WO2011129390A1 - ポリエステル及びその変性物の製造方法 - Google Patents

ポリエステル及びその変性物の製造方法 Download PDF

Info

Publication number
WO2011129390A1
WO2011129390A1 PCT/JP2011/059260 JP2011059260W WO2011129390A1 WO 2011129390 A1 WO2011129390 A1 WO 2011129390A1 JP 2011059260 W JP2011059260 W JP 2011059260W WO 2011129390 A1 WO2011129390 A1 WO 2011129390A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
parts
water
acid
reaction
Prior art date
Application number
PCT/JP2011/059260
Other languages
English (en)
French (fr)
Inventor
大地 岡本
有馬 聖夫
Original Assignee
太陽ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽ホールディングス株式会社 filed Critical 太陽ホールディングス株式会社
Priority to JP2012510685A priority Critical patent/JP6166898B2/ja
Priority to CN2011800190937A priority patent/CN102844352A/zh
Publication of WO2011129390A1 publication Critical patent/WO2011129390A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/09Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for producing a polyester and a modified product thereof by depolymerizing or further esterifying the recovered polyester as a raw material.
  • Polyester typified by polyethylene terephthalate (PET) is used in various applications such as molded products, films, and fibers.
  • PET polyethylene terephthalate
  • PET bottles have been rapidly increasing in use in recent years due to their light weight, excellent transparency, gas barrier properties, and high strength, and the disposal method thereof has become a social problem. For this reason, various studies have been made on the recycling of PET bottles (see Patent Documents 1 and 2).
  • Examples of a new recycling method for waste polyester include the production of alkyd resins for paints using a depolymerization reaction with glycols (see Patent Document 3), and the production of polyester resins for paints using recycled polyesters (Patent Documents 4 and 5).
  • Patent Document 6 an alcohol component containing a trihydric or lower polyhydric alcohol and a tetrahydric or higher alcohol, fats and oils and / or fatty acids
  • Patent Document 7 a method for producing an alkyd resin by depolymerizing a polyester resin containing terephthalic acid recovered from waste as a main raw material and performing an esterification reaction in a mixture with a polybasic acid component
  • Patent Document 7 all are intended for use in coating compositions.
  • a raw material polyester and a polyhydric alcohol generally glycol
  • the temperature is raised to perform a decomposition reaction at a temperature close to the boiling point level of glycol.
  • the water generated by the depolymerization reaction is removed as condensed water by azeotroping with an organic solvent, generally xylene, which can form an azeotrope with water (for example, the implementation of Patent Documents 4 and 5 described above). See example).
  • xylene an organic solvent
  • the addition of xylene has a problem that the wastewater treatment becomes an environmental burden, and the manufacturing cost is likely to increase and the production efficiency is likely to decrease.
  • the present invention has been made in view of the prior art as described above, and can depolymerize a raw material polyester in a short time, can produce a polyester (oligomer) at a relatively low cost with high production efficiency, and is environmentally friendly.
  • the purpose is to provide.
  • the objective of this invention is providing the manufacturing method which converts the polyester obtained from a waste material into the polyester (oligomer) which can be easily melt
  • Another object of the present invention is to provide a method capable of producing various polyester modified products at a relatively low cost and with high production efficiency.
  • a polyester comprising a raw material polyester, a polyol component, and a mixture containing water as essential components is heated to depolymerize the raw material polyester.
  • the polyol component is a polyol having a plurality of hydroxyl groups in one molecule, and preferably contains at least a trifunctional or higher functional polyol.
  • the raw material polyester is polyethylene terephthalate.
  • a raw material polyester, a polyol component, water, and a mixture containing polybasic acid or anhydride thereof as essential components are heated to depolymerize the raw material polyester and esterify the depolymerized product.
  • a method for producing a polyester which comprises performing an ester exchange reaction and a polycondensation reaction of the polyester.
  • the polyester produced by any one of the above methods is further combined with a compound having one functional group that reacts with alcohol or carboxylic acid and one or more ethylenically unsaturated groups.
  • a method for producing a polyester-modified product which is chemically modified by reaction.
  • the method for producing the polyester of the present invention basically depolymerizes the raw material polyester by heating a mixture containing the raw material polyester, the polyol component, and water as essential components. In addition, it can be converted into a polyester (oligomer) that can be dissolved in an organic solvent and can be chemically modified. In another aspect, water acts as a reaction medium for efficiently performing the reaction between the raw material polyester in a pulverized or pellet form and the polyol. Polyester generally has a high melting point of 260 ° C.
  • the polyester produced by any one of the above methods is further reacted with a compound having one functional group that reacts with alcohol or carboxylic acid and one or more ethylenically unsaturated groups.
  • a modified polyester having photosensitivity can be produced at a relatively low cost with high production efficiency.
  • the basic feature of the method for producing a polyester of the present invention is that water is used when depolymerizing the raw material polyester with a polyol component. According to the study by the present inventors, it is possible to obtain polyester oligomers that can be chemically modified in a short time by coexisting with water, and further, no organic solvent is used in the process. It is possible to provide a manufacturing method.
  • the raw material polyester used in the method of the present invention may be any conventionally known polyester, but includes polyethylene terephthalate (PET), polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene phthalate, liquid crystal polymer, and the like.
  • PET polyethylene terephthalate
  • recycled PET and recycled PET collected from waste such as plastic bottle waste are more preferable from the viewpoint of environmental protection.
  • the collected PET can be crushed and washed, and the recycled PET can be obtained from the market after being washed and pelletized.
  • bifunctional polyols examples include ethylene glycol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, 1,3-butanediol, Neopentyl glycol, spiro glycol, dioxane glycol, adamantanediol, 3-methyl-1,5-pentanediol, methyloctanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, 2-methylpropanediol 1, Bifunctional phenols such as 3,3-methylpentanediol 1,5, hexamethylene glycol, octy
  • Examples of commercially available products of the above hydroxyl group-terminated polyalkanediene diols include EPOL (registered trademark; hydrogenated polyisoprene diol, molecular weight). 1,860, average polymerization degree 26, manufactured by Idemitsu Kosan Co., Ltd.), PIP (polyisoprene diol, molecular weight 2,200, average polymerization degree 34, manufactured by Idemitsu Kosan Co., Ltd.), polytail H (hydrogenated polybutadiene diol, molecular weight) 2,200, average degree of polymerization 39, Mitsubishi Chemical Corporation And R-45HT (polybutanediol, molecular weight 2,270, average degree of polymerization 42, manufactured by Idemitsu Kosan Co., Ltd.).
  • EPOL registered trademark; hydrogenated polyisoprene diol, molecular weight
  • 1,860 average polymerization degree 26, manufactured by Idemitsu Kosan Co., Ltd.
  • PIP poly
  • tri- or higher functional polyol examples include glycerin, trimethylolethane, trimethylolpropane, sorbitol, pentaerythritol, ditrimethylolpropane, dipentaerythritol, tripentaerythritol, adamantanetriol, polycaprolactone triol (for example, plaxel 303, plaxel 305, Plaxel 308, Plaxel 312, Plaxel L312AL, Plaxel 320ML, Plaxel L320AL; all of which are manufactured by Daicel Chemical Industries, Ltd .; trade names), and those having aromatic rings include ethylene oxides and propylene oxides of trifunctional or higher phenol compounds Sake manufactured by Shikoku Kasei Kogyo Co., Ltd. is exemplified as a modified product or a compound having a heterocyclic ring.
  • a plant-derived alcohol component (plant-derived polyol) may be used.
  • a castor oil alcohol component is preferable.
  • the polyol component used in the present invention preferably contains a tri- or higher functional polyol, particularly preferably trimethylolpropane.
  • the polyol component is preferably used in an amount of 0.2 mol to 8.0 mol, preferably 0.33 mol to 7.0 mol, of the hydroxyl group of the polyol component with respect to 1 mol of the ester bond of the raw material polyester. Is more preferable.
  • the amount of water used is not particularly limited, but is preferably an amount that can sufficiently stir the reaction mixture. Since water is a medium for stirring and is not taken into the reaction system in depolymerization, the amount of water added is not particularly limited. The added water is recovered during or after the depolymerization reaction.
  • a depolymerization catalyst can be used to promote depolymerization of the raw material polyester.
  • the depolymerization catalyst include monobutyltin hydroxide, dibutyltin oxide, monobutyltin-2-ethylhexanoate, dibutyltin dilaurate, stannous oxide, tin acetate, zinc acetate, manganese acetate, cobalt acetate, and calcium acetate.
  • the amount of these depolymerization catalysts used is usually from 0.005 to 5 parts by mass, particularly preferably from 0.05 to 5 parts by mass based on 100 parts by mass of the total amount of the raw material polyester (for example, regenerated PE) and the polyol component. It is in the range of 3 parts by mass.
  • the raw material polyester, polyol component, water, and polybasic acid or anhydride thereof are reacted together in the presence of a depolymerization catalyst as necessary.
  • the target polyester is obtained by simultaneously performing a depolymerization reaction of the raw material polyester and an esterification reaction (including transesterification reaction and polycondensation reaction of polyester) between the polyester, polyol component and polybasic acid component.
  • an esterification reaction including transesterification reaction and polycondensation reaction of polyester
  • the above-mentioned components are mixed, and the target polyester resin can be efficiently produced by reacting at a temperature of about 160 ° C. to about 270 ° C. for about 2 to 10 hours with stirring.
  • the reaction time can be greatly shortened by batch reaction.
  • polybasic acid or its anhydride used in the above method a conventionally known polybasic acid or its anhydride can be used.
  • aromatic polycarboxylic acids such as phthalic anhydride, isophthalic acid, terephthalic acid, tetrabromophthalic anhydride, methyl hymic anhydride, tetrachlorophthalic anhydride, and anhydrides thereof, hexahydrophthalic anhydride Acid, tetrahydrophthalic anhydride, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid and other alicyclic carboxylic acids and their anhydrides, maleic anhydride, fumaric acid, succinic anhydride, adipic acid, sebacine Examples thereof include aliphatic polyvalent carboxylic acids such as acid and azelaic acid, and anhydrides thereof, pyromellitic anhydride, trimellitic anhydride,
  • the polyester produced by any one of the above methods is further subjected to one functional group that reacts with alcohol or carboxylic acid and one or more ethylenically unsaturated groups (acryloyl group).
  • photosensitivity is imparted by reacting a compound having a methacryloyl group) and chemically modifying it.
  • This reaction is the same as the conventionally known esterification reaction.
  • an acid catalyst or a polymerization inhibitor is usually added and the reaction is carried out at about 80 ° C. to about 130 ° C. for 2 hours. Perform for 10 hours.
  • the synthesis can be carried out at normal pressure or under pressure, and the reaction temperature can be lowered under pressure.
  • Examples of the functional group capable of reacting with the alcohol or carboxylic acid include a carboxyl group, an isocyanate group, a cyclic ether group, and a hydroxyl group.
  • Compounds having one carboxyl group and one or more ethylenically unsaturated groups include acrylic acid, dimer of acrylic acid, methacrylic acid, ⁇ -styrylacrylic acid, ⁇ -furfurylacrylic acid, crotonic acid, ⁇ -Cyanocinnamic acid, cinnamic acid, (meth) acrylic acid caprolactone adduct, and half ester compounds of saturated or unsaturated dibasic acid anhydrides and (meth) acrylates having one hydroxyl group in one molecule, etc.
  • Examples of (meth) acrylates having a hydroxyl group for producing a half ester compound include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, trimethylolpropane di (meth) acrylate, Examples include pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and phenylglycidyl (meth) acrylate.
  • dibasic acid anhydride for producing the half ester compound examples include succinic anhydride, maleic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylendomethylenetetrahydro Phthalic anhydride etc. are mentioned, It can use individually or in combination of 2 or more types.
  • (meth) acrylate is a term which generically refers to acrylate, methacrylate and a mixture thereof, and the same applies to other similar expressions.
  • the (meth) acrylic monomer having an isocyanate group is not particularly limited as long as it is an isocyanate compound having one isocyanate group and one or more ethylenically unsaturated groups in one molecule.
  • Specific examples include, for example, (meth) acryloyloxyethyl isocyanate, (meth) acryloyloxyethoxyethyl isocyanate, bis (acryloxymethyl) ethyl isocyanate, or modified products thereof, alone or in combination of two or more. Can be used in combination.
  • Karenz MOI methacryloyloxyethyl isocyanate
  • Karenz AOI acryloyloxyethoxyethyl isocyanate
  • Karenz MOI-EG methacryloyloxyethoxyethyl isocyanate
  • Karenz MOI BM Karenz MOI isocyanate block
  • Karenz MOI-BP Karenz MOI isocyanate block
  • Karenz BEI (1,1-bis (acryloxymethyl) ethyl isocyanate
  • a half urethane compound of a compound having one hydroxyl group and one or more ethylenically unsaturated groups in one molecule and a diisocyanate such as isophorone diisocyanate, toluylene diisocyanate, tetramethylxylene diisocyanate, hexamethylene diisocyanate is also used. can do.
  • Compounds having one cyclic ether group and one or more ethylenically unsaturated groups in one molecule include 2-hydroxyethyl (meth) acrylate glycidyl ether, 2-hydroxypropyl (meth) acrylate glycidyl ether, 3-hydroxy Propyl (meth) acrylate glycidyl ether, 2-hydroxybutyl (meth) acrylate glycidyl ether, 4-hydroxybutyl (meth) acrylate glycidyl ether, 2-hydroxypentyl (meth) acrylate glycidyl ether, 6-hydroxyhexyl (meth) acrylate glycidyl Examples include ether or glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl acrylate, etc., which can be used alone or in combination of two or more. .
  • the compound having a hydroxyl group and an ethylenically unsaturated group is not particularly limited as long as it is a compound having one hydroxyl group and one or more ethylenically unsaturated groups in one molecule.
  • Specific examples include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta ( Examples thereof include hydroxyalkyl (meth) acrylates such as (meth) acrylate, and these can be used alone or in combination of two or more.
  • the (meth) acrylic monomer having a functional group capable of reacting with the alcohol or carboxylic acid as described above can be used alone or in combination of two or more.
  • the polyester-modified product produced by the above-described method is prepared by adding one functional group that reacts with an alcohol or carboxylic acid and one or more ethylenically unsaturated groups (acryloyl group) to the depolymerized product or the polybasic acid-modified product.
  • it is a photosensitive compound (acrylate or methacrylate compound) imparted with photosensitivity by reacting with a compound having a methacryloyl group) and chemically modifying it, so that it is a photocurable resin composition or a photocurable thermosetting resin composition. It is useful as a photosensitive component of a product.
  • an oxime ester photopolymerization initiator, an ⁇ -aminoacetophenone photopolymerization initiator, an acylphosphine oxide photopolymerization initiator, a benzoin compound, an acetophenone compound, and an anthraquinone compound are added to the above-described polyester modified product (acrylate or methacrylate compound).
  • a photocurable resin composition by blending a conventionally known and commonly used photopolymerization initiator such as a thioxanthone compound, a ketal compound, a benzophenone compound, a xanthone compound, a tertiary amine compound, a photoinitiator assistant, and a sensitizer. can do.
  • Example 1 Recycled PET flakes with an IV value of 0.6-0.7, 104 parts of neopentyl glycol (melting point: 126 ° C., the same applies below) to a 1000 ml four-necked round bottom separable lasco fitted with a stirrer, nitrogen introduction pipe, and cooling pipe, First, 44 parts of trimethylolpropane (melting point: 58 ° C., the same applies hereinafter), 1.2 parts of dibutyltin oxide, and 120 parts of tap water were charged. The atmosphere in the flask was changed to a nitrogen atmosphere, and then immersed in an oil bath heated to 180 ° C. The temperature of the oil bath was raised to 240 ° C. while gradually removing and the reaction was continued until the inside of the flask became transparent while stirring to obtain a polyester oligomer.
  • Example 2 Recycled PET flakes with an IV value of 0.6 to 0.7, 104 parts of neopentyl glycol, 104 parts of dipentyl oxide, 0.8 parts of dibutyls, water on a 1000 ml four-necked round bottom separable lasco fitted with a stirrer, nitrogen inlet tube, and cooling tube After charging 80 parts and making the inside of the flask a nitrogen atmosphere, the flask was immersed in an oil bath heated to 180 ° C., and the temperature of the oil bath was raised to 240 ° C. while gradually removing water. The reaction was continued until it became transparent to obtain a polyester oligomer.
  • Example 3 Recycled PET flakes with an IV value of 0.6 to 0.7, 134 parts of trimethylolpropane, 134 parts of dibutyltin oxide, 0.8 parts of dibutyltin oxide, in a 1000 ml four-necked round bottom separable lasco fitted with a stirrer, nitrogen inlet tube, and cooling tube
  • the flask was immersed in an oil bath heated to 180 ° C., the temperature of the oil bath was raised to 240 ° C. while gradually removing water, and the flask was stirred. The reaction was continued until the inside became transparent to obtain a polyester oligomer.
  • Example 4 A 1000 ml four-necked round bottom separable lasco fitted with a stirrer, a nitrogen introducing tube, and a cooling tube is equipped with 384 parts of recycled PET flakes having an IV value of 0.6 to 0.7, 134 parts of trimethylolpropane, pentaerythritol (melting point 260 ° C.) 136. Parts, 1.0 part of dibutyltin oxide and 80 parts of industrial water were added, the inside of the flask was made into a nitrogen atmosphere, then immersed in an oil bath heated to 180 ° C., and the oil bath was placed at 240 ° C. while gradually removing water. The reaction was continued until the inside of the flask became transparent while stirring to obtain a polyester oligomer.
  • Example 5 Recycled PET flakes with IV value of 0.6 to 0.7, 134 parts of trimethylol propane, 134 parts of dibutyltin oxide, 1.0 part of dibutyltin oxide on a 1000 ml four-necked round bottom separable lasco fitted with a stirrer, nitrogen inlet pipe, and cooling pipe
  • the flask was immersed in an oil bath heated to 180 ° C., the temperature of the oil bath was raised to 240 ° C. while gradually removing water, and the flask was stirred while stirring. The reaction was continued until became transparent to obtain a polyester oligomer.
  • Example 6 Recycled PET flakes with an IV value of 0.6 to 0.7, 104 parts of neopentyl glycol, 42 parts of trimethylolpropane, 42 parts of trimethylolpropane, isophthalic acid in a 1000 ml four-necked round-bottom separable lasco fitted with a stirrer, nitrogen inlet tube, and cooling tube 136 parts, 1.0 part of dibutyltin oxide, and 80 parts of industrial water were charged, the inside of the flask was made into a nitrogen atmosphere, then immersed in an oil bath heated to 180 ° C., and the oil bath was removed while gradually removing water. The temperature was raised to 0 ° C., and the reaction was continued while stirring until the inside of the flask became transparent to obtain a polyester oligomer.
  • Example 7 Ten plastic bottles containing 500 ml of tea were prepared, the label and cap were removed, and the contents were taken out. The bottle was easily rinsed with tap water and placed in an aluminum half-size pan with a capacity of 25L. Next, 57 parts of neopentyl glycol, 22 parts of trimethylolpropane, 0.6 part of dibutyltin oxide, and 120 parts of tap water were charged and heated with a hot plate so that the internal temperature of the pan became 240 ° C. ⁇ 5 ° C. Stirring was continued while stirring until the inside of the pan became transparent to obtain a polyester oligomer.
  • Example 8 Ten PET bottles containing 500 ml of soft drink were prepared, the label and cap were removed, and the contents were taken out. The bottle was put in an aluminum half-size pan with a capacity of 25L without any loss. Next, 57 parts of neopentyl glycol, 22 parts of trimethylolpropane, 0.6 part of dibutyltin oxide, and 120 parts of tap water were charged and heated with a hot plate so that the internal temperature of the pan became 240 ° C. ⁇ 5 ° C. Stirring was continued while stirring until the inside of the pan became transparent to obtain a polyester oligomer.
  • Example 9 225 parts of the polyester oligomer obtained in Example 3, 187 parts of acrylic acid, 1.87 parts of paratoluenesulfonic acid, paramethoxyphenol 1 in a 1000 ml four-necked round bottom separable lasco equipped with a stirrer, a nitrogen introduction pipe and a cooling pipe .50 parts was charged and stirred to dissolve uniformly, and then immersed in an oil bath heated to 118 ° C. to continue the reaction for 16.5 hours. After completion of the reaction, the acid value of the reaction solution was measured and neutralized by adding an acid equivalent alkaline aqueous solution into the flask. Then, brine (20 wt%) was added and stirred.
  • Comparative Example 1 Recycled PET flakes with an IV value of 0.6 to 0.7, 104 parts of neopentyl glycol, 44 parts of trimethylolpropane, 44 parts of trimethylolpropane, dibutyltin oxide on a 1000 ml four-necked round bottom separable lasco fitted with a stirrer, nitrogen inlet tube and cooling tube 1.2 parts and 80 parts of xylene were charged and the inside of the flask was made into a nitrogen atmosphere, then immersed in an oil bath heated to 180 ° C., and the oil bath was heated to 240 ° C. while gradually removing xylene, The reaction was continued while stirring until the inside of the flask became transparent to obtain a polyester oligomer.
  • Comparative Example 2 Recycled PET flakes with IV value of 0.6 to 0.7, 104 parts of neopentyl glycol, 0.8 parts of dibutyls oxide, 0.8 parts of dibutyl oxide, xylene in a 1000 ml four-necked round bottom separable lasco fitted with a stirrer, nitrogen inlet tube, and cooling tube After 91 parts were charged and the inside of the flask was made into a nitrogen atmosphere, the flask was immersed in an oil bath heated to 180 ° C., and the temperature of the oil bath was raised to 240 ° C. while gradually removing xylene. The reaction was continued until it became transparent to obtain a polyester oligomer.
  • Comparative Example 3 Recycled PET flakes with an IV value of 0.6 to 0.7, 134 parts of trimethylolpropane, 134 parts of dibutyltin oxide, 0.8 parts of dibutyltin oxide, xylene on a 1000 ml four-necked round bottom separable lasco fitted with a stirrer, nitrogen inlet tube, and cooling tube After 91 parts were charged and the inside of the flask was made into a nitrogen atmosphere, the flask was immersed in an oil bath heated to 180 ° C., and the temperature of the oil bath was raised to 240 ° C. while gradually removing xylene. The reaction was continued until it became transparent to obtain a polyester oligomer.
  • Comparative Example 4 Depolymerization was carried out in the same manner as in Example 4 except that industrial water was not used.
  • Comparative Example 5 Depolymerization was conducted in the same manner as in Example 5 except that industrial water was not used.
  • Comparative Example 6 A 1000 ml four-necked round bottom separable lasco fitted with a stirrer, nitrogen inlet tube, and cooling tube, 423 parts of recycled PET frame having an IV value of 0.6 to 0.7, 104 parts of neopentyl glycol, 42 parts of trimethylolpropane, isophthalic acid 136 parts, 1.0 part of dibutyltin oxide and 17 parts of xylene were charged, and the atmosphere in the flask was changed to a nitrogen atmosphere. Then, the flask was immersed in an oil bath heated to 180 ° C., and the oil bath was placed at 240 ° C. while gradually removing xylene. The reaction was continued until the inside of the flask became transparent while stirring to obtain a polyester oligomer.
  • Table 1 shows the time required for the depolymerization in Examples 1 to 6 and Comparative Examples 1 to 6. Moreover, even if it reacts for 10 hours or more, what was confirmed with the residue of PET which is a raw material is described as "x". The measurement results are shown in Table 1. As shown in the measurement results shown in Table 1, depolymerization does not proceed within 10 hours when water is not used for those having a large amount of solid PET flakes or polyol having a high melting point. Some PET residue was identified. On the other hand, depolymerization progressed when water was used.
  • Example 10 100 parts of the acrylate resin varnish obtained in Example 9 was mixed with 5 parts of a photopolymerization initiator (Irgacure 184; manufactured by BASF Japan Ltd.), and then applied to a glass plate with a thickness of 20 ⁇ m using an applicator. did. After coating, the film was dried for 20 minutes in a hot air circulation drying oven at 80 ° C., and exposed using an exposure apparatus equipped with a high-pressure mercury lamp at an exposure amount of 1 J / cm 2 to obtain an evaluation coating film.
  • a photopolymerization initiator Irgacure 184; manufactured by BASF Japan Ltd.
  • Pencil hardness test A pencil of B to 9H sharpened so that the tip of the pencil core was flattened against the evaluation coating film was pressed against the coating film at an angle of 45 ° C. with a load of 1 kg. As a result of scratching the coating film by about 1 cm with this load applied and measuring the hardness of the pencil where the coating film was not peeled off, it was 6H.
  • Heat resistance test The said evaluation coating film was put into a 200 degreeC hot-air circulation type drying furnace, and was heated for 3 minutes. The sample was taken out after heating and visually observed for melting to conduct a heat resistance test. As a result, it was confirmed that the sample had heat resistance at 200 ° C. for 3 minutes.
  • polyesters oligomers
  • the imparted polyester-modified product can be produced with high production efficiency at a relatively low cost from a raw material polyester obtained from waste materials, and a method with less environmental impact can be provided because no organic solvent is used in the production process. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 有機溶剤に溶解可能で各種化学変性可能なポリエステル(オリゴマー)を比較的低コストで生産効率良く製造するために、原料ポリエステル、特に廃材から得られるポリエステル、ポリオール成分、及び水を必須成分として含む混合物を加熱して原料ポリエステルを解重合する。他の態様によれば、原料ポリエステル、ポリオール成分、水及び多塩基酸もしくはその無水物を必須成分として含む混合物を加熱して原料ポリエステルの解重合とその解重合物のエステル化(エステル交換反応やポリエステルの縮重合反応も包含する)を行う。別の態様によれば、上記いずれかの方法により製造されたポリエステルに、さらにアルコールもしくはカルボン酸と反応する1つの官能基と1つ以上のエチレン性不飽和基を有する化合物を反応させて化学変性する。

Description

ポリエステル及びその変性物の製造方法
 本発明は、回収されたポリエステルを原料として、その解重合あるいはさらにエステル化によりポリエステル及びその変性物を製造する方法に関する。
 ポリエチレンテレフタレート(PET)に代表されるポリエステルは、成型品、フィルム、繊維等様々な用途で使用されている。その中でもPETボトルは近年、軽量で透明性、ガスバリア性に優れ、強度も高いことから使用量が急増してきており、それに伴い、その廃棄方法が社会問題化してきている。そのため、PETボトルのリサイクルについて種々検討されている(特許文献1、2など参照)。
 しかしながら、リサイクル過程において、エステル結合の加水分解によりPETの分子量が減少し、PETの溶融粘度と機械的強度が低下してしまうという問題がある。そして、このような品質の低下が、PETボトルのリサイクル阻害の要因となっている。そのため、再生PET樹脂は、現状として、主に繊維分野や産業用資材分野において利用されるに過ぎないが、PETボトル廃棄量の増加に伴い、再生PET樹脂の新たな有効な活用法が模索されている。
 廃ポリエステルの新たな再生方法の例として、グリコール類による解重合反応を用いた塗料用アルキッド樹脂の製造(特許文献3参照)、再生ポリエステルを用いた塗料用ポリエステル樹脂の製造(特許文献4、5参照)、さらに再生ポリエステルを光硬化性ウレタン樹脂の原料として利用すること(特許文献6参照)、3価以下の多価アルコールと4価以上のアルコールを含むアルコール成分と、油脂及び/又は脂肪酸と、多塩基酸成分との混合物中で、廃物から回収し再生したテレフタル酸を主原料とするポリエステル樹脂を解重合すると共に、エステル化反応させることによりアルキド樹脂を製造する方法(特許文献7参照)などが検討されているが、いずれも塗料組成物に用いることを目的としている。
特開平10-287844号公報 特開平11-114961号公報 特許第3310661号 特許第3443409号 特許第3256537号 特開2004-307779号公報 特許第3334713号
 従来、ポリエステルの解重合においては、原料ポリエステルと多価アルコール、一般にグリコールを反応器に仕込み、昇温させてグリコールの沸点レベルに近い高温で分解反応を行なっている。この際、解重合反応で生成した水は、水との共沸混合物を生成し得る有機溶剤、一般にキシレンと共沸させて縮合水として除去されている(例えば、前掲特許文献4、5の実施例参照)。しかしながら、キシレンの添加により、その排水処理が環境に対する負荷となり、また製造コストの増加や生産効率の低下を招き易いという問題がある。さらに、多塩基酸を添加して末端にカルボキシル基を有する樹脂の合成を行おうとした場合、多塩基酸と解重合体の脱水エステル化反応が進み、得られる生成物の酸価が低くなり(前掲特許文献7の実施例参照)、化学変性し難くなるという問題がある。
 本発明は、前記したような従来技術に鑑みなされたものであり、原料ポリエステルを短時間に解重合でき、比較的低コストで生産効率良くポリエステル(オリゴマー)を製造でき、しかも環境に配慮した方法を提供することを目的としている。
 さらに本発明の目的は、廃材から得られるポリエステルを簡便に有機溶剤に溶解可能で各種化学変性可能なポリエステル(オリゴマー)へ変換する製造方法を提供することにある。
 本発明の別の目的は、比較的低コストで生産効率良く各種ポリエステル変性物を製造できる方法を提供することにある。
 前記目的を達成するために、本発明の基本的な態様によれば、原料ポリエステル、ポリオール成分、及び水を必須成分として含む混合物を加熱して原料ポリエステルを解重合することを特徴とするポリエステルの製造方法が提供される。上記ポリオール成分は、1分子中に複数の水酸基を有するポリオールであり、好ましくは少なくとも3官能以上のポリオールを含む。別の好適な態様においては、上記原料ポリエステルは、ポリエチレンテレフタレートである。
 また、本発明の他の態様によれば、原料ポリエステル、ポリオール成分、水及び多塩基酸もしくはその無水物を必須成分として含む混合物を加熱して原料ポリエステルの解重合とその解重合物のエステル化(エステル交換反応やポリエステルの縮重合反応も包含する)を行うことを特徴とするポリエステルの製造方法が提供される。
 さらに、本発明の別の態様によれば、前記いずれかの方法により製造されたポリエステルに、さらにアルコールもしくはカルボン酸と反応する1つの官能基と1つ以上のエチレン性不飽和基を有する化合物を反応させて化学変性することを特徴とするポリエステル変性物の製造方法が提供される。
 本発明のポリエステルの製造方法は、基本的に、原料ポリエステル、ポリオール成分、及び水を必須成分として含む混合物を加熱して原料ポリエステルを解重合するものであるため、廃材から得られる原料ポリエステルを簡便に有機溶剤に溶解可能で各種化学変性可能なポリエステル(オリゴマー)へ変換することが可能である。
 また別の側面では、粉砕状もしくはペレット状である原料ポリエステルとポリオールの反応を効率的に行うための反応媒体としても水が作用する。
 ポリエステルは、一般に260℃以上の高融点であり、ポリオール成分よりも多量に反応容器に添加したり、ポリオール成分が高融点の固体であるとき、攪拌が困難で効率が悪いという問題があるが、このような問題が、反応媒体として水を用いることにより解決された。
 また、解重合と同時に多塩基酸もしくはその無水物で処理する方法の場合、水を添加しない方法に比べて、水を添加する方法は解重合物の酸価が高くなるという予想だにしない効果が得られた。これは、水を加えることにより、酸(多塩基酸もしくはその無水物)とアルコール(ポリオール成分)のエステル化反応よりも解重合が優先的に進んだためであると考えられる。
 さらに、本発明によれば、前記いずれかの方法により製造されたポリエステルに、さらにアルコールもしくはカルボン酸と反応する1つの官能基と1つ以上のエチレン性不飽和基を有する化合物を反応させて化学変性することにより、感光性を付与したポリエステル変性物を比較的低コストで生産効率良く製造することができる。
 前記したように、本発明のポリエステルの製造方法の基本的な特徴は、原料ポリエステルをポリオール成分で解重合する際に水を用いている点にある。
 本発明者らの研究によれば、水が共存することにより、短時間で各種化学変性可能なポリエステルオリゴマーを得ることができ、さらにその工程において有機溶剤を使わないことから、環境に配慮したポリエステル製造方法を提供することが可能である。
 本発明の方法に用いる原料ポリエステルは、慣用公知のポリエステルであれば何でもよいが、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンファフタレート、液晶ポリマーなどがある。また、ペットボトル廃材等廃棄物から回収されたリサイクルPET及び再生PETは、環境保護の観点からさらに好ましい。回収されたPETは粉砕し洗浄され、再生PETは洗浄しペレット化されたものが市場から手に入れることができる。
 前記ポリオール成分としては、2官能ポリオールや3官能以上のポリオールなどを全て用いることができ、単独で又は2種類以上を組み合わせて使用することができる。
 2官能ポリオールとしては、エチレングリコール、1,3-プロパンジオール、1,2-プロパンジオール、1,4-ブタンジオール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ジプロピレングリコール、1,3-ブタンジオール、ネオペンチルグリコール、スピログリコール、ジオキサングリコール、アダマンタンジオール、3-メチル-1,5-ペンタンジオール、メチルオクタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、2-メチルプロパンジオール1,3、3-メチルペンタンジオール1,5、ヘキサメチレングリコール、オクチレングリコール、9-ノナンジオール、2,4-ジエチル-1,5-ペンタンジオール、ビスフェノールAのごとき二官能フェノールのエチレンオキサイド変性化合物、ビスフェノールAのごとき二官能フェノールのプロピレンオキサイド変性化合物、ビスフェノールAのエチレンオキサイド、プロピレンオキサイド共重合変性化合物、エチレンオキサイドとプロピレンオキサイドとの共重合系ポリエーテルポリオール、ポリカーボネートジオール、アダマンタンジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール(例えば、プラクセル205、プラクセルL205AL、プラクセル205U、プラクセル208、プラクセルL208AL、プラクセル210、プラクセル210N、プラクセル212、プラクセルL212AL、プラクセル220、プラクセル220N、プラクセル220NP1、プラクセルL220AL、プラクセル230、プラクセル240、プラクセル220EB、プラクセル220EC;以上いずれもダイセル化学工業(株)製;商品名)、ヒドロキシル基末端ポリアルカンジエンジオール類(例えば1,4-ポリイソプレンジオール、1,4-及び1,2-ポリブタジエンジオール並びにそれらの水素添加物のごときエラストマー)が挙げられ、例えば、上記ヒドロキシル基末端ポリアルカンジエンジオールの市販品の例としては、エポール(登録商標;水素化ポリイソプレンジオール、分子量1,860、平均重合度26、出光興産(株)製)、PIP(ポリイソプレンジオール、分子量2,200、平均重合度34、出光興産(株)製)、ポリテールH(水素化ポリブタジエンジオール、分子量2,200、平均重合度39、三菱化学(株)製)、R-45HT(ポリブタンジオール、分子量2,270、平均重合度42、出光興産(株)製)等が挙げられる。
 3官能以上のポリオールとしては、グリセリン、トリメチロールエタン、トリメチロールプロパン、ソルビトール、ペンタエリスリトール、ジトリメチロールプロパン、ジペンタエリスリトール、トリペンタエリスリトール、アダマンタントリオール、ポリカプロラクトントリオール(例えば、プラクセル303、プラクセル305、プラクセル308、プラクセル312、プラクセルL312AL、プラクセル320ML、プラクセルL320AL;以上いずれもダイセル化学工業(株)製;商品名)、また芳香環を有するものとしては3官能以上のフェノール化合物のエチレンオキサイド、プロピレンオキサイド変性物、複素環を有するものとしては四国化成工業(株)製セイク、などが挙げられる。
 ポリオール成分として、植物由来のアルコール成分(植物由来ポリオール)を用いてもよい。植物由来のアルコール成分としては、ひまし油類アルコール成分が好ましい。市販品として、例えば、URIC H-30、URIC H-31、URIC H-52、URIC H-56、URIC H-57、URIC H-62、URIC H-73X、URIC H-92、URIC H-420、URIC H-854、URIC Y-202、URIC Y-403、URIC Y-406、URIC Y-563、URIC AC-005、URIC AC-006、URIC PH-5001、URIC PH-5002、URIC PH-6000、URIC F-15、URIC F-25、URIC F-29、URIC F-40、URIC SE-2010、URIC SE-3510、URIC SE-2606、URIC SE-3506、URIC SE-2003、POLYCASTOR#10、POLYCASTOR#30、URIC SE-2003(いずれも伊藤製油社製)等が挙げられる。
 本発明において使用するポリオール成分は、3官能以上のポリオールを含むことが好ましく、特にトリメチロールプロパンを含むことが好ましい。
 上記ポリオール成分の使用量は、原料ポリエステルのエステル結合1モルに対してポリオール成分の水酸基が0.2モル~8.0モルであることが好ましく、0.33モル~7.0モルであることがより好ましい。
 水の使用量は特に制限はないが、反応混合物を十分に攪拌できる量であることが好ましい。水は攪拌するための媒体であり、解重合において反応系に取り込まれないため、水の添加量は特に制限されない。添加した水は解重合反応中もしくは解重合反応終了後に回収される。
 また、本発明のポリエステルの製造方法においては、原料ポリエステルの解重合を促進させるために解重合触媒を使用することができる。解重合触媒としては、例えば、モノブチル錫ハイドロオキサイド、ジブチル錫オキサイド、モノブチル錫-2-エチルヘキサノエート、ジブチル錫ジラウレート、酸化第一錫、酢酸錫、酢酸亜鉛、酢酸マンガン、酢酸コバルト、酢酸カルシウム、酢酸鉛、三酸化アンチモン、テトラブチルチタネート、テトライソプロピルチタネートなどを挙げることができ、単独で又は2種類以上を組み合わせて使用することができる。これらの解重合触媒の使用量は、原料ポリエステル(例えば再生PE)とポリオール成分の合計量100質量部に対して、通常0.005~5質量部で充分であり、特に好ましくは0.05~3質量部の範囲内にある。
 また、本発明のポリエステルの製造方法の他の態様は、原料ポリエステル、ポリオール成分、水及び多塩基酸もしくはその無水物を、必要に応じて解重合触媒の存在下で、一括にて反応させるものであり、原料ポリエステルの解重合反応と、ポリエステル、ポリオール成分及び多塩基酸成分間のエステル化反応(エステル交換反応やポリエステルの縮重合反応も包含する)とを同時に行うことによって目的とするポリエステルを製造するものである。この際、前記したように、反応系に水が共存することにより、エステル化反応よりも解重合が優先的に進むためと考えられるが、酸価が高い生成物が得られる。この反応は、通常、前記成分を混合し、攪拌下にて約160℃~約270℃程度の温度で約2~10時間程度反応させることによって目的とするポリエステル樹脂を効率的に製造することができ、一括反応によって大幅に反応時間を短縮できるという特徴を有する。
 上記方法に用いられる多塩基酸もしくはその無水物としては、慣用公知の多塩基酸もしくはその無水物を使用することができる。具体的な例としては、無水フタル酸、イソフタル酸、テレフタル酸、テトラブロム無水フタル酸、無水メチルハイミック酸、テトラクロロ無水フタル酸等の芳香族多価カルボン酸及びそれらの無水物、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸等の脂環式カルボン酸及びそれらの無水物、無水マレイン酸、フマル酸、無水コハク酸、アジピン酸、セバシン酸、アゼライン酸等の脂肪族多価カルボン酸及びそれらの無水物、無水ピロメリット酸、無水トリメリット酸、メチルシクロヘキセンジカルボン酸無水物等の3官能以上のカルボン酸等が挙げられ、単独で又は2種類以上を組み合わせて使用することができる。
 さらに、本発明のポリエステル変性物の製造方法は、前記いずれかの方法により製造されたポリエステルに、さらにアルコールもしくはカルボン酸と反応する1つの官能基と1つ以上のエチレン性不飽和基(アクリロイル基もしくはメタクリロイル基)を有する化合物を反応させて化学変性することにより、感光性を付与するものである。この反応は、従来周知のエステル化反応と同様であり、有機溶剤の存在下又は非存在下で、通常、酸触媒や重合禁止剤を添加して、約80℃から約130℃で2時間から10時間の範囲で行なう。常圧でも加圧下でも合成が可能であり、加圧下の場合には反応の温度を低くすることができる。尚、得られた感光性化合物(アクリレートもしくはメタクリレート化合物)に、解重合物由来の未反応水酸基が存在していても特性上問題ない。
 上記アルコールもしくはカルボン酸と反応し得る官能基としては、カルボキシル基、イソシアネー基、環状エーテル基、水酸基等が挙げられる。
 1つのカルボキシル基と1つ以上のエチレン性不飽和基を有する化合物としては、アクリル酸、アクリル酸の2量体、メタクリル酸、β-スチリルアクリル酸、β-フルフリルアクリル酸、クロトン酸、α-シアノ桂皮酸、桂皮酸、(メタ)アクリル酸カプロラクトン付加物、及び飽和又は不飽和二塩基酸無水物と1分子中に1個の水酸基を有する(メタ)アクリレート類とのハーフエステル化合物などが挙げられる。ハーフエステル化合物を製造するための水酸基を有する(メタ)アクリレート類としては、例えばヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、フェニルグリシジル(メタ)アクリレートなどが挙げられる。ハーフエステル化合物を製造するための二塩基酸無水物としては、例えば無水コハク酸、無水マレイン酸、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸などが挙げられ、単独で又は2種類以上を組み合わせて使用することができる。
 なお、本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレート及びそれらの混合物を総称する用語であり、他の類似の表現についても同様である。
 イソシアネート基を有する(メタ)アクリル系単量体としては、1分子中に1つのイソシアネート基と1つ以上のエチレン性不飽和基を有するイソシアネート化合物であればよく、特に限定されない。具体的な例としては、例えば、(メタ)アクリロイルオキシエチルイソシアネート、(メタ)アクリロイルオキシエトキシエチルイソシアネート、ビス(アクリロキシメチル)エチルイソシアネートあるいはこれらの変性体等が挙げられ、単独で又は2種類以上を組み合わせて使用することができる。市販品としては、「カレンズMOI」(メタクリロイルオキシエチルイソシアネート)、「カレンズAOI」(アクリロイルオキシエトキシエチルイソシアネート)、「カレンズMOI-EG」(メタクリロイルオキシエトキシエチルイソシアネート)、「カレンズMOI一BM」(カレンズMOIのイソシアネートブロック体)、「カレンズMOI-BP」(カレンズMOIのイソシアネートブロック体)、「カレンズBEI」(1,1-ビス(アクリロキシメチル)エチルイソシアネート)が、昭和電工(株)から市販されている。なお、これらの商品名は、いずれも登録商標である。さらには、1分子中に1つの水酸基と1つ以上のエチレン性不飽和基を有する化合物と、イソホロンジイソシアネート、トルイレンジイソシアネート、テトラメチルキシレンジイソシアネート、ヘキサメチレンジイソシアネートなどのジイソシアネートとのハーフウレタン化合物も使用することができる。
 1分子中に1つの環状エーテル基と1つ以上のエチレン性不飽和基を併せ持つ化合物としては、2-ヒドロキシエチル(メタ)アクリレートグリシジルエーテル、2-ヒドロキシプロピル(メタ)アクリレートグリシジルエーテル、3-ヒドロキシプロピル(メタ)アクリレートグリシジルエーテル、2-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、2-ヒドロキシペンチル(メタ)アクリレートグリシジルエーテル、6-ヒドロキシヘキシル(メタ)アクリレートグリシジルエーテルもしくはグリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチルアクリレート等が挙げられ、単独で又は2種類以上を組み合わせて使用することができる。
 前記水酸基とエチレン性不飽和基を有する化合物としては、1分子中に1つの水酸基と1つ以上のエチレン性不飽和基を有する化合物であればよく、特に限定されない。具体的な例としては、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類が挙げられ、単独で又は2種類以上を組み合わせて使用することができる。
 前記したようなアルコールもしくはカルボン酸と反応し得る官能基を有する(メタ)アクリル系単量体は、単独で又は2種類以上を組み合わせて使用することができる。
 前記した方法により製造されたポリエステル変性物は、前記解重合物あるいはその多塩基酸変性物に、さらにアルコールもしくはカルボン酸と反応する1つの官能基と1つ以上のエチレン性不飽和基(アクリロイル基もしくはメタクリロイル基)を有する化合物を反応させて化学変性することにより、感光性を付与した感光性化合物(アクリレートもしくはメタクリレート化合物)であるため、光硬化性樹脂組成物もしくは光硬化性熱硬化性樹脂組成物の感光性成分として有用である。例えば、上述したポリエステル変性物(アクリレートもしくはメタクリレート化合物)に、オキシムエステル系光重合開始剤、α-アミノアセトフェノン系光重合開始剤、アシルホスフィンオキサイド系光重合開始剤、ベンゾイン化合物、アセトフェノン化合物、アントラキノン化合物、チオキサントン化合物、ケタール化合物、ベンゾフェノン化合物、キサントン化合物、3級アミン化合物等の従来公知慣用の光重合開始剤や、光開始助剤及び増感剤を配合することにより、光硬化性樹脂組成物とすることができる。
 以下に実施例及び比較例を示して本発明について具体的に説明するが、本発明が下記実施例に限定されるものではないことはもとよりである。尚、以下において「部」及び「%」とあるのは、特に断りのない限り全て質量基準である。
 実施例1
 攪拌機、窒素導入管、冷却管を取り付けた1000ミリリットルの四口丸底セパラブルラスコにIV値0.6~0.7のリサイクルPETフレーク600部、ネオペンチルグリコール(融点126℃、以下同じ)104部、トリメチロールプロパン(融点58℃、以下同じ)44部、酸化ジブチルスズ1.2部、水道水120部を仕込み、フラスコ内を窒素雰囲気とした後、180℃に昇温させた油浴に浸し、水を除々に抜いていきながら油浴を240℃まで昇温し、攪拌しながらフラスコ内が透明になるまで反応を続け、ポリエステルオリゴマーを得た。
 実施例2
 攪拌機、窒素導入管、冷却管を取り付けた1000ミリリットルの四口丸底セパラブルラスコにIV値0.6~0.7のリサイクルPETフレーク384部、ネオペンチルグリコール104部、酸化ジブチルス0.8部、水80部を仕込み、フラスコ内を窒素雰囲気とした後、180℃に昇温させた油浴に浸し、水を除々に抜いていきながら油浴を240℃まで昇温し、攪拌しながらフラスコ内が透明になるまで反応を続け、ポリエステルオリゴマーを得た。
 実施例3
 攪拌機、窒素導入管、冷却管を取り付けた1000ミリリットルの四口丸底セパラブルラスコにIV値0.6~0.7のリサイクルPETフレーク384部、トリメチロールプロパン134部、酸化ジブチルスズ0.8部、イオン交換水80部を仕込み、フラスコ内を窒素雰囲気とした後、180℃に昇温させた油浴に浸し、水を除々に抜いていきながら油浴を240℃まで昇温し、攪拌しながらフラスコ内が透明になるまで反応を続け、ポリエステルオリゴマーを得た。
 実施例4
 攪拌機、窒素導入管、冷却管を取り付けた1000ミリリットルの四口丸底セパラブルラスコにIV値0.6~0.7のリサイクルPETフレーク384部、トリメチロールプロパン134部、ペンタエリスリトール(融点260℃)136部、酸化ジブチルスズ1.0部、工業用水80部を仕込み、フラスコ内を窒素雰囲気とした後、180℃に昇温させた油浴に浸し、水を除々に抜いていきながら油浴を240℃まで昇温し、攪拌しながらフラスコ内が透明になるまで反応を続け、ポリエステルオリゴマーを得た。
 実施例5
 攪拌機、窒素導入管、冷却管を取り付けた1000ミリリットルの四口丸底セパラブルラスコにIV値0.6~0.7のリサイクルPETフレーク576部、トリメチロールプロパン134部、酸化ジブチルスズ1.0部、工業用水80部を仕込み、フラスコ内を窒素雰囲気とした後、180℃に昇温させた油浴に浸し、水を除々に抜いていきながら油浴を240℃まで昇温し、攪拌しながらフラスコ内が透明になるまで反応を続け、ポリエステルオリゴマーを得た。
 実施例6
 攪拌機、窒素導入管、冷却管を取り付けた1000ミリリットルの四口丸底セパラブルラスコにIV値0.6~0.7のリサイクルPETフレーク440部、ネオペンチルグリコール104部、トリメチロールプロパン42部、イソフタル酸136部、酸化ジブチルスズ1.0部、工業用水80部を仕込み、フラスコ内を窒素雰囲気とした後、180℃に昇温させた油浴に浸し、水を除々に抜いていきながら油浴を240℃まで昇温し、攪拌しながらフラスコ内が透明になるまで反応を続け、ポリエステルオリゴマーを得た。
 実施例7
 500ミリリットルのお茶の入ったペットボトル10本を用意し、ラベルとキャップをはずし、中身を取り出した。ボトルの中を水道水で簡単にゆすぎ、容量25Lのアルミ半寸胴鍋に入れた。次にネオペンチルグリコール57部、トリメチロールプロパン22部、酸化ジブチルスズ0.6部、水道水120部を仕込み、ホットプレートで鍋の内温が240℃±5℃になるように加熱した。攪拌しながら鍋の中が透明になるまで攪拌を続け、ポリエステルオリゴマーを得た。
 実施例8
 500ミリリットルの清涼飲料水の入ったペットボトル10本を用意し、ラベルとキャップをはずし、中身を取り出した。ボトルの中はゆすがずにそのまま容量25Lのアルミ半寸胴鍋に入れた。次にネオペンチルグリコール57部、トリメチロールプロパン22部、酸化ジブチルスズ0.6部、水道水120部を仕込み、ホットプレートで鍋の内温が240℃±5℃になるように加熱した。攪拌しながら鍋の中が透明になるまで攪拌を続け、ポリエステルオリゴマーを得た。
 実施例9
 攪拌機、窒素導入管、冷却管を取り付けた1000ミリリットルの四口丸底セパラブルラスコに実施例3で得られたポリエステルオリゴマー225部、アクリル酸187部、パラトルエンスルホン酸1.87部、パラメトキシフェノール1.50部を仕込み、攪拌して均一に溶解させた後、118℃に昇温させた油浴に浸して16.5時間反応を続けた。反応終了後、反応液の酸価を測定して酸当量のアルカリ水溶液をフラスコ内に加え、中和した。次いで、食塩水(20wt%)を加え、攪拌した。その後、溶液を分液漏斗に移し、反応液の1.4倍のメチルイソブチルケトンを加え、水相を捨てた。油相を食塩水(5wt%)にて再度洗い、水相を捨てた。その後、油相をヘキサン中に再沈した後、メチルエチルケトンに溶解させ、吸引濾過で不純物を除いた。濾液を水道水で再沈させた後、上澄み液を捨てて再沈物をさらに水道水で攪拌、洗浄し、最後にカルビトールアセテートで固形分が70%になるよう希釈し、アクリレート樹脂ワニスを得た。
 比較例1
 攪拌機、窒素導入管、冷却管を取り付けた1000ミリリットルの四口丸底セパラブルラスコにIV値0.6~0.7のリサイクルPETフレーク600部、ネオペンチルグリコール104部、トリメチロールプロパン44部、酸化ジブチルスズ1.2部、キシレン80部を仕込み、フラスコ内を窒素雰囲気とした後、180℃に昇温させた油浴に浸し、キシレンを除々に抜いていきながら油浴を240℃まで昇温し、攪拌しながらフラスコ内が透明になるまで反応を続け、ポリエステルオリゴマーを得た。
 比較例2
 攪拌機、窒素導入管、冷却管を取り付けた1000ミリリットルの四口丸底セパラブルラスコにIV値0.6~0.7のリサイクルPETフレーク384部、ネオペンチルグリコール104部、酸化ジブチルス0.8部、キシレン91部を仕込み、フラスコ内を窒素雰囲気とした後、180℃に昇温させた油浴に浸し、キシレンを除々に抜いていきながら油浴を240℃まで昇温し、攪拌しながらフラスコ内が透明になるまで反応を続け、ポリエステルオリゴマーを得た。
 比較例3
 攪拌機、窒素導入管、冷却管を取り付けた1000ミリリットルの四口丸底セパラブルラスコにIV値0.6~0.7のリサイクルPETフレーク384部、トリメチロールプロパン134部、酸化ジブチルスズ0.8部、キシレン91部を仕込み、フラスコ内を窒素雰囲気とした後、180℃に昇温させた油浴に浸し、キシレンを除々に抜いていきながら油浴を240℃まで昇温し、攪拌しながらフラスコ内が透明になるまで反応を続け、ポリエステルオリゴマーを得た。
 比較例4
 工業用水を使用せずに他は実施例4と同様にして解重合を行った。
 比較例5
 工業用水を使用せずに他は実施例5と同様にして解重合を行った。
 比較例6
 攪拌機、窒素導入管、冷却管を取り付けた1000ミリリットルの四口丸底セパラブルラスコにIV値0.6~0.7のリサイクルPETフレー423部、ネオペンチルグリコール104部、トリメチロールプロパン42部、イソフタル酸136部、酸化ジブチルスズ1.0部、キシレン17部を仕込み、フラスコ内を窒素雰囲気とした後、180℃に昇温させた油浴に浸し、キシレンを除々に抜いていきながら油浴を240℃まで昇温し、攪拌しながらフラスコ内が透明になるまで反応を続け、ポリエステルオリゴマーを得た。
 <解重合時間>
 実施例1~6及び比較例1~6の解重合に要した時間を表1に示す。また、10時間以上の反応を行っても原料であるPETの残留物が確認されたものについては「×」と表記する。測定結果を表1に示す。
 表1に示される測定結果の通り、固体であるPETフレークが多量であるものやポリオールが高融点であるものは、水を使用しないと10時間以内では解重合が進まず、その結果、原料であるPETの残留物が確認された。それに対し、水を使用すると解重合が進んだ。
 また、実施例7や8において、水を使用するとペットボトルを洗浄、乾燥せずペットボトル中の汚れが多少ある状態であってもポリエステルオリゴマーが得られることが確認された。以上より、解重合を水を使用して行う製造法では、従来技術のように洗浄後の乾燥工程を経なくとも反応に投入できる点で生産効率に優れ、省エネルギー化にも繋がる。
 <分子量>
 実施例1~6及び比較例1~6の解重合物の分子量をGPC(ゲル・パーミエーション・クロマトグラフィー)で測定した。測定条件は、カラムに昭和電工(株)製のShodex GPC KF-806L×3を使用し、カラム温度40℃で用いた。基準物質には標準ポリスチレンを用い、溶離液はテトラヒドロフランを1mL/分の流速で使用した。測定結果を表1に示す。
 <酸価>
 実施例6及び比較例6の解重合物の酸価を表1に示す。
 水を使用すると酸価が高くなることが確認された。
 <溶剤溶解性>
 実施例1~6及び比較例1~6の解重合物の溶剤溶解性を確認した。
 確認方法としては、解重合物50部に対して各種溶剤を50部加え、攪拌して解重合物の50wt%溶液を作成し、その溶液の透明度を評価した。評価基準は以下の通りである。
 ○:完全に透明である。
 △:やや濁りがある。
 ×:濁りがある。
Figure JPOXMLDOC01-appb-T000001
 実施例10
 前記実施例9で得られたアクリレート樹脂ワニス100部を5部の光重合開始剤(イルガキュアー184;BASFジャパン社製)と混ぜ合わせた後、ガラス板にアプリケーターを用いて20μmの膜厚で塗布した。塗布した後、80℃の熱風循環式乾燥炉で20分間乾燥し、高圧水銀灯搭載の露光装置を用いて、露光量1J/cmで露光し、評価塗膜を得た。
 ラビングテスト:
 前記評価塗膜をアセトンを含ませたウエスにて50回こすったところ、表面の溶解が無く、十分に硬化していることが確認された。
 鉛筆硬度試験:
 前記評価塗膜に鉛筆の芯の先が平らになるように研がれたBから9Hの鉛筆を、塗膜に対して45℃の角度で1kgの荷重をかけて押し付けた。この荷重をかけた状態で約1cm程度塗膜を引っかき、塗膜の剥がれない鉛筆の硬さを測定した結果、6Hであった。
 耐熱性試験:
 前記評価塗膜を、200℃の熱風循環式乾燥炉に投入して、3分間加熱した。加熱後取り出して、目視にて溶融の形跡を観察して耐熱性試験を行ったところ、200℃、3分の耐熱性を有していることを確認した。
 上述したように、本発明の方法は、廃材などから得られるポリエステルを簡便に有機溶剤に溶解可能で各種化学変性可能なポリエステル(オリゴマー)へ変換することが可能である。
 本発明によれば、成型品、フィルム、繊維、レジスト材料、絶縁樹脂材料、接着剤等様々な技術分野で有用な有機溶剤に溶解可能で各種化学変性可能なポリエステル(オリゴマー)や、感光性を付与したポリエステル変性物を、廃材から得られる原料ポリエステルから比較的低コストで生産効率良く製造することができ、しかも製造工程において有機溶剤を用いないことから環境負荷の少ない方法を提供することができる。

Claims (4)

  1.  原料ポリエステル、ポリオール成分、及び水を必須成分として含む混合物を加熱して原料ポリエステルを解重合することを特徴とするポリエステルの製造方法。
  2.  前記ポリオール成分が、少なくとも3官能以上のポリオールを含むことを特徴とする請求項1に記載の製造方法。
  3.  原料ポリエステル、ポリオール成分、水及び多塩基酸もしくはその無水物を必須成分として含む混合物を加熱して原料ポリエステルの解重合とその解重合物のエステル化を行うことを特徴とするポリエステルの製造方法。
  4.  前記請求項1乃至3のいずれか一項に記載の製造方法により製造されたポリエステルに、さらにアルコールもしくはカルボン酸と反応する1つの官能基と1つ以上のエチレン性不飽和基を有する化合物を反応させて化学変性することを特徴とするポリエステル変性物の製造方法。
PCT/JP2011/059260 2010-04-15 2011-04-14 ポリエステル及びその変性物の製造方法 WO2011129390A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012510685A JP6166898B2 (ja) 2010-04-15 2011-04-14 ポリエステル及びその変性物の製造方法
CN2011800190937A CN102844352A (zh) 2010-04-15 2011-04-14 聚酯及其改性物的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-093997 2010-04-15
JP2010093997 2010-04-15

Publications (1)

Publication Number Publication Date
WO2011129390A1 true WO2011129390A1 (ja) 2011-10-20

Family

ID=44798759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059260 WO2011129390A1 (ja) 2010-04-15 2011-04-14 ポリエステル及びその変性物の製造方法

Country Status (3)

Country Link
JP (1) JP6166898B2 (ja)
CN (1) CN102844352A (ja)
WO (1) WO2011129390A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020504029A (ja) * 2016-10-28 2020-02-06 ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. 熱硬化性組成物及びそれからの三次元物体の形成
WO2023149410A1 (ja) * 2022-02-02 2023-08-10 マクセル株式会社 ポリエステル共重合体の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103601877B (zh) * 2013-11-14 2015-09-30 新疆红山涂料有限公司 高固体份醇酸树脂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215719A (ja) * 1987-03-03 1988-09-08 Kuraray Co Ltd ポリエステルアクリレ−ト
JPH03296514A (ja) * 1990-04-16 1991-12-27 Toagosei Chem Ind Co Ltd ポリエステルポリ(メタ)アクリレートの製造方法
JPH08253596A (ja) * 1995-03-14 1996-10-01 Kao Corp トナー用結着樹脂の製造方法
JP2000178353A (ja) * 1998-12-18 2000-06-27 Nippon Ester Co Ltd 塗料用ポリエステル樹脂の製造法
JP2002275226A (ja) * 2000-06-22 2002-09-25 Hitachi Chem Co Ltd 光硬化性樹脂組成物、これを用いた塗料及び硬化膜
JP2003213203A (ja) * 2002-01-18 2003-07-30 Nippon Ester Co Ltd 粉体塗料用ポリエステル樹脂及び組成物、並びにこれを用いた粉体塗料

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185530A (ja) * 1985-02-12 1986-08-19 Nippon Synthetic Chem Ind Co Ltd:The 放射線硬化型不飽和ポリエステル樹脂の製造方法
JP3601560B2 (ja) * 1996-02-26 2004-12-15 日立化成工業株式会社 ポリエステル樹脂の製造法及び塗料の製造法
JP2000159845A (ja) * 1998-11-30 2000-06-13 Hitachi Chem Co Ltd ポリエステル樹脂、その製造法、塗料及び接着剤

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215719A (ja) * 1987-03-03 1988-09-08 Kuraray Co Ltd ポリエステルアクリレ−ト
JPH03296514A (ja) * 1990-04-16 1991-12-27 Toagosei Chem Ind Co Ltd ポリエステルポリ(メタ)アクリレートの製造方法
JPH08253596A (ja) * 1995-03-14 1996-10-01 Kao Corp トナー用結着樹脂の製造方法
JP2000178353A (ja) * 1998-12-18 2000-06-27 Nippon Ester Co Ltd 塗料用ポリエステル樹脂の製造法
JP2002275226A (ja) * 2000-06-22 2002-09-25 Hitachi Chem Co Ltd 光硬化性樹脂組成物、これを用いた塗料及び硬化膜
JP2003213203A (ja) * 2002-01-18 2003-07-30 Nippon Ester Co Ltd 粉体塗料用ポリエステル樹脂及び組成物、並びにこれを用いた粉体塗料

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020504029A (ja) * 2016-10-28 2020-02-06 ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. 熱硬化性組成物及びそれからの三次元物体の形成
JP7081871B2 (ja) 2016-10-28 2022-06-07 コベストロ (ネザーランズ) ビー.ブイ. 熱硬化性組成物及びそれからの三次元物体の形成
WO2023149410A1 (ja) * 2022-02-02 2023-08-10 マクセル株式会社 ポリエステル共重合体の製造方法

Also Published As

Publication number Publication date
JPWO2011129390A1 (ja) 2013-07-18
JP6166898B2 (ja) 2017-07-19
CN102844352A (zh) 2012-12-26

Similar Documents

Publication Publication Date Title
JP3327607B2 (ja) ポリエチレンテレフタレートからの水性コーティング用組成物
JP3891594B2 (ja) ポリエチレンテレフタレートからの水性コーティング組成物
KR100732076B1 (ko) 폴리에스테르 수지의 제조 방법
JP4699559B1 (ja) ポリエステル樹脂
WO2011148545A1 (ja) アルコール化合物、ポリエステル樹脂、不飽和ポリエステル樹脂、樹脂粒子及び電子写真用トナー
WO2001016208A1 (fr) Procede de reutilisation de pastille de polyester
WO2014030652A1 (ja) 重合ロジン化合物及びその製造方法
JP2020509109A (ja) 持続可能なエネルギー硬化性ポリエステルポリオール及びそれから得られるコーティング又は硬質フォーム
JP6166898B2 (ja) ポリエステル及びその変性物の製造方法
JP5670552B2 (ja) ポリエステルポリオール及びポリエステル変性物の製造方法、ポリエステルポリオールおよびポリエステル変性物
JP2005187659A (ja) 活性エネルギー線硬化型組成物
US20070117922A1 (en) Aqueous Polymer Dispersions
JP5711909B2 (ja) フェノール基含有樹脂及びその製造方法
Tawfik et al. Preparation and characterisation of water soluble polyester coatings based on waste materials
JP5723654B2 (ja) ポリエステルポリオール及びポリエステル変性物の製造方法
JP2012031227A (ja) エポキシ樹脂及びその製造方法
JP2022120820A (ja) ロジン変性アルキド樹脂、インキ用組成物及びインキ
JP5955940B2 (ja) フェノール基含有樹脂及びその製造方法
JP5739627B2 (ja) エポキシ樹脂及びその製造方法
JP3198833B2 (ja) 不飽和ポリエステル樹脂の製造方法
TW200923033A (en) Coating solution composition, laminate and method thereof
JPH05271613A (ja) ポリエチレンテレフタレートからの非水性コーティング用組成物
CN103003331B (zh) 含酚基树脂及环氧树脂以及其制造方法
JPH08295729A (ja) 不飽和ポリエステル樹脂の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180019093.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768911

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012510685

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11768911

Country of ref document: EP

Kind code of ref document: A1