WO2016152236A1 - セラミックハニカム構造体 - Google Patents

セラミックハニカム構造体 Download PDF

Info

Publication number
WO2016152236A1
WO2016152236A1 PCT/JP2016/052181 JP2016052181W WO2016152236A1 WO 2016152236 A1 WO2016152236 A1 WO 2016152236A1 JP 2016052181 W JP2016052181 W JP 2016052181W WO 2016152236 A1 WO2016152236 A1 WO 2016152236A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
diameter
volume
substrate
honeycomb structure
Prior art date
Application number
PCT/JP2016/052181
Other languages
English (en)
French (fr)
Inventor
岡崎 俊二
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2017507545A priority Critical patent/JP6702305B2/ja
Priority to KR1020177026705A priority patent/KR102465748B1/ko
Priority to US15/555,759 priority patent/US10399074B2/en
Priority to EP16768139.4A priority patent/EP3275541B1/en
Priority to CN201680013367.4A priority patent/CN107427823B/zh
Publication of WO2016152236A1 publication Critical patent/WO2016152236A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/007Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores
    • C04B38/0074Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores expressed as porosity percentage
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a carrier for supporting a catalytic material for removing harmful substances contained in exhaust gas from a diesel engine, a gasoline engine or the like, and more particularly, a carrier for supporting a catalytic material for removing nitrogen oxides.
  • the present invention relates to a ceramic honeycomb structure used in the above.
  • Exhaust gas emitted from internal combustion engines such as diesel engines and gasoline engines contains nitrogen oxides (NOx) and particulate matter (PM), which are harmful substances.
  • NOx nitrogen oxides
  • PM particulate matter
  • devices for reducing particulate matter and nitrogen oxides As a device for reducing this nitrogen oxide, urea is injected into the exhaust pipe, ammonia is generated from urea in the exhaust pipe, the generated ammonia reacts with nitrogen oxide in the exhaust gas, and nitrogen oxide is produced.
  • urea SCR catalyst that reduces nitrogen oxides from exhaust gas by removing oxygen from nitrogen and returning it to nitrogen.
  • HC-SCR catalyst technology using diesel fuel (HC) as a reducing agent which can be used even if the infrastructure for supplying urea is not sufficient, has attracted attention.
  • the ceramic honeycomb structure 10 includes a porous partition wall 2 and an outer peripheral wall 1 that form a number of flow paths 3 through which exhaust gas flows, and a catalytic substance (not shown) is supported on the porous partition wall 2. Yes.
  • Japanese Patent Laid-Open No. 2005-052750 describes that the partition wall thickness is 0.1 to 0.35 mm, the partition wall pitch is 1.0 to 2.0 mm, the average pore diameter of the partition walls is 15 ⁇ m or more, and the pores A ceramic honeycomb structure having a rate of 50 to 80% is disclosed.
  • Japanese Patent Laid-Open No. 2005-052750 proposes that per unit volume by optimizing the porosity and average pore diameter of the partition walls of the honeycomb structure without making the ceramic honeycomb structure as a catalyst carrier thin walls and high cell density. increase the amount of catalyst material to be supported, it describes that it can be improved and downsizing of the purification efficiency of the NO x purification device for a ceramic honeycomb catalyst represented by the SCR catalyst.
  • Special Table 2009-542570 has a porosity of 64% to less than 80%, a median pore diameter (d50) of 10 ⁇ m to 45 ⁇ m, and a coefficient of thermal expansion CTE of 3.0 ⁇ 10 ⁇ 7 / ° C.
  • CTE is ⁇ 6.0 ⁇ 10 ⁇ 7 / ° C.
  • CTE is ⁇ 9.0 ⁇ 10 ⁇ 7 / ° C.
  • median pore diameter (d50) of 2 ⁇ m or more and 25 ⁇ m or less
  • CTE ⁇ 10.0 ⁇ 10 ⁇ 7 / ° C.
  • median pore diameter (d50) of more than 25 ⁇ m and less than 29 ⁇ m
  • Cordierite ceramic products having a CTE of ⁇ 13.0 ⁇ 10 ⁇ 7 / ° C.
  • the ceramic product is improved despite breaking strength coefficient and a large thermal shock resistance have a high porosity, the effective amount of the catalyst and / or the NO x adsorption material is Koti
  • the ceramic pore microstructure ensures a low pressure drop during cleaning and soot deposition, even if it is applied, so it is suitable for use as a catalyzed wall flow diesel particulate filter. ing.
  • Special Table 2009-542570 provides a more uniform distribution on the surface of the pore wall due to the narrow pore size distribution, so that a low pressure drop during clean and soot deposition is obtained, soot and soot are used as catalysts. And increased contact opportunities between the catalyst and the exhaust gas, which promotes more efficient use of the catalyst.
  • JP-T-2011-516371 is a porous ceramic body made of a polycrystalline ceramic having an anisotropic microstructure, wherein the anisotropic microstructure is an oriented polycrystalline multiphase network (reticular).
  • a porous ceramic body with an anisotropy factor Af-pore long of 1.2 ⁇ Af-pore-long ⁇ 5, having a narrow pore size distribution and a porosity greater than 50% Describes that ceramic articles having any median pore size in the range of 12-25 ⁇ m can be provided.
  • This ceramic article exhibits high strength, low coefficient of thermal expansion (CTE) and high porosity, functions such as automotive substrates, applications such as diesel or gasoline particulate filters and catalytic filters incorporating partial or complete NOx addition functions It is described that it can be used for sex filters.
  • CTE coefficient of thermal expansion
  • the porosity of the partition is 40-60%
  • the opening area ratio of the pores opened on the partition surface Is 15% or more
  • the opening diameter of the pores opened on the surface of the partition wall is represented by the equivalent circle diameter (diameter of a circle having an area equivalent to the opening area of the pores).
  • the median opening diameter on the basis of the area is 10 ⁇ m or more and less than 40 ⁇ m
  • the circle equivalent diameter is 10 ⁇ m or more and less than 40 ⁇ m
  • the pore density is 350 / mm 2 or more
  • the circle equivalent diameter is 10 ⁇ m or more and less than 40 ⁇ m.
  • a ceramic honeycomb structure is disclosed in which the average value of the circularity of the holes is 1 to 2.
  • the ceramic honeycomb structure described in International Publication No. 2011/027837 maintains a low pressure loss and improves the PM collection rate at the beginning of collection after regeneration. It describes that nano-sized PM that has come to be seen can be efficiently collected.
  • the SCR catalyst using the ceramic honeycomb structure used for the ceramic honeycomb filter described in 102487 and International Publication No. 2011/027837 as a carrier has improved pressure loss characteristics and nitrogen oxide purification efficiency to some extent, In response to the recent demands for higher purification performance and higher purification efficiency, sufficient high purification efficiency has not been obtained.
  • the SCR catalyst using the ceramic honeycomb structure used for the ceramic honeycomb filter described in International Publication No. 2011/102487 as a carrier sometimes has insufficient strength.
  • an object of the present invention is to increase the amount of the catalyst substance supported per unit volume without increasing the pressure loss, in order to use it as a carrier of an SCR catalyst excellent in nitrogen oxide purification efficiency,
  • An object of the present invention is to provide a ceramic honeycomb structure that can increase the contact efficiency between exhaust gas and a catalyst substance and has high strength.
  • the present inventors focused on the three-dimensional structure of the base material constituting the ceramic honeycomb structure, and set the three-dimensional structure obtained by measuring the base material by X-ray CT within a specific range.
  • the inventors have found that the above-mentioned problems can be achieved by defining the present invention, and have arrived at the present invention.
  • the ceramic honeycomb structure of the present invention has a large number of flow paths partitioned by porous partition walls, (a) porosity of 55% or more and less than 65%, and (b) The number of branching of the substrate is 35000 [/ mm 3 ] or more [However, the number of branching of the substrate is based on the three-dimensional structure of the substrate constituting the partition obtained by X-ray CT measurement of the partition. This is the number of branch points (joint points of 3 or more branches and join points of branches having different widths) per unit volume in the obtained network structure. ].
  • the cumulative base material volume is an integrated value of base material volumes from a minimum base material diameter to a specific base material diameter. ] Is preferable.
  • the d50 is preferably 10 to 20 ⁇ m.
  • the d10 is preferably 8 ⁇ m or more.
  • the ceramic is preferably a cordierite ceramic.
  • the ceramic honeycomb structure has a high strength because the number of branches of the base material is large, and is used for supporting a catalyst material for removing harmful substances contained in exhaust gas from a diesel engine or a gasoline engine.
  • the carrier is suitable as a carrier for supporting a catalyst material for removing nitrogen oxide in a gasoline engine.
  • storage base material volume with respect to the base material diameter of a partial base material. 4 is a graph showing the relationship between the pore diameter of the partition walls and the cumulative pore volume of the ceramic honeycomb structure of Example 2 measured by a mercury intrusion method. The slope S n obtained from the cumulative pore volume curve of FIG. 6 is a graph plotting against pore size.
  • Ceramic honeycomb structure has a large number of flow paths partitioned by porous partition walls, and the partition walls have (a) a porosity of 55% or more and less than 65%, (b) The base branch number is 35000 [/ mm 3 ] or more. However, the base branch number is obtained by X-ray CT measurement of the partition wall, and the thinning process is performed on the three-dimensional structure of the base material constituting the partition wall. Branch points (joint points of 3 or more branches and join points of branches having different widths).
  • the catalyst can be effectively supported without an increase in pressure loss, and an SCR catalyst excellent in nitrogen oxide purification efficiency can be obtained. Further, with such a configuration, a high-strength honeycomb structure can be obtained.
  • the porosity of the partition walls is 55% or more and less than 65%. When the porosity is less than 55%, the pressure loss increases. On the other hand, when the porosity is 65% or more, the strength decreases.
  • the lower limit of the porosity is preferably 60% or more, and more preferably 61%.
  • the upper limit of the porosity is preferably 64%.
  • the porosity of the partition walls can be obtained by calculation from the total pore volume obtained by the mercury intrusion method described later and the true specific gravity of the ceramic constituting the partition walls. For example, when the material of the partition walls of the ceramic honeycomb structure is cordierite, the cordierite is calculated using the true specific gravity of 2.52 g / cm 3 .
  • the number of substrate branches of the partition walls is 35000 [/ mm 3 ] or more.
  • the base material branch number of the partition wall is one of the parameters representing the three-dimensional structure of the base material constituting the partition wall, and as shown in FIG. 3, the unit volume obtained from the network structure composed of the skeleton of the three-dimensional structure It is the number of per branch points.
  • the branch point is 3 or more in the network structure (in FIG. 3, a line drawn in the central portion of the three-dimensional structure, which includes the branch 1 and the connection point 2 (2a, 2b)). This is the connection point 2a of the branch of the branch and the connection point 2b of the branch having a different width.
  • the number of branching of the base material is preferably 40000 [/ mm 3 ] or more, and more preferably 45000 [/ mm 3 ].
  • the number of branches is preferably 60000 [/ mm 3 ] or less. This is because if it exceeds 60000 [/ mm 3 ], the pores become small and it may be difficult to maintain a low pressure loss. For the same reason, 55000 [/ mm 3 ] or less is more preferable.
  • the three-dimensional structure of the base material can be obtained by X-ray CT measurement of the partition wall.
  • a three-dimensional structure of the substrate as shown in FIG. 3 is obtained by assembling on the computer continuous tomographic images (slice images) of the substrate obtained by X-ray CT measurement of the partition walls.
  • the network structure of the base material constituting this partition is a skeletal structure obtained by thinning the obtained three-dimensional structure on the software.
  • the base material branch is based on this network structure.
  • a base material between two adjacent branch points is defined as one partial base material.
  • the distance between two adjacent branch points is the length of the partial base material 3, and the value obtained by dividing the sum of the minor axis 4 and the major axis 5 in the cross section perpendicular to the axis of the partial base material by 2, that is, The average value of the minor axis 4 and the major axis 5 is the substrate diameter, and the substrate diameter ⁇ length is the substrate volume of the partial substrate.
  • the distribution of the substrate volume with respect to the substrate diameter of the partial substrate is obtained by plotting the substrate volume against the substrate diameter of the partial substrate.
  • the integrated value of the base material volume from the minimum base material diameter to the specific base material diameter is referred to as the cumulative base material volume at the specific base material diameter.
  • the partition walls of the ceramic honeycomb structure of the present invention have a base material diameter d10 in which the cumulative base material volume is 10% of the total base material volume, a base material diameter d50 that is also 50% of the total base material volume, and a total base material.
  • the substrate diameter d90 which is 90% of the volume, is given by the formula: (d90-d10) /d50 ⁇ 1.25 It is preferable to satisfy.
  • the base material diameter d10 at which the cumulative base material volume is 10% of the total base material volume is a graph (see FIG. 5) showing the relation of the cumulative base material volume to the base material diameter of the partial base material.
  • (d90-d10) / d50 is a parameter that represents the slope of the curve when the relationship of the cumulative base material volume against the base material diameter is plotted. The smaller the value, the greater the slope and the distribution of the base material volume. Means sharp.
  • (d90-d10) / d50 is more than 1.25, the number of locations where stress concentrates on a part of the substrate increases, and the strength may be lowered.
  • the value of (d90-d10) / d50 is more preferably 1.2 or less, and most preferably 1.15 or less.
  • the partition walls of the ceramic honeycomb structure of the present invention preferably have a base material diameter d50 of 10 to 20 ⁇ m so that the cumulative base material volume is 50% of the total base material volume. If d50 is less than 10 ⁇ m, the strength may decrease, and if it exceeds 20 ⁇ m, it may be difficult to maintain a low pressure loss.
  • d50 is more preferably 12 ⁇ m or more. Further, d50 is more preferably 18 ⁇ m or less, and most preferably 16 ⁇ m or less.
  • the base material diameter d10 at which the cumulative base material volume is 10% of the total base material volume is preferably 8 ⁇ m or more.
  • d10 is less than 8 ⁇ m, stress concentration tends to occur on the small-diameter substrate, and the strength may be lowered.
  • d10 is more preferably 9 ⁇ m or more.
  • the base material diameter d90 at which the cumulative base material volume is 90% of the total base material volume is preferably 34 ⁇ m or less. When d90 exceeds 34 ⁇ m, the pores are likely to be small, and it may be difficult to maintain a low pressure loss. d90 is more preferably 29 ⁇ m or less.
  • maximum value of the slope S n is less than 2.5, a large pore and small pore Many mixed, the catalyst material is less likely to be carried on the small pores, the catalyst is often carried on the surface of the partition wall Thus, the opening area of the flow path through which the exhaust gas flows is reduced, the resistance through which the exhaust gas flows is increased, and the pressure loss may be increased.
  • Maximum value of the slope S n is preferably 3 or more, more preferably 3.5 or more, more preferably 4 or more, and most preferably 4.5 or more.
  • the cumulative pore volume of the partition walls is measured by the mercury intrusion method.
  • the mercury intrusion measurement is performed using, for example, an Autopore III-9410 manufactured by Micromeritics.
  • a test piece cut out from the ceramic honeycomb structure is stored in a measurement cell, and after the inside of the cell is depressurized, when mercury is introduced and pressurized, it is pushed into the pores existing in the test piece.
  • the volume of mercury By determining the volume of mercury.
  • the larger the applied pressure the more the mercury penetrates into finer pores.
  • the pore diameter and the cumulative pore volume maximum Of the pore volume from the pore diameter to a specific pore diameter.
  • the intrusion of mercury is sequentially performed from a large pore size to a small pore size.
  • FIGS. Fig. 6 shows an example of the relationship between the pore diameter measured by the mercury intrusion method and the cumulative pore volume.
  • the points indicated by diamonds indicate the measurement points, and the numerical values indicated next to the points indicate the measurement order.
  • Figure 7 is a graph of the cumulative pore volume curve shown in FIG. 6, is a plot seeking slope S n at each measuring point.
  • point a in FIG. 7 indicates pore diameters d 12 and d 13 and cumulative pore volumes V 12 and V 13 at the 12th and 13th measurement points from the start of measurement in the cumulative pore volume curve shown in FIG.
  • Slope S 13 -[(V 13 -V 12 ) / ⁇ log (d 13 ) -log (d 12 ) ⁇ ], and the point b is the pore diameter d 13 at the 13th and 14th measurement points.
  • d 14 and the slope S 14 ⁇ [(V 14 ⁇ V 13 ) / ⁇ log (d 14 ) ⁇ log (d 13 ) ⁇ ] obtained from the cumulative pore volumes V 13 and V 14 .
  • the ceramic honeycomb structure preferably has a thermal expansion coefficient of 13 ⁇ 10 ⁇ 7 / ° C. or less in the flow channel direction between 40 and 800 ° C. Since the ceramic honeycomb structure having such a thermal expansion coefficient has high thermal shock resistance, for example, even when used as a ceramic honeycomb filter for removing fine particles contained in exhaust gas of a diesel engine. Can withstand practical enough.
  • the thermal expansion coefficient is preferably 3 ⁇ 10 ⁇ 7 to 12 ⁇ 10 ⁇ 7 , and more preferably 5 ⁇ 10 ⁇ 7 to 11 ⁇ 10 ⁇ 7 .
  • the ceramic honeycomb structure preferably has an average partition wall thickness of 5 to 15 mil (0.127 to 0.381 mm) and an average cell density of 150 to 400 cpsi (23.3 to 62.0 cells / cm 2 ).
  • an average partition wall thickness is less than 5 mil, the strength of the partition wall decreases, while when it exceeds 15 mil, it is difficult to maintain a low pressure loss.
  • the average cell density is less than 150 cpsi, the septum strength decreases, whereas when it exceeds 300 cpsi, it is difficult to maintain a low pressure drop.
  • the cross-sectional shape of the cell in the flow channel direction may be any of a quadrilateral, a polygon such as a hexagon, a circle, an ellipse, or the like, or may be an asymmetric shape having different sizes between the inflow side end surface and the outflow side end surface.
  • the ceramic honeycomb structure can be used as a carrier for an exhaust gas purification catalyst such as an oxidation catalyst, in addition to being used as a carrier for an SCR catalyst which is the object of the present invention. Further, as shown in FIG. 8, by alternately plugging the end portions 3a and 3b of the desired flow path 3 by a known method, the ceramic honeycomb filter 20 can be obtained, and the ceramic honeycomb filter can be subjected to exhaust gas purification. The catalyst for use can also be supported.
  • the ceramic honeycomb structure of the present invention is used to remove harmful substances contained in exhaust gas from diesel engines, gasoline engines, and the like.
  • the ceramic honeycomb structure is used as a carrier and filter for purifying exhaust gas discharged from internal combustion engines such as diesel engines and gasoline engines.
  • Preferred materials are cordierite, aluminum titanate, silicon carbide, silicon nitride, and the like.
  • the main crystal is cordierite having low thermal expansion and excellent thermal shock resistance.
  • the main crystal phase is cordierite, it may contain other crystal phases such as spinel, mullite, sapphirine, and may further contain a glass component.
  • the maximum compression recovery amount Lmax of the pore former is 3.0 mm or more
  • the compression recovery amount L in the range of compressive stress 2 to 6 MPa is 80% or more of the maximum compression recovery amount Lmax. is there.
  • the compression recovery amount L is determined by applying a predetermined compressive stress to a 0.3 g pore former placed in a metal cylinder having an inner diameter of 8 mm and a depth of 100 mm with a piston having an outer diameter of 8 mm. Is the amount (mm) that the piston returns when unloaded, and the maximum compression recovery amount Lmax is the maximum value of the compression recovery amount L.
  • the ceramic raw material and the inorganic powder are cordierite forming raw materials
  • the ceramic raw material and the inorganic powder are 15 to 15% in a total of 100% by mass.
  • the silica has a median diameter D50 of 15 to 30 ⁇ m, the proportion of particles having a particle size of 10 ⁇ m or less is 3 mass% or less, the proportion of particles having a particle diameter of 100 ⁇ m or more is 3 mass% or less, and the particle size distribution deviation SD is 0.4.
  • the talc has a median diameter D50 of 1 to 10 ⁇ m and a particle size distribution deviation SD of 0.6 or less
  • the alumina has a median diameter D50 of 1 to 8 ⁇ m, a particle size and a cumulative volume.
  • the particle diameter D90 at a cumulative volume corresponding to 90% of the total volume is 5 to 15 ⁇ m.
  • the porosity is 55% or more and less than 65%
  • the base branch number is 35000 [/ mm 3 ] or more [where the base branch number is X of the partition wall
  • the thinning process was performed on the three-dimensional structure of the base material constituting the partition obtained by line CT measurement, and branch points per unit volume in the obtained network structure (joint points and widths of three or more branches) The number of different branch points).
  • the ceramic honeycomb structure of the present invention can be obtained.
  • the pores formed in the ceramic include pores generated by melting of the ceramic raw material during the firing process and pores generated by burning out the pore former. Therefore, by adjusting the median diameter and particle size distribution of the ceramic raw material and pore former, the pores formed when the ceramic is fired can be controlled, and as a result, the three-dimensional structure of the substrate can be controlled. .
  • the maximum compression recovery amount Lmax is 3.0 mm or more, and the compression recovery amount L in the range of 2 to 6 mm compression stress is the maximum compression recovery.
  • the compression recovery amount L is determined by applying a predetermined compressive stress to a 0.3 g pore-forming material placed in a metal tube having an inner diameter of 8 mm and a depth of 100 mm with a piston having an outer diameter of 8 mm. The amount by which the piston returns when the stress is unloaded (mm), and the maximum compression recovery amount Lmax is the maximum value of the compression recovery amount L.
  • the pores formed by firing the ceramic raw material, the inorganic powder on the surface of the resin particles, and the pores formed from the pore-forming material are formed with good communication to obtain a predetermined number of base material branches.
  • the catalyst is efficiently supported on the branched substrate surface, so that the contact efficiency between the exhaust gas and the catalyst material can be increased, the amount of catalyst material supported increases, and the pressure loss characteristics and strength characteristics are improved.
  • ceramic honeycomb structure can be obtained.
  • Porous material (a) Structure
  • the pore former is preferably made of hollow resin particles and contains inorganic powder on the surface.
  • the inorganic powder is preferably attached to the surface of the hollow resin particle.
  • the addition amount of the pore former is preferably 4% by mass or more and less than 8% by mass with respect to 100% by mass of the ceramic material.
  • the added amount of the pore former is out of this range, it is difficult to obtain a partition wall having the porosity and the base material structure (base branch number).
  • the added amount of the pore former is less than 4% by mass, it becomes difficult to obtain a partition wall having a porosity of 55% or more, the amount of the catalyst substance supported is reduced, and the pressure loss characteristic is deteriorated.
  • the added amount of the pore former is 8% by mass or more, the porosity of the partition wall may be 65% or more, and the strength may be insufficient.
  • the added amount of the pore former is preferably 5% by mass or more, more preferably 6% by mass or more.
  • the median diameter D50 of the pore former particles is preferably 25 to 35 ⁇ m.
  • the median diameter D50 is preferably 27 to 33 ⁇ m, more preferably 28 to 32 ⁇ m.
  • the pore former particle has a particle diameter D10 at a cumulative volume corresponding to 10% of the total volume in a curve indicating the relationship between the particle diameter and the cumulative volume (a value obtained by accumulating a particle volume equal to or less than a specific particle diameter). Is 14 to 24 ⁇ m, the particle diameter D90 in a cumulative volume corresponding to 90% of the total volume is 45 to 60 ⁇ m, and the particle size distribution deviation SD is preferably 0.4 or less.
  • the particle diameter of the pore former can be measured using, for example, a microtrack particle size distribution measuring device (MT3000) manufactured by Nikkiso Co., Ltd.
  • the particle diameter D10 is preferably 15 to 23 ⁇ m, D90 is preferably 47 to 58 ⁇ m, and the particle size distribution deviation SD is preferably 0.35 or less, and more preferably 0.3 or less.
  • the hollow resin particles constituting the pore former are hollow resin particles in which a gas such as hydrocarbon is encapsulated inside the resin particles as will be described later, pressure and shear are applied to the pore former. In some cases, the resin is deformed, and in some cases, the resin constituting the outer shell is destroyed and the shape cannot be maintained. Since extrusion of the clay is performed, for example, at a pressure of 5 MPa or more, it is considered that the pore former made of hollow resin particles is compressed and deformed during extrusion, and a part thereof is destroyed. The pore former deformed by pressurization can maintain its function as a pore former because its shape is restored to its original shape (springback phenomenon) when the pressure is released and returned to normal pressure after extrusion.
  • the pore former that has been made does not function as a pore former. Therefore, the pore former is deformed when pressure (or higher pressure) at the time of extrusion molding is applied but is not destroyed and returns to its original shape when the pressure is released (compression recovery). It is necessary to have sex.
  • the compression recovery property of the pore former is evaluated by measuring the compression recovery amount L by the compression recovery property test described below.
  • a hole was formed in a metal cylinder with an inner diameter of 8 mm and a depth of 100 mm, and a predetermined compressive stress was applied with a piston (mass 96.45 g) with an outer diameter of 8 mm.
  • This is a test for measuring the amount (mm) of the piston that returns when the compressive stress is unloaded, and the amount (mm) of the piston that returns is referred to as a compression recovery amount L.
  • an upwardly convex graph is obtained as shown in FIG.
  • the maximum value of the compression recovery amount L in the measured range is the maximum compression recovery amount Lmax.
  • the evaluation of compression recovery is based on the ratio (L / Lmax) between (a) the maximum compression recovery amount Lmax and (b) the compression recovery amount L and the maximum compression recovery amount Lmax when the compression stress is in the range of 2 to 6 MPa. evaluate.
  • the maximum compression recovery amount Lmax is 3.0 mm or more
  • the compression recovery amount L in the range of compressive stress 2 to 6 mm MPa is 80% or more of the maximum compression recovery amount Lmax (L / Lmax ⁇ 80%) That is, it is preferable that the minimum value of the compression recovery amount L in the range of the compression stress of 2 to 6 MPa is 80% or more of the maximum compression recovery amount Lmax.
  • the pore former having such a compression recovery property has few particles that are broken by the compression force at the time of extrusion molding, and can sufficiently maintain the function as the pore former.
  • the sphericity of the pore former particles is preferably 0.5 or more. When the sphericity of the pore former particles is less than 0.5, the pores of the partition walls are not preferable because the pores having sharp corners that are likely to be the starting point of destruction increase and the strength of the honeycomb structure may decrease. .
  • the sphericity of the pore former particles is preferably 0.7 or more, and more preferably 0.8 or more. Note that the sphericity of the pore former particles was obtained by dividing the projected area of the pore former particles by the area of a circle whose diameter is the maximum value of a straight line passing through the center of gravity of the pore former particles and connecting two points on the outer periphery of the particle. Value, which can be obtained from an electron micrograph with an image analyzer.
  • foamed resin particles are preferable, and resin particles expanded in a balloon shape are particularly preferable.
  • resin used as the pore former particles (poly) methyl methacrylate, polybutyl methacrylate, polyacrylic ester, polystyrene, polyacrylic ester, polyethylene, polyethylene terephthalate, methyl methacrylate / acrylonitrile copolymer and the like are suitable.
  • the hollow resin particles preferably have an outer shell thickness of 0.1 to 3 ⁇ m, and preferably contain a gas such as hydrocarbon.
  • the inorganic powder is preferably at least one selected from the group consisting of kaolin, silica, talc, cordierite, alumina, aluminum hydroxide, calcium carbonate, and titanium oxide.
  • kaolin, silica, talc, cordierite, alumina, and aluminum hydroxide are preferable as the inorganic powder, and talc is most preferable.
  • the median diameter D50i of the inorganic powder is preferably 0.5 to 15 ⁇ m, and preferably 0.6 to 12 ⁇ m. More preferably, it is 0.6 to 10 ⁇ m.
  • the ratio D50i / D50 between the median diameter D50i of the inorganic powder and the median diameter D50 of the pore former is preferably 0.5 or less.
  • D50i / D50 is within such a range, the inorganic powder can be satisfactorily adhered to the surface of the resin particles. If an inorganic powder having a D50i / D50 exceeding 0.5 is used, the inorganic powder is less likely to adhere to the surface of the resin particles. The effect of the inorganic powder that communicates with the pores is reduced, and it becomes difficult to obtain a desired number of base material branches.
  • D50i / D50 is preferably 0.01 to 0.45.
  • the ceramic raw material including the inorganic powder contained on the surface of the pore former is preferably prepared so as to be a cordierite forming raw material.
  • the main crystal is cordierite (the main component chemical composition is 42 to 56 mass% SiO 2 , 30 to 45 mass% Al 2 O 3 and 12 to 16 mass% MgO).
  • each raw material powder which has a silica source component, an alumina source component, and a magnesia source component is mix
  • the ceramic raw material and the inorganic powder are 15 to 25% by mass of silica, 27 to 43% by mass of talc, and 15% with respect to 100% by mass of the total of the ceramic raw material and the inorganic powder (cordierite raw material).
  • a cordierite forming raw material containing ⁇ 30% by mass of alumina is preferred.
  • the pores formed in the ceramic having cordierite as the main crystal are composed of pores generated by melting the ceramic raw material in the firing process and pores generated by burning out the pore former. Therefore, by adjusting the particle size and particle size distribution of the ceramic raw materials such as kaolin, silica, talc and alumina together with the pore former described above, the pores and base material structure generated when the cordierite ceramic is fired Can be controlled. In particular, since pores can be formed by a diffusion reaction with raw materials around silica, the contribution to the base material structure (pore structure) is large together with the pore former.
  • Silica Silica is known to exist stably up to a higher temperature than other raw materials, and melt and diffuse at 1300 ° C. or higher to form pores. Therefore, when the cordierite forming raw material contains 15 to 25% by mass of silica, a desired amount of pores can be obtained. When silica is contained in an amount exceeding 25% by mass, kaolin and / or talc, which are other silica source components, must be reduced in order to maintain the main crystal as cordierite. The effect of lowering thermal expansion (effect obtained by orienting kaolin during extrusion molding) is reduced, and the thermal shock resistance is lowered.
  • the desired porosity may not be obtained, and the pressure loss characteristic is deteriorated.
  • the amount of silica contained in the cordierite forming raw material is appropriately changed in consideration of the silica amount in the pore former.
  • Silica has a median diameter D50 of 15 to 30 ⁇ m, the proportion of particles having a particle size of 10 ⁇ m or less is 3 mass% or less, the proportion of particles having a particle diameter of 100 ⁇ m or more is 3 mass% or less, and the particle size distribution deviation SD is 0.4.
  • the following are preferably used: By using silica particles having such a particle size and particle size distribution in combination with the pore former, the number of substrate branches can be increased.
  • the median diameter D50 of silica is preferably 17 to 28 ⁇ m, more preferably 19 to 26 ⁇ m.
  • the proportion of silica particles having a particle size of 10 ⁇ m or less exceeds 3% by mass
  • the proportion of silica particles having a particle size of 10 ⁇ m or less which may increase the base material diameter and increase pressure loss, is preferably 2% by mass or less.
  • the ratio of particles having a particle diameter of 100 ⁇ m or more exceeds 3% by mass, the substrate diameter is decreased and the strength may be decreased.
  • the ratio of silica particles having a particle diameter of 100 ⁇ m or more is preferably 2% by mass or less.
  • the particle size distribution deviation SD of silica is preferably 0.35 or less, more preferably 0.3 or less.
  • the sphericity of the silica particles is preferably 0.5 or more. If the sphericity of the silica particles is less than 0.5, it is not preferable because the pores of the partition walls have many sharp corners that tend to be the starting point of destruction, and the strength of the honeycomb structure may be lowered.
  • the sphericity of the silica particles is preferably 0.6 or more, and more preferably 0.7 or more.
  • the sphericity of the silica particle is a value obtained by dividing the projected area of the silica particle by the area of a circle whose diameter is the maximum value of the straight line connecting the two points on the outer periphery of the particle through the center of gravity of the silica particle. It can be obtained by an image analysis apparatus.
  • the silica particles may be crystalline or amorphous, but are preferably amorphous from the viewpoint of adjusting the particle size distribution.
  • Amorphous silica can be obtained by crushing an ingot produced by melting high-purity natural silica at high temperature.
  • Silica particles may contain Na 2 O, K 2 O, and CaO as impurities, but in order to prevent the thermal expansion coefficient from increasing, the total content of the impurities is preferably 0.1% or less. .
  • Silica particles with high sphericity can be obtained by pulverizing high-purity natural silica and spraying it in a high-temperature flame.
  • the silica particles can be melted and spheroidized simultaneously by thermal spraying into a high-temperature flame to obtain amorphous silica having a high sphericity.
  • Kaolin powder can be blended in addition to the silica powder.
  • the kaolin powder is preferably contained in an amount of 1 to 15% by mass. If the kaolin powder contains more than 15% by mass, the silica and / or talc, which are other silica source components, must be reduced in order to maintain the main crystal in cordierite, and as a result A substrate structure may not be obtained. When it is less than 1% by mass, the thermal expansion coefficient of the ceramic honeycomb structure is increased.
  • the kaolin powder content is more preferably 4 to 8% by mass.
  • the orientation of kaolin particles is greatly influenced by their shape.
  • the cleavage index of kaolin particles which is an index that quantitatively indicates the shape of kaolin particles, is preferably 0.80 or more, and more preferably 0.85 or more.
  • Talc Cordierite-forming raw material contains 27 to 43% by mass of talc having a median diameter D50 of 1 to 10 ⁇ m and a particle size distribution deviation SD of 0.6 or less with respect to 100% by mass of cordierite-forming raw material.
  • Talc is a compound composed of MgO and SiO 2 and reacts with the Al 2 O 3 component present in the surroundings in the firing process to melt and form pores. Therefore, by blending talc with a small particle diameter together with the Al 2 O 3 source material, the number of branching of the base material can be increased, so that the connectivity of the pores in the partition walls can be improved.
  • the median diameter D50 of talc is less than 1 ⁇ m, the pore connectivity is lowered and the pressure loss characteristic is lowered. On the other hand, when the median diameter D50 of talc exceeds 10 ⁇ m, coarse pores increase.
  • the median diameter D50 of talc is preferably 2 to 9 ⁇ m, more preferably 3 to 8 ⁇ m.
  • the particle size distribution deviation SD of the talc particles is preferably 0.55 or less, and more preferably 0.5 or less.
  • Talc is preferably plate-like particles from the viewpoint of reducing the thermal expansion coefficient of the ceramic honeycomb structure whose main component of the crystal phase is cordierite.
  • the form factor indicating the tabularity of the talc particles is preferably 0.5 or more, more preferably 0.6 or more, and most preferably 0.7 or more.
  • Talc may contain Fe 2 O 3 , CaO, Na 2 O, K 2 O and the like as impurities.
  • the content of Fe 2 O 3 is preferably 0.5 to 2.5% by mass in the magnesia source material, and the content of Na 2 O, K 2 O and CaO is thermal expansion. From the viewpoint of reducing the coefficient, the total content is preferably 0.5% by mass or less.
  • the amount of talc added to the cordierite-forming raw material is preferably 27 to 43% by mass so that the main crystal becomes cordierite.
  • the amount of talc added to the cordierite-forming raw material is appropriately adjusted in consideration of the talc content contained in the pore former. To do.
  • the cordierite-forming raw material preferably contains 15 to 30% by mass of alumina with respect to 100% by mass of the cordierite-forming raw material.
  • the median diameter D50 of the alumina is preferably 1 to 8 ⁇ m, and in the curve showing the relationship between the particle diameter and the cumulative volume, the particle diameter D90 at a cumulative volume corresponding to 90% of the total volume is 5 to 15 ⁇ m. Is preferred.
  • the median diameter D50 of alumina is preferably 2 to 7 ⁇ m, more preferably 3 to 6 ⁇ m.
  • As the alumina raw material it is preferable to use aluminum hydroxide in addition to alumina.
  • the total content of Na 2 O, K 2 O and CaO as impurities in alumina and aluminum hydroxide is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, and most preferably 0.1% by mass or less. .
  • the cordierite-type ceramic honeycomb structure is mixed with a ceramic raw material and a pore-forming material by adding a binder, and if necessary, an additive such as a dispersant, a surfactant, etc.
  • an additive such as a dispersant, a surfactant, etc.
  • Manufacture is performed by processing the end face and outer periphery as necessary and firing.
  • Calcination is performed using a continuous furnace or a batch furnace while adjusting the heating and cooling rates. Hold at 1350 to 1450 ° C for 1 to 50 hours, and after the cordierite main crystals are sufficiently formed, cool to room temperature.
  • the temperature rise rate is such that when a large cordierite ceramic honeycomb structure having an outer diameter of 150 mm or more and a total length of 150 mm or more is manufactured, the binder is decomposed so that cracks do not occur in the formed body during the firing process.
  • the temperature is preferably 0.2 to 10 ° C./hr in the temperature range (eg 150 to 350 ° C.) and 5 to 20 ° C./hr in the temperature range (eg 1150 to 1400 ° C.) where the cordierite reaction proceeds. Cooling is preferably performed at a rate of 20 to 40 ° C./h, particularly in the range of 1400 to 1300 ° C.
  • the ends 3a and 3b of the desired flow path 3 are alternately observed by a known method.
  • the ceramic honeycomb filter 20 can also be formed by sealing, and the plugged portion may be formed either before or after the ceramic honeycomb structure is fired.
  • Examples 1-2 and Comparative Examples 1-2 The total amount of ceramic raw materials (coated on the surface of the pore-forming material), silica powder, talc powder, alumina powder, aluminum hydroxide and kaolin having the properties (particle size, particle size distribution, etc.) shown in Tables 1 to 6, respectively.
  • a cordierite-forming raw material powder having a chemical composition after calcination of cordierite was obtained by blending at an addition amount shown in Table 7 so that 100 parts by mass of the inorganic powder was included.
  • a pore-forming material having a particle shape shown in Table 6 is added in an amount shown in Table 7, and methyl cellulose is added and mixed, and then water is added and kneaded to form a plastic cordier.
  • a ceramic clay made of lightening raw material was produced.
  • the pore former A is obtained by coating talc on the surface of a hollow resin particle containing butane gas as an inclusion gas, and the pore former B is only a hollow resin particle containing butane gas as an inclusion gas.
  • the sphericity of the pore-forming particles is the diameter of the projected area A1 and the maximum value of the straight line that passes through the center of gravity and connects the two points on the outer periphery of the particle, obtained from the image of the particle taken with an electron microscope. It is a value calculated from the area A2 of the circle by the formula: A1 / A2, and is expressed as an average value for 20 particles.
  • the particle size distribution of silica powder, talc powder, alumina powder, aluminum hydroxide powder, kaolin powder, pore former (median diameter D50, ratio of particle diameter of 10 ⁇ m or less, ratio of 100 ⁇ m or more, D90 and D10, etc.) is Nikkiso Co., Ltd. Measurement was performed using a Microtrac particle size distribution analyzer (MT3000).
  • the resulting kneaded clay is extruded to produce a honeycomb-shaped formed body, and after drying, the periphery is removed and processed in a firing furnace for 209 hours (room temperature to 150 ° C is 10 ° C / h, 150 to 350 ° C) Is 2 ° C / hr, 350-1150 ° C is 20 ° C / h and 1150-1410 ° C is 15 ° C / hr. And 1300 to 100 ° C. were cooled at an average rate of 80 ° C./hr).
  • the outer periphery of the fired ceramic honeycomb body is coated with an outer shell material made of amorphous silica and colloidal silica and dried.
  • Examples 1 and 2 are examples in which a clay having the same composition is extruded using different molds to obtain ceramic honeycomb structures having different partition wall thicknesses and cell densities.
  • Example 2 was formed using a clay having the same composition as Example 1 and fired under the same firing conditions, the base material structure is considered to be equivalent to Example 1. Therefore, measurement of the substrate structure (measurement of the number of substrate branches, d10, d50, d90, and d90-d10) / d50 by X-ray CT) was omitted.
  • the pressure is converted into a pore diameter, and the cumulative pore volume (equivalent to the volume of mercury) accumulated from the larger pore diameter toward the smaller one is plotted against the pore diameter.
  • a graph showing the relationship was obtained.
  • Slope S n of a cumulative pore volume curves were determined from curves showing the cumulative pore volume against pore size.
  • the slope S n [the slope of the cumulative pore volume curve at the (n) th measurement point] is the pore diameter d n-1 ( ⁇ m) and the cumulative at the (n-1) th measurement point from the start of measurement.
  • the number of branch points per unit volume (1 mm 3 ) of the substrate is defined by using the junction point 2a of three or more branches and the junction point 2b of branches having different widths as the branch point of the substrate.
  • the number of material branches was determined. The results are shown in Table 8.
  • the base material between two adjacent branch points is defined as one partial base material, and partial base materials are obtained for all branch points in the analysis region.
  • Distance between branch points substrate diameter (value obtained by dividing the sum of the minor axis and major axis in the cross section perpendicular to the axis of the partial substrate by 2) and the substrate volume (substrate diameter x length) .
  • thermal expansion coefficient was determined by cutting a test piece with a cross-sectional shape of 4.5 mm ⁇ 4.5 mm ⁇ total length 50 mm so that the direction of the total length almost coincided with the flow path direction. , Rigaku's ThermoPlus, compression load method / differential expansion method), while applying a constant load of 20 g, when heated from room temperature to 800 ° C at a heating rate of 10 ° C / min. The increase was measured and determined as an average coefficient of thermal expansion between 40 and 800 ° C. The results are shown in Table 8.
  • A-axis compressive strength was measured in accordance with the standard M505-87 “Test method of ceramic monolith support for automobile exhaust gas purification catalyst” established by the Japan Automobile Engineers Association, and evaluated according to the criteria described below. . The results are shown in Table 9.
  • Initial pressure lossInitial pressure loss is the pressure difference between the inflow side and the outflow side (pressure) by feeding air at a flow rate of 10 Nm 3 / min into a cordierite ceramic honeycomb structure fixed to a pressure loss test stand. Loss). Pressure loss is When exceeding 1.0 kPa ( ⁇ ), (0.8) when 0.8 kPa and 1.0 kPa (0.6) when 0.6 kPa and 0.8 kPa When the pressure is 0.6 kPa or less ( ⁇ ) As an initial pressure loss was evaluated.
  • NOx purification rate The ceramic honeycomb structure carries platinum as an active metal to produce an SCR catalyst.
  • the exhaust gas containing 400 ppm of NOx is introduced into this SCR catalyst at 300 ° C, and the exhaust gas at the SCR catalyst outlet is exhausted.
  • the NOx purification rate was measured by measuring the amount of NOx in the gas by adding the same amount of urea (N conversion) as the amount of NOx in the exhaust gas.
  • NOx purification rate is If it is 80% or more ( ⁇ ), 70% or more and less than 80% ( ⁇ ), and Less than 70% ( ⁇ ) As the NOx purification rate was evaluated.
  • the cordierite ceramic honeycomb structure of Comparative Example 1 had a higher porosity and lower strength because the amount of pore former A used was larger than in Examples 1 and 2.
  • the cordierite ceramic honeycomb structure of Comparative Example 2 uses a hollow resin that is not coated with inorganic powder and has a relatively large median diameter as a pore former, as compared with Examples 1 and 2. Furthermore, since silica, talc, and alumina having a large particle size were used, the number of base material branches was small, and the NOx purification rate was remarkably low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)
  • Filtering Materials (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

 多孔質の隔壁で仕切られた多数の流路を有し、前記隔壁は、(a)気孔率が55%以上及び65%未満、(b)基材分岐数が35000[/mm3]以上[ただし、前記基材分岐数は、前記隔壁のX線CT測定で得られた、前記隔壁を構成する基材の三次元構造に対して細線化処理を行い、得られたネットワーク構造における単位体積あたりの分岐点(3以上の枝の結合点及び幅の異なる枝の結合点)の数である。]であることを特徴とするセラミックハニカム構造体。

Description

セラミックハニカム構造体
 本発明は、ディーゼルエンジンやガソリンエンジン等の排出ガス中に含まれる有害物質を除去するための触媒物質を担持するための担体、とりわけ窒素酸化物を除去するための触媒物質を担持するための担体に用いられるセラミックハニカム構造体に関する。
 ディーゼルエンジンやガソリンエンジン等の内燃機関から排出される排気ガスには、有害物質である窒素酸化物(NOx)や粒子状物質(PM)が含まれており、内燃機関の排気管には、粒子状物質を低減する装置や、窒素酸化物を低減する装置が設けられている。この窒素酸化物を低減する装置として、排気管の中に尿素を噴射し、排気管内で尿素からアンモニアを生成させ、生成させたアンモニアと排気ガス中の窒素酸化物とを反応させ、窒素酸化物から酸素を取り除き窒素に戻すことにより、排気ガスから窒素酸化物を低減する尿素SCR触媒がある。また、尿素を供給するインフラの整備が十分でなくても使用可能な、ディーゼル燃料(HC)を還元剤として使用するHC-SCR触媒技術が注目されている。
 SCR触媒の担体として用いられるセラミックハニカム構造体の一例を図1及び図2に示す。セラミックハニカム構造体10は、排気ガスが流通する多数の流路3を形成する多孔質隔壁2と外周壁1とからなり、前記多孔質隔壁2には触媒物質(図示せず)が担持されている。
 排気ガス中の窒素酸化物を効率よく低減させるためには、SCR触媒の担体上に担持された触媒物質に排気ガスが十分に接触するように、単位体積当たりにできるだけ多くの触媒物質を担持させる必要がある。そのためには、従来から、薄壁及び高セル密度(例えば、隔壁厚さ0.05 mm、隔壁のピッチ0.85 mm)のセラミックハニカム構造体を担体としたSCR触媒が用いられている。しかしながら、このような薄壁及び高セル密度のハニカム構造体を用いると、排気ガスが流通するハニカム構造体流通孔方向の開口面積が小さくなり、ハニカム構造体入口の圧力損失が大きくなるという問題が生じる。
 このような圧力損失が増大するといった問題を解決するため、特開2005-052750号は、隔壁厚さが0.1~0.35 mm、隔壁ピッチが1.0~2.0 mm、隔壁の平均細孔径が15μm以上、気孔率が50~80%であるセラミックハニカム構造体を開示している。特開2005-052750号は、触媒担体であるセラミックハニカム構造体を薄壁及び高セル密度とすることなく、ハニカム構造体の隔壁の気孔率と平均細孔径を最適することで、単位体積当たりに担持される触媒物質の量を増加させ、SCR触媒に代表されるNOx浄化装置用セラミックハニカム触媒の浄化効率の向上及び小型化が可能だと記載している。
 特表2009-542570号は、気孔率が64%以上80%未満であり、メジアン細孔径(d50)が10μm以上45μm以下であり、熱膨張係数CTEが、3.0×10-7/℃以上であり、かつ(i)10μm以上18μm未満のメジアン細孔径(d50)において、CTEが<6.0×10-7/℃未満、(ii)18μm以上22μm未満のメジアン細孔径(d50)において、CTEが<9.0×10-7/℃未満、(iii)2μm以上25μm以下のメジアン細孔径(d50)において、CTEが<10.0×10-7/℃未満、(iv)25μm超29μm未満のメジアン細孔径(d50)において、CTEが<13.0×10-7/℃未満、及び(v)29μm以上45μm以下のメジアン細孔径(d50)において、CTEが<17.0×10-7/℃未満であるコーディエライトセラミック製品を開示しており、このセラミック製品は、高い気孔率を有するにもかかわらず破壊強度係数及び耐熱衝撃性が大きく改善され、有効量の触媒及び/又はNOx吸着体がコーティングされている場合であっても、セラミックの細孔微細構造によって清浄時及びすす堆積時の低圧力降下が保証されるため、触媒付ウォールフローディーゼル粒子フィルタとしての使用に好適であると記載している。さらに、特表2009-542570号は、狭細孔径分布により、触媒のより一様な細孔壁表面上分布が得られるため、清浄時及びすす堆積時の低圧力降下が得られ、触媒とすす及び触媒と排気ガスの間の接触機会も増大し、より効率的な触媒使用が促進されると記載している。
 特表2011-516371号は、異方性微細構造を有する多結晶質セラミックからなる多孔質セラミック体であって、前記異方性微細構造は、配向された多結晶質多相網様体(reticular formations)からなり、異方性因子Af-pore longが、1.2<Af-pore-long<5である多孔質セラミック体を開示しており、狭い細孔径分布及び50%より大きい気孔率を有し、12~25μmの範囲にある任意の中央細孔径を有するセラミック物品を提供できると記載している。このセラミック物品は、高強度、低熱膨張係数(CTE)及び高気孔率を示し、自動車用基体、ディーゼル又はガソリン微粒子フィルタなどの用途及び部分又は完全NOx添加の機能が組み込まれた触媒フィルタなどの機能性フィルタに使用できると記載している。
 国際公開第2011/102487号は、 (a)気孔率が55~80%、(b)水銀圧入法により測定されたメジアン細孔径d50が5~27μm、(c)表面に開口した細孔の開口面積率が20%以上、(d)表面に開口した細孔を円相当径で表した場合の面積基準でのメジアン開口径d50が10~45μm、(e)表面に開口した細孔の円相当径が10μm以上40μm未満の細孔密度が350個/mm2以上、(f)細孔分布を水銀圧入法により測定した時の細孔径に対する累積細孔容積を示す曲線の傾きの最大値が1.6以上、及び(g)前記メジアン細孔径d50とメジアン開口径d50との比D50/d50が0.65以下である隔壁からなるセラミックハニカム構造体を開示しており、このセラミックハニカム構造体からなるセラミックハニカムフィルタは、使用開始初期のPMが堆積する前の状態であっても、排出される粒子数量に大きく影響するナノ粒子を有効に捕集しPM粒子数基準での捕集率を改善するとともに、PMが捕集され蓄積した際の圧力損失特性の悪化程度が低減されると記載している。
 国際公開第2011/027837号は、隔壁の気孔率が40~60%であり、前記隔壁表面に開口した細孔の開口面積率(隔壁表面の単位面積当たりに開口する細孔の総開口面積)が15%以上であり、前記隔壁表面に開口した細孔の開口径を、円相当径(細孔の開口面積と同等の面積を有する円の直径)で表した場合の、前記開口した細孔の面積基準でのメジアン開口径が10μm以上40μm未満であり、前記円相当径が10μm以上40μm未満の細孔密度が350個/mm2以上であり、前記円相当径が10μm以上40μm未満の細孔の円形度の平均値が1~2であることを特徴とするセラミックハニカム構造体を開示している。国際公開第2011/027837号に記載のセラミックハニカム構造体は、低い圧力損失を維持しつつ、再生後の捕集開始初期のPM捕集率が改善されるので、特に排ガス規制の強化に伴い問題視されるようになったナノサイズのPMを効率よく捕集することができると記載している。
 しかしながら、特開2005-052750号に記載のセラミックハニカム構造体や特表2009-542570号に記載のコーディエライトセラミック製品、特表2011-516371号に記載の多孔質セラミック体、国際公開第2011/102487号及び国際公開第2011/027837号に記載のセラミックハニカムフィルタに用いられるセラミックハニカム構造体を担体として用いたSCR触媒は、圧力損失特性び窒素酸化物の浄化効率はある程度向上しているものの、近年の浄化性能の高性能化・高効率化への要求に対して、十分に満足のいくような高い浄化効率は得られていない。さらに、高い浄化効率を得るために、隔壁に担持する触媒物質を増加させようとすると、排気ガスが流通する流路の開口面積が小さくなり、排気ガスが流通する抵抗が大きくる、すなわち圧力損失が大きくなるという問題が発生する。また、国際公開第2011/102487号に記載のセラミックハニカムフィルタに用いられるセラミックハニカム構造体を担体として用いたSCR触媒は、強度が不十分となる場合があった。
 従って、本発明の目的は、窒素酸化物の浄化効率に優れたSCR触媒の担体として用いるために、圧力損失の増大を伴わずに、単位体積当たりに担持される触媒物質の量を増加させ、排気ガスと触媒物質との接触効率を高めることができ、さらには高強度を有するセラミックハニカム構造体を提供することにある。
 上記目的に鑑み鋭意研究の結果、本発明者は、セラミックハニカム構造体を構成する基材の立体構造に着目し、基材をX線CTで測定し得られた三次元構造を特定の範囲に規定することにより上記課題を達成することができることを見出し、本発明に想到した。
 すなわち、本発明のセラミックハニカム構造体は、多孔質の隔壁で仕切られた多数の流路を有し、前記隔壁は、
(a)気孔率が55%以上及び65%未満、及び
(b)基材分岐数が35000[/mm3]以上[ただし、前記基材分岐数は、前記隔壁のX線CT測定で得られた、前記隔壁を構成する基材の三次元構造に対して細線化処理を行い、得られたネットワーク構造における単位体積あたりの分岐点(3以上の枝の結合点及び幅の異なる枝の結合点)の数である。]であることを特徴とする。
 前記隔壁のX線CT測定で得られた前記基材の三次元構造において、隣接する2つの分岐点間の基材を1つの部分基材としたとき、
前記部分基材の基材径に対する基材容積の分布から求めた累積基材容積が全基材容積の10%となる基材径d10、全基材容積の50%となる基材径d50及び全基材容積の90%となる基材径d90は、式:
(d90-d10)/d50≦1.25
[ただし、前記基材径は、前記部分基材の軸に直交する断面における短径と長径との和を2で除した値であり、前記基材容積は、前記部分基材の基材径×長さ(隣接する2つの分岐点間の距離)であり、前記累積基材容積は、最小の基材径から特定の基材径までの基材容積の積算値である。]を満たすのが好ましい。
 前記d50は10~20μmであるのが好ましい。前記d10は8μm以上であるのが好ましい。
 前記セラミックはコーディエライト質セラミックであるのが好ましい。
 本発明のセラミックハニカム構造体を担体として用いたSCR触媒は、触媒物質が、隔壁表面だけでなく隔壁内の基材表面に多く担持されるため、排気ガスが流通する際、隔壁表面に担持された触媒物質だけでなく、隔壁表面に開口した細孔内に担持された触媒物質でも窒素酸化物が反応し、従来のハニカム構造体を用いた場合よりも窒素酸化物の低減効果が大きい。
 さらにセラミックハニカム構造体は、基材の分岐数が多いため高い強度を有しており、ディーゼルエンジンやガソリンエンジン等の排出ガス中に含まれる有害物質を除去するための触媒物質を担持するための担体、ガソリンエンジン中の窒素酸化物を除去するための触媒物質を担持するための担体に好適である。
セラミックハニカム構造体の一例を模式的に示す正面図である。 セラミックハニカム構造体の一例を模式的に示す軸方向に平行な断面図である。 基材の三次元構造を示す模式図である。 部分基材の基材径に対する基材容積の分布を示すグラフである。 部分基材の基材径に対する累積基材容積の関係を示すグラフである。 水銀圧入法によって測定した実施例2のセラミックハニカム構造体の隔壁の細孔径と累積細孔容積との関係を示すグラフである。 図6の累積細孔容積曲線から求めた傾きSnを細孔径に対してプロットしたグラフである。 セラミックハニカムフィルタの一例を模式的に示す軸方向に平行な断面図である。 造孔材の圧縮回復性試験の測定結果の一例を示すグラフである。 実施例1、比較例1及び2の部分基材の基材径に対する基材容積の分布を示すグラフである。 実施例1、比較例1及び2の部分基材の基材径に対する累積基材容積の関係を示すグラフである。
[1]セラミックハニカム構造体
 本発明のセラミックハニカム構造体は、多孔質の隔壁で仕切られた多数の流路を有し、前記隔壁は、(a)気孔率が55%以上及び65%未満、(b)基材分岐数が35000[/mm3]以上である。ただし、前記基材分岐数は、前記隔壁のX線CT測定で得られた、前記隔壁を構成する基材の三次元構造に対して細線化処理を行い、得られたネットワーク構造における単位体積あたりの分岐点(3以上の枝の結合点及び幅の異なる枝の結合点)の数である。
 セラミックハニカム構造体がこのような構成を有することにより、圧力損失の増大を伴わずに触媒を効果的に担持させることができ、窒素酸化物の浄化効率に優れたSCR触媒を得ることができる。また、このような構成により、高強度のハニカム構造体が得られる。
(a)隔壁の気孔率
 隔壁の気孔率は55%以上及び65%未満である。前記気孔率が55%未満の場合、圧力損失が大きくなり、一方、前記気孔率が65%以上になると、強度が低下する。前記気孔率の下限は、好ましくは60%以上、さらに好ましくは61%である。また、前記気孔率の上限は好ましくは64%である。隔壁の気孔率は後述の水銀圧入法の測定で得られた全細孔容積と隔壁を構成するセラミックの真比重とから計算によって求めることができる。例えば、セラミックハニカム構造体の隔壁の材質がコーディエライトである場合は、コーディエライトの真比重2.52 g/cm3を用いて計算する。
(b)隔壁の基材構造
 隔壁の基材分岐数は35000[/mm3]以上である。隔壁の基材分岐数は、隔壁を構成する基材の三次元構造を表すパラメータの一つであり、図3に示すように、三次元構造の骨格により構成されるネットワーク構造から求めた単位体積あたりの分岐点の数である。ここで、分岐点とは、前記ネットワーク構造(図3において、三次元構造の中心部分に描かれた線であり、枝1と、結合点2(2a,2b)とからなる。)において3以上の枝の結合点2a及び幅の異なる枝の結合点2bである。隔壁の基材分岐数が35000[/mm3]以上である場合、触媒物質を担持させようとした際に、分岐した基材表面に効率良く触媒が担持されるため、排気ガスと触媒物質との接触効率を高めることができ、かつ高強度が得られる。前記基材分岐数は好ましくは40000[/mm3]以上であり、さらに好ましくは45000[/mm3]である。前記分岐数は、60000[/mm3]以下が好ましい。60000[/mm3]を超えると、細孔が小さくなり、低い圧力損失を維持することが難しくなることもあるからである。同様の理由から、55000[/mm3]以下がさらに好ましい。
 前記基材の三次元構造は、隔壁のX線CT測定により得ることができる。隔壁のX線CT測定で得られた基材の連続する断層画像(スライス像)をコンピュータ上で組み立てることによって、図3に示すような基材の三次元構造が得られる。この隔壁を構成する基材のネットワーク構造とは、得られた三次元構造に対してソフト上で細線化処理を行うことで得られる骨格構造であり、本願ではこのネットワーク構造を基に基材分岐数を含めて以下のようにいくつかのパラメータを定義する。
 本願において、隣接する2つの分岐点間の基材を1つの部分基材と定義する。このとき、隣接する2つの分岐点間の距離を前記部分基材の長さ3、前記部分基材の軸に直交する断面における短径4と長径5との和を2で除した値、つまり短径4と長径5との平均値を基材径、基材径×長さを前記部分基材の基材容積とする。
 さらに、図4に示すように、部分基材の基材径に対して基材容積をプロットすることにより、部分基材の基材径に対する基材容積の分布が求まる。この分布において、最小の基材径から特定の基材径までの基材容積の積算値を、前記特定の基材径における累積基材容積という。部分基材の基材径に対して累積基材容積をプロットすると、図5に示すように、部分基材の基材径に対する累積基材容積の関係が求まる。
 本発明のセラミックハニカム構造体の隔壁は、累積基材容積が全基材容積の10%となる基材径d10、同じく全基材容積の50%となる基材径d50、及び同じく全基材容積の90%となる基材径d90が、式:
(d90-d10)/d50≦1.25
を満たすのが好ましい。ここで累積基材容積が全基材容積の10%となる基材径d10とは、部分基材の基材径に対する累積基材容積の関係を示すグラフ(図5を参照)において、累積基材容積が全基材容積の10%となる値における基材径であり、グラフのプロット点を補間及びスムージング処理して求めることができる。d50及びd90についても同様である。(d90-d10)/d50は、基材径に対して累積基材容積の関係をプロットしたときの曲線の傾きを表すパラメータであり、この値が小さいほど傾きが大きく、基材容積の分布がシャープであることを意味する。(d90-d10)/d50が1.25超である場合、基材の一部に応力集中する箇所が増え、強度が低くなることもあるため好ましくない。(d90-d10)/d50の値は、1.2以下であるのがより好ましく、1.15以下であるのが最も好ましい。
 本発明のセラミックハニカム構造体の隔壁は、累積基材容積が全基材容積の50%となる基材径d50が10~20μmであるのが好ましい。d50が10μm未満である場合、強度が低下することがあり、20μm超である場合、低い圧力損失を維持することが難しくなる場合がある。d50はさらに好ましくは12μm以上である。またd50はさらに好ましくは18μm以下であり、最も好ましくは16μm以下である。
 累積基材容積が全基材容積の10%となる基材径d10は8μm以上であるのが好ましい。d10が8μm未満である場合、小径の基材に応力集中が起きやすく、強度が低下することもある。d10はさらに好ましくは9μm以上である。
 累積基材容積が全基材容積の90%となる基材径d90は34μm以下であるのが好ましい。d90が34μm超である場合、細孔が小さくなりやすく、低い圧力損失を維持することが難しくなる場合ある。d90はさらに好ましくは29μm以下である。
(c)累積細孔容積曲線の傾き
 水銀圧入法の測定で得られた細孔径(対数値)に対する累積細孔容積の関係において、累積細孔容積曲線の傾きSnの最大値は2.5以上であるのが好ましい。ここで累積細孔容積曲線とは、細孔径(μm)の対数値に対して累積細孔容積(cm3/g)をプロットしたものであり、累積細孔容積曲線の傾きSnは測定開始から、(n-1)番目の測定点における細孔径dn-1(μm)及び累積細孔容積Vn-1(cm3/g)と、(n)番目の測定点における細孔径dn(μm)及び累積細孔容積Vn(cm3/g)とから、式:Sn=-(Vn-Vn-1)/{log(dn)-log(dn-1)}により求められる値(n番目の測定点における累積細孔容積曲線の傾き)である。前記傾きSnの最大値が2.5未満である場合、大細孔と小細孔とが多く混在し、小細孔には触媒物質が担持され難くなるので、隔壁表面に担持される触媒が多くなり、排気ガスが流通する流路の開口面積が小さくなり、排気ガスが流通する抵抗が大きくなって圧力損失が大きくなることもある。前記傾きSnの最大値は、好ましくは3以上、さらに好ましくは3.5以上、より好ましくは4以上、最も好ましくは4.5以上である。
 隔壁の累積細孔容積は水銀圧入法で測定する。水銀圧入法の測定は、例えば、Micromeritics社製のオートポアIII 9410 を使用して行う。測定は、セラミックハニカム構造体から切り出した試験片を測定セル内に収納し、セル内を減圧した後、水銀を導入して加圧したときに、試験片内に存在する細孔中に押し込まれた水銀の体積を求めることによって行う。この時加圧力が大きくなればなるほど、より微細な細孔にまで水銀が浸入するので、加圧力と細孔中に押し込まれた水銀の体積との関係から、細孔径と累積細孔容積(最大の細孔径から特定の細孔径までの細孔容積を累積した値)の関係を求めることができる。ここで、水銀の浸入は細孔径の大きいものから小さいものへと順次行われる。
 前記傾きSnの測定例を図6及び図7に示す。図6は水銀圧入法で測定された細孔径と累積細孔容積との関係の一例であり、菱形で示した点は各測定点を示し、その点の横に記載された数値は測定順を示す。図7は、図6に示す累積細孔容積曲線のグラフから、各測定点における傾きSnを求めてプロットした図である。例えば、図7中の点aは、図6に示す累積細孔容積曲線での測定開始から12番目と13番目の測定点における細孔径d12とd13及び累積細孔容積V12とV13から求めた傾きS13=-[(V13-V12)/{log(d13)-log(d12)}]であり、点bは13番目と14番目の測定点における細孔径d13とd14及び累積細孔容積V13とV14から求めた傾きS14=-[(V14-V13)/{log(d14)-log(d13)}]である。
(d)熱膨張係数
 セラミックハニカム構造体は、40~800℃間の流路方向での熱膨張係数が13×10-7/℃以下であるのが好ましい。このような熱膨張係数を有するセラミックハニカム構造体は、高い耐熱衝撃性を有するので、例えば、ディーゼル機関の排出ガス中に含まれる微粒子を除去するためのセラミックハニカムフィルタとして使用した場合であっても、十分に実用に耐えることができる。前記熱膨張係数は、好ましくは3×10-7~12×10-7であり、さらに好ましくは、5×10-7~11×10-7である。
(e)隔壁構造
 セラミックハニカム構造体は、平均隔壁厚さが5~15 mil(0.127~0.381 mm)、平均セル密度が150~400 cpsi(23.3~62.0セル/cm2)であるのが好ましい。このような隔壁構造を有することで、触媒物質の担持量が増加し、排ガスと触媒物質との接触効率を改善することができるとともに、圧力損失特性が改良される。平均隔壁厚さが5 mil未満の場合、隔壁の強度が低下し、一方15 milを超える場合、低い圧力損失を維持することが難しくなる。平均セル密度が150c psi未満の場合、隔壁の強度が低下し、一方、300 cpsiを超える場合、低い圧力損失を維持することが難しくなる。好ましくは6~12 mil(0.152~0.305 mm)、200~400 cpsi(31.0~62.0セル/cm2)である。セルの流路方向の断面形状は、四角形、六角形等の多角形、円、楕円等のいずれでもよく、流入側端面と流出側端面とで大きさが異なる非対称形状であっても良い。
 セラミックハニカム構造体は、本発明の目的であるSCR触媒の担体として用いる以外にも、酸化触媒等の排気ガス浄化用触媒の担体としても用いることができる。また、図8示すように、公知の方法で所望の流路3の端部3a,3bを交互に目封止することにより、セラミックハニカムフィルタ20とすることもでき、セラミックハニカムフィルタに排気ガス浄化用の触媒を担持することもできる。本発明のセラミックハニカム構造体はディーゼルエンジンやガソリンエンジン等の排出ガス中に含まれる有害物質を除去するために用いられる。
(f)隔壁の材質
 隔壁の材質としては、セラミックハニカム構造体の用途がディーゼルエンジンやガソリンエンジン等の内燃機関から排出される排気ガスを浄化するための担体やフィルタであることから、耐熱性に優れる材質であるコーディエライト、チタン酸アルミニウム、炭化ケイ素、窒化ケイ素などが好ましい。中でも、耐熱衝撃性に優れる低熱膨張のコーディエライトを主結晶とするものであるのが好ましい。主結晶相がコーディエライトである場合、スピネル、ムライト、サフィリン等の他の結晶相を含有しても良く、さらにガラス成分を含有しても良い。
[2]セラミックハニカム構造体の製造方法
 本発明のセラミックハニカム構造体を製造する方法は、セラミック原料と表面に無機粉体を有する中空の樹脂粒子からなる造孔材とを含む坏土を所定の成形体に押出成形し、前記成型体を乾燥及び焼成する工程を有し、
前記坏土が、前記セラミック原料100質量%に対して4質量%以上8質量%未満の前記造孔材を含有し、
前記造孔材のメジアン径D50が25~35μm、粒子径と累積体積(特定の粒径以下の粒子体積を累積した値)との関係を示す曲線において、全体積の10%に相当する累積体積での粒子径D10が14~24μm、全体積の90%に相当する累積体積での粒子径D90が45~60μm、及び粒度分布偏差SD[ただし、SD=log(D80)-log(D20)、D20は、粒子径と累積体積との関係を示す曲線において、全体積の20%に相当する累積体積での粒子径であり、D80は同じく全体積の80%に相当する累積体積での粒子径でありD20<D80である。]が0.4以下であり、前記造孔材の最大圧縮回復量Lmaxが3.0 mm以上であり、かつ圧縮応力2~6 MPaの範囲における圧縮回復量Lが前記最大圧縮回復量Lmaxの80%以上である。なお圧縮回復量Lは、内径8 mm及び深さ100 mmの金属製筒内に入れた0.3 gの造孔材に外径8 mmのピストンで所定の圧縮応力をかけ、その状態から前記圧縮応力を除荷した時に前記ピストンが戻る量(mm)であり、最大圧縮回復量Lmaxは圧縮回復量Lの最大値である。
 前記セラミック原料及び前記無機粉体(前記造孔材の表面に含まれるもの)がコーディエライト化原料である場合、前記セラミック原料及び前記無機粉体は、それらの合計100質量%中、15~25質量%のシリカ、27~43質量%のタルク及び15~30質量%のアルミナを含有する。前記シリカは、メジアン径D50が15~30μm、10μm以下の粒子径を有する粒子の割合が3質量%以下、100μm以上の粒子径を有する粒子の割合が3質量%以下及び粒度分布偏差SDが0.4以下であるのが好ましく、前記タルクは、メジアン径D50が1~10μm及び粒度分布偏差SDが0.6以下であるのが好ましく、前記アルミナは、メジアン径D50が1~8μm及び粒子径と累積体積との関係を示す曲線において、全体積の90%に相当する累積体積での粒子径D90が5~15μmであるのが好ましい。
 このような方法により、(a)気孔率が55%以上及び65%未満、及び(b)基材分岐数が35000[/mm3]以上[ただし、前記基材分岐数は、前記隔壁のX線CT測定で得られた、前記隔壁を構成する基材の三次元構造に対して細線化処理を行い、得られたネットワーク構造における単位体積あたりの分岐点(3以上の枝の結合点及び幅の異なる枝の結合点)の数である。]である本発明のセラミックハニカム構造体を得ることができる。
 セラミックスに形成される細孔は、焼成過程でセラミック原料の溶融によって生じる細孔と、造孔材が焼失されて生じる細孔がある。従って、セラミック原料及び造孔材のメジアン径及び粒度分布を調節することにより、セラミックスが焼成された際に形成される細孔を制御し、その結果基材の三次元構造を制御することができる。
 前記造孔材として中空の樹脂粒子の表面に無機粉体を有し、最大圧縮回復量Lmaxが3.0 mm以上であり、かつ圧縮応力2~6 MPaの範囲における圧縮回復量Lが前記最大圧縮回復量Lmaxの80%以上であるものを使用することにより、セラミック原料及び造孔材を含む成形体を焼成した時に、樹脂粒子が燃焼して空隙となるとともに、セラミック原料及び樹脂粒子表面の無機粉体が焼成して所望の細孔分布を有する細孔が形成される。このとき、前記樹脂粒子表面の無機粉体がその周囲のセラミック原料と共に焼成して、隔壁表面から内部にかけての細孔の連通性が改良されるとともに、基材の分岐数を多くすることができる。また、中実樹脂粒子に比べて燃焼による発熱量が少ない中空樹脂粒子を使用することにより成形体を焼成する過程での焼成割れが発生し難くなる。なお、圧縮回復量Lは、内径8 mm及び深さ100 mmの金属製筒内に入れた0.3 gの造孔材に外径8 mmのピストンで所定の圧縮応力をかけ、その状態から前記圧縮応力を除荷した時に前記ピストンが戻る量(mm)であり、最大圧縮回復量Lmaxは圧縮回復量Lの最大値である。
 このように、セラミック原料が焼成して生じる細孔と樹脂粒子表面の無機粉体、及び造孔材から形成される細孔とを連通性良く形成して、所定の基材分岐数とすることにより、分岐した基材表面に効率良く触媒が担持されるため、排気ガスと触媒物質との接触効率を高めることができ、触媒物質の担持量が増加し、かつ圧力損失特性及び強度特性が改良されたセラミックハニカム構造体を得ることができる。
(1)造孔材
(a)構造
 造孔材は、中空の樹脂粒子からなり、表面に無機粉体を含有するのが好ましい。前記無機粉体は、前記中空の樹脂粒子の表面に付着させるのが好ましい。
 前記造孔材の添加量は、セラミック原料100質量%に対して4質量%以上8質量%未満であるのが好ましい。前記造孔材の添加量がこの範囲を外れると、前記気孔率及び基材構造(基材分岐数)を有する隔壁が得られ難くなる。前記造孔材の添加量が4質量%未満である場合、気孔率55%以上の隔壁が得られ難くなり、触媒物質の担持量が減少するとともに、圧力損失特性が悪化する。造孔材の添加量が8質量%以上の場合、隔壁の気孔率が65%以上となる場合があり、強度が不十分となる場合が生じる。前記造孔材の添加量は、好ましくは5質量%以上、さらに好ましくは6質量%以上である。
 前記造孔材粒子(無機粉体を含む)のメジアン径D50は25~35μmであるのが好ましい。メジアン径D50が25μm未満の場合、圧力損失特性が悪化する。前記メジアン径D50が35μmを超えると、形成される細孔が粗大になり、基材径が小さくなるので、強度が低下する。前記造孔材粒子のメジアン径D50は、好ましくは27~33μmであり、さらに好ましくは28~32μmである。
 前記造孔材粒子は、その粒子径と累積体積(特定の粒子径以下の粒子体積を累積した値)との関係を示す曲線において、全体積の10%に相当する累積体積での粒子径D10が14~24μm、全体積の90%に相当する累積体積での粒子径D90が45~60μm、及び粒度分布偏差SDが0.4以下であるのが好ましい。造孔材の粒子径は、例えば、日機装(株)製マイクロトラック粒度分布測定装置(MT3000)を用いて測定することができる。粒子径D10は15~23μmであるのが好ましく、D90は47~58μmであるのが好ましく、粒度分布偏差SDは0.35以下であるのが好ましく、0.3以下であるのがさらに好ましい。
 ここで、粒度分布偏差SDとは、SD=log(D80)-log(D20)で表される値であり、D20は、粒子径と累積体積との関係を示す曲線において、全体積の20%に相当する累積体積での粒子径であり、D80は同じく全体積の80%に相当する累積体積での粒子径である。D20<D80である。
 前記造孔材を構成する中空の樹脂粒子は、後述するように、樹脂粒子の内部に炭化水素等のガスを内包させた中空の樹脂粒子であるため、造孔材に圧力や剪断がかかった場合には変形し、場合によっては外殻を構成する樹脂が破壊されその形状を保てなくなる。坏土の押出成形は、例えば5 MPa以上の圧力で行うため、押出成型時に中空の樹脂粒子からなる造孔材は圧縮されて変形しその一部は破壊されると考えられる。加圧によって変形した造孔材は、押出成形後に圧力が解放され常圧に戻ったときにその形状も元に戻る(スプリングバック現象)ため造孔材としての機能を保つことができるが、破壊されてしまった造孔材は造孔材としての機能を果たさなくなる。従って、造孔材は、押出成型時の圧力(又はそれ以上の圧力)をかけたときに変形はするが破壊されず、圧力が解放されたときに元の形状に戻るような性質(圧縮回復性)を有する必要がある。
 造孔材の圧縮回復性は、以下に述べる圧縮回復性試験によって圧縮回復量Lを測定することによって評価する。圧縮回復性試験は、内径8 mm及び深さ100 mmの金属製筒内に0.3 gの造孔材を入れ、外径8 mmのピストン(質量96.45g)で所定の圧縮応力をかけ、その状態から前記圧縮応力を除荷した時に前記ピストンが戻る量(mm)を測定する試験であり、前記のピストンが戻る量(mm)を圧縮回復量Lとする。圧縮応力を変化させて圧縮回復量Lを測定したとき、図9に示すように上に凸のグラフが得られ、測定した範囲における圧縮回復量Lの最大値が最大圧縮回復量Lmaxである。圧縮回復性の評価は、この(a)最大圧縮回復量Lmax、及び(b)圧縮応力が2~6 MPaの範囲における圧縮回復量Lと最大圧縮回復量Lmaxとの比(L/Lmax)で評価する。
 造孔材は、前記最大圧縮回復量Lmaxが3.0 mm以上であり、かつ圧縮応力2~6 MPaの範囲における圧縮回復量Lが最大圧縮回復量Lmaxの80%以上(L/Lmax≧80%)、すなわち圧縮応力2~6 MPaの範囲における圧縮回復量Lの最小値が最大圧縮回復量Lmaxの80%以上であるのが好ましい。このような圧縮回復性を有する造孔材は、押出成型時の圧縮力によって破壊される粒子が少なく、造孔材としての機能を十分に保つことができる。
 前記造孔材粒子の真球度は、0.5以上であるのが好ましい。前記造孔材粒子の真球度が0.5未満である場合、隔壁の細孔が、破壊の起点となり易い鋭角部を有する細孔が多くなりハニカム構造体の強度が低下する場合があるので好ましくない。前記造孔材粒子の真球度は、好ましくは0.7以上であり、さらに好ましくは0.8以上である。なお、造孔材粒子の真球度は、造孔材粒子の投影面積を、造孔材粒子の重心を通り粒子外周の2点を結ぶ直線の最大値を直径とする円の面積で割った値であり、電子顕微鏡写真から画像解析装置で求めることができる。
(b)樹脂粒子
 中空の樹脂粒子としては発泡させた樹脂粒子が好ましく、特にバルーン状に発泡させた樹脂粒子が好ましい。造孔材粒子として用いる樹脂としては、(ポリ)メタクリル酸メチル、ポリメタクリル酸ブチル、ポリアクリル酸エステル、ポリスチレン、ポリアクリルエステル、ポリエチレン、ポリエチレンテレフタレート、メチルメタクリレート・アクリロニトリル共重合体等が好適である。中空の樹脂粒子は、外殻厚さが0.1~3μmであるのが好ましく、炭化水素等のガスを内包させているのが好ましい。
(c)無機粉体
 前記無機粉体は、カオリン、シリカ、タルク、コーディエライト、アルミナ、水酸化アルミ、炭酸カルシウム、酸化チタンからなる群から選ばれた少なくとも1種類であるのが好ましい。中でも、無機粉体としてはカオリン、シリカ、タルク、コーディエライト、アルミナ及び水酸化アルミが好ましく、タルクが最も好ましい。
 セラミック原料及び前記無機粉体が焼成された際に連通性良く細孔が形成されるために、前記無機粉体のメジアン径D50iは0.5~15μmであるのが好ましく、0.6~12μmであるのがより好ましく、0.6~10μmであるのが最も好ましい。
 前記無機粉体のメジアン径D50iと前記造孔材のメジアン径D50との比D50i/D50は0.5以下であるのが好ましい。D50i/D50がこのような範囲であることにより、前記無機粉体を前記樹脂粒子の表面に良好に付着できる。D50i/D50が0.5を超えるような無機粉体を使用すると、前記無機粉体が前記樹脂粒子の表面に付着しにくくなるので、セラミック原料が焼成して生じる細孔と樹脂粒子から形成される細孔とを連通させる前記無機粉体の効果が減少し、所望の基材分岐数を得ることが難しくなる。D50i/D50は、好ましくは0.01~0.45である。
(2)セラミック原料
 セラミック原料は、前記造孔材表面に含有する無機粉体を含めて、コーディエライト化原料となるように調製するのが好ましい。コーディエライト化原料は、主結晶がコーディエライト(主成分の化学組成が42~56質量%のSiO2、30~45質量%のAl2O3及び12~16質量%のMgO)となるように、シリカ源成分、アルミナ源成分及びマグネシア源成分を有する各原料粉末を配合したものである。前記セラミック原料及び前記無機粉体は、前記セラミック原料及び前記無機粉体の合計(コーディエライト化原料)100質量%に対して15~25質量%のシリカ、27~43質量%のタルク及び15~30質量%のアルミナを含有するコーディエライト化原料であるのが好ましい。コーディエライトを主結晶とするセラミックスに形成される細孔は、焼成過程においてセラミック原料の溶融によって生じる細孔と、造孔材が焼失されて生じる細孔からなる。従って、前述の造孔材とともに、カオリン、シリカ、タルク、アルミナ等のセラミック原料の粒径及び粒度分布を調節することにより、コーディエライト質セラミックスが焼成された際に生じる細孔及び基材構造を制御することができる。中でもシリカ周囲の原料との拡散反応により細孔を形成することができるため、造孔材と共に、基材構造(細孔構造)に対する寄与が大きい。
(a)シリカ
 シリカは、他の原料に比べて高温まで安定に存在し、1300℃以上で溶融拡散し、細孔を形成することが知られている。このため、コーディエライト化原料が15~25質量%のシリカを含有すると、所望の量の細孔が得られる。25質量%を超えてシリカを含有させると、主結晶をコーディエライトに維持するために、他のシリカ源成分であるカオリン及び/又はタルクを低減させなければならず、その結果、カオリンによって得られる低熱膨張化の効果(押出し成形時にカオリンが配向されることで得られる効果)が低減し耐熱衝撃性が低下する。一方、15質量%未満の場合、所望の気孔率が得られないこともあり、圧力損失特性が悪化する。なお、無機粉体としてシリカを含有させた造孔材を用する場合、前記造孔材中のシリカ配合量を勘案して、コーディエライト化原料に含まれるシリカの配合量を適宜変更する。
 シリカは、メジアン径D50が15~30μm、10μm以下の粒子径を有する粒子の割合が3質量%以下、100μm以上の粒子径を有する粒子の割合が3質量%以下、及び粒度分布偏差SDが0.4以下のものを使用するのが好ましい。このような粒径及び粒径分布を有するシリカ粒子を前記造孔材と組合せて使用することにより、基材分岐数を多くすることができる。
 シリカのメジアン径D50が15μm未満の場合、基材径が大きくなって、圧力損失を上昇させる原因となることもある。一方、30μmを超える場合、基材径が小さくなって、強度が低下することもある。シリカのメジアン径D50は、好ましくは17~28μmであり、さらに好ましくは19~26μmである。
 10μm以下の粒子径を有するシリカ粒子の割合が3質量%を超える場合、基材径が大きくなって圧力損失を上昇させる原因となることもある粒子径10μm以下のシリカ粒子の割合は、好ましくは2質量%以下である。粒子径100μm以上の粒子径を有する粒子の割合が3質量%を超える場合、基材径が小さくなって、強度が低下することもある。粒子径100μm以上のシリカ粒子の割合は、好ましくは2質量%以下である。シリカの粒度分布偏差SDは、好ましくは0.35以下であり、さらに好ましくは0.3以下である。
 前記シリカ粒子の真球度は、0.5以上であるのが好ましい。シリカ粒子の真球度が、0.5未満である場合、隔壁の細孔が、破壊の起点となり易い鋭角部を有する細孔が多くなりハニカム構造体の強度が低下する場合があるので好ましくない。シリカ粒子の真球度は、好ましくは0.6以上であり、さらに好ましくは0.7以上である。シリカ粒子の真球度は、シリカ粒子の投影面積を、シリカ粒子の重心を通り粒子外周の2点を結ぶ直線の最大値を直径とする円の面積で割った値であり、電子顕微鏡写真から画像解析装置で求めることができる。
 前記シリカ粒子は結晶質のもの、又は非晶質のものを用いることができるが、粒度分布を調整する観点から非晶質のものが好ましい。非晶質シリカは高純度の天然珪石を高温溶融して製造したインゴットを粉砕して得ることができる。シリカ粒子は不純物としてNa2O、K2O、CaOを含有しても良いが、熱膨張係数が大きくなるのを防止するため、前記不純物の含有量は合計で0.1%以下であるのが好ましい。
 真球度の高いシリカ粒子は、高純度の天然珪石を微粉砕し高温火炎の中に溶射することにより得られる。高温火炎の中への溶射によりシリカ粒子の溶融と球状化とを同時に行い、真球度の高い非晶質シリカを得ることができる。さらに、この球状シリカ粒子の粒度を分級等の方法により調整するのが好ましい。
(b) カオリン
 コーディエライト化原料に用いるシリカ原料としては、前記シリカ粉末に加えて、カオリン粉末を配合することができる。カオリン粉末は1~15質量%含有するのが好ましい。カオリン粉末をが15質量%を超えて含有すると、主結晶をコーディエライトに維持するために、他のシリカ源成分であるシリカ及び/又はタルクを低減させなければならず、その結果、所望の基材構造が得られないこともある。1質量%未満の場合は、セラミックハニカム構造体の熱膨張係数が大きくなる。カオリン粉末の含有量は、さらに好ましくは4~8質量%である。
 カオリン粒子は、そのc軸が押出し成形されるハニカム構造体の長手方向と直交するように配向すれば、コーディエライト結晶のc軸がハニカム構造体の長手方向と平行となり、ハニカム構造体の熱膨張係数を小さくすることができる。カオリン粒子の配向には、その形状が大きく影響する。カオリン粒子の形状を定量的に示す指数である、カオリン粒子のへき開指数は0.80以上であるのが好ましく、0.85以上であるのがさらに好ましい。カオリン粒子のへき開指数は、プレス成形したカオリン粒子をX線回折測定し、得られた(200)面、(020)面及び(002)面の各ピーク強度I(200)、I(020)及びI(002)から、次式:
 へき開指数 = I(002)/[I(200)+I(020)+I(002)
により求めることができる。へき開係数が大きいほどカオリン粒子の配向が良好であると言える。
(c)タルク
 コーディエライト化原料は、メジアン径D50が1~10μm、及び粒度分布偏差SDが0.6以下のタルクを、コーディエライト化原料100質量%に対して27~43質量%含有するのが好ましい。タルクはMgOとSiO2から成る化合物であり、焼成過程において周囲に存在するAl2O3成分と反応して溶融し細孔を形成する。従って、Al2O3源原料と共に、粒子径の小さいタルクを配合することで、基材分岐数を増やすことができるため、隔壁内の細孔の連通性を向上させることができる。タルクのメジアン径D50が1μm未満の場合、細孔の連通性が低くなり圧力損失特性が低下する。一方、タルクのメジアン径D50が10μmを超える場合、粗大細孔が多くなる。タルクのメジアン径D50は、好ましくは2~9μmであり、さらに好ましくは3~8μmである。タルク粒子の粒度分布偏差SDは、好ましくは0.55以下であり、さらに好ましくは0.5以下である。
 タルクは結晶相の主成分がコーディエライトであるセラミックハニカム構造体の熱膨張係数を低減する観点から、板状粒子であるのが好ましい。タルク粒子の平板度を示す形態係数は、0.5以上であるのが好ましく、0.6以上であるのがより好ましく、0.7以上であるのが最も好ましい。前記形態係数は、米国特許第5,141,686号に記載されているように、板状のタルク粒子をX線回折測定し、得られた(004)面の回折強度Ix、及び(020)面の回折強度Iyから次式:
 形態係数 = Ix/(Ix+2Iy)
により求めることができる。形態係数が大きいほどタルク粒子の平板度が高い。
 タルクは、不純物としてFe2O3、CaO、Na2O、K2O等を含有しても良い。Fe2O3の含有率は、所望の粒度分布を得るために、マグネシア源原料中、0.5~2.5質量%であるのが好ましく、Na2O、K2O及びCaOの含有率は、熱膨張係数を低くするという観点から、合計で0.5質量%以下であるのが好ましい。
 コーディエライト化原料に配合するタルクの添加量は、主結晶がコーディエライトとなるように27~43質量%であるのが好ましい。無機粉体としてタルクを用いた中空樹脂粒子からなる造孔材を使用する場合、前記造孔材に含まれるタルク分を勘案して、コーディエライト化原料に添加するタルクの配合量を適宜調節する。
(d)アルミナ
 コーディエライト化原料は、コーディエライト化原料100質量%に対して15~30質量%のアルミナを含有するのが好ましい。前記アルミナのメジアン径D50は1~8μmであるのが好ましく、粒子径と累積体積との関係を示す曲線において、全体積の90%に相当する累積体積での粒子径D90が5~15μmであるのが好ましい。アルミナのメジアン径D50は、好ましくは2~7μmであり、さらに好ましくは3~6μmである。アルミナ原料としては、アルミナに加えて水酸化アルミニウムを使用するのが好ましい。アルミナ及び水酸化アルミニウム中の不純物であるNa2O、K2O及びCaOの含有量の合計は、好ましくは0.5質量%以下、より好ましくは0.3質量%以下、最も好ましくは0.1質量%以下である。
(3)製造方法
 コーディエライト質セラミックハニカム構造体は、セラミック原料及び造孔材に、バインダー、必要に応じて分散剤、界面活性剤等の添加剤を加えて乾式で混合した後、水を加えて混練し、得られた可塑性の坏土を、公知のハニカム構造体成形用の金型から公知の押出成形法により押出してハニカム構造の成形体を形成し、この成形体を乾燥した後、必要に応じて端面及び外周等の加工を施し、焼成することによって製造する。
 焼成は、連続炉又はバッチ炉を用いて、昇温及び冷却の速度を調整しながら行う。1350~1450℃で1~50時間保持し、コーディエライト主結晶が十分生成した後、室温まで冷却する。前記昇温速度は、特に外径150 mm以上、及び全長150 mm以上の大型のコーディエライト質セラミックハニカム構造体を製造する場合、焼成過程で成形体に亀裂が発生しないよう、バインダーが分解する温度範囲(例えば150~350℃)では0.2~10℃/hr、コーディエライト化反応が進行する温度域(例えば1150~1400℃)では5~20℃/hrであるのが好ましい。冷却は、特に1400~1300℃の範囲では20~40℃/hの速度で行うのが好ましい。
 得られたセラミックハニカム構造体は、本発明の目的であるSCR触媒の担体として用いる以外にも、図8示すように、公知の方法で所望の流路3の端部3a,3bを交互に目封止することによりセラミックハニカムフィルタ20とすることもでき、この目封止部は、セラミックハニカム構造体を焼成する前又は焼成した後のいずれに形成してもよい。
 本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。
実施例1~2及び比較例1~2
 それぞれ表1~表6に示す特性(粒径、粒度分布等)を有するシリカ粉末、タルク粉末、アルミナ粉末、水酸化アルミニウム及びカオリンを、セラミックス原料の合計量(造孔材の表面にコートされた無機粉体を含む)が100質量部となるように表7に示す添加量で配合して、焼成後の化学組成がコーディエライトとなるコーディエライト化原料粉末を得た。
 このコーディエライト化原料粉末に対し、表6に示す粒子形状の造孔材を表7に示す量で添加し、メチルセルロースを添加し、混合した後、水を加えて混練し、可塑性のコーディエライト化原料からなるセラミック坏土を作製した。造孔材Aはブタンガスを内包気体とする中空の樹脂粒子の表面にタルクをコートしたものであり、造孔材Bはブタンガスを内包気体とする中空の樹脂粒子のみのものである。なお造孔材粒子の真球度は、電子顕微鏡により撮影した粒子の画像から画像解析装置で求めた、投影面積A1、及び重心を通り粒子外周の2点を結ぶ直線の最大値を直径とする円の面積A2から、式:A1/A2で算出した値であり、20個の粒子についての平均値で表した。
表1
Figure JPOXMLDOC01-appb-I000001
表1(続き)
Figure JPOXMLDOC01-appb-I000002
表2
Figure JPOXMLDOC01-appb-I000003
表2(続き)
Figure JPOXMLDOC01-appb-I000004
表3
Figure JPOXMLDOC01-appb-I000005
表4
Figure JPOXMLDOC01-appb-I000006
表5
Figure JPOXMLDOC01-appb-I000007
表6
Figure JPOXMLDOC01-appb-I000008
表6(続き)
Figure JPOXMLDOC01-appb-I000009
注:圧縮回復量Lと最大圧縮回復量Lmaxとの比
 
表6(続き)
Figure JPOXMLDOC01-appb-I000010
 シリカ粉末、タルク粉末、アルミナ粉末、水酸化アルミニウム粉末、カオリン粉末、造孔材の粒度分布(メジアン径D50、粒子径10μm以下の割合、100μm以上の割合、D90及びD10等)は日機装(株)製マイクロトラック粒度分布測定装置(MT3000)を用いて測定した。
表7
Figure JPOXMLDOC01-appb-I000011
表7(続き)
Figure JPOXMLDOC01-appb-I000012
注(1) 1.5質量部の樹脂+6.0質量部の被覆タルクを含む
注(2) 2.5質量部の樹脂+10.1質量部の被覆タルクを含む
 
 得られた坏土を押出してハニカム構造の成形体を作製し、乾燥後、周縁部を除去加工し、焼成炉にて209時間のスケジュール(室温~150℃は10℃/h、150~350℃は2℃/hr、350~1150℃は20℃/h及び1150~1410℃は15℃/hrの平均速度で昇温、最高温度1410℃で24hr保持、並びに1400~1300℃は30℃/hr、及び1300~100℃は80℃/hrの平均速度で冷却)で焼成した。焼成したセラミックハニカム体の外周に、非晶質シリカとコロイダルシリカとからなる外皮材をコーティングして乾燥させ、外径266.7 mm及び全長304.8 mm、表8に示す隔壁厚さ及びセル密度を有する実施例1~2及び比較例1~2のコーディエライト質セラミックハニカム構造体を2個ずつ作製した。実施例1及び実施例2は、同じ配合組成の坏土を異なる金型を用いて、異なる隔壁厚さ及びセル密度のセラミックハニカム構造体が得られるよう押出成形した例である。
 得られた実施例及び比較例のコーディエライト質セラミックハニカム構造体の1個を用いて、下記の方法で水銀圧入法による細孔分布の測定、X線CTによる基材構造の測定、A軸圧縮強度及び熱膨張係数の測定を行った。これらの結果を表8に示す。なお実施例2は、実施例1と同じ配合組成の坏土を用いて成形し、同じ焼成条件で焼成したため、基材構造は実施例1と同等と考えられる。従って、基材構造の測定(X線CTによる基材分岐数、d10、d50、d90及びd90-d10)/d50の測定)は省略した。
(a) 水銀圧入法による細孔分布の測定
 全細孔容積、気孔率及び累積細孔容積曲線の傾きSnは水銀圧入法の測定結果から求めた。水銀圧入法による測定は、コーディエライト質セラミックハニカム構造体から切り出した試験片(10 mm×10 mm×10 mm)を、Micromeritics社製オートポアIIIの測定セル内に収納し、セル内を減圧した後、水銀を導入して加圧し、加圧時の圧力と試験片内に存在する細孔中に押し込まれた水銀の体積との関係を求めることにより行った。前記圧力を細孔径に換算し、細孔径の大きい側から小さい側に向かって積算した累積細孔容積(水銀の体積に相当)を細孔径に対してプロットし、細孔径と累積細孔容積との関係を示すグラフを得た。水銀を導入する圧力は0.5 psi(0.35×10-3 kg/mm2)とし、圧力から細孔径を算出する際の常数は、接触角=130°及び表面張力=484 dyne/cmの値を使用した。
 得られた水銀圧入法の測定結果から、全細孔容積及び気孔率及び細孔径(対数値)に対する累積細孔容積を表す曲線の傾きSnの最大値を算出した。気孔率は、全細孔容積の測定値から、コーディエライトの真比重を2.52 g/cm3として計算によって求めた。結果を表8に示す。
 累積細孔容積曲線の傾きSnは、細孔径に対する累積細孔容積を示す曲線から求めた。ここで、傾きSn[(n)番目の測定点における累積細孔容積曲線の傾き]は、測定開始から、(n-1)番目の測定点における細孔径dn-1(μm)及び累積細孔容積Vn-1(cm3/g)と、(n)番目の測定点における細孔径dn(μm)及び累積細孔容積Vn(cm3/g)とから、式:Sn=-(Vn-Vn-1)/{log(dn)-log(dn-1)}により求めることができる。各測定点におけるSnの値から、その最大値を求めた。図6及び図7は、実施例2のセラミックハニカム構造体の測定例である。
(b) X線CT測定
 X線CTの測定は、ハニカム構造体の隔壁から切り出した試験片(1.0 mm×2.0 mm×隔壁厚み)を用いて、以下の条件で行った。
<測定条件>
 使用装置:三次元計測X線CT装置 Xradia社 MicroXCT‐200
 管電圧:30 kV
 管電流:133 μA
 画素数:1024×1024 pixel
 解像度:2.0μm/pixel
 解析領域:0.52 mm×0.8 mm×隔壁厚み
 得られた連続する断層画像(スライス像)から、定量解析ソフトTRI/3D-BON(ラトックシステムエンジニアリング製)を用いて得られた基材の三次元構造のデータに、メディアンフィルターを適用したノイズ除去を行った後、2階調化処理を行い基材部分と空隙部分とを識別し基材の三次元構造を得た。さらに識別された基材部分について、ソフト上で細線化処理を行い、基材のネットワーク構造(図3において、三次元構造の中心部分に描かれた線であり、枝1と、結合点2とからなる。)を求めた。解析は、得られた3次元構造の内、前記解析領域で指定した範囲について行った。基材のネットワーク構造において、3以上の枝の結合点2a及び幅の異なる枝の結合点2bを基材の分岐点とし、基材の単位体積(1 mm3)あたりの分岐点の数(基材分岐数)を求めた。結果を表8に示す。
 さらに隣接する2つの分岐点間の基材を1つの部分基材として、解析領域内の全ての分岐点について部分基材を求め、各部分基材について部分基材の長さ(隣接する2つの分岐点間の距離)、基材径(部分基材の軸に直交する断面における短径と長径との和を2で除した値)及び基材容積(基材径×長さ)を求めた。
 得られた全ての部分基材についての基材径及び基材容積から、基材径2μmごとの基材容積の積算値をプロットすることにより、部分基材の基材径に対する基材容積の分布を求めた。結果を図10に示す。さらに、得られた基材容積の分布において、最小の基材径(0μm)から特定の基材径までの基材容積の積算値を、前記特定の基材径における累積基材容積として、基材径と累積基材容積との関係を求めた。結果を図11に示す。
 基材径と累積基材容積との関係から、累積基材容積が全基材容積の10%となる基材径d10、同じく全基材容積の50%となる基材径d50及び同じく全基材容積の90%となる基材径d90を求め、式:(d90-d10)/d50の値を算出した。結果を表8に示す。
(c) 熱膨張係数
 熱膨張係数は、断面形状4.5 mm×4.5 mm×全長50 mmの寸法の試験片を、全長の方向が流路方向にほぼ一致するように切り出し、熱機械分析装置(TMA、リガク社製ThermoPlus、圧縮荷重方式/示差膨張方式)を用いて、一定荷重20 gをかけながら、昇温速度10℃/min.で室温から800℃まで加熱したときの全長方向の長さの増加量を測定して、40~800℃間の平均熱膨張係数として求めた。結果を表8に示す。
表8
Figure JPOXMLDOC01-appb-I000013
表8(続き)
Figure JPOXMLDOC01-appb-I000014
(d) A軸圧縮強度
 A軸圧縮強度は、社団法人自動車技術会が定める規格M505-87「自動車排気ガス浄化触媒用セラミックモノリス担体の試験方法」に従って測定し、以下に記載の基準で評価した。結果を表9に示す。
 実施例1~2及び比較例1~2で作製したもう一つのコーディエライト質セラミックハニカム構造体に、活性金属として白金触媒を担持してSCR触媒を作製し、以下に述べる方法で、初期圧力損失及びNOx浄化率を測定した。結果を表9に示す。
(e) 初期圧力損失
 初期圧力損失は、圧力損失テストスタンドに固定したコーディエライト質セラミックハニカム構造体に、空気を流量10 Nm3/minで送り込み、流入側と流出側との差圧(圧力損失)で表した。圧力損失が、
1.0 kPaを越える場合を(×)、
0.8 kPaを超え1.0 kPa以下の場合を(△)、
0.6 kPaを超え0.8 kPa以下の場合を(○)、及び
0.6 kPa以下の場合を(◎)
として初期圧力損失を評価した。
(f) NOx浄化率
 セラミックハニカム構造体に、活性金属として白金を担持してSCR触媒を作製し、このSCR触媒にNOxを400 ppm含む排気ガスを300℃で導入し、SCR触媒出口での排気ガス中NOx量を、排気ガス中のNOx量と同量の尿素(N換算)を添加することにより測定してNOx浄化率を測定した。NOx浄化率が
80%以上の場合を(○)、
70%以上80%未満の場合を(△)、及び
70%未満の場合を(×)
としてNOx浄化率を評価した。
表9
Figure JPOXMLDOC01-appb-I000015
 表9より、実施例1~2の本発明のコーディエライト質セラミックハニカム構造体は、高い強度を有し、初期圧力損失が低く、かつNOx浄化率に優れていることがわかる。
 これに対して、比較例1のコーディエライト質セラミックハニカム構造体は、実施例1及び2に比べて造孔材Aの使用量が多かったため、気孔率が高く強度が低かった。
 比較例2のコーディエライト質セラミックハニカム構造体は、実施例1及び2に比べて、無機粉体がコートされておらず、かつメジアン径が比較的大きい中空樹脂を造孔材として使用し、さらに粒径の大きなシリカ、タルク及びアルミナを使用しているため、基材分岐数が小さく、NOx浄化率が著しく低かった。

Claims (5)

  1.  多孔質の隔壁で仕切られた多数の流路を有するセラミックハニカム構造体であって、
    前記隔壁は、
    (a)気孔率が55%以上及び65%未満、及び
    (b)基材分岐数が35000[/mm3]以上[ただし、前記基材分岐数は、前記隔壁のX線CT測定で得られた、前記隔壁を構成する基材の三次元構造に対して細線化処理を行い、得られたネットワーク構造における単位体積あたりの分岐点(3以上の枝の結合点及び幅の異なる枝の結合点)の数である。]であることを特徴とするセラミックハニカム構造体。
  2.  請求項1に記載のセラミックハニカム構造体において、
    前記隔壁のX線CT測定で得られた前記基材の三次元構造において、隣接する2つの分岐点間の基材を1つの部分基材としたとき、
    前記部分基材の基材径に対する基材容積の分布から求めた累積基材容積が全基材容積の10%となる基材径d10、全基材容積の50%となる基材径d50及び全基材容積の90%となる基材径d90が、式:
    (d90-d10)/d50≦1.25
    [ただし、前記基材径は、前記部分基材の軸に直交する断面における短径と長径との和を2で除した値であり、前記基材容積は、前記部分基材の基材径×長さ(隣接する2つの分岐点間の距離)であり、前記累積基材容積は、最小の基材径から特定の基材径までの基材容積の積算値である。]を満たすことを特徴とするセラミックハニカム構造体。
  3.  請求項1又は2に記載のセラミックハニカム構造体において、
    前記隔壁のX線CT測定で得られた前記基材の三次元構造において、隣接する2つの分岐点間の基材を1つの部分基材としたとき、
    前記部分基材の基材径に対する基材容積の分布から求めた累積基材容積が、全基材容積の50%となる基材径d50が10~20μm[ただし、前記基材径は、前記部分基材の軸に直交する断面における短径と長径との和を2で除した値であり、前記基材容積は、前記部分基材の基材径×長さ(隣接する2つの分岐点間の距離)であり、前記累積基材容積は、最小の基材径から特定の基材径までの基材容積の積算値である。]であることを特徴とするセラミックハニカム構造体。
  4.  請求項1~3に記載のセラミックハニカム構造体において、
    前記隔壁のX線CT測定で得られた前記基材の三次元構造において、隣接する2つの分岐点間の基材を1つの部分基材としたとき、
    前記部分基材の基材径に対する基材容積の分布から求めた累積基材容積が、全基材容積の10%となる基材径d10が8μm以上[ただし、前記基材径は、前記部分基材の軸に直交する断面における短径と長径との和を2で除した値であり、前記基材容積は、前記部分基材の基材径×長さ(隣接する2つの分岐点間の距離)であり、前記累積基材容積は、最小の基材径から特定の基材径までの基材容積の積算値である。]
    であることを特徴とするセラミックハニカム構造体。
  5.  請求項1~4に記載のセラミックハニカム構造体において、前記セラミックがコーディエライト質セラミックであることを特徴とするセラミックハニカム構造体。
PCT/JP2016/052181 2015-03-24 2016-01-26 セラミックハニカム構造体 WO2016152236A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017507545A JP6702305B2 (ja) 2015-03-24 2016-01-26 セラミックハニカム構造体
KR1020177026705A KR102465748B1 (ko) 2015-03-24 2016-01-26 세라믹 허니컴 구조체
US15/555,759 US10399074B2 (en) 2015-03-24 2016-01-26 Ceramic honeycomb structure
EP16768139.4A EP3275541B1 (en) 2015-03-24 2016-01-26 Ceramic honeycomb structure
CN201680013367.4A CN107427823B (zh) 2015-03-24 2016-01-26 陶瓷蜂窝结构体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-061183 2015-03-24
JP2015061183 2015-03-24

Publications (1)

Publication Number Publication Date
WO2016152236A1 true WO2016152236A1 (ja) 2016-09-29

Family

ID=56977322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052181 WO2016152236A1 (ja) 2015-03-24 2016-01-26 セラミックハニカム構造体

Country Status (6)

Country Link
US (1) US10399074B2 (ja)
EP (1) EP3275541B1 (ja)
JP (1) JP6702305B2 (ja)
KR (1) KR102465748B1 (ja)
CN (1) CN107427823B (ja)
WO (1) WO2016152236A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202910A1 (ja) * 2021-03-26 2022-09-29 日立金属株式会社 炭化珪素質セラミックハニカム構造体及びその製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019123873A1 (de) * 2018-10-01 2020-04-02 Denso Corporation Abgasreinigungsfilter und Verfahren zum Herstellen desselben
CN109296354A (zh) * 2018-10-18 2019-02-01 中国石油化工股份有限公司 地层砂粒径参数计算方法及系统
JP7002504B2 (ja) * 2019-07-29 2022-02-04 株式会社Soken 排ガス浄化フィルタ
JP6940786B2 (ja) * 2019-07-31 2021-09-29 株式会社デンソー 排ガス浄化フィルタ
US11890609B2 (en) * 2019-09-12 2024-02-06 Corning Incorporated Honeycomb bodies with improved skin CTE and isostatic strength and methods of making the same
JP7274395B2 (ja) * 2019-10-11 2023-05-16 日本碍子株式会社 ハニカム構造体
JP7353218B2 (ja) * 2020-03-02 2023-09-29 日本碍子株式会社 ハニカムフィルタ
JP7449721B2 (ja) * 2020-03-02 2024-03-14 日本碍子株式会社 ハニカムフィルタ
JP7229192B2 (ja) * 2020-03-02 2023-02-27 日本碍子株式会社 ハニカムフィルタ
CN113933306B (zh) * 2021-12-16 2022-02-25 交通运输部天津水运工程科学研究所 一种基于无人机进行数据采集的码头结构可靠性分析方法
CN114634354B (zh) * 2022-03-15 2023-04-25 深圳市基克纳科技有限公司 一种提升多孔陶瓷雾化芯综合性能稳定性的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102487A1 (ja) * 2010-02-22 2011-08-25 日立金属株式会社 セラミックハニカム構造体及びその製造方法
JP2011177704A (ja) * 2010-02-08 2011-09-15 Denso Corp 排ガス浄化フィルタ及びその製造方法
WO2013146499A1 (ja) * 2012-03-30 2013-10-03 日本碍子株式会社 多孔質体,ハニカムフィルタ及び多孔質体の製造方法
WO2014163036A1 (ja) * 2013-04-02 2014-10-09 日立金属株式会社 セラミックハニカム構造体及びその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE420272T1 (de) * 1999-12-20 2009-01-15 Sulzer Metco Ag Profilierte, als anstreifschicht verwendete oberfläche in strömungsmaschinen
WO2005009922A1 (ja) * 2003-07-25 2005-02-03 Ngk Insulators, Ltd. セラミックス多孔質体及びその透過性能評価方法
JP2005052750A (ja) 2003-08-05 2005-03-03 Hitachi Metals Ltd 排気ガス浄化装置用セラミックハニカム触媒及び排気ガス浄化装置
ES2426031T3 (es) * 2005-10-24 2013-10-18 The Johns Hopkins University Métodos mejorados para BEAMing
US7618699B2 (en) 2006-06-30 2009-11-17 Corning Incorporated Low-microcracked, porous ceramic honeycombs and methods of manufacturing same
US7923093B2 (en) 2006-06-30 2011-04-12 Corning Incorporated High porosity filters for 4-way exhaust gas treatment
US7927682B2 (en) 2006-06-30 2011-04-19 Corning Incorporated Low-microcracked, porous ceramic honeycombs and methods of manufacturing same
US7964262B2 (en) 2006-08-29 2011-06-21 Corning Incorporated Layered silicate modified cordierite and method
WO2009048156A1 (ja) * 2007-10-12 2009-04-16 Hitachi Metals, Ltd. コージェライト質セラミックハニカムフィルタ及びその製造方法
US8119234B2 (en) 2008-02-29 2012-02-21 Corning Incorporated Anisotropic porous ceramic article and manufacture thereof
CN102481503B (zh) 2009-09-04 2015-05-20 日立金属株式会社 陶瓷蜂窝构造体及其制造方法
CN105555738B (zh) 2013-09-24 2018-03-09 日立金属株式会社 堇青石质陶瓷蜂窝结构体及其制造方法
JP6502133B2 (ja) * 2014-03-28 2019-04-17 日本碍子株式会社 多孔質体、ハニカムフィルタ、多孔質体の製造方法、及びハニカムフィルタの製造方法
JP6004151B1 (ja) 2015-03-24 2016-10-05 日立金属株式会社 セラミックハニカム構造体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011177704A (ja) * 2010-02-08 2011-09-15 Denso Corp 排ガス浄化フィルタ及びその製造方法
WO2011102487A1 (ja) * 2010-02-22 2011-08-25 日立金属株式会社 セラミックハニカム構造体及びその製造方法
WO2013146499A1 (ja) * 2012-03-30 2013-10-03 日本碍子株式会社 多孔質体,ハニカムフィルタ及び多孔質体の製造方法
WO2014163036A1 (ja) * 2013-04-02 2014-10-09 日立金属株式会社 セラミックハニカム構造体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3275541A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202910A1 (ja) * 2021-03-26 2022-09-29 日立金属株式会社 炭化珪素質セラミックハニカム構造体及びその製造方法
JP7188652B1 (ja) * 2021-03-26 2022-12-13 日立金属株式会社 炭化珪素質セラミックハニカム構造体及びその製造方法
JP7215636B1 (ja) 2021-03-26 2023-01-31 日立金属株式会社 炭化珪素質セラミックハニカム構造体及びその製造方法
JP2023022129A (ja) * 2021-03-26 2023-02-14 株式会社プロテリアル 炭化珪素質セラミックハニカム構造体及びその製造方法
US11993545B2 (en) 2021-03-26 2024-05-28 Proterial, Ltd. Silicon carbide ceramic honeycomb structure and its production method

Also Published As

Publication number Publication date
US10399074B2 (en) 2019-09-03
EP3275541A4 (en) 2018-11-21
CN107427823B (zh) 2020-07-14
US20180050333A1 (en) 2018-02-22
KR20170129770A (ko) 2017-11-27
JP6702305B2 (ja) 2020-06-03
JPWO2016152236A1 (ja) 2018-01-11
CN107427823A (zh) 2017-12-01
KR102465748B1 (ko) 2022-11-09
EP3275541A1 (en) 2018-01-31
EP3275541B1 (en) 2023-02-15

Similar Documents

Publication Publication Date Title
JP5751397B1 (ja) コーディエライト質セラミックハニカム構造体及びその製造方法
WO2016152236A1 (ja) セラミックハニカム構造体
JP5725247B2 (ja) セラミックハニカム構造体の製造方法
JP5751398B1 (ja) セラミックハニカム構造体及びその製造方法
JP6004151B1 (ja) セラミックハニカム構造体
EP2455153B1 (en) Method for manufacturing a ceramic honeycomb structure
JP4495152B2 (ja) ハニカム構造体及びその製造方法
JP6004150B1 (ja) セラミックハニカム構造体及びその製造方法
JP5725265B2 (ja) セラミックハニカム構造体及びその製造方法
JP5724873B2 (ja) セラミックハニカム構造体及びその製造方法
JP2017170396A (ja) ハニカム構造体
JP2013002391A (ja) 排ガス浄化フィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768139

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017507545

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15555759

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177026705

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE