WO2011102487A1 - セラミックハニカム構造体及びその製造方法 - Google Patents

セラミックハニカム構造体及びその製造方法 Download PDF

Info

Publication number
WO2011102487A1
WO2011102487A1 PCT/JP2011/053567 JP2011053567W WO2011102487A1 WO 2011102487 A1 WO2011102487 A1 WO 2011102487A1 JP 2011053567 W JP2011053567 W JP 2011053567W WO 2011102487 A1 WO2011102487 A1 WO 2011102487A1
Authority
WO
WIPO (PCT)
Prior art keywords
pore
diameter
ceramic honeycomb
honeycomb structure
pores
Prior art date
Application number
PCT/JP2011/053567
Other languages
English (en)
French (fr)
Inventor
岡崎 俊二
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US13/580,344 priority Critical patent/US8636821B2/en
Priority to JP2012500670A priority patent/JP5673665B2/ja
Priority to EP11744773.0A priority patent/EP2540370B1/en
Priority to CN201180010393.9A priority patent/CN102762273B/zh
Priority to KR1020127024808A priority patent/KR101894341B1/ko
Priority to EP16187559.6A priority patent/EP3120916B1/en
Publication of WO2011102487A1 publication Critical patent/WO2011102487A1/ja
Priority to US14/106,955 priority patent/US9353015B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2444Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the outer peripheral sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24492Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24494Thermal expansion coefficient, heat capacity or thermal conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/11Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels comprising two or more partially or fully enclosed cavities, e.g. honeycomb-shaped
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5076Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with masses bonded by inorganic cements
    • C04B41/5089Silica sols, alkyl, ammonium or alkali metal silicate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/02Air cleaners
    • F02M35/024Air cleaners using filters, e.g. moistened
    • F02M35/02475Air cleaners using filters, e.g. moistened characterised by the shape of the filter element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1216Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/125Size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • B29C48/912Cooling of hollow articles of tubular films
    • B29C48/913Cooling of hollow articles of tubular films externally
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a ceramic honeycomb structure used for a ceramic honeycomb filter for removing fine particles contained in exhaust gas of a diesel engine.
  • Diesel engine exhaust gas contains PM (Particulate Matter: particulate matter) whose main component is soot made of carbon and SOF content (Soluble Organic Fraction) consisting of high-boiling hydrocarbon components. If released into the atmosphere, the human body and the environment may be adversely affected. For this reason, it has been conventionally performed to install a ceramic honeycomb filter for collecting PM in the exhaust pipe of a diesel engine. An example of a ceramic honeycomb filter for collecting PM in exhaust gas and purifying the exhaust gas is shown in FIGS.
  • the ceramic honeycomb filter 10 includes a ceramic honeycomb structure including a porous partition wall 2 and an outer peripheral wall 1 forming a large number of outflow side sealing channels 3 and inflow side sealing channels 4, and an outflow side sealing channel 3
  • the upstream side sealing portion 6a and the downstream side sealing portion 6c that alternately seal the exhaust gas inflow side end surface 8 and the exhaust gas outflow side end surface 9 of the inflow side sealing channel 4 in a checkered pattern.
  • the outer peripheral wall 1 of the ceramic honeycomb filter is gripped so as not to move during use by a gripping member (not shown) formed of a metal mesh or ceramic mat or the like, and is placed in a metal storage container (not shown). Is arranged.
  • purification of exhaust gas is performed as follows.
  • the exhaust gas flows in from the outflow side sealing flow path 3 opened in the exhaust gas inflow side end face 8 as indicated by a dotted arrow in FIG.
  • PM in the exhaust gas is collected.
  • the purified exhaust gas flows out from the inflow side sealing flow path 4 opened in the exhaust gas outflow side end face 9, and is released into the atmosphere.
  • nanoparticles with a particle size of 50 mm or less in PM. These nanoparticles have a higher deposition rate on the respiratory system when inhaled into the body than when larger particles of the same mass are inhaled.
  • the nanoparticle since the nanoparticle has a relatively large surface area per volume, when a toxic chemical substance is adsorbed on the particle surface, it may be a PM particle having a stronger toxicity. Since the amount of nanoparticles contained in PM is low in mass, the current PM mass standard regulation is insufficient, and as a future emission regulation, the emission of nanoparticles that greatly affects the number of emitted particles is suppressed. It is predicted that a standard (particle number standard) will be provided. For this reason, in addition to excellent pressure loss characteristics, honeycomb filters are required to improve the collection rate based on the number of PM particles, especially the number of nanoparticles, rather than the collection rate based on the current PM mass.
  • honeycomb filters are required to improve the collection rate based on the number of PM particles, especially the
  • Special table 2005-530616 is composed of a cordierite honeycomb structure with the end closed, and the value d50 / (d50 + d90) obtained from the pore size distribution is less than 0.70, and the formula [d50 / (d50 + d90)] / [% porosity / 100]
  • the soot adhesion factor Sf is less than 1.55, and the thermal expansion coefficient (25 to 800 ° C) is 17 ⁇ 10 -7 / ° C or less.
  • a ceramic filter that captures and burns diesel exhaust particulates is disclosed, and by having such a pore structure (pore size distribution and pore connectivity), carbon soot is attached. However, it is described that a low pressure loss can be maintained.
  • Japanese Patent Laid-Open No. 2002-219319 is made of a material having cordierite whose pore distribution is controlled as a main crystal phase, and the pore distribution is such that the pore volume having a pore diameter of less than 10 ⁇ m is 15% or less of the total pore volume
  • a porous honeycomb filter in which the pore volume with a pore diameter of 10 to 50 ⁇ m is 75% or more of the total pore volume, and the pore volume with a pore diameter of more than 50 ⁇ m is 10% or less of the total pore volume. Since this porous honeycomb filter has the pore distribution as described above, it is described that the collection efficiency of PM and the like is high, and that an increase in pressure loss due to pore clogging can be prevented. Yes. JP 2002-219319 describes that such pore distribution can be controlled by controlling the particle size of the silica component of the cordierite forming raw material and reducing the concentration of kaolin.
  • Japanese Patent Application Laid-Open No. 61-129015 has a small hole with a hole diameter of 5 to 40 ⁇ m and a large hole with a hole diameter of 40 to 100 ⁇ m on the surface of at least the introduction passage side of the partition wall.
  • Japanese Patent Laid-Open No. 2003-40687 has cordierite as a main component, has a porosity of 55 to 65%, an average pore diameter of 15 to 30 ⁇ m, and the total area of pores opened on the partition wall surface is 35% of the total area of the partition wall surface. % Of the honeycomb ceramic structure is disclosed, and it is described that this honeycomb ceramic structure can achieve low pressure loss and high collection efficiency.
  • Japanese Patent Laid-Open No. 2002-355511 has a catalyst supported on the partition wall surface, the porosity of the partition wall is 55 to 80%, and the total area of pores opened on the partition wall surface is 20% or more of the total area of the partition wall surface
  • An exhaust gas purification filter having a ceramic honeycomb structure is disclosed. This exhaust gas purification filter can increase the contact area between the catalyst supported on the partition wall and the deposited PM, and the PM of the catalyst can be increased. It describes that it has an effect of improving the oxidation reaction ability and an effect of suppressing an increase in pressure loss.
  • Japanese Patent Laid-Open No. 2002-349234 discloses that the total area of the open pores supporting the catalyst and opening on the partition wall surface is 30% or more of the total surface area of the partition walls, and the open area of the large open pore having an opening diameter of 30 ⁇ m or more.
  • the exhaust gas purification filter whose total is 50% or more of the total opening area of the open pore is disclosed.
  • JP 2003-193820 is 60% or more of porosity, has an average pore size of at least 15 [mu] m, the maximum value of the slope S n of a cumulative pore volume curve of the barrier to the pore size in the n-th measurement point 0.7
  • JP 2005-530616, JP 2002-219319, JP 61-129015, JP 2003-40687, JP 2002-355511, JP 2002-349234, and JP 2003- The PM collection performance of the exhaust gas purification filter described in 193820 is enhanced by the accumulation of PM to some extent, but the state before the PM is deposited at the beginning of use (the ceramic honeycomb filter is used from the unused state) Or when it is used again after being reprocessed).
  • the collection efficiency of nano-sized PM which has come to be regarded as a problem with the tightening of exhaust gas regulations, is insufficient, and harmful nano-sized PM is discharged without being collected.
  • JP-A-2004-360654 discloses that the porosity of the partition wall is 55 to 75%, the average pore diameter is 15 to 40 ⁇ m, the total area of the pores opened on the partition wall surface is 10 to 30% of the total area of the partition wall surface, and the partition wall surface Discloses a ceramic honeycomb filter having 300 or more pores / mm 2 having an equivalent circle diameter of 5 to 20 ⁇ m among the pores opened in the hole.
  • the ceramic honeycomb filter described in Japanese Patent Application Laid-Open No. 2004-360654 has achieved some improvement in the collection rate on the basis of PM mass, it is effective to use nanoparticles in the state before PM is deposited at the beginning of use. It is difficult to collect. In other words, the collection efficiency on the basis of the number of PM particles is low, and it is unlikely that the regulation based on the number of particles can be cleared.
  • the object of the present invention is to solve the above-mentioned problems of the prior art and to the state before the PM at the beginning of use of the ceramic honeycomb filter is deposited (when the ceramic honeycomb filter is used from an unused state or is regenerated). Even when it is used again later, it effectively collects nanoparticles that greatly affect the number of discharged particles, improves the collection rate based on the number of PM particles, and collects and accumulates PM.
  • An object of the present invention is to provide a ceramic honeycomb structure in which the degree of deterioration of the pressure loss characteristic at the time is reduced and a method for manufacturing the same.
  • the ceramic honeycomb structure of the present invention has a large number of flow paths partitioned by porous partition walls,
  • the partition is (a) Porosity is 55-80%, (b) Median pore diameter D50 measured by mercury intrusion method is 5-27 ⁇ m, (c) Open area ratio of pores opened on the surface is 20% or more, (d) The median opening diameter d50 on the basis of the area when the pores opened on the surface are represented by equivalent circle diameters is 10 to 45 ⁇ m, (e) The equivalent circle diameter of the pores opened on the surface has a pore density of 350 / mm 2 or more of 10 ⁇ m or more and less than 40 ⁇ m, (f) the maximum value of the slope of the curve showing the cumulative pore volume with respect to the pore diameter when the pore distribution is measured by the mercury intrusion method is 1.6 or more, and (g) A ratio D50 / d50 between the median pore diameter D50 and the median opening diameter d50 is 0.65 or less.
  • the Darcy permeability constant of the partition wall is 0.5 ⁇ 10 ⁇ 12 to 3 ⁇ 10 ⁇ 12 m 2 .
  • the thermal expansion coefficient between 20 and 800 ° C. of the ceramic honeycomb structure is preferably 13 ⁇ 10 ⁇ 7 / ° C. or less.
  • the ceramic honeycomb filter of the present invention is formed by alternately plugging the exhaust gas inflow side or the exhaust gas outflow side of the flow path of the ceramic honeycomb structure.
  • the method of the present invention for producing a ceramic honeycomb structure includes the steps of extruding a clay containing a ceramic raw material and a pore former into a predetermined molded body, drying and firing the molded body,
  • the pore former contains 2 to 20% by mass of the pore former with respect to 100% by mass of the ceramic raw material, the median diameter of the pore former is 5 to 70 ⁇ m, and the pore former has an inorganic powder on the surface. It is characterized by being solid or hollow resin particles.
  • the inorganic powder is preferably at least one selected from the group consisting of kaolin, silica, talc, cordierite, alumina, aluminum hydroxide, calcium carbonate, and titanium oxide.
  • the median diameter of the inorganic powder is preferably 0.5 to 15 ⁇ m.
  • the ceramic raw material is a cordierite forming raw material, and it is preferable that the cordierite forming raw material contains 15 to 25% of silica, the median diameter of the silica is 20 to 30 ⁇ m, and the sphericity is 0.5 or more.
  • the cordierite-forming raw material preferably contains talc having a median diameter of 1 to 10 ⁇ m.
  • the filter comprising the ceramic honeycomb structure of the present invention is in a state before PM is deposited at the beginning of use (when the ceramic honeycomb filter is used from an unused state or when it is used again after being regenerated).
  • the collection rate on the basis of the number of PM particles is improved, and the pressure when PM is collected and accumulated Since loss characteristics do not deteriorate, it is possible to respond to further tightening of exhaust gas regulations.
  • 7 is an electron micrograph showing the surface of partition walls of a ceramic honeycomb structure of Example 7 of the present invention. 7 is an electron micrograph showing a cross section of a partition wall of a ceramic honeycomb structure of Example 7 of the present invention. 2 is an electron micrograph showing pore former particles (pore former A) used in Example 1.
  • Ceramic honeycomb structure The ceramic honeycomb structure of the present invention has a large number of flow paths partitioned by porous partition walls, and the partition walls have (a) a porosity of 55 to 80%, (b) The median pore diameter D50 measured by the mercury intrusion method is 5 to 27 ⁇ m, (c) the opening area ratio of the pores opened on the surface is 20% or more, and (d) the pores opened on the surface are represented by equivalent circle diameters.
  • Median opening diameter d50 on the basis of the area in case of 10 to 45 ⁇ m, (e) pore equivalent diameter of pores opened on the surface is 10 ⁇ m or more and less than 40 ⁇ m, and the pore density is 350 / mm 2 or more, (f) pores
  • the maximum value of the slope of the curve indicating the cumulative pore volume when the distribution is measured by the mercury intrusion method is 1.6 or more, and (g) the ratio D50 / d50 between the median pore diameter D50 and the median opening diameter d50 is 0.65 or less.
  • the porosity of the partition wall is 55 to 80%. When the porosity is less than 55%, it is difficult to maintain a low pressure loss when PM is collected and accumulated. On the other hand, when the porosity exceeds 80%, PM on the basis of the number of particles at the beginning of use The collection rate decreases.
  • the porosity is preferably 57% to 75%, more preferably 57% to 70%, and most preferably 57% to 65%.
  • the porosity of the partition wall is measured by a mercury intrusion method described later.
  • the median diameter (median pore diameter D50) of pores of septa measured by mercury porosimetry is 5 to 27 ⁇ m.
  • the median pore diameter D50 is less than 5 ⁇ m, it is difficult to keep the initial pressure loss at the start of use low.
  • the median pore diameter D50 is 27 ⁇ m or more, the number of pores having a diameter of 5 to 27 ⁇ m effective for PM collection decreases, and the PM collection rate on the basis of the number of particles may decrease.
  • the median pore diameter D50 is preferably 7 to 25 ⁇ m, more preferably 7 to 20 ⁇ m, and further preferably 7 to 18 ⁇ m.
  • the median pore diameter D50 is the median diameter obtained from the pore distribution of the partition walls measured by mercury porosimetry.
  • Opening area ratio of pores opened on the partition wall surface The opening area ratio of pores opened on the partition wall surface is 20% or more.
  • the opening area ratio is the total area of pores opened per unit area of the partition wall surface. From an electron micrograph obtained by photographing the surface of the partition wall, an image analysis device (for example, Image-made by Media Cybernetics, Inc.) Calculate the total opening area of each pore with Pro Plus ver.3.0), and divide by the measurement visual field area.
  • the opening area ratio is less than 20%, it is difficult to maintain a low pressure loss when PM is collected and accumulated.
  • the opening area ratio is preferably 40% or less in order to prevent a decrease in the PM collection rate on the basis of the number of particles at the beginning of use.
  • the opening area ratio is more preferably in the range of 23 to 38%.
  • (d) Median diameter on the basis of area when pores opened on the partition wall surface are expressed by equivalent circle diameter
  • the diameter d50) is 10 to 45 ⁇ m.
  • the median opening diameter d50 was opened on the partition wall surface with respect to the equivalent circle diameter of the opened pore (the diameter of a circle having an area equivalent to the opening area of the pore).
  • the equivalent circle diameter of the pores corresponding to 50% of the total pore area is there.
  • the opening area and equivalent circle diameter of the pores can be determined by analyzing an electron micrograph of the surface of the partition wall with an image analyzer (for example, Image-Pro Plus ver.6.3 manufactured by Media Cybernetics). .
  • the median opening diameter d50 is preferably 15 to 40 ⁇ m, more preferably 15 to 35 ⁇ m.
  • Pore density with a circle-equivalent diameter of pores opened on the partition wall surface of 10 ⁇ m or more and less than 40 ⁇ m is 350 / mm 2 or more It is.
  • the pore density having an equivalent circle diameter of 10 ⁇ m or more and less than 40 ⁇ m of pores opened on the partition wall surface is the number of pores having an equivalent circle diameter of 10 ⁇ m or more and less than 40 ⁇ m with respect to the total number of pores opened on the partition wall surface. It is a ratio.
  • the pore density is preferably 400 / mm 2 or more.
  • the pore density is preferably 900 / mm 2 or less.
  • the maximum value of Sn is 1.6 or more, the pore size distribution becomes very sharp, the PM collection rate on the basis of the number of particles at the beginning of use is improved, and the pressure when PM is collected and accumulated A ceramic honeycomb structure with improved loss characteristics can be obtained.
  • the inclination can be determined by measuring the cumulative pore volume with respect to the pore diameter of the partition walls by mercury porosimetry.
  • the cumulative pore volume can be measured by the mercury intrusion method using, for example, an Autopore III-9410 manufactured by Micromeritics.
  • a test piece cut out from the ceramic honeycomb structure is stored in a measurement cell, and after the inside of the cell is depressurized, when mercury is introduced and pressurized, it is pushed into the pores existing in the test piece. By determining the volume of mercury.
  • the larger the applied pressure the more the mercury penetrates into finer pores.
  • the pore diameter and the cumulative pore volume maximum Of the pore volume from the pore diameter to a specific pore diameter.
  • the intrusion of mercury is sequentially performed from a large pore size to a small pore size.
  • the maximum value of the slope of the curve showing the cumulative pore volume for the pore diameter it is preferable to use the maximum value of the slope S n.
  • the step size of each measurement point in the mercury intrusion method is preferably as small as possible. In particular, for a sample having a narrow fluctuation range of the pore diameter, it is preferable to measure with a step size as fine as possible.
  • the measurement example of the inclination S n shown in FIG. 5 can be obtained from the cumulative pore volume curve measured by the mercury intrusion method shown in FIG. 4 as follows.
  • point a in FIG. 5 indicates pore diameters D 5 and D 6 and cumulative pore volumes V 5 and V 6 at the fifth and sixth measurement points from the start of measurement in the cumulative pore volume curve shown in FIG.
  • Slope S 6 -[(V 6 -V 5 ) / (logD 6 -logD 5 )]
  • the point b is the pore diameters D 6 and D 7 and the cumulative details at the sixth and seventh measurement points.
  • the slope S 7 ⁇ [(V 7 ⁇ V 6 ) / (logD 7 ⁇ logD 6 )] obtained from the pore volumes V 6 and V 7 .
  • the porosity can be determined from the volume of mercury pushed into the pores at the time of maximum pressurization and the apparent volume of the test piece.
  • the median pore diameter is a pore diameter ( ⁇ m) at a pore volume corresponding to 1/2 of the total pore volume in a curve indicating the relationship between the pore diameter and the cumulative pore volume.
  • Ratio D50 / d50 between median pore diameter D50 and median opening diameter d50 The ratio D50 / d50 between the median pore diameter D50 and the median opening diameter d50 is 0.65 or less.
  • the collection efficiency of the pores inside the partition wall having the same size as the pores opened on the surface is lowered.
  • the D50 / d50 is preferably 0.60 or less, more preferably 0.55 or less. In order to prevent an increase in pressure loss at the beginning of use, D50 / d50 is preferably 0.1 or more.
  • the total volume of pores with a pore diameter of 10 ⁇ m or less is all fine to improve the pressure loss characteristics. It is preferably 5 to 70% of the pore volume, more preferably 8 to 60%, and most preferably 10 to 50%.
  • the Darcy permeability constant of the partition walls of the ceramic honeycomb structure is preferably 0.5 ⁇ 10 ⁇ 12 to 3 ⁇ 10 ⁇ 12 m 2 .
  • the Darcy permeability constant is in the above range, the initial pressure loss at the start of use can be kept low, the PM collection rate on the basis of the number of particles at the start of use is improved, and PM is collected and accumulated. The pressure loss characteristics are improved.
  • the Darcy permeability constant is less than 0.5 ⁇ 10 ⁇ 12 m 2 , it is difficult to keep the pressure loss at the start of use low.
  • the Darcy transmission constant is preferably 0.8 ⁇ 10 ⁇ 12 to 2.5 ⁇ 10 ⁇ 12 m 2 .
  • the ceramic honeycomb structure preferably has a thermal expansion coefficient between 20 and 800 ° C of 13 ⁇ 10 -7 / ° C or less. Since the ceramic honeycomb structure having such a thermal expansion coefficient has high thermal shock resistance, it can sufficiently be practically used as a ceramic honeycomb filter for removing fine particles contained in exhaust gas of a diesel engine. .
  • the thermal expansion coefficient is preferably 3 ⁇ 10 ⁇ 7 to 11 ⁇ 10 ⁇ 7 .
  • the ceramic honeycomb structure preferably has an average partition wall thickness of 9 to 15 mil (0.229 to 0.381 mm) and an average cell density of 150 to 300 cpsi (23.3 to 46.5 cells / cm 2 ).
  • the pressure loss can be kept low at the start of use, the PM collection rate based on the number of particles can be improved, and the pressure loss characteristic when PM is collected and accumulated Is improved.
  • the average partition wall thickness is less than 9 mil, the strength of the partition wall decreases, whereas when it exceeds 15 mil, it is difficult to maintain a low pressure loss.
  • the average cell density is less than 150 cpsi, the septum strength decreases, whereas when it exceeds 300 cpsi, it is difficult to maintain a low pressure drop.
  • the ceramic honeycomb structure is a filter for purifying exhaust gas discharged from a diesel engine, so heat-resistant ceramics, that is, alumina, mullite, cordier, etc. Ceramics mainly composed of erlite, silicon carbide, silicon nitride, zirconia, aluminum titanate, lithium aluminum silicate and the like are preferable. Of these, cordierite with excellent thermal shock resistance and cordierite or aluminum titanate as the main crystal are preferred. When the main crystal phase is cordierite, it may contain other crystal phases such as spinel, mullite, sapphirine, and may further contain a glass component. When the main crystal phase is aluminum titanate, elements such as Mg and Si may be dissolved in the aluminum titanate crystal phase, and other crystal phases such as mullite may be contained. A glass component may be contained as a boundary phase.
  • Ceramic honeycomb filter The ceramic honeycomb filter of the present invention is formed by alternately plugging the exhaust gas inflow side or the exhaust gas outflow side of the flow path of the ceramic honeycomb structure of the present invention.
  • a low pressure loss can be maintained and the PM collection rate based on the number of particles can be improved, and PM is collected and accumulated.
  • a ceramic honeycomb filter with improved pressure loss characteristics can be obtained.
  • the plugging formed in the flow path does not necessarily have to be formed on the end surface portion on the exhaust gas inflow side or exhaust gas outflow side of the flow path, and enters the flow path from the inflow side end face or the outflow side end face. It may be formed at a different position.
  • a method for manufacturing a ceramic honeycomb structure of the present invention includes extruding a clay containing a ceramic raw material and a pore former into a predetermined molded body, and drying and firing the molded body.
  • the clay contains 2 to 20% by mass of the pore former with respect to 100% by mass of the ceramic raw material, and the median diameter of the pore former is 5 to 70 ⁇ m.
  • the pore material is a solid or hollow resin particle having an inorganic powder on the surface.
  • the porosity is 55 to 80%
  • the median pore diameter D50 measured by the mercury intrusion method is 5 to 27 ⁇ m
  • the open area ratio of the pores opened on the surface is 20% or more
  • the fine pores opened on the surface is 10 to 45 ⁇ m
  • the equivalent circle diameter of the pores opened on the surface is 10 ⁇ m or more and less than 40 ⁇ m
  • the pore density is 350 / mm 2 or more
  • the maximum slope of the curve showing the cumulative pore volume with respect to the pore diameter when measuring pores by the mercury intrusion method is 1.6 or more
  • the ratio D50 / d50 of the median pore diameter D50 to the median opening diameter d50 is 0.65 or less.
  • the pores formed in ceramics include those formed by firing a ceramic raw material and those formed by burning a pore former. Among them, since the pores formed by the pore former occupy most, the pores formed when the ceramic is fired is controlled by adjusting the median diameter and particle size distribution of the pore former. Can do.
  • the production method of the present invention by using a material having an inorganic powder on the surface of resin particles (solid or hollow) as the pore former, when the molded body containing the ceramic raw material and the pore former is fired The resin particles burn and become voids, and the ceramic raw material and the inorganic powder on the surface of the resin particles are fired to form pores. At this time, the pores formed by firing the inorganic powder on the surface of the resin particles communicate the pores formed by firing the ceramic raw material and the pores formed by the resin particles, from the partition wall surface to the inside. As a result, the pore diameter of the partition wall measured by the mercury intrusion method and the pores opened on the surface of the partition wall can be within the above range.
  • Porous material (a) Structure The pore former used in the present invention consists of solid resin particles or hollow resin particles, and contains inorganic powder.
  • the inorganic powder is preferably attached to the surface of the solid or hollow resin particles.
  • the pore former made of resin particles having the inorganic powder adhered to the surface thereof can be produced by bringing the inorganic powder into contact with the resin particles containing moisture.
  • the addition amount of the pore former is 2 to 20% by mass with respect to 100% by mass of the ceramic raw material. When the added amount of the pore former is out of this range, it is difficult to obtain a partition having the pore structure. When the added amount of the pore former is less than 2% by mass, the amount of pores formed by the pore former is reduced, so that it is impossible to maintain a low pressure loss when PM is collected and accumulated. When the added amount of the pore former exceeds 20% by mass, the PM collection rate on the basis of the number of particles at the beginning of use decreases.
  • the added amount of the pore former is preferably 3 to 18% by mass, and more preferably 4 to 15% by mass.
  • the median diameter of the pore former particles is 5 to 70 ⁇ m.
  • the median diameter of the pore former particles is preferably 8 to 50 ⁇ m, more preferably 10 to 35 ⁇ m.
  • the pore former particles have a median diameter of a particle diameter d90 corresponding to 90% cumulative volume in a curve indicating the relationship between the particle diameter and the cumulative volume (a value obtained by accumulating a particle volume equal to or less than a specific particle diameter).
  • the particle diameter d10 corresponding to 1.5 to 2.5 times the cumulative volume of 10% is preferably 0.2 to 0.8 times the median diameter.
  • the particle diameter of the pore former can be measured using a Microtrac particle size distribution measuring device (MT3000) manufactured by Nikkiso Co., Ltd.
  • the sphericity of the pore former particles is preferably 0.5 or more.
  • the sphericity of the pore former particles is preferably 0.7 or more, and more preferably 0.8 or more.
  • the sphericity of the pore former particles was obtained by dividing the projected area of the pore former particles by the area of a circle whose diameter is the maximum value of a straight line passing through the center of gravity of the pore former particles and connecting two points on the outer periphery of the particle. Value, which can be obtained from an electron micrograph with an image analyzer.
  • the resin particles may be solid or hollow.
  • foamed resin particles porous resin particles
  • the resin used as the pore former particles (poly) methyl methacrylate, polybutyl methacrylate, polyacrylic ester, polystyrene, polyacrylic ester, polyethylene, polyethylene terephthalate, methyl methacrylate / acrylonitrile copolymer and the like are suitable.
  • the hollow resin particles preferably have an outer shell thickness of 0.1 to 3 ⁇ m, and preferably contain a gas such as hydrocarbon.
  • the inorganic powder is preferably at least one selected from the group consisting of kaolin, silica, talc, cordierite, alumina, aluminum hydroxide, calcium carbonate, and titanium oxide.
  • kaolin, silica, talc, cordierite, alumina and aluminum hydroxide are preferable as the inorganic powder, and talc is most preferable.
  • the median diameter of the inorganic powder is preferably 0.5 to 15 ⁇ m, and more preferably 0.6 to 12 ⁇ m. preferable.
  • the particle diameter of the inorganic powder can be measured using a Microtrac particle size distribution measuring device (MT3000) manufactured by Nikkiso Co., Ltd.
  • MT3000 Microtrac particle size distribution measuring device manufactured by Nikkiso Co., Ltd.
  • the said inorganic powder before making it adhere to a resin particle is not obtained, it peels and measures with an ultrasonic wave etc. from a pore making material.
  • the median diameter d of the inorganic powder is preferably selected so that d / D is 0.5 or less with respect to the median diameter D of the solid or hollow resin particles.
  • the inorganic powder can be satisfactorily adhered to the surface of the resin particles.
  • the inorganic powder is selected so that the d / D exceeds 0.5, the inorganic powder is less likely to adhere to the surface of the resin particles, and therefore, the ceramic raw material is formed from pores and resin particles generated by firing. The effect of the inorganic powder that communicates with the pores is reduced, and the connectivity of the pores from the partition wall surface to the inside is deteriorated.
  • the d / D is preferably 0.01 to 0.45.
  • the pore former particles preferably have a volume ratio of resin particles to inorganic powder (resin particles / inorganic particles) of 0.1 to 200.
  • the volume ratio is preferably 0.5 to 150.
  • the ceramic raw material is preferably a cordierite forming raw material.
  • the main crystal is cordierite (the main component has a chemical composition of 42 to 56% by mass of SiO 2 , 30 to 45% by mass of Al 2 O 3 and 12 to 16% by mass of MgO).
  • each raw material powder which has a silica source component, an alumina source component, and a magnesia source component is mix
  • the pores formed in the ceramic having cordierite as the main crystal are due to pores generated by firing the cordierite-forming raw material silica and talc and pores generated by burning the pore former.
  • silica and pore former occupy most of the pores formed, so the pores generated when cordierite ceramics are fired can be controlled by adjusting their particle size and particle size distribution. can do.
  • Silica Silica is known to exist stably up to a higher temperature than other raw materials, and melt and diffuse at 1300 ° C. or higher to form pores. Therefore, when 15 to 25% by mass of silica is contained, a desired amount of pores can be obtained.
  • silica is contained in an amount exceeding 25% by mass, kaolin and / or talc, which are other silica source components, must be reduced in order to maintain the main crystal as cordierite, and as a result, obtained by kaolin.
  • the effect of lowering thermal expansion (effect obtained by orienting kaolin during extrusion molding) is reduced, and the thermal shock resistance is lowered.
  • the amount when the amount is less than 15% by mass, the number of pores opened on the partition wall surface is reduced, so that a low pressure loss may not be obtained when PM is collected and accumulated.
  • the content of silica is preferably 17 to 23% by mass.
  • the median diameter of silica is preferably 20 to 30 ⁇ m in order to form the partition structure of the ceramic honeycomb structure of the present invention.
  • silica particles having such a median diameter in combination with the pore former By using silica particles having such a median diameter in combination with the pore former, a very sharp pore distribution can be obtained.
  • the median diameter of silica is less than 20 ⁇ m, the proportion of fine pores that cause an increase in pressure loss when PM is collected and accumulated among pores opened on the partition wall surface increases. On the other hand, if it exceeds 30 ⁇ m, the number of coarse pores that reduce the PM collection efficiency at the beginning of use increases.
  • the median diameter of silica is preferably 22 to 28 ⁇ m.
  • the silica particles having a particle diameter of 10 ⁇ m or less are preferably 5% by mass or less, and the silica particles having a particle diameter of 100 ⁇ m or more are preferably 5% by mass or less.
  • a sharper pore distribution can be obtained when used in combination with the pore former.
  • the silica particle having a particle diameter of 10 ⁇ m or less exceeds 5% by mass, the proportion of fine pores that increase pressure loss when PM is collected and accumulated among the pores opened on the partition wall surface increases.
  • the ratio of silica particles having a particle diameter of 10 ⁇ m or less is preferably 3% by mass or less.
  • silica particles having a particle diameter of 100 ⁇ m or more exceed 5% by mass, coarse pores that reduce the PM collection rate at the beginning of use increase.
  • the ratio of silica particles having a particle diameter of 100 ⁇ m or more is preferably 3% by mass or less.
  • the sphericity of the silica particles is preferably 0.5 or more.
  • the sphericity of the silica particles is less than 0.5, the circularity of the pores opened on the partition wall surface increases, the number of coarse pores that lower the PM collection rate at the beginning of use increases, and PM is trapped.
  • the number of micropores that increase the pressure loss when collected and accumulated increases.
  • the sphericity of the silica particles is preferably 0.6 or more, and more preferably 0.7 or more.
  • the sphericity of the silica particle is a value obtained by dividing the projected area of the silica particle by the area of a circle whose diameter is the maximum value of the straight line connecting the two points on the outer periphery of the particle through the center of gravity of the silica particle. It can be obtained by an image analysis apparatus.
  • the silica particles may be crystalline or amorphous, but are preferably amorphous from the viewpoint of adjusting the particle size distribution.
  • Amorphous silica can be obtained by crushing an ingot produced by melting high-purity natural silica at high temperature.
  • Silica particles may contain Na 2 O, K 2 O, and CaO as impurities, but in order to prevent an increase in the thermal expansion coefficient, the content of the impurities is preferably 0.1% or less in total. .
  • Silica particles with high sphericity can be obtained by pulverizing high-purity natural silica and spraying it in a high-temperature flame.
  • the silica particles can be melted and spheroidized simultaneously by thermal spraying into a high-temperature flame to obtain amorphous silica having a high sphericity.
  • Kaolin powder As a silica raw material used as a cordierite forming raw material, kaolin powder can be blended in addition to the silica powder.
  • the kaolin powder is preferably contained in an amount of 1 to 15% by mass. When the kaolin powder exceeds 15% by mass, it may be difficult to adjust the pores having a pore diameter of less than 2 ⁇ m of the ceramic honeycomb structure to 10% by volume or less. The thermal expansion coefficient of the ceramic honeycomb structure is increased.
  • the kaolin powder content is more preferably 4 to 8% by mass.
  • the orientation of kaolin particles is greatly influenced by their shape.
  • the cleavage index of kaolin particles which is an index that quantitatively indicates the shape of kaolin particles, is preferably 0.80 or more, and more preferably 0.85 or more.
  • the cordierite-forming raw material preferably contains talc having a median diameter of 1 to 15 ⁇ m.
  • the partition wall has pores generated by firing silica and talc in the cordierite forming raw material and pores generated by burning the pore former, and is formed by silica and the pore former. Between the fine pores, talc particles having a median diameter of 1 to 15 ⁇ m smaller than the median diameter of silica and pore former form pores, so that the pores formed by the pore former and silica are talc particles.
  • the pores in the partition walls are improved in communication.
  • the median diameter of talc is less than 1 ⁇ m, the pore connectivity is lowered, and the pressure loss characteristic when PM is collected and accumulated is lowered.
  • the median diameter of talc exceeds 15 ⁇ m, coarse pores that reduce the PM collection rate at the beginning of use increase.
  • the median diameter of talc is preferably 2 to 12 ⁇ m, more preferably 3 to 10 ⁇ m.
  • the particle size d90 at the cumulative volume corresponding to 90% of the total volume is 40 ⁇ m or less. Is preferred.
  • the particle diameter is preferably 35 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • Talc is preferably plate-like particles from the viewpoint of reducing the thermal expansion coefficient of the ceramic honeycomb structure whose main component of the crystal phase is cordierite.
  • the form factor indicating the tabularity of the talc particles is preferably 0.50 or more, more preferably 0.60 or more, and most preferably 0.70 or more.
  • Talc may contain Fe 2 O 3 , CaO, Na 2 O, K 2 O and the like as impurities.
  • the content of Fe 2 O 3 is preferably 0.5 to 2.5% by mass in the magnesia source material, and the content of Na 2 O, K 2 O and CaO is thermal expansion. From the viewpoint of reducing the coefficient, the total content is preferably 0.5% by mass or less.
  • the amount of talc added to the cordierite-forming raw material is preferably 40 to 43% by mass so that the main crystal becomes cordierite.
  • the talc composition added to the cordierite forming raw material in consideration of the talc content contained in the pore former Adjust the amount accordingly.
  • Alumina As the alumina raw material, aluminum oxide and / or aluminum hydroxide is preferable in that it has few impurities.
  • the total content of Na 2 O, K 2 O and CaO as impurities in aluminum oxide and aluminum hydroxide is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, and most preferably 0.1% by mass or less. is there.
  • the content of aluminum hydroxide in the cordierite forming raw material is preferably 6 to 42% by mass.
  • the content of aluminum oxide in the cordierite forming raw material is preferably 35% by mass or less.
  • the ceramic honeycomb structure is kneaded by adding water, adding a binder, and if necessary, additives such as a dispersant and a surfactant to the ceramic raw material and pore former, followed by dry mixing.
  • the obtained plastic clay is extruded by a known extrusion molding method from a known mold for forming a honeycomb structure to form a honeycomb structure molded body, and after the molded body is dried, if necessary, It is manufactured by processing the end face and outer periphery and firing.
  • Calcination is performed using a continuous furnace or a batch furnace while adjusting the heating and cooling rates.
  • the ceramic raw material is a cordierite forming raw material, it is kept at 1350-1450 ° C. for 1-50 hours, and after the cordierite main crystals are sufficiently formed, it is cooled to room temperature.
  • the heating rate is a temperature range in which the binder decomposes so that cracks do not occur in the formed body during the firing process, particularly when manufacturing a large ceramic honeycomb structure having an outer diameter of 150 mm or more and a total length of 150 mm or more (for example, The temperature is preferably 0.2 to 10 ° C./hr at 150 to 350 ° C.
  • Cooling is preferably performed at a rate of 20 to 40 ° C./h, particularly in the range of 1400 to 1300 ° C.
  • the obtained honeycomb structure can be made into a ceramic honeycomb filter by plugging the end of a desired flow path by a known method. Note that this plugged portion may be formed before firing.
  • Examples 1 to 24 and Comparative Examples 1 to 6 The silica particles, kaolin powder, talc powder, alumina powder and aluminum hydroxide powder having the particle shape (particle size, particle size distribution, etc.) and impurities shown in Tables 1 to 4 are blended in the addition amounts shown in Table 6, A cordierite-forming raw material powder having a composition of 50% by mass of SiO 2 , 36% by mass of Al 2 O 3 and 14% by mass of MgO was obtained.
  • the addition amount of each ceramic raw material shown in Table 6 is a numerical value normalized so that the total amount of ceramic raw materials (including talc or silica contained in the pore former) is 100 parts by mass.
  • a pore-forming material having the particle shape shown in Table 5 is added in the amount shown in Table 6, and after adding methylcellulose, water is added and kneaded to form a plastic cordierite forming raw material.
  • a ceramic clay made of As the pore former other than the pore former G hollow resin particles containing butane gas as an inclusion gas were used.
  • An electron micrograph of the pore former A used in Example 1 is shown in FIG.
  • the particle size and particle size distribution of silica powder, kaolin powder, talc powder, alumina powder, aluminum hydroxide powder and pore former were measured using Nikkiso Co., Ltd. Microtrac particle size distribution measuring device (MT3000).
  • the ratio of particle diameter of 10 ⁇ m or less, the ratio of 100 ⁇ m or more, d90, d10, etc. were determined.
  • the sphericity of silica particles is the area of a circle whose diameter is the maximum value of the projected area A1 and the straight line that passes through the center of gravity and connects two points on the outer periphery of the particle, obtained from an image of the particle taken with an electron microscope.
  • the outer periphery of the fired ceramic honeycomb body is coated with a skin material made of amorphous silica and colloidal silica and dried, and the ceramics of Examples 1 to 24 and Comparative Examples 1 to 6 having an outer diameter of 266.7 mm and a total length of 304.8 mm A honeycomb structure was obtained.
  • the results of observing the surface and cross section of the partition walls of the ceramic honeycomb structure of Example 7 with an electron microscope are shown in FIGS. 6 and 7, respectively.
  • the plugging material slurry made of the cordierite forming raw material is filled in the end portions of the flow paths of these ceramic honeycomb structures so as to be alternately plugged, the plugging material slurry is dried and fired.
  • the cordierite ceramic honeycomb filters of Examples and Comparative Examples were manufactured. The length of the plugged material after firing was in the range of 7 to 10 mm. Each ceramic honeycomb filter was made of two identical ones.
  • Example 25 As ceramic raw material powder, 32.0 parts by mass of titania powder (median diameter 1.6 ⁇ m), 56.1 parts by mass of alumina powder (median diameter 5 ⁇ m), 3.0 parts by mass of silica powder (median diameter 20 ⁇ m) so as to have an aluminum titanate composition , Mixing, kneading, and extruding 3.0 parts by weight of magnesia powder (median diameter 2 ⁇ m), molding aid and 7.0 parts by weight of pore former (titanium oxide coated hollow resin particles, median diameter 20 ⁇ m, sphericity 0.92), A formed article having a honeycomb structure having an outer diameter of 50 mm, a length of 90 mm, a partition wall thickness of 10 mil (0.25 mm), and a cell density of 300 cpsi (46.5 cells / cm 2 ) was obtained.
  • the periphery is removed and processed at room temperature to 150 ° C. at 50 ° C./h, 150 to 300 ° C. at 10 ° C./h, 300 to 1000 ° C. at 50 ° C./h, and 1000 ° C. and above at 30 ° C.
  • the temperature was increased at a temperature increase rate of 1 / h, held at a maximum temperature of 1600 ° C for 10 hours, cooled from 1600 ° C to room temperature at a rate of 70 ° C / h and fired.
  • the outer periphery of the fired ceramic honeycomb body was coated with a skin material made of amorphous silica and colloidal silica and dried to obtain a ceramic honeycomb structure having an outer diameter of 150 mm and a total length of 200 mm.
  • the plugging material slurry After filling the plugging material slurry made of the aluminum titanate raw material so that the channel ends of the ceramic honeycomb structure are alternately plugged, the plugging material slurry is dried and fired. An aluminum titanate ceramic honeycomb filter was produced. The length of the plugged material after firing was in the range of 7 to 10 mm. Two of the same ceramic honeycomb filters were produced.
  • the aperture area ratio of the pores opened on the partition wall surface is obtained by processing an electron micrograph of the partition wall surface cut out from the honeycomb filter with an image analyzer (Media-Cybernetics Co., Ltd. Image-Pro Plus Plus ver. 6.3) (emphasis filter: LoPass ( (Low pass), option: 3 ⁇ 3, pass (number of times): 2, and strength: filter processing under the condition of 8) and analysis, as a ratio (%) of the total opening area of each pore to the area of the measurement field of view Asked.
  • an image analyzer Media-Cybernetics Co., Ltd. Image-Pro Plus Plus ver. 6.3
  • the median opening diameter d50 of the pores opened on the partition wall surface is the equivalent circle diameter of the pores opened on the partition wall surface (from the area S of the pores opened on the partition wall surface obtained by the image analysis, the formula: 2 x (S / ⁇ ) calculated by 1/2 ), and the cumulative area of pores opened on the partition wall surface (the cumulative value of the opening area of pores below a specific equivalent circle diameter) was plotted against the equivalent circle diameter. From the graph (see FIG. 3), it was calculated as the equivalent circle diameter of the pores having a cumulative area corresponding to 50% of the total pore area.
  • the pore density with an equivalent circle diameter of 10 ⁇ m or more and less than 40 ⁇ m of pores opened on the partition wall surface is the number of pores with an equivalent circle diameter of 10 ⁇ m or more and less than 40 ⁇ m among the pores opened per unit area of the partition wall surface. Calculated.
  • Total pore volume, porosity, median pore diameter D50, slope S n of cumulative pore volume curve, and pore volume of 10 ⁇ m or less were determined by mercury porosimetry.
  • the test piece (10 mm x 10 mm x 10 mm) cut out from the ceramic honeycomb filter is placed in a Micromeritics Autopore III measurement cell, the inside of the cell is decompressed, and then mercury is introduced. And pressurizing and determining the relationship between the pressure at the time of pressurization and the volume of mercury pushed into the pores present in the test piece. From the relationship between the pressure and the volume, the relationship between the pore diameter and the cumulative pore volume was determined.
  • the porosity was calculated from the measured value of the total pore volume, assuming that the true specific gravity of cordierite was 2.52 g / cm 3 .
  • Slope S n and 10 ⁇ m more of the pore volume of the cumulative pore volume curves were determined from curves showing the cumulative pore volume against pore size.
  • S n the slope of the cumulative pore volume curve at the (n) th measurement point
  • D n-1 the pore diameter
  • Darcy's permeability constant is the maximum value of air permeability measured using Perm Automated Porometer (registered trademark) 6.0 version (Porous Materials) while increasing the air flow rate from 30 cc / sec to 400 cc / sec. .
  • CTE coefficient of thermal expansion
  • the initial pressure loss was expressed as the pressure difference (pressure loss) between the inflow side and the outflow side when air was fed into the ceramic honeycomb filter fixed to the pressure loss test stand at a flow rate of 10 Nm 3 / min.
  • Pressure loss is When exceeding 1.0 kPa ( ⁇ ), (0.8) when 0.8 kPa and 1.0 kPa (0.6) when 0.6 kPa and 0.8 kPa When the pressure is 0.6 kPa or less ( ⁇ ) As an initial pressure loss was evaluated.
  • Pressure loss is When exceeding 1.5 kPa ( ⁇ ), ( ⁇ ) when 1.3 kPa and 1.5 kPa or less ( ⁇ ) when 1.0 kPa and 1.3 kPa or less When the pressure is 1.0 kPa or less ( ⁇ ) The soot collection pressure loss was evaluated.
  • the collection efficiency is set every 1 minute while charging a ceramic honeycomb filter fixed to a pressure loss test stand with an air flow rate of 10 Nm 3 / min and a combustion soot with an average particle size of 0.042 ⁇ m at a rate of 3 g / h.
  • the number of burning soot particles flowing into the honeycomb filter and the number of burning soot particles flowing out of the honeycomb filter are measured using SMPS (Scanning Mobility Particle Sizer) (TIS model 3936), from 3 to 4 minutes from the start of charging.
  • the number of combustion soot particles N in flowing into the honeycomb filter and the number of combustion soot particles N out flowing out of the honeycomb filter were determined by the formula: (N in -N out ) / N in .
  • the collection efficiency is 98% or more ( ⁇ ), ( ⁇ ) when 96% or more and less than 98% 95% or more and less than 96% ( ⁇ ), and Less than 95% ( ⁇ )
  • the collection efficiency was evaluated as
  • the ceramic honeycomb filters of Examples 1 to 25 of the present invention have an improved PM collection rate based on the number of particles at the beginning of collection while maintaining a low pressure loss.
  • the ceramic honeycomb filter of Comparative Example 1 uses the pore-forming material D having a median diameter of 85 ⁇ m (greater than 70 ⁇ m), so the diameter of the formed pores is large and the collection efficiency is low.
  • the ceramic honeycomb filter of Comparative Example 2 uses the pore former E having a median diameter of 2.0 ⁇ m (smaller than 5 ⁇ m), the diameter of the formed pores is small and the pressure loss characteristic is low.
  • Ceramic honeycomb filter of Comparative Example 3 due to the use of the pore former H containing no inorganic powder, the maximum value of the slope S n of a cumulative pore volume curve is small (i.e. pore distribution is wide) Susuto Low pressure loss characteristics.
  • Ceramic honeycomb filter of Comparative Example 4 due to the use of pore forming material G consisting of graphite containing no inorganic powder, the maximum value of the slope S n of the median diameter and a cumulative pore volume curve of the pores is small pressure Both loss characteristics and collection efficiency are low.
  • the ceramic honeycomb filter of Comparative Example 5 since the amount of pore former used is too large, the diameter of the formed pores is large and the collection efficiency is low.
  • the ceramic honeycomb filter of Comparative Example 6 since the amount of pore former used is too small, the diameter of the formed pores is small and the pressure loss characteristics are low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Filtering Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Nanotechnology (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

 多孔質の隔壁で仕切られた多数の流路を有するセラミックハニカム構造体であって、前記隔壁は、(a)気孔率が55~80%、(b)水銀圧入法により測定されたメジアン細孔径D50が5~27μm、(c)表面に開口した細孔の開口面積率が20%以上、(d)表面に開口した細孔を円相当径で表した場合の面積基準でのメジアン開口径d50が10~45μm、(e)表面に開口した細孔の円相当径が10μm以上40μm未満の細孔密度が350個/mm2以上、(f)細孔分布を水銀圧入法により測定した時の細孔径に対する累積細孔容積を示す曲線の傾きの最大値が1.6以上、及び(g)前記メジアン細孔径D50とメジアン開口径d50との比D50/d50が0.65以下であるセラミックハニカム構造体。

Description

セラミックハニカム構造体及びその製造方法
 本発明は、ディーゼル機関の排出ガス中に含まれる微粒子を除去するためのセラミックハニカムフィルタに用いられるセラミックハニカム構造体に関する。
 ディーゼルエンジンの排気ガス中には、炭素質からなる煤と高沸点炭化水素成分からなるSOF分(Soluble Organic Fraction:可溶性有機成分)とを主成分とするPM(Particulate Matter:粒子状物質)が含まれており、これが大気中に放出されると人体や環境に悪影響を与えるおそれがある。このため、ディーゼルエンジンの排気管の途中に、PMを捕集するためのセラミックハニカムフィルタを装着することが従来から行われている。排気ガス中のPMを捕集し排気ガスを浄化するためのセラミックハニカムフィルタの一例を図1及び図2に示す。セラミックハニカムフィルタ10は、多数の流出側封止流路3及び流入側封止流路4を形成する多孔質隔壁2と外周壁1とからなるセラミックハニカム構造体と、流出側封止流路3及び流入側封止流路4の排気ガス流入側端面8及び排気ガス流出側端面9を市松模様に交互に封止する上流側封止部6aと下流側封止部6cとからなる。セラミックハニカムフィルタの前記外周壁1は、金属メッシュ又はセラミックス製のマット等で形成された把持部材(図示せず)で使用中に動かないように把持され、金属製収納容器(図示せず)内に配置されている。
 セラミックハニカムフィルタ10において、排気ガスの浄化は次の通り行われる。排気ガスは図2に点線矢印で示すように、排気ガス流入側端面8に開口している流出側封止流路3から流入する。そして、隔壁2を通過する際に、詳しくは隔壁2の表面及び内部に存在する互いに連通した細孔により形成される連通孔を通過する際に、排気ガス中のPMが捕集される。浄化された排気ガスは、排気ガス流出側端面9に開口している流入側封止流路4から流出し、大気中に放出される。
 隔壁2にPMが捕集され続けると、隔壁の表面及び内部の連通孔がPMにより目詰まりしてしまい、排気ガスがセラミックハニカムフィルタを通過する際の圧力損失が上昇する。このため、圧力損失が規定値に達する前にPMを燃焼除去してセラミックハニカムフィルタを再生する必要がある。セラミックハニカムフィルタは、微粒子の高い捕集率、及び低圧力損失を満足する必要があるが、両者は相反する関係にあるため、気孔率、細孔容積、隔壁表面に存在する細孔の大きさ等を制御して両者を満足させる技術が従来から検討されている。
 さらに、近年の排出ガス規制の更なる強化に対応するため、NOxを浄化するSCR装置及び微粒子を浄化するハニカムフィルタの両方を配置した排出ガス浄化装置の検討が行われており、ハニカムフィルタには従来以上に優れた圧力損失特性が求められている。
 PM中には、粒径50 nm以下の、いわゆるナノ粒子が数多く存在する。これらのナノ粒子は、それより大きな同質量の粒子を吸入した場合に比べて、体内に吸入した場合の呼吸器系への沈着率が高い。またナノ粒子は体積当たりの表面積が相対的に大きいため、粒子表面に毒性を有する化学物質が吸着した場合、より強い毒性を有するPM粒子となるおそれがある。PM中に含まれるナノ粒子は質量的には少ないため、現行のPM質量基準の規制では不十分であり、今後の排出ガス規制として、排出される粒子数量に大きく影響するナノ粒子の排出を抑制するための基準(粒子数基準)が設けられると予測されている。このため、ハニカムフィルタには優れた圧力損失特性に加えて、現行のPM質量基準での捕集率ではなく、PM粒子数、とりわけナノ粒子数基準での捕集率を向上させることが要求される。
 特表2005-530616号は、端部を閉塞したコーディエライト・ハニカム構造体からなり、細孔径分布から求めた値d50/(d50+d90)が、0.70未満であり、式[d50/(d50+d90)]/[%多孔率/100]により定義されるすす付着時透過率因子Sfが、1.55未満であり、熱膨張係数(25~800℃)が、17×10-7/℃以下である、ディーゼル排気微粒子を捕捉しかつ燃焼させるセラミックフィルタを開示しており、このような細孔構造(細孔径分布及び細孔連結性)を有することにより、炭素ススが付着している状態であっても低い圧力損失を維持することができると記載している。
 特開2002-219319号は、細孔分布を制御したコーディライトを主結晶相とする材料からなり、前記細孔分布が、細孔径10μm未満の細孔容積が全細孔容積の15%以下であり、細孔径10~50μmの細孔容積が全細孔容積の75%以上であり、細孔径50μmを超える細孔容積が全細孔容積の10%以下である多孔質ハニカムフィルタを開示しており、この多孔質ハニカムフィルタは、前記のような細孔分布を有するため、PM等の捕集効率が高く、かつ細孔の目詰まりによる圧力損失の上昇を防止することができると記載している。特開2002-219319号は、このような細孔分布は、コーディライト化原料のシリカ成分の粒径を制御するとともに、カオリンを低濃度化することにより制御できると記載している。
 特開昭61-129015号は、隔壁の少なくとも導入通路側の表面に、孔径5~40μmの小孔と、孔径40~100μmの大孔からなり、小孔の数が大孔の数の5~40倍となるように構成された、隔壁の内部の内部細孔と連通する表面細孔を具備している排出ガス浄化用フィルタを開示しており、この排出ガス浄化用フィルタは、微粒子の捕集効率が使用開始初期からほとんど一定で高い値を示すと記載している。
 特開2003-40687号は、コージェライトを主成分とし、気孔率が55~65%、平均細孔径が15~30μm、隔壁表面に開口した細孔の総面積が、隔壁表面の総面積の35%以上であるハニカムセラミックス構造体を開示しており、このハニカムセラミックス構造体により、低い圧力損失と高い捕集効率を達成することができると記載している。
 特開2002-355511号は、隔壁表面に担持された触媒を有し、隔壁の気孔率が55~80%、隔壁表面に開口した細孔の総面積が、隔壁表面の総面積の20%以上である、セラミック製のハニカム構造を有する排ガス浄化フィルタを開示しており、この排ガス浄化フィルタは、隔壁に担持された触媒と堆積したPMとの接触面積を増加させることができ、触媒によるPMの酸化反応能力を向上させる効果、及び圧力損失の上昇を抑制する効果を有すると記載している。
 特開2002-349234号は、触媒が担持され、隔壁表面に開口するオープンポアの合計面積が、隔壁の全表面積に対して30%以上であり、開口径が30μm以上の大オープンポアの開口面積の合計が、前記オープンポアの全開口面積の50%以上である排ガス浄化フィルタを開示しており、このような構造を有することにより、PMの酸化燃焼効率が大幅に向上するとともに、熱応力による破損を防止することができると記載している。
 特開2003-193820号は、60%以上の気孔率、15μm以上の平均細孔径を有し、n番目の測定点における細孔径に対する隔壁の累積細孔容積曲線の傾きSnの最大値が0.7以上[ただし、Snは式:Sn=-(Vn-Vn-1)/(log(Dn)-log(Dn-1)で表され、Dnは(n)番目の測定点における細孔径(μm)、Dn-1は(n-1)番目の測定点における細孔径(μm)、Vnは(n)番目の測定点における累積細孔容積(cm3/g)、及びVn-1は(n-1)番目の測定点における累積細孔容積(cm3/g)である。]であるセラミックハニカムフィルタを開示しており、このセラミックハニカムフィルタは、前記のような高い気孔率及び大きな平均細孔径を有していても、熱応力や熱衝撃応力に対して高い耐性を有すると記載している。
 しかしながら、特表2005-530616号、特開2002-219319号、特開昭61-129015号、特開2003-40687号、特開2002-355511号、特開2002-349234号、及び特開2003-193820号に記載された排ガス浄化フィルタのPMの捕集性能は、PMがある程度堆積することにより高くなるものの、使用開始初期のPMが堆積する前の状態(セラミックハニカムフィルタを未使用の状態から使用する時、又は再生処理した後再び使用する時)では必ずしも十分でない。特に排ガス規制の強化に伴い問題視されるようになったナノサイズのPMの捕集効率が不十分であり、有害なナノサイズのPMが捕集されずに排出されるという問題がある。
 特開2004-360654号は、隔壁の気孔率が55~75%、平均細孔径が15~40μm、隔壁表面に開口した細孔の総面積が隔壁表面の総面積の10~30%、隔壁表面に開口した細孔のうち円相当径が5~20μmである細孔が300個/mm2以上存在するセラミックハニカムフィルタを開示している。しかしながら、特開2004-360654号に記載のセラミックハニカムフィルタは、PM質量基準での捕集率改善はある程度達成されたものの、使用開始初期のPMが堆積する前の状態では、ナノ粒子を有効に捕集することが困難である。つまり、PM粒子数基準での捕集効率が低く、粒子数基準での規制をクリヤできる見込みが低い。
 従って、本発明の目的は、上記従来技術の課題を解消し、セラミックハニカムフィルタの使用開始初期のPMが堆積する前の状態(セラミックハニカムフィルタを未使用の状態から使用する時、又は再生処理した後再び使用する時)であっても、排出される粒子数量に大きく影響するナノ粒子を有効に捕集し、PM粒子数基準での捕集率を改善するとともに、PMが捕集され蓄積した際の圧力損失特性の悪化程度を低減したセラミックハニカム構造体及びその製造方法を提供することにある。
 すなわち、本発明のセラミックハニカム構造体は、多孔質の隔壁で仕切られた多数の流路を有し、
前記隔壁は、
(a)気孔率が55~80%、
(b)水銀圧入法により測定されたメジアン細孔径D50が5~27μm、
(c)表面に開口した細孔の開口面積率が20%以上、
(d)表面に開口した細孔を円相当径で表した場合の面積基準でのメジアン開口径d50が10~45μm、
(e)表面に開口した細孔の円相当径が10μm以上40μm未満の細孔密度が350個/mm2以上、
(f)細孔分布を水銀圧入法により測定した時の細孔径に対する累積細孔容積を示す曲線の傾きの最大値が1.6以上、及び
(g)前記メジアン細孔径D50とメジアン開口径d50との比D50/d50が0.65以下であることを特徴とする。
 前記隔壁のダルシー透過定数は0.5×10-12~3×10-12m2であるのが好ましい。
 前記セラミックハニカム構造体の20~800℃間の熱膨張係数は13×10-7/℃以下であるのが好ましい。
 本発明のセラミックハニカムフィルタは、前記セラミックハニカム構造体の前記流路の排気ガス流入側又は排気ガス流出側が交互に目封止してなる。
 セラミックハニカム構造体を製造する本発明の方法は、セラミック原料及び造孔材を含む坏土を所定の成形体に押出成形し、前記成型体を乾燥及び焼成する工程を有し、前記坏土は、前記セラミック原料100質量%に対して2~20質量%の前記造孔材を含有し、前記造孔材のメジアン径が5~70μmであり、前記造孔材は、表面に無機粉体を有する、中実又は中空の樹脂粒子であることを特徴とする。
 前記無機粉体が、カオリン、シリカ、タルク、コーディエライト、アルミナ、水酸化アルミ、炭酸カルシウム、及び酸化チタンからなる群から選ばれた少なくとも1種であるのが好ましい。
 前記無機粉体のメジアン径は0.5~15μmであるのが好ましい。
 前記セラミック原料はコーディエライト化原料であり、前記コーディエライト化原料にシリカを15~25%含み、前記シリカのメジアン径は20~30μm、真球度は0.5以上であるのが好ましい。
 前記コーディエライト化原料にメジアン径が1~10μmであるタルクを含むのが好ましい。
 本発明のセラミックハニカム構造体からなるフィルタは、使用開始初期のPMが堆積する前の状態(セラミックハニカムフィルタを未使用の状態から使用する時、又は再生処理した後再び使用する時)であっても、排出される粒子数量に大きく影響するナノサイズのPMを有効に捕集することができるので、PM粒子数基準での捕集率が改善され、かつPMが捕集され蓄積した際の圧力損失特性が低下しないので、更なる排出ガス規制強化への対応が可能である。
セラミックハニカムフィルタの一例を示す正面図である。 セラミックハニカムフィルタの一例を示す模式断面図である。 セラミックハニカム構造体の隔壁表面に開口した細孔の円相当径と累積面積との関係を模式的に示すグラフである。 水銀圧入法によって測定したセラミックハニカム構造体の隔壁の細孔径と細孔容積との関係(累積細孔容積曲線)を示すグラフである。 累積細孔容積曲線から求めた傾きSnを細孔径に対してプロットしたグラフである。 本発明の実施例7のセラミックハニカム構造体の隔壁の表面を示す電子顕微鏡写真である。 本発明の実施例7のセラミックハニカム構造体の隔壁の断面を示す電子顕微鏡写真である。 実施例1で使用した造孔材粒子(造孔材A)を示す電子顕微鏡写真である。
[1]セラミックハニカム構造体
 本発明のセラミックハニカム構造体は、多孔質の隔壁で仕切られた多数の流路を有し、前記隔壁は、(a)気孔率が55~80%、(b)水銀圧入法により測定されたメジアン細孔径D50が5~27μm、(c)表面に開口した細孔の開口面積率が20%以上、(d)表面に開口した細孔を円相当径で表した場合の面積基準でのメジアン開口径d50が10~45μm、(e)表面に開口した細孔の円相当径が10μm以上40μm未満の細孔密度が350個/mm2以上、(f)細孔分布を水銀圧入法により測定した時の細孔径に対する累積細孔容積を示す曲線の傾きの最大値が1.6以上、及び(g)前記メジアン細孔径D50とメジアン開口径d50との比D50/d50が0.65以下である。
 セラミックハニカム構造体がこのような構成を有することにより、使用開始初期のPMが堆積する前の状態(セラミックハニカムフィルタを未使用の状態から使用する時、又は再生処理した後再び使用する時)においても、排出される粒子数量に大きく影響する微小なPMを有効に捕集することができ、PM粒子数基準での捕集率が改善されるとともに、PMが捕集され蓄積した際の圧力損失特性の悪化程度が低減されたセラミックハニカム構造体を得ることができる。
(a)隔壁の気孔率
 隔壁の気孔率は55~80%である。前記気孔率が55%未満の場合、PMが捕集され蓄積した際の低い圧力損失を維持し難くなり、一方、前記気孔率が80%を超えると、使用開始初期の粒子数基準でのPM捕集率が低下する。前記気孔率は、好ましくは57%~75%、さらに好ましくは57%~70%、最も好ましくは57%~65%である。隔壁の気孔率は後述の水銀圧入法で測定する。
(b)水銀圧入法により測定された隔壁の細孔のメジアン径
 水銀圧入法により測定された隔壁の細孔のメジアン径(メジアン細孔径D50)は5~27μmである。前記メジアン細孔径D50が5μm未満である場合、使用開始時の初期圧力損失を低く維持することが難しくなる。一方、前記メジアン細孔径D50が27μm以上の場合、PM捕集に有効な細孔径5~27μmの細孔が少なくなり、粒子数基準でのPM捕集率が低下する場合がある。前記メジアン細孔径D50は、好ましくは7~25μmであり、さらに好ましくは7~20μmであり、さらに好ましくは7~18μmである。なお前記メジアン細孔径D50は、水銀圧入法により測定した隔壁の細孔分布から求めたメジアン径である。
(c)隔壁表面に開口した細孔の開口面積率
 隔壁表面に開口した細孔の開口面積率は20%以上である。ここで、前記開口面積率は、隔壁表面の単位面積当たりに開口する細孔の面積の合計であり、隔壁の表面を撮影した電子顕微鏡写真から、画像解析装置(例えば、Media Cybernetics 社製 Image-Pro Plus ver.3.0)で各細孔の開口面積の合計を求め、測定視野面積で除算して算出する。
 前記開口面積率が20%未満である場合、PMが捕集され蓄積した際の低い圧力損失を維持し難くなる。一方、使用開始初期の粒子数基準でのPM捕集率の低下を防止するため、前記開口面積率は40%以下であるのが好ましい。前記開口面積率は、より好ましくは23~38%の範囲である。
(d)隔壁表面に開口した細孔を円相当径で表した場合の面積基準でのメジアン径
 隔壁表面に開口した細孔を円相当径で表した場合の面積基準でのメジアン径(メジアン開口径d50)は10~45μmである。ここで、前記メジアン開口径d50は、図3に示すように、開口した細孔の円相当径(細孔の開口面積と同等の面積を有する円の直径)に対して、隔壁表面に開口した細孔の累積面積(特定の円相当径以下の細孔の開口面積を累積した値)をプロットしたグラフにおいて、全細孔面積の50%に相当する累積面積となる細孔の円相当径である。前記細孔の開口面積及び円相当径は、隔壁の表面を撮影した電子顕微鏡写真を、画像解析装置(例えば、Media Cybernetics 社製 Image-Pro Plus ver.6.3)で解析することによって求めることができる。
 前記メジアン開口径d50が10μm未満である場合、PMが捕集され蓄積した際に低い圧力損失を維持することができず、一方、前記メジアン開口径d50が45μm超である場合、使用開始初期の粒子数基準でのPM捕集率が低下する。前記メジアン開口径d50は、好ましくは15~40μm、さらに好ましくは15~35μmである。
(e)隔壁表面に開口した細孔の円相当径が10μm以上40μm未満の細孔密度
 隔壁表面に開口した細孔の円相当径が10μm以上40μm未満の細孔密度は350個/mm2以上である。ここで、隔壁表面に開口した細孔の円相当径が10μm以上40μm未満の細孔密度とは、隔壁表面に開口した全細孔数に対する、円相当径が10μm以上40μm未満の細孔数の割合である。
 前記細孔密度が350個/mm2未満である場合、使用開始初期の粒子数基準でのPM捕集率が低下し、さらにPMが蓄積した際にもPM捕集率が向上しない。前記細孔密度は、好ましくは400個/mm2以上である。また前記細孔密度は900個/mm2以下であるのが好ましい。
(f)隔壁の累積細孔容積曲線の傾きの最大値
 隔壁の細孔分布を水銀圧入法により測定した時の細孔径(対数値)に対する累積細孔容積を示す曲線(累積細孔容積曲線)の傾きの最大値は1.6以上である。ここで累積細孔容積曲線とは、細孔径(μm)の対数値に対して累積細孔容積(cm3/g)をプロットしたものである。前記傾きの最大値が1.6未満である場合、PMが捕集され蓄積した際の圧力損失特性が低下する。前記傾きの最大値は、好ましくは1.8以上である。Snの最大値が1.6以上であれば、細孔径分布が非常にシャープとなり、使用開始初期の粒子数基準でのPM捕集率が改善されるとともに、PMが捕集され蓄積した際の圧力損失特性が改良されたセラミックハニカム構造体を得ることができる。
 前記傾きは、水銀圧入法により隔壁の細孔径に対する累積細孔容積を測定することによって求めることができる。水銀圧入法による累積細孔容積の測定は、例えばMicromeritics社製のオートポアIII 9410 を使用して測定することができる。測定は、セラミックハニカム構造体から切り出した試験片を測定セル内に収納し、セル内を減圧した後、水銀を導入して加圧したときに、試験片内に存在する細孔中に押し込まれた水銀の体積を求めることによって行う。この時加圧力が大きくなればなるほど、より微細な細孔にまで水銀が浸入するので、加圧力と細孔中に押し込まれた水銀の体積との関係から、細孔径と累積細孔容積(最大の細孔径から特定の細孔径までの細孔容積を累積した値)の関係を求めることができる。ここで、水銀の浸入は細孔径の大きいものから小さいものへと順次行われる。
 水銀圧入法により求めた細孔径と累積細孔容積との関係を示す曲線において、測定開始から、(n-1)番目の測定点における細孔径Dn-1(μm)及び累積細孔容積Vn-1(cm3/g)と、(n)番目の測定点における細孔径Dn(μm)及び累積細孔容積Vn(cm3/g)とから、式:
Sn=-(Vn-Vn-1)/(log(Dn)-log(Dn-1))
により(n)番目の測定点における累積細孔容積曲線の傾きSnを求めることができる。前記細孔径に対する累積細孔容積を示す曲線の傾きの最大値は、前記傾きSnの最大値を用いるのが好ましい。ここで、水銀圧入法における各測定点の刻み幅は、できるだけ細かい方が好ましい。特に細孔径の変動幅が狭い試料に対してはできるだけ細かい刻み幅で測定するのが好ましい。
 前記傾きSnの測定例を図5に示す。図5に示すグラフは、図4に示す水銀圧入法で測定された累積細孔容積曲線から以下のようにして求めることができる。例えば、図5中の点aは、図4に示す累積細孔容積曲線での測定開始から5番目と6番目の測定点における細孔径D5とD6及び累積細孔容積V5とV6から求めた傾きS6=-[(V6-V5)/(logD6-logD5)]であり、点bは6番目と7番目の測定点における細孔径D6とD7及び累積細孔容積V6とV7から求めた傾きS7=-[(V7-V6)/(logD7-logD6)]である。
 気孔率は、最大加圧時に細孔中に押し込まれた水銀の体積と、試験片の見かけの体積とから求めることができる。メジアン細孔径は、細孔径と累積細孔容積との関係を示す曲線において、全細孔容積の1/2に相当する細孔容積での細孔径(μm)である。
(g)メジアン細孔径D50とメジアン開口径d50との比D50/d50
 前記メジアン細孔径D50と前記メジアン開口径d50との比D50/d50は0.65以下である。隔壁内部のメジアン細孔径D50を、隔壁表面に開口した細孔のメジアン開口径d50よりも小さくする、特に前記D50/d50を0.65以下にすることにより、使用開始初期において、粒子数量に大きく影響する微小なPMが、隔壁表面に開口する細孔よりも小さい隔壁内部の細孔により有効に捕集されるようになる。前記D50/d50が0.65を超える場合、隔壁内部のメジアン細孔径d50が、表面に開口した細孔のメジアン開口径D50に近づくので、使用開始初期において、粒子数量に大きく影響する微小なPMの、表面に開口した細孔と同等の大きさである隔壁内部の細孔への捕集効率が低下する。前記D50/d50は、好ましくは0.60以下、さらに好ましくは0.55以下である。また使用開始初期での圧力損失の上昇を防止するためには、D50/d50は0.1以上であるのが好ましい。
(h)細孔径10μm以下の細孔の容積
 水銀圧入法により測定された隔壁の細孔分布において、細孔径10μm以下の細孔の容積の合計は、圧力損失特性を向上させるために、全細孔容積の5~70%であるのが好ましく、8~60%であるのがさらに好ましく、10~50%であるのが最も好ましい。
(i)ダルシー透過定数
 セラミックハニカム構造体の隔壁のダルシー透過定数は0.5×10-12~3×10-12 m2であるのが好ましい。ダルシー透過定数が前記の範囲にあることで、使用開始時の初期圧力損失を低く維持でき、使用開始初期の粒子数基準でのPM捕集率が改善されるとともに、PMが捕集され蓄積した際の圧力損失特性が改良される。ダルシー透過定数が0.5×10-12m2未満である場合、使用開始時の圧力損失を低く維持することが難しくなる。一方、ダルシー透過定数が3×10-12 m2を超える場合、PM捕集性能が低下する場合がある。ダルシー透過定数は、好ましくは0.8×10-12~2.5×10-12m2である。
(j)熱膨張係数
 セラミックハニカム構造体は、20~800℃間の熱膨張係数が13×10-7/℃以下であるのが好ましい。このような熱膨張係数を有するセラミックハニカム構造体は、高い耐熱衝撃性を有するので、ディーゼル機関の排出ガス中に含まれる微粒子を除去するためのセラミックハニカムフィルタとして、十分に実用に耐えることができる。前記熱膨張係数は、好ましくは3×10-7~11×10-7である。
(k)隔壁構造
 セラミックハニカム構造体は、平均隔壁厚さが9~15 mil(0.229~0.381 mm)、平均セル密度が150~300 cpsi(23.3~46.5セル/cm2)であるのが好ましい。このような隔壁構造を有することで、使用開始時において圧力損失を低く維持でき、粒子数基準でのPM捕集率を改善することができるとともに、PMが捕集され蓄積した際の圧力損失特性が改良される。平均隔壁厚さが9 mil未満の場合、隔壁の強度が低下し、一方15 milを超える場合、低い圧力損失を維持することが難しくなる。平均セル密度が150c psi未満の場合、隔壁の強度が低下し、一方、300 cpsiを超える場合、低い圧力損失を維持することが難しくなる。
(l)隔壁の材質
 隔壁の材質としては、セラミックハニカム構造体の用途がディーゼルエンジンから排出される排気ガスを浄化するためのフィルタであることから、耐熱性を有するセラミックス、すなわちアルミナ、ムライト、コーディエライト、炭化珪素、窒化珪素、ジルコニア、チタン酸アルミニウム、リチウムアルミニウムシリケート等を主結晶とするセラミックスであるのが好ましい。中でも耐熱衝撃性に優れる低熱膨張のコーディエライト又はチタン酸アルミニウムを主結晶とするものが好ましい。主結晶相がコーディエライトである場合、スピネル、ムライト、サフィリン等の他の結晶相を含有しても良く、さらにガラス成分を含有しても良い。主結晶相がチタン酸アルミニウムである場合、チタン酸アルミニウム結晶相中にMg、Si等の元素が固溶していても良く、ムライト等の他の結晶相を含有していても良く、また粒界相としてガラス成分を含有していても良い。
[2]セラミックハニカムフィルタ
 本発明のセラミックハニカムフィルタは、本発明のセラミックハニカム構造体の流路の排気ガス流入側又は排気ガス流出側を交互に目封止してなる。本発明のセラミックハニカム構造体を使用することで、使用開始時においては、低い圧力損失を維持できるとともに粒子数基準でのPM捕集率を改善することができ、さらにPMが捕集され蓄積した際の圧力損失特性が改良されたセラミックハニカムフィルタとすることができる。ここで、流路に形成される目封止は、必ずしも流路の排気ガス流入側又は排気ガス流出側の端面部に形成する必要はなく、流入側端面又は流出側端面から流路内部に入った位置に形成してもよい。
[3]セラミックハニカム構造体の製造方法
 本発明のセラミックハニカム構造体を製造する方法は、セラミック原料及び造孔材を含む坏土を所定の成形体に押出成形し、前記成型体を乾燥及び焼成する工程を有し、前記坏土は、前記セラミック原料100質量%に対して2~20質量%の前記造孔材を含有し、前記造孔材のメジアン径が5~70μmであり、前記造孔材は、表面に無機粉体を有する、中実又は中空の樹脂粒子である。
 このような方法により、気孔率が55~80%、水銀圧入法により測定されたメジアン細孔径D50が5~27μm、表面に開口した細孔の開口面積率が20%以上、表面に開口した細孔を円相当径で表した場合の面積基準でのメジアン開口径d50が10~45μm、表面に開口した細孔の円相当径が10μm以上40μm未満の細孔密度が350個/mm2以上、水銀圧入法により細孔を測定した時の細孔径に対する累積細孔容積を示す曲線の傾きの最大値が1.6以上、及び前記メジアン細孔径D50とメジアン開口径d50との比D50/d50が0.65以下である多孔質の隔壁で仕切られた多数の流路を有する本発明のセラミックハニカム構造体を得ることができる。
 セラミックスに形成される細孔は、セラミック原料が焼成されて形成されるものと、造孔材が燃焼されて形成されるものがある。そのうち、造孔材により形成される細孔が大部分を占めることから、造孔材のメジアン径及び粒度分布を調節することにより、セラミックスが焼成された際に形成される細孔を制御することができる。
 本発明の製造方法においては、前記造孔材として樹脂粒子(中実又は中空)の表面に無機粉体を有するものを使用することにより、セラミック原料及び造孔材を含む成形体を焼成した時に、樹脂粒子が燃焼して空隙となるとともに、セラミック原料及び樹脂粒子表面の無機粉体が焼成して細孔が形成される。このとき、前記樹脂粒子表面の無機粉体が焼成して形成される細孔が、セラミック原料が焼成して生じる細孔と樹脂粒子によって形成される細孔とを連通させ、隔壁表面から内部にかけての細孔の連通性が改良されるとともに、水銀圧入法で測定された隔壁の細孔径と隔壁表面に開口した細孔とを上記の範囲とすることができる。
 このように、セラミック原料が焼成して生じる細孔と造孔材から形成される細孔とを連通性良く所定の細孔径範囲に形成することにより、使用開始初期の粒子数基準でのPM捕集率が改善されるとともに、PMが捕集され蓄積した際の圧力損失特性が改良された本発明のセラミックハニカム構造体を得ることができる。
(1)造孔材
(a)構造
 本発明で使用する造孔材は、中実の樹脂粒子又は中空の樹脂粒子からなり、無機粉体を含有する。前記無機粉体は、前記中実又は中空の樹脂粒子の表面に付着させるのが好ましい。前記無機粉体が表面に付着した樹脂粒子からなる造孔材は、水分を含んだ前記樹脂粒子に無機粉体を接触させることによって作製することができる。
 前記造孔材の添加量は、セラミック原料100質量%に対して2~20質量%である。前記造孔材の添加量がこの範囲を外れると、前記細孔構造を有する隔壁が得られ難くなる。前記造孔材の添加量が2質量%未満である場合、造孔材により形成される細孔の量が少なくなるので、PMが捕集され蓄積した際の低い圧力損失を維持できなくなる。造孔材の添加量が20質量%を超えると、使用開始初期の粒子数基準でのPM捕集率が低下する。前記造孔材の添加量は、好ましくは3~18質量%であり、さらに好ましくは4~15質量%である。
 前記造孔材粒子(無機粉体を含む)のメジアン径は5~70μmである。前記メジアン径が5μm未満の場合、使用開始初期の粒子数基準でのPM捕集率が低下し、PMが捕集され蓄積した際の低い圧力損失が維持できない。前記メジアン径が70μmを超えると、形成される細孔が粗大になるので、使用開始初期のPM捕集率を低下する。前記造孔材粒子のメジアン径は、好ましくは8~50μmであり、さらに好ましくは10~35μmである。
 前記造孔材粒子は、その粒子径と累積体積(特定の粒子径以下の粒子体積を累積した値)との関係を示す曲線において、90%の累積体積に相当する粒子径d90がメジアン径の1.5~2.5倍、及び10%の累積体積に相当する粒子径d10がメジアン径の0.2~0.8倍であるのが好ましい。前記造孔材粒子がこのような粒径分布を有する場合に、前記細孔構造を有する隔壁が得られ易くなる。造孔材の粒子径は、日機装(株)製マイクロトラック粒度分布測定装置(MT3000)を用いて測定することができる。
 前記造孔材粒子の真球度は、0.5以上であるのが好ましい。前記造孔材粒子の真球度が0.5未満である場合、隔壁表面に開口した細孔の円形度が大きくなり、使用開始初期のPM捕集効率を低下させる粗大細孔が多くなるとともに、PMが捕集され蓄積した際の圧力損失特性を悪化させる微小細孔が多くなる。前記造孔材粒子の真球度は、好ましくは0.7以上であり、さらに好ましくは0.8以上である。なお、造孔材粒子の真球度は、造孔材粒子の投影面積を、造孔材粒子の重心を通り粒子外周の2点を結ぶ直線の最大値を直径とする円の面積で割った値であり、電子顕微鏡写真から画像解析装置で求めることができる。
(b)樹脂粒子
 前記樹脂粒子は中実又は中空のものを使用することができる。中空の樹脂粒子としては発泡させた樹脂粒子(多孔体樹脂粒子)が好ましい。造孔材粒子としてどちらを使用しても良いが、特に外形200 mm以上の大型のセラミックハニカム構造体を製造する場合は、燃焼による発熱量が少ない中空樹脂粒子を使用した方が、成形体を焼成する過程での焼成割れが発生し難くなるため好ましい。造孔材粒子として用いる樹脂としては、(ポリ)メタクリル酸メチル、ポリメタクリル酸ブチル、ポリアクリル酸エステル、ポリスチレン、ポリアクリルエステル、ポリエチレン、ポリエチレンテレフタレート、メチルメタクリレート・アクリロニトリル共重合体等が好適である。中空の樹脂粒子は、外殻厚さが0.1~3μmであるのが好ましく、炭化水素等のガスを内包させているのが好ましい。
(c)無機粉体
 前記無機粉体は、カオリン、シリカ、タルク、コーディエライト、アルミナ、水酸化アルミ、炭酸カルシウム、酸化チタンからなる群から選ばれた少なくとも1種類であるのが好ましい。中でも、セラミック原料としてコーディエライト化原料を使用する場合、無機粉体としてはカオリン、シリカ、タルク、コーディエライト、アルミナ及び水酸化アルミが好ましく、タルクが最も好ましい。
 セラミック原料及び前記無機粉体が焼成された際に連通性良く細孔が形成されるために、前記無機粉体のメジアン径は0.5~15μmであるのが好ましく、0.6~12μmであるのがさらに好ましい。前記無機粉体の粒子径は、日機装(株)製マイクロトラック粒度分布測定装置(MT3000)を用いて測定することができる。なお樹脂粒子に付着させる前の前記無機粉体が得られない場合は、造孔材から超音波等で無機粉体を剥離させて測定する。
 前記無機粉体のメジアン径dは、前記中実又は中空の樹脂粒子のメジアン径Dに対して、d/Dが0.5以下となるように選択するのが好ましい。前記d/Dをこのような範囲にすることにより、前記無機粉体が前記樹脂粒子の表面に良好に付着させることができる。前記d/Dが0.5を超えるように無機粉体を選択すると、前記無機粉体が前記樹脂粒子の表面に付着しにくくなるので、セラミック原料が焼成して生じる細孔と樹脂粒子から形成される細孔とを連通させる前記無機粉体の効果が減少し、隔壁表面から内部にかけての細孔の連通性が悪くなる。前記d/Dは、好ましくは0.01~0.45である。
 前記造孔材粒子は、樹脂粒子と無機粉体との体積比(樹脂粒子/無機粒体)が0.1~200であるのが好ましい。樹脂粒子と無機粒体との体積比をこの範囲とすることで、セラミック原料が焼成して生じる細孔と造孔材から形成される細孔とを連通性良く、所定の細孔径範囲に形成することに貢献する。前記体積比は、好ましくは0.5~150である。
(2)セラミック原料
 前記セラミック原料はコーディエライト化原料であるのが好ましい。コーディエライト化原料は、主結晶がコーディエライト(主成分の化学組成が42~56質量%のSiO2、30~45質量%のAl2O3及び12~16質量%のMgO)となるように、シリカ源成分、アルミナ源成分及びマグネシア源成分を有する各原料粉末を配合したものである。コーディエライトを主結晶とするセラミックスに形成される細孔は、コーディエライト化原料のシリカ及びタルクが焼成されて生じる細孔と、造孔材が燃焼されて生じる細孔によるものである。中でもシリカと造孔材は、形成される細孔の大部分を占めることから、それらの粒径及び粒度分布を調節することにより、コーディエライト質セラミックスが焼成された際に生じる細孔を制御することができる。
(a)シリカ
 シリカは、他の原料に比べて高温まで安定に存在し、1300℃以上で溶融拡散し、細孔を形成することが知られている。このため、15~25質量%のシリカを含有すると、所望の量の細孔が得られる。25質量%を超えてシリカを含有させると、主結晶をコーディエライトに維持するために、他のシリカ源成分であるカオリン及び/又はタルクを低減させなければならず、その結果、カオリンによって得られる低熱膨張化の効果(押出し成形時にカオリンが配向されることで得られる効果)が低減し耐熱衝撃性が低下する。一方、15質量%未満の場合、隔壁表面に開口した細孔の数が少なくなるので、PMが捕集され蓄積した際の低い圧力損失が得られなくなる場合がある。シリカの含有量は、好ましくは17~23質量%である。なお、無機粉体としてシリカを含有させた造孔材を用する場合、前記造孔材中のシリカ配合量を勘案して、コーディエライト化原料に含まれるシリカの配合量を適宜変更する。
 シリカのメジアン径は、本発明のセラミックハニカム構造体の隔壁構造を形成するためには20~30μmであるのが好ましい。このようなメジアン径を有するシリカ粒子を前記造孔材と組合せにて使用することにより、非常にシャープな細孔分布が得られる。シリカのメジアン径が20μm未満の場合、隔壁表面に開口した細孔のうち、PMが捕集され蓄積した際に圧力損失を上昇させる原因となる微小細孔の割合が多くなる。一方、30μmを超える場合、使用開始初期のPM捕集効率を低下させる粗大細孔が多くなる。シリカのメジアン径は、好ましくは22~28μmである。
 粒子径10μm以下のシリカ粒子は5質量%以下、粒子径100μm以上のシリカ粒子は5質量%以下であるのが好ましい。このような粒径分布を有することにより、前記造孔材と組合せて使用した場合、よりシャープな細孔分布が得られる。粒子径10μm以下のシリカ粒子が5質量%を超える場合、隔壁表面に開口した細孔のうち、PMが捕集され蓄積した際に圧力損失を上昇させる微小細孔の割合が多くなる。粒子径10μm以下のシリカ粒子の割合は、好ましくは3質量%以下である。粒子径100μm以上のシリカ粒子が5質量%を超える場合、使用開始初期のPM捕集率を低下させる粗大細孔が多くなる。粒子径100μm以上のシリカ粒子の割合は、好ましくは3質量%以下である。
 前記シリカ粒子の真球度は、0.5以上であるのが好ましい。シリカ粒子の真球度が、0.5未満である場合、隔壁表面に開口した細孔の円形度が大きくなり、使用開始初期のPM捕集率を低下させる粗大細孔が多くなるとともに、PMが捕集され蓄積した際の圧力損失を上昇させる微小細孔が多くなる。シリカ粒子の真球度は、好ましくは0.6以上であり、さらに好ましくは0.7以上である。シリカ粒子の真球度は、シリカ粒子の投影面積を、シリカ粒子の重心を通り粒子外周の2点を結ぶ直線の最大値を直径とする円の面積で割った値であり、電子顕微鏡写真から画像解析装置で求めることができる。
 前記シリカ粒子は結晶質のもの、又は非晶質のものを用いることができるが、粒度分布を調整する観点から非晶質のものが好ましい。非晶質シリカは高純度の天然珪石を高温溶融して製造したインゴットを粉砕して得ることができる。シリカ粒子は不純物としてNa2O、K2O、CaOを含有しても良いが、熱膨張係数が大きくなるのを防止するため、前記不純物の含有量は合計で0.1%以下であるのが好ましい。
 真球度の高いシリカ粒子は、高純度の天然珪石を微粉砕し高温火炎の中に溶射することにより得られる。高温火炎の中への溶射によりシリカ粒子の溶融と球状化とを同時に行い、真球度の高い非晶質シリカを得ることができる。さらに、この球状シリカ粒子の粒度を分級等の方法により調整するのが好ましい。
(b) カオリン
 コーディエライト化原料に用いるシリカ原料としては、前記シリカ粉末に加えて、カオリン粉末を配合することができる。カオリン粉末は1~15質量%含有するのが好ましい。カオリン粉末をが15質量%を超えて含有すると、セラミックハニカム構造体の細孔径2μm未満の細孔を10容積%以下に調整することが困難になる場合があり、1質量%未満の場合は、セラミックハニカム構造体の熱膨張係数が大きくなる。カオリン粉末の含有量は、さらに好ましくは4~8質量%である。
 カオリン粒子は、そのc軸が押出し成形されるハニカム構造体の長手方向と直交するように配向すれば、コーディエライト結晶のc軸がハニカム構造体の長手方向と平行となり、ハニカム構造体の熱膨張係数を小さくすることができる。カオリン粒子の配向には、その形状が大きく影響する。カオリン粒子の形状を定量的に示す指数である、カオリン粒子のへき開指数は0.80以上であるのが好ましく、0.85以上であるのがさらに好ましい。カオリン粒子のへき開指数は、プレス成形したカオリン粒子をX線回折測定し、得られた(200)面、(020)面及び(002)面の各ピーク強度I(200)、I(020)及びI(002)から、次式:
 へき開指数 = I(002)/[I(200)+I(020)+I(002)
により求めることができる。へき開係数が大きいほどカオリン粒子の配向が良好であると言える。
(c)タルク
 コーディエライト化原料には、メジアン径が1~15μmであるタルクを含むのが好ましい。隔壁には、コーディエライト化原料中のシリカ及びタルクが焼成されて生じる細孔と、造孔材が燃焼されて生じる細孔とを有しているが、シリカと造孔材とにより形成された細孔間に、シリカ及び造孔材のメジアン径よりも小さいメジアン径1~15μmのタルク粒子が細孔を形成することで、前記造孔材とシリカとにより形成された細孔がタルク粒子の細孔で連通され、隔壁内の細孔の連通性が向上する。タルクのメジアン径が1μm未満の場合、細孔の連通性が低くなり、PMが捕集され蓄積した際の圧力損失特性が低下する。一方、タルクのメジアン径が15μmを超える場合、使用開始初期のPM捕集率を低下させる粗大細孔が多くなる。タルクのメジアン径は、好ましくは2~12μmであり、さらに好ましくは3~10μmである。
 タルクの粒子径と累積体積(特定の粒子径以下の粒子体積を累積した値)との関係を示す曲線において、全体積の90%に相当する累積体積での粒子径d90が40μm以下であるのが好ましい。前記粒子径d90が40μmを超える場合、使用開始初期のPM捕集率を低下させる粗大細孔が多くなる。前記粒子径は、好ましくは35μm以下であり、さらに好ましくは30μm以下である。
 タルクは結晶相の主成分がコーディエライトであるセラミックハニカム構造体の熱膨張係数を低減する観点から、板状粒子であるのが好ましい。タルク粒子の平板度を示す形態係数は、0.50以上であるのが好ましく、0.60以上であるのがより好ましく、0.70以上であるのが最も好ましい。前記形態係数は、米国特許第5,141,686号に記載されているように、板状のタルク粒子をX線回折測定し、得られた(004)面の回折強度Ix、及び(020)面の回折強度Iyから次式:
 形態係数 = Ix/(Ix+2Iy)
により求めることができる。形態係数が大きいほどタルク粒子の平板度が高い。
 タルクは、不純物としてFe2O3、CaO、Na2O、K2O等を含有しても良い。Fe2O3の含有率は、所望の粒度分布を得るために、マグネシア源原料中、0.5~2.5質量%であるのが好ましく、Na2O、K2O及びCaOの含有率は、熱膨張係数を低くするという観点から、合計で0.5質量%以下であるのが好ましい。
 コーディエライト化原料に配合するタルクの添加量は、主結晶がコーディエライトとなるように40~43質量%であるのが好ましい。ただし無機粉体としてタルクを用いた樹脂粒子又は中空樹脂粒子からなる造孔材を使用する場合、前記造孔材に含まれるタルク分を勘案して、コーディエライト化原料に添加するタルクの配合量を適宜調節する。
(d)アルミナ
 アルミナ原料としては、不純物が少ないという点で酸化アルミニウム及び/又は水酸化アルミニウムが好ましい。酸化アルミニウム及び水酸化アルミニウム中の不純物であるNa2O、K2O及びCaOの含有量の合計は、好ましくは0.5質量%以下、より好ましくは0.3質量%以下、最も好ましくは0.1質量%以下である。水酸化アルミニウムを用いる場合のコージェライト化原料中の水酸化アルミニウムの含有量は、好ましくは6~42質量%である。酸化アルミニウムを用いる場合のコージェライト化原料中の酸化アルミニウムの含有量は、好ましくは35質量%以下である。
(3)製造方法
 セラミックハニカム構造体は、セラミック原料及び造孔材に、バインダー、必要に応じて分散剤、界面活性剤等の添加剤を加えて乾式で混合した後、水を加えて混練し、得られた可塑性の坏土を、公知のハニカム構造体成形用の金型から公知の押出成形法により押出してハニカム構造の成形体を形成し、この成形体を乾燥した後、必要に応じて端面及び外周等の加工を施し、焼成することによって製造する。
 焼成は、連続炉又はバッチ炉を用いて、昇温及び冷却の速度を調整しながら行う。セラミック原料がコーディエライト化原料である場合、1350~1450℃で1~50時間保持し、コーディエライト主結晶が十分生成した後、室温まで冷却する。前記昇温速度は、特に外径150 mm以上、及び全長150 mm以上の大型のセラミックハニカム構造体を製造する場合、焼成過程で成形体に亀裂が発生しないよう、バインダーが分解する温度範囲(例えば150~350℃)では0.2~10℃/hr、コーディエライト化反応が進行する温度域(例えば1150~1400℃)では5~20℃/hrであるのが好ましい。冷却は、特に1400~1300℃の範囲では20~40℃/hの速度で行うのが好ましい。
 得られたハニカム構造体は、公知の方法で所望の流路の端部を目封止することによりセラミックハニカムフィルタとすることができる。なお、この目封止部は、焼成前に形成してもよい。
 以下に、本発明の実施の形態を詳細に説明する。
実施例1~24及び比較例1~6
 表1~表4に示す粒子形状(粒径、粒度分布等)及び不純物を有するシリカ粉末、カオリン粉末、タルク粉末、アルミナ粉末及び水酸化アルミニウム粉末を表6に示す添加量で配合して、化学組成が50質量%のSiO2、36質量%のAl2O3及び14質量%のMgOとなるコーディエライト化原料粉末を得た。なお、表6に記載の各セラミックス原料の添加量は、セラミックス原料の合計量(造孔材に含まれるタルク又はシリカを含む)が100質量部となるように規格化した数値である。このコーディエライト化原料粉末に対し、表5に示す粒子形状の造孔材を表6に示す量で添加し、メチルセルロースを添加した後、水を加えて混練し、可塑性のコーディエライト化原料からなるセラミック坏土を作製した。なお造孔材G以外の造孔材は、ブタンガスを内包気体とする中空の樹脂粒子を使用した。実施例1で使用した造孔材Aの電子顕微鏡写真を図8に示す。
 シリカ粉末、カオリン粉末、タルク粉末、アルミナ粉末、水酸化アルミニウム粉末及び造孔材の粒径及び粒度分布は日機装(株)製マイクロトラック粒度分布測定装置(MT3000)を用いて測定し、粒度分布から粒子径10μm以下の割合、100μm以上の割合、d90、d10等を求めた。シリカ粒子の真球度は、電子顕微鏡により撮影した粒子の画像から画像解析装置で求めた、投影面積A1、及び重心を通り粒子外周の2点を結ぶ直線の最大値を直径とする円の面積A2から、式:A1/A2で算出した値であり、20個の粒子についての平均値で表した。
 得られた坏土を押出して、隔壁厚さ13 mil(0.33 mm)及びセル密度255 cpsi(39.5セル/cm2)のハニカム構造の成形体を作製し、乾燥後、周縁部を除去加工し、焼成炉にて200時間のスケジュール(室温~150℃は10℃/h、150~350℃は2℃/hr、350~1150℃は20℃/h及び1150~1400℃は15℃/hrの平均速度で昇温、最高温度1410℃で24hr保持、並びに1400~1300℃は30℃/hr、及び1300~100℃は80℃/hrの平均速度で冷却)で焼成した。焼成したセラミックハニカム体の外周に、非晶質シリカとコロイダルシリカとからなる外皮材をコーティングして乾燥させ、外径266.7 mm及び全長304.8 mmの実施例1~24及び比較例1~6のセラミックハニカム構造体を得た。実施例7のセラミックハニカム構造体の隔壁の表面及び断面を電子顕微鏡で観察した結果をそれぞれ図6及び図7に示す。
 これらのセラミックハニカム構造体の流路端部に、交互に目封止されるように、コーディエライト化原料からなる目封止材スラリーを充填した後、目封止材スラリーの乾燥及び焼成を行い、実施例及び比較例の各コーディエライト質セラミックハニカムフィルタを作製した。焼成後の目封止材の長さは7~10 mmの範囲であった。各セラミックハニカムフィルタは、それぞれ同じものを2個ずつ作製した。
実施例25
 チタン酸アルミニウム組成となるように、セラミックス原料粉末として、32.0質量部のチタニア粉末(メジアン径1.6μm)、56.1質量部のアルミナ粉末(メジアン径5μm)、3.0質量部のシリカ粉末(メジアン径20μm)、3.0質量部のマグネシア粉末(メジアン径2μm)、成形助剤及び7.0質量部の造孔材(酸化チタンコート中空樹脂粒子、メジアン径20μm、真球度0.92)を混合、混練、及び押出して、外径50 mm、長さ90 mm、隔壁厚さ10 mil(0.25 mm)及びセル密度300 cpsi(46.5セル/cm2)のハニカム構造の成形体を得た。前記成形体を乾燥後、周縁部を除去加工し、室温~150℃は50℃/h、150~300℃は10℃/h、300~1000℃は50℃/h、1000℃以上では30℃/hの昇温速度で昇温し、最高温度1600℃で10時間保持し、1600℃~室温まで70℃/hの速度で冷却して焼成した。焼成したセラミックハニカム体の外周に、非晶質シリカとコロイダルシリカからなる外皮材をコーティングして乾燥させ、外径150 mm、全長200 mmのセラミックハニカム構造体を得た。
 このセラミックハニカム構造体の流路端部に、交互に目封止されるように、チタン酸アルミニウム化原料からなる目封止材スラリーを充填した後、目封止材スラリーの乾燥及び焼成を行い、チタン酸アルミニウム質セラミックハニカムフィルタを作製した。焼成後の目封止材の長さは7~10 mmの範囲であった。このセラミックハニカムフィルタは、同じものを2個作製した。
 得られた実施例1~25及び比較例1~6のセラミックハニカムフィルタの1個を用いて、隔壁表面に開口した細孔の画像解析、水銀圧入法による測定、及びダルシーの透過定数の測定を行った。以下にそれらの方法を記載し、結果を表7に示す。
 隔壁表面に開口した細孔の開口面積率は、ハニカムフィルタから切り出した隔壁の表面の電子顕微鏡写真を画像解析装置(Media Cybernetics 社製 Image-Pro Plus ver. 6.3)で処理(強調フィルタ:LoPass(ローパス)、オプション:3×3、パス(回数):2、及び強さ:8の条件でフィルタ処理)及び解析し、測定視野の面積に対する各細孔の開口面積の合計の割合(%)として求めた。
 隔壁表面に開口した細孔のメジアン開口径d50は、隔壁表面に開口した細孔の円相当径(前記画像解析により求めた隔壁表面に開口した細孔の面積Sから、式:2 x (S/π)1/2で算出)を算出し、隔壁表面に開口した細孔の累積面積(特定の円相当径以下の細孔の開口面積を累積した値)を円相当径に対してプロットしたグラフ(図3を参照)から、全細孔面積の50%に相当する累積面積となる細孔の円相当径として算出した。
 隔壁表面に開口した細孔の円相当径が10μm以上40μm未満の細孔密度は、隔壁表面の単位面積あたりに開口する細孔のうち、円相当径が10μm以上40μm未満の細孔の数として算出した。
 全細孔容積、気孔率、メジアン細孔径D50、累積細孔容積曲線の傾きSn、及び10μm以下の細孔容積は水銀圧入法により求めた。
 水銀圧入法による測定は、セラミックハニカムフィルタから切り出した試験片(10 mm×10 mm×10 mm)を、Micromeritics社製オートポアIIIの測定セル内に収納し、セル内を減圧した後、水銀を導入して加圧し、加圧時の圧力と試験片内に存在する細孔中に押し込まれた水銀の体積との関係を求めることにより行った。前記圧力と体積との関係から細孔径と累積細孔容積との関係を求めた。水銀を導入する圧力は0.5 psi(0.35×10-3 kg/mm2)とし、圧力から細孔径を算出する際の常数は、接触角=130°及び表面張力=484 dyne/cmの値を使用した。
 気孔率は、全細孔容積の測定値から、コージェライトの真比重を2.52 g/cm3として、計算によって求めた。
 累積細孔容積曲線の傾きSn及び10μm以上の細孔容積は、細孔径に対する累積細孔容積を示す曲線から求めた。ここで、前記Sn[(n)番目の測定点における累積細孔容積曲線の傾き]は、測定開始から、(n-1)番目の測定点における細孔径Dn-1(μm)及び累積細孔容積Vn-1(cm3/g)と、(n)番目の測定点における細孔径Dn(μm)及び累積細孔容積Vn(cm3/g)とから、式:Sn=-(Vn-Vn-1)/(log(Dn)-log(Dn-1)) により求めることができる。各測定点における前記Snの値から、その最大値を求めた。
 ダルシーの透過定数は、Perm Automated Porometer(登録商標)6.0版(ポーラスマテリアルズ社)を使用し、エア流量を30 cc/secから400 cc/secまで増加させながら測定した通気度の最大値とした。
 20~800℃間の熱膨張係数(CTE)は、ハニカムフィルタから切り出した別の試験片を用いて測定した。
 初期圧力損失、煤2 g/リットル捕集した時の圧力損失、及び捕集効率の評価は、実施例1~25及び比較例1~6で作製したもう一つのセラミックハニカムフィルタを用いて行った。結果をあわせて表7に示す。
 初期圧力損失は、圧力損失テストスタンドに固定したセラミックハニカムフィルタに、空気を流量10 Nm3/minで送り込み、流入側と流出側との差圧(圧力損失)で表した。圧力損失が、
1.0 kPaを越える場合を(×)、
0.8 kPaを超え1.0 kPa以下の場合を(△)、
0.6 kPaを超え0.8 kPa以下の場合を(○)、及び
0.6 kPa以下の場合を(◎)
として初期圧力損失を評価した。
 煤2 g/リットル捕集した時の圧力損失(煤捕集圧力損失)は、圧力損失テストスタンドに固定したセラミックハニカムフィルタに、空気流量10 Nm3/minで、平均粒径0.042μmの燃焼煤を3 g/hの速度で投入し、フィルタ体積1リットルあたりの煤付着量が2 gとなった時の流入側と流出側との差圧(圧力損失)で表した。圧力損失が、
1.5 kPaを越える場合を(×)、
1.3 kPaを超え1.5 kPa以下の場合を(△)、
1.0 kPaを超え1.3 kPa以下の場合を(○)、及び
1.0 kPa以下の場合を(◎)
として煤捕集圧力損失を評価した。
 捕集効率は、圧力損失テストスタンドに固定したセラミックハニカムフィルタに、空気流量10 Nm3/minで、平均粒径0.042μmの燃焼煤を3 g/hの速度で投入しながら、1分毎にハニカムフィルタに流入する燃焼煤の粒子数とハニカムフィルタから流出する燃焼煤の粒子数とをSMPS(Scanning Mobility Particle Sizer)(TIS社製モデル3936)を用いて計測し、投入開始3分から4分までのハニカムフィルタに流入する燃焼煤の粒子数Nin、及びハニカムフィルタから流出する燃焼煤の粒子数Noutから、式:(Nin-Nout)/Ninにより求めた。捕集効率が、
98%以上の場合を(◎)、
96%以上98%未満の場合を(○)、
95%以上96%未満の場合を(△)、及び
95%未満の場合を(×)
として捕集効率を評価した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
表5(続き)
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-T000007
表6(続き)
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-T000009
表7(続き)
Figure JPOXMLDOC01-appb-I000010
表7(続き)
Figure JPOXMLDOC01-appb-I000011
表7(続き)
Figure JPOXMLDOC01-appb-I000012
 表7より、実施例1~25の本発明のセラミックハニカムフィルタは、低い圧力損失を維持しつつ、捕集開始初期の粒子数基準でのPM捕集率が改善されていることがわかる。これに対して、比較例1のセラミックハニカムフィルタは、85μmのメジアン径(70μmより大きい)を有する造孔材Dを使用しているため、形成された細孔の径が大きく捕集効率が低い。比較例2のセラミックハニカムフィルタは、2.0μmのメジアン径(5μmより小さい)を有する造孔材Eを使用しているため、形成された細孔の径が小さく圧力損失特性が低い。比較例3のセラミックハニカムフィルタは、無機粉体を含有しない造孔材Hを使用しているため、累積細孔容積曲線の傾きSnの最大値が小さく(すなわち細孔分布が広い)煤捕集圧力損失特性が低い。比較例4のセラミックハニカムフィルタは、無機粉体を含有しないグラファイトからなる造孔材Gを使用しているため、細孔のメジアン径及び累積細孔容積曲線の傾きSnの最大値が小さく圧力損失特性及び捕集効率がともに低い。比較例5のセラミックハニカムフィルタは、造孔材の使用量が多すぎるため、形成された細孔の径が大きく捕集効率が低い。比較例6のセラミックハニカムフィルタは、造孔材の使用量が少なすぎるため、形成された細孔の径が小さく圧力損失特性が低い。

Claims (9)

  1. 多孔質の隔壁で仕切られた多数の流路を有するセラミックハニカム構造体であって、
    前記隔壁は、
    (a)気孔率が55~80%、
    (b)水銀圧入法により測定されたメジアン細孔径D50が5~27μm、
    (c)表面に開口した細孔の開口面積率が20%以上、
    (d)表面に開口した細孔を円相当径で表した場合の面積基準でのメジアン開口径d50が10~45μm、
    (e)表面に開口した細孔の円相当径が10μm以上40μm未満の細孔密度が350個/mm2以上、
    (f)細孔分布を水銀圧入法により測定した時の細孔径に対する累積細孔容積を示す曲線の傾きの最大値が1.6以上、及び
    (g)前記メジアン細孔径D50とメジアン開口径d50との比D50/d50が0.65以下であることを特徴とするセラミックハニカム構造体。
  2. 請求項1に記載のセラミックハニカム構造体において、前記隔壁のダルシー透過定数が0.5×10-12~3×10-12m2であることを特徴とするセラミックハニカム構造体。
  3. 請求項1又は請求項2に記載のセラミックハニカム構造体において、前記セラミックハニカム構造体の20~800℃間の熱膨張係数が13×10-7/℃以下であることを特徴とするセラミックハニカム構造体。
  4. 請求項1~3のいずれかに記載のセラミックハニカム構造体の、前記流路の排気ガス流入側又は排気ガス流出側を交互に目封止してなるセラミックハニカムフィルタ。
  5. セラミック原料及び造孔材を含む坏土を所定の成形体に押出成形し、前記成形体を乾燥及び焼成する工程を有するセラミックハニカム構造体の製造方法であって、前記坏土は、前記セラミック原料100質量%に対して2~20質量%の前記造孔材を含有し、前記造孔材のメジアン径が5~70μmであり、前記造孔材は、表面に無機粉体を有する中実又は中空の樹脂粒子であることを特徴とするセラミックハニカム構造体の製造方法。
  6. 請求項5に記載のセラミックハニカム構造体の製造方法において、前記無機粉体が、カオリン、シリカ、タルク、コーディエライト、アルミナ、水酸化アルミ、炭酸カルシウム、及び酸化チタンからなる群から選ばれた少なくとも1種であることを特徴とするセラミックハニカム構造体の製造方法。
  7. 請求項5又は6に記載のセラミックハニカム構造体の製造方法において、前記無機粉体のメジアン径が0.5~15μmであることを特徴とするセラミックハニカム構造体の製造方法。
  8. 請求項5~7のいずれかに記載のセラミックハニカム構造体の製造方法において、前記セラミック原料がコーディエライト化原料であり、前記コーディエライト化原料にシリカを15~25%含み、前記シリカのメジアン径が20~30μm、真球度が0.5以上であることを特徴とするセラミックハニカム構造体の製造方法。
  9. 請求項8に記載のセラミックハニカム構造体の製造方法において、前記コーディエライト化原料にメジアン径が1~10μmであるタルクを含むことを特徴とするセラミックハニカム構造体の製造方法。
PCT/JP2011/053567 2010-02-22 2011-02-18 セラミックハニカム構造体及びその製造方法 WO2011102487A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/580,344 US8636821B2 (en) 2010-02-22 2011-02-18 Ceramic honeycomb structure and its production method
JP2012500670A JP5673665B2 (ja) 2010-02-22 2011-02-18 セラミックハニカム構造体及びその製造方法
EP11744773.0A EP2540370B1 (en) 2010-02-22 2011-02-18 Ceramic honeycomb structure
CN201180010393.9A CN102762273B (zh) 2010-02-22 2011-02-18 陶瓷蜂窝结构体及其制造方法
KR1020127024808A KR101894341B1 (ko) 2010-02-22 2011-02-18 세라믹 허니컴 구조체 및 그 제조 방법
EP16187559.6A EP3120916B1 (en) 2010-02-22 2011-02-18 Production method for a ceramic honeycomb structure
US14/106,955 US9353015B2 (en) 2010-02-22 2013-12-16 Ceramic honeycomb structure and its production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-035527 2010-02-22
JP2010035527 2010-02-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/580,344 A-371-Of-International US8636821B2 (en) 2010-02-22 2011-02-18 Ceramic honeycomb structure and its production method
US14/106,955 Division US9353015B2 (en) 2010-02-22 2013-12-16 Ceramic honeycomb structure and its production method

Publications (1)

Publication Number Publication Date
WO2011102487A1 true WO2011102487A1 (ja) 2011-08-25

Family

ID=44483072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053567 WO2011102487A1 (ja) 2010-02-22 2011-02-18 セラミックハニカム構造体及びその製造方法

Country Status (6)

Country Link
US (2) US8636821B2 (ja)
EP (2) EP3120916B1 (ja)
JP (2) JP5673665B2 (ja)
KR (1) KR101894341B1 (ja)
CN (1) CN102762273B (ja)
WO (1) WO2011102487A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005363A1 (ja) * 2013-07-12 2015-01-15 松本油脂製薬株式会社 セラミック組成物用造孔材およびその用途
WO2015046012A1 (ja) 2013-09-24 2015-04-02 日立金属株式会社 セラミックハニカム構造体及びその製造方法
WO2015046242A1 (ja) 2013-09-24 2015-04-02 日立金属株式会社 コーディエライト質セラミックハニカム構造体及びその製造方法
JP2015531745A (ja) * 2012-08-30 2015-11-05 コーニング インコーポレイテッド プラグの深さのばらつきが低減されたハニカム体を充填するための組成物と方法
JP2016526007A (ja) * 2013-05-30 2016-09-01 コーニング インコーポレイテッド 触媒の一体化のための成形セラミック基材組成物
WO2016152236A1 (ja) * 2015-03-24 2016-09-29 日立金属株式会社 セラミックハニカム構造体
WO2016152709A1 (ja) * 2015-03-24 2016-09-29 日立金属株式会社 セラミックハニカム構造体及びその製造方法
WO2016152727A1 (ja) * 2015-03-24 2016-09-29 日立金属株式会社 セラミックハニカム構造体
JP2017149630A (ja) * 2016-02-26 2017-08-31 積水化学工業株式会社 複合材料、セラミック基材及び空孔形成用粒子
JP2017170396A (ja) * 2016-03-25 2017-09-28 日本碍子株式会社 ハニカム構造体
JP2017171553A (ja) * 2016-03-25 2017-09-28 日本碍子株式会社 ハニカム構造体
JP2019103951A (ja) * 2017-12-08 2019-06-27 日本碍子株式会社 フィルタ
JP2021137682A (ja) * 2020-03-02 2021-09-16 日本碍子株式会社 ハニカムフィルタ
JP2021137686A (ja) * 2020-03-02 2021-09-16 日本碍子株式会社 ハニカムフィルタ
JP2021137685A (ja) * 2020-03-02 2021-09-16 日本碍子株式会社 ハニカムフィルタ
DE102021000799A1 (de) 2020-03-31 2021-09-30 NGK lnsulators, Ltd. Keramikfilter
JP2022128221A (ja) * 2021-02-22 2022-09-01 日本碍子株式会社 ハニカムフィルタ、及びその製造方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008117621A1 (ja) * 2007-03-28 2010-07-15 日立金属株式会社 セラミックハニカム構造体の製造方法
KR101770660B1 (ko) 2009-09-04 2017-08-23 히타치 긴조쿠 가부시키가이샤 세라믹 허니컴 구조체 및 그 제조 방법
US9359262B2 (en) 2012-08-30 2016-06-07 Corning Incorporated Compositions and methods for plugging honeycomb bodies with reduced plug depth variability
JP6158832B2 (ja) * 2012-12-03 2017-07-05 トヨタ自動車株式会社 排気浄化フィルタ
CN103145439B (zh) * 2013-02-21 2014-09-17 安徽中鼎美达环保科技有限公司 一种高热导率、超低膨胀系数的蜂窝多孔陶瓷
US9499442B1 (en) * 2013-03-15 2016-11-22 Ibiden Co., Ltd. Method for manufacturing aluminum-titanate-based ceramic honeycomb structure
JP5883410B2 (ja) 2013-03-29 2016-03-15 日本碍子株式会社 ハニカム構造体の製造方法
US9981255B2 (en) * 2013-04-02 2018-05-29 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
KR101537071B1 (ko) * 2013-04-22 2015-07-16 에스코 주식회사 향발생 세라믹스의 제조 방법
TWI549742B (zh) * 2014-05-02 2016-09-21 Ta Jen Huang Method and apparatus for treating sulfur oxides from honeycomb with electric catalyst and recovering sulfur
CN104892021B (zh) * 2015-05-18 2018-05-22 新化县恒睿电子陶瓷科技有限公司 一种电子烟净化器用开气孔陶瓷材料及其制备方法
JP6693477B2 (ja) 2017-06-13 2020-05-13 株式会社デンソー 排ガス浄化フィルタ
JP6637008B2 (ja) * 2017-09-29 2020-01-29 株式会社キャタラー 排ガス浄化用触媒
JP7123597B2 (ja) * 2018-03-29 2022-08-23 日本碍子株式会社 ハニカムフィルタ
JP2019177312A (ja) * 2018-03-30 2019-10-17 日本碍子株式会社 ハニカムフィルタ
DE102019115266A1 (de) 2018-06-27 2020-01-02 Denso Corporation Wabenstrukturkörper und abgasreinigungsfilter
US11911723B2 (en) * 2019-03-25 2024-02-27 Shandong Sinocera Functional Material Co., Ltd Honeycomb structure body, honeycomb structure filter, and extrusion molding die
JP7249848B2 (ja) * 2019-03-28 2023-03-31 日本碍子株式会社 炭化珪素含有セラミックス製品の製造方法
JP6984962B2 (ja) * 2019-03-29 2021-12-22 株式会社デンソー 排ガス浄化フィルタ
JP7230671B2 (ja) * 2019-04-26 2023-03-01 株式会社デンソー 排ガス浄化フィルタ
JP7274395B2 (ja) * 2019-10-11 2023-05-16 日本碍子株式会社 ハニカム構造体
CN111393155A (zh) * 2020-01-10 2020-07-10 重庆奥福精细陶瓷有限公司 一种薄壁大孔径的堇青石蜂窝陶瓷载体及其制备方法
JP7449721B2 (ja) * 2020-03-02 2024-03-14 日本碍子株式会社 ハニカムフィルタ
JP6840283B1 (ja) * 2020-10-19 2021-03-10 株式会社三井E&Sマシナリー ハニカム触媒構造体及びscr装置
JP2022100558A (ja) * 2020-12-24 2022-07-06 日本碍子株式会社 ハニカムフィルタ
JP2022153941A (ja) * 2021-03-30 2022-10-13 日本碍子株式会社 ハニカム構造体
JP7325473B2 (ja) * 2021-03-30 2023-08-14 日本碍子株式会社 多孔質ハニカム構造体及びその製造方法
CN113443927B (zh) * 2021-06-23 2023-03-28 重庆奥福精细陶瓷有限公司 一种外皮浆料、具有外皮的多孔蜂窝陶瓷及制备方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129015A (ja) 1984-11-24 1986-06-17 Nippon Denso Co Ltd 排出ガス浄化用フイルタおよびその製造方法
US5141686A (en) 1988-11-21 1992-08-25 Corning Incorporated Method for producing cordierite articles
JP2002219319A (ja) 2000-11-24 2002-08-06 Ngk Insulators Ltd 多孔質ハニカムフィルター及びその製造方法
JP2002349234A (ja) 2001-05-25 2002-12-04 Toyota Motor Corp ディーゼル排ガス浄化フィルタ
JP2002355511A (ja) 2001-05-30 2002-12-10 Denso Corp 排ガス浄化フィルタ及びその製造方法
JP2003040687A (ja) 2000-06-30 2003-02-13 Ngk Insulators Ltd ハニカムセラミックス構造体とその製造方法
JP2003193820A (ja) 2001-09-13 2003-07-09 Hitachi Metals Ltd セラミックハニカムフィルタ
JP2004360654A (ja) 2003-06-06 2004-12-24 Hitachi Metals Ltd セラミックハニカムフィルタ
JP2005095884A (ja) * 2003-08-29 2005-04-14 Hitachi Metals Ltd セラミックハニカム構造体及びセラミックハニカム構造体押出成形用坏土
JP2005519834A (ja) * 2002-03-14 2005-07-07 コーニング インコーポレイテッド 高温用途のストロンチウム・フェルドスパー・アルミニウム・チタネート
JP2005177626A (ja) * 2003-12-19 2005-07-07 Sumitomo Electric Ind Ltd フィルタ、その製造方法およびフィルタユニット
WO2005068397A1 (ja) * 2004-01-13 2005-07-28 Ibiden Co., Ltd. 多孔体用造孔材、多孔体用造孔材の製造方法、多孔体の製造方法、多孔体及びハニカム構造体
JP2005530616A (ja) 2002-06-26 2005-10-13 コーニング インコーポレイテッド Dpf用途向けのケイ酸アルミニウムマグネシウム構造体
JP2007290951A (ja) * 2006-03-31 2007-11-08 Ibiden Co Ltd ハニカム構造体およびその製造方法
JP2009149500A (ja) * 2007-11-30 2009-07-09 Ngk Insulators Ltd 炭化珪素質多孔体及びその製造方法
JP2009532195A (ja) * 2006-03-31 2009-09-10 コーニング インコーポレイテッド セラミック物品の製造における細孔形成剤としての過酸化物含有化合物

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2090425U (zh) * 1991-04-02 1991-12-11 航天部二○七所大为技术开发公司 组合式陶瓷蜂窝载体
EP0603392B1 (en) * 1992-05-13 1996-12-18 Sumitomo Electric Industries, Ltd Particulate trap for purifying diesel engine exhaust gas
EP0884459A3 (en) * 1997-06-13 2002-12-11 Corning Incorporated Coated catalytic converter substrates and mounts
DE19803063A1 (de) * 1998-01-28 1999-07-29 Eberspaecher J Gmbh & Co Verfahren zur Halterung und Isolation von Keramikmonolithen in einer Kraftfahrzeug-Abgasanlage einschließlich hiernach gefertigte Lagerung
JP4007058B2 (ja) * 2001-08-06 2007-11-14 株式会社デンソー 排ガス浄化フィルタ
US6827754B2 (en) 2001-09-13 2004-12-07 Hitachi Metals, Ltd. Ceramic honeycomb filter
EP1493904B1 (en) * 2002-04-10 2016-09-07 Ibiden Co., Ltd. Honeycomb filter for clarifying exhaust gas
DE10218218A1 (de) * 2002-04-24 2003-11-06 Bosch Gmbh Robert Vorrichtung und Verfahren zur Feststellung einer Fehlfunktion eines Filters
JP4075573B2 (ja) * 2002-06-13 2008-04-16 株式会社デンソー 内燃機関の排ガス浄化装置
WO2004018850A1 (ja) * 2002-08-26 2004-03-04 Hitachi, Ltd. ディーゼルエンジンの排気ガス浄化装置および排気ガス浄化方法
EP1502640B1 (en) * 2002-09-13 2013-03-20 Ibiden Co., Ltd. Honeycomb structure
EP1666436B1 (en) * 2003-08-29 2013-07-31 Hitachi Metals, Ltd. Ceramic honeycomb structure and ceramic body used for extrusion-molding the structure
JP4874812B2 (ja) * 2004-12-28 2012-02-15 イビデン株式会社 フィルタ及びフィルタ集合体
JP2008545612A (ja) * 2005-05-31 2008-12-18 コーニング インコーポレイテッド 細孔形成剤の組合せを含有するチタン酸アルミニウムセラミック形成バッチ混合物および未焼成体、および同混合物および未焼成体の製造および焼成方法
WO2007058007A1 (ja) * 2005-11-18 2007-05-24 Ibiden Co., Ltd. ハニカム構造体
FR2893861B1 (fr) * 2005-11-30 2008-01-04 Saint Gobain Ct Recherches Structure de filtration d'un gaz a base de sic de porosite de surface de paroi controlee
US20070293382A1 (en) 2006-06-16 2007-12-20 Cmd Corporation Method and Apparatus for Making Bags
JP5444716B2 (ja) * 2006-11-30 2014-03-19 日立金属株式会社 セラミックハニカムフィルタ及びその製造方法
JP5077659B2 (ja) * 2007-07-20 2012-11-21 ニチアス株式会社 触媒コンバーター及び触媒コンバーター用保持材
WO2009048857A1 (en) * 2007-10-09 2009-04-16 3M Innovative Properties Company Mounting mats including inorganic nanoparticles and method for making the same
WO2009048156A1 (ja) * 2007-10-12 2009-04-16 Hitachi Metals, Ltd. コージェライト質セラミックハニカムフィルタ及びその製造方法
EP2067756B1 (en) * 2007-11-30 2016-01-27 NGK Insulators, Ltd. Silicon carbide based porous material and method for preparation thereof
KR101648483B1 (ko) * 2008-07-28 2016-08-16 히타치 긴조쿠 가부시키가이샤 세라믹 허니컴 구조체 및 그 제조 방법
KR101949299B1 (ko) 2010-04-01 2019-02-18 히타치 긴조쿠 가부시키가이샤 세라믹 허니컴 필터 및 그 제조 방법
WO2011135683A1 (ja) * 2010-04-27 2011-11-03 イビデン株式会社 ハニカム構造体の製造方法及びハニカム構造体

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129015A (ja) 1984-11-24 1986-06-17 Nippon Denso Co Ltd 排出ガス浄化用フイルタおよびその製造方法
US5141686A (en) 1988-11-21 1992-08-25 Corning Incorporated Method for producing cordierite articles
JP2003040687A (ja) 2000-06-30 2003-02-13 Ngk Insulators Ltd ハニカムセラミックス構造体とその製造方法
JP2002219319A (ja) 2000-11-24 2002-08-06 Ngk Insulators Ltd 多孔質ハニカムフィルター及びその製造方法
JP2002349234A (ja) 2001-05-25 2002-12-04 Toyota Motor Corp ディーゼル排ガス浄化フィルタ
JP2002355511A (ja) 2001-05-30 2002-12-10 Denso Corp 排ガス浄化フィルタ及びその製造方法
JP2003193820A (ja) 2001-09-13 2003-07-09 Hitachi Metals Ltd セラミックハニカムフィルタ
JP2005519834A (ja) * 2002-03-14 2005-07-07 コーニング インコーポレイテッド 高温用途のストロンチウム・フェルドスパー・アルミニウム・チタネート
JP2005530616A (ja) 2002-06-26 2005-10-13 コーニング インコーポレイテッド Dpf用途向けのケイ酸アルミニウムマグネシウム構造体
JP2004360654A (ja) 2003-06-06 2004-12-24 Hitachi Metals Ltd セラミックハニカムフィルタ
JP2005095884A (ja) * 2003-08-29 2005-04-14 Hitachi Metals Ltd セラミックハニカム構造体及びセラミックハニカム構造体押出成形用坏土
JP2005177626A (ja) * 2003-12-19 2005-07-07 Sumitomo Electric Ind Ltd フィルタ、その製造方法およびフィルタユニット
WO2005068397A1 (ja) * 2004-01-13 2005-07-28 Ibiden Co., Ltd. 多孔体用造孔材、多孔体用造孔材の製造方法、多孔体の製造方法、多孔体及びハニカム構造体
JP2007290951A (ja) * 2006-03-31 2007-11-08 Ibiden Co Ltd ハニカム構造体およびその製造方法
JP2009532195A (ja) * 2006-03-31 2009-09-10 コーニング インコーポレイテッド セラミック物品の製造における細孔形成剤としての過酸化物含有化合物
JP2009149500A (ja) * 2007-11-30 2009-07-09 Ngk Insulators Ltd 炭化珪素質多孔体及びその製造方法

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015531745A (ja) * 2012-08-30 2015-11-05 コーニング インコーポレイテッド プラグの深さのばらつきが低減されたハニカム体を充填するための組成物と方法
JP2016526007A (ja) * 2013-05-30 2016-09-01 コーニング インコーポレイテッド 触媒の一体化のための成形セラミック基材組成物
WO2015005363A1 (ja) * 2013-07-12 2015-01-15 松本油脂製薬株式会社 セラミック組成物用造孔材およびその用途
JPWO2015005363A1 (ja) * 2013-07-12 2017-03-02 松本油脂製薬株式会社 セラミック組成物用造孔材およびその用途
US9649587B2 (en) 2013-09-24 2017-05-16 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
WO2015046012A1 (ja) 2013-09-24 2015-04-02 日立金属株式会社 セラミックハニカム構造体及びその製造方法
WO2015046242A1 (ja) 2013-09-24 2015-04-02 日立金属株式会社 コーディエライト質セラミックハニカム構造体及びその製造方法
EP3786137A1 (en) 2013-09-24 2021-03-03 Hitachi Metals, Ltd. Production method for a cordierite-type ceramic honeycomb structure
US10065141B2 (en) 2013-09-24 2018-09-04 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
US9726066B2 (en) 2013-09-24 2017-08-08 Hitachi Metals, Ltd. Cordierite-type ceramic honeycomb structure and its production method
US9708958B2 (en) 2013-09-24 2017-07-18 Hitachi Metals, Ltd. Cordierite-type ceramic honeycomb structure and its production method
US9968879B2 (en) 2015-03-24 2018-05-15 Hitachi Metals, Ltd. Ceramic honeycomb structure
KR20170130362A (ko) 2015-03-24 2017-11-28 히타치 긴조쿠 가부시키가이샤 세라믹 허니컴 구조체
JP6004151B1 (ja) * 2015-03-24 2016-10-05 日立金属株式会社 セラミックハニカム構造体
US10399074B2 (en) 2015-03-24 2019-09-03 Hitachi Metals, Ltd. Ceramic honeycomb structure
KR102441764B1 (ko) 2015-03-24 2022-09-07 히타치 긴조쿠 가부시키가이샤 세라믹 허니컴 구조체
KR102439667B1 (ko) 2015-03-24 2022-09-01 히타치 긴조쿠 가부시키가이샤 세라믹 허니컴 구조체 및 그의 제조 방법
KR20170129694A (ko) 2015-03-24 2017-11-27 히타치 긴조쿠 가부시키가이샤 세라믹 허니컴 구조체 및 그의 제조 방법
JP6004150B1 (ja) * 2015-03-24 2016-10-05 日立金属株式会社 セラミックハニカム構造体及びその製造方法
JPWO2016152236A1 (ja) * 2015-03-24 2018-01-11 日立金属株式会社 セラミックハニカム構造体
WO2016152727A1 (ja) * 2015-03-24 2016-09-29 日立金属株式会社 セラミックハニカム構造体
WO2016152709A1 (ja) * 2015-03-24 2016-09-29 日立金属株式会社 セラミックハニカム構造体及びその製造方法
US10072543B2 (en) 2015-03-24 2018-09-11 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
US10077693B2 (en) 2015-03-24 2018-09-18 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
WO2016152236A1 (ja) * 2015-03-24 2016-09-29 日立金属株式会社 セラミックハニカム構造体
JP2017149630A (ja) * 2016-02-26 2017-08-31 積水化学工業株式会社 複合材料、セラミック基材及び空孔形成用粒子
US10653998B2 (en) 2016-03-25 2020-05-19 Ngk Insulators, Ltd. Honeycomb structure
JP2017170396A (ja) * 2016-03-25 2017-09-28 日本碍子株式会社 ハニカム構造体
JP2017171553A (ja) * 2016-03-25 2017-09-28 日本碍子株式会社 ハニカム構造体
JP2019103951A (ja) * 2017-12-08 2019-06-27 日本碍子株式会社 フィルタ
JP2021137685A (ja) * 2020-03-02 2021-09-16 日本碍子株式会社 ハニカムフィルタ
JP2021137686A (ja) * 2020-03-02 2021-09-16 日本碍子株式会社 ハニカムフィルタ
JP2021137682A (ja) * 2020-03-02 2021-09-16 日本碍子株式会社 ハニカムフィルタ
JP7227178B2 (ja) 2020-03-02 2023-02-21 日本碍子株式会社 ハニカムフィルタ
JP7229192B2 (ja) 2020-03-02 2023-02-27 日本碍子株式会社 ハニカムフィルタ
JP7353218B2 (ja) 2020-03-02 2023-09-29 日本碍子株式会社 ハニカムフィルタ
DE102021000799A1 (de) 2020-03-31 2021-09-30 NGK lnsulators, Ltd. Keramikfilter
JP2021159867A (ja) * 2020-03-31 2021-10-11 日本碍子株式会社 セラミックス製のフィルタ
US11331613B2 (en) 2020-03-31 2022-05-17 Ngk Insulators, Ltd. Ceramic filter
JP7234180B2 (ja) 2020-03-31 2023-03-07 日本碍子株式会社 セラミックス製のフィルタ
JP2022128221A (ja) * 2021-02-22 2022-09-01 日本碍子株式会社 ハニカムフィルタ、及びその製造方法
JP7399901B2 (ja) 2021-02-22 2023-12-18 日本碍子株式会社 ハニカムフィルタ、及びその製造方法

Also Published As

Publication number Publication date
US20120317947A1 (en) 2012-12-20
KR101894341B1 (ko) 2018-10-04
CN102762273B (zh) 2016-06-15
EP2540370A1 (en) 2013-01-02
EP2540370B1 (en) 2018-04-04
CN102762273A (zh) 2012-10-31
EP3120916A2 (en) 2017-01-25
JPWO2011102487A1 (ja) 2013-06-17
US8636821B2 (en) 2014-01-28
US20140103560A1 (en) 2014-04-17
US9353015B2 (en) 2016-05-31
JP5673665B2 (ja) 2015-02-18
EP3120916B1 (en) 2021-10-20
EP3120916A3 (en) 2017-04-12
JP5725247B2 (ja) 2015-05-27
EP2540370A4 (en) 2015-09-30
KR20130008031A (ko) 2013-01-21
JP2015042613A (ja) 2015-03-05

Similar Documents

Publication Publication Date Title
JP5673665B2 (ja) セラミックハニカム構造体及びその製造方法
JP5835395B2 (ja) セラミックハニカム構造体の製造方法
JP6004151B1 (ja) セラミックハニカム構造体
JP5751398B1 (ja) セラミックハニカム構造体及びその製造方法
JP6004150B1 (ja) セラミックハニカム構造体及びその製造方法
JP5751397B1 (ja) コーディエライト質セラミックハニカム構造体及びその製造方法
JP5724873B2 (ja) セラミックハニカム構造体及びその製造方法
WO2021075211A1 (ja) セラミックハニカム構造体及びその製造方法
JP2021159888A (ja) セラミックハニカム構造体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010393.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744773

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012500670

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13580344

Country of ref document: US

Ref document number: 2011744773

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127024808

Country of ref document: KR

Kind code of ref document: A