiOEt and Nb (OEt) 5 are dissolved in an equimolar ratio in ethyl alcohol to prepare a precursor coating layer solution.
  • This precursor coating layer solution was coated on the entire surface of the positive electrode active material particles 10a made of LiCoO 2 powder having an average particle diameter of 5 ⁇ m so as to have a thickness of 8 nm.
  • the precursor coating layer solution was spray-coated while applying ultrasonic vibration to the positive electrode active material particles 10a.
  • the solvent ethyl alcohol is evaporated to form a precursor coating layer.
  • the sulfide solid electrolyte particles 11 to be mixed with the positive electrode active material particles 10a are produced by a mechanical milling method.
  • a powder having an average particle diameter of 0.5 ⁇ m in which Li 2 S, P 2 S 5 , and P 2 O 5 are mixed at a molar ratio of 70: 27: 3 is used as a raw material.
  • the coated positive electrode active material particles 10 and the sulfide solid electrolyte particles 11 are suspended and mixed in diethyl carbonate at a weight ratio of 70:30. Diethyl carbonate is evaporated to form the positive electrode body 1.
  • a nonaqueous electrolyte battery 100 as shown in FIG. 2 is produced using the produced positive electrode body 1.
  • the positive electrode body 1 and the solid electrolyte layer 3 of Li 2 SP 2 S 5 -P 2 O 5 were sequentially laminated on the Al foil positive electrode current collector 4, and a pressure of 500 MPa was applied by a mold having an inner diameter of 10 mm. Press to form.
  • a negative electrode body 2 of In foil was laminated on the side opposite to the positive electrode body 1 with the solid electrolyte layer 3 interposed therebetween.
  • the thicknesses of the positive electrode body 1, the solid electrolyte layer 3, and the negative electrode body 2 are 50 ⁇ m, 250 ⁇ m, and 500 ⁇ m, respectively.
  • Example 2 The positive electrode body 1 according to Example 2 is different from Example 1 in the ratio ⁇ of oxygen deficiency formed in the coating layer 10b.
  • the difference will be mainly described, and the other configurations are the same as those of the first embodiment, and thus the description thereof will be omitted.
  • the conditions for forming oxygen vacancies in the process of forming oxygen vacancies are different from those in Example 1.
  • the positive electrode active material particles 10a coated with the precursor coating layer in the coating process are heat-treated at 300 ° C. in a hydrogen-containing atmosphere with a hydrogen concentration of 50% by volume to form oxygen vacancies in the precursor coating layer.
  • Layer 10b was formed.
  • the oxygen deficiency ratio ⁇ at this time is 0.01, and the conductivity is 10 ⁇ 5 S / cm. This value of electrical conductivity is considered to be a value resulting from the improvement of electronic conductivity, as in Example 1.
  • the positive electrode body 1 according to the comparative example is different from the first embodiment in that oxygen vacancies are not formed in the coating layer 10b.
  • the difference will be mainly described, and the other configurations are the same as those of the first embodiment, and thus the description thereof will be omitted.
  • the coating layer 10b does not form oxygen vacancies (the above oxygen vacancy formation process is not performed), when the coating layer 10b is coated on the entire surface of the positive electrode active material particles 10a, the coating layer 10b has no electronic conductivity.
  • the conduction between the positive electrode active material particles 10a and the current collection from the positive electrode active material particles 10a cannot be obtained, and the battery cannot function as a battery. Therefore, in the mixing process, when the coated positive electrode active material particles 10 and the sulfide solid electrolyte particles 11 are mixed, they are mixed using a mortar, and a mechanical impact is applied to the coated positive electrode active material particles 10, thereby coating layer 10b. Is partially peeled off.
  • the coating layer 10b is peeled off, conduction between the positive electrode active material particles 10a and current collection from the positive electrode active material particles 10a can be obtained. At this time, about 70% of the surface of the positive electrode active material particles 10a is covered with the coating layer 10b.
  • the coating layer 10b since the coating layer 10b has oxygen vacancies, the coating layer 10b itself can be provided with electronic conductivity as well as Li ion conductivity. Therefore, through this coating layer 10b, exchange of Li ions between the positive electrode active material particles 10a and the solid electrolyte particles 11, exchange of electrons between the positive electrode active material particles 10a, and current collection from the positive electrode active material particles 10a It is thought that it can be performed stably.
  • the non-aqueous electrolyte battery of the present invention is excellent in discharge characteristics at high output, and can be suitably used as a power source for portable devices such as mobile phones and personal computers.
  • Positive electrode body for non-aqueous electrolyte battery (positive electrode body) 10 Coated cathode active material particles 10a Cathode active material particles 10b Coating layer 11 Sulfide solid electrolyte particles 2 Negative electrode 3 Solid electrolyte layer 4 Positive electrode current collector 5 Negative electrode current collector 100 non-aqueous electrolyte battery

Abstract

正極活物質粒子と固体電解質粒子との接触界面に高抵抗層が生成されることを抑制して界面抵抗の増加を抑制する非水電解質電池用正極体を提供する。本発明の非水電解質電池用正極体1は、正極活物質粒子10aの表面にLiイオン伝導性を有する被覆層10bが被覆された被覆正極活物質粒子10と、硫化物固体電解質粒子11とが混合された非水電解質電池用正極体1に係るものである。被覆層10bは、酸素欠損を有した非晶質酸化物で形成されている。被覆層10bに酸素欠損を有することで、被覆層10bに電池の充放電に十分なLiイオン伝導性と電子伝導性とを安定して確保することができる。

Description

非水電解質電池用正極体及びその製造方法、並びに非水電解質電池
  本発明は、Liイオン二次電池などに好適な非水電解質電池用正極体及びその製造方法、並びに非水電解質電池に関する。
  携帯機器といった比較的小型の電気機器の電源に非水電解質電池が利用されている。この非水電解質電池は、正極層と負極層、及び両電極層の間に配される電解質層とを備える。このような非水電解質電池の代表例として、正極層と負極層との間で電解質層を介してLiイオンをやり取りすることによって充放電を行うLiイオン二次電池が挙げられる。
  近年、このLiイオン二次電池として、正極層と負極層との間のLiイオンの伝導に有機電解液を用いない全固体型Liイオン電池が提案されている。全固体型Liイオン電池は、電解質層として固体電解質層を使用しており、有機溶媒系の電解液を用いることに伴う不都合、例えば、電解液の漏れなどを解消することができる。この固体電解質層にはLiイオン伝導性が高く、絶縁性に優れる硫化物系の物質が広く使用されている。
  しかし、固体電解質を用いた全固体型Liイオン電池は、有機電解液を用いたものと比較して、容量が低く出力特性が悪いという問題がある。このような問題は、正極層と固体電解質層との接触界面において、両層の間で相互拡散が生じることで高抵抗層が形成され、電気抵抗(以下、界面抵抗と呼ぶ)が高くなることが原因の一つと考えられる。このような問題を解決するために、特許文献1では、正極活物質粒子の表面の70%以上を、Liイオン伝導性を有する被覆層で被覆することが開示されている。そして、被覆層で被覆された正極活物質粒子と硫化物固体電解質粒子とを混合した正極体が提示されている。被覆層で正極活物質粒子を被覆することによって、正極活物質粒子と硫化物固体電解質粒子との接触界面での高抵抗層の生成を抑制して、界面抵抗の増加を抑制し、Liイオン二次電池の出力特性の向上を図っている。また、特許文献2では、正極活物質粒子の表面を被覆するLiイオン伝導性を有する被覆層に導電剤粒子を混在することで、被覆層に電子伝導性を備えることが開示されている。
特開2009‐193940号公報 特開2003‐59492号公報
  しかし、特許文献1のLiイオン二次電池では、正極活物質粒子の表面の70%以上100%未満を被覆層で被覆した場合、正極活物質粒子と固体電解質粒子とが一部接触することとなり、この接触箇所に高抵抗層が形成され、界面抵抗が増大する。また、正極活物質粒子の全表面(100%)を被覆層で被覆した場合、被覆層に電子伝導性がないため、正極活物質粒子同士の導通及び正極活物質粒子からの集電が取れず、Liイオン二次電池として機能できない。一方、特許文献2では、被覆層に導電剤粒子を混在することで電子伝導性を備えているが、Liイオン二次電池の充放電に十分な集電を確保するためには導電剤粒子同士が接触する必要があり、この導電剤粒子同士の接触が得られない場合が発生する。また、導電剤粒子の脱離や、被覆層の強度低下による被覆層の剥離が生じる問題もある。
  本発明は、上記事情に鑑みてなされたものであり、その目的の一つは、正極活物質粒子と固体電解質粒子との接触界面に高抵抗層が生成されることを抑制して界面抵抗の増加を抑制し、電池の充放電に十分なLiイオン伝導性と電子伝導性とを安定して確保できる非水電解質電池用正極体及びその製造方法、並びに非水電解質電池を提供することにある。
  本発明は、正極活物質粒子の表面を被覆する被覆層に、導電剤などの添加粒子を用いずに、Liイオン伝導性と共に電子伝導性を備えることで、上記目的を達成する。
  (1)本発明の非水電解質電池用正極体は、正極活物質粒子の表面にLiイオン伝導性を有する被覆層が被覆された被覆正極活物質粒子と、硫化物固体電解質粒子とが混合された非水電解質電池用正極体に係るものである。上記被覆層は、酸素欠損を有した非晶質酸化物で形成されていることを特徴とする。
  本発明の非水電解質電池用正極体によれば、被覆層に酸素欠損を有することで、被覆層自体に電子伝導性を備えることができ、正極活物質粒子の全表面を被覆層で被覆しても、電池の充放電に十分な正極体の集電を安定して確保することができる。そして、正極活物質粒子の全表面を被覆層で被覆できるので、正極活物質粒子と固体電解質粒子との接触界面に高抵抗層が生成されることを抑制し、界面抵抗の増加を抑制することができる。被覆層を正極活物質粒子の表面に被覆することで、被覆層を介して、正極活物質粒子と固体電解質粒子との間のLiイオンのやり取りや、正極活物質粒子同士の電子のやり取り、正極活物質粒子からの集電を安定して行うことができる。また、被覆層に酸素欠損を形成する際、後述する加熱処理を行うが、高い温度で加熱処理を行うと、被覆層と正極活物質粒子との間で相互拡散が生じ、Liイオン伝導性が低い低伝導層が形成されることがある。よって、被覆層と正極活物質粒子との間の反応を抑制するために、低い温度で加熱処理を行う必要があるので、被覆層は非晶質状態である。被覆層が非晶質状態であることで、高いLiイオン伝導性を有することができる。
  (2)本発明の一形態として、上記非晶質酸化物は、Nb、Ta、及びTiから選択される少なくとも一種以上の元素とLiとを含有することが挙げられる。
  被覆層は、Nb、Ta、及びTiから選択される少なくとも一種以上の元素とLiとを含有することで、非晶質状態で高いLiイオン伝導性を有することができる。
  (3)本発明の一形態として、上記酸素欠損の割合αは、0<α≦0.05であることが挙げられる。
  酸素欠損の割合αは、Liイオン伝導性と電子伝導性とに大きく影響を及ぼす。酸素欠損を有さない(α=0)場合、被覆層はLiイオン伝導体であって、実質的に電子伝導性を有さない。酸素欠損を有した被覆層は電子伝導性を有するが、この酸素欠損の割合αの増加と共に、電子伝導性は増加し、Liイオン伝導性は低下する傾向にあると推測される。被覆層は電子伝導性を有する必要があるので、αは必ず0より大きくなくてはいけない。一方、αが大きすぎるとLiイオン伝導性は低下すると考えられるので、αが0.05以下であることで、電池の充放電に十分なLiイオン伝導性と電子伝導性を安定して確保することができる。
  (4)本発明の一形態として、上記被覆層の厚さが5nm~20nmであることが挙げられる。
  被覆層の厚さは、正極活物質粒子と硫化物固体電解質粒子との接触界面に高抵抗層が生成されることを抑制できる範囲でできるだけ薄いことが好ましい。被覆層の厚さを20nm以下とすることで、被覆層自体の抵抗を低減することができる。一方、被覆層の厚さが薄すぎると、正極活物質粒子に被覆層が被覆されていない部分が生じやすくなり、この部分において高抵抗層が生成されて界面抵抗が増大するが、被覆層の厚さを5nm以上とすることで、高抵抗層の生成を抑制し、界面抵抗の増加を抑制することができる。
  (5)本発明の一形態として、上記被覆正極活物質粒子と上記硫化物固体電解質粒子とが、重量比50:50~80:20で混合されていることが挙げられる。
  本発明の非水電解質電池用正極体は、被覆正極活物質粒子と硫化物固体電解質粒子とが混合されている。この硫化物固体電解質粒子は、正極体内でLiイオンの伝導を媒介するために必要である。この混合比は、正極活物質粒子の量が硫化物固体電解質粒子の量よりも少なくなると、正極体全体において、正極活物質粒子の量が少なくなって電池容量が低下する。一方、正極活物質粒子の量が固体電解質粒子の量よりも多くなり過ぎると、正極体内でのLiイオンの伝導を媒介し難くなる。そのため、被覆正極活物質粒子と硫化物固体電解質粒子との混合比として好ましい範囲は、重量比50:50~80:20である。
  (6)一方、本発明の非水電解質電池用正極体の製造方法は、次の過程を備えることを特徴とする。
(a)正極活物質粒子の表面にLiイオン伝導性を有する前駆体被覆層を被覆する被覆過程
(b)上記前駆体被覆層に酸素欠損を生じさせて被覆層を形成する酸素欠損形成過程
(c)上記被覆層を被覆した被覆正極活物質粒子と、硫化物固体電解質粒子とを混合する混合過程
  本発明の非水電解質電池用正極体の製造方法によれば、正極活物質粒子に被覆した被覆層に酸素欠損を生じさせることができ、被覆層自体に電子伝導性を備えることができる。よって、被覆層は、Liイオン伝導性と電子伝導性の二つの特性を備えることができる。また、正極活物質粒子の全表面に被覆層を被覆できるので、正極活物質粒子と硫化物固体電解質粒子との接触界面に高抵抗層が生成されることを抑制し、界面抵抗の増加を抑制することができる。そして、被覆正極活物質粒子と固体電解質粒子とを適度に混合することによって、正極体内において、被覆層を介してLiイオンと電子とを安定してやり取りできる。
  (7)本発明の非水電解質電池用正極体の製造方法の一形態として、上記酸素欠損形成過程は、上記前駆体被覆層が被覆された正極活物質粒子を水素含有の雰囲気中において300~400℃で加熱処理することが挙げられる。
  酸素欠損の割合αは加熱処理の温度によって変えることができる。この温度を300℃以上とすることで、ゾルゲル法による被膜の脱水処理を完了させると共に、所望の酸素欠損を生じさせることができる。一方、温度が高すぎると、被覆層と正極活物質粒子との間で相互拡散が生じ、Liイオン伝導性が低い低伝導層が形成されることがあるので、400℃以下とすることで、被覆層と正極活物質粒子との間の反応を抑制することができる。また、400℃以下とすることで、被覆層の結晶化を抑制でき、電池の充放電に十分なLiイオン伝導性と電子伝導性を有した被覆層を得ることができる。
  (8)本発明の非水電解質電池用正極体の製造方法の一形態として、上記酸素欠損形成過程は、上記前駆体被覆層が被覆された正極活物質粒子を水素濃度が50容量%以上の水素含有の雰囲気中において加熱処理することが挙げられる。
  酸素欠損の割合αは水素濃度によっても変えることができる。水素濃度を50容量%以上とすることで、所望の酸素欠損を生じさせることができ、電池の充放電に十分なLiイオン伝導性と電子伝導性を有した被覆層を得ることができる。
  (9)本発明の非水電解質電池用正極体の製造方法の一形態として、上記混合過程は、上記被覆正極活物質粒子と硫化物固体電解質粒子とを有機溶媒中に懸濁させて混合することが挙げられる。
  被覆正極活物質粒子と硫化物固体電解質粒子とを有機溶媒中に懸濁させて混合することによって、両粒子、特に被覆正極活物質粒子に大きな機械的衝撃を与えることがないので、被覆正極活物質粒子に形成した被覆層が剥がれたり、破壊されたりするのを防ぐことができる。よって、正極活物質粒子の全面に被覆層を被覆した状態を維持できるので、正極活物質粒子と固体電解質粒子との接触界面に高抵抗層が生成されることを抑制し、界面抵抗の増加を抑制することができる。
  (10)また、本発明の非水電解質電池は、正極体と、負極体と、両電極体の間に配される固体電解質層とを備える非水電解質電池であって、上記正極体に本発明の非水電解質電池用正極体を用いることが挙げられる。
  本発明の非水電解質電池は、上記非水電解質電池用正極体を用いることによって、被覆層を介して、正極活物質粒子と固体電解質粒子との間のLiイオンのやり取りや、正極活物質粒子同士の電子のやり取り、正極活物質粒子からの集電を安定して行うことができるので、電池の出力特性を向上させることができる。
  本発明の非水電解質電池用正極体は、正極活物質粒子の表面を被覆する被覆層にLiイオン伝導性と共に電子伝導性を備えることができ、正極活物質粒子の全表面を被覆層で被覆しても、電池の充放電に十分な正極体の集電を安定して確保することができる。そして、正極活物質粒子の全表面を被覆層で被覆できるので、正極活物質粒子と固体電解質粒子との接触界面に高抵抗層が生成されることを抑制し、界面抵抗の増加を抑制することができる。また、この非水電解質電池用正極体を用いた非水電解質電池は、被覆層を介して、正極活物質粒子と固体電解質粒子との間のLiイオンのやり取りや、正極活物質粒子同士の電子のやり取り、正極活物質粒子からの集電を安定して行うことができ、電池の出力特性を向上させることができる。
実施形態に係る非水電解質電池用正極体を示す概念図である。 実施形態に係る非水電解質電池を示す概念図である。
  以下、本発明についての実施形態を図面に基づいて説明する。図面において同一符号は同一部材を示す。
  <実施形態>
  [全体構成]
  図2に例示するように、本発明に係る非水電解質電池100は、非水電解質電池用正極体1(正極体1)、負極体2、及び両電極体の間に配される固体電解質層3を備える。更に、正極体1の集電機能を有する正極集電体4と、負極体2の集電機能を有する負極集電体5を備える。本発明の最も特徴とするところは、正極体1の構成にある。以下、まず初めに本発明の正極体1の構成とその製造方法について、図1に基づいて説明する。次いで正極体1以外の構成について説明する。
  [正極体]
  本発明の非水電解質電池用正極体1は、正極活物質粒子10aの表面にLiイオン伝導性を有する被覆層10bが被覆された被覆正極活物質粒子10と、硫化物固体電解質粒子11とを備える。そして、被覆層10bが酸素欠損を有した非晶質酸化物で形成されている。この被覆正極活物質粒子10と硫化物固体電解質粒子11とは、所定の重量比で混合されている。
  (被覆正極活物質粒子)
  被覆正極活物質粒子10は、正極活物質粒子10aの表面にLiイオン伝導性を有する被覆層10bが被覆されている。そして、被覆層10bを、酸素欠損を有した非晶質酸化物で形成することによって、被覆層10bに電子伝導性を備えている。正極活物質粒子10aの表面に被覆層10bを被覆することによって、正極活物質粒子10aと硫化物固体電解質粒子11との接触界面に高抵抗層が生成されることを抑制し、界面抵抗の増加を抑制することができる。
  ≪正極活物質粒子≫
  正極活物質粒子10aとしては、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4)、コバルト・アルミ添加ニッケル酸リチウム(LiNi0.8Co0.15Al0.05O2)、ニッケルマンガンコバルト酸リチウム(LiNi0.33Mn0.33Co0.33O2)及びオリビン型鉄リン酸リチウム(LiFePO4)、などのリチウム金属酸化物や、酸化マンガン(MnO2)、などが挙げられる。その他、硫黄(S)や、硫化鉄(FeS)、二硫化鉄(FeS2)、硫化リチウム(Li2S)、及び硫化チタニウム(TiS2)から選ばれる1種の硫化物を用いてもよい。中でも、リチウム金属酸化物、特にLiCoO2は、電子伝導性に優れており、好適である。この正極活物質粒子10aの好ましい平均粒径は、1~10μmである。
  ≪被覆層≫
  被覆層10bは、酸素欠損を有する非晶質の酸化物で形成される。例えば、ニオブ酸リチウム(LiNbO3-α)、タンタル酸リチウム(LiTaO3-α)、チタン酸リチウム(Li4Ti5O12-α)などが挙げられる。αは、酸素欠損の割合を表しており、Liイオン伝導性と電子伝導性とに大きく影響を及ぼす。被覆層10bに酸素欠損を生じさせると、酸素イオンの空孔が形成されるが、電気的な中性を保つために電子がこの空孔に導入される。この電子の移動により、被覆層10bは電子伝導性を有することができると思われる。この酸素欠損の割合αの増加と共に、電子伝導性は増加し、Liイオン伝導性は低下する傾向にあると推測される。酸素欠損を有さない(α=0)場合、被覆層10bはLiイオン伝導体であって、実質的に電子伝導性を有さない。よって、αは必ず0より大きくなければならない。そして、被覆層10bが酸素欠損を有することによって得られるLiイオン伝導度と電子伝導度の各値は、電子伝導度が、Liイオン伝導度と比較してはるかに大きい。一方、αが大きすぎるとLiイオン伝導性は低下するので、αは0.05以下であることで、十分なLiイオン伝導性と電子伝導性を有することができる。Liイオン伝導度及び電子伝導度を合わせて電導度とするとき、このαの好ましい範囲(0<α≦0.05)に値する電導度は、10-7S/cm~10-3S/cmである。このαの値は、被覆層10bの材質に関わらず共通の値である。被覆層10bに酸素欠損を生じさせる際、後述する加熱処理を行うが、高い温度で加熱処理を行うと、被覆層10bと正極活物質粒子10aとの間で相互拡散が生じ、Liイオン伝導性が低い低伝導層が形成されることがある。よって、被覆層10bと正極活物質粒子10aとの間の反応を抑制するために、低い温度で加熱処理を行う必要があるので、被覆層10bは非晶質状態である。被覆層10bが非晶質状態であることで、高いLiイオン伝導性を有することができる。上記被覆層10bの材質として挙げた、LiNbO3-αやLiTaO3-αなどは、非晶質状態で高いLiイオン伝導性を有する。被覆層10bの厚さは、正極活物質粒子10aと硫化物固体電解質粒子11との接触界面に高抵抗層が生成されることを抑制できる範囲でできるだけ薄いことが好ましく、好ましい範囲は5nm~20nmである。
  (硫化物固体電解質粒子)
  硫化物固体電解質粒子11は、Liイオン伝導性の高い硫化物系固体電解質で構成されている。硫化物系固体電解質としては、Li2S-P2S5系、Li2S-SiS2系、Li2S-B2S3系などが挙げられ、更にP2O5やLi3PO4が添加されてもよい。この硫化物固体電解質粒子11の好ましい平均粒径は、0.1~5μmである。
  [正極体の製造方法]
  本発明の非水電解質電池用電極体1の製造方法は、次の過程を備える。
(a)正極活物質粒子10aの表面にLiイオン伝導性を有する前駆体被覆層を被覆する被覆過程
(b)前記前駆体被覆層に酸素欠損を生じさせて被覆層10bを形成する酸素欠損形成過程
(c)被覆層10bを被覆した被覆正極活物質粒子10と、硫化物固体電解質粒子11とを混合する混合過程
  (被覆過程)
  被覆過程は、正極活物質粒子10aの表面にLiイオン伝導性を有する前駆体被覆層を被覆する過程である。まず、溶剤(例えば、エチルアルコール)中に、例えば、金属アルコキシド(例えば、等モルの割合のLiOEtとNb(OEt)5)を溶解させて、前駆体被覆層溶液を作製する。次に、この前駆体被覆層溶液を、正極活物質粒子10aに超音波振動を加えながらスプレーコートすることにより、正極活物質粒子10aの全表面に被覆する。前駆体被覆層溶液が正極活物質粒子10aの全表面に万遍なく被覆できたら、溶剤を蒸発させて、前駆体被覆層が形成される。この前駆体被覆層の厚さが、5nm~20nmとなるようにスプレーコートすることが好ましい。前駆体被覆層の形成方法は、上記の方法に限定されるわけではない。
  (酸素欠損形成過程)
  酸素欠損形成過程は、上記被覆過程で被覆した前駆体被覆層に酸素欠損を生じさせて被覆層10bを形成する過程である。例えば、前駆体被覆層を被覆した正極活物質粒子10aを、水素濃度が50容量%以上の水素含有の雰囲気中において300~400℃で加熱処理することで、前駆体被覆層に酸素欠損が生じ、被覆層10bが形成される。酸素欠損の割合αは、水素濃度や加熱温度によって変えることができる。例えば、前駆体被覆層を被覆した正極活物質粒子10aを、水素濃度が50容量%の水素含有の雰囲気中において300℃で加熱処理すると、αは0.01であり、水素濃度が100容量%の水素含有の雰囲気中において400℃で加熱処理すると、αは0.05である。加熱処理における加熱温度が高い程、又は水素濃度が高い程、酸素欠損の割合αが大きくなる傾向にある。
  (混合過程)
  混合過程は、上記酸素欠損形成過程で形成した被覆層10bが被覆された被覆正極活物質粒子10と、硫化物固体電解質粒子11とを混合する過程である。被覆正極活物質粒子10と硫化物固体電解質粒子11とは、重量比50:50~80:20で混合することが好ましい。両粒子を混合する際は、正極活物質粒子10aの表面に形成した被覆層10bが剥がれたり、破壊されたりするのを防ぐために湿式法で混合することが好ましい。湿式法で混合することにより、被覆正極活物質粒子10と硫化物固体電解質粒子11、特に被覆正極活物質粒子10への大きな機械的衝撃を和らげることができる。例えば、有機溶媒(例えば、ジエチルカーボネート)中に、被覆正極活物質粒子10と硫化物固体電解質粒子11とを懸濁させて混合した後、有機溶媒を蒸発させる方法が挙げられる。上記方法により、正極活物質粒子10aの全面に被覆層10bを被覆した状態を維持できる。
  [その他構成]
  次いで、非水電解質電池用正極体1以外の構成について説明する。
  (正極集電体)
  正極集電体4は、上記正極体の集電を行うものである。正極集電体4の材質としては、アルミニウム(Al)、ニッケル(Ni)、金(Au)又はこれらの合金もしくはステンレスが挙げられる。
  (負極体)
  負極体2は、負極活物質粒子を含む。負極活物質粒子としては、金属リチウム(Li金属単体)又はリチウム合金(Liと添加元素からなる合金)の他、例えばグラファイトなどの炭素(C)や、シリコン(Si)、インジウム(In)が挙げられる。中でも、リチウムを含む材料、特に金属リチウムは、電池の高容量化、高電圧化の点で優位であり、好適である。リチウム合金の添加元素としては、アルミニウム(Al)、シリコン(Si)、錫(Sn)、ビスマス(Bi)、亜鉛(Zn)及びインジウム(In)などを用いることができる。
  (負極集電体)
  負極集電体5は、上記負極体の集電を行うものである。負極集電体5の材質としては、銅(Cu)、ニッケル(Ni)、鉄(Fe)、クロム(Cr)又はこれらの合金が挙げられる。上記負極体2が導電性の高い材質で構成される場合、負極集電体5を省略することができる。
  (固体電解質層)
  固体電解質層3は、固体電解質で構成されており、Liイオン伝導性の高い硫化物系固体電解質で構成されていることが好ましい。硫化物固体電解質としては、Li2S-P2S5系、Li2S-SiS2系、Li2S-B2S3系などが挙げられ、更にP2O5やLi3PO4が添加されてもよい。上記正極体1の構成物質である硫化物固体電解質粒子11と同じ材質であってもよい。その他、LiPONなどの酸化物系固体電解質で構成してもよい。
  [作用効果]
  上記の非水電解質電池用正極体1によれば、被覆層10bに酸素欠損を有することで、被覆層10b自体にLiイオン伝導性と共に電子伝導性を備えることができ、正極活物質粒子10aの全表面を被覆層10bで被覆しても、電池の充放電に十分な正極体1の集電を安定して確保することができる。そして、正極活物質粒子10aの全表面を被覆層10bで被覆できるので、正極活物質粒子10aと固体電解質粒子11との接触界面に高抵抗層が生成されることを抑制し、界面抵抗の増加を抑制することができる。その結果、この被覆層10bを介して、正極活物質粒子10aと固体電解質粒子11との間のLiイオンのやり取りや、正極活物質粒子10a同士の電子のやり取り、正極活物質粒子10aからの集電を安定して行うことができる。
  <試験例>
  図1に示すような本発明の非水電解質電池用正極体1を用いて、非水電解質電池100を作製し、この非水電解質電池100の放電特性の電流依存性を評価した。比較例として、正極活物質粒子10aの表面に酸素欠損を有さない被覆層10bを被覆した被覆正極活物質粒子10と、硫化物固体電解質粒子11とを混合した非水電解質電池用正極体を用いて、非水電解質電池100を作製し、この非水電解質電池100の放電特性の電流依存性を評価した。
  [実施例1]
  まず、正極体1を製造する。
  (1)被覆過程
  LiOEtとNb(OEt)5とを等モルの割合でエチルアルコール中に溶解させて、前駆体被覆層溶液を作製する。この前駆体被覆層溶液を、平均粒径5μmのLiCoO2粉末からなる正極活物質粒子10aの全表面に、厚さ8nmとなるように被覆した。このとき、正極活物質粒子10aに超音波振動を加えながら上記前駆体被覆層溶液をスプレーコートした。そして、溶剤のエチルアルコールを蒸発させて、前駆体被覆層が形成される。
  (2)酸素欠損形成過程
  上記被覆過程で前駆体被覆層を被覆した正極活物質粒子10aを、水素濃度が100容量%の水素含有の雰囲気中において400℃で加熱処理することで、前駆体被覆層に酸素欠損が生じ、被覆層10bが形成される。このときの酸素欠損の割合αは0.05であり、電導度は10-3S/cmである。酸素欠損の形成された被覆層12bのLiイオン伝導度は、その電子伝導度と比較して無視できるほど小さいと言えることから、この電導度の値は、電子伝導度の向上に起因した値であると考えられる。
  (3)混合過程
  正極活物質粒子10aと混合する硫化物固体電解質粒子11をメカニカルミリング法により作製する。原料は、Li2S、P2S5、P2O5をモル比70:27:3の割合で混合した平均粒径0.5μmの粉末を使用する。上記被覆正極活物質粒子10と硫化物固体電解質粒子11とを重量比70:30で、ジエチルカーボネート中に懸濁させて混合する。ジエチルカーボネートを蒸発させて、正極体1が形成される。
  次に、作製した正極体1を用いて、図2に示すような非水電解質電池100を作製する。Al箔の正極集電体4の上に、順次、作製した正極体1、Li2S-P2S5-P2O5の固体電解質層3を積層し、内径10mmの金型により、500MPaの圧力で加圧成形する。そして、固体電解質層3を挟んで正極体1と反対側にIn箔の負極体2を積層した。このときの正極体1、固体電解質層3、負極体2の厚さは、それぞれ50μm、250μm、500μmである。
  この作製した非水電解質電池100の放電特性の電流依存性を評価した。4.2Vに充電した電池を、5Cの電流値で電池の電圧が3.0Vに低下するまで放電した。充電容量に対する、5Cの放電での放電容量の割合を求めた。また、0.1Cの電流値での放電も行い、充電容量に対する、5Cの放電での放電容量の割合を求めた。この0.1Cのときの放電容量に対する、5Cの放電での放電容量の比を評価した結果、80%であった。
  [実施例2]
  実施例2に係る正極体1は、被覆層10bに形成した酸素欠損の割合αが実施例1と異なる。以下、この相違点を中心に説明し、その他の構成は実施例1と同様であるため、説明を省略する。
  本例の正極体1では、酸素欠損形成過程において、酸素欠損を形成する条件が実施例1と異なる。被覆過程で前駆体被覆層を被覆した正極活物質粒子10aを、水素濃度が50容量%の水素含有の雰囲気中において300℃で加熱処理して、前駆体被覆層に酸素欠損を形成し、被覆層10bを形成した。このときの酸素欠損の割合αは0.01であり、電導度は10-5S/cmである。この電導度の値は、実施例1と同様に、電子伝導度の向上に起因した値であると考えられる。
  この酸素欠損を有した被覆層10bが被覆された被覆正極活物質粒子10を用いて作製した非水電解質電池100の放電特性の電流依存性を評価した。評価条件は実施例1と同様である。評価した結果は、75%であった。
  [比較例]
  比較例に係る正極体1では、被覆層10bには酸素欠損を形成しない点が実施例1と異なる。以下、この相違点を中心に説明し、その他の構成は実施例1と同様であるため、説明を省略する。
  被覆層10bは酸素欠損を形成しない(上記酸素欠損形成過程を行わない)ため、被覆層10bを正極活物質粒子10aの全表面に被覆した場合、被覆層10bには電子伝導性がないので、正極活物質粒子10a同士の導通及び正極活物質粒子10aからの集電が取れず、電池として機能できない。よって、混合過程において、被覆正極活物質粒子10と硫化物固体電解質粒子11とを混合する際、乳鉢を用いて混合し、被覆正極活物質粒子10に機械的衝撃を与えることで、被覆層10bを部分的に剥離させる。被覆層10bが剥離した箇所において、正極活物質粒子10a同士の導通及び正極活物質粒子10aからの集電を取ることができる。このとき、正極活物質粒子10aの表面の約70%が被覆層10bで被覆されている状態とする。
  この正極活物質粒子10aの表面の約70%が酸素欠損を有さない被覆層10bに被覆された被覆正極活物質粒子を用いて作製した非水電解質電池100の放電特性の電流依存性を評価した。評価条件は実施例1と同様である。評価した結果は、65%であった。
  [結果]
  実施例1、2は比較例に比べて、0.1Cに対する5Cの放電容量の比が、それぞれ15%、10%向上した。
  これは、正極活物質粒子10aと固体電解質粒子11との接触界面に高抵抗層が生成されることを抑制し、界面抵抗の増加を抑制することができているからであると考えられる。また、被覆層10bに酸素欠損を有することで、被覆層10b自体にLiイオン伝導性と共に電子伝導性を備えることができる。よって、この被覆層10bを介して、正極活物質粒子10aと固体電解質粒子11との間のLiイオンのやり取りや、正極活物質粒子10a同士の電子のやり取り、正極活物質粒子10aからの集電を安定して行うことができていると考えられる。
  上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、本発明の範囲は上述した構成に限定されるものではない。
  本発明非水電解質電池は、高出力での放電特性に優れるので、例えば携帯電話やパソコンなどの携帯機器の電源として好適に利用可能である。
1  非水電解質電池用正極体(正極体)
  10  被覆正極活物質粒子
    10a  正極活物質粒子    10b  被覆層
  11  硫化物固体電解質粒子
2  負極体    3  固体電解質層    4正極集電体    5  負極集電体
100  非水電解質電池

Claims (10)

  1.   正極活物質粒子の表面にLiイオン伝導性を有する被覆層が被覆された被覆正極活物質粒子と、硫化物固体電解質粒子とが混合された非水電解質電池用正極体であって、  前記被覆層は、酸素欠損を有した非晶質酸化物で形成されていることを特徴とする非水電解質電池用正極体。
  2.   前記非晶質酸化物は、Nb、Ta、及びTiから選択される少なくとも一種以上の元素とLiとを含有することを特徴とする請求項1に記載の非水電解質電池用正極体。
  3.   前記酸素欠損の割合αは、0<α≦0.05であることを特徴とする請求項1又は2に記載の非水電解質電池用正極体。
  4.   前記被覆層の厚さが5nm~20nmであることを特徴とする請求項1~3のいずれか1項に記載の非水電解質電池用正極体。
  5.   前記被覆正極活物質粒子と前記硫化物固体電解質粒子とが、重量比50:50~80:20で混合されていることを特徴とする請求項1~4のいずれか1項に記載の非水電解質電池用正極体。
  6.   正極活物質粒子の表面にLiイオン伝導性を有する前駆体被覆層を被覆する被覆過程と、
      前記前駆体被覆層に酸素欠損を生じさせて被覆層を形成する酸素欠損形成過程と、
      前記被覆層を被覆した被覆正極活物質粒子と、硫化物固体電解質粒子とを混合する混合過程とを備えることを特徴とする非水電解質電池用正極体の製造方法。
  7.   前記酸素欠損形成過程は、前記前駆体被覆層が被覆された正極活物質粒子を水素含有の雰囲気中において300~400℃で加熱処理することを特徴とする請求項6に記載の非水電解質電池用正極体の製造方法。
  8.   前記酸素欠損形成過程は、前記前駆体被覆層が被覆された正極活物質粒子を水素濃度が50容量%以上の水素含有の雰囲気中において加熱処理することを特徴とする請求項6又は7に記載の非水電解質電池用正極体の製造方法。
  9.   前記混合過程は、前記被覆正極活物質粒子と硫化物固体電解質粒子とを有機溶媒中に懸濁させて混合することを特徴とする請求項6~8のいずれか1項に記載の非水電解質電池用正極体の製造方法。
  10.   正極体と、負極体と、両電極体の間に配される固体電解質層とを備える非水電解質電池であって、
      前記正極体は、請求項1~5のいずれか1項に記載の非水電解質電池用正極体であることを特徴とする非水電解質電池。
PCT/JP2011/060612 2010-05-17 2011-05-07 非水電解質電池用正極体及びその製造方法、並びに非水電解質電池 WO2011145462A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012515816A JPWO2011145462A1 (ja) 2010-05-17 2011-05-07 非水電解質電池用正極体及びその製造方法、並びに非水電解質電池
US13/698,150 US20130059209A1 (en) 2010-05-17 2011-05-07 Positive-electrode body for nonaqueous-electrolyte battery, method for producing the positive-electrode body, and nonaqueous-electrolyte battery
CN2011800240616A CN102893431A (zh) 2010-05-17 2011-05-07 非水电解质电池用正极体、该正极体的制造方法、以及非水电解质电池
DE112011101681T DE112011101681T5 (de) 2010-05-17 2011-05-07 Positiver Elektrodenkörper für nichtwässrige Elektrolytbatterie, Verfahren zu dessen Herstellung und nichtwässrige Elektrolytbatterie
KR1020127028369A KR20130076810A (ko) 2010-05-17 2011-05-07 비수 전해질 전지용 정극체 및 그 제조 방법, 그리고 비수 전해질 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010113702 2010-05-17
JP2010-113702 2010-05-17

Publications (1)

Publication Number Publication Date
WO2011145462A1 true WO2011145462A1 (ja) 2011-11-24

Family

ID=44991573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060612 WO2011145462A1 (ja) 2010-05-17 2011-05-07 非水電解質電池用正極体及びその製造方法、並びに非水電解質電池

Country Status (6)

Country Link
US (1) US20130059209A1 (ja)
JP (1) JPWO2011145462A1 (ja)
KR (1) KR20130076810A (ja)
CN (1) CN102893431A (ja)
DE (1) DE112011101681T5 (ja)
WO (1) WO2011145462A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033655A (ja) * 2011-08-02 2013-02-14 Ngk Spark Plug Co Ltd 全固体電池、及び、全固体電池の製造方法
WO2014032405A1 (zh) * 2012-08-28 2014-03-06 华为技术有限公司 一种全固态锂离子电池复合型正极材料及其制备方法和全固态锂离子电池
WO2014122520A1 (en) * 2013-02-08 2014-08-14 Toyota Jidosha Kabushiki Kaisha Composite active material, manufacturing method for composite active material, and lithium secondary battery including composite active material
JP2014154406A (ja) * 2013-02-08 2014-08-25 Toyota Motor Corp 複合活物質及びその製造方法
JP2015005398A (ja) * 2013-06-20 2015-01-08 トヨタ自動車株式会社 全固体リチウムイオン電池用正極
WO2013174592A3 (de) * 2012-05-23 2015-11-26 Robert Bosch Gmbh Verfahren zum herstellen einer elektrode für einen elektrochemischen energiespeicher und elektrode
JP2016024907A (ja) * 2014-07-17 2016-02-08 三星電子株式会社Samsung Electronics Co.,Ltd. リチウムイオン(lithiumion)二次電池
JP2016025020A (ja) * 2014-07-23 2016-02-08 セイコーエプソン株式会社 電極複合体、リチウム電池および電極複合体の製造方法
JP2016170884A (ja) * 2015-03-11 2016-09-23 トヨタ自動車株式会社 活物質複合粒子の製造方法
WO2017033480A1 (ja) * 2015-08-26 2017-03-02 株式会社日立製作所 全固体リチウム二次電池および該二次電池を備えた二次電池システム
US9692041B2 (en) 2013-10-02 2017-06-27 Samsung Electronics Co., Ltd. Lithium battery and method of preparing cathode active material for the lithium battery
WO2017154631A1 (ja) * 2016-03-08 2017-09-14 住友金属鉱山株式会社 非水系電解質二次電池用正極電極とこれに用いられる正極活物質、及びこれを利用した二次電池
JP2017220339A (ja) * 2016-06-07 2017-12-14 トヨタ自動車株式会社 固体電池
WO2018019238A1 (zh) * 2016-07-29 2018-02-01 比亚迪股份有限公司 负极材料及其制备方法、负极和全固态锂离子电池
WO2018062079A1 (ja) * 2016-09-29 2018-04-05 Tdk株式会社 活物質及び全固体リチウムイオン二次電池
JP2019046717A (ja) * 2017-09-05 2019-03-22 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池
JP2021072259A (ja) * 2019-11-01 2021-05-06 トヨタ自動車株式会社 全固体電池
WO2021200086A1 (ja) * 2020-04-02 2021-10-07 パナソニックIpマネジメント株式会社 正極材料および電池
WO2022131250A1 (ja) * 2020-12-17 2022-06-23 キヤノン株式会社 活物質粒子ならびに活物質粒子の製造方法
US11532812B2 (en) 2016-09-29 2022-12-20 Tdk Corporation All-solid lithium ion secondary battery

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9853323B2 (en) 2013-10-31 2017-12-26 Samsung Electronics Co., Ltd. Positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP6098568B2 (ja) 2014-04-04 2017-03-22 トヨタ自動車株式会社 活物質粉体及びその製造方法
KR101673724B1 (ko) * 2014-12-31 2016-11-23 현대자동차주식회사 전고체 리튬전지의 양극 및 이를 포함하는 이차전지
US10439219B2 (en) * 2015-04-17 2019-10-08 Uchicago Argonne, Llc Ultrastable cathodes for lithium sulfur batteries
KR20160140030A (ko) * 2015-05-29 2016-12-07 현대자동차주식회사 전고체 리튬황 전지용 양극활물질-고체전해질 복합체의 제조방법
US10312515B2 (en) * 2016-03-07 2019-06-04 Robert Bosch Gmbh Lithium sulfur cell with dopant
CN105826568A (zh) * 2016-05-17 2016-08-03 哈尔滨工业大学 一种具有氧不足型金属氧化物包覆层结构的富锂正极材料及制备方法和应用
JP6536515B2 (ja) * 2016-08-15 2019-07-03 トヨタ自動車株式会社 リチウムイオン電池およびリチウムイオン電池の製造方法
EP3513447A4 (en) * 2016-09-16 2020-07-01 Robert Bosch GmbH COATED CATHODE ACTIVE MATERIAL FOR MODIFIED SOLID STATE BATTERY INTERFACES
JP7176412B2 (ja) * 2016-12-26 2022-11-22 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
DE102017216182A1 (de) 2017-09-13 2019-03-14 Robert Bosch Gmbh Elektrochemische Zelle mit oberflächenmodifiziertem Aktivmaterial
WO2019063431A1 (en) 2017-09-29 2019-04-04 Robert Bosch Gmbh SOLID STATE COMPOSITE ELECTRODE WITH COATED MATERIALS
US10930927B2 (en) 2017-11-08 2021-02-23 Samsung Electronics Co., Ltd. Positive electrode active material, methods for the manufacture thereof, and electrochemical cell comprising the positive electrode active material
CN110970604A (zh) * 2018-09-30 2020-04-07 深圳市贝特瑞纳米科技有限公司 一种包覆型三元正极材料、其制备方法及其用途
CN111092229A (zh) * 2018-10-24 2020-05-01 三星电子株式会社 混合导体、包括其的电化学装置和制备混合导体的方法
US20200235404A1 (en) * 2019-01-17 2020-07-23 Chongqing Jinkang New Energy Automobile Co., Ltd. Graphene Coated Cathode Particles for a Lithium Ion Secondary Battery
DE112020000514T5 (de) * 2019-01-25 2021-10-07 Semiconductor Energy Laboratory Co., Ltd. Gesamtfestkörperbatterie und Herstellungsverfahren dafür
CN112310340A (zh) * 2019-07-29 2021-02-02 通用汽车环球科技运作有限责任公司 用于固态电极的具有增强离子导电性的微米级二次颗粒
CN110943207B (zh) * 2019-10-28 2022-06-14 浙江锋锂新能源科技有限公司 一种改性的TiNb2O7材料及改性方法
JP7331640B2 (ja) * 2019-11-05 2023-08-23 セイコーエプソン株式会社 正極活物質複合体
CN111293313B (zh) * 2020-05-09 2020-12-11 江苏时代新能源科技有限公司 正极极片、全固态锂二次电池及装置
CN112002939B (zh) * 2020-08-31 2021-10-15 成都新柯力化工科技有限公司 一种锂电池固体电解质的清洁制备方法
CN111834626B (zh) * 2020-09-14 2020-12-01 清陶(昆山)能源发展有限公司 一种全固态电池
CN115579454A (zh) * 2022-11-07 2023-01-06 哈尔滨工业大学 一种硫化物固态电解质复合固态正极及固态电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006676A (ja) * 1999-04-23 2001-01-12 Mitsubishi Chemicals Corp リチウム二次電池用正極材料及び正極、並びにリチウム二次電池
JP2009193940A (ja) * 2008-02-18 2009-08-27 Toyota Motor Corp 電極体及びその製造方法、並びに、リチウムイオン二次電池
JP2010257878A (ja) * 2009-04-28 2010-11-11 Toyota Motor Corp 全固体電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059492A (ja) 2001-08-17 2003-02-28 Matsushita Electric Ind Co Ltd リチウム二次電池およびその製造方法
WO2007004590A1 (ja) * 2005-07-01 2007-01-11 National Institute For Materials Science 全固体リチウム電池
US7541016B2 (en) * 2006-04-11 2009-06-02 Enerdel, Inc. Lithium titanate and method of forming the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006676A (ja) * 1999-04-23 2001-01-12 Mitsubishi Chemicals Corp リチウム二次電池用正極材料及び正極、並びにリチウム二次電池
JP2009193940A (ja) * 2008-02-18 2009-08-27 Toyota Motor Corp 電極体及びその製造方法、並びに、リチウムイオン二次電池
JP2010257878A (ja) * 2009-04-28 2010-11-11 Toyota Motor Corp 全固体電池

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033655A (ja) * 2011-08-02 2013-02-14 Ngk Spark Plug Co Ltd 全固体電池、及び、全固体電池の製造方法
WO2013174592A3 (de) * 2012-05-23 2015-11-26 Robert Bosch Gmbh Verfahren zum herstellen einer elektrode für einen elektrochemischen energiespeicher und elektrode
US9705129B2 (en) 2012-05-23 2017-07-11 Robert Bosch Gmbh Process for producing an electrode for an electrochemical energy storage means and electrode
WO2014032405A1 (zh) * 2012-08-28 2014-03-06 华为技术有限公司 一种全固态锂离子电池复合型正极材料及其制备方法和全固态锂离子电池
JP2014154406A (ja) * 2013-02-08 2014-08-25 Toyota Motor Corp 複合活物質及びその製造方法
US9929430B2 (en) 2013-02-08 2018-03-27 Toyota Jidosha Kabushiki Kaisha Composite active material, manufacturing method for composite active material, and lithium secondary battery including composite active material
WO2014122520A1 (en) * 2013-02-08 2014-08-14 Toyota Jidosha Kabushiki Kaisha Composite active material, manufacturing method for composite active material, and lithium secondary battery including composite active material
KR101800945B1 (ko) * 2013-02-08 2017-11-23 도요타 지도샤(주) 복합 활물질, 복합 활물질의 제조 방법, 및 복합 활물질을 포함하는 리튬 2차 전지
JP2014154407A (ja) * 2013-02-08 2014-08-25 Toyota Motor Corp 複合活物質及びその製造方法
JP2015005398A (ja) * 2013-06-20 2015-01-08 トヨタ自動車株式会社 全固体リチウムイオン電池用正極
US9692041B2 (en) 2013-10-02 2017-06-27 Samsung Electronics Co., Ltd. Lithium battery and method of preparing cathode active material for the lithium battery
JP2016024907A (ja) * 2014-07-17 2016-02-08 三星電子株式会社Samsung Electronics Co.,Ltd. リチウムイオン(lithiumion)二次電池
JP2016025020A (ja) * 2014-07-23 2016-02-08 セイコーエプソン株式会社 電極複合体、リチウム電池および電極複合体の製造方法
JP2016170884A (ja) * 2015-03-11 2016-09-23 トヨタ自動車株式会社 活物質複合粒子の製造方法
US10033035B2 (en) 2015-03-11 2018-07-24 Toyota Jidosha Kabushiki Kaisha Method for producing active material composite particles
WO2017033480A1 (ja) * 2015-08-26 2017-03-02 株式会社日立製作所 全固体リチウム二次電池および該二次電池を備えた二次電池システム
WO2017154631A1 (ja) * 2016-03-08 2017-09-14 住友金属鉱山株式会社 非水系電解質二次電池用正極電極とこれに用いられる正極活物質、及びこれを利用した二次電池
JPWO2017154631A1 (ja) * 2016-03-08 2019-01-17 住友金属鉱山株式会社 非水系電解質二次電池用正極電極とこれに用いられる正極活物質、及びこれを利用した二次電池
JP2017220339A (ja) * 2016-06-07 2017-12-14 トヨタ自動車株式会社 固体電池
WO2018019238A1 (zh) * 2016-07-29 2018-02-01 比亚迪股份有限公司 负极材料及其制备方法、负极和全固态锂离子电池
WO2018062079A1 (ja) * 2016-09-29 2018-04-05 Tdk株式会社 活物質及び全固体リチウムイオン二次電池
CN109792050A (zh) * 2016-09-29 2019-05-21 Tdk株式会社 活性物质及全固体锂离子二次电池
JPWO2018062079A1 (ja) * 2016-09-29 2019-07-25 Tdk株式会社 活物質及び全固体リチウムイオン二次電池
JP7127540B2 (ja) 2016-09-29 2022-08-30 Tdk株式会社 全固体リチウムイオン二次電池
CN109792050B (zh) * 2016-09-29 2022-10-04 Tdk株式会社 活性物质及全固体锂离子二次电池
US11532812B2 (en) 2016-09-29 2022-12-20 Tdk Corporation All-solid lithium ion secondary battery
JP2019046717A (ja) * 2017-09-05 2019-03-22 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池
JP7167420B2 (ja) 2017-09-05 2022-11-09 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池
JP2021072259A (ja) * 2019-11-01 2021-05-06 トヨタ自動車株式会社 全固体電池
JP7207265B2 (ja) 2019-11-01 2023-01-18 トヨタ自動車株式会社 全固体電池の製造方法
WO2021200086A1 (ja) * 2020-04-02 2021-10-07 パナソニックIpマネジメント株式会社 正極材料および電池
WO2022131250A1 (ja) * 2020-12-17 2022-06-23 キヤノン株式会社 活物質粒子ならびに活物質粒子の製造方法

Also Published As

Publication number Publication date
CN102893431A (zh) 2013-01-23
KR20130076810A (ko) 2013-07-08
JPWO2011145462A1 (ja) 2013-07-22
DE112011101681T5 (de) 2013-05-23
US20130059209A1 (en) 2013-03-07

Similar Documents

Publication Publication Date Title
WO2011145462A1 (ja) 非水電解質電池用正極体及びその製造方法、並びに非水電解質電池
CA2745379C (en) All-solid battery
JP6085370B2 (ja) 全固体電池、全固体電池用電極及びその製造方法
US8968939B2 (en) Solid electrolyte material, electrode element that includes solid electrolyte material, all-solid battery that includes solid electrolyte material, and manufacturing method for solid electrolyte material
CN101828295B (zh) 非水电解质二次电池及其制造方法
CN103250278B (zh) 电极体和全固体电池
CN111864207B (zh) 全固体电池
WO2013046443A1 (ja) 全固体電池およびその製造方法
JP6259704B2 (ja) 全固体電池用電極の製造方法及び全固体電池の製造方法
JP2011065887A (ja) 正極材料、その製造方法及びリチウムイオン電池
CN112751077A (zh) 固体电解质的液体金属界面层及其方法
JP2014096281A (ja) リチウムイオン二次電池正極およびこれを用いたリチウムイオン二次電池
WO2015159331A1 (ja) 全固体電池、全固体電池用電極及びその製造方法
JP2017098181A (ja) 全固体電池
JP2021034199A (ja) 全固体電池
WO2012157047A1 (ja) 全固体二次電池
JP7369676B2 (ja) 全固体二次電池用固体電解質層及び全固体二次電池
JP2019129096A (ja) 全固体電池及び全固体電池の製造方法
JP7017137B2 (ja) 全固体二次電池の製造方法
JP2022056859A (ja) 負極材料及び固体電池
JP2017103020A (ja) 活物質複合粒子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180024061.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783399

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012515816

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127028369

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13698150

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120111016816

Country of ref document: DE

Ref document number: 112011101681

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783399

Country of ref document: EP

Kind code of ref document: A1