WO2011130616A1 - Pyrrolobenzodiazepines used to treat proliferative diseases - Google Patents
Pyrrolobenzodiazepines used to treat proliferative diseases Download PDFInfo
- Publication number
- WO2011130616A1 WO2011130616A1 PCT/US2011/032668 US2011032668W WO2011130616A1 WO 2011130616 A1 WO2011130616 A1 WO 2011130616A1 US 2011032668 W US2011032668 W US 2011032668W WO 2011130616 A1 WO2011130616 A1 WO 2011130616A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- compound according
- attachment
- unit
- alkyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 0 CC([C@]1N2C=C(C)C1)N(*)c(c(*)c(**#*c(c(*)c1N(*)C(*)[C@]3N4C=C(*)C3)c(*)c(*)c1C4=O)c(*)c1*)c1C2=O Chemical compound CC([C@]1N2C=C(C)C1)N(*)c(c(*)c(**#*c(c(*)c1N(*)C(*)[C@]3N4C=C(*)C3)c(*)c(*)c1C4=O)c(*)c1*)c1C2=O 0.000 description 4
- FRZHTNXTMSLBAY-UHFFFAOYSA-N CC(C)(CC(C)(C)N(C(C=C1)=O)C1=O)C(C)=O Chemical compound CC(C)(CC(C)(C)N(C(C=C1)=O)C1=O)C(C)=O FRZHTNXTMSLBAY-UHFFFAOYSA-N 0.000 description 1
- RCWNZYFOFZBDFZ-UHFFFAOYSA-N CC(C)(CCC(NC(C)(C)CCOCCC([IH]C)=O)=O)c(cc1)ccc1N(C(CC1SC)=O)C1=O Chemical compound CC(C)(CCC(NC(C)(C)CCOCCC([IH]C)=O)=O)c(cc1)ccc1N(C(CC1SC)=O)C1=O RCWNZYFOFZBDFZ-UHFFFAOYSA-N 0.000 description 1
- RWZVMMQNDHPRQD-SFTDATJTSA-N COc(c(OCCCOc(cc(c1c2)N=C[C@H](CC(C3)=C)N3C1=O)c2OC)c1)cc2c1N=C[C@H](CC(C1)=C)N1C2=O Chemical compound COc(c(OCCCOc(cc(c1c2)N=C[C@H](CC(C3)=C)N3C1=O)c2OC)c1)cc2c1N=C[C@H](CC(C1)=C)N1C2=O RWZVMMQNDHPRQD-SFTDATJTSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/55—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
- A61K31/551—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
- A61K31/5513—1,4-Benzodiazepines, e.g. diazepam or clozapine
- A61K31/5517—1,4-Benzodiazepines, e.g. diazepam or clozapine condensed with five-membered rings having nitrogen as a ring hetero atom, e.g. imidazobenzodiazepines, triazolam
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6801—Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
- A61K47/6803—Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
- A61K47/68035—Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a pyrrolobenzodiazepine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6835—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
- A61K47/6849—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a receptor, a cell surface antigen or a cell surface determinant
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6835—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
- A61K47/6851—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/02—Nasal agents, e.g. decongestants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/08—Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/14—Drugs for dermatological disorders for baldness or alopecia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
- A61P21/04—Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/14—Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/06—Antianaemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D519/00—Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/10—Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
Definitions
- the present invention relates to pyrrolobenzodiazepines (PBDs), in particular
- pyrrolobenzodiazepine dimers having a C2-C3 double bond and an aryl group at the C2 position on one monomer unit, and a C2-C3 double bond and either a conjugated double or triple bond at the C2 position or an alkyl group at the C2 position on the other monomer unit.
- PBDs pyrrolobenzodiazepines
- Family members include abbeymycin (Hochlowski, et al., J. Antibiotics, 40, 145- 148 (1987)), chicamycin (Konishi, et al., J. Antibiotics, 37, 200-206 (1984)), DC-81
- VanDevanter Acc. Chem. Res., 19, 230-237 (1986)
- Their ability to form an adduct in the minor groove enables them to interfere with DNA processing, hence their use as antitumour agents.
- the biological activity of this molecules can be potentiated by joining two PBD units together through their C8/C'-hydroxyl functionalities via a flexible alkylene linker (Bose, D.S., et al., J. Am. Chem. Soc, 114, 4939-4941 (1992); Thurston, D.E., et al., J. Org. Chem., 61 , 8141 -8147 (1996)).
- the PBD dimers are thought to form sequence-selective DNA lesions such as the palindromic 5'-Pu-GATC-Py-3' interstrand cross-link (Smellie, M., et al., Biochemistry, 42, 8232-8239 (2003); Martin, C, et al, Biochemistry, 44, 4135-4147) which is thought to be mainly responsible for their biological activity. -136):
- the present inventors have developed further unsymmetrical dimeric PBD compounds bearing an aryl group in the C2 position of one monomer, said aryl group bearing a substituent designed to provide an anchor for linking the compound to another moiety, and either a unsaturated bond conjugated to the C2-C3 double bond or an alkyl group in the other monomer unit.
- A is a C 5 - 7 aryl group
- X is selected from the roup comprising: OH, SH, C0 2 H,
- NHR wherein R is selected from the group comprising H and Ci -4 alkyl, and either:
- Q 1 is a single bond
- Q 2 is selected from a single bond and -Z-(CH 2 )n-, where Z is selected from a single bond, O, S and NH and n is from 1 to 3;
- R 12 is selected from:
- each of R 21 , R 22 and R 23 are independently selected from H, Ci -3 saturated alkyl, C2-3 alkenyl, C2-3 alkynyl and cyclopropyl, where the total number of carbon atoms in the R 12 group is no more than 5;
- phenyl which phenyl is optionally substituted by a group selected from halo, methyl, meth xy; pyridyl; and thiophenyl;and
- R 24 is selected from: H; C 1-3 saturated alkyl; C 2- 3 alkenyl; C 2- 3 alkynyl; cyclopropyl; phenyl, which phenyl is optionally substituted by a group selected from halo, methyl, methoxy; pyridyl; and thiophenyl;
- R 6 and R 9 are independently selected from H, R, OH, OR, SH, SR, NH 2 , NHR, NRR', nitro, Me 3 Sn and halo;
- R and R' are independently selected from optionally substituted C1-12 alkyl, C3-2 0 heterocyclyl and C5-2 0 aryl groups;
- R 7 is selected from H, R, OH, OR, SH, SR, NH 2 , NHR, NHRR', nitro, Me 3 Sn and halo; either:
- R 10 is H, and R 11 is OH, OR A , where R A is alkyl;
- R 10 and R 11 form a nitrogen-carbon double bond between the nitrogen and carbon atoms to which they are bound; or (c) R 10 is H and R 1 1 is SO z M, where z is 2 or 3 and M is a monovalent pharmaceutically acceptable cation;
- R" is a C3-12 alkylene group, which chain may be interrupted by one or more heteroatoms, e.g. O, S, NR N2 (where R N2 is H or Ci -4 alkyl), and/or aromatic rings, e.g. benzene or pyridine;
- Y and Y' are selected from O, S, or NH;
- R 6 , R 7 , R 9 are selected from the same groups as R 6 , R 7 and R 9 respectively and R 10 and R 11 are the same as R 10 and R 11 , wherein if R 11 and R 11 are SO z M, M may represent a divalent pharmaceutically acceptable cation.
- a second aspect of the present invention provides the use of a compound of the first aspect of the invention in the manufacture of a medicament for treating a proliferative disease.
- the second aspect also provides a compound of the first aspect of the invention for use in the treatment of a proliferative disease.
- a third aspect is a third aspect
- R 2 is of formula II:
- A is a C5-7 aryl group
- X is selected from the roup comprising: OH, SH, C0 2 H,
- R I is selected from the group comprising H and Ci -4 alkyl, and either:
- Q 1 is a single bond
- Q 2 is selected from a single bond and -Z-(CH where Z is selected from a single bond, O, S and NH and n is from 1 to 3; or
- R 12 is selected from:
- each of R 21 , R 22 and R 23 are independently selected from H, Ci -3 saturated alkyl, C2-3 alkenyl, C2-3 alkynyl and cyclopropyl, where the total number of carbon atoms in the R 12 group is no more than 5;
- phenyl which phenyl is optionally substituted by a group selected from halo, methyl, methoxy; pyridyl; and thiophenyl;and
- R is selected from: H; Ci -3 saturated alkyl; C2-3 alkenyl; C2-3 alkynyl: cyclopropyl; phenyl, which phenyl is optionally substituted by a group selected from halo, methyl, methoxy; pyridyl; and thiophenyl;
- R 6 and R 9 are independently selected from H, R, OH, OR, SH, SR, NH 2 , NHR, NRR', nitro, Me 3 Sn and halo;
- R and R' are independently selected from optionally substituted C1-12 alkyl, C3-2 0 heterocyclyl and C5-2 0 aryl groups;
- R 7 is selected from H, R, OH, OR, SH, SR, NH 2 , NHR, NHRR', nitro, Me 3 Sn and halo; either:
- R 10 is carbamate nitrogen protecting group, and R 11 is 0-Prot°, wherein Prot° is an oxygen protecting group;
- R 10 is a hemi-aminal nitrogen protecting group and R 11 is an oxo group
- R" is a C 3-12 alkylene group, which chain may be interrupted by one or more heteroatoms, e.g. O, S, NR N2 (where R N2 is H or C 1-4 alkyl), and/or aromatic rings, e.g. benzene or pyridine;
- Y and Y' are selected from O, S, or NH;
- a fourth aspect of the present invention comprises a method of making a compound of formula I from a compound of formula II by deprotection of the imine bond.
- the unsymmetrical dimeric PBD compounds of the present invention are made by different strategies to those previously employed in making symmetrical dimeric PBD compounds.
- the present inventors have developed a method which involves adding each each C2 substituent to a symmetrical PBD dimer core in separate method steps.
- a fifth aspect of the present invention provides a method of making a compound of the first or third aspect of the invention, comprising at least one of the method steps set out below.
- the present invention relates to Conjugates comprising dimers of PBDs linked to a targeting agent, wherein a PBD is a dimer of formula I (supra).
- the Conjugates have the following formula III:
- L is a Ligand unit (i.e., a targeting agent)
- LU is a Linker unit
- D is a Drug unit comprising a PBD dimer.
- the subscript p is an integer of from 1 to 20.
- the Conjugates comprise a Ligand unit covalently linked to at least one Drug unit by a Linker unit.
- the Ligand unit described more fully below, is a targeting agent that binds to a target moiety.
- the Ligand unit can, for example, specifically bind to a cell component (a Cell Binding Agent) or to other target molecules of interest. Accordingly, the present invention also provides methods for the treatment of, for example, various cancers and autoimmune disease.
- the Ligand unit is a targeting agent that specifically binds to a target molecule.
- the Ligand unit can be, for example, a protein, polypeptide or peptide, such as an antibody, an antigen-binding fragment of an antibody, or other binding agent, such as an Fc fusion protein.
- Figure 1 shows the effect of a conjugate of the invention on a tumour.
- the pharmaceutically acceptable cation may be inorganic or organic.
- Examples of pharmaceutically acceptable monovalent inorganic cations include, but are not limited to, alkali metal ions such as Na + and K + .
- Examples of pharmaceutically acceptable divalent inorganic cations include, but are not limited to, alkaline earth cations such as Ca 2+ and Mg 2+ .
- Examples of pharmaceutically acceptable organic cations include, but are not limited to, ammonium ion (i.e. NH 4 + ) and substituted ammonium ions (e.g. NH 3 R + , NH 2 R2 + , NHR 3 + , NR 4 + ).
- substituted ammonium ions examples include those derived from: ethylamine, diethylamine, dicyclohexylamine, triethylamine, butylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine, benzylamine, phenylbenzylamine, choline, meglumine, and tromethamine, as well as amino acids, such as lysine and arginine.
- An example of a common quaternary ammonium ion is N(CH 3 ) 4 + .
- substituted refers to a parent group which bears one or more substituents.
- substituted is used herein in the conventional sense and refers to a chemical moiety which is covalently attached to, or if appropriate, fused to, a parent group.
- substituents are well known, and methods for their formation and introduction into a variety of parent groups are also well known.
- Ci-12 alkyl refers to a monovalent moiety obtained by removing a hydrogen atom from a carbon atom of a hydrocarbon compound having from 1 to 12 carbon atoms, which may be aliphatic or alicyclic, and which may be saturated or unsaturated (e.g. partially unsaturated, fully unsaturated).
- alkyl includes the sub-classes alkenyl, alkynyl, cycloalkyl, etc., discussed below.
- saturated alkyl groups include, but are not limited to, methyl (Ci), ethyl (C 2 ), propyl (C 3 ), butyl (C 4 ), pentyl (C 5 ), hexyl (C 6 ) and heptyl (C 7 ).
- saturated linear alkyl groups include, but are not limited to, methyl (C-i), ethyl (C 2 ), n-propyl (C 3 ), n-butyl (C 4 ), n-pentyl (amyl) (C 5 ), n-hexyl (C 6 ) and n-heptyl (C 7 ).
- saturated branched alkyl groups include iso-propyl (C 3 ), iso-butyl (C 4 ), sec-butyl (C 4 ), tert-butyl (C 4 ), iso-pentyl (C 5 ), and neo-pentyl (C 5 ).
- C 2 - 12 Alkenyl The term "C 2 - 12 alkenyl” as used herein, pertains to an alkyl group having one or more carbon-carbon double bonds.
- C 2 - 12 alkynyl The term "C 2 - 12 alkynyl" as used herein, pertains to an alkyl group having one or more carbon-carbon triple bonds.
- unsaturated alkynyl groups include, but are not limited to, ethynyl (-C ⁇ CH) and 2-propynyl (propargyl, -CH 2 -C ⁇ CH).
- C 3 - 12 cycloalkyl The term "C 3- i 2 cycloalkyl" as used herein, pertains to an alkyl group which is also a cyclyl group; that is, a monovalent moiety obtained by removing a hydrogen atom from an alicyclic ring atom of a cyclic hydrocarbon (carbocyclic) compound, which moiety has from 3 to 7 carbon atoms, including from 3 to 7 ring atoms.
- cycloalkyl groups include, but are not limited to, those derived from:
- C 3- 2o heterocyclyl refers to a monovalent moiety obtained by removing a hydrogen atom from a ring atom of a heterocyclic compound, which moiety has from 3 to 20 ring atoms, of which from 1 to 10 are ring heteroatoms.
- each ring has from 3 to 7 ring atoms, of which from 1 to 4 are ring heteroatoms.
- the prefixes e.g. C3-20, C 3-7 , C 5 - 6 , etc.
- the prefixes denote the number of ring atoms, or range of number of ring atoms, whether carbon atoms or heteroatoms.
- C 5-6 heterocyclyl as used herein, pertains to a heterocyclyl group having 5 or 6 ring atoms.
- monocyclic heterocyclyl groups include, but are not limited to, those derived from:
- N-i aziridine (C 3 ), azetidine (C 4 ), pyrrolidine (tetrahydropyrrole) (C 5 ), pyrroline (e.g., 3-pyrroline, 2,5-dihydropyrrole) (C 5 ), 2H-pyrrole or 3H-pyrrole (isopyrrole, isoazole) (C 5 ), piperidine (C 6 ), dihydropyridine (C 6 ), tetrahydropyridine (C 6 ), azepine (C 7 );
- O-i oxirane (C 3 ), oxetane (C 4 ), oxolane (tetrahydrofuran) (C 5 ), oxole (dihydrofuran) (C 5 ), oxane (tetrahydropyran) (C 6 ), dihydropyran (C 6 ), pyran (C 6 ), oxepin (C 7 );
- N 2 imidazolidine (C 5 ), pyrazolidine (diazolidine) (C 5 ), imidazoline (C 5 ), pyrazoline
- OiSi oxathiole (C 5 ) and oxathiane (thioxane) (C 6 ); and,
- N-IO-IS-I oxathiazine (C 6 ).
- substituted monocyclic heterocyclyl groups include those derived from saccharides, in cyclic form, for example, furanoses (C 5 ), such as arabinofuranose, lyxofuranose, ribofuranose, and xylofuranse, and pyranoses (C 6 ), such as allopyranose, altropyranose, glucopyranose, mannopyranose, gulopyranose, idopyranose,
- C5-2 0 aryl The term "C5-2 0 aryl", as used herein, pertains to a monovalent moiety obtained by removing a hydrogen atom from an aromatic ring atom of an aromatic compound, which moiety has from 3 to 20 ring atoms. Preferably, each ring has from 5 to 7 ring atoms.
- the prefixes e.g. C3-2 0 , C5-7, C 5 - 6 , etc.
- the prefixes denote the number of ring atoms, or range of number of ring atoms, whether carbon atoms or heteroatoms.
- the term "C 5-6 aryl” as used herein, pertains to an aryl group having 5 or 6 ring atoms.
- the ring atoms may be all carbon atoms, as in "carboaryl groups".
- carboaryl groups include, but are not limited to, those derived from benzene (i.e. phenyl) (C 6 ), naphthalene (C 10 ), azulene (C 10 ), anthracene (C 14 ), phenanthrene (C 14 ), naphthacene (C 18 ), and pyrene (C 16 ).
- benzene i.e. phenyl
- C 10 naphthalene
- azulene C 10
- anthracene C 14
- phenanthrene C 14
- naphthacene C 18
- pyrene C 16
- aryl groups which comprise fused rings include, but are not limited to, groups derived from indane (e.g. 2,3-dihydro-1 H- indene) (Cg), indene (Cg), isoindene (Cg), tetraline (1 ,2,3,4-tetrahydronaphthalene (C1 0 ), acenaphthene (C12), fluorene (C13), phenalene (C13), acephenanthrene (C15), and aceanthrene (Ci 6 ).
- the ring atoms may include one or more heteroatoms, as in "heteroaryl groups".
- monocyclic heteroaryl groups include, but are not limited to, those derived from:
- Ni pyrrole (azole) (C 5 ), pyridine (azine) (C 6 );
- NiSi thiazole (C 5 ), isothiazole (C 5 );
- N 2 imidazole (1 ,3-diazole) (C 5 ), pyrazole (1 ,2-diazole) (C 5 ), pyridazine (1 ,2-diazine) (C 6 ), pyrimidine (1 ,3-diazine) (C 6 ) (e.g., cytosine, thymine, uracil), pyrazine (1 ,4-diazine) (C 6 ); N 3 : triazole (C 5 ), triazine (C 6 ); and,
- heteroaryl which comprise fused rings, include, but are not limited to:
- Cg (with 2 fused rings) derived from benzofuran (Oi), isobenzofuran (Oi), indole (N-i), isoindole (N-i), indolizine (N-i), indoline (N-i), isoindoline (N-i), purine (N 4 ) (e.g., adenine, guanine), benzimidazole (N 2 ), indazole (N 2 ), benzoxazole (N- ⁇ - ⁇ ), benzisoxazole (N-I O-I ), benzodioxole (0 2 ), benzofurazan (N 2 Oi), benzotriazole (N 3 ), benzothiofuran (Si), benzothiazole (N-IS-I), benzothiadiazole (N 2 S);
- Cio (with 2 fused rings) derived from chromene (Oi), isochromene (Oi), chroman (Oi), isochroman (Oi), benzodioxan (0 2 ), quinoline (N-i), isoquinoline (N-i), quinolizine (N-i), benzoxazine (N- ⁇ - ⁇ ), benzodiazine (N 2 ), pyridopyridine (N 2 ), quinoxaline (N 2 ), quinazoline (N 2 ), cinnoline (N 2 ), phthalazine (N 2 ), naphthyridine (N 2 ), pteridine (N 4 );
- C 14 (with 3 fused rings) derived from acridine (N-i), xanthene (O-i), thioxanthene (S-i), oxanthrene (0 2 ), phenoxathiin (O1 S1 ), phenazine (N 2 ), phenoxazine (N- ⁇ - ⁇ ), phenothiazine (N-I S-I), thianthrene (S 2 ), phenanthridine (N-i), phenanthroline (N 2 ), phenazine (N 2 ).
- Ether -OR, wherein R is an ether substituent, for example, a Ci_ 7 alkyl group (also referred to as a C 1-7 alkoxy group, discussed below), a C 3-2 o heterocyclyl group (also referred to as a C 3- 2o heterocyclyloxy group), or a C 5-2 o aryl group (also referred to as a C 5-2 o aryloxy group), preferably a C 1-7 alkyl group.
- R is an ether substituent, for example, a Ci_ 7 alkyl group (also referred to as a C 1-7 alkoxy group, discussed below), a C 3-2 o heterocyclyl group (also referred to as a C 3- 2o heterocyclyloxy group), or a C 5-2 o aryl group (also referred to as a C 5-2 o aryloxy group), preferably a C 1-7 alkyl group.
- Alkoxy -OR, wherein R is an alkyl group, for example, a C 1-7 alkyl group.
- C 1-7 alkoxy groups include, but are not limited to, -OMe (methoxy), -OEt (ethoxy), -O(nPr) (n- propoxy), -O(iPr) (isopropoxy), -O(nBu) (n-butoxy), -O(sBu) (sec-butoxy), -O(iBu)
- Acetal -CH(OR 1 )(OR 2 ), wherein R 1 and R 2 are independently acetal substituents, for example, a Ci -7 alkyl group, a C 3 - 2 o heterocyclyl group, or a C 5 -2o aryl group, preferably a Ci_7 alkyl group, or, in the case of a "cyclic" acetal group, R 1 and R 2 , taken together with the two oxygen atoms to which they are attached, and the carbon atoms to which they are attached, form a heterocyclic ring having from 4 to 8 ring atoms.
- acetal groups include, but are not limited to, -CH(OMe) 2 , -CH(OEt) 2 , and -CH(OMe)(OEt).
- Hemiacetal -CH(OH)(OR 1 ), wherein R 1 is a hemiacetal substituent, for example, a Ci -7 alkyl group, a C 3 - 20 heterocyclyl group, or a C 5 - 2 o aryl group, preferably a Ci -7 alkyl group.
- R 1 is a hemiacetal substituent, for example, a Ci -7 alkyl group, a C 3 - 20 heterocyclyl group, or a C 5 - 2 o aryl group, preferably a Ci -7 alkyl group.
- hemiacetal groups include, but are not limited to, -CH(OH)(OMe) and - CH(OH)(OEt).
- Ketal -CR(OR 1 )(OR 2 ), where R 1 and R 2 are as defined for acetals, and R is a ketal substituent other than hydrogen, for example, a C 1 -7 alkyl group, a C 3-20 heterocyclyl group, or a C 5 - 20 aryl group, preferably a Ci -7 alkyl group.
- ketal groups include, but are not limited to, -C(Me)(OMe) 2 , -C(Me)(OEt) 2 , -C(Me)(OMe)(OEt), -C(Et)(OMe) 2 , - C(Et)(OEt) 2 , and -C(Et)(OMe)(OEt).
- hemiacetal groups include, but are not limited to, -C(Me)(OH)(OMe), -C(Et)(OH)(OMe), -C(Me)(OH)(OEt), and -C(Et)(OH)(OEt).
- Oxo (keto, -one): 0.
- Imino (imine): NR, wherein R is an imino substituent, for example, hydrogen, C 1-7 alkyl group, a C 3-2 o heterocyclyl group, or a C 5-2 o aryl group, preferably hydrogen or a C 1-7 alkyl group.
- Carboxy (carboxylic acid): -C( 0)OH.
- Thiocarboxy (thiocarboxylic acid): -C( S)SH.
- Ester (carboxylate, carboxylic acid ester, oxycarbonyl): -C( 0)OR, wherein R is an ester substituent, for example, a Ci -7 alkyl group, a C3-20 heterocyclyl group, or a C 5 - 2 o aryl group, preferably a Ci -7 alkyl group.
- Acyloxy (reverse ester): -OC( 0)R, wherein R is an acyloxy substituent, for example, a Ci -7 alkyl group, a C 3-2 o heterocyclyl group, or a C 5-20 aryl group, preferably a C 1-7 alkyl group.
- R is an acyloxy substituent, for example, a Ci -7 alkyl group, a C 3-2 o heterocyclyl group, or a C 5-20 aryl group, preferably a C 1-7 alkyl group.
- Oxycarboyloxy: -OC( 0)OR, wherein R is an ester substituent, for example, a C 1-7 alkyl group, a C 3-20 heterocyclyl group, or a C 5 - 20 aryl group, preferably a Ci -7 alkyl group.
- R 1 and R 2 are independently amino substituents, for example, hydrogen, a Ci -7 alkyl group (also referred to as Ci -7 alkylamino or di-Ci -7 alkylamino), a C 3-20 heterocyclyl group, or a C 5 - 20 aryl group, preferably H or a Ci -7 alkyl group, or, in the case of a "cyclic" amino group, R 1 and R 2 , taken together with the nitrogen atom to which they are attached, form a heterocyclic ring having from 4 to 8 ring atoms.
- a Ci -7 alkyl group also referred to as Ci -7 alkylamino or di-Ci -7 alkylamino
- C 3-20 heterocyclyl group or a C 5 - 20 aryl group, preferably H or a Ci -7 alkyl group
- R 1 and R 2 taken together with the nitrogen atom to which they are attached, form a heterocyclic ring having from 4 to 8 ring atom
- Amino groups may be primary (-NH 2 ), secondary (-NHR 1 ), or tertiary (-NHR 1 R 2 ), and in cationic form, may be quaternary (- + NR 1 R 2 R 3 ).
- Examples of amino groups include, but are not limited to, -NH 2 , -N HCH 3 , -NHC(CH 3 ) 2 , -N(CH 3 ) 2 , -N(CH 2 CH 3 ) 2 , and -NHPh.
- Examples of cyclic amino groups include, but are not limited to, aziridino, azetidino, pyrrolidino, piperidino, piperazino, morpholino, and thiomorpholino.
- Acylamido (acylamino): -NR 1 C( 0)R 2 , wherein R 1 is an amide substituent, for example, hydrogen, a Ci_ 7 alkyl group, a C 3 -2 0 heterocyclyl group, or a C 5 - 2 o aryl group, preferably hydrogen or a C 1-7 alkyl group, and R 2 is an acyl substituent, for example, a C 1-7 alkyl group, a C 3-20 heterocyclyl group, or a C 5-20 aryl group, preferably hydrogen or a C 1-7 alkyl group.
- R 1 and R 2 may together form a cyclic structure, as in for example, succinimidyl, maleimidyl, and phthalimidyl:
- R 2 and R 3 are independently amino substituents, as defined for amino groups, and R 1 is a ureido substituent, for example, hydrogen, a Ci -7 alkyl group, a C 3-20 heterocyclyl group, or a C 5 - 20 aryl group, preferably hydrogen or a Ci -7 alkyl group.
- ureido groups include, but are not limited to, -NHCONH 2 , - NHCONHMe, -NHCONHEt, -NHCONMe 2 , -NHCONEt 2 , -NMeCONH 2 , -NMeCONHMe, -NMeCONHEt, -NMeCONMe 2 , and -NMeCONEt 2 .
- R is an amidine substituent, for example, hydrogen, a C 1-7 alkyl group, a C 3-2 o heterocyclyl group, or a C 5-2 o aryl group, preferably H or a C 1 -7 alkyl group.
- amidine groups include, but are not limited to,
- Ci -7 alkylthio groups include, but are not limited to, -SCH 3 and -SCH 2 CH 3 .
- Disulfide -SS-R, wherein R is a disulfide substituent, for example, a Ci -7 alkyl group, a C 3- 20 heterocyclyl group, or a C 5 - 2 o aryl group, preferably a Ci -7 alkyl group (also referred to herein as Ci -7 alkyl disulfide).
- R is a disulfide substituent, for example, a Ci -7 alkyl group, a C 3- 20 heterocyclyl group, or a C 5 - 2 o aryl group, preferably a Ci -7 alkyl group (also referred to herein as Ci -7 alkyl disulfide).
- Ci -7 alkyl disulfide groups include, but are not limited to, -SSCH 3 and -SSCH 2 CH 3 .
- Sulfine (sulfinyl, sulfoxide): -S( 0)R, wherein R is a sulfine substituent, for example, a Ci -7 alkyl group, a C 3-2 o heterocyclyl group, or a C 5-2 o aryl group, preferably a C 1-7 alkyl group.
- R is a sulfine substituent, for example, a Ci -7 alkyl group, a C 3-2 o heterocyclyl group, or a C 5-2 o aryl group, preferably a C 1-7 alkyl group.
- R is a sulfinate substituent, for example, a C 1 -7 alkyl group, a C 3-2 o heterocyclyl group, or a C 5-2 o aryl group, preferably a C 1-7 alkyl group.
- Sulfonate (sulfonic acid ester): -S( 0) 2 OR, wherein R is a sulfonate substituent, for example, a Ci -7 alkyl group, a C 3-2 o heterocyclyl group, or a C 5 - 2 o aryl group, preferably a
- R is a sulfinyloxy substituent, for example, a Ci -7 alkyl group, a C 3-2 o heterocyclyl group, or a C 5 - 2 o aryl group, preferably a Ci -7 alkyl group.
- R is a sulfonyloxy substituent, for example, a Ci_ 7 alkyl group, a C 3 - 2 o heterocyclyl group, or a C 5 - 2 o aryl group, preferably a Ci -7 alkyl group.
- R is a sulfate substituent, for example, a C 1-7 alkyl group, a C 3-20 heterocyclyl group, or a C 5-20 aryl group, preferably a C 1 -7 alkyl group.
- R 1 and R 2 are independently amino substituents, as defined for amino groups.
- R 1 and R 2 are independently amino substituents, as defined for amino groups.
- R 1 is an amino substituent, as defined for amino groups.
- R 1 is an amino substituent, as defined for amino groups
- R is a sulfonamino substituent, for example, a C 1-7 alkyl group, a C 3-20 heterocyclyl group, or a C 5-20 aryl group, preferably a C 1-7 alkyl group.
- R 1 is an amino substituent, as defined for amino groups
- R is a sulfinamino substituent, for example, a Ci -7 alkyl group, a C 3-20 heterocyclyl group, or a C 5 - 2 o aryl group, preferably a Ci -7 alkyl group.
- R is a phosphino substituent, for example, -H, a Ci -7 alkyl group, a C3-20 heterocyclyl group, or a C 5 -2o aryl group, preferably -H, a Ci -7 alkyl group, or a C5-20 aryl group.
- Examples of phosphino groups include, but are not limited to, -PH 2 , -P(CH 3 ) 2 , -P(CH 2 CH 3 )2, -P(t-Bu) 2 , and -P(Ph) 2 .
- R is a phosphinyl substituent, for example, a C 1-7 alkyl group, a C 3-20 heterocyclyl group, or a C 5-20 aryl group, preferably a C 1-7 alkyl group or a C 5-20 aryl group.
- R is a phosphonate substituent, for example, -H, a Ci -7 alkyl group, a C 3-20 heterocyclyl group, or a C 5 - 2 o aryl group, preferably -H, a Ci -7 alkyl group, or a C 5 - 20 aryl group.
- Phosphate (phosphonooxy ester): -OP( 0)(OR) 2 , where R is a phosphate substituent, for example, -H, a Ci -7 alkyl group, a C 3-20 heterocyclyl group, or a C 5 - 2 o aryl group, preferably - H, a C 1-7 alkyl group, or a C 5-20 aryl group.
- R is a phosphate substituent, for example, -H, a Ci -7 alkyl group, a C 3-20 heterocyclyl group, or a C 5 - 2 o aryl group, preferably - H, a C 1-7 alkyl group, or a C 5-20 aryl group.
- Phosphorous acid -OP(OH) 2 .
- Phosphite -OP(OR) 2 , where R is a phosphite substituent, for example, -H, a Ci -7 alkyl group, a C 3-20 heterocyclyl group, or a C 5 - 20 aryl group, preferably -H, a Ci -7 alkyl group, or a C 5 - 20 aryl group.
- phosphite groups include, but are not limited to, -OP(OCH 3 ) 2 , -OP(OCH 2 CH 3 ) 2 , -OP(0-t-Bu) 2 , and -OP(OPh) 2 .
- Phosphoramidite -OP(OR 1 )-NR 2 2 , where R 1 and R 2 are phosphoramidite substituents, for example, -H , a (optionally substituted) Ci -7 alkyl group, a C3-2 0 heterocyclyl group, or a C5-2 0 aryl group, preferably -H, a Ci -7 alkyl group, or a C 5 -2o aryl group.
- R 1 and R 2 are phosphoramidite substituents, for example, -H , a (optionally substituted) Ci -7 alkyl group, a C3-2 0 heterocyclyl group, or a C5-2 0 aryl group, preferably -H, a Ci -7 alkyl group, or a C 5 -2o aryl group.
- phosphoramidite groups include, but are not limited to, -OP(OCH 2 CH 3 )-N(CI-l3)2,
- substituents for example, -H, a (optionally substituted) C 1-7 alkyl group, a C 3-20 heterocyclyl group, or a C 5-20 aryl group, preferably -H, a C 1-7 alkyl group, or a C 5-20 aryl group.
- C 3- i 2 alkylene refers to a bidentate moiety obtained by removing two hydrogen atoms, either both from the same carbon atom, or one from each of two different carbon atoms, of a hydrocarbon compound having from 3 to 12 carbon atoms (unless otherwise specified), which may be aliphatic or alicyclic, and which may be saturated, partially unsaturated, or fully unsaturated.
- alkylene includes the sub-classes alkenylene, alkynylene, cycloalkylene, etc., discussed below.
- linear saturated C 3- i 2 alkylene groups include, but are not limited to, -(CH 2 ) n - where n is an integer from 3 to 12, for example, -CH 2 CH 2 CH 2 - (propylene),
- branched saturated C 3-12 alkylene groups include, but are not limited to, -CH(CH 3 )CH 2 -, -CH(CH 3 )CH 2 CH 2 -, -CH(CH 3 )CH 2 CH 2 CH 2 -, -CH 2 CH(CH 3 )CH 2 -,
- C 3- i 2 cycloalkylenes examples include, but are not limited to, cyclopentylene (e.g. cyclopent-1 ,3-ylene), and cyclohexylene
- C 3-12 cycloalkylenes examples include, but are not limited to, cyclopentenylene (e.g. 4-cyclopenten-1 ,3-ylene), cyclohexenylene (e.g. 2-cyclohexen-1 ,4-ylene; 3-cyclohexen-1 ,2-ylene; 2,5-cyclohexadien- 1 ,4-ylene).
- cyclopentenylene e.g. 4-cyclopenten-1 ,3-ylene
- cyclohexenylene e.g. 2-cyclohexen-1 ,4-ylene; 3-cyclohexen-1 ,2-ylene; 2,5-cyclohexadien- 1 ,4-ylene.
- Oxygen protecting group refers to a moiety which masks a hydroxy group, and these are well known in the art. A large number of suitable groups are described on pages 23 to 200 of Greene, T.W. and Wuts, G.M., Protective Groups in Organic Synthesis, 3 rd Edition, John Wiley & Sons, Inc., 1999, which is incorporated herein by reference. Classes of particular interest include silyl ethers (e.g. TMS, TBDMS), substituted methyl ethers (e.g. THP) and esters (e.g. acetate).
- silyl ethers e.g. TMS, TBDMS
- substituted methyl ethers e.g. THP
- esters e.g. acetate
- Carbamate nitrogen protecting group pertains to a moiety which masks the nitrogen in the imine bond, and these are well known in the art. These groups have the following structure:
- R' 10 is R as defined above.
- R' 10 is R as defined above.
- suitable groups are described on pages 503 to 549 of Greene, T.W. and Wuts, G.M., Protective Groups in Organic
- Hemi-aminal nitrogen protecting group pertains to a group having the following structure: wherein R' 10 is R as defined above.
- R' 10 is R as defined above.
- suitable groups are described on pages 633 to 647 as amide protecting groups of Greene, T.W. and Wuts, G.M., Protective Groups in Organic Synthesis, 3 rd Edition, John Wiley & Sons, Inc., 1999, which is incorporated herein by reference.
- the present invention provides Conjugates comprising a PBD dimer connected to a Ligand unit via a Linker Unit.
- the Linker unit includes a Stretcher unit (A), a Specificity unit (L 1 ), and a Spacer unit (L 2 ).
- the Linker unit is connected at one end to the Ligand unit and at the other end to the PBD dimer compound.
- L is the Ligand unit
- a 1 or 2
- L 1 - is a Specificity unit
- s is an integer ranging from 1 to 12,
- y 0, 1 or 2;
- -D is an PBD dimer
- p is from 1 to 20.
- L is the Ligand unit
- -A 1 - is a Stretcher unit linked to a Stretcher unit (L 2 ),
- a 1 or 2
- L 1 - is a Specificity unit linked to a Stretcher unit (L 2 ),
- s is an integer ranging from 0 to 12,
- y 0, 1 or 2;
- -D is a PBD dimer
- p is from 1 to 20.
- the Conjugate has the formula: wherein L, A 1 , a, L 1 , s, L 2 , D and p are as described above.
- the Ligand unit (L) is a Cell Binding Agent (CBA) that specifically binds to a target molecule on the surface of a target cell.
- CBA Cell Binding Agent
- CBA is the
- L 1 is a Specificity unit
- a 1 is a Stretcher unit connecting L 1 to the Cell Binding Agent
- L 2 optional.
- the Ligand unit (L) is a Cell Binding Agent (CBA) that specifically binds to a target molecule on the surface of a target cell.
- CBA Cell Binding Agent
- CBA is the Cell Binding Agent
- L 1 is a Specificity unit
- a 1 is a Stretcher unit connecting L 1 to the Cell Binding Agent
- L 2 is a Spacer unit which is a covalent bond or a self-immolative group
- a is 1 or 2
- s is 0, 1 or 2
- y is 0 or 1 or 2.
- L 1 can be a cleavable Specificity unit, and may be referred to as a "trigger" that when cleaved activates a self-immolative group (or self- immolative groups) L 2 , when a self-immolative group(s) is present.
- the Specificity unit L 1 is cleaved, or the linkage (i.e., the covalent bond) between L 1 and L 2 is cleaved, the self-immolative group releases the Drug unit (D).
- the Ligand unit (L) is a Cell Binding Agent (CBA) that specifically binds to a target molecule on the surface of a target cell.
- CBA Cell Binding Agent
- CBA is the Cell Binding Agent
- L 1 is a Specificity unit connected to L 2
- a 1 is a Stretcher unit connecting L 2 to the Cell Binding Agent
- L 2 is a self-immolative group
- a is 1 or 2
- s is 1 or 2
- y is 1 or 2.
- L 1 and L 2 can vary widely. These groups are chosen on the basis of their characteristics, which may be dictated in part, by the conditions at the site to which the conjugate is delivered.
- the Specificity unit L 1 is cleavable, the structure and/or sequence of L 1 is selected such that it is cleaved by the action of enzymes present at the target site (e.g., the target cell).
- L 1 units that are cleavable by changes in pH (e.g. acid or base labile), temperature or upon irradiation (e.g. photolabile) may also be used.
- L 1 units that are cleavable under reducing or oxidising conditions may also find use in the Conjugates.
- L 1 may comprise one amino acid or a contiguous sequence of amino acids.
- the amino acid sequence may be the target substrate for an enzyme.
- L 1 is cleavable by the action of an enzyme.
- the enzyme is an esterase or a peptidase.
- L 1 may be cleaved by a lysosomal protease, such as a cathepsin.
- the enzyme cleaves the bond between L 1 and L 2 , whereby the self-immolative group(s) release the Drug unit.
- L 1 and L 2 where present, may be connected by a bond selected from:
- An amino group of L 1 that connects to L 2 may be the N-terminus of an amino acid or may be derived from an amino group of an amino acid side chain, for example a lysine amino acid side chain.
- a carboxyl group of L 1 that connects to L 2 may be the C-terminus of an amino acid or may be derived from a carboxyl group of an amino acid side chain, for example a glutamic acid amino acid side chain.
- a hydroxy group of L 1 that connects to L 2 may be derived from a hydroxy group of an amino acid side chain, for example a serine amino acid side chain.
- the phenylene ring is optionally substituted with one, two or three substituents as described herein.
- Y is NH
- n is 0 or 1 .
- n is 0.
- the self-immolative group may be referred to as a
- PABC p-aminobenzylcarbonyl linker
- the Drug unit i.e., the asymmetric PBD
- L * is the activated form of the remaining portion of the linker and the released Drug unit is not shown.
- Each phenylene ring is optionally substituted with one, two or three substituents as described herein.
- the phenylene ring having the Y substituent is optionally substituted phenylene ring not having the Y substituent is unsubstituted.
- -C 0)0- and L 2 together form a group selected from:
- E is O, S or NR
- D is N, CH, or CR
- F is N, CH, or CR.
- D is N.
- D is CH.
- E is O or S.
- F is CH.
- the covalent bond between L 1 and L 2 is a cathepsin labile (e.g., cleavable) bond.
- L 1 comprises a dipeptide.
- the amino acids in the dipeptide may be any combination of natural amino acids and non-natural amino acids.
- the dipeptide comprises natural amino acids.
- the linker is a cathepsin labile linker
- the dipeptide is the site of action for cathepsin-mediated cleavage.
- the dipeptide then is a recognition site for cathepsin.
- the group -X X 2 - in dipeptide is selected from:
- Cit is citrulline.
- -NH- is the amino group of Xi
- CO is the carbonyl group of X 2 .
- the group -XrX 2 - in dipeptide, -NH-X X 2 -CO-, is selected from: -Phe-Lys-,
- the group -X ! -X 2 - in dipeptide, -NH-XrX 2 -CO-, is -Phe-Lys-, Val-Cit or -Val-Ala-.
- Other dipeptide combinations of interest include:
- the amino acid side chain is chemically protected, where appropriate.
- the side chain protecting group may be a group as discussed below.
- Protected amino acid sequences are cleavable by enzymes. For example, a dipeptide sequence comprising a Boc side chain-protected Lys residue is cleavable by cathepsin.
- Lys Boc, Z-CI, Fmoc, Z;
- -X 2 - is connected indirectly to the Drug unit.
- the Spacer unit L 2 is present.
- the dipeptide is used in combination with a self-immolative group(s) (the Spacer unit).
- the self-immolative group(s) may be connected to -X 2 -.
- -X 2 - is connected directly to the self-immolative group.
- -X 2 - is connected to the group Y of the self-immolative group.
- the group -X 2 -CO- is connected to Y, where Y is NH.
- -X is connected directly to A 1 .
- -X-p is connected directly to A 1 .
- the group NH-X (the amino terminus of Xi) is connected to A 1 .
- a 1 may comprise the functionality -CO- thereby to form an amide link with -X .
- the PABC group is connected directly to the Drug unit.
- the self- immolative group and the dipeptide together form the group -Phe-Lys-PABC-, which is illustrated below:
- the asterisk indicates the point of attachment to the Drug unit
- the wavy line indicates the point of attachment to the remaining portion of L 1 or the point of attachment to A 1 .
- the wavy line indicates the point of attachment to A 1 .
- the self-immolative group and the dipeptide together form the group -Val-Ala- PABC-, which is illustrated below:
- the asterisk indicates the point of attachment to the Drug unit
- the wavy line indicates the point of attachment to A 1
- Y is a covalent bond or a functional group
- E is a group that is susceptible to cleavage thereby to activate a self-immolative group.
- E is selected such that the group is susceptible to cleavage, e.g., by light or by the action of an enzyme.
- E may be -N0 2 or glucuronic acid (e.g., ⁇ -glucuronic acid).
- the former may be susceptible to the action of a nitroreductase, the latter to the action of a
- the group Y may be a covalent bond.
- the group Y may be a functional group selected from:
- the group Y is preferably -NH-, -CH 2 -, -0-, and -S-
- Y is a covalent bond or a functional group and E is glucuronic acid (e.g., ⁇ -glucuronic acid).
- Y is preferably a functional group selected from -NH-.
- Y is a covalent bond or a functional group and E is glucuronic acid (e.g., ⁇ -glucuronic acid).
- Y is preferably a functional group selected from -NH-, -CH 2 -, -0-, and -S-.
- Y is a functional group as set forth above, the functional group is linked to an amino acid, and the amino acid is linked to the Stretcher unit A 1 .
- amino acid is ⁇ -alanine. In such an embodiment, the amino acid is equivalently considered part of the Stretcher unit.
- the Specificity unit L 1 and the Ligand unit are indirectly connected via the Stretcher unit.
- L 1 and A 1 may be connected by a bond selected from:
- the group A 1 is:
- n is 0 to 6. In one embodiment, n is 5.
- n is 0 to 6. In one embodiment, n is 5.
- the group A 1 is:
- n is 0 or 1
- m is 0 to 30.
- n is 1 and m is 0 to 10, 1 to 8, preferably 4 to 8, most preferably 4 or 8.
- the group A 1 is:
- n 0 or 1
- m 0 to 30.
- the group 1 is:
- n is 0 to 6. In one embodiment, n is 5.
- the group A 1 is:
- n is 0 to 6. In one embodiment, n is 5.
- the group A 1 is:
- n is 0 or 1
- m is 0 to 30.
- n is 1 and m is 0 to 10, 1 to 8, preferably 4 to 8, most preferably 4 or 8.
- the group A 1 is:
- n is 0 or 1
- m is 0 to 30.
- n is 1 and m is 0 to 10, 1 to 8, preferably 4 to 8, most preferably 4 or 8.
- connection between the Ligand unit and A 1 is through a thiol residue of the Ligand unit and a maleimide group of A 1 . In one embodiment, the connection between the Ligand unit and A 1 is:
- the S atom is typically derived from the Ligand unit.
- the maleimide-derived group is replaced with the group:
- the maleimide-derived group is replaced with a group, which optionally together with a Ligand unit (e.g., a Cell Binding Agent), is selected from:
- a Ligand unit e.g., a Cell Binding Agent
- the maleimide-derived group is replaced with a group, which optionally together with the Ligand unit, is s
- the wavy line indicates either the point of attachment to the Ligand unit or the bond to the remaining portion of the A 1 group
- the asterisk indicates the other of the point of attachment to the Ligand unit or the bond to the remaining portion of the A 1 group.
- the Stretcher unit A 1 is present, the Specificity unit L 1 is present and Spacer unit L 2 is absent.
- L 1 and the Drug unit are directly connected via a bond.
- L 2 is a bond.
- L 1 and D may be connected by a bond selected from:
- L 1 and D are preferably connected by a bond selected from:
- L 1 comprises a dipeptide and one end of the dipeptide is linked to D.
- the amino acids in the dipeptide may be any combination of natural amino acids and non-natural amino acids.
- the dipeptide comprises natural amino acids.
- the linker is a cathepsin labile linker
- the dipeptide is the site of action for cathepsin-mediated cleavage. The dipeptide then is a recognition site for cathepsin.
- the group -X X 2 - in dipeptide, - ⁇ -XrX ⁇ CO- is selected from:
- Cit is citrulline.
- -NH- is the amino group of Xi
- CO is the carbonyl group of X 2 .
- the group -XrX 2 - in dipeptide, -NH-XrX 2 -CO-, is selected from:
- the group -Xi-X 2 - in dipeptide, - ⁇ -X X ⁇ CO-, is -Phe-Lys- or -Val-Ala-.
- dipeptide combinations of interest include:
- dipeptide combinations may be used, including those described above.
- L 1 -D is:
- the wavy line indicates the point of attachment to the remaining portion of L 1 or the point of attachment to A 1 .
- the wavy line indicates the point of attachment to A 1 .
- the dipeptide is valine-alanine and L 1 -D is:
- the dipeptide is phenylalnine-lysine and L 1 -D is:
- the dipeptide is valine-citrulline.
- the groups A 1 -L 1 are:
- n 0 to 6. In one embodiment, n is 5. In one embodiment, the groups A 1 -L 1 are:
- n is 0 to 6. In one embodiment, n is 5.
- the groups A 1 -L 1 are:
- n is 0 or 1
- m is 0 to 30.
- n is 1 and m is 0 to 10, 1 to 8, preferably 4 to 8, most preferably 4 or 8.
- the groups A 1 -L 1 are:
- n is 0 or 1
- m is 0 to 30.
- n is 1 and m is 0 to 10, 1 to 7, preferably 3 to 7, most preferably 3 or 7.
- the groups A 1 are identical to each other. In one embodiment, the groups A 1
- n is 0 to 6. In one embodiment, n is 5. In one embodiment, the groups A
- n is 0 to 6. In one embodiment, n is 5.
- n is 0 or 1
- m is 0 to 30.
- n is 1 and m is 0 to 10, 1 to 8, preferably 4 to 8, most preferably 4 or 8.
- n is 0 or 1
- m is 0 to 30.
- n is 1 and m is 0 to 10, 1 to 8, preferably 4 to 8, most preferably 4 or 8.
- n 0 to 6. In one embodiment, n is 5.
- the group L-A 1 -L 1 are:
- n 0 to 6. In one embodiment, n is 5.
- the groups L-A 1 -L 1 are:
- n is 0 or 1
- m is 0 to 30.
- n is 1 and m is 0 to 10, 1 to 8, preferably 4 to 8, most preferably 4 or 8.
- the groups L-A 1 -L 1 are:
- n is 0 to 6. In one embodiment, n is 5.
- n is 0 to 6. In one embodiment, n is 5.
- the groups L-A 1 are identical to the groups L-A 1
- n is 0 or 1
- m is 0 to 30.
- n is 1 and m is 0 to 10, 1 to 8, preferably 4 to 8, most preferably 4 or 8.
- n is 0 or 1
- m is 0 to 30.
- n is 1 and m is 0 to 10, 1 to 8, preferably 4 to 8, most preferably 4 or 8.
- the Stretcher unit is an acetamide unit, having the formula:
- Stretcher unit, L 1 or D, and the wavy line indicates the point of attachment to the Ligand unit.
- Linker-Drug compounds are provided for conjugation to a Ligand unit.
- the Linker-Drug compounds are designed for connection to a Cell Binding Agent.
- G 1 is a Stretcher group (A 1 ) to form a connection to a Ligand unit
- L 1 is a Specificity unit
- the Drug Linker compound has the formula:
- G 1 -L 1 -L 2 - where the asterisk indicates the point of attachment to the Drug unit, G 1 is a Stretcher unit (A 1 ) to form a connection to a Ligand unit, L 1 is a Specificity unit, L 2 (a Spacer unit) is a covalent bond or a self-immolative group(s).
- L 1 and L 2 are as defined above. References to connection to A 1 can be construed here as referring to a connection to G 1 .
- L 1 comprises an amino acid
- the side chain of that amino acid may be protected. Any suitable protecting group may be used.
- the side chain protecting groups are removable with other protecting groups in the compound, where present.
- the protecting groups may be orthogonal to other protecting groups in the molecule, where present.
- Suitable protecting groups for amino acid side chains include those groups described in the Novabiochem Catalog 2006/2007. Protecting groups for use in a cathepsin labile linker are also discussed in Dubowchik et al.
- the group L 1 includes a Lys amino acid residue.
- the side chain of this amino acid may be protected with a Boc or Alloc protected group. A Boc protecting group is most preferred.
- the functional group G 1 forms a connecting group upon reaction with a Ligand unit (e.g., a cell binding agent.
- a Ligand unit e.g., a cell binding agent.
- the functional group G 1 is or comprises an amino, carboxylic acid, hydroxy, thiol, or maleimide group for reaction with an appropriate group on the Ligand unit.
- G 1 comprises a maleimide group.
- the group G 1 is an alkyl maleimide group. This group is suitable for reaction with thiol groups, particularly cysteine thiol groups, present in the cell binding agent, for example present in an antibody. In one embodiment, the group G 1 is:
- n is 0 to 6. In one embodiment, n is 5.
- the group G 1 is:
- n 0 to 6. In one embodiment, n is 5. In one embodiment, the grou G 1 is:
- n is 0 or 1
- m is 0 to 30.
- n is 1 and m is 0 to 10, 1 to 2, preferably 4 to 8, and most preferably 4 or 8.
- the group G 1 is:
- n is 0 or 1
- m is 0 to 30.
- n is 1 and m is 0 to 10, 1 to 8, preferably 4 to 8, and most preferably 4 or 8.
- the group G 1 is the group G 1
- n is 0 to 6. In one embodiment, n is 5.
- the group G 1 is:
- n is 0 to 6. In one embodiment, n is 5.
- the group G 1 is:
- n is 0 or 1
- m is 0 to 30.
- n is 1 and m is 0 to 10, 1 to 2, preferably 4 to 8, and most preferably 4 or 8.
- the group G 1 is:
- n is 0 or 1
- m is 0 to 30.
- n is 1 and m is 0 to 10, 1 to 8, preferably 4 to 8, and most preferably 4 or 8.
- the maleimide-derived group is replaced with the group:
- the maleimide group is replaced with a group selected from:
- L 1 is present, and G 1 is -NH 2 , -NHMe, -COOH, -OH or -SH. In one embodiment, where L 1 is present, G 1 is -NH 2 or -NHMe. Either group may be the N-terminal of an L 1 amino acid sequence.
- L 1 is present and G 1 is -NH 2 , and L 1 is an amino acid sequence -X X 2 - , as defined above.
- L 1 is present and G 1 is COOH. This group may be the C-terminal of an L 1 amino acid sequence. In one embodiment, L 1 is present and G 1 is OH.
- L 1 is present and G 1 is SH.
- the group G 1 may be convertible from one functional group to another. In one
- L 1 is present and G 1 is -NH 2 .
- This group is convertable to another group G 1 comprising a maleimide group.
- the group -NH 2 may be reacted with an acids or an activated acid (e.g., N-succinimide forms) of those G 1 groups comprising maleimide shown above.
- the group G 1 may therefore be converted to a functional group that is more appropriate for reaction with a Ligand unit.
- L 1 is present and G 1 is -NH 2 , -NHMe, -COOH, -OH or -SH.
- these groups are provided in a chemically protected form.
- the chemically protected form is therefore a precursor to the linker that is provided with a functional group.
- G 1 is -NH 2 in a chemically protected form.
- the group may be protected with a carbamate protecting group.
- the carbamate protecting group may be selected from the group consisting of:
- G 1 is -NH 2 , it is protected with an Alloc or Fmoc group.
- G 1 is -NH 2
- it is protected with an Fmoc group.
- the protecting group is the same as the carbamate protecting group of the capping group.
- the protecting group is not the same as the carbamate protecting group of the capping group. In this embodiment, it is preferred that the protecting group is removable under conditions that do not remove the carbamate protecting group of the capping group.
- the chemical protecting group may be removed to provide a functional group to form a connection to a Ligand unit. Optionally, this functional group may then be converted to another functional group as described above.
- the active group is an amine.
- This amine is preferably the N-terminal amine of a peptide, and may be the N-terminal amine of the preferred dipeptides of the invention.
- the active group may be reacted to yield the functional group that is intended to form a connection to a Ligand unit.
- the Linker unit is a precursor to the Linker uit having an active group.
- the Linker unit comprises the active group, which is protected by way of a protecting group. The protecting group may be removed to provide the Linker unit having an active group.
- the protecting group may be an amine protecting group, such as those described in Green and Wuts.
- the protecting group is preferably orthogonal to other protecting groups, where present, in the Linker unit.
- the protecting group is orthogonal to the capping group.
- the active group protecting group is removable whilst retaining the capping group.
- the protecting group and the capping group is removable under the same conditions as those used to remove the capping group.
- the Linker unit is:
- the asterisk indicates the point of attachment to the Drug unit
- the wavy line indicates the point of attachment to the remaining portion of the Linker unit, as applicable or the point of attachment to G 1 .
- the wavy line indicates the point of attachment to G 1 .
- the Linker unit is:
- the Ligand Unit may be of any kind, and include a protein, polypeptide, peptide and a non- peptidic agent that specifically binds to a target molecule.
- the Ligand unit may be a protein, polypeptide or peptide.
- the Ligand unit may be a cyclic polypeptide.
- These Ligand units can include antibodies or a fragment of an antibody that contains at least one target molecule-binding site, lymphokines, hormones, growth factors, or any other cell binding molecule or substance that can specifically bind to a target.
- the terms "specifically binds" and “specific binding” refer to the binding of an antibody or other protein, polypeptide or peptide to a predetermined molecule (e.g., an antigen).
- the antibody or other molecule binds with an affinity of at least about 1x10 7 M "1 , and binds to the predetermined molecule with an affinity that is at least two-fold greater than its affinity for binding to a non-specific molecule (e.g., BSA, casein) other than the predetermined molecule or a closely-related molecule.
- a non-specific molecule e.g., BSA, casein
- Ligand units include those agents described for use in WO 2007/085930, which is incorporated herein.
- the Ligand unit is a Cell Binding Agent that binds to an extracellular target on a cell.
- a Cell Binding Agent can be a protein, polypeptide, peptide or a non- peptidic agent.
- the Cell Binding Agent may be a protein, polypeptide or peptide.
- the Cell Binding Agent may be a cyclic polypeptide.
- the Cell Binding Agent also may be antibody or an antigen-binding fragment of an antibody.
- the present invention provides an antibody-drug conjugate (ADC).
- ADC antibody-drug conjugate
- the antibody is a monoclonal antibody; chimeric antibody; humanized antibody; fully human antibody; or a single chain antibody.
- the antibody is a fragment of one of these antibodies having biological activity. Examples of such fragments include Fab, Fab', F(ab') 2 and Fv fragments.
- the antibody may be a diabody, a domain antibody (DAB) or a single chain antibody.
- DAB domain antibody
- the antibody is a monoclonal antibody.
- Antibodies for use in the present invention include those antibodies described in
- WO 2005/082023 which is incorporated herein.
- Particularly preferred are those antibodies for tumour-associated antigens.
- those antigens known in the art include, but are not limited to, those tumour-associated antigens set out in WO 2005/082023. See, for instance, pages 41 -55.
- the conjugates are designed to target tumour cells via their cell surface antigens.
- the antigens may be cell surface antigens which are either over- expressed or expressed at abnormal times or cell types.
- the target antigen is expressed only on proliferative cells (preferably tumour cells); however this is rarely observed in practice.
- target antigens are usually selected on the basis of differential expression between proliferative and healthy tissue.
- Antibodies have been raised to target specific tumour related antigens including:
- the Ligand unit is connected to the Linker unit. In one embodiment, the Ligand unit is connected to A, where present, of the Linker unit.
- connection between the Ligand unit and the Linker unit is through a thioether bond.
- connection between the Ligand unit and the Linker unit is through a disulfide bond.
- connection between the Ligand unit and the Linker unit is through an amide bond.
- connection between the Ligand unit and the Linker unit is through an ester bond. In one embodiment, the connection between the Ligand unit and the Linker is formed between a thiol group of a cysteine residue of the Ligand unit and a maleimide group of the Linker unit.
- the cysteine residues of the Ligand unit may be available for reaction with the functional group of the Linker unit to form a connection.
- the thiol groups of the antibody may participate in interchain disulfide bonds. These interchain bonds may be converted to free thiol groups by e.g. treatment of the antibody with DTT prior to reaction with the functional group of the Linker unit.
- the cysteine residue is an introduced into the heavy or light chain of an antibody.
- Positions for cysteine insertion by substitution in antibody heavy or light chains include those described in Published U.S. Application No. 2007-0092940 and International Patent Publication WO2008070593, which are incorporated herein.
- the compounds of the present invention may be used in a method of therapy. Also provided is a method of treatment, comprising administering to a subject in need of treatment a therapeutically-effective amount of a compound of formula I.
- a method of treatment comprising administering to a subject in need of treatment a therapeutically-effective amount of a compound of formula I.
- terapéuticaally effective amount is an amount sufficient to show benefit to a patient. Such benefit may be at least amelioration of at least one symptom.
- the actual amount administered, and rate and time-course of administration, will depend on the nature and severity of what is being treated. Prescription of treatment, e.g. decisions on dosage, is within the responsibility of general practitioners and other medical doctors.
- a compound may be administered alone or in combination with other treatments, either simultaneously or sequentially dependent upon the condition to be treated.
- treatments and therapies include, but are not limited to, chemotherapy (the administration of active agents, including, e.g. drugs; surgery; and radiation therapy.
- compositions according to the present invention may comprise, in addition to the active ingredient, i.e. a compound of formula I, a pharmaceutically acceptable excipient, carrier, buffer, stabiliser or other materials well known to those skilled in the art. Such materials should be non-toxic and should not interfere with the efficacy of the active ingredient.
- a pharmaceutically acceptable excipient e.g. cutaneous, subcutaneous, or intravenous.
- compositions for oral administration may be in tablet, capsule, powder or liquid form.
- a tablet may comprise a solid carrier or an adjuvant.
- Liquid pharmaceutical compositions generally comprise a liquid carrier such as water, petroleum, animal or vegetable oils, mineral oil or synthetic oil. Physiological saline solution, dextrose or other saccharide solution or glycols such as ethylene glycol, propylene glycol or polyethylene glycol may be included.
- a capsule may comprise a solid carrier such a gelatin.
- the active ingredient will be in the form of a parenterally acceptable aqueous solution which is pyrogen-free and has suitable pH, isotonicity and stability.
- a parenterally acceptable aqueous solution which is pyrogen-free and has suitable pH, isotonicity and stability.
- isotonic vehicles such as Sodium Chloride Injection, Ringer's Injection, Lactated Ringer's Injection.
- Preservatives, stabilisers, buffers, antioxidants and/or other additives may be included, as required.
- the Compounds and Conjugates can be used to treat proliferative disease and
- autoimmune disease pertains to an unwanted or uncontrolled cellular proliferation of excessive or abnormal cells which is undesired, such as, neoplastic or hyperplastic growth, whether in vitro or in vivo.
- proliferative conditions include, but are not limited to, benign, pre-malignant, and malignant cellular proliferation, including but not limited to, neoplasms and tumours (e.g., histocytoma, glioma, astrocyoma, osteoma), cancers (e.g. lung cancer, small cell lung cancer, gastrointestinal cancer, bowel cancer, colon cancer, breast carinoma, ovarian carcinoma, prostate cancer, testicular cancer, liver cancer, kidney cancer, bladder cancer, pancreatic cancer, brain cancer, sarcoma, osteosarcoma, Kaposi's sarcoma, melanoma), leukemias, psoriasis, bone diseases, fibroproliferative disorders (e.g.
- cancers of interest include, but are not limited to, haematological; malignancies such as leukemias and lymphomas, such as non-Hodgkin lymphoma, and subtypes such as DLBCL, marginal zone, mantle zone, and follicular, Hodgkin lymphoma, AML, and other cancers of B or T cell origin.
- autoimmune disease examples include the following: rheumatoid arthritis, autoimmune demyelinative diseases (e.g., multiple sclerosis, allergic encephalomyelitis), psoriatic arthritis, endocrine ophthalmopathy, uveoretinitis, systemic lupus erythematosus, myasthenia gravis, Graves' disease, glomerulonephritis, autoimmune hepatological disorder, inflammatory bowel disease (e.g., Crohn's disease), anaphylaxis, allergic reaction, Sjogren's syndrome, type I diabetes mellitus, primary biliary cirrhosis, Wegener's granulomatosis, fibromyalgia, polymyositis, dermatomyositis, multiple endocrine failure, Schmidt's syndrome, autoimmune uveitis, Addison's disease, adrenalitis, thyroiditis, Hashimoto's thyroiditis, autoimmune thyroid disease,
- erythematosus hypoparathyroidism, Dressler's syndrome, autoimmune thrombocytopenia, idiopathic thrombocytopenic purpura, hemolytic anemia, pemphigus vulgaris, pemphigus, dermatitis herpetiformis, alopecia areata, pemphigoid, scleroderma, progressive systemic sclerosis, CREST syndrome (calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, and telangiectasia), male and female autoimmune infertility, ankylosing spondolytis, ulcerative colitis, mixed connective tissue disease, polyarteritis nedosa, systemic necrotizing vasculitis, atopic dermatitis, atopic rhinitis, Goodpasture's syndrome, Chagas' disease, sarcoidosis, rheumatic fever, asthma, recurrent abortion, anti
- granulomatosis granulomatosis, Behcet's disease, Caplan's syndrome, Kawasaki's disease, dengue, encephalomyelitis, endocarditis, endomyocardial fibrosis, endophthalmitis, erythema elevatum et diutinum, psoriasis, erythroblastosis fetalis, eosinophilic faciitis, Shulman's syndrome, Felty's syndrome, filariasis, cyclitis, chronic cyclitis, heterochronic cyclitis, Fuch's cyclitis, IgA nephropathy, Henoch-Schonlein purpura, graft versus host disease, transplantation rejection, cardiomyopathy, Eaton-Lambert syndrome, relapsing
- the autoimmune disease is a disorder of B lymphocytes (e.g., systemic lupus erythematosus, Goodpasture's syndrome, rheumatoid arthritis, and type I diabetes), Th1 -lymphocytes (e.g., rheumatoid arthritis, multiple sclerosis, psoriasis, Sjogren's syndrome, Hashimoto's thyroiditis, Graves' disease, primary biliary cirrhosis, Wegener's granulomatosis, tuberculosis, or graft versus host disease), or Th2-lymphocyt.es (e.g., atopic dermatitis, systemic lupus erythematosus, atopic asthma, rhinoconjunctivitis, allergic rhinitis, Omenn's syndrome, systemic sclerosis, or chronic graft versus host disease).
- B lymphocytes e.g., systemic lupus ery
- disorders involving dendritic cells involve disorders of Th1- lymphocytes or Th2-lymphocytes.
- the autoimmunie disorder is a T cell-mediated immunological disorder.
- the amount of the Conjugate administered ranges from about 0.01 to about 10 mg/kg per dose. In some embodiments, the amount of the Conjugate administered ranges from about 0.01 to about 5 mg/kg per dose. In some embodiments, the amount of the Conjugate administerd ranges from about 0.05 to about 5 mg/kg per dose. In some embodiments, the amount of the Conjugate administerd ranges from about 0.1 to about 5 mg/kg per dose. In some embodiments, the amount of the Conjugate administered ranges from about 0.1 to about 4 mg/kg per dose.
- the amount of the Conjugate administered ranges from about 0.05 to about 3 mg/kg per dose. In some embodiments, the amount of the Conjugate administered ranges from about 0.1 to about 3 mg/kg per dose. In some embodiments, the amount of the Conjugate administered ranges from about 0.1 to about 2 mg/kg per dose.
- a reference to carboxylic acid (-COOH) also includes the anionic (carboxylate) form (-COO " ), a salt or solvate thereof, as well as conventional protected forms.
- a reference to an amino group includes the protonated form (-N + HR 1 R 2 ), a salt or solvate of the amino group, for example, a hydrochloride salt, as well as conventional protected forms of an amino group.
- a reference to a hydroxyl group also includes the anionic form (-0 " ), a salt or solvate thereof, as well as conventional protected forms.
- a corresponding salt of the active compound for example, a pharmaceutically-acceptable salt.
- a pharmaceutically-acceptable salt examples are discussed in Berge, et ai, J. Pharm. Sci., 66, 1-19 (1977).
- a salt may be formed with a suitable cation.
- suitable inorganic cations include, but are not limited to, alkali metal ions such as Na + and K + , alkaline earth cations such as Ca 2+ and Mg 2+ , and other cations such as ⁇ 3 .
- Suitable organic cations include, but are not limited to, ammonium ion (i.e. NH 4 + ) and substituted ammonium ions (e.g. NH 3 R + , NH 2 R2 + , NHR 3 + , NR 4 + ).
- suitable substituted ammonium ions are those derived from: ethylamine,
- ethanolamine diethanolamine, piperazine, benzylamine, phenylbenzylamine, choline, meglumine, and tromethamine, as well as amino acids, such as lysine and arginine.
- amino acids such as lysine and arginine.
- An example of a common quaternary ammonium ion is N(CH 3 ) 4 + .
- a salt may be formed with a suitable anion.
- suitable inorganic anions include, but are not limited to, those derived from the following inorganic acids: hydrochloric, hydrobromic, hydroiodic, sulfuric, sulfurous, nitric, nitrous, phosphoric, and phosphorous.
- Suitable organic anions include, but are not limited to, those derived from the following organic acids: 2-acetyoxybenzoic, acetic, ascorbic, aspartic, benzoic,
- suitable polymeric organic anions include, but are not limited to, those derived from the following polymeric acids: tannic acid, carboxymethyl cellulose.
- solvate is used herein in the conventional sense to refer to a complex of solute (e.g. active compound, salt of active compound) and solvent. If the solvent is water, the solvate may be conveniently referred to as a hydrate, for example, a mono-hydrate, a di-hydrate, a tri-hydrate, etc.
- the invention includes compounds where a solvent adds across the imine bond of the PBD moiety, which is illustrated below where the solvent is water or an alcohol (R A OH, where R A is C-i-4 alkyl):
- carbinolamine and carbinolamine ether forms of the PBD can be called the carbinolamine and carbinolamine ether forms of the PBD.
- the balance of these equilibria depend on the conditions in which the compounds are found, as well as the nature of the moiety itself.
- Certain compounds may exist in one or more particular geometric, optical, enantiomeric, diasteriomeric, epimeric, atropic, stereoisomeric, tautomeric, conformational, or anomeric forms, including but not limited to, cis- and trans-forms; E- and Z-forms; c-, t-, and r- forms; endo- and exo-forms; R-, S-, and meso-forms; D- and L-forms; d- and l-forms; (+) and (-) forms; keto-, enol-, and enolate-forms; syn- and anti-forms; synclinal- and anticlinal-forms; a- and ⁇ -forms; axial and equatorial forms; boat-, chair-, twist-, envelope-, and halfchair- forms; and combinations thereof, hereinafter collectively referred to as "isomers” (or "isomeric forms").
- isomers are structural (or constitutional) isomers (i.e. isomers which differ in the connections between atoms rather than merely by the position of atoms in space).
- a reference to a methoxy group, -OCH 3 is not to be construed as a reference to its structural isomer, a hydroxymethyl group, -CH 2 OH .
- a reference to ortho-chlorophenyl is not to be construed as a reference to its structural isomer, meta- chlorophenyl.
- Ci -7 alkyl includes n-propyl and iso-propyl; butyl includes ⁇ -, iso-, sec-, and tert-butyl; methoxyphenyl includes ortho-, meta-, and para- methoxyphenyl).
- keto/enol (illustrated below), imine/enamine, amide/imino alcohol, amidine/amidine, nitroso/oxime,
- keto enol enolate Note that specifically included in the term "isomer" are compounds with one or more isotopic substitutions.
- H may be in any isotopic form, including 1 H, 2 H (D), and 3 H (T);
- C may be in any isotopic form, including 12 C, 13 C, and 14 C;
- O may be in any isotopic form, including 16 0 and 18 0; and the like.
- a reference to a particular compound includes all such isomeric forms, including (wholly or partially) racemic and other mixtures thereof.
- Methods for the preparation (e.g. asymmetric synthesis) and separation (e.g. fractional crystallisation and chromatographic means) of such isomeric forms are either known in the art or are readily obtained by adapting the methods taught herein, or known methods, in a known manner.
- R 2 , R 6 , R 7 , R 9 , R 6' , R 7' , R 9' , R 12 , X, X' and R" are as defined for compounds of formula I
- Prot N is a nitrogen protecting group for synthesis
- Prot° is a protected oxygen group for synthesis or an oxo group, by deprotecting the imine bond by standard methods.
- the compound produced may be in its carbinolamine or carbinolamine ether form depending on the solvents used. For example if Prot N is Alloc and Prot° is an oxygen protecting group for synthesis, then the deprotection is carried using palladium to remove the N10 protecting group, followed by the elimination of the oxygen protecting group for synthesis. If Prot N is Troc and Prot° is an oxygen protecting group for synthesis, then the deprotection is carried out using a Cd/Pb couple to yield the compound of formula (I).
- Prot N is SEM, or an analogous group, and Prot° is an an oxo group
- the oxo group can be removed by reduction, which leads to a protected carbinolamine intermediate, which can then be treated to remove the SEM protecting group, followed by the elimination of water.
- the reduction of the compound of Formula 2 can be accomplished by, for example, lithium tetraborohydride, whilst a suitable means for removing the SEM protecting group is treatment with silica gel.
- R 2 , R 6 , R 7 , R 9 , R 6' , R 7' , R 9' , X, X' and R" are as defined for compounds of formula 2, by coupling an organometallic derivative comprising R 12 , such as an organoboron derivative.
- the organoboron derivative may be a boronate or boronic acid.
- R 12 , R 6 , R 7 , R 9 , R 6' , R 7' , R 9' , X, X' and R" are as defined for compounds of formula 2, by coupling an organometallic derivative comprising R 2 , such as an organoboron derivative.
- the organoboron derivative may be a boronate or boronic acid.
- R 2 , R 6 , R 7 , R 9 , R 6' , R 7' , R 9' , X, X' and R" are as defined for compounds of formula 2, by coupling about a single equivalent (e.g. 0.9 or 1 to 1.1 or 1.2) of an organometallic derivative, such as an organoboron derivative, comprising R 2 or R 12 .
- an organometallic derivative such as an organoboron derivative
- the couplings described above are usually carried out in the presence of a palladium catalyst, for example Pd(PPh 3 ) 4 , Pd(OCOCH 3 ) 2 , PdCI 2 , Pd 2 (dba) 3 .
- a palladium catalyst for example Pd(PPh 3 ) 4 , Pd(OCOCH 3 ) 2 , PdCI 2 , Pd 2 (dba) 3 .
- the coupling may be carried out under standard conditions, or may also be carried out under microwave conditions.
- the two coupling steps are usually carried out sequentially. They may be carried out with or without purification between the two steps. If no purification is carried out, then the two steps may be carried out in the same reaction vessel. Purification is usually required after the second coupling step. Purification of the compound from the undesired by-products may be carried out by column chromatography or ion-exchange separation.
- Nitrogen protecting groups for synthesis are well known in the art.
- the protecting groups of particular interest are carbamate nitrogen protecting groups and hemi-aminal nitrogen protecting groups.
- R' 10 is R as defined above.
- R' 10 is R as defined above.
- suitable groups are described on pages 503 to 549 of Greene, T.W. and Wuts, G.M., Protective Groups in Organic
- Particularly preferred protecting groups include Troc, Teoc, Fmoc, BOC, Doc, Hoc, TcBOC, 1 -Adoc and 2-Adoc.
- nitrobenzyloxycarbonyl e.g. 4- nitrobenzyloxycarbonyl
- 2- (phenylsulphonyl)ethoxycarbonyl e.g. 4- nitrobenzyloxycarbonyl
- nitrobenzyloxycarbonyl e.g. 4- nitrobenzyloxycarbonyl
- 2- (phenylsulphonyl)ethoxycarbonyl e.g. 4- nitrobenzyloxycarbonyl
- 2- (phenylsulphonyl)ethoxycarbonyl e.g. 4- nitrobenzyloxycarbonyl
- protecting groups which can be removed with palladium catalysis are not preferred, e.g. Alloc. aminal nitrogen protecting groups llowing structure wherein R' 10 is R as defined above.
- a large number of suitable groups are described on pages 633 to 647 as amide protecting groups of Greene, T.W. and Wuts, G.M., Protective Groups in Organic Synthesis, 3 rd Edition, John Wiley & Sons, Inc., 1999, which is incorporated herein by reference.
- the groups disclosed herein can be applied to compounds of the present invention. Such groups include, but are not limited to, SEM, MOM, MTM, MEM, BOM, nitro or methoxy substituted BOM, CI 3 CCH2OCH2-.
- Protected oxygen group for synthesis include, but are not limited to, SEM, MOM, MTM, MEM, BOM, nitro or methoxy substituted BOM, CI 3 CCH2OCH2-.
- Classes of particular interest include silyl ethers, methyl ethers, alkyl ethers, benzyl ethers, esters, acetates, benzoates, carbonates, and sulfonates.
- Preferred oxygen protecting groups include acetates, TBS and THP.
- Conjugates can be prepared as previously described.
- Linkers having a maleimidyl group (A), a peptide group (L 1 ) and self-immolative group (L 2 ) can be prepared as described in U.S. Patent No. 6,214,345.
- Linkers having a maleimidyl group (A) and a peptide group (L 1 ) can be prepared as described in WO 2009-01 17531 .
- Other linkers can be prepared according to the references cited herein or as known to the skilled artisan.
- Linker-Drug compounds can be prepared according to methods known in the art. Linkage of amine-based X substituents (of the PDB dimer Drug unit) to active groups of the Linker units can be performed according to methods generally described in U.S. Patent Nos.
- Antibodies can be conjugated to Linker-Drug compounds as described in Doronina et al., Nature Biotechnology, 2003, 21 , 778-784). Briefly, antibodies (4-5 mg/mL) in PBS containing 50 mM sodium borate at pH 7.4 are reduced with tris(carboxyethyl)phosphine hydrochloride (TCEP) at 37 °C. The progress of the reaction, which reduces interchain disulfides, is monitored by reaction with 5,5'-dithiobis(2-nitrobenzoic acid) and allowed to proceed until the desired level of thiols/mAb is achieved.
- TCEP tris(carboxyethyl)phosphine hydrochloride
- the reduced antibody is then cooled to 0°C and alkylated with 1 .5 equivalents of maleimide drug-linker per antibody thiol. After 1 hour, the reaction is quenched by the addition of 5 equivalents of N-acetyl cysteine. Quenched drug-linker is removed by gel filtration over a PD-10 column. The ADC is then sterile-filtered through a 0.22 ⁇ syringe filter. Protein concentration can be determined by spectral analysis at 280 nm and 329 nm, respectively, with correction for the contribution of drug absorbance at 280 nm. Size exclusion chromatography can be used to determine the extent of antibody aggregation, and RP-HPLC can be used to determine the levels of remaining NAC-quenched drug-linker.
- R 6' , R 7' , R 9' , R 10' , R 11' and Y' are preferably the same as R 6 , R 7 , R 9 , R 10 , R 11 and Y respectively.
- Y and Y' are preferably O.
- R" is preferably a C 3 - 7 alkylene group with no substituents. More preferably R" is a C 3 , C 5 or C 7 alkylene. Most preferably, R" is a C 3 or C 5 alkylene. R 6 to R 9
- R 9 is preferably H.
- R 6 is preferably selected from H, OH, OR, SH, NH 2 , nitro and halo, and is more preferably H or halo, and most preferably is H.
- R 7 is preferably selected from H, OH, OR, SH, SR, NH 2 , NHR, NRR', and halo, and more preferably independently selected from H, OH and OR, where R is preferably selected from optionally substituted Ci -7 alkyl, C 3- io heterocyclyl and C 5- io aryl groups.
- R may be more preferably a Ci -4 alkyl group, which may or may not be substituted.
- a substituent of interest is a C 5 - 6 aryl group (e.g. phenyl). Particularly preferred substituents at the 7- positions are OMe and OCH 2 Ph. Other substituents of particular interest are
- dimethylamino i.e. -NMe 2
- -(OC 2 H 4 ) q OMe where q is from 0 to 2
- nitrogen-containing C 6 heterocyclyls including morpholino, piperidinyl and N-methyl-piperazinyl.
- a in R 2 may be phenyl group or a C 5-7 heteroaryl group, for example furanyl, thiophenyl and pyridyl. In some embodiments, A is preferably phenyl.
- Particularly preferred groups include: OH, SH and NH 2 , with NH 2 being the most preferred group.
- Q 2 -X may be on any of the available ring atoms of the C 5-7 aryl group, but is preferably on a ring atom that is not adjacent the bond to the remainder of the compound, i.e. it is preferably ⁇ or ⁇ to the bond to the remainder of the compound. Therefore, where the C 5-7 aryl group (A) is phenyl, the substituent (Q 2 -X) is preferably in the meta- or para- positions, and more preferably is in the para- position.
- Q 1 is a single bond.
- Q 2 is selected from a single bond and -Z-(CH 2 ) n -, where Z is selected from a single bond, O, S and NH and is from 1 to 3.
- Q 2 is a single bond.
- Q 2 is -Z-(CH 2 ) n -.
- Z may be O or S and n may be 1 or n may be 2.
- Z may be a single bond and n may be 1.
- R 2 may be -A-CH 2 -X and -A-X.
- X may be OH, SH, C0 2 H, COH and NH 2 .
- X may be NH 2 .
- R 12 is selected from:
- each of R 21 , R 22 and R 23 are independently selected from H, Ci -3 saturated alkyl, C 2-3 alkenyl, C 2-3 alkynyl and cyclopropyl, where the total number of carbon atoms in the R 12 group is no more than 5;
- R 25a and R 25b are H and the other is selected from: phenyl, which phenyl is optionally substituted by a group selected from halo methyl, methoxy; pyridyl; and thiophenyl; and
- R 24 is selected from: H; Ci -3 saturated alkyl; C 2-3 alkenyl; C 2-3 alkynyl; cyclopropyl; phenyl, which phenyl is optionally substituted by a group selected from halo methyl, methoxy; pyridyl; and thiophenyl.
- R 12 When R 12 is Ci -5 saturated aliphatic alkyl, it may be methyl, ethyl, propyl, butyl or pentyl. In some embodiments, it may be methyl, ethyl or propyl (n-pentyl or isopropyl). In some of these embodiments, it may be methyl. In other embodiments, it may be butyl or pentyl, which may be linear or branched.
- R 12 When R 12 is C 3-6 saturated cycloalkyl, it may be cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl. In some embodiments, it may be cyclopropyl.
- each of R , R and R are independently selected from H, Ci -3 saturated alkyl, C 2-3 alkenyl, C 2- 3 alkynyl and cyclopropyl, where the total number of carbon atoms in the R 12 group is no more than 5. In some embodiments, the total number of carbon atoms in the R 12 group is no more than 4 or no more than 3.
- one of R 21 , R 22 and R 23 is H, with the other two groups being selected from H, Ci -3 saturated alkyl, C 2- 3 alkenyl, C 2- 3 alkynyl and cyclopropyl.
- two of R 21 , R 22 and R 23 are H, with the other group being selected from H, Ci -3 saturated alkyl, C 2-3 alkenyl, C 2-3 alkynyl and cyclopropyl.
- the groups that are not H are selected from methyl and ethyl. In some of these embodiments, the groups that re not H are methyl. In some embodiments, R 21 is H.
- R 22 is H.
- R 23 is H.
- R 21 and R 22 are H. In some embodiments, R 21 and R 23 are H. In some embodiments, R 22 and R 23 are H.
- R 25a and R 25b are H and the other is selected from: phenyl, which phenyl is optionally substituted by a group selected from halo, methyl, methoxy; pyridyl; and thiophenyl.
- the group which is not H is optionally substituted phenyl.
- the phenyl optional substituent is halo, it is preferably fluoro.
- the phenyl group is unsubstituted.
- R 24 is selected from: H; Ci -3 saturated alkyl; C2-3 alkenyl; C2-3 alkynyl; cyclopropyl; phenyl, which phenyl is optionally substituted by a group selected from halo methyl, methoxy; pyridyl; and thiophenyl. If the phenyl optional substituent is halo, it is preferably fluoro. In some embodiment, the phenyl group is unsubstituted.
- R 24 is selected from H, methyl, ethyl, ethenyl and ethynyl. In some of these embodiments, R 24 is selected from H and methyl.
- M and M' are monovalent pharmaceutically acceptable cations, and are more preferably Na + .
- z is preferably 3.
- Particularly preferred compounds of the present invention are of formula la:
- R 12a is selected from:
- the amino group is at either the meta or para positions of the phenyl group.
- R 10 is carbamate nitrogen protecting group, it may preferably be Teoc, Fmoc and Troc, and may more preferably be Troc.
- Prot° may preferably be TBS or THP, and may more preferably be TBS.
- R 10 is a hemi-aminal nitrogen protecting group, it may preferably be MOM, BOM or SEM, and may more preferably be SEM.
- Optical rotations were measured on an ADP 220 polarimeter (Bellingham Stanley Ltd.) and concentrations (c) are given in g/100ml_. Melting points were measured using a digital melting point apparatus (Electrothermal). IR spectra were recorded on a Perkin-Elmer Spectrum 1000 FT IR Spectrometer. 1 H and 13 C NMR spectra were acquired at 300 K using a Bruker Avance NMR spectrometer at 400 and 100 MHz, respectively.
- Waters Micromass ZQ parameters used were: Capillary (kV), 3.38; Cone (V), 35; Extractor (V), 3.0; Source temperature (°C), 100; Desolvation Temperature (°C), 200; Cone flow rate (L/h), 50; De-solvation flow rate (L/h), 250.
- HRMS High-resolution mass spectroscopy
- HRMS High-resolution mass spectroscopy
- TLC Thin Layer Chromatography
- Compound 1 b was synthesised as described in WO 00/012508 (compound 210), which is herein incorporated by reference.
- General LC/MS conditions The HPLC (Waters Alliance 2695) was run using a mobile phase of water (A) (formic acid 0.1 %) and acetonitrile (B) (formic acid 0.1 %). Gradient: initial composition 5% B over 1 .0 min then 5% B to 95% B within 3 min. The composition was held for 0.5 min at 95% B, and then returned to 5% B in 0.3 minutes. Total gradient run time equals 5 min. Flow rate 3.0 mL/min, 400 ⁇ _ was split via a zero dead volume tee piece which passes into the mass spectrometer. Wavelength detection range: 220 to 400 nm. Function type: diode array (535 scans). Column: Phenomenex ® Onyx Monolithic C18 50 x 4.60 mm
- LC/MS conditions specific for compounds protected by both a Troc and a TBDMs group Chromatographic separation of Troc and TBDMS protected compounds was performed on a Waters Alliance 2695 HPLC system utilizing a Onyx Monolitic reversed-phase column (3 ⁇ particles, 50 x 4.6 mm) from Phenomenex Corp.
- Mobile-phase A consisted of 5% acetonitrile - 95 % water containing 0.1 % formic acid
- mobile phase B consisted of 95% acetonitrile - 5% water containing 0.1 % formic acid.
- Example 4 The HPLC (Waters Alliance 2695) was run using a mobile phase of water (A) (formic acid 0.1 %) and acetonitrile (B) (formic acid 0.1 %).
- Method B Oxalyl chloride (9.75 mL, 14.2 g, 1 1 1 mmol) was added to a stirred suspension of the nitro-acid 1 a (17.3 g, 37.1 mmol) and DMF (2 mL) in anhydrous DCM (200 mL). Following initial effervescence the reaction suspension became a solution and the mixture was allowed to stir at room temperature for 16 hours. Conversion to the acid chloride was confirmed by treating a sample of the reaction mixture with MeOH and the resulting bis- methyl ester was observed by LC/MS. The majority of solvent was removed by
- Method A A suspension of 10% Pd/C (7.5 g, 10% w/w) in DMF (40 mL) was added to a solution of the nitro-ester 2a (75 g, 104 mmol) in DMF (360 mL). The suspension was hydrogenated in a Parr hydrogenation apparatus over 8 hours. Progress of the reaction was monitored by LC/MS (2.12 min (ES+) m/z (relative intensity) 597 ([M + H] + , 100), (ES-) m/z (relative intensity) 595 ([M + H] + , 100) after the hydrogen uptake had stopped.
- Solid Pd/C was removed by filtration and the filtrate was concentrated by rotary evaporation under vacuum (below 10 mbar) at 40°C to afford a dark oil containing traces of DMF and residual charcoal.
- the residue was digested in EtOH (500 mL) at 40°C on a water bath (rotary evaporator bath) and the resulting suspension was filtered through celite and washed with ethanol (500 mL) to give a clear filtrate.
- Hydrazine hydrate (10 mL, 321 mmol) was added to the solution and the reaction mixture was heated at reflux. After 20 minutes the formation of a white precipitate was observed and reflux was allowed to continue for a further 30 minutes. The mixture was allowed to cool down to room temperature and the precipitate was retrieved by filtration, washed with diethyl ether (2 * 1 volume of precipitate) and dried in a vacuum desiccator to provide 3a (50 g, 81 %).
- Method B A solution of the nitro-ester 2a (6.80 g, 9.44 mmol) in MeOH (300 mL) was added to RaneyTM nickel (4 large spatula ends of a ⁇ 50% slurry in H 2 0) and anti-bumping granules in a 3-neck round bottomed flask. The mixture was heated at reflux and then treated dropwise with a solution of hydrazine hydrate (5.88 mL, 6.05 g, 188 mmol) in MeOH (50 mL) at which point vigorous effervescence was observed. When the addition was complete ( ⁇ 30 minutes) additional RaneyTM nickel was added carefully until effervescence had ceased and the initial yellow colour of the reaction mixture was discharged.
- Method A A 0.37 M sodium hypochlorite solution (142.5 mL, 52.71 mmol, 2.4 eq) was added dropwise to a vigorously stirred mixture of the diol 6a (18.8 g, 21.96 mmol, 1 eq), TEMPO (0.069 g, 0.44 mmol, 0.02 eq) and 0.5 M potassium bromide solution (8.9 mL, 4.4 mmol, 0.2 eq) in DCM (1 15 mL) at 0°C. The temperature was maintained between 0°C and 5°C by adjusting the rate of addition. The resultant yellow emulsion was stirred at 0°C to 5°C for 1 hour.
- Sodium hypochlorite solution reagent grade, available at chlorine 10-13%, was used. This was assumed to be 10% (10 g NaCIO in 100 g) and calculated to be 1.34 M in NaCIO. A stock solution was prepared from this by diluting it to 0.37 M with water. This gave a solution of approximately pH 14. The pH was adjusted to 9.3 to 9.4 by the addition of solid NaHC0 3 . An aliquot of this stock was then used so as to give 2.4 mol eq. for the reaction. On addition of the bleach solution an initial increase in temperature was observed. The rate of addition was controlled, to maintain the temperature between 0°C to 5°C. The reaction mixture formed a thick, lemon yellow coloured, emulsion.
- Method B Solid TCCA (10.6 g, 45.6 mmol) was added portionwise to a stirred solution of the alcohol 6a (18.05 g, 21 .1 mmol) and TEMPO (123 mg, 0.78 mmol) in anhydrous DCM (700 mL) at 0°C (ice/acetone). The reaction mixture was stirred at 0°C under a nitrogen atmosphere for 15 minutes after which time TLC (EtOAc) and LC/MS [3.57 min (ES+) m/z (relative intensity) 875 ([M + Na] + , 50)] revealed completion of reaction.
- Method C A solution of anhydrous DMSO (0.72 mL, 0.84 g, 10.5 mmol) in dry DCM (18 mL) was added dropwise over a period of 25 min to a stirred solution of oxalyl chloride
- Anhydrous 2,6-lutidine (5.15 mL, 4.74 g, 44.2 mmol) was injected in one portion to a vigorously stirred solution of bis-ketone 7a (6.08 g, 7.1 mmol) in dry DCM (180 mL) at - 45°C (dry ice/acetonitrile cooling bath) under a nitrogen atmosphere.
- Anhydrous triflic anhydride taken from a freshly opened ampoule (7.2 mL, 12.08 g, 42.8 mmol), was injected rapidly dropwise, while maintaining the temperature at -40°C or below.
- reaction mixture was allowed to stir at -45°C for 1 hour at which point TLC (50/50 v/v n- hexane/EtOAc) revealed the complete consumption of starting material.
- the cold reaction mixture was immediately diluted with DCM (200 mL) and, with vigorous shaking, washed with water (1 x 100 mL), 5% citric acid solution (1 x 200 mL) saturated NaHC0 3 (200 mL), brine (100 mL) and dried (MgS0 4 ).
- Solid Pd(PPh 3 ) 4 (20.18 mg, 17.46 ⁇ ) was added to a stirred solution of the triflate 8a (975 mg, 0.87 mmol), 4-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolane-2-yl)aniiine (172 mg, 0.79 mmol) and Na 2 C0 3 (138 mg, 1 .30 mmol) in toluene (13 mL) EtOH (6.5 mL) and H 2 0 (6.5 mL).
- the dark solution was allowed to stir under a nitrogen atmosphere for 24 hours, after which time analysis by TLC (EtOAc) and LC/MS revealed the formation of the desired mono-coupled product and as well as the presence of unreacted starting material.
- reaction mixture was filtered through cotton-wool and the filter pad rinsed with ethylacetate and the filtrate was evaporated under reduced pressure.
- the residue was purified by column chromatography on silica gel with 80% EtOAc: 20% Hexane. Removal of excess eluent by rotary evaporation under reduced pressure gave the product as an off-white foam (100 mg, 0.1 1 mmol, 54% yield).
- the viscous mixture was allowed to stir at room temperature for 5 days.
- the mixture was filtered slowly through a sinter funnel and the silica residue washed with 90% CHCI 3 : 10% MeOH (-250 mL) until UV activity faded completely from the eluent.
- the organic phase was washed with H 2 0 (50 mL), brine 60 mL), dried (MgS0 4 ), filtered and evaporated in vacuo to provide the crude material.
- the crude product was purified by flash chromatography (gradient from 100% CHCI 3 : 0% MeOH to 96% CHCI 3 : 4% MeOH) to provide the PBD dimer (5 mg 8 % yield).
- Solid 3-aminobenzeneboronic acid (60.3 mg) was added to a solution of the Troc protected b/s inflate 12(Compound 44, WO 2006/1 1 1759) (600 mg, 0.41 mmol), sodium carbonate (65 mg, 0.61 mmoml) and palladium tetrakis triphenylphosphine (0.012 mmol) in toluene (10.8 mL), ethanol (5.4 mL) and water (5.4 mL). The reaction mixture was allowed to stir at room temperature overnight. The reaction mixture was then partitioned between ethylacetate and water. The organic layer was washed with water and brine and dried over magnesium sulphate.
- Cadmium/lead couple (100 mg, Q Dong et al. Tetrahedron Letters vol 36, issue 32, 5681 - 5682, 1995) was added to a solution of the Suzuki product 14 (40 mg, 0.029 mmol) in THF (1 mL) and ammonium acetate (1 N, 1 mL) and the reaction mixture was allowed to stir for 1 hour. The reaction was filtered through cotton wool to remove particulates and break-up the emulsion. The reaction mixture was partitioned between chloroform and water, the phases separated and the aqueous phase extracted with chloroform. The combined organic layers were washed with brine and dried over magnesium sulphate.
- Solid Pd(PPh 3 ) 4 (20 mg, 17.8 ⁇ ) was added to a stirred solution of the triflate 8a (2.5 g, 2.24 mmol), 3-aminobenzeneboronic acid (291 mg, 2.12 mmol) and Na 2 C0 3 (356 mg, 3.35 mmol) in toluene (20 mL), EtOH (10 mL) and H 2 0 (10 mL).
- the solution was allowed to stir under a nitrogen atmosphere for 3 hours at room temperature, after which time analysis by TLC (EtOAc) and LC/MS revealed the formation of the desired mono-coupled product and as well as the presence of unreacted starting material.
- Fresh LiBH 4 (20.6 mg, 0.95 mmol, 3.5 eq.) was added to a stirred solution of the SEM- dilactam (250 mg, 0.27 mmol) in THF (4 mL) at room temperature. The reaction mixture was allowed to stir for 1.0 hr, at which time LC-MS revealed complete reaction. Excess LiBH 4 was quenched with acetone (c. 1 mL) at 0°C (ice bath). The reaction mixture was partitioned between water (50 mL) and 10% methanol in chloroform (100 mL). The organic phase was washed with brine (50 mL), dried over magnesium sulphate and concentrated in vacuo.
- Tetrakis(triphenylphosphine)palladium(0) (208 mg) was added to triflate (8a)(5 g), 4- anilineboronic acid (0.93 g) and sodium carbonate (0.62 g) in a mixture of toluene (60 ml_), ethanol (30 mL) and water (10 ml_). The reaction mixture was allowed to stir for 3 days at room temperature. The reaction mixture was washed with water, brine and dried over magnesium sulphate. After filtration excess solvent was removed by rotary evaporation under reduced pressure. The crude coupling product was purified by flash column chromatography (silica gel; gradient: 100% hexane to 100% ethyl acetate). Pure fractions were combined and removal of excess eluent afforded the pure product as a solid (2.2 g, 93 % yield, LC/MS 8.05 mins, m/z ES + 1060).
- the unsymmetrical PBD dimer (21 ) (0.019 g, 26 ⁇ , 1 eq.) was added to a solution of the linker (23) (0.0121 g, 31 .6 ⁇ , 1 .2 eq.) and EEDQ (0.0098 g, 39.6 ⁇ , 1 .5 eq.) in a mixture of anhydrous DCM/MeOH (3 mL/0.5 mL) under an argon atmosphere.
- the resultant solution was stirred at room temperature for 5 hours at which time LCMS indicated 50% conversion to a new product.
- the reaction mixture was diluted with anhydrous DCM (2 mL) and the reaction was allowed to continue for a further 18 hours.
- Antibody-drug conjugates were prepared as previously described (see Doronina et al., Nature Biotechnology, 21 , 778-784 (2003)) or as described below.
- Engineered hlgG1 antibodies with introduced cysteines CD70 antibodies containing a cysteine residue at position 239 of the heavy chain (hi F6d) were fully reduced by adding 10 equivalents of TCEP and 1 mM EDTA and adjusting the pH to 7.4 with 1 M Tris buffer (pH 9.0). Following a 1 hour incubation at 37 °C, the reaction was cooled to 22 °C and 30 equivalents of dehydroascorbic acid were added to selectively reoxidize the native disulfides, while leaving cysteine 239 in the reduced state. The pH was adjusted to 6.5 with 1 M Tris buffer (pH 3.7) and the reaction was allowed to proceed for 1 hour at 22 °C.
- the pH of the solution was then raised again to 7.4 by addition of 1 M Tris buffer (pH 9.0).
- 3.5 equivalents of the PBD drug linker in DMSO were placed in a suitable container for dilution with propylene glycol prior to addition to the reaction.
- the antibody itself was first diluted with propylene glycol to a final concentration of 33% (e.g., if the antibody solution was in a 60 mL reaction volume, 30 mL of propylene glycol was added). This same volume of propylene glycol (30 mL in this example) was then added to the PBD drug linker as a diluent.
- the solution of PBD drug linker in propylene glycol was added to the antibody solution to effect the conjugation; the final concentration of propylene glycol is 50%.
- the reaction was allowed to proceed for 30 minutes and then quenched by addition of 5 equivalents of N-acetyl cysteine.
- the ADC was then purified by ultrafiltration through a 30 kD membrane. (Note that the concentration of propylene glycol used in the reaction can be reduced for any particular PBD, as its sole purpose is to maintain solubility of the drug linker in the aqueous media.)
- the plates were read on a Fusion HT microplate reader (Packard, Meriden, CT) using an excitation wavelength of 525 nm and an emission wavelength of 590 nm. Data from all assays were reduced using GraphPad Prism Version 4 for Windows (GraphPad Software, San Diego, CA). The IC 50 concentrations compared to untreated control cells were determined using a 4 parameter curve fits.
- the antibody used was a CD70 antibody (humanized 1 F6; see Published U.S. Application No. 2009-148942) having introduced cysteine residues at amino acid heavy chain position 239 (according to the EU numbering system) (indicated as h1 F6d).
- IC 50 (nM) values for ADCs of compound 31 are:
- the antibodies used were an antibody having introduced cysteine residues at position 239 (S239C) in the heavy chains and conjugated to compound 31 , and a nonbinding control conjugated to the same compound 31.
- the ADC-compound 31 or control ADCs were dosed ip according to a q4dx4 schedule (as shown by the triangles on the x axis). Tumor volume as a function of time was determined using the formula (L x W2)/2. Animals were euthanized when tumor volumes reached 1000 mm 3 .
- the ADC of compound 31 was dosed at 0.1 ( ⁇ ), 0.3 (ss) and 1 ( ⁇ ) mg/kg.
- a nonbinding control, conjugated to compound 31 was administered at the same doses (0.1 ( ⁇ ), 0.3 (A) and 1 (A) mg/kg). All three doses of the Ab-compound 31
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- Diabetes (AREA)
- Physical Education & Sports Medicine (AREA)
- Pulmonology (AREA)
- Cell Biology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Dermatology (AREA)
- Rheumatology (AREA)
- Endocrinology (AREA)
- Hematology (AREA)
- Neurology (AREA)
- Urology & Nephrology (AREA)
- Reproductive Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Gynecology & Obstetrics (AREA)
- Biomedical Technology (AREA)
- Ophthalmology & Optometry (AREA)
- Neurosurgery (AREA)
- Transplantation (AREA)
- Oncology (AREA)
- Cardiology (AREA)
- Gastroenterology & Hepatology (AREA)
- Pain & Pain Management (AREA)
- Pregnancy & Childbirth (AREA)
Priority Applications (13)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| NZ602933A NZ602933A (en) | 2010-04-15 | 2011-04-15 | Pyrrolobenzodiazepines used to treat proliferative diseases |
| AU2011239525A AU2011239525B2 (en) | 2010-04-15 | 2011-04-15 | Pyrrolobenzodiazepines used to treat proliferative diseases |
| CA2795353A CA2795353C (en) | 2010-04-15 | 2011-04-15 | Pyrrolobenzodiazepines used to treat proliferative diseases |
| JP2013505172A JP5875083B2 (ja) | 2010-04-15 | 2011-04-15 | 増殖性疾患治療用ピロロベンゾジアゼピン |
| EP11716755A EP2558475A1 (en) | 2010-04-15 | 2011-04-15 | Pyrrolobenzodiazepines used to treat proliferative diseases |
| MX2012011899A MX339185B (es) | 2010-04-15 | 2011-04-15 | Pirrolobenzodiazepinas usadas para tratar enfermedades proliferativas. |
| MX2015001565A MX368648B (es) | 2010-04-15 | 2011-04-15 | Pirrolobenzodiazepinas usadas para tratar enfermedades proliferativas. |
| KR1020127029495A KR101687054B1 (ko) | 2010-04-15 | 2011-04-15 | 증식성 질환 치료용 피롤로벤조디아제핀 |
| CN201180028242.6A CN102971329B (zh) | 2010-04-15 | 2011-04-15 | 用于治疗增殖性疾病的吡咯并苯并二氮杂卓 |
| BR112012026410A BR112012026410B8 (pt) | 2010-04-15 | 2011-04-15 | Composto e conjugado de pirrolobenzodiazepinas e usos dos mesmos |
| US13/641,180 US8697688B2 (en) | 2010-04-15 | 2011-04-15 | Pyrrolobenzodiazepines used to treat proliferative diseases |
| ZA2012/07357A ZA201207357B (en) | 2010-04-15 | 2012-10-02 | Pyrrolobenzodiazepines used to treat proliferative diseases |
| US14/072,904 US9732084B2 (en) | 2010-04-15 | 2013-11-06 | Pyrrolobenzodiazepines used to treat proliferative diseases |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US32445310P | 2010-04-15 | 2010-04-15 | |
| US61/324,453 | 2010-04-15 |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/641,180 A-371-Of-International US8697688B2 (en) | 2010-04-15 | 2011-04-15 | Pyrrolobenzodiazepines used to treat proliferative diseases |
| US14/072,904 Division US9732084B2 (en) | 2010-04-15 | 2013-11-06 | Pyrrolobenzodiazepines used to treat proliferative diseases |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2011130616A1 true WO2011130616A1 (en) | 2011-10-20 |
Family
ID=43971498
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2011/032668 Ceased WO2011130616A1 (en) | 2010-04-15 | 2011-04-15 | Pyrrolobenzodiazepines used to treat proliferative diseases |
Country Status (13)
| Country | Link |
|---|---|
| US (2) | US8697688B2 (enExample) |
| EP (2) | EP2789622B1 (enExample) |
| JP (1) | JP5875083B2 (enExample) |
| KR (1) | KR101687054B1 (enExample) |
| CN (1) | CN102971329B (enExample) |
| AU (1) | AU2011239525B2 (enExample) |
| BR (1) | BR112012026410B8 (enExample) |
| CA (1) | CA2795353C (enExample) |
| ES (1) | ES2623057T3 (enExample) |
| MX (2) | MX339185B (enExample) |
| NZ (1) | NZ602933A (enExample) |
| WO (1) | WO2011130616A1 (enExample) |
| ZA (1) | ZA201207357B (enExample) |
Cited By (121)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2013041606A1 (en) | 2011-09-20 | 2013-03-28 | Spirogen Sàrl | Pyrrolobenzodiazepines as unsymmetrical dimeric pbd compounds for inclusion in targeted conjugates |
| WO2013053873A1 (en) | 2011-10-14 | 2013-04-18 | Spirogen Sàrl | Pyrrolobenzodiazepines |
| WO2013053871A1 (en) | 2011-10-14 | 2013-04-18 | Spirogen Sàrl | Pyrrolobenzodiazepines |
| US8426402B2 (en) | 2009-02-05 | 2013-04-23 | Immunogen, Inc. | Benzodiazepine derivatives |
| WO2013119960A2 (en) | 2012-02-08 | 2013-08-15 | Stem Centrx, Inc. | Novel modulators and methods of use |
| WO2014057118A1 (en) * | 2012-10-12 | 2014-04-17 | Adc Therapeutics Sarl | Pyrrolobenzodiazepine-anti-cd22 antibody conjugates |
| WO2014057072A1 (en) | 2012-10-12 | 2014-04-17 | Spirogen Sàrl | Synthesis and intermediates of pyrrolobenzodiazepine derivatives for conjugation |
| WO2014057117A1 (en) | 2012-10-12 | 2014-04-17 | Adc Therapeutics Sàrl | Pyrrolobenzodiazepine-antibody conjugates |
| WO2014057073A1 (en) | 2012-10-12 | 2014-04-17 | Spirogen Sàrl | Pyrrolobenzodiazepines and conjugates thereof |
| WO2014057115A1 (en) * | 2012-10-12 | 2014-04-17 | Adc Therapeutics Sàrl | Pyrrolobenzodiazepine-anti-her2 antibody conjugates |
| WO2014057113A1 (en) | 2012-10-12 | 2014-04-17 | Adc Therapeutics Sarl | Pyrrolobenzodiazepine - anti-psma antibody conjugates |
| WO2014057114A1 (en) * | 2012-10-12 | 2014-04-17 | Adc Therapeutics Sàrl | Pyrrolobenzodiazepine-anti-psma antibody conjugates |
| WO2014057119A1 (en) | 2012-10-12 | 2014-04-17 | Adc Therapeutics Sàrl | Pyrrolobenzodiazepine-antibody conjugates |
| WO2014057120A1 (en) | 2012-10-12 | 2014-04-17 | Adc Therapeutics Sàrl | Pyrrolobenzodiazepine-antibody conjugates |
| WO2014057122A1 (en) | 2012-10-12 | 2014-04-17 | Adc Therapeutics Sàrl | Pyrrolobenzodiazepine-anti-cd22 antibody conjugates |
| US8765740B2 (en) | 2011-02-15 | 2014-07-01 | Immunogen, Inc. | Cytotoxic benzodiazepine derivatives |
| WO2014114207A1 (zh) | 2013-01-23 | 2014-07-31 | 上海新理念生物医药科技有限公司 | 一种三齿型连接子及其应用 |
| WO2014140862A2 (en) | 2013-03-13 | 2014-09-18 | Spirogen Sarl | Pyrrolobenzodiazepines and conjugates thereof |
| WO2014140174A1 (en) | 2013-03-13 | 2014-09-18 | Spirogen Sàrl | Pyrrolobenzodiazepines and conjugates thereof |
| WO2014159981A2 (en) | 2013-03-13 | 2014-10-02 | Spirogen Sarl | Pyrrolobenzodiazepines and conjugates thereof |
| WO2014130879A3 (en) * | 2013-02-22 | 2014-10-16 | Stem Centrx, Inc. | Novel antibody conjugates and uses thereof |
| WO2015009740A2 (en) | 2013-07-15 | 2015-01-22 | Cell Signaling Technology, Inc. | Anti-mucin 1 binding agents and uses thereof |
| WO2015023355A1 (en) | 2013-08-12 | 2015-02-19 | Genentech, Inc. | 1-(chloromethyl)-2,3-dihydro-1h-benzo[e]indole dimer antibody-drug conjugate compounds, and methods of use and treatment |
| US8986972B2 (en) | 2012-02-24 | 2015-03-24 | Stem Centrx, Inc. | Nucleic acid encoding DLL3 antibodies |
| WO2015052322A1 (en) * | 2013-10-11 | 2015-04-16 | Spirogen Sàrl | Pyrrolobenzodiazepines and conjugates thereof |
| WO2015052537A1 (en) | 2013-10-11 | 2015-04-16 | Oxford Biotherapeutics Ltd | Conjugated antibodies against ly75 for the treatment of cancer |
| WO2015095212A1 (en) | 2013-12-16 | 2015-06-25 | Genentech, Inc. | 1-(chloromethyl)-2,3-dihydro-1h-benzo[e]indole dimer antibody-drug conjugate compounds, and methods of use and treatment |
| US9242013B2 (en) | 2010-04-15 | 2016-01-26 | Seattle Genetics Inc. | Targeted pyrrolobenzodiazapine conjugates |
| JP2016505586A (ja) * | 2012-12-21 | 2016-02-25 | スパイロジェン・エス・アー・エール・エルSpirogen Sarl | 増殖性疾患および自己免疫疾患の治療に使用するための非対称ピロロベンゾジアゼピンニ量体 |
| WO2016038383A1 (en) * | 2014-09-12 | 2016-03-17 | Medimmune Limited | Pyrrolobenzodiazepines and conjugates thereof |
| WO2016037644A1 (en) | 2014-09-10 | 2016-03-17 | Medimmune Limited | Pyrrolobenzodiazepines and conjugates thereof |
| US9387259B2 (en) | 2011-10-14 | 2016-07-12 | Seattle Genetics, Inc. | Pyrrolobenzodiazepines and targeted conjugates |
| US9427478B2 (en) | 2013-06-21 | 2016-08-30 | Innate Pharma | Enzymatic conjugation of polypeptides |
| WO2016166304A1 (en) | 2015-04-15 | 2016-10-20 | Van Berkel Patricius Hendrikus Cornelis | Site-specific antibody-drug conjugates |
| EP2970444A4 (en) * | 2013-03-13 | 2016-11-09 | Seattle Genetics Inc | CYCLODEXTRIN AND ANTIBODY ACTIVE CONJUGATE FORMULATIONS |
| WO2016192527A1 (en) | 2015-05-29 | 2016-12-08 | Newbio Therapeutics, Inc. | Derivatives of dolastatin 10 and uses thereof |
| WO2016192528A1 (en) | 2015-05-29 | 2016-12-08 | Newbio Therapeutics, Inc. | Trimaleimide Linkers and Uses Thereof |
| US9526798B2 (en) | 2011-10-14 | 2016-12-27 | Seattle Genetics, Inc. | Pyrrolobenzodiazepines and targeted conjugates |
| WO2016209951A1 (en) * | 2015-06-23 | 2016-12-29 | Bristol-Myers Squibb Company | Macrocyclic benzodiazepine dimers, conjugates thereof, preparation and uses |
| US20170015623A1 (en) * | 2014-03-14 | 2017-01-19 | Medical Research Council | Cyclopropene amino acids and methods |
| US9562049B2 (en) | 2012-12-21 | 2017-02-07 | Medimmune Limited | Pyrrolobenzodiazepines and conjugates thereof |
| US9624227B2 (en) | 2008-10-17 | 2017-04-18 | Medimmune Limited | Unsymmetrical pyrrolobenzodiazepine-dimers for treatment of proliferative diseases |
| US9676850B2 (en) | 2012-02-24 | 2017-06-13 | Abbvie Stemcentrx Llc | Anti SEZ6 antibodies and methods of use |
| US9717803B2 (en) | 2011-12-23 | 2017-08-01 | Innate Pharma | Enzymatic conjugation of polypeptides |
| US9732084B2 (en) | 2010-04-15 | 2017-08-15 | Medimmune Limited | Pyrrolobenzodiazepines used to treat proliferative diseases |
| US9777071B2 (en) | 2013-12-12 | 2017-10-03 | Abbvie Stemcentrx Llc | Anti-DPEP3 antibodies and methods of use |
| WO2017201132A2 (en) | 2016-05-18 | 2017-11-23 | Mersana Therapeutics, Inc. | Pyrrolobenzodiazepines and conjugates thereof |
| WO2017223275A1 (en) | 2016-06-24 | 2017-12-28 | Mersana Therapeutics, Inc. | Pyrrolobenzodiazepines and conjugates thereof |
| US9889207B2 (en) | 2012-10-12 | 2018-02-13 | Medimmune Limited | Pyrrolobenzodiazepines and conjugates thereof |
| US9950078B2 (en) | 2013-10-11 | 2018-04-24 | Medimmune Limited | Pyrrolobenzodiazepine-antibody conjugates |
| US9956299B2 (en) | 2013-10-11 | 2018-05-01 | Medimmune Limited | Pyrrolobenzodiazepine—antibody conjugates |
| US9956298B2 (en) | 2013-10-11 | 2018-05-01 | Medimmune Limited | Pyrrolobenzodiazepines and conjugates thereof |
| WO2018091646A1 (en) * | 2016-11-17 | 2018-05-24 | Medimmune Limited | Pyrrolobenzodiazepine conjugates |
| WO2018098258A2 (en) | 2016-11-23 | 2018-05-31 | Immunogen, Inc. | Selective sulfonation of benzodiazepine derivatives |
| US9993566B2 (en) | 2013-08-28 | 2018-06-12 | Abbvie Stemcentrx Llc | SEZ6 modulators and methods of use |
| WO2018112334A1 (en) | 2016-12-16 | 2018-06-21 | Bluefin Biomedicine, Inc. | Anti-cub domain-containing protein 1 (cdcp1) antibodies, antibody drug conjugates, and methods of use thereof |
| WO2018119196A1 (en) | 2016-12-23 | 2018-06-28 | Immunogen, Inc. | Immunoconjugates targeting adam9 and methods of use thereof |
| US10010624B2 (en) | 2013-10-11 | 2018-07-03 | Medimmune Limited | Pyrrolobenzodiazepine-antibody conjugates |
| US10017580B2 (en) | 2014-04-15 | 2018-07-10 | ADC Therpeutics S.A. | Humanized anti-Tn-MUC1 antibodies and their conjugates |
| WO2018129029A1 (en) | 2017-01-04 | 2018-07-12 | Immunogen, Inc. | Met antibodies and immunoconjugates and uses thereof |
| US10035853B2 (en) | 2013-08-28 | 2018-07-31 | Abbvie Stemcentrx Llc | Site-specific antibody conjugation methods and compositions |
| US10036010B2 (en) | 2012-11-09 | 2018-07-31 | Innate Pharma | Recognition tags for TGase-mediated conjugation |
| WO2018138032A2 (en) | 2017-01-24 | 2018-08-02 | Innate Pharma | NKp46 BINDING AGENTS |
| WO2018141959A1 (en) | 2017-02-06 | 2018-08-09 | Innate Pharma | Immunomodulatory antibody drug conjugates binding to a human mica polypeptide |
| US10053511B2 (en) | 2013-11-06 | 2018-08-21 | Abbvie Stemcentrx Llc | Anti-claudin antibodies and methods of use |
| US10058613B2 (en) | 2015-10-02 | 2018-08-28 | Genentech, Inc. | Pyrrolobenzodiazepine antibody drug conjugates and methods of use |
| WO2018159582A1 (ja) | 2017-02-28 | 2018-09-07 | 学校法人近畿大学 | 抗her3抗体-薬物コンジュゲート投与によるegfr-tki抵抗性の非小細胞肺癌の治療方法 |
| US10071169B2 (en) | 2013-06-20 | 2018-09-11 | Innate Pharma | Enzymatic conjugation of polypeptides |
| US10132799B2 (en) | 2012-07-13 | 2018-11-20 | Innate Pharma | Screening of conjugated antibodies |
| US10179820B2 (en) | 2014-09-12 | 2019-01-15 | Genentech, Inc. | Anti-HER2 antibodies and immunoconjugates |
| GB201820725D0 (en) | 2018-12-19 | 2019-01-30 | Adc Therapeutics Sarl | Pyrrolobenzodiazepine resistance |
| WO2019033773A1 (en) | 2017-08-14 | 2019-02-21 | Newbio Therapeutics, Inc. | TETRAMALEIMIDE LINKS AND USE THEREOF |
| WO2019092148A1 (en) | 2017-11-10 | 2019-05-16 | Innate Pharma | Antibodies with functionalized glutamine residues |
| WO2019096788A1 (en) | 2017-11-14 | 2019-05-23 | Medimmune Limited | Pyrrolobenzodiazepine conjugates |
| WO2019104289A1 (en) | 2017-11-27 | 2019-05-31 | Mersana Therapeutics, Inc. | Pyrrolobenzodiazepine antibody conjugates |
| US10308721B2 (en) | 2014-02-21 | 2019-06-04 | Abbvie Stemcentrx Llc | Anti-DLL3 antibodies and drug conjugates for use in melanoma |
| WO2019126691A1 (en) | 2017-12-21 | 2019-06-27 | Mersana Therapeutics, Inc. | Pyrrolobenzodiazepine antibody conjugates |
| US10392393B2 (en) | 2016-01-26 | 2019-08-27 | Medimmune Limited | Pyrrolobenzodiazepines |
| US10428156B2 (en) | 2014-09-05 | 2019-10-01 | Abbvie Stemcentrx Llc | Anti-MFI2 antibodies and methods of use |
| US10543279B2 (en) | 2016-04-29 | 2020-01-28 | Medimmune Limited | Pyrrolobenzodiazepine conjugates and their use for the treatment of cancer |
| US10544223B2 (en) | 2017-04-20 | 2020-01-28 | Adc Therapeutics Sa | Combination therapy with an anti-axl antibody-drug conjugate |
| WO2020059772A1 (ja) | 2018-09-20 | 2020-03-26 | 第一三共株式会社 | 抗her3抗体-薬物コンジュゲート投与によるher3変異がんの治療 |
| US10611824B2 (en) | 2013-03-15 | 2020-04-07 | Innate Pharma | Solid phase TGase-mediated conjugation of antibodies |
| WO2020086665A1 (en) | 2018-10-26 | 2020-04-30 | Immunogen, Inc. | Epcam antibodies, activatable antibodies, and immunoconjugates, and uses thereof |
| WO2020127573A1 (en) | 2018-12-19 | 2020-06-25 | Adc Therapeutics Sa | Pyrrolobenzodiazepine resistance |
| US10695439B2 (en) | 2016-02-10 | 2020-06-30 | Medimmune Limited | Pyrrolobenzodiazepine conjugates |
| US10780096B2 (en) | 2014-11-25 | 2020-09-22 | Adc Therapeutics Sa | Pyrrolobenzodiazepine-antibody conjugates |
| US10799595B2 (en) | 2016-10-14 | 2020-10-13 | Medimmune Limited | Pyrrolobenzodiazepine conjugates |
| WO2020245283A1 (en) | 2019-06-07 | 2020-12-10 | Adc Therapeutics Sa | Pyrrolobenzodiazepine-antibody conjugates |
| US10899775B2 (en) | 2015-07-21 | 2021-01-26 | Immunogen, Inc. | Methods of preparing cytotoxic benzodiazepine derivatives |
| WO2021022678A1 (zh) | 2019-08-07 | 2021-02-11 | 烟台迈百瑞国际生物医药股份有限公司 | 一种抗体药物偶联物及其应用 |
| US10934359B2 (en) | 2016-04-21 | 2021-03-02 | Abbvie Stemcentrx Llc | Anti-BMPR1B antibodies and methods of use |
| WO2021080608A1 (en) | 2019-10-25 | 2021-04-29 | Medimmune, Llc | Branched moiety for use in conjugates |
| US11059893B2 (en) | 2015-04-15 | 2021-07-13 | Bergenbio Asa | Humanized anti-AXL antibodies |
| US11103593B2 (en) | 2013-10-15 | 2021-08-31 | Seagen Inc. | Pegylated drug-linkers for improved ligand-drug conjugate pharmacokinetics |
| US11116847B2 (en) | 2013-12-19 | 2021-09-14 | Seagen Inc. | Methylene carbamate linkers for use with targeted-drug conjugates |
| US11160872B2 (en) | 2017-02-08 | 2021-11-02 | Adc Therapeutics Sa | Pyrrolobenzodiazepine-antibody conjugates |
| EP3939616A1 (en) | 2017-02-08 | 2022-01-19 | ADC Therapeutics SA | Pyrrolobenzodiazepine-antibody conjugates |
| WO2022014698A1 (ja) | 2020-07-17 | 2022-01-20 | 第一三共株式会社 | 抗体-薬物コンジュゲートの製造方法 |
| US11229708B2 (en) | 2015-12-04 | 2022-01-25 | Seagen Inc. | Conjugates of quaternized tubulysin compounds |
| US11318211B2 (en) | 2017-06-14 | 2022-05-03 | Adc Therapeutics Sa | Dosage regimes for the administration of an anti-CD19 ADC |
| WO2022112356A1 (en) | 2020-11-25 | 2022-06-02 | Innate Pharma | Treatment of cancer |
| US11352324B2 (en) | 2018-03-01 | 2022-06-07 | Medimmune Limited | Methods |
| US11370801B2 (en) | 2017-04-18 | 2022-06-28 | Medimmune Limited | Pyrrolobenzodiazepine conjugates |
| US11517626B2 (en) | 2016-02-10 | 2022-12-06 | Medimmune Limited | Pyrrolobenzodiazepine antibody conjugates |
| US11524969B2 (en) | 2018-04-12 | 2022-12-13 | Medimmune Limited | Pyrrolobenzodiazepines and conjugates thereof as antitumour agents |
| US11583590B2 (en) | 2017-09-29 | 2023-02-21 | Daiichi Sankyo Company, Limited | Antibody-pyrrolobenzodiazepine derivative conjugate and method of use thereof for treating a tumor |
| US11612665B2 (en) | 2017-02-08 | 2023-03-28 | Medimmune Limited | Pyrrolobenzodiazepine-antibody conjugates |
| US11649250B2 (en) | 2017-08-18 | 2023-05-16 | Medimmune Limited | Pyrrolobenzodiazepine conjugates |
| US11702473B2 (en) | 2015-04-15 | 2023-07-18 | Medimmune Limited | Site-specific antibody-drug conjugates |
| US11732001B2 (en) | 2012-05-18 | 2023-08-22 | United Kingdom Research And Innovation | Methods of incorporating an amino acid comprising a BCN group into a polypeptide using an orthogonal codon encoding it and an orthogonal pylrs synthase |
| US11730822B2 (en) | 2017-03-24 | 2023-08-22 | Seagen Inc. | Process for the preparation of glucuronide drug-linkers and intermediates thereof |
| US11793880B2 (en) | 2015-12-04 | 2023-10-24 | Seagen Inc. | Conjugates of quaternized tubulysin compounds |
| WO2023227660A1 (en) | 2022-05-25 | 2023-11-30 | Innate Pharma | Nectin-4 binding agents |
| US11844839B2 (en) | 2016-03-25 | 2023-12-19 | Seagen Inc. | Process for the preparation of pegylated drug-linkers and intermediates thereof |
| WO2024005123A1 (ja) | 2022-06-30 | 2024-01-04 | 東レ株式会社 | 癌の治療及び/又は予防用医薬組成物 |
| US12064446B2 (en) | 2015-04-10 | 2024-08-20 | Thomas Jefferson University | Methods and compositions for treating cancers and enhancing therapeutic immunity by selectively reducing immunomodulatory M2 monocytes |
| US12209099B2 (en) | 2019-03-15 | 2025-01-28 | Medimmune Limited | Azetidobenzodiazepine dimers and conjugates comprising them for use in the treatment of cancer |
| US12286657B2 (en) | 2018-10-26 | 2025-04-29 | United Kingdom Research And Innovation | Methods and compositions |
| WO2025096716A1 (en) | 2023-11-01 | 2025-05-08 | Incyte Corporation | Anti-mutant calreticulin (calr) antibody-drug conjugates and uses thereof |
| US12492263B2 (en) | 2022-04-14 | 2025-12-09 | Genentech, Inc. | Anti-HER2 antibodies and immunoconjugates |
Families Citing this family (48)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9453046B2 (en) | 2013-03-13 | 2016-09-27 | Seattle Genetics, Inc. | Activated carbon filtration for purification of benzodiazepine ADCs |
| EP3647322B1 (en) | 2014-03-20 | 2021-10-20 | Bristol-Myers Squibb Company | Stabilized fibronectin based scaffold molecules |
| RS60998B1 (sr) | 2014-11-21 | 2020-11-30 | Bristol Myers Squibb Co | Antitela koja sadrže modifikovane regione teškog lanca |
| SI3221363T1 (sl) | 2014-11-21 | 2020-09-30 | Bristol-Myers Squibb Company | Protitelesa proti CD73 in njihova uporaba |
| US10406251B2 (en) | 2014-11-25 | 2019-09-10 | Bristol-Myers Squibb Company | PD-L1 binding polypeptides for imaging |
| HUE052771T2 (hu) | 2014-12-11 | 2021-05-28 | Pf Medicament | C10orf54 elleni antitestek és alkalmazásuk |
| JP6498773B2 (ja) | 2015-01-14 | 2019-04-10 | ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company | ベンゾジアゼピン二量体、そのコンジュゲート、ならびに製造および使用方法 |
| JP6676058B2 (ja) | 2015-01-14 | 2020-04-08 | ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company | ヘテロアリーレン架橋したベンゾジアゼピン二量体、そのコンジュゲート、ならびに製造および使用方法 |
| WO2016144608A1 (en) | 2015-03-10 | 2016-09-15 | Bristol-Myers Squibb Company | Antibodies conjugatable by transglutaminase and conjugates made therefrom |
| SG10202008304TA (en) | 2015-05-29 | 2020-10-29 | Bristol Myers Squibb Co | Antibodies against ox40 and uses thereof |
| CN108884147B (zh) | 2015-09-23 | 2024-02-27 | 百时美施贵宝公司 | 结合磷脂酰肌醇蛋白聚糖3的基于纤连蛋白的支架分子 |
| MX2018007479A (es) | 2015-12-21 | 2018-08-01 | Squibb Bristol Myers Co | Anticuerpos variantes para conjugacion especifica de sitio. |
| KR20230038311A (ko) | 2016-03-04 | 2023-03-17 | 브리스톨-마이어스 스큅 컴퍼니 | 항-cd73 항체와의 조합 요법 |
| CN119264413A (zh) * | 2016-03-07 | 2025-01-07 | 韩美药品株式会社 | 聚乙二醇衍生物及其用途 |
| MA45328A (fr) | 2016-04-01 | 2019-02-06 | Avidity Biosciences Llc | Compositions acide nucléique-polypeptide et utilisations de celles-ci |
| WO2018048975A1 (en) | 2016-09-09 | 2018-03-15 | Bristol-Myers Squibb Company | Use of an anti-pd-1 antibody in combination with an anti-mesothelin antibody in cancer treatment |
| EP3522932A4 (en) | 2016-10-10 | 2020-06-24 | Cellerant Therapeutics, Inc. | ISOCHINOLIDINOBENZODIAZEPINE (IQB) -1 (CHLORMETHYL) -2,3-DIHYDRO-1-H-BENZO [E] INDOL (CBI) DIMERS |
| WO2018129384A1 (en) | 2017-01-06 | 2018-07-12 | Avidity Biosciences Llc | Nucleic acid-polypeptide compositions and methods of inducing exon skipping |
| IL269535B2 (en) | 2017-03-29 | 2024-11-01 | Ligachem Biosciences Inc | Pyrrolobenzodiazepine dimer prodrug and ligand-linker conjugate compound of the same |
| IL270596B1 (en) | 2017-05-25 | 2025-09-01 | Bristol Myers Squibb Co | Antibodies comprising modified heavy constant region for use in treating cancer |
| WO2018237335A1 (en) | 2017-06-23 | 2018-12-27 | VelosBio Inc. | IMMUNOCONJUGUATED ROR1 ANTIBODIES |
| GB201711809D0 (en) | 2017-07-21 | 2017-09-06 | Governors Of The Univ Of Alberta | Antisense oligonucleotide |
| US12227567B2 (en) | 2017-07-25 | 2025-02-18 | Truebinding, Inc. | Treating cancer by blocking the interaction of TIM-3 and its ligand |
| KR102822647B1 (ko) | 2017-10-04 | 2025-06-19 | 어비디티 바이오사이언시스 인크. | 핵산-폴리펩티드 조성물 및 그의 용도 |
| IL319835A (en) | 2017-12-06 | 2025-05-01 | Avidity Biosciences Inc | Compositions and methods for treating muscular dystrophy and myotonic dystrophy |
| CN112119098B (zh) | 2018-03-28 | 2025-06-24 | 田边三菱制药株式会社 | cMET单克隆结合剂的药物缀合物及其用途 |
| WO2020112781A1 (en) | 2018-11-28 | 2020-06-04 | Bristol-Myers Squibb Company | Antibodies comprising modified heavy constant regions |
| HRP20230500T1 (hr) | 2018-11-30 | 2023-07-21 | Bristol-Myers Squibb Company | Antitijelo koje sadrži c-terminalnu ekstenziju lakog lanca koja sadrži glutamin, njegovi konjugati, i postupci i primjene |
| KR20210102334A (ko) | 2018-12-12 | 2021-08-19 | 브리스톨-마이어스 스큅 컴퍼니 | 트랜스글루타미나제 접합을 위해 변형된 항체, 그의 접합체, 및 방법 및 용도 |
| IL319265A (en) | 2018-12-21 | 2025-04-01 | Avidity Biosciences Inc | Anti-transferrin receptor antibodies and their uses |
| KR20200084802A (ko) | 2019-01-03 | 2020-07-13 | 주식회사 레고켐 바이오사이언스 | 안전성이 향상된 피롤로벤조디아제핀 이량체 화합물 및 이의 용도 |
| WO2020141923A2 (ko) | 2019-01-03 | 2020-07-09 | 주식회사 레고켐 바이오사이언스 | 안전성이 향상된 피롤로벤조디아제핀 이량체 화합물 및 이의 용도 |
| EP3918323A4 (en) | 2019-01-30 | 2022-12-28 | TrueBinding, Inc. | ANTI-GAL3 ANTIBODIES AND THEIR USES |
| CA3142337A1 (en) | 2019-06-06 | 2020-12-10 | Avidity Biosciences, Inc. | Una amidites and uses thereof |
| CN114375296A (zh) | 2019-06-06 | 2022-04-19 | 艾维迪提生物科学公司 | 核酸多肽组合物及其用途 |
| US20240377413A1 (en) | 2019-09-16 | 2024-11-14 | Bristol-Myers Squibb Company | Dual capture method for analysis of antibody-drug conjugates |
| IL296387B2 (en) | 2020-03-19 | 2024-08-01 | Avidity Biosciences Inc | Preparations and methods for the treatment of facial, back and arm muscle atrophy |
| MX2022011880A (es) | 2020-03-27 | 2022-10-20 | Avidity Biosciences Inc | Composiciones y metodos para tratar distrofia muscular. |
| CA3185040A1 (en) | 2020-05-26 | 2021-12-02 | Truebinding, Inc. | Methods of treating inflammatory diseases by blocking galectin-3 |
| WO2023288252A1 (en) | 2021-07-13 | 2023-01-19 | Truebinding, Inc. | Methods of preventing protein aggregation |
| KR20240055874A (ko) | 2021-09-16 | 2024-04-29 | 어비디티 바이오사이언시스 인크. | 안면견갑상완 근이영양증을 치료하는 조성물 및 방법 |
| AU2022388722A1 (en) | 2021-11-09 | 2024-05-23 | Truebinding, Inc. | Methods of treating or inhibiting cardiovascular diseases |
| CN118660722A (zh) | 2021-12-23 | 2024-09-17 | 米雷楚来有限公司 | 用于递送多核苷酸的组合物 |
| US12071621B2 (en) | 2022-04-05 | 2024-08-27 | Avidity Biosciences, Inc. | Anti-transferrin receptor antibody-PMO conjugates for inducing DMD exon 44 skipping |
| JP2025511684A (ja) | 2022-04-07 | 2025-04-16 | ツインピッグ バイオラブ インコーポレイテッド | 新規ペプチドベースの免疫抗癌剤 |
| EP4561636A1 (en) | 2022-07-29 | 2025-06-04 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for transferrin receptor (tfr)-mediated delivery to the brain and muscle |
| CN120500498A (zh) | 2022-11-14 | 2025-08-15 | 瑞泽恩制药公司 | 用于成纤维细胞生长因子受体3介导的至星形胶质细胞的递送的组合物及方法 |
| WO2025007063A1 (en) | 2023-06-30 | 2025-01-02 | Avidity Biosciences, Inc. | Compositions and methods of using pln-targeting antibody-oligonucleotide conjugates |
Citations (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2053894A (en) | 1979-07-17 | 1981-02-11 | Green Cross Corp | Benzodiazepines processes for producing them and compositions containing them |
| JPS58180487A (ja) | 1982-04-16 | 1983-10-21 | Kyowa Hakko Kogyo Co Ltd | 抗生物質dc−81およびその製造法 |
| WO1993018045A1 (en) * | 1992-03-09 | 1993-09-16 | Cancer Research Campaign Technology Limited | Anti-cancer pyrrolobenzodiazepine derivatives |
| WO2000012508A2 (en) | 1998-08-27 | 2000-03-09 | Spirogen Limited | Pyrrolbenzodiazepines |
| US6214345B1 (en) | 1993-05-14 | 2001-04-10 | Bristol-Myers Squibb Co. | Lysosomal enzyme-cleavable antitumor drug conjugates |
| WO2004043963A1 (en) | 2002-11-14 | 2004-05-27 | Spirogen Limited | Pyrrolobenzodiazepines |
| WO2005023814A1 (en) | 2003-09-11 | 2005-03-17 | Spirogen Limited | Synthesis of protected pyrrolobenzodiazepines |
| WO2005082023A2 (en) | 2004-02-23 | 2005-09-09 | Genentech, Inc. | Heterocyclic self-immolative linkers and conjugates |
| WO2005085251A1 (en) | 2004-03-01 | 2005-09-15 | Spirogen Limited | 11-hydroxy-5h-pyrrolo[2,1-c][1,4]benzodiazepin-5-one derivatives as key intermediates for the preparation of c2 substituted pyrrolobenzodiazepines |
| WO2005110423A2 (en) * | 2004-05-13 | 2005-11-24 | Spirogen Limited | Pyrrolobenzodiazepine therapeutic agents useful in the treatment of leukaemias |
| WO2006111759A1 (en) | 2005-04-21 | 2006-10-26 | Spirogen Limited | Pyrrolobenzodiazepines |
| US20070092940A1 (en) | 2004-09-23 | 2007-04-26 | Genentech, Inc. | Cysteine engineered antibodies and conjugates |
| WO2007085930A1 (en) | 2006-01-25 | 2007-08-02 | Sanofi-Aventis | Cytotoxic agents comprising new tomaymycin derivatives and their therapeutic use |
| WO2008070593A2 (en) | 2006-12-01 | 2008-06-12 | Seattle Genetics, Inc. | Variant target binding agents and uses thereof |
| US7498298B2 (en) | 2003-11-06 | 2009-03-03 | Seattle Genetics, Inc. | Monomethylvaline compounds capable of conjugation to ligands |
| US20090148942A1 (en) | 2005-04-19 | 2009-06-11 | Mcdonagh Charlotte | Humanized anti-cd70 binding agents and uses thereof |
| WO2009117531A1 (en) | 2008-03-18 | 2009-09-24 | Seattle Genetics, Inc. | Auristatin drug linker conjugates |
| WO2010043880A1 (en) * | 2008-10-17 | 2010-04-22 | Spirogen Limited | Unsymmetrical pyrrolobenzodiazepine-dimers for treatment of proliferative diseases |
Family Cites Families (98)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3361742A (en) | 1964-12-07 | 1968-01-02 | Hoffmann La Roche | 5-oxo-1h-pyrrolo-[2, 1-c][1, 4]-benzodiazepin-2-crylamides |
| US3523941A (en) | 1967-03-06 | 1970-08-11 | Hoffmann La Roche | Benzodiazepine compounds and process for their preparation |
| US3524849A (en) | 1967-10-27 | 1970-08-18 | Hoffmann La Roche | Process for the preparation of pyrrolo-benzodiazepine acrylamides and intermediates useful therein |
| JPS4843755B1 (enExample) | 1969-06-26 | 1973-12-20 | ||
| FR2027356A1 (en) | 1968-12-30 | 1970-09-25 | Fujisawa Pharmaceutical Co | Benzodiazepinone antibiotics |
| IL33558A (en) | 1968-12-30 | 1973-10-25 | Fujisawa Pharmaceutical Co | Antibiotic pyrrolo-benzodiazepine compound,its derivatives and processes for their production |
| JPS6053033B2 (ja) | 1976-12-28 | 1985-11-22 | 財団法人微生物化学研究会 | 新制癌抗生物質マゼスラマイシン及びその製造方法 |
| JPS585916B2 (ja) | 1977-12-27 | 1983-02-02 | 株式会社ミドリ十字 | 新規ベンゾジアゼピン系化合物 |
| JPS57131791A (en) | 1980-12-31 | 1982-08-14 | Fujisawa Pharmaceut Co Ltd | Benzodiazepine derivative and its preparation |
| CA1173441A (en) | 1981-02-27 | 1984-08-28 | Hoffmann-La Roche Limited | Imidazodiazepines |
| CA1184175A (en) | 1981-02-27 | 1985-03-19 | Walter Hunkeler | Imidazodiazepines |
| CA1185602A (en) | 1981-02-27 | 1985-04-16 | Emilio Kyburz | Imidazodiazepines |
| US4427588A (en) | 1982-11-08 | 1984-01-24 | Bristol-Myers Company | Process for conversion of oxotomaymycin to tomaymycin |
| US4427587A (en) | 1982-11-10 | 1984-01-24 | Bristol-Myers Company | Total synthesis of antitumor antibiotics BBM-2040A and BBM-2040B |
| JPS59152329A (ja) | 1983-02-17 | 1984-08-31 | Green Cross Corp:The | 局所障害抑制剤 |
| FR2586683B1 (fr) | 1985-08-29 | 1988-07-01 | Centre Nat Rech Scient | Nouveaux derives de neothramycine, leur procede de preparation et leur application en tant que medicaments |
| JP2660201B2 (ja) | 1988-08-05 | 1997-10-08 | 塩野義製薬株式会社 | 新規ピロロ[1,4]ベンゾジアゼピン誘導体および老人性痴呆薬 |
| FR2676230B1 (fr) | 1991-05-07 | 1993-08-27 | Centre Nat Rech Scient | Nouveaux derives de pyrrolo [1,4]-benzodiazepines, leur procede de preparation et medicaments les contenant. |
| FR2696176B1 (fr) | 1992-09-28 | 1994-11-10 | Synthelabo | Dérivés de pipéridine, leur préparation et leur application en thérapeutique. |
| GB9316162D0 (en) | 1993-08-04 | 1993-09-22 | Zeneca Ltd | Fungicides |
| US20020113770A1 (en) | 1998-07-08 | 2002-08-22 | Joseph M. Jacobson | Methods for achieving improved color in microencapsulated electrophoretic devices |
| GB9818732D0 (en) | 1998-08-27 | 1998-10-21 | Univ Portsmouth | Collection of compounds |
| GB9818730D0 (en) | 1998-08-27 | 1998-10-21 | Univ Portsmouth | Collections of compounds |
| GB9818731D0 (en) | 1998-08-27 | 1998-10-21 | Univ Portsmouth | Compounds |
| US6909006B1 (en) | 1999-08-27 | 2005-06-21 | Spirogen Limited | Cyclopropylindole derivatives |
| US6660742B2 (en) | 2000-09-19 | 2003-12-09 | Taiho Pharmaceutical Co. Ltd. | Compositions and methods of the use thereof achiral analogues of CC-1065 and the duocarmycins |
| US6362331B1 (en) | 2001-03-30 | 2002-03-26 | Council Of Scientific And Industrial Research | Process for the preparation of antitumor agents |
| US6660856B2 (en) | 2002-03-08 | 2003-12-09 | Kaohsiung Medical University | Synthesis of pyrrolo[2,1-c][1,4]benzodiazepine analogues |
| ES2369542T3 (es) | 2002-07-31 | 2011-12-01 | Seattle Genetics, Inc. | Conjugados de auristatina y su uso para tratar cáncer, una enfermedad autoinmune o una enfermedad infecciosa. |
| US20040138269A1 (en) | 2002-10-11 | 2004-07-15 | Sugen, Inc. | Substituted pyrroles as kinase inhibitors |
| CA2520898C (en) | 2003-03-31 | 2009-10-20 | Council Of Scientific And Industrial Research | Non-cross-linking pyrrolo(2,1-c)(1,4)benzodiazepines as potential antitumour agents and process thereof |
| EP1675857B1 (en) | 2003-10-22 | 2011-07-13 | THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES | Pyrrolobenzodiazepine derivatives, compositions comprising the same and methods related thereto |
| GB0416511D0 (en) | 2003-10-22 | 2004-08-25 | Spirogen Ltd | Pyrrolobenzodiazepines |
| GB0404574D0 (en) | 2004-03-01 | 2004-04-07 | Spirogen Ltd | Amino acids |
| GB0404578D0 (en) | 2004-03-01 | 2004-04-07 | Spirogen Ltd | Pyrrolobenzodiazepines |
| GB0404577D0 (en) | 2004-03-01 | 2004-04-07 | Spirogen Ltd | Pyrrolobenzodiazepines |
| DE102004010943A1 (de) | 2004-03-03 | 2005-09-29 | Degussa Ag | Verfahren zur Herstellung von N-geschützten 4-Ketprolinderivaten |
| WO2005085260A1 (en) | 2004-03-09 | 2005-09-15 | Spirogen Limited | Pyrrolobenzodiazepines |
| FR2869231B1 (fr) | 2004-04-27 | 2008-03-14 | Sod Conseils Rech Applic | Composition therapeutique contenant au moins un derive de la pyrrolobenzodiazepine et la fludarabine |
| JP2006203186A (ja) | 2004-12-24 | 2006-08-03 | Showa Denko Kk | 熱電半導体合金の製造方法および熱電変換モジュールならびに熱電発電装置 |
| GB0508084D0 (en) * | 2005-04-21 | 2005-06-01 | Spirogen Ltd | Pyrrolobenzodiazepines |
| US8637664B2 (en) | 2005-10-05 | 2014-01-28 | Spirogen Sarl | Alkyl 4- [4- (5-oxo-2,3,5, 11a-tetrahydo-5H-pyrrolo [2, 1-c] [1,4] benzodiazepine-8-yloxy)-butyrylamino]-1H-pyrrole-2-carboxylate derivatives and related compounds for the treatment of a proliferative disease |
| US20070154906A1 (en) | 2005-10-05 | 2007-07-05 | Spirogen Ltd. | Methods to identify therapeutic candidates |
| US8460667B2 (en) | 2006-07-18 | 2013-06-11 | Sanofi | EPHA2 receptor antagonist antibodies |
| EP1914242A1 (en) | 2006-10-19 | 2008-04-23 | Sanofi-Aventis | Novel anti-CD38 antibodies for the treatment of cancer |
| WO2008050140A2 (en) | 2006-10-27 | 2008-05-02 | Spirogen Limited | Compounds for treatment of parasitic infection |
| US8465883B2 (en) | 2007-07-11 | 2013-06-18 | The Regents Of The University Of California | Nanostructured polymer membranes for proton conduction |
| ES2435779T3 (es) | 2007-07-19 | 2013-12-23 | Sanofi | Agentes citotóxicos que comprenden nuevos derivados de tomaimicina y su uso terapéutico |
| GB0722088D0 (en) | 2007-11-09 | 2007-12-19 | Spirogen Ltd | Pyrrolobenzodiazepines |
| GB0722087D0 (en) | 2007-11-09 | 2007-12-19 | Spirogen Ltd | Polyamides |
| GB0813432D0 (en) | 2008-07-22 | 2008-08-27 | Spirogen Ltd | Pyrrolobenzodiazepines |
| GB0819097D0 (en) | 2008-10-17 | 2008-11-26 | Spirogen Ltd | Pyrrolobenzodiazepines |
| CN105198908B (zh) | 2009-02-05 | 2019-12-24 | 伊缪诺金公司 | 新型苯并二氮杂*衍生物 |
| FR2949469A1 (fr) | 2009-08-25 | 2011-03-04 | Sanofi Aventis | Derives anticancereux, leur preparation et leur application en therapeutique |
| WO2011100227A1 (en) | 2010-02-09 | 2011-08-18 | Bristol-Myers Squibb Company | Benzylpyrrolidinone derivatives as modulators of chemokine receptor activity |
| GB201006340D0 (en) | 2010-04-15 | 2010-06-02 | Spirogen Ltd | Synthesis method and intermediates |
| ES2623057T3 (es) | 2010-04-15 | 2017-07-10 | Medimmune Limited | Pirrolobenzodiazepinas usadas para tratar enfermedades proliferativas |
| CN103068405A (zh) | 2010-04-15 | 2013-04-24 | 西雅图基因公司 | 靶向吡咯并苯并二氮杂卓结合物 |
| CN102933236B (zh) | 2010-04-15 | 2014-10-08 | 斯皮罗根有限公司 | 吡咯并苯二氮卓类及其结合物 |
| PT2675480T (pt) | 2011-02-15 | 2019-04-15 | Immunogen Inc | Métodos para preparação de conjugados |
| CN103987718A (zh) | 2011-09-20 | 2014-08-13 | 斯皮罗根有限公司 | 作为非对称二聚体pbd化合物用于内含在靶向结合物中的吡咯并苯并二氮杂卓 |
| CA2850373C (en) | 2011-10-14 | 2019-07-16 | Seattle Genetics, Inc. | Pyrrolobenzodiazepines and targeted conjugates |
| CA2850375C (en) | 2011-10-14 | 2019-07-02 | Seattle Genetics, Inc. | Pyrrolobenzodiazepines and targeted conjugates |
| CN103998450B (zh) | 2011-10-14 | 2017-03-08 | 麦迪穆有限责任公司 | 吡咯并苯并二氮杂卓 |
| CN103998449A (zh) | 2011-10-14 | 2014-08-20 | 斯皮罗根有限公司 | 吡咯并苯并二氮杂卓 |
| WO2013055987A1 (en) | 2011-10-14 | 2013-04-18 | Spirogen Sàrl | Pyrrolobenzodiazepines and conjugates thereof |
| AU2012322933B2 (en) | 2011-10-14 | 2017-02-02 | Medimmune Limited | Synthesis method and intermediates useful in the preparation of pyrrolobenzodiazepines |
| EP2855482B1 (en) | 2012-04-30 | 2017-03-01 | MedImmune Limited | Pyrrolobenzodiazepines |
| NZ701478A (en) | 2012-04-30 | 2016-08-26 | Medimmune Ltd | Pyrrolobenzodiazepines |
| JP2015523380A (ja) | 2012-07-09 | 2015-08-13 | ジェネンテック, インコーポレイテッド | 抗cd79b抗体を含む免疫複合体 |
| PE20150615A1 (es) | 2012-07-09 | 2015-05-28 | Genentech Inc | Inmunoconjugados que comprenden un anticuerpo anti-cd22 ligado a una pirrolobenzodiazepina |
| EP2879708A4 (en) | 2012-08-02 | 2016-03-16 | Genentech Inc | ANTIBODY AND ANTI-ETBR IMMUNOCONJUGATES |
| WO2014057118A1 (en) | 2012-10-12 | 2014-04-17 | Adc Therapeutics Sarl | Pyrrolobenzodiazepine-anti-cd22 antibody conjugates |
| HRP20182129T1 (hr) | 2012-10-12 | 2019-02-08 | Adc Therapeutics Sa | Konjugati protutijelo - pirolobenzodiazepin |
| CA2887896A1 (en) | 2012-10-12 | 2014-04-17 | Adc Therapeutics Sarl | Pyrrolobenzodiazepine-anti-her2 antibody conjugates |
| HRP20180945T1 (hr) | 2012-10-12 | 2018-08-10 | Adc Therapeutics Sa | Konjugati protutijelo-pirolobenzodiazepin |
| PT2906253T (pt) | 2012-10-12 | 2018-11-05 | Medimmune Ltd | Conjugados de anticorpo anti-psma de pirrolobenzodiazepina |
| RS58921B1 (sr) | 2012-10-12 | 2019-08-30 | Medimmune Ltd | Pirolobenzodiazepini i njihovi konjugati |
| LT2906251T (lt) | 2012-10-12 | 2017-12-11 | Adc Therapeutics Sa | Pirolobenzodiazepino-anti-cd22 antikūno konjugatai |
| ES2680153T3 (es) | 2012-10-12 | 2018-09-04 | Adc Therapeutics Sa | Conjugados de anticuerpos anti-PSMA-pirrolobenzodiazepinas |
| CA2885305C (en) | 2012-10-12 | 2019-11-12 | Spirogen Sarl | Synthesis and intermediates of pyrrolobenzodiazepine derivatives for conjugation |
| CN104703630A (zh) | 2012-10-12 | 2015-06-10 | 斯皮罗根有限公司 | 吡咯并苯并二氮杂卓及其结合物 |
| WO2014057120A1 (en) | 2012-10-12 | 2014-04-17 | Adc Therapeutics Sàrl | Pyrrolobenzodiazepine-antibody conjugates |
| WO2014096368A1 (en) | 2012-12-21 | 2014-06-26 | Spirogen Sàrl | Pyrrolobenzodiazepines and conjugates thereof |
| JP6527466B2 (ja) | 2012-12-21 | 2019-06-05 | メドイミューン・リミテッドMedImmune Limited | 増殖性疾患および自己免疫疾患の治療に使用するための非対称ピロロベンゾジアゼピンニ量体 |
| PL2958944T3 (pl) | 2013-02-22 | 2019-09-30 | Abbvie Stemcentrx Llc | Koniugaty przeciwciało anty-DLL3-PBD i ich zastosowania |
| NZ710746A (en) | 2013-03-13 | 2018-11-30 | Medimmune Ltd | Pyrrolobenzodiazepines and conjugates thereof |
| WO2014159981A2 (en) | 2013-03-13 | 2014-10-02 | Spirogen Sarl | Pyrrolobenzodiazepines and conjugates thereof |
| KR102066319B1 (ko) | 2013-03-13 | 2020-01-14 | 메디뮨 리미티드 | 피롤로벤조디아제핀 및 그의 컨쥬게이트 |
| US20160106861A1 (en) | 2013-04-26 | 2016-04-21 | Spirogen Sarl | Axl antibody-drug conjugate and its use for the treatment of cancer |
| WO2015052535A1 (en) | 2013-10-11 | 2015-04-16 | Spirogen Sàrl | Pyrrolobenzodiazepine-antibody conjugates |
| GB201317981D0 (en) | 2013-10-11 | 2013-11-27 | Spirogen Sarl | Pyrrolobenzodiazepines and conjugates thereof |
| WO2015052534A1 (en) | 2013-10-11 | 2015-04-16 | Spirogen Sàrl | Pyrrolobenzodiazepine-antibody conjugates |
| WO2015052532A1 (en) | 2013-10-11 | 2015-04-16 | Spirogen Sàrl | Pyrrolobenzodiazepine-antibody conjugates |
| GB201317982D0 (en) | 2013-10-11 | 2013-11-27 | Spirogen Sarl | Pyrrolobenzodiazepines and conjugates thereof |
| US20160256561A1 (en) | 2013-10-11 | 2016-09-08 | Medimmune Limited | Pyrrolobenzodiazepine-antibody conjugates |
| JP6681838B2 (ja) | 2013-12-16 | 2020-04-15 | ジェネンテック, インコーポレイテッド | ペプチド模倣薬化合物及びその抗体−薬剤複合体 |
| GB201406767D0 (en) | 2014-04-15 | 2014-05-28 | Cancer Rec Tech Ltd | Humanized anti-Tn-MUC1 antibodies anf their conjugates |
-
2011
- 2011-04-15 ES ES14173641.3T patent/ES2623057T3/es active Active
- 2011-04-15 KR KR1020127029495A patent/KR101687054B1/ko active Active
- 2011-04-15 BR BR112012026410A patent/BR112012026410B8/pt active IP Right Grant
- 2011-04-15 MX MX2012011899A patent/MX339185B/es active IP Right Grant
- 2011-04-15 MX MX2015001565A patent/MX368648B/es unknown
- 2011-04-15 CA CA2795353A patent/CA2795353C/en active Active
- 2011-04-15 NZ NZ602933A patent/NZ602933A/en unknown
- 2011-04-15 CN CN201180028242.6A patent/CN102971329B/zh active Active
- 2011-04-15 JP JP2013505172A patent/JP5875083B2/ja active Active
- 2011-04-15 WO PCT/US2011/032668 patent/WO2011130616A1/en not_active Ceased
- 2011-04-15 EP EP14173641.3A patent/EP2789622B1/en active Active
- 2011-04-15 AU AU2011239525A patent/AU2011239525B2/en active Active
- 2011-04-15 EP EP11716755A patent/EP2558475A1/en not_active Withdrawn
- 2011-04-15 US US13/641,180 patent/US8697688B2/en active Active
-
2012
- 2012-10-02 ZA ZA2012/07357A patent/ZA201207357B/en unknown
-
2013
- 2013-11-06 US US14/072,904 patent/US9732084B2/en active Active
Patent Citations (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2053894A (en) | 1979-07-17 | 1981-02-11 | Green Cross Corp | Benzodiazepines processes for producing them and compositions containing them |
| JPS58180487A (ja) | 1982-04-16 | 1983-10-21 | Kyowa Hakko Kogyo Co Ltd | 抗生物質dc−81およびその製造法 |
| WO1993018045A1 (en) * | 1992-03-09 | 1993-09-16 | Cancer Research Campaign Technology Limited | Anti-cancer pyrrolobenzodiazepine derivatives |
| US6214345B1 (en) | 1993-05-14 | 2001-04-10 | Bristol-Myers Squibb Co. | Lysosomal enzyme-cleavable antitumor drug conjugates |
| WO2000012508A2 (en) | 1998-08-27 | 2000-03-09 | Spirogen Limited | Pyrrolbenzodiazepines |
| WO2004043963A1 (en) | 2002-11-14 | 2004-05-27 | Spirogen Limited | Pyrrolobenzodiazepines |
| WO2005023814A1 (en) | 2003-09-11 | 2005-03-17 | Spirogen Limited | Synthesis of protected pyrrolobenzodiazepines |
| US7498298B2 (en) | 2003-11-06 | 2009-03-03 | Seattle Genetics, Inc. | Monomethylvaline compounds capable of conjugation to ligands |
| WO2005082023A2 (en) | 2004-02-23 | 2005-09-09 | Genentech, Inc. | Heterocyclic self-immolative linkers and conjugates |
| WO2005085251A1 (en) | 2004-03-01 | 2005-09-15 | Spirogen Limited | 11-hydroxy-5h-pyrrolo[2,1-c][1,4]benzodiazepin-5-one derivatives as key intermediates for the preparation of c2 substituted pyrrolobenzodiazepines |
| WO2005110423A2 (en) * | 2004-05-13 | 2005-11-24 | Spirogen Limited | Pyrrolobenzodiazepine therapeutic agents useful in the treatment of leukaemias |
| US20070092940A1 (en) | 2004-09-23 | 2007-04-26 | Genentech, Inc. | Cysteine engineered antibodies and conjugates |
| US20090148942A1 (en) | 2005-04-19 | 2009-06-11 | Mcdonagh Charlotte | Humanized anti-cd70 binding agents and uses thereof |
| WO2006111759A1 (en) | 2005-04-21 | 2006-10-26 | Spirogen Limited | Pyrrolobenzodiazepines |
| WO2007085930A1 (en) | 2006-01-25 | 2007-08-02 | Sanofi-Aventis | Cytotoxic agents comprising new tomaymycin derivatives and their therapeutic use |
| WO2008070593A2 (en) | 2006-12-01 | 2008-06-12 | Seattle Genetics, Inc. | Variant target binding agents and uses thereof |
| WO2009117531A1 (en) | 2008-03-18 | 2009-09-24 | Seattle Genetics, Inc. | Auristatin drug linker conjugates |
| WO2010043880A1 (en) * | 2008-10-17 | 2010-04-22 | Spirogen Limited | Unsymmetrical pyrrolobenzodiazepine-dimers for treatment of proliferative diseases |
Non-Patent Citations (34)
| Title |
|---|
| ALLEY, M.C. ET AL., CANCER RESEARCH, vol. 64, 2004, pages 6700 - 6706 |
| ARIMA ET AL., J. ANTIBIOTICS, vol. 25, 1972, pages 437 - 444 |
| BERGE ET AL., J. PHARM. SCI., vol. 66, 1977, pages 1 - 19 |
| BOSE ET AL., TETRAHEDRON, vol. 48, 1992, pages 751 - 758 |
| BOSE, D.S. ET AL., J. AM. CHEM. SOC., vol. 114, 1992, pages 4939 - 4941 |
| DORONINA ET AL., NATURE BIOTECHNOLOGY, vol. 21, 2003, pages 778 - 784 |
| GREENE, T.W., WUTS, G.M.: "Protective Groups in Organic Synthesis, 3rd Edition,", 1999, JOHN WILEY & SONS, INC. |
| GREENE, T.W., WUTS, G.M.: "Protective Groups in Organic Synthesis, 3rd Edition,", 1999, JOHN WILEY & SONS, INC., pages: 23 - 200 |
| GREENE, T.W., WUTS, G.M.: "Protective Groups in Organic Synthesis, 3rd Edition,", 1999, JOHN WILEY & SONS, INC., pages: 503 - 549 |
| GREENE, T.W., WUTS, G.M.: "Protective Groups in Organic Synthesis, 3rd Edition,", 1999, JOHN WILEY & SONS, INC., pages: 633 - 647 |
| GREGSON, S. ET AL., J. MED. CHEM., vol. 44, 2001, pages 737 - 748 |
| HARA ET AL., J. ANTIBIOTICS, vol. 41, 1988, pages 702 - 704 |
| HARTLEY, J.A. ET AL., CANCER RESEARCH, vol. 64, 2004, pages 6693 - 6699 |
| HOCHLOWSKI ET AL., J. ANTIBIOTICS, vol. 40, 1987, pages 145 - 148 |
| HOWARD, P.W. ET AL., BIOORG. MED. CHEM., 2009 |
| HURLEY, NEEDHAM-VANDEVANTER, ACC. CHEM. RES., vol. 19, 1986, pages 230 - 237 |
| ITOH ET AL., J. ANTIBIOTICS, vol. 41, 1988, pages 1281 - 1284 |
| KOHN: "Antibiotics III.", 1975, SPRINGER-VERLAG, pages: 3 - 11 |
| KONISHI ET AL., J. ANTIBIOTICS, vol. 37, 1984, pages 200 - 206 |
| KUMINOTO ET AL., J. ANTIBIOTICS, vol. 33, 1980, pages 665 - 667 |
| LANGLEY, THURSTON, J. ORG. CHEM., vol. 52, 1987, pages 91 - 97 |
| LEBER ET AL., J. AM. CHEM. SOC., vol. 110, 1988, pages 2992 - 2993 |
| LEIMGRUBER ET AL., J. AM. CHEM. SOC., vol. 87, 1965, pages 5791 - 5793 |
| LEIMGRUBER ET AL., J. AM. CHEM. SOC., vol. 87, 1965, pages 5793 - 5795 |
| MARTIN, C. ET AL., BIOCHEMISTRY, vol. 44, pages 4135 - 4147 |
| Q DONG ET AL., TETRAHEDRON LETTERS, vol. 36, no. 32, 1995, pages 5681 - 5682 |
| SHIMIZU ET AL., J. ANTIBIOTICS, vol. 29, 1982, pages 2492 - 2503 |
| SMELLIE, M. ET AL., BIOCHEMISTRY, vol. 42, 2003, pages 8232 - 8239 |
| TAKEUCHI ET AL., J. ANTIBIOTICS, vol. 29, 1976, pages 93 - 96 |
| THOMAS FEY, J. ORG. CHEM., vol. 66, 2001, pages 8154 - 8159 |
| THURSTON ET AL., CHEM. BRIT., vol. 26, 1990, pages 767 - 772 |
| THURSTON ET AL., CHEM. REV., vol. 1994, 1994, pages 433 - 465 |
| THURSTON, D.E. ET AL., J. ORG. CHEM., vol. 61, 1996, pages 8141 - 8147 |
| TSUNAKAWA ET AL., J. ANTIBIOTICS, vol. 41, 1988, pages 1366 - 1373 |
Cited By (276)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9624227B2 (en) | 2008-10-17 | 2017-04-18 | Medimmune Limited | Unsymmetrical pyrrolobenzodiazepine-dimers for treatment of proliferative diseases |
| US10947315B2 (en) | 2009-02-05 | 2021-03-16 | Immunogen, Inc. | Benzodiazepine derivatives |
| US9265841B2 (en) | 2009-02-05 | 2016-02-23 | Immunogen, Inc. | Benzodiazepine derivatives |
| US8426402B2 (en) | 2009-02-05 | 2013-04-23 | Immunogen, Inc. | Benzodiazepine derivatives |
| US9550787B2 (en) | 2009-02-05 | 2017-01-24 | Immunogen, Inc. | Benzodiazepine derivatives |
| US8802667B2 (en) | 2009-02-05 | 2014-08-12 | Immunogen, Inc. | Benzodiazepine derivatives |
| US10208127B2 (en) | 2009-02-05 | 2019-02-19 | Immunogen, Inc. | Benzodiazepine derivatives |
| US11505617B2 (en) | 2009-02-05 | 2022-11-22 | Immunogen, Inc. | Benzodiazepine derivatives |
| US8809320B2 (en) | 2009-02-05 | 2014-08-19 | Immunogen, Inc. | Benzodiazepine derivatives |
| US9242013B2 (en) | 2010-04-15 | 2016-01-26 | Seattle Genetics Inc. | Targeted pyrrolobenzodiazapine conjugates |
| US9592240B2 (en) | 2010-04-15 | 2017-03-14 | Seattle Genetics Inc. | Targeted pyrrolobenzodiazapine conjugates |
| US10561739B2 (en) | 2010-04-15 | 2020-02-18 | Seattle Genetics Inc. | Targeted pyrrolobenzodiazapine conjugates |
| US9732084B2 (en) | 2010-04-15 | 2017-08-15 | Medimmune Limited | Pyrrolobenzodiazepines used to treat proliferative diseases |
| US9534000B2 (en) | 2011-02-15 | 2017-01-03 | Immunogen, Inc. | Cytotoxic benzodiazepine derivatives and methods of preparation |
| US9840564B2 (en) | 2011-02-15 | 2017-12-12 | Immunogen, Inc. | Cytotoxic benzodiazepine derivatives |
| US8765740B2 (en) | 2011-02-15 | 2014-07-01 | Immunogen, Inc. | Cytotoxic benzodiazepine derivatives |
| US9169272B2 (en) | 2011-02-15 | 2015-10-27 | Immunogen, Inc. | Cytotoxic benzodiazepine derivatives |
| US9434748B2 (en) | 2011-02-15 | 2016-09-06 | Immunogen, Inc. | Cytotoxic benzodiazepine derivatives |
| US10364294B2 (en) | 2011-02-15 | 2019-07-30 | Immunogen, Inc. | Methods of preparation of conjugates |
| US10570212B2 (en) | 2011-02-15 | 2020-02-25 | Immunogen, Inc. | Cytotoxic benzodiazepine derivatives |
| US9353127B2 (en) | 2011-02-15 | 2016-05-31 | Immunogen, Inc. | Methods of preparation of conjugates |
| US9868791B2 (en) | 2011-02-15 | 2018-01-16 | Immunogen, Inc. | Methods of preparation of conjugates |
| USRE49918E1 (en) | 2011-02-15 | 2024-04-16 | Immunogen, Inc. | Cytotoxic benzodiazepine derivatives |
| US10179818B2 (en) | 2011-02-15 | 2019-01-15 | Immunogen, Inc. | Cytotoxic benzodiazepine derivatives |
| US8889669B2 (en) | 2011-02-15 | 2014-11-18 | Immunogen, Inc. | Cytotoxic benzodiazepine derivatives |
| WO2013041606A1 (en) | 2011-09-20 | 2013-03-28 | Spirogen Sàrl | Pyrrolobenzodiazepines as unsymmetrical dimeric pbd compounds for inclusion in targeted conjugates |
| EA027971B1 (ru) * | 2011-09-20 | 2017-09-29 | Медимьюн Лимитед | Пирролбензодиазепины |
| AU2012311505B2 (en) * | 2011-09-20 | 2016-09-29 | Medimmune Limited | Pyrrolobenzodiazepines as unsymmetrical dimeric PBD compounds for inclusion in targeted conjugates |
| CN103987718A (zh) * | 2011-09-20 | 2014-08-13 | 斯皮罗根有限公司 | 作为非对称二聚体pbd化合物用于内含在靶向结合物中的吡咯并苯并二氮杂卓 |
| KR101860174B1 (ko) | 2011-09-20 | 2018-05-21 | 메디뮨 리미티드 | 표적 접합체 내의 내포를 위한 비대칭 이량체 pbd 화합물로서 피롤로벤조디아제핀 |
| US9399641B2 (en) | 2011-09-20 | 2016-07-26 | Medimmune Limited | Pyrrolobenzodiazepines as unsymmetrical dimeric PBD compounds for inclusion in targeted conjugates |
| CN103998449A (zh) * | 2011-10-14 | 2014-08-20 | 斯皮罗根有限公司 | 吡咯并苯并二氮杂卓 |
| US10329352B2 (en) | 2011-10-14 | 2019-06-25 | Seattle Genetics, Inc. | Pyrrolobenzodiazepines and targeted conjugates |
| US9387259B2 (en) | 2011-10-14 | 2016-07-12 | Seattle Genetics, Inc. | Pyrrolobenzodiazepines and targeted conjugates |
| WO2013053871A1 (en) | 2011-10-14 | 2013-04-18 | Spirogen Sàrl | Pyrrolobenzodiazepines |
| US9399073B2 (en) | 2011-10-14 | 2016-07-26 | Seattle Genetics, Inc. | Pyrrolobenzodiazepines |
| US9526798B2 (en) | 2011-10-14 | 2016-12-27 | Seattle Genetics, Inc. | Pyrrolobenzodiazepines and targeted conjugates |
| WO2013053873A1 (en) | 2011-10-14 | 2013-04-18 | Spirogen Sàrl | Pyrrolobenzodiazepines |
| US9713647B2 (en) | 2011-10-14 | 2017-07-25 | Seattle Genetics, Inc. | Pyrrolobenzodiazepines and targeted conjugates |
| US9388187B2 (en) | 2011-10-14 | 2016-07-12 | Medimmune Limited | Pyrrolobenzodiazepines |
| JP2014528466A (ja) * | 2011-10-14 | 2014-10-27 | スパイロジェン・エス・アー・エール・エルSpirogen Sarl | ピロロベンゾジアゼピン |
| US10328084B2 (en) | 2011-10-14 | 2019-06-25 | Seattle Genetics, Inc. | Pyrrolobenzodiazepines and targeted conjugates |
| US9707301B2 (en) | 2011-10-14 | 2017-07-18 | Seattle Genetics, Inc. | Pyrrolobenzodiazepines and targeted conjugates |
| US10675359B2 (en) | 2011-12-23 | 2020-06-09 | Innate Pharma | Enzymatic conjugation of antibodies |
| US9717803B2 (en) | 2011-12-23 | 2017-08-01 | Innate Pharma | Enzymatic conjugation of polypeptides |
| US9764038B2 (en) | 2011-12-23 | 2017-09-19 | Innate Pharma | Enzymatic conjugation of antibodies |
| WO2013119960A2 (en) | 2012-02-08 | 2013-08-15 | Stem Centrx, Inc. | Novel modulators and methods of use |
| US8986972B2 (en) | 2012-02-24 | 2015-03-24 | Stem Centrx, Inc. | Nucleic acid encoding DLL3 antibodies |
| US11033634B2 (en) | 2012-02-24 | 2021-06-15 | Abbvie Stemcentrx Llc | Light chain variable regions |
| US9173959B1 (en) | 2012-02-24 | 2015-11-03 | Stemcentrx, Inc. | Anti-DLL3 antibody drug conjugates |
| US9155803B1 (en) | 2012-02-24 | 2015-10-13 | Stemcentrx, Inc. | Anti-DLL3 antibody drug conjugates and methods of use |
| US9770518B1 (en) | 2012-02-24 | 2017-09-26 | Abbvie Stemcentrx Llc | Anti-DLL3 antibody drug conjugates |
| US9676850B2 (en) | 2012-02-24 | 2017-06-13 | Abbvie Stemcentrx Llc | Anti SEZ6 antibodies and methods of use |
| US9133271B1 (en) | 2012-02-24 | 2015-09-15 | Stemcentrx, Inc. | Anti-DLL3 antibody drug conjugates and methods of use |
| US9107961B2 (en) | 2012-02-24 | 2015-08-18 | Stemcentrx, Inc. | Anti-DLL3 antibody drug conjugates for treating cancer |
| US9090683B2 (en) | 2012-02-24 | 2015-07-28 | Stemcentrx, Inc. | Methods of detection, diagnosis, and monitoring using anti-DLL3 antibodies |
| US10137204B2 (en) | 2012-02-24 | 2018-11-27 | Abbvie Stemcentrx Llc | Anti-DLL3 antibody drug conjugates for treating cancer |
| US9481727B2 (en) | 2012-02-24 | 2016-11-01 | Abbvie Stemcentrx Llc | Anti-DLL3 antibody drug conjugates |
| US9089615B2 (en) | 2012-02-24 | 2015-07-28 | Stemcentrx, Inc. | Anti-DLL3 antibodies |
| US9089616B2 (en) | 2012-02-24 | 2015-07-28 | Stemcentrx, Inc. | Anti-DLL3 antibody drug conjugates and methods of use |
| US9480757B2 (en) | 2012-02-24 | 2016-11-01 | Abbvie Stemcentrx Llc | Anti-DLL3 antibody drug conjugates |
| US10533051B2 (en) | 2012-02-24 | 2020-01-14 | Abbvie Stemcentrx Llc | Anti SEZ6 antibodies and methods of use |
| US9089617B2 (en) | 2012-02-24 | 2015-07-28 | Stemcentrx, Inc. | Anti-DLL3 antibody drug conjugates |
| US9775916B1 (en) | 2012-02-24 | 2017-10-03 | Abbvie Stemcentrx Llc | Anti-DLL3 antibody drug conjugates for treating cancer |
| US9764042B1 (en) | 2012-02-24 | 2017-09-19 | Abbvie Stemcentrx Llc | Methods of making DLL3 antibody drug conjugates |
| US9334318B1 (en) | 2012-02-24 | 2016-05-10 | Stemcentrx, Inc. | Multivalent DLL3 antibodies |
| US9345784B1 (en) | 2012-02-24 | 2016-05-24 | Stemcentrx, Inc. | Methods of delivering DLL3 antibody drug conjugates |
| US9352051B1 (en) | 2012-02-24 | 2016-05-31 | Stemcentrx, Inc. | Kits containing DLL3 antibody drug conjugates |
| US9937268B2 (en) | 2012-02-24 | 2018-04-10 | Abbvie Stemcentrx Llc | Anti-DLL3 antibody drug conjugates and methods of use |
| US9353182B2 (en) | 2012-02-24 | 2016-05-31 | Stemcentrx, Inc. | Anti-DLL3 antibodies |
| US9358304B1 (en) | 2012-02-24 | 2016-06-07 | Stemcentrx, Inc. | Methods of making DLL3 antibody drug conjugates |
| EP3095797A1 (en) | 2012-02-24 | 2016-11-23 | Stemcentrx, Inc. | Anti dll3 antibodies and methods of use thereof |
| US9878053B2 (en) | 2012-02-24 | 2018-01-30 | Abbvie Stemcentrx Llc | Methods of delivering DLL3 antibody drug conjugates |
| US9867887B1 (en) | 2012-02-24 | 2018-01-16 | Abbvie Stemcentrx Llc | Anti-DLL3 antibody drug conjugates |
| US9855343B2 (en) | 2012-02-24 | 2018-01-02 | Abbvie Stemcentrx Llc | Anti-DLL3 antibody drug conjugates |
| US9861708B2 (en) | 2012-02-24 | 2018-01-09 | Abbvie Stemcentrx Llc | Kits containing DLL3 antibody drug conjugates |
| US9931421B2 (en) | 2012-02-24 | 2018-04-03 | Abbvie Stemcentrx Llc | Methods of delivering DLL3 antibody drug conjugates |
| US9486537B2 (en) | 2012-02-24 | 2016-11-08 | Abbvie Stemcentrx Llc | Anti-DLL3 antibody drug conjugates |
| US9931420B2 (en) | 2012-02-24 | 2018-04-03 | Abbvie Stemcentrx Llc | Methods of making DLL3 antibody drug conjugates |
| US11732001B2 (en) | 2012-05-18 | 2023-08-22 | United Kingdom Research And Innovation | Methods of incorporating an amino acid comprising a BCN group into a polypeptide using an orthogonal codon encoding it and an orthogonal pylrs synthase |
| US10132799B2 (en) | 2012-07-13 | 2018-11-20 | Innate Pharma | Screening of conjugated antibodies |
| KR20150083858A (ko) * | 2012-10-12 | 2015-07-20 | 에이디씨 테라퓨틱스 에스에이알엘 | 피롤로벤조디아제핀-항-cd22 항체 컨주게이트 |
| US9889207B2 (en) | 2012-10-12 | 2018-02-13 | Medimmune Limited | Pyrrolobenzodiazepines and conjugates thereof |
| KR102138220B1 (ko) | 2012-10-12 | 2020-07-27 | 메디뮨 리미티드 | 피롤로벤조디아제핀 및 그의 컨주게이트 |
| US9415117B2 (en) | 2012-10-12 | 2016-08-16 | Medimmune Limited | Pyrrolobenzodiazepines and conjugates thereof |
| AU2013328619B2 (en) * | 2012-10-12 | 2016-11-17 | Adc Therapeutics Sa | Pyrrolobenzodiazepine - anti-PSMA antibody conjugates |
| US10722594B2 (en) | 2012-10-12 | 2020-07-28 | Adc Therapeutics S.A. | Pyrrolobenzodiazepine-anti-CD22 antibody conjugates |
| US10646584B2 (en) | 2012-10-12 | 2020-05-12 | Medimmune Limited | Pyrrolobenzodiazepines and conjugates thereof |
| US10736903B2 (en) | 2012-10-12 | 2020-08-11 | Medimmune Limited | Pyrrolobenzodiazepine-anti-PSMA antibody conjugates |
| AU2013328628B2 (en) * | 2012-10-12 | 2016-12-15 | Adc Therapeutics Sa | Pyrrolobenzodiazepine-anti-CD22 antibody conjugates |
| AU2013328625B2 (en) * | 2012-10-12 | 2016-12-15 | Adc Therapeutics Sa | Pyrrolobenzodiazepine-antibody conjugates |
| US10751346B2 (en) | 2012-10-12 | 2020-08-25 | Medimmune Limited | Pyrrolobenzodiazepine—anti-PSMA antibody conjugates |
| US10780181B2 (en) | 2012-10-12 | 2020-09-22 | Medimmune Limited | Pyrrolobenzodiazepine-antibody conjugates |
| US10799596B2 (en) | 2012-10-12 | 2020-10-13 | Adc Therapeutics S.A. | Pyrrolobenzodiazepine-antibody conjugates |
| CN105102068B (zh) * | 2012-10-12 | 2018-06-01 | Adc疗法责任有限公司 | 吡咯并苯并二氮杂卓-抗体结合物 |
| KR20190126197A (ko) * | 2012-10-12 | 2019-11-08 | 메디뮨 리미티드 | 피롤로벤조디아제핀 및 그의 컨주게이트 |
| JP2016502504A (ja) * | 2012-10-12 | 2016-01-28 | エイディーシー・セラピューティクス・エス・アー・エール・エルAdc Therapeutics Sarl | ピロロベンゾジアゼピン−抗体結合体 |
| WO2014057118A1 (en) * | 2012-10-12 | 2014-04-17 | Adc Therapeutics Sarl | Pyrrolobenzodiazepine-anti-cd22 antibody conjugates |
| WO2014057072A1 (en) | 2012-10-12 | 2014-04-17 | Spirogen Sàrl | Synthesis and intermediates of pyrrolobenzodiazepine derivatives for conjugation |
| JP2015534579A (ja) * | 2012-10-12 | 2015-12-03 | エイディーシー・セラピューティクス・エス・アー・エール・エルAdc Therapeutics Sarl | ピロロベンゾジアゼピン−抗体結合体 |
| JP2015534578A (ja) * | 2012-10-12 | 2015-12-03 | エイディーシー・セラピューティクス・エス・アー・エール・エルAdc Therapeutics Sarl | ピロロベンゾジアゼピン−抗体結合体 |
| JP2015534580A (ja) * | 2012-10-12 | 2015-12-03 | エイディーシー・セラピューティクス・エス・アー・エール・エルAdc Therapeutics Sarl | ピロロベンゾジアゼピン−抗体結合体 |
| KR101995619B1 (ko) | 2012-10-12 | 2019-07-03 | 에이디씨 테라퓨틱스 에스에이 | 피롤로벤조디아제핀-항체 컨주게이트 |
| JP2015534577A (ja) * | 2012-10-12 | 2015-12-03 | エイディーシー・セラピューティクス・エス・アー・エール・エルAdc Therapeutics Sarl | ピロロベンゾジアゼピン−抗体結合体 |
| AU2013328623B8 (en) * | 2012-10-12 | 2017-06-15 | Adc Therapeutics Sa | Pyrrolobenzodiazepine-antibody conjugates |
| AU2013328674B2 (en) * | 2012-10-12 | 2017-06-22 | Medimmune Limited | Pyrrolobenzodiazepines and conjugates thereof |
| CN105102068A (zh) * | 2012-10-12 | 2015-11-25 | Adc疗法责任有限公司 | 吡咯并苯并二氮杂卓-抗体结合物 |
| CN105102003A (zh) * | 2012-10-12 | 2015-11-25 | Adc疗法责任有限公司 | 吡咯并苯并二氮杂卓-抗psma抗体结合物 |
| CN105102004A (zh) * | 2012-10-12 | 2015-11-25 | Adc疗法责任有限公司 | 吡咯并苯并二氮杂卓-抗cd22抗体结合物 |
| US10994023B2 (en) | 2012-10-12 | 2021-05-04 | Medimmune Limited | Pyrrolobenzodiazepines and conjugates thereof |
| US9745303B2 (en) | 2012-10-12 | 2017-08-29 | Medimmune Limited | Synthesis and intermediates of pyrrolobenzodiazepine derivatives for conjugation |
| JP2015533141A (ja) * | 2012-10-12 | 2015-11-19 | スパイロジェン・エス・アー・エール・エルSpirogen Sarl | ピロロベンゾジアゼピン類およびその複合体 |
| CN105050661A (zh) * | 2012-10-12 | 2015-11-11 | Adc疗法责任有限公司 | 吡咯并苯并二氮杂卓-抗体结合物 |
| CN104955485A (zh) * | 2012-10-12 | 2015-09-30 | Adc疗法责任有限公司 | 吡咯并苯并二氮杂卓-抗her2抗体结合物 |
| KR20150083857A (ko) * | 2012-10-12 | 2015-07-20 | 에이디씨 테라퓨틱스 에스에이알엘 | 피롤로벤조디아제핀-항체 컨주게이트 |
| WO2014057117A1 (en) | 2012-10-12 | 2014-04-17 | Adc Therapeutics Sàrl | Pyrrolobenzodiazepine-antibody conjugates |
| KR101995621B1 (ko) | 2012-10-12 | 2019-07-03 | 에이디씨 테라퓨틱스 에스에이 | 피롤로벤조디아제핀-항-cd22 항체 컨주게이트 |
| US10335497B2 (en) | 2012-10-12 | 2019-07-02 | Medimmune Limited | Pyrrolobenzodiazepines and conjugates thereof |
| AU2013328623A1 (en) * | 2012-10-12 | 2015-04-23 | Adc Therapeutics Sa | Pyrrolobenzodiazepine-antibody conjugates |
| US11690918B2 (en) | 2012-10-12 | 2023-07-04 | Medimmune Limited | Pyrrolobenzodiazepine-anti-CD22 antibody conjugates |
| US11701430B2 (en) | 2012-10-12 | 2023-07-18 | Medimmune Limited | Pyrrolobenzodiazepines and conjugates thereof |
| US11771775B2 (en) | 2012-10-12 | 2023-10-03 | Medimmune Limited | Pyrrolobenzodiazepine-antibody conjugates |
| US11779650B2 (en) | 2012-10-12 | 2023-10-10 | Medimmune Limited | Pyrrolobenzodiazepine-antibody conjugates |
| US12121590B2 (en) | 2012-10-12 | 2024-10-22 | Medimmune Limited | Pyrrolobenzodiazepines and conjugates thereof |
| WO2014057073A1 (en) | 2012-10-12 | 2014-04-17 | Spirogen Sàrl | Pyrrolobenzodiazepines and conjugates thereof |
| WO2014057122A1 (en) | 2012-10-12 | 2014-04-17 | Adc Therapeutics Sàrl | Pyrrolobenzodiazepine-anti-cd22 antibody conjugates |
| CN104955485B (zh) * | 2012-10-12 | 2018-01-30 | Adc疗法责任有限公司 | 吡咯并苯并二氮杂卓‑抗her2抗体结合物 |
| US10695433B2 (en) | 2012-10-12 | 2020-06-30 | Medimmune Limited | Pyrrolobenzodiazepine-antibody conjugates |
| US9919056B2 (en) | 2012-10-12 | 2018-03-20 | Adc Therapeutics S.A. | Pyrrolobenzodiazepine-anti-CD22 antibody conjugates |
| CN105050661B (zh) * | 2012-10-12 | 2018-03-30 | Adc疗法责任有限公司 | 吡咯并苯并二氮杂卓‑抗体结合物 |
| WO2014057120A1 (en) | 2012-10-12 | 2014-04-17 | Adc Therapeutics Sàrl | Pyrrolobenzodiazepine-antibody conjugates |
| US9931414B2 (en) | 2012-10-12 | 2018-04-03 | Medimmune Limited | Pyrrolobenzodiazepine-antibody conjugates |
| WO2014057119A1 (en) | 2012-10-12 | 2014-04-17 | Adc Therapeutics Sàrl | Pyrrolobenzodiazepine-antibody conjugates |
| US9931415B2 (en) | 2012-10-12 | 2018-04-03 | Medimmune Limited | Pyrrolobenzodiazepine-antibody conjugates |
| WO2014057114A1 (en) * | 2012-10-12 | 2014-04-17 | Adc Therapeutics Sàrl | Pyrrolobenzodiazepine-anti-psma antibody conjugates |
| EP3470086A1 (en) * | 2012-10-12 | 2019-04-17 | Medimmune Limited | Pyrrolobenzodiazepines and conjugates thereof |
| WO2014057113A1 (en) | 2012-10-12 | 2014-04-17 | Adc Therapeutics Sarl | Pyrrolobenzodiazepine - anti-psma antibody conjugates |
| WO2014057115A1 (en) * | 2012-10-12 | 2014-04-17 | Adc Therapeutics Sàrl | Pyrrolobenzodiazepine-anti-her2 antibody conjugates |
| US10036010B2 (en) | 2012-11-09 | 2018-07-31 | Innate Pharma | Recognition tags for TGase-mediated conjugation |
| US9567340B2 (en) | 2012-12-21 | 2017-02-14 | Medimmune Limited | Unsymmetrical pyrrolobenzodiazepines-dimers for use in the treatment of proliferative and autoimmune diseases |
| US9562049B2 (en) | 2012-12-21 | 2017-02-07 | Medimmune Limited | Pyrrolobenzodiazepines and conjugates thereof |
| JP2016505586A (ja) * | 2012-12-21 | 2016-02-25 | スパイロジェン・エス・アー・エール・エルSpirogen Sarl | 増殖性疾患および自己免疫疾患の治療に使用するための非対称ピロロベンゾジアゼピンニ量体 |
| WO2014114207A1 (zh) | 2013-01-23 | 2014-07-31 | 上海新理念生物医药科技有限公司 | 一种三齿型连接子及其应用 |
| US9968687B2 (en) | 2013-02-22 | 2018-05-15 | Abbvie Stemcentrx Llc | Anti-DLL3 antibody drug conjugates |
| WO2014130879A3 (en) * | 2013-02-22 | 2014-10-16 | Stem Centrx, Inc. | Novel antibody conjugates and uses thereof |
| JP2019069983A (ja) * | 2013-02-22 | 2019-05-09 | アッヴィ・ステムセントルクス・エル・エル・シー | 新規抗体コンジュゲートおよびその使用 |
| JP2016510002A (ja) * | 2013-02-22 | 2016-04-04 | ステムセントリックス, インコーポレイテッド | 新規抗体コンジュゲートおよびその使用 |
| US10478509B2 (en) | 2013-02-22 | 2019-11-19 | Abbvie Stemcentrx Llc | Anti-DLL3 antibody drug conjugates for treating cancer |
| AU2014218730B2 (en) * | 2013-02-22 | 2018-12-13 | Abbvie Stemcentrx Llc | Novel antibody conjugates and uses thereof |
| EP3556400A1 (en) * | 2013-02-22 | 2019-10-23 | AbbVie Stemcentrx LLC | Method of making antidll3-antibody pbd conjugates |
| IL273359A (en) * | 2013-03-13 | 2020-05-31 | Seattle Genetics Inc | Formulations of antibody-drug and cyclodextrin coupling |
| CN105209077A (zh) * | 2013-03-13 | 2015-12-30 | 麦迪穆有限责任公司 | 吡咯并苯并二氮杂卓以及其结合物 |
| JP2016510806A (ja) * | 2013-03-13 | 2016-04-11 | メドイミューン・リミテッドMedImmune Limited | ピロロベンゾジアゼピン及びそのコンジュゲート |
| KR102066319B1 (ko) | 2013-03-13 | 2020-01-14 | 메디뮨 리미티드 | 피롤로벤조디아제핀 및 그의 컨쥬게이트 |
| JP2019069947A (ja) * | 2013-03-13 | 2019-05-09 | メドイミューン・リミテッドMedImmune Limited | ピロロベンゾジアゼピン及びそのコンジュゲート |
| CN105209077B (zh) * | 2013-03-13 | 2019-06-11 | 麦迪穆有限责任公司 | 吡咯并苯并二氮杂卓以及其结合物 |
| WO2014159981A2 (en) | 2013-03-13 | 2014-10-02 | Spirogen Sarl | Pyrrolobenzodiazepines and conjugates thereof |
| WO2014140862A2 (en) | 2013-03-13 | 2014-09-18 | Spirogen Sarl | Pyrrolobenzodiazepines and conjugates thereof |
| US10576164B2 (en) | 2013-03-13 | 2020-03-03 | Medimmune Limited | Pyrrolobenzodiazepines and conjugates thereof |
| KR20150131210A (ko) * | 2013-03-13 | 2015-11-24 | 메디뮨 리미티드 | 피롤로벤조디아제핀 및 그의 컨쥬게이트 |
| IL273359B (en) * | 2013-03-13 | 2021-12-01 | Seagen Inc | Formulations of antibody-drug conjugate and cyclodextrin |
| US9649390B2 (en) | 2013-03-13 | 2017-05-16 | Medimmune Limited | Pyrrolobenzodiazepines and conjugates thereof |
| WO2014140174A1 (en) | 2013-03-13 | 2014-09-18 | Spirogen Sàrl | Pyrrolobenzodiazepines and conjugates thereof |
| EP2970444A4 (en) * | 2013-03-13 | 2016-11-09 | Seattle Genetics Inc | CYCLODEXTRIN AND ANTIBODY ACTIVE CONJUGATE FORMULATIONS |
| US9821074B2 (en) | 2013-03-13 | 2017-11-21 | Genentech, Inc. | Pyrrolobenzodiazepines and conjugates thereof |
| US10611824B2 (en) | 2013-03-15 | 2020-04-07 | Innate Pharma | Solid phase TGase-mediated conjugation of antibodies |
| US10071169B2 (en) | 2013-06-20 | 2018-09-11 | Innate Pharma | Enzymatic conjugation of polypeptides |
| US9427478B2 (en) | 2013-06-21 | 2016-08-30 | Innate Pharma | Enzymatic conjugation of polypeptides |
| US10434180B2 (en) | 2013-06-21 | 2019-10-08 | Innate Pharma | Enzymatic conjugation of polypeptides |
| WO2015009740A2 (en) | 2013-07-15 | 2015-01-22 | Cell Signaling Technology, Inc. | Anti-mucin 1 binding agents and uses thereof |
| EP3699200A1 (en) | 2013-07-15 | 2020-08-26 | Cell Signaling Technology, Inc. | Anti-mucin 1 binding agents and uses thereof |
| WO2015023355A1 (en) | 2013-08-12 | 2015-02-19 | Genentech, Inc. | 1-(chloromethyl)-2,3-dihydro-1h-benzo[e]indole dimer antibody-drug conjugate compounds, and methods of use and treatment |
| US10035853B2 (en) | 2013-08-28 | 2018-07-31 | Abbvie Stemcentrx Llc | Site-specific antibody conjugation methods and compositions |
| EP3338793A1 (en) | 2013-08-28 | 2018-06-27 | AbbVie Stemcentrx LLC | Novel sez6 modulators and methods of use |
| US9993566B2 (en) | 2013-08-28 | 2018-06-12 | Abbvie Stemcentrx Llc | SEZ6 modulators and methods of use |
| US9956299B2 (en) | 2013-10-11 | 2018-05-01 | Medimmune Limited | Pyrrolobenzodiazepine—antibody conjugates |
| WO2015052322A1 (en) * | 2013-10-11 | 2015-04-16 | Spirogen Sàrl | Pyrrolobenzodiazepines and conjugates thereof |
| KR20160068787A (ko) * | 2013-10-11 | 2016-06-15 | 메디뮨 리미티드 | 피롤로벤조디아제핀 및 이의 컨주게이트 |
| US9950078B2 (en) | 2013-10-11 | 2018-04-24 | Medimmune Limited | Pyrrolobenzodiazepine-antibody conjugates |
| KR102052244B1 (ko) | 2013-10-11 | 2019-12-04 | 메디뮨 리미티드 | 피롤로벤조디아제핀 및 이의 컨주게이트 |
| AU2014333763B2 (en) * | 2013-10-11 | 2019-05-23 | Medimmune Limited | Pyrrolobenzodiazepines and conjugates thereof |
| US10010624B2 (en) | 2013-10-11 | 2018-07-03 | Medimmune Limited | Pyrrolobenzodiazepine-antibody conjugates |
| US9956298B2 (en) | 2013-10-11 | 2018-05-01 | Medimmune Limited | Pyrrolobenzodiazepines and conjugates thereof |
| US10029018B2 (en) | 2013-10-11 | 2018-07-24 | Medimmune Limited | Pyrrolobenzodiazepines and conjugates thereof |
| WO2015052537A1 (en) | 2013-10-11 | 2015-04-16 | Oxford Biotherapeutics Ltd | Conjugated antibodies against ly75 for the treatment of cancer |
| JP2016539915A (ja) * | 2013-10-11 | 2016-12-22 | メドイミューン・リミテッドMedImmune Limited | ピロロベンゾジアゼピン類およびその複合体 |
| US11103593B2 (en) | 2013-10-15 | 2021-08-31 | Seagen Inc. | Pegylated drug-linkers for improved ligand-drug conjugate pharmacokinetics |
| US10053511B2 (en) | 2013-11-06 | 2018-08-21 | Abbvie Stemcentrx Llc | Anti-claudin antibodies and methods of use |
| US10189910B2 (en) | 2013-12-12 | 2019-01-29 | Abbvie Stemcentrx Llc | Anti-DPEP3 antibodies and methods of use |
| US9777071B2 (en) | 2013-12-12 | 2017-10-03 | Abbvie Stemcentrx Llc | Anti-DPEP3 antibodies and methods of use |
| US10544215B2 (en) | 2013-12-16 | 2020-01-28 | Genentech, Inc. | 1-(Chloromethyl)-2,3-dihydro-1H-benzo[e]indole dimer antibody-drug conjugate compounds, and methods of use and treatment |
| WO2015095212A1 (en) | 2013-12-16 | 2015-06-25 | Genentech, Inc. | 1-(chloromethyl)-2,3-dihydro-1h-benzo[e]indole dimer antibody-drug conjugate compounds, and methods of use and treatment |
| US11116847B2 (en) | 2013-12-19 | 2021-09-14 | Seagen Inc. | Methylene carbamate linkers for use with targeted-drug conjugates |
| US10308721B2 (en) | 2014-02-21 | 2019-06-04 | Abbvie Stemcentrx Llc | Anti-DLL3 antibodies and drug conjugates for use in melanoma |
| US20170015623A1 (en) * | 2014-03-14 | 2017-01-19 | Medical Research Council | Cyclopropene amino acids and methods |
| US10774039B2 (en) * | 2014-03-14 | 2020-09-15 | United Kingdom Research And Innovation | Cyclopropene amino acids and methods |
| US10017580B2 (en) | 2014-04-15 | 2018-07-10 | ADC Therpeutics S.A. | Humanized anti-Tn-MUC1 antibodies and their conjugates |
| US10428156B2 (en) | 2014-09-05 | 2019-10-01 | Abbvie Stemcentrx Llc | Anti-MFI2 antibodies and methods of use |
| WO2016037644A1 (en) | 2014-09-10 | 2016-03-17 | Medimmune Limited | Pyrrolobenzodiazepines and conjugates thereof |
| WO2016038383A1 (en) * | 2014-09-12 | 2016-03-17 | Medimmune Limited | Pyrrolobenzodiazepines and conjugates thereof |
| CN106687472B (zh) * | 2014-09-12 | 2019-01-08 | 麦迪穆有限责任公司 | 吡咯并苯并二氮杂卓及其缀合物 |
| US10179820B2 (en) | 2014-09-12 | 2019-01-15 | Genentech, Inc. | Anti-HER2 antibodies and immunoconjugates |
| US10556966B2 (en) | 2014-09-12 | 2020-02-11 | Genentech, Inc. | Anti-HER2 antibodies and immunoconjugates |
| CN106687472A (zh) * | 2014-09-12 | 2017-05-17 | 麦迪穆有限责任公司 | 吡咯并苯并二氮杂卓及其缀合物 |
| US10420777B2 (en) | 2014-09-12 | 2019-09-24 | Medimmune Limited | Pyrrolobenzodiazepines and conjugates thereof |
| US10780096B2 (en) | 2014-11-25 | 2020-09-22 | Adc Therapeutics Sa | Pyrrolobenzodiazepine-antibody conjugates |
| US12064446B2 (en) | 2015-04-10 | 2024-08-20 | Thomas Jefferson University | Methods and compositions for treating cancers and enhancing therapeutic immunity by selectively reducing immunomodulatory M2 monocytes |
| US11702473B2 (en) | 2015-04-15 | 2023-07-18 | Medimmune Limited | Site-specific antibody-drug conjugates |
| US11059893B2 (en) | 2015-04-15 | 2021-07-13 | Bergenbio Asa | Humanized anti-AXL antibodies |
| WO2016166304A1 (en) | 2015-04-15 | 2016-10-20 | Van Berkel Patricius Hendrikus Cornelis | Site-specific antibody-drug conjugates |
| WO2016192527A1 (en) | 2015-05-29 | 2016-12-08 | Newbio Therapeutics, Inc. | Derivatives of dolastatin 10 and uses thereof |
| WO2016192528A1 (en) | 2015-05-29 | 2016-12-08 | Newbio Therapeutics, Inc. | Trimaleimide Linkers and Uses Thereof |
| CN108391434A (zh) * | 2015-06-23 | 2018-08-10 | 百时美施贵宝公司 | 大环苯并二氮杂*二聚体、其缀合物、制备和用途 |
| WO2016209951A1 (en) * | 2015-06-23 | 2016-12-29 | Bristol-Myers Squibb Company | Macrocyclic benzodiazepine dimers, conjugates thereof, preparation and uses |
| US10899775B2 (en) | 2015-07-21 | 2021-01-26 | Immunogen, Inc. | Methods of preparing cytotoxic benzodiazepine derivatives |
| US10639373B2 (en) | 2015-10-02 | 2020-05-05 | Genentech, Inc. | Pyrrolobenzodiazepine antibody drug conjugates and methods of use |
| US10632196B2 (en) | 2015-10-02 | 2020-04-28 | Genentech, Inc. | Pyrrolobenzodiazepine antibody drug conjugates and methods of use |
| US10058613B2 (en) | 2015-10-02 | 2018-08-28 | Genentech, Inc. | Pyrrolobenzodiazepine antibody drug conjugates and methods of use |
| US11793880B2 (en) | 2015-12-04 | 2023-10-24 | Seagen Inc. | Conjugates of quaternized tubulysin compounds |
| US11229708B2 (en) | 2015-12-04 | 2022-01-25 | Seagen Inc. | Conjugates of quaternized tubulysin compounds |
| US10392393B2 (en) | 2016-01-26 | 2019-08-27 | Medimmune Limited | Pyrrolobenzodiazepines |
| US11517626B2 (en) | 2016-02-10 | 2022-12-06 | Medimmune Limited | Pyrrolobenzodiazepine antibody conjugates |
| US10695439B2 (en) | 2016-02-10 | 2020-06-30 | Medimmune Limited | Pyrrolobenzodiazepine conjugates |
| US11844839B2 (en) | 2016-03-25 | 2023-12-19 | Seagen Inc. | Process for the preparation of pegylated drug-linkers and intermediates thereof |
| US10934359B2 (en) | 2016-04-21 | 2021-03-02 | Abbvie Stemcentrx Llc | Anti-BMPR1B antibodies and methods of use |
| US10543279B2 (en) | 2016-04-29 | 2020-01-28 | Medimmune Limited | Pyrrolobenzodiazepine conjugates and their use for the treatment of cancer |
| WO2017201132A2 (en) | 2016-05-18 | 2017-11-23 | Mersana Therapeutics, Inc. | Pyrrolobenzodiazepines and conjugates thereof |
| WO2017223275A1 (en) | 2016-06-24 | 2017-12-28 | Mersana Therapeutics, Inc. | Pyrrolobenzodiazepines and conjugates thereof |
| US10799595B2 (en) | 2016-10-14 | 2020-10-13 | Medimmune Limited | Pyrrolobenzodiazepine conjugates |
| WO2018091646A1 (en) * | 2016-11-17 | 2018-05-24 | Medimmune Limited | Pyrrolobenzodiazepine conjugates |
| WO2018098258A2 (en) | 2016-11-23 | 2018-05-31 | Immunogen, Inc. | Selective sulfonation of benzodiazepine derivatives |
| WO2018112334A1 (en) | 2016-12-16 | 2018-06-21 | Bluefin Biomedicine, Inc. | Anti-cub domain-containing protein 1 (cdcp1) antibodies, antibody drug conjugates, and methods of use thereof |
| WO2018119196A1 (en) | 2016-12-23 | 2018-06-28 | Immunogen, Inc. | Immunoconjugates targeting adam9 and methods of use thereof |
| WO2018129029A1 (en) | 2017-01-04 | 2018-07-12 | Immunogen, Inc. | Met antibodies and immunoconjugates and uses thereof |
| WO2018138032A2 (en) | 2017-01-24 | 2018-08-02 | Innate Pharma | NKp46 BINDING AGENTS |
| WO2018141959A1 (en) | 2017-02-06 | 2018-08-09 | Innate Pharma | Immunomodulatory antibody drug conjugates binding to a human mica polypeptide |
| US11813335B2 (en) | 2017-02-08 | 2023-11-14 | Medimmune Limited | Pyrrolobenzodiazepine-antibody conjugates |
| US11612665B2 (en) | 2017-02-08 | 2023-03-28 | Medimmune Limited | Pyrrolobenzodiazepine-antibody conjugates |
| US11160872B2 (en) | 2017-02-08 | 2021-11-02 | Adc Therapeutics Sa | Pyrrolobenzodiazepine-antibody conjugates |
| EP3939616A1 (en) | 2017-02-08 | 2022-01-19 | ADC Therapeutics SA | Pyrrolobenzodiazepine-antibody conjugates |
| US11384098B2 (en) | 2017-02-08 | 2022-07-12 | Adc Therapeutics Sa | Pyrrolobenzodiazepine-antibody conjugates |
| WO2018159582A1 (ja) | 2017-02-28 | 2018-09-07 | 学校法人近畿大学 | 抗her3抗体-薬物コンジュゲート投与によるegfr-tki抵抗性の非小細胞肺癌の治療方法 |
| US11730822B2 (en) | 2017-03-24 | 2023-08-22 | Seagen Inc. | Process for the preparation of glucuronide drug-linkers and intermediates thereof |
| US11370801B2 (en) | 2017-04-18 | 2022-06-28 | Medimmune Limited | Pyrrolobenzodiazepine conjugates |
| US10544223B2 (en) | 2017-04-20 | 2020-01-28 | Adc Therapeutics Sa | Combination therapy with an anti-axl antibody-drug conjugate |
| US11938192B2 (en) | 2017-06-14 | 2024-03-26 | Medimmune Limited | Dosage regimes for the administration of an anti-CD19 ADC |
| US11318211B2 (en) | 2017-06-14 | 2022-05-03 | Adc Therapeutics Sa | Dosage regimes for the administration of an anti-CD19 ADC |
| WO2019033773A1 (en) | 2017-08-14 | 2019-02-21 | Newbio Therapeutics, Inc. | TETRAMALEIMIDE LINKS AND USE THEREOF |
| US11649250B2 (en) | 2017-08-18 | 2023-05-16 | Medimmune Limited | Pyrrolobenzodiazepine conjugates |
| US11583590B2 (en) | 2017-09-29 | 2023-02-21 | Daiichi Sankyo Company, Limited | Antibody-pyrrolobenzodiazepine derivative conjugate and method of use thereof for treating a tumor |
| US12246196B2 (en) | 2017-09-29 | 2025-03-11 | Daiichi Sankyo Company, Limited | Antibody-drug conjugates comprising substituted benzo[e]pyrrolo[1,2-a][1,4]diazepines |
| US11628223B2 (en) | 2017-09-29 | 2023-04-18 | Daiichi Sankyo Company, Limited | Antibody-drug conjugates comprising substituted benzo[e]pyrrolo[1,2-α][1,4]diazepines |
| US12350344B2 (en) | 2017-09-29 | 2025-07-08 | Daiichi Sankyo Company, Limited | Methods of treating a tumor by administering a claudin-6 (CLDN6) or CLDN9 antibody-pyrrolobenzodiazepine derivative conjugate |
| WO2019092148A1 (en) | 2017-11-10 | 2019-05-16 | Innate Pharma | Antibodies with functionalized glutamine residues |
| WO2019096788A1 (en) | 2017-11-14 | 2019-05-23 | Medimmune Limited | Pyrrolobenzodiazepine conjugates |
| US11638760B2 (en) | 2017-11-27 | 2023-05-02 | Mersana Therapeutics, Inc. | Pyrrolobenzodiazepine antibody conjugates |
| WO2019104289A1 (en) | 2017-11-27 | 2019-05-31 | Mersana Therapeutics, Inc. | Pyrrolobenzodiazepine antibody conjugates |
| WO2019126691A1 (en) | 2017-12-21 | 2019-06-27 | Mersana Therapeutics, Inc. | Pyrrolobenzodiazepine antibody conjugates |
| US11352324B2 (en) | 2018-03-01 | 2022-06-07 | Medimmune Limited | Methods |
| US11524969B2 (en) | 2018-04-12 | 2022-12-13 | Medimmune Limited | Pyrrolobenzodiazepines and conjugates thereof as antitumour agents |
| WO2020059772A1 (ja) | 2018-09-20 | 2020-03-26 | 第一三共株式会社 | 抗her3抗体-薬物コンジュゲート投与によるher3変異がんの治療 |
| WO2020086665A1 (en) | 2018-10-26 | 2020-04-30 | Immunogen, Inc. | Epcam antibodies, activatable antibodies, and immunoconjugates, and uses thereof |
| US12286657B2 (en) | 2018-10-26 | 2025-04-29 | United Kingdom Research And Innovation | Methods and compositions |
| GB201820725D0 (en) | 2018-12-19 | 2019-01-30 | Adc Therapeutics Sarl | Pyrrolobenzodiazepine resistance |
| WO2020127573A1 (en) | 2018-12-19 | 2020-06-25 | Adc Therapeutics Sa | Pyrrolobenzodiazepine resistance |
| US12209099B2 (en) | 2019-03-15 | 2025-01-28 | Medimmune Limited | Azetidobenzodiazepine dimers and conjugates comprising them for use in the treatment of cancer |
| WO2020245283A1 (en) | 2019-06-07 | 2020-12-10 | Adc Therapeutics Sa | Pyrrolobenzodiazepine-antibody conjugates |
| US11484606B2 (en) | 2019-06-07 | 2022-11-01 | Adc Therapeutics Sa | Pyrrolobenzodiazepine-antibody conjugates |
| WO2021022678A1 (zh) | 2019-08-07 | 2021-02-11 | 烟台迈百瑞国际生物医药股份有限公司 | 一种抗体药物偶联物及其应用 |
| WO2021080608A1 (en) | 2019-10-25 | 2021-04-29 | Medimmune, Llc | Branched moiety for use in conjugates |
| WO2022014698A1 (ja) | 2020-07-17 | 2022-01-20 | 第一三共株式会社 | 抗体-薬物コンジュゲートの製造方法 |
| WO2022112356A1 (en) | 2020-11-25 | 2022-06-02 | Innate Pharma | Treatment of cancer |
| US12492263B2 (en) | 2022-04-14 | 2025-12-09 | Genentech, Inc. | Anti-HER2 antibodies and immunoconjugates |
| WO2023227660A1 (en) | 2022-05-25 | 2023-11-30 | Innate Pharma | Nectin-4 binding agents |
| WO2024005123A1 (ja) | 2022-06-30 | 2024-01-04 | 東レ株式会社 | 癌の治療及び/又は予防用医薬組成物 |
| WO2025096716A1 (en) | 2023-11-01 | 2025-05-08 | Incyte Corporation | Anti-mutant calreticulin (calr) antibody-drug conjugates and uses thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2789622A1 (en) | 2014-10-15 |
| ES2623057T3 (es) | 2017-07-10 |
| US8697688B2 (en) | 2014-04-15 |
| MX368648B (es) | 2019-10-09 |
| BR112012026410A2 (pt) | 2016-09-20 |
| US9732084B2 (en) | 2017-08-15 |
| BR112012026410B8 (pt) | 2023-01-31 |
| US20130059800A1 (en) | 2013-03-07 |
| MX2012011899A (es) | 2013-02-15 |
| JP5875083B2 (ja) | 2016-03-02 |
| US20140066435A1 (en) | 2014-03-06 |
| CA2795353C (en) | 2018-01-09 |
| ZA201207357B (en) | 2015-07-29 |
| HK1202536A1 (en) | 2015-10-02 |
| MX339185B (es) | 2016-05-16 |
| NZ602933A (en) | 2014-09-26 |
| EP2558475A1 (en) | 2013-02-20 |
| CN102971329B (zh) | 2016-06-29 |
| BR112012026410A8 (pt) | 2017-12-12 |
| CA2795353A1 (en) | 2011-10-20 |
| BR112012026410B1 (pt) | 2020-12-01 |
| AU2011239525B2 (en) | 2015-04-09 |
| CN102971329A (zh) | 2013-03-13 |
| EP2789622B1 (en) | 2017-03-01 |
| JP2013523897A (ja) | 2013-06-17 |
| KR101687054B1 (ko) | 2016-12-15 |
| KR20130040889A (ko) | 2013-04-24 |
| AU2011239525A1 (en) | 2012-11-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU2011239525B2 (en) | Pyrrolobenzodiazepines used to treat proliferative diseases | |
| US10328084B2 (en) | Pyrrolobenzodiazepines and targeted conjugates | |
| EP2751111B1 (en) | Asymmetrical bis-(5H-Pyrrolo[2,1-c][1,4]benzodiazepin-5-one) derivatives for the treatment of proliferative or autoimmune diseases | |
| EP2558127B1 (en) | Targeted pyrrolobenzodiazepine conjugates | |
| EP2751110B1 (en) | Asymmetrical bis-(5H-Pyrrolo[2,1-c][1,4]benzodiazepin-5-one) derivatives for the treatment of proliferative and autoimmune diseases | |
| EP2751120B1 (en) | Pyrrolobenzodiazepines as unsymmetrical dimeric pbd compounds for inclusion in targeted conjugates | |
| EP3309162A1 (en) | Targeted conjugates of pyrrolobenzodiazepines | |
| HK40075847A (en) | Targeted pyrrolobenzodiazepine conjugates | |
| HK1202536B (en) | Pyrrolobenzodiazepines used to treat proliferative diseases | |
| HK1195070B (en) | Asymmetrical bis-(5h-pyrrolo[2,1-c][1,4]benzodiazepin-5-one) derivatives for the treatment of proliferative and autoimmune diseases | |
| HK1195070A (en) | Asymmetrical bis-(5h-pyrrolo[2,1-c][1,4]benzodiazepin-5-one) derivatives for the treatment of proliferative and autoimmune diseases | |
| HK1200091B (en) | Pyrrolobenzodiazepines and targeted conjugates | |
| HK1195071B (en) | Asymmetrical bis-(5h-pyrrolo[2,1-c][1,4]benzodiazepin-5-one) derivatives for the treatment of proliferative or autoimmune diseases | |
| HK1195071A (en) | Asymmetrical bis-(5h-pyrrolo[2,1-c][1,4]benzodiazepin-5-one) derivatives for the treatment of proliferative or autoimmune diseases | |
| HK1176301B (en) | Targeted pyrrolobenzodiazepine conjugates | |
| HK1176301A (en) | Targeted pyrrolobenzodiazepine conjugates | |
| HK1195073A (en) | Pyrrolobenzodiazepines as unsymmetrical dimeric pbd compounds for inclusion in targeted conjugates | |
| HK1195073B (en) | Pyrrolobenzodiazepines as unsymmetrical dimeric pbd compounds for inclusion in targeted conjugates | |
| NZ623216B2 (en) | Pyrrolobenzodiazepines and targeted conjugates |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 201180028242.6 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11716755 Country of ref document: EP Kind code of ref document: A1 |
|
| DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
| ENP | Entry into the national phase |
Ref document number: 2795353 Country of ref document: CA |
|
| ENP | Entry into the national phase |
Ref document number: 2013505172 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2012/011899 Country of ref document: MX |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 13641180 Country of ref document: US Ref document number: 2011716755 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 9188/DELNP/2012 Country of ref document: IN |
|
| ENP | Entry into the national phase |
Ref document number: 2011239525 Country of ref document: AU Date of ref document: 20110415 Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 20127029495 Country of ref document: KR Kind code of ref document: A |
|
| REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012026410 Country of ref document: BR |
|
| ENP | Entry into the national phase |
Ref document number: 112012026410 Country of ref document: BR Kind code of ref document: A2 Effective date: 20121015 |