WO2005009922A1 - セラミックス多孔質体及びその透過性能評価方法 - Google Patents

セラミックス多孔質体及びその透過性能評価方法 Download PDF

Info

Publication number
WO2005009922A1
WO2005009922A1 PCT/JP2004/010473 JP2004010473W WO2005009922A1 WO 2005009922 A1 WO2005009922 A1 WO 2005009922A1 JP 2004010473 W JP2004010473 W JP 2004010473W WO 2005009922 A1 WO2005009922 A1 WO 2005009922A1
Authority
WO
WIPO (PCT)
Prior art keywords
center line
porous body
ceramic
pore
porosity
Prior art date
Application number
PCT/JP2004/010473
Other languages
English (en)
French (fr)
Inventor
Masahiro Furukawa
Nobuyuki Tanahashi
Yuuichirou Tabuchi
Shinji Kawasaki
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Priority to EP04747861.5A priority Critical patent/EP1655274B1/en
Priority to US10/565,645 priority patent/US7488366B2/en
Priority to JP2005512027A priority patent/JP4805676B2/ja
Publication of WO2005009922A1 publication Critical patent/WO2005009922A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24492Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24493Modulus of rupture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00198Characterisation or quantities of the compositions or their ingredients expressed as mathematical formulae or equations
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs

Definitions

  • the present invention relates to a porous ceramic body, and more specifically, as a material for forming a filter such as a DPF, has a high porosity, maintains sufficient strength, and has a high trapping efficiency and a high transmittance.
  • TECHNICAL FIELD The present invention relates to a ceramic porous body having a high permeability and a method for evaluating its permeability.
  • a filter Diesel Particulate Filter (DPF) for collecting and removing particulate matter contained in dust-containing fluids such as diesel engine exhaust gas, or a catalyst for purifying harmful substances in exhaust gas
  • a cell partition (rib) forming a composite of a plurality of adjacent cells, and a honeycomb surrounding and holding an outermost peripheral cell located at the outermost periphery of the cell composite.
  • a porous honeycomb structure composed of an outer wall and the like is widely used.
  • a porous material (porous material) made of ceramics such as refractory silicon carbide (SiC) is used. .
  • a honeycomb structure for example, a silicon carbide powder having a predetermined specific surface area and containing impurities is used as a starting material, which is formed into a desired shape, dried, and then dried.
  • a honeycomb-structured porous silicon carbide catalyst support obtained by firing in a temperature range of ° C is disclosed (for example, see Japanese Patent Application Laid-Open No. 6-182228).
  • the DPF mainly includes an improvement in permeability (reduction of pressure loss), which greatly affects the fuel efficiency of the diesel engine in which it is mounted, and an improvement in material strength, which affects the durability of the filter itself. Required.
  • the porosity exceeds 80%, it is necessary to use it as a filter such as a DPF ⁇ There is a problem that sufficient strength cannot be maintained, and in some cases, .
  • the pore diameter can be significantly increased by coarsening the organic pore-forming agent used in manufacturing the porous body, or by using an organic hollow pore-forming agent (for example, foamed resin).
  • an organic hollow pore-forming agent for example, foamed resin
  • the present invention has been made in view of such problems of the prior art, and an object thereof is to provide a material for a filter such as a DPF, which has a high porosity despite having a high porosity. It is an object of the present invention to provide a ceramic porous body having high strength, high collection efficiency and high transmittance, and a method for evaluating its permeability.
  • the base material made of ceramics having a predetermined end face is Is a ceramic porous body in which a large number of pores having a predetermined porosity and communicating with end surfaces of the base material are formed at a predetermined porosity.
  • the pores identified from the pores and the non-pores identified from the base material are distinguished, and the pores are identified on the distinguished image.
  • a porous body is provided.
  • transmittance it is more preferably 5 X 10- 12 m it is preferably 2 or more tool 1 X 10- "m 2 or more.
  • the present invention it is preferable to include at least one selected from the group consisting of ceramics s, alumina, mullite, cordierite, silicon nitride, and silicon carbide.
  • the four-point bending strength is preferably lOMPa or more.
  • a ceramic comprising a ceramic base material having a predetermined end face and a large number of branched pores communicating with end faces of the base material and having a predetermined porosity is formed.
  • An evaluation method capable of clarifying the permeation performance of a porous body as a constituent material of a diesel particulate filter and the factor of the permeation performance, wherein the ceramic porous body is placed on a predetermined plane.
  • the plane image of the cut surface of the base material obtained by cutting is subjected to binarization processing by image analysis, so that the pores specified from the pores and the pores specified from the base material are specified.
  • the length of the center line between adjacent branch points adjacent to each other among the plurality of branch points specified from the above branch, and the branch adjacent to the end of the center line and the end of the center line are represented by the following equation (1).
  • the average pore length (L ( ⁇ m)) and the average pore diameter (D ( ⁇ m)) represented by the average value of the length of the center line between the point and the point are represented by the following equation (1).
  • a method for evaluating the permeability of a ceramic porous body which determines that the ceramic porous body has excellent permeability and pore shape as a constituent material of a diesel particulate filter.
  • FIG. 1 (a) is a flowchart showing one embodiment of the method for evaluating the permeability of a ceramic porous body of the present invention.
  • FIG. 1 (b) is a flowchart showing one embodiment of a method for evaluating the permeability of a ceramic porous body of the present invention.
  • FIG. 1 (c) is a flow chart showing one embodiment of the method for evaluating permeability of a ceramic porous body of the present invention.
  • FIG. 2 is a graph in which transmittance is plotted against the value of “ ⁇ X (D ⁇ 2) 2 ”.
  • FIG. 3 is a graph in which transmittance is plotted against the value of “ ⁇ X (D Z2) 2 ZL”.
  • a large number of pores communicating with the end faces of the base material and having a branch have a predetermined porosity to a base material made of a ceramic having a predetermined end face.
  • the partial average length (L (xm)) and the average pore diameter (D (xm)) are expressed by the following formulas (1) and (1).
  • the ceramic porous body of the present invention is a ceramic porous body that satisfies the relations of the following formulas (1) and (2), which is determined and evaluated by such a method for evaluating the permeability of a ceramic porous body.
  • a ceramic porous body as a sample is cut to obtain a predetermined cut surface.
  • the cut surface may be appropriately polished in order to make the cut surface uniform.
  • the ceramic porous body (ceramic porous body of the present invention) serving as a sample is made of a ceramic base material having a large number of branches that communicate between end faces thereof (from one end face to the other end face) and have branches. The pores are formed.
  • FIG. 1 (a) -FIG. 1 (c) are flowcharts showing one embodiment of the method for evaluating the permeability of a porous ceramic body according to the present invention.
  • the above-mentioned plane image of the cut surface is captured by a computer such as a PC (personal computer) using an image capturing means such as a scanner.
  • the captured planar image is binarized by a predetermined image analysis technique, and is extracted and distinguished into a white portion 1 and a black non-porous portion 2 as shown in FIG. You.
  • the pore portion 1 extracted at this time refers to a portion specified from the pores of the ceramic porous body, and the non-porous portion 2 refers to a portion specified from the base material of the ceramic porous body.
  • the center line 3 passes through the center of the pore 1.
  • the center line 3 is extracted (drawn) as a thin line having a width of one pixel by applying a predetermined image processing method to the pores 1 on the planar image.
  • the porosity ( ⁇ (%)) can be specified by image analysis, that is, by calculating the ratio of the area of the pore portion 1 to the area of the entire image, but using a value measured by the Archimedes method. You may. However, in the present invention, the value of ⁇ (%) substituted into the above equation (1) is a value measured by the Archimedes method.
  • the average length of the pores (L (xm)) is calculated from the plurality of branch points 4 specified from the branches on the center line 3 and adjacent branches adjacent to each other.
  • the ceramic porous body of the present invention uses these four parameters ( ⁇ (%), D (xm), D (xm),
  • the average pore width (D (xm)) is calculated on the center line.
  • the correlation with the value can be made high, and the permeability performance of the target ceramic porous body can be more strictly evaluated.
  • the application software used for image analysis for performing the above-described evaluation method includes, for example, Image-Pro Plus (trade name) (manufactured by MEDIA CYBERNETICS). It is not limited to using application software.
  • the average pore length (L ( ⁇ m)) of the above four parameters is a parameter relating to the shape of the pores.
  • a ceramic porous body having a small value of this parameter is a mercury porosimeter. This means that finer branched pores are formed even if the average pore diameter values measured by the same method are the same. That is, the average pore length (Lm)) in the present invention is a parameter that indicates the frequency of branching of pores in the porous ceramic body, so that a smaller value indicates a more excellent pore shape.
  • the porous ceramic body of the present invention that satisfies the relationship of the above formulas (1) and (2) has excellent permeability and pore shape as a constituent material of the DPF, It has a high porosity, yet retains sufficient strength, and has a high trapping efficiency and high transmittance. From the point of view of providing a ceramic porous body having more excellent permeation performance as a constituent material of DPF, the value of “ ⁇ X (D Z2) 2 / L”
  • ⁇ 2 ZL '' is theoretically preferably as high as possible, but is practically 3500 or less from the viewpoint of the strength required as a constituent material of the DPF and the collection efficiency. This is' yo.
  • 5 X 10-" It is particularly preferable that m 2 or more les.
  • the term “transmittance” as used in the present invention is defined by Darcy's law and is a value indicating the ease of fluid flow per unit area in a filter material (however, the fluid flow in the material is laminar). Re means a value represented by the following equation (3).
  • the upper limit of the transmittance is not particularly limited, and a higher value is theoretically preferable. However, from the viewpoint of realizing the manufacturability and the collection efficiency, the upper limit is 2%. 0 X 10— 1 Q m 2 or less.
  • P is the transmittance (X 10- 12 m 2), a static viscosity coefficient (mPa • s in V supply fluid), W is the sample (ceramic porous body) Thickness ( ⁇ m), S indicates the average flow velocity of the supply fluid (mZ s), and L indicates the pressure loss (kPa).
  • the “average pore diameter (D ( ⁇ m))” in the present invention is measured by a mercury porosimeter.
  • the lower limit of the value of the ratio L ( ⁇ ( ⁇ ) / D (z m) is particularly limited.
  • the ceramic constituting the base material includes at least one selected from the group consisting of alumina, mullite, cordierite, silicon nitride, and silicon carbide. Is preferred.
  • a ceramic porous body whose base material is made of a ceramic containing at least one of them is suitable as a material constituting DPF.
  • the four-point bending strength is preferably lOMPa or more, and more preferably 12MPa or more, which is preferable for exhibiting sufficient strength. It is particularly preferable that the pressure is 15 MPa or more. Note that, in the present invention, the upper limit of the four-point bending strength is not particularly limited, but from the viewpoint of substantial manufacturability and the like, it is sufficient if it is 1 OOMPa or less.
  • a raw material mixture containing particulate silicon carbide as an aggregate and metallic silicon as a binder is prepared.
  • These raw materials include iron (Fe), aluminum ( It may contain a trace amount of impurities such as Al) or calcium (Ca). It may be used as it is, and may be used after it has been subjected to a chemical treatment such as chemical washing and purified.
  • a sintering aid for example, inorganic microballoons that will not be lost even when fired (they will not form a coarse air hole like an ink bottle even if agglomerated), and will melt during firing to form communication holes (Comprising a compound containing an alkaline earth metal to be formed), and then, if necessary, a forming aid such as an organic binder, and mixing and kneading to obtain a forming clay.
  • the inorganic microballoon exhibits an action as a pore-forming agent by being added to the raw material mixture, and is not lost even when it is fired.
  • the ink bottle-shaped coarse air holes which unnecessarily increase the porosity and the pore diameter to decrease the strength and the collection efficiency of the porous body are not formed.
  • hollow particles (SD granules) made of silicon carbide particles and / or metal silicon powder by a spray dryer or the like may be similarly used as a pore-forming agent which is not lost even after firing.
  • a pore-forming agent may be used in combination with an organic pore-forming agent.
  • the obtained kneaded material is formed into a predetermined shape such as a honeycomb shape, and the obtained formed body is calcined to remove (degrease) the organic binder in the formed body, and then, the main firing is performed.
  • a ceramic porous body can be obtained.
  • a compound containing an alkaline earth metal may be added to the raw material mixture at the same time.
  • the compound containing an alkaline earth metal is at least one selected from the group consisting of magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba) contained therein.
  • strontium carbonate SrC ⁇
  • calcium acetate Ca (CH 2 COO)
  • MgO magnesium oxide
  • Ca ⁇ Calcium oxide
  • strontium oxide Sr ⁇
  • Ba ⁇ barium oxide
  • Things By adding this compound, the inorganic microballoons are melted at the time of the main baking, and the communicating holes having a somewhat uniform pore width are connected to various directions without causing the pores to become coarse in the shape of an ink bottle. A porosity porous structure is formed. Furthermore, in this case, the melt is deposited on the surface of silicon carbide particles and Z or metallic silicon and at or around Z.
  • An oxide phase containing silicon (Si), aluminum (A1), and alkaline earth metals Since an appropriate amount of this oxide phase is present on the surface and / or periphery of silicon carbide and / or metal silicon, it assists necking between silicon carbide particles and has a high porosity despite having a high porosity. A high-strength porous ceramic body can be obtained.
  • the pores are not coarsened into the shape of an ink bottle after firing.
  • the porosity and pore diameter of the obtained ceramic porous body can be adjusted, and a porous body suitable as a constituent material of a diesel particulate filter can be produced.
  • the melting temperature of the inorganic microballoons and the oxide phase formed vary depending on the composition of the inorganic microballoons, the type of the compound containing alkaline earth metal and the parameters of the amount added. I do.
  • the material can be designed according to the intended use conditions of the DPF and the like, and the production corresponding to this can be achieved.
  • the design can be adjusted flexibly.
  • inorganic microballoons When inorganic microballoons are used, it is preferable to add 5-30 parts by mass of inorganic microballoons to 100 parts by mass of the total of silicon carbide and metallic silicon. It is more preferable to add the parts by mass. If the amount is less than 5 parts by mass, the pore-forming effect may not be exhibited.If the amount exceeds 30 parts by mass, the amount of the oxide phase formed is too large, so that the fired body shrinks and the pore-forming effect is not sufficiently exhibited. Not desirable because there is. If it is desired to further improve the porosity, it can be used in combination with an organic pore-forming agent.
  • inorganic microballoons when using inorganic microballoons, it is preferable to add a compound containing an alkaline earth metal in order to melt during firing.
  • the amount to be added is sufficient to melt the inorganic microballoons at the temperature at which the ceramic porous body is fired, and The amount is such that the viscosity of the melt is too low so that the fired body does not shrink.
  • E-SPHERES SL-75 manufactured by ENVIROSPHERES
  • alkali earth metal is contained with respect to 100 parts by mass of the added amount of the inorganic microballoon.
  • the compound in an amount of 10 to 100 parts by mass, in terms of monoxide, of the alkaline earth metal, including the alkaline earth metal previously contained in the inorganic microballoons.
  • monoxide e.g., cordierite, anorthite, and strontium Feldspar (SrAl Si O)
  • the alkaline earth metal contained in the compound containing the alkaline earth metal is magnesium (Mg)
  • the compound containing the alkaline earth metal is converted to magnesium oxide (MgO) by 10 to 25 mass Parts, 14-35 parts by weight in terms of calcium oxide (Ca ⁇ ) when it is calcium (Ca), and 26-64 parts by weight in terms of strontium oxide (SrO) when it is strontium (Sr)
  • MgO magnesium oxide
  • barium (Ba) it is more preferable to add 38 to 95 parts by mass in terms of barium oxide (BaO).
  • the inorganic microballoons may be difficult to melt. This is not preferable because the fired body may shrink due to the remaining amount and the pore-forming effect may not be exhibited.
  • the compound containing an alkaline earth metal may contain only one kind of the alkaline earth metal or a plurality of kinds.
  • adding the compound containing an alkaline earth metal only one kind of the compound containing the alkaline earth metal may be added, or a plurality of kinds of the compounds containing the alkaline earth metal may be added.
  • the amounts to be added may be different from each other or evenly divided.
  • the pores are considered to be effective for connecting the communication holes having a uniform pore width to various directions without causing the pores to be enlarged into an ink bottle shape after firing.
  • Agent The use of porosity makes it possible to cause fluid leakage because the possibility of coarse pores is extremely low even if aggregation of the pore forming agent, which is a problem when using an organic pore forming agent, occurs. It is possible to efficiently collect particulates and the like in the dust-containing fluid having low properties.
  • a ceramic porous body having more excellent permeability (permeability) even with the same porosity and average pore diameter is provided. That can be S.
  • the molten oxide phase fills the small micropores, so that necking between particulate silicon carbide particles can be assisted and the strength can be improved. Furthermore, by precipitating cordierite, anosite, strontium feldspar (SrAl Si ⁇ ), and celsian (BaAl Si ⁇ ) in the oxide phase, the thermal shock resistance, oxidation resistance, and strength are further improved. Can be done.
  • the alkaline earth metal-containing compound to be used is preferably an alkaline earth metal monoxide or carbonate from the viewpoints of efficient formation of an oxide phase and easy availability and handling.
  • the calcination is preferably performed at a temperature lower than the temperature at which metallic silicon is melted.
  • the method of holding at a predetermined temperature and holding at one temperature level or holding at multiple temperature levels may be used. Alternatively, the holding times may be the same or different. Similarly, the method of slowing down the heating rate may be slowed down only in a certain temperature zone or slowed down in multiple sections. You may.
  • the obtained ceramic porous body In order for the obtained ceramic porous body to have a porous structure in which refractory particles (particulate silicon carbide) contained therein are bonded by metallic silicon, it is necessary to soften metallic silicon during firing. There is. Since the melting point of metallic silicon is 1410 ° C., the firing temperature in the main firing is preferably set to 1410 ° C. or higher. Further, the optimal firing temperature is determined by the microstructure and characteristic values. However, if the temperature exceeds 1600 ° C, evaporation of metal silicon proceeds, and bonding through metal silicon may become difficult. Therefore, a firing temperature of 1410 1600 ° C is appropriate and 1420 1580. C power S preferred level.
  • silicon carbide is used as an aggregate constituting the base material of the ceramic porous body and cordierite is used as a binder
  • silicon carbide is used as an aggregate and metal is used as a binder.
  • What is necessary is just to carry out according to an example of the manufacturing method in the case of using silicon. Specifically, firstly, a communicating hole having a somewhat uniform pore width is connected to silicon carbide as an aggregate so that pores are not coarsened to an ink bottom shape after firing even if agglomerated.
  • Pore forming agents that are considered to be effective for example, inorganic microballoons that are not lost even when fired, and hollow balloons (SD granules) obtained by treating Z or silicon carbide particle powder with a spray drier, etc.
  • Raw materials for cordierite i-dani compounds containing magnesium (Mg), aluminum (A1) and silicon (Si)
  • an organic binder and water are added, mixed and kneaded to obtain a plastic clay.
  • inorganic microballoons are used as part of the aluminum (A1) source and the silicon (Si) source of cordierite, and other materials are used as aluminum (A1) It may be added as a source and / or silicon (Si) source.
  • Aluminum (A1) sources other than inorganic microballoons include aluminum oxide (Al 2 O 3) or aluminum hydroxide (A1 ( ⁇ H
  • Magnesium hydroxide may be used as part or all of the Mg source contained in the raw material for cordierite.
  • Magnesium hydroxide (Mg (OH)) and / or magnesium carbonate (MgCO) provide a ceramic porous body having a small amount of components remaining in cordierite formed by firing, with a higher porosity. The effect is that it can be done. It should be noted that talc and the like were converted to a magnesium (Mg) source in a quantity that did not substantially affect the above-mentioned effects caused by the use of magnesium hydroxide (Mg (OH)) and / or magnesium carbonate (MgCO). May be used together.
  • the obtained plastic clay is formed into a desired shape, for example, a honeycomb shape, by an appropriate forming method.
  • This molding can be performed by an extrusion molding method, an injection molding method, a press molding method, a method of forming a through hole after forming a ceramic material into a cylindrical shape, and among others, continuous molding is easy, and a cordier is formed.
  • the light crystals can be oriented to have low thermal expansion It is preferable to carry out by an extrusion molding method.
  • the obtained molded body is calcined to remove (degrease) the organic binder contained in the molded body, and then, the main firing is performed.
  • the calcination is preferably performed at a temperature lower than the temperature at which cordierite melts. Specifically, it may be once held at a predetermined temperature of about 300 to 600 ° C., or may be calcined at a predetermined temperature range with the heating rate reduced to 50 ° C./h or less.
  • the calcining atmosphere may be an oxidizing atmosphere.
  • the compact contains a large amount of organic binder, it burns violently with oxygen during the calcining and rapidly raises the temperature of the compact. Since the temperature is sometimes raised, it is preferable to suppress the abnormal temperature rise of the molded body by performing in an inert atmosphere such as nitrogen or argon. This suppression of abnormal temperature rise is particularly preferable when a raw material having a large thermal expansion coefficient (weak against thermal shock) is used. For example, when the addition ratio of the organic binder is 20% by volume or more with respect to the main raw material, it is preferable to perform calcination in the above-mentioned inert atmosphere.
  • the firing temperature in the main firing is preferably set to 1400 ° C or more. Further, the optimum firing temperature is determined from the microstructure and characteristic values. However, if the temperature exceeds 1500 ° C, the melting point of cordierite will be greatly exceeded, and the firing shrinkage will be large, making it difficult to obtain the desired microstructure. ° C is preferred.
  • a silicon carbide (SiC) raw material powder having an average particle diameter of 33 ⁇ m and a silicon (Si) powder having an average particle diameter of 5 ⁇ m are blended so as to have a composition of 80:20 in mass ratio, and 100 mass of this powder Parts by weight of fly ash balloon shown in Table 1 was added.
  • a compound containing an alkaline earth metal in an amount sufficient to melt the fly ash balloon, and 6 parts by mass of methylcellulose as an organic binder, 2.5 parts by mass of a surfactant, and 24 parts by mass of water were added.
  • the mixture was uniformly mixed and kneaded to obtain a forming clay.
  • the obtained kneaded clay is extruded with an extrusion machine.
  • Example 2 Except for adding 20 parts by mass of an organic pore-forming agent (starch (average particle size: 50 ⁇ m)) in addition to the fly ash balloon, the same procedure as in Example 1 was carried out except that the ceramic porous body having a honeycomb structure was used. (Example 2) was produced.
  • an organic pore-forming agent starch (average particle size: 50 ⁇ m)
  • a silicon carbide (SiC) raw material powder having an average particle diameter of 33 zm and a cordierite iridani raw material powder containing no fly ash balloon are blended so as to have a composition of 80:20 in a mass ratio, and this powder 100 mass To each part, a fly ash balloon having a mass part shown in Table 1 was added. Next, 20 parts by mass of an organic pore-forming agent (starch (average particle size: 50 ⁇ )), 6 parts by mass of methylcellulose as an organic binder, 2.5 parts by mass of a surfactant, and 24 parts by mass of water Then, the mixture was uniformly mixed and kneaded to obtain a kneaded material for molding.
  • an organic pore-forming agent starch (average particle size: 50 ⁇ )
  • the obtained kneaded material was formed into a honeycomb shape having an outer diameter of 45 mm, a length of 120 mm, a partition wall thickness of 0.43 mm, a cell density of 100 cells / square inch (16 cells / cm 2 ) by an extruder, and then, After calcination for 5 hours at 500 ° C for degreasing, calcination is performed for 2 hours at 1420 ° C in an oxidizing atmosphere to produce a ceramic porous body having a two-cam structure (Example 3). did.
  • a ceramic porous body having a honeycomb structure (Comparative Example 1) was produced in the same manner as in Example 1 except that the fly ash balloon and the compound containing an alkaline earth metal were not added.
  • Mullite (3A1 O.2SiO) raw material powder with an average particle size of 142 ⁇ m and binder powder (B0, SiO) with an average particle size of 3 ⁇ m are blended in a mass ratio of 75:25. did.
  • 6 parts by mass of methylcellulose as an organic binder, 2.5 parts by mass of a surfactant, and 24 parts by mass of water were added, and the mixture was uniformly mixed and kneaded to obtain a forming clay.
  • the obtained kneaded material was formed into a honeycomb shape having an outer diameter of 45 mm, a length of 120 mm, a partition wall thickness of 0.43 mm, a cell density of 100 cells and a square inch of square cells (16 cells / cm 2 ) using an extruder.
  • firing was performed in an oxidizing atmosphere at 1000 ° C for 2 hours to produce a ceramic porous body having a honeycomb structure (Comparative Example 4).
  • image analysis of each ceramic porous body was performed. Specifically, first, an arbitrary part of each manufactured porous ceramic body was cut and the cut surface was polished, the plane image was imported to a PC, and binarization processing was performed. The pores 1 were extracted in white portions and the non-porous portions 2 in black portions. Next, a center line 3 passing through the center of the pore 1 as shown in FIG. 1 (b) is drawn on this image, and the average pore width (D ( ⁇ )
  • FIG. 2 shows a graph in which transmittance is plotted with respect to the value of “ ⁇ X (D / 2) 2 ”.
  • FIG. 2 A graph plotting transmittance against the value of 2 / L ”is shown in FIG.
  • the hatched lines in FIGS. 2 and 3 are linear approximation curves drawn based on the plotted points.
  • the ceramic porous body of Examples 13 to 13 exhibited sufficient strength and collection efficiency and a high level of performance compared to the ceramic porous body of Comparative Examples 15 to 15. It is clear that it has transmittance. In addition, the ceramic porous body of Comparative Example 4 has a low transmittance even though it has a large average pore diameter (D (xm)).
  • ⁇ X (D / 2) VLj (Fig. 3) has a closer proportional relation than ⁇ X (D / 2 ⁇ (Fig. 2).
  • the permeation performance of a target porous ceramic body can be simply, easily, and with good accuracy that could not be achieved by the conventional evaluation method. It can be easily identified and evaluated. Furthermore, the parameters that are the factors that affect the permeation performance, not just the evaluation of the permeation performance, can be evaluated from the porosity and the shape of the pores, not just the pore diameter. Sera that meets 2
  • the mixed porous body can be judged and evaluated as a porous body having a better pore shape as a constituent material of the DPF. That is, the ceramic porous body manufactured so as to satisfy the predetermined conditions while employing the evaluation method of the present invention has a high porosity, maintains sufficient strength, and has a high collection efficiency and a high transmittance. It is something.
  • the porous ceramic body of the present invention distinguishes pores from non-porosity by subjecting a planar image of a predetermined cut surface to binarization processing by image analysis.
  • the average pore length (L ( ⁇ )) satisfy a predetermined relationship, and as a material constituting a filter such as a DPF, it has excellent permeability and pore shape. Although it has a high porosity, it maintains sufficient strength, and has the characteristics of high collection efficiency and high transmittance.
  • a planar image of a predetermined cut surface is binarized by image analysis to discriminate between a pore portion and a non-porous portion.
  • the porosity ( ⁇ (%)) and the average pore width (D !! average porosity length ⁇ ⁇ ! ⁇ average pore diameter (zm)) Is given
  • the porous body has a high porosity, maintains sufficient strength, and has a high trapping capacity. It can be used as an index for producing a ceramic porous body having a high collection efficiency and high transmittance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Filtering Materials (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

 セラミックスからなる基材に多数の気孔が所定の気孔率で形成されてなるセラミックス多孔質体である。基材の切断面の平面画像を、画像解析で二値化処理することにより、気孔部1と非気孔部2とに区別し、気孔部1の中央部を通る中央線3を引いた場合に、気孔率(ε(%))と、気孔部1を特定する外形線間の、中央線3に直交する距離の平均値により表される気孔部平均幅(DP(μm))と、隣接する分岐点4相互間における中央線3の長さ、及び中央線3の末端5と分岐点4との間における中央線3の長さの平均値により表される気孔部平均長さ(L(μm))と、平均気孔径(DH(μm))とが、所定の関係を満たし、DPF等のフィルタを構成する材料として、高気孔率でありながらも十分な強度を保持し、かつ、高捕集効率・高透過率なものである。                                                                               

Description

明 細 書
セラミックス多孔質体及びその透過性能評価方法
技術分野
[0001] 本発明はセラミックス多孔質体に関し、更に詳しくは、 DPF等のフィルタを構成する 材料として、高気孔率でありながらも十分な強度を保持し、かつ、高捕集効率'高透 過率であるセラミックス多孔質体、及びその透過性能評価方法に関する。
^景技術
[0002] ディーゼルエンジン排気ガスのような含塵流体中に含まれる粒子状物質を捕集除 去するためのフィルタ(ディーゼルパティキュレートフィルタ(DPF) )、又は排気ガス中 の有害物質を浄化する触媒成分を担持するための触媒担体として、複数のそれぞれ 隣接したセルの複合体を形成するセル隔壁(リブ)と、このセル複合体の最外周に位 置する最外周セルを囲繞して保持するハニカム外壁とから構成された多孔質のハニ カム構造体が広く用いられている。このような多孔質のハニカム構造体を構成する材 料としては、例えば耐火性の炭化珪素(SiC)等をはじめとするセラミックスからなる多 孔質材料 (多孔質体)が用いられてレ、る。
[0003] また、このようなハニカム構造体としては、例えば、所定の比表面積を有するととも に不純物を含有する炭化珪素粉末を出発原料とし、これを所望の形状に成形、乾燥 後、 1600 2200°Cの温度範囲内で焼成して得られるハニカム構造の多孔質炭化 珪素質触媒担体が開示されている(例えば、特開平 6 - 182228号公報参照)。
[0004] なお、 DPFには、これが搭載されるディーゼルエンジンの燃費に大きく影響する透 過率の向上 (圧力損失の低減)と、フィルタ自体の耐久性に影響する材料強度の向 上とが主として要求される。
[0005] 従来の、多孔質体の特性から透過性能を予測する評価方法に採用されていた理 論としては、特に明確なものは提唱されておらず、数学的に考えて最も簡単なモデル として、多孔質体の透過率が、「(気孔率) X (平均気孔径 /2) 2」と比例関係にあると の経験則に基づいて多孔質体の透過性能を予測 ·評価していた。従って、これまで、 多孔質体の透過性能を向上させるためには、もっぱら気孔率 (例えば、アルキメデス 法にて測定した実測値)、及び/又は平均気孔径 (水銀ポロシメーターにて測定した 実測値)の増大が試みられていた。しかし、多孔質体の高気孔率化は強度低下を伴 うとともに、気孔径の拡大は、捕集しょうとする粒子状物質 (パティキュレート)の捕集 効率低下を招くといった問題があり、実質的にはそれぞれの値を増大させるには限 界があった。また、前記比例関係は、多孔質体によっては成り立たず、特に気孔率- 平均気孔径を増大した一部の多孔質体では、前記比例関係から予測される透過率 とすることができず、工学的に実用性のある理論、評価方法等は未だに確立されて いるとはいえない。
[0006] 具体的には、気孔率が 80%を超えると DPFをはじめとするフィルタとして使用する に際して必要 ·十分な強度を保持することができなレ、場合があるとレ、う問題がある。ま た、気孔径の拡大は、多孔質体を製造するに際して使用する有機系造孔剤を粗粒 化したり、有機中空造孔剤 (例えば、発泡樹脂等)を使用したりすること等により大幅 に促進されるが、気孔径が 100 / mを超えると、得られる多孔質体のパティキュレート の捕集効率が大きく低下してしまうという問題がある。更に、気孔率が 60%を超える 多孔質体の場合、製造するに際して多量の有機系造孔剤を用いるため、一部の造 孔剤が凝集してしまい、これを焼成することにより、インクボトル状の粗大気孔が点在 してしまうという問題がある。特に、このような多孔質体の平均気孔径を水銀ポロシメ 一ターで評価する場合、その値が大きく上昇してしまうため、上述した評価方法では 透過性能 (圧力損失)を過大に予測してしまうことがあるという問題があった。即ち、上 述した従来の評価方法では、多孔質体を構成する材料系のうちの一部の材料系に ついては相関関係を示す力 それ以外の材料系については必ずしも相関関係を示 すとはいえなかった。
[0007] 本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その 目的とするところは、 DPF等のフィルタを構成する材料として、高気孔率でありながら も十分な強度を保持し、かつ、高捕集効率 ·高透過率であるセラミックス多孔質体、及 びその透過性能評価方法を提供することにある。
発明の開示
[0008] 即ち、本発明によれば、所定の端面を有するセラミックスからなる基材に、前記基材 の端面間を連通するとともに分岐を有する多数の気孔が所定の気孔率で形成されて なるセラミックス多孔質体であって、所定の平面で切断された前記基材の切断面の 平面画像を、画像解析で二値化処理することにより、前記気孔に由来して特定される 気孔部と、前記基材に由来して特定される非気孔部とに区別し、区別された画像上 で前記気孔部の中央部を通る中央線を引いた場合に、前記気孔率( ε (%) )と、前 記気孔部を特定する互いに対向する外形線間の、前記中央線に直交する距離の平 均値により表される気孔部平均幅 (D ( z m) )と、前記中央線上の前記分岐に由来し
P
て特定される複数の分岐点のうち互いに隣接する隣接分岐点相互間における前記 中央線の長さ、及び前記中央線の末端と前記中央線の末端に隣接する前記分岐点 との間における前記中央線の長さの平均値により表される気孔部平均長さ(L ( μ m) )と、平均気孔径(D ( z m) )と力 下記式(1 )及び(2)の関係を満たすセラミックス多
H
孔質体が提供される。
200≤ ε X (D /2)
ρ ソ L
L≤D /2 - - - (2)
H
[0009] 本発明においては、透過率が、 5 X 10— 12m2以上であることが好ましぐ 1 X 10— "m2 以上であることが更に好ましい。
[0010] 本発明においては、セラミックス力 s、アルミナ、ムライト、コーディエライト、窒化珪素、 及び炭化珪素からなる群より選択される少なくとも一種を含むことが好ましい。
[0011] 本発明においては、 4点曲げ強度力 l OMPa以上であることが好ましい。
[0012] また、本発明によれば、所定の端面を有するセラミックスからなる基材に、前記基材 の端面間を連通するとともに分岐を有する多数の気孔が所定の気孔率で形成されて なるセラミックス多孔質体の、ディーゼルパティキュレートフィルタの構成材料としての 透過性能の優劣、及び前記透過性能の優劣の要因を明らかにすることができる評価 方法であって、前記セラミックス多孔質体を所定の平面で切断することにより得られる 前記基材の切断面の平面画像を、画像解析で二値化処理することにより、前記気孔 に由来して特定される気孔部と、前記基材に由来して特定される非気孔部とに区別 し、区別された画像上で前記気孔部の中央部を通る中央線を引いた場合に、前記気 孔率( ε (%) )と、前記気孔部を特定する互いに対向する外形線間の、前記中央線 に直交する距離の平均値により表される気孔部平均幅 (D m) )と、前記中央線
P
上の前記分岐に由来して特定される複数の分岐点のうち互いに隣接する隣接分岐 点相互間における前記中央線の長さ、及び前記中央線の末端と前記中央線の末端 に隣接する前記分岐点との間における前記中央線の長さの平均値により表される気 孔部平均長さ (L ( μ m) )と、平均気孔径 (D ( μ m) )とが、下記式(1)及び (2)の関
H
係を満たすときに、前記セラミックス多孔質体がディーゼルパティキュレートフィルタの 構成材料として優れた透過性能及び気孔形状を有すると判定するセラミックス多孔 質体の透過性能評価方法が提供される。
200≤ ε X (D /2) 2/L …ひ)
p
L≤D /2 --- (2)
H
図面の簡単な説明
[0013] [図 1(a)]図 1 (a)は、本発明のセラミックス多孔質体の透過性能評価方法の一実施形 態を示すフロー図である。
[図 1(b)]図 1 (b)は、本発明のセラミックス多孔質体の透過性能評価方法の一実施形 態を示すフロー図である。
[図 1(c)]図 1 (c)は、本発明のセラミックス多孔質体の透過性能評価方法の一実施形 態を示すフロー図である。
[図 2]図 2は、「 ε X (D Ζ2) 2」の値に対して透過率をプロットしたグラフである。
Η
[図 3]図 3は、「 ε X (D Z2) 2ZL」の値に対して透過率をプロットしたグラフである。
P
発明を実施するための最良の形態
[0014] 以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に 限定されるものではなぐ本発明の趣旨を逸脱しない範囲で、当業者の通常の知識 に基づいて、適宜、設計の変更、改良等が加えられることが理解されるべきである。
[0015] 本発明のセラミックス多孔質体の透過性能評価方法は、所定の端面を有するセラミ ックスからなる基材に、基材の端面間を連通するとともに分岐を有する多数の気孔が 所定の気孔率で形成されてなるセラミックス多孔質体の、 DPFの構成材料としての透 過性能の優劣、及び前記透過性能の優劣の要因を明らかにすることができる評価方 法であり、セラミックス多孔質体を所定の平面で切断することにより得られる基材の切 断面の平面画像を、画像解析で二値化処理することにより、気孔に由来して特定さ れる気孔部と、基材に由来して特定される非気孔部とに区別し、区別された画像上 で気孔部の中央部を通る中央線を引いた場合に、気孔率( ε (%) )と、気孔部を特 定する互いに対向する外形線間の、中央線に直交する距離の平均値により表される 気孔部平均幅 (D ( z m) )と、中央線上の分岐に由来して特定される複数の分岐点
P
のうち互いに隣接する隣接分岐点相互間における中央線の長さ、及び中央線の末 端と中央線の末端に隣接する分岐点との間における中央線の長さの平均値により表 される気孔部平均長さ (L ( x m) )と、平均気孔径 (D ( x m) )とが、下記式(1 )及び(
H
2)の関係を満たすときに、セラミックス多孔質体が DPFの構成材料として優れた透過 性能及び気孔形状を有すると判定する評価方法である。また、本発明のセラミックス 多孔質体は、このようなセラミックス多孔質体の透過性能評価方法により判定 ·評価さ れる、下記式(1 )及び(2)の関係を満たすセラミックス多孔質体である。以下、本発明 の実施の形態について具体的に説明する。
200≤ ε X (D /2)
ρ ソ L
L≤D /2 - - - (2)
H
[0016] 本発明の評価方法を実施するに際しては、まず試料となるセラミックス多孔質体を 切断して所定の切断面を出す。このとき、切断面を均一な平面とするために、適宜、 切断面を研磨してもよい。なお、試料となるセラミックス多孔質体 (本発明のセラミック ス多孔質体)は、セラミックスからなる基材に、その端面間(一端面から他端面までの 間)を連通するとともに分岐を有する多数の気孔が形成されてなるものである。
[0017] 図 1 (a)—図 1 (c)は、本発明のセラミックス多孔質体の透過性能評価方法の一実 施形態を示すフロー図である。前述の切断面の平面画像を、例えばスキャナ一等の 画像取込み手段を使用して PC (パーソナルコンピュータ)をはじめとする計算機に取 り込む。取り込まれた平面画像を、所定の画像解析の手法により二値化処理して、図 1 (a)に示すような白色部分の気孔部 1と黒色部分の非気孔部 2とに区別して抽出す る。このとき抽出される気孔部 1とは、セラミックス多孔質体の気孔に由来して特定さ れる部分をいい、非気孔部 2とは、セラミックス多孔質体の基材に由来して特定される 部分をいう。気孔部 1と非気孔部 2とを抽出した後、この画像上で、図 1 (b)に示すよう な気孔部 1の中央部を通る中央線 3を引く。なお、この中央線 3は、平面画像上の気 孔部 1に所定の画像処理手法を適用することにより、一画素分の幅をもつ細線として 抽出される(引かれる)ものである。
[0018] 次いで、試料であるセラミックス多孔質体の気孔率( ε (%))、気孔部平均長さ(L( μ m) )、気孔部平均幅(D ( μ m) )、平均気孔径 (D ( μ m) )の、四種類のパラメ
P H 一 タを特定する。気孔率( ε (%))は、画像解析、即ち、画像全体の面積に対する、気 孔部 1の面積の割合を算出することにより特定することができるが、アルキメデス法に て測定した値を用いてもよい。但し、本発明において前記式(1)に代入される ε (%) の値は、アルキメデス法により測定される値である。また、気孔部平均長さ(L( xm)) は、図 1 (c)に示すように中央線 3上の分岐に由来して特定される複数の分岐点 4のう ち互いに隣接する隣接分岐点相互間における中央線 3の長さ、及び中央線 3の末端 5と中央線 3の末端 5に隣接する分岐点 4との間における中央線 3の長さの平均値に より表される値である。更に、気孔部平均幅(D (/ m))は、気孔部 1を特定する互い
P
に対向する外形線間の、中央線 3に直交する距離の平均値により表される値であり、 図 1 (c)中の両端矢印部分の幅を意味する。具体的には、中央線 3上の各画素から 気孔部 1を特定する外形線までの最短距離の 2倍の値を算出し、全画素についての それらの値を平均することにより算出することができる。
[0019] 本実施形態では、これら四種類のパラメータ( ε (%)、D m)、D (/ m)、及び
P H
L m))が下記式(1)及び(2)の関係を満たす場合、即ち、 ε (%)、D ( / m)、及
P
び L( μΐη)により算出される「 ε X (D /2) /L」の値が 200以上、及び Lの値が D
P H
の値の 1/2以下である場合に、試料であるセラミックス多孔質体が DPFの構成材料 として優れた透過性能及び気孔形状を有すると判定'評価する。また、本発明のセラ ミックス多孔質体は、これら四種類のパラメータ( ε (%)、D ( xm)、D ( xm)、及び
P H
L·(μm))が下記式(1)及び(2)の関係を満たすものである。
200≤ ε X (D /2)2/L …ひ)
p
L≤D /2 --- (2)
H
[0020] 上述した四種類のパラメータのうちの、気孔部平均幅(D ( xm))は、中央線上の
Ρ
各画素から、非気孔部と気孔部の境目である外形線までの最短距離を 2倍した値の 全画素についての数平均であるため、従来の水銀ポロシメーター等を用いて測定し
、体積平均として得られる平均気孔径(D ( / m) )の値のように、点在するインクボト
H
ル状の粗大気孔を過大評価することのない、気孔の数を基準とした平均値により表さ れるパラメータである。即ち、気孔部平均幅(D ( z m) )を用いれば、透過率の実測
P
値との相関性を高いものとすることができ、対象とするセラミックス多孔質体の透過性 能をより厳密に評価することができる。なお、上述してきた評価方法を実施するため の画像解析に用いるアプリケーションソフトとしては、例えば、 Image-Pro Plus (商 品名)(MEDIA CYBERNETICS社製)等を挙げることができる力 本発明におい てはこのアプリケーションソフトを用いることに限定されるものではない。
[0021] また、上述した四種類のパラメータのうちの、気孔部平均長さ(L ( μ m) )は、気孔の 形状に関するパラメータであり、この値が小さいセラミックス多孔質体は、水銀ポロシメ 一ターにて測定される平均気孔径の値が同一であっても、より細かく枝分かれした気 孔が形成されていることを意味する。即ち、本発明にいう気孔部平均長さ(L m) ) とは、セラミックス多孔質体内の気孔の枝分かれの頻度を表すパラメーターであるた め、この値が小さければ、より優れた気孔形状を有するセラミックス多孔質体であると 評価すること力 Sできる。
[0022] 更に、「 ε X (D /2) 2/L」の値力 セラミックス多孔質体の透過率の値と高い相関
P
性を有するため、前記式(1)及び(2)の関係を満たす本発明のセラミックス多孔質体 は、 DPFの構成材料として優れた透過性能及び気孔形状を有すると判定されるもの であるために、高気孔率でありながらも十分な強度を保持し、かつ、高捕集効率'高 透過率なものである。なお、 DPFの構成材料としてより優れた透過性能を有するセラ ミックス多孔質体を提供するといつた観点からは、「 ε X (D Z2) 2/L」の値は、 220
P
以上であることが好ましぐ 240以上であることが更に好ましい、なお、「 ε X (D /2)
Ρ
2ZL」の値は、理論的には高い値であるほど好ましいが、 DPFの構成材料として必 要な強度、及び捕集効率を発揮させる等の観点からは、実質的には 3500以下であ れは'よレ、。
[0023] 本発明のセラミックス多孔質体においては、 DPFの構成材料として十分な透過性 能を発揮させるといった観点から、その透過率が 5 X 10— 12m2以上であることが好まし く、 1 X 10— "m2以上であることが更に好ましぐ 1. 5 X 10— "m2以上であることが特に 好ましレ、。なお、本発明にいう「透過率」とは、 Darcy則により定義され、フィルタ材料 における単位面積あたりの流体の流れ易さを示す値 (但し、材料内における流体の 流れが層流である)をレ、い、下記式(3)により表される値をいう。また、本発明におい ては透過率の上限は特に限定されず、理論的には高い値であるほど好ましいが、実 質的な製造可能性や捕集効率を発揮させる等の観点からは、 2. 0 X 10— 1Qm2以下で あればよい。
P= (V X W X S) /L - - - (3)
p
[0024] (但し、上記式(3)中、 Pは透過率( X 10— 12m2)、 Vは供給流体の静粘性係数 (mPa •s)、 Wは試料 (セラミックス多孔質体)の厚さ( μ m)、 Sは供給流体の平均流速 (mZ s)、 Lは圧力損失 (kPa)を示す。 )
P
[0025] なお、本発明にいう「平均気孔径 (D ( μ m) )」とは、水銀ポロシメーターにて測定し
H
た実測値をいう。また、本発明においては L ( μ ΐη) /D ( z m)比の値の下限は特に
H
限定されないが、実質的には 1/10以上であればよい。
[0026] 本発明のセラミックス多孔質体においては、基材を構成するセラミックスが、アルミ ナ、ムライト、コーディエライト、窒化珪素、及び炭化珪素からなる群より選択される少 なくとも一種を含むことが好ましい。基材がこれらのうちの少なくとも一種を含むセラミ ックスにより構成されたセラミックス多孔質体は、 DPFを構成する材料として好適であ る。
[0027] また、本発明のセラミックス多孔質体においては、 4点曲げ強度が lOMPa以上であ ること力 十分な強度を発揮することができるために好ましぐ 12MPa以上であること が更に好ましぐ 15MPa以上であることが特に好ましい。なお、本発明においては、 4点曲げ強度の上限は特に限定されないが、実質的な製造可能性等の観点からは 1 OOMPa以下であればよレヽ。
[0028] 次に、本発明の更なる詳細について、セラミックス多孔質体の基材を構成する骨材 として炭化珪素、結合材として金属珪素を使用する場合の製造方法の一例を挙げつ つ説明する。製造に際しては、まず、骨材となる粒子状の炭化珪素と、結合材となる 金属珪素とを含む原料混合物を調製する。これらの原料には鉄 (Fe)、アルミニウム( Al)、又はカルシウム(Ca)等の微量の不純物を含有する場合もある力 そのまま使 用してもよぐ薬品洗浄等の化学的処理を施して精製したものを使用してもよい。調 製した原料混合物に、凝集しても焼成後に気孔部をインクボトル状に粗大化させるこ となぐある程度均一な気孔幅をもつ連通孔を多方面に連結するのに有効と思われ る造孔剤と、焼結助剤 (例えば、焼成しても無くならない無機マイクロバルーン (凝集 してもインクボトル状の粗大気孔を形成しなレ、)と、これを焼成時に溶融して連通孔を 形成させるアルカリ土類金属を含む化合物)とを添加した後、必要に応じて有機バイ ンダ等の成形助剤を添加し混合及び混練して成形用の坏土を得る。
[0029] 無機マイクロバルーンは、原料混合物に添加することにより造孔剤としての作用を 示すものであり、かつ、焼成しても無くならないものであるため、その一部が凝集した 場合であっても、透過率が向上しないにもかかわらず無為に気孔率 ·気孔径を増大さ せて多孔質体の強度 ·捕集効率を低下させるインクボトル状の粗大気孔を形成させ ないものである。この他、炭化珪素粒子、及び/又は金属珪素粉をスプレイドライヤ 一等で中空のバルーン(SD顆粒)とし、これを同様に、焼成しても無くならない造孔 剤として用いてもよい。なお、この際、造孔剤の全てを凝集しても焼成後に気孔部を インクボトル状に粗大化させることなぐある程度均一な気孔幅をもつ連通孔を多方 面に連結するのに有効と思われる造孔剤にしてもよぐ有機系の造孔剤と併用しても よい。得られた坏土をハニカム形状等をはじめとする所定の形状に成形し、得られた 成形体を仮焼して成形体中の有機バインダを除去 (脱脂)した後、本焼成を行うこと により、セラミックス多孔質体を得ることができる。
[0030] なお、無機マイクロバルーンを使用する場合、原料混合物に、アルカリ土類金属を 含む化合物を同時に添加してもよい。アルカリ土類金属を含む化合物とは、これに含 まれるアルカリ土類金属力 マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr )、及びバリウム(Ba)からなる群より選択される少なくとも一種である化合物をいい、 更に具体的には炭酸ストロンチウム(SrC〇)や酢酸カルシウム(Ca (CH COO) )と いった、仮焼又は本焼成の際に酸化又は分解されることにより、酸化マグネシウム( MgO)、酸化カルシウム(Ca〇)、酸化ストロンチウム(Sr〇)、及び酸化バリウム(Ba〇 )からなる群より選択される少なくとも一種のアルカリ土類金属の一酸化物となる化合 物である。この化合物を添加することにより、無機マイクロバルーンは本焼成の際に 溶融して、気孔部をインクボトル状に粗大化させることなぐある程度均一な気孔幅を もつ連通孔を多方面に連結させた高気孔率な多孔質構造を形成する。更に、この場 合、溶融物は炭化珪素粒子及び Z又は金属珪素の表面及び Z又は周辺において
、珪素(Si)、アルミニウム (A1)、及びアルカリ土類金属を含む酸化物相を形成する。 この酸化物相の適当量が、炭化珪素及び/又は金属珪素の表面及び/又は周辺 に存在することとなるため、炭化珪素粒子間のネッキングを補助し、高気孔率である にもかかわらず、高強度なセラミックス多孔質体を得ることができる。
[0031] また、凝集しても焼成後に気孔部をインクボトル状に粗大化させることなぐある程 度均一な気孔幅をもつ連通孔を多方面に連結するのに有効と思われる造孔剤のサ ィズ、添加量等を適宜調整することにより、得られるセラミックス多孔質体の気孔率、 気孔径を調節して、ディーゼルパティキュレートフィルタの構成材料として好適な多孔 質体を作製することができる。なお、無機マイクロバルーンを使用する場合、無機マイ クロバルーンの組成、アルカリ土類金属を含む化合物の種類や添加量のパラメータ によって、無機マイクロバルーンの溶融する温度、及び形成される酸化物相は変化 する。従って、これらのパラメータにより、焼成温度や、得られるセラミックス多孔質体 の酸化物相を予め知ることができるため、 目的とする DPF等の使用条件に応じて材 料設計、及びこれに対応する製造設計を柔軟に調整することができる。
[0032] また、無機マイクロバルーンを使用する場合、炭化珪素と金属珪素との合計量 100 質量部に対して、無機マイクロバルーンを、 5— 30質量部添加することが好ましぐ 1 0— 30質量部添加することが更に好ましい。 5質量部未満では造孔効果が発揮され ない場合があり、 30質量部超では形成される酸化物相の量が多すぎるために焼成 体が縮んでしまい、造孔効果があまり発揮されなくなる場合があるために好ましくない 。なお、更に気孔率を向上させたい場合は、有機系の造孔剤と併用することもできる
[0033] 更に、無機マイクロバルーンを使用する場合、焼成時に溶融させるために、アル力 リ土類金属を含む化合物を添加することが好ましい。添加する量は、セラミックス多孔 質体を焼成する温度で無機マイクロバルーンが溶融するに十分な量であって、かつ 、溶融物の粘度が低すぎて焼成体が縮んでしまわない程度の量である。具体的には 、例えば、無機マイクロバルーンとして E— SPHERES SL-75 (ENVIROSPHER ES社製)を選択した場合、無機マイクロバルーンの添カ卩量 100質量部に対して、ァ ルカリ土類金属を含む化合物を、無機マイクロバルーンに予め含有されるアルカリ土 類金属を含めて、アルカリ土類金属の一酸化物換算で 10— 100質量部添加するこ と力好ましく、特に、コーディエライト、ァノーサイト、ストロンチウム長石(SrAl Si O )
、セルシアン (BaAl Si〇)といった耐熱衝撃性、耐酸化性、及び強度向上に有効な 酸化物相(長石)を析出させるといった観点からは、無機マイクロバルーンの添カ卩量 1 00質量部に対して、アルカリ土類金属を含む化合物を、アルカリ土類金属を含む化 合物に含まれるアルカリ土類金属がマグネシウム(Mg)である場合に酸化マグネシゥ ム(MgO)に換算して 10— 25質量部、カルシウム(Ca)である場合に酸化カルシウム (Ca〇)に換算して 14一 35質量部、ストロンチウム(Sr)である場合に酸化ストロンチ ゥム(SrO)に換算して 26— 64質量部、バリウム (Ba)である場合に酸化バリウム(Ba O)に換算して 38— 95質量部、それぞれ添カ卩することが更に好ましい。なお、アル力 リ土類金属を含む化合物の添加量が、アルカリ土類金属の一酸化物換算で 10質量 部未満では無機マイクロバルーンが溶融し難くなる場合があり、 100質量部超では余 剰分が残留して焼成体が縮んでしまい、造孔効果が発揮されなくなる場合があるた めに好ましくない。
[0034] なお、アルカリ土類金属を含む化合物は、アルカリ土類金属を一種類のみ含有して もよぐ複数種類含有してもよい。アルカリ土類金属を含む化合物を添加する際は、 アルカリ土類金属を含む化合物を一種類のみ添加してもよぐ複数種類添加してもよ レ、。複数種類添加する場合は、添加する量を互いに異ならせてもよぐ等分してもよ レ、。これらのアルカリ土類金属を含む化合物と無機マイクロバルーンを坏土に共存さ せて焼成することにより、本焼成の際に無機マイクロバルーンを溶融させて、気孔部 をインクボトル状に粗大化させることなぐある程度均一な気孔幅をもつ連通孔を多方 面に連結させた高気孔率な多孔質構造を形成することができる。
[0035] このように、凝集しても焼成後に気孔部をインクボトル状に粗大化させることなぐあ る程度均一な気孔幅をもつ連通孔を多方面に連結するのに有効と思われる造孔剤 を使用することにより、有機系の造孔剤等を使用した場合に問題となる造孔剤の凝集 が生じても、粗大気孔を生じる可能性が極めて低いために、流体の漏れを生じる可 能性が低ぐ含塵流体中のパティキュレート等を効率よく捕集することができる。また、 ある程度均一な気孔幅をもつ連通孔が多方面に連結するために、同じ気孔率、平均 気孔径であっても、より優れた透過性能 (透過率)をもつセラミックス多孔質体を提供 すること力 Sできる。また、無機マイクロバルーンを使用した場合、溶融した酸化物相が 小さな微細孔部を充填するために、粒子状の炭化珪素粒子間のネッキングを補助し 、強度を向上させることができる。更に、酸化物相内に、コーディエライト、ァノーサイ ト、ストロンチウム長石(SrAl Si〇)、及びセルシアン(BaAl Si〇)等を析出させる ことにより、更に耐熱衝撃性、耐酸化性、及び強度を向上させることができる。なお、 この場合、使用するアルカリ土類金属を含む化合物は、効率的な酸化物相の形成、 及び入手'取扱い容易性等の観点からアルカリ土類金属の一酸化物や炭酸塩等が 好ましい。
[0036] なお、仮焼は金属珪素が溶融する温度より低い温度にて実施することが好ましい。
具体的には、 150— 700°C程度の所定の温度で一旦保持してもよぐまた、所定温 度域で昇温速度を 50°C/hr以下に遅くして仮焼してもよい。また、所定の温度で一 且保持する手法については、使用した有機バインダの種類と量により、一温度水準 のみの保持でも複数温度水準での保持でもよぐ更に複数温度水準で保持する場合 には、互いに保持時間を同じにしても異ならせてもよい。また、昇温速度を遅くする手 法についても同様に、ある一温度区域間のみ遅くしても複数区間で遅くしてもよぐ 更に複数区間の場合には、互いに速度を同じとしても異ならせてもよい。
[0037] 得られるセラミックス多孔質体を、これに含まれる耐火性粒子 (粒子状の炭化珪素) が金属珪素で結合された多孔質構造とするためには、焼成時に金属珪素を軟化さ せる必要がある。金属珪素の融点は 1410°Cであるので、本焼成の際の焼成温度は 1410°C以上とすることが好ましい。更に最適な焼成温度は、微構造や特性値から決 定される。但し、 1600°Cを超える温度では金属珪素の蒸発が進行し、金属珪素を介 した結合が困難となる場合があるため、焼成温度としては 1410 1600°Cが適当で あり、 1420 1580。C力 S好ましレヽ。 [0038] なお、セラミックス多孔質体の基材を構成する骨材として炭化珪素、結合材としてコ 一ディエライトを使用する場合にも、上述してきた、骨材として炭化珪素、結合材とし て金属珪素を使用する場合の製造方法の一例に準じて行えばよい。具体的には、ま ず、骨材である炭化珪素に、凝集しても焼成後に気孔部をインクボトノレ状に粗大化さ せることなぐある程度均一な気孔幅をもつ連通孔を多方面に連結するのに有効と思 われる造孔剤(例えば、焼成しても無くならない無機マイクロバルーン、及び Z又は、 炭化珪素粒子粉をスプレイドライヤー等で処理した中空のバルーン (SD顆粒))と、こ れを含むコーデイエライトイ匕原料 (マグネシウム (Mg)、アルミニウム (A1)、珪素(Si) を含む化合物)と、必要に応じて、有機バインダ及び水とを添加して、混合及び混練 し、可塑性の坏土を得る。無機マイクロバルーンを使用する場合、無機マイクロバル ーンは、コーデイエライトイ匕原料のアルミニウム (A1)源及び珪素(Si)源の一部として 用られるが、これ以外の材料を、アルミニウム (A1)源及び/又は珪素(Si)源として添 カロしてもよレ、。無機マイクロバルーン以外に用いるアルミニウム (A1)源としては、不純 物が少ないという点で酸化アルミニウム(Al O )若しくは水酸化アルミニウム (A1 (〇H
) )のいずれか又はこれらの両方を含有するもの等を挙げることができる。なお、更に 気孔率を向上させたい場合は、有機系の造孔剤と併用することもできる。
[0039] コーディエライトィヒ原料に含まれる Mg源の一部又は全部として水酸化マグネシウム
(Mg (OH) )及び/又は炭酸マグネシウム (MgCO )を用いることが好ましい。水酸 ィ匕マグネシウム(Mg (OH) )及び/又は炭酸マグネシウム(MgCO )は、焼成により 形成されたコーディエライト中に残存する成分が少なぐ得られるセラミックス多孔質 体を、より高気孔率とすることができるといった効果を示す。なお、水酸化マグネシゥ ム(Mg (OH) )及び/又は炭酸マグネシウム(MgCO )を用いることに起因する前述 の効果に実質的な影響を与えなレ、量で、タルク等をマグネシウム(Mg)源として併用 してもよい。
[0040] 得られた可塑性の坏土を適当な成形方法により、所望の形状、例えばハニカム形 状等に成形する。この成形は、押出し成形法、射出成形法、プレス成形法、セラミック ス原料を円柱状に成形後貫通孔を形成する方法等で行うことができ、中でも連続成 形が容易であるとともに、コーディエライト結晶を配向させて低熱膨張性にできる点で 押出し成形法で行うことが好ましい。
[0041] 次いで、得られた成形体を仮焼して成形体中に含まれる有機バインダを除去 (脱脂 )した後、本焼成を行う。仮焼は、コーディエライトが溶融する温度より低い温度にて 実施することが好ましい。具体的には、 300— 600°C程度の所定の温度で一旦保持 してもよく、また、所定温度域で昇温速度を 50°C/h以下に遅くして仮焼してもよい。
[0042] 仮焼の雰囲気については、酸化雰囲気でもよいが、成形体中に有機バインダが多 く含まれる場合には、仮焼中にそれが酸素で激しく燃焼して成形体温度を急激に上 昇させることがあるため、窒素、アルゴン等の不活性雰囲気で行うことによって、成形 体の異常昇温を抑制することが好ましい。この異常昇温の抑制は、熱膨張係数の大 きい(熱衝撃に弱い)原料を用いた場合に特に好ましい。なお、例えば有機バインダ の添加割合が、主原料に対して 20体積%以上である場合には、前述の不活性雰囲 気にて仮焼することが好ましレ、。
[0043] 炭化珪素がコーディエライトで結合された組織を得るためには、コーディエライトを 軟化させる必要がある。コーディエライトの軟ィ匕点は約 1400°Cであるので、本焼成の 際の焼成温度は 1400°C以上とすることが好ましい。更に最適な焼成温度は、微構 造や特性値から決定される。但し、 1500°Cを超える温度ではコーディエライトの融点 を大きく超えることになり、焼成収縮が大となって所望の微構造を得ることが困難にな ること力 、焼成温度としては 1400— 1500°Cが好ましい。
実施例
[0044] 以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定 されるものではない。
[0045] (実施例 1)
平均粒径 33 μ mの炭化珪素(SiC)原料粉末と、平均粒径 5 μ mの珪素(Si)粉末 とを、質量比で 80 : 20の組成となるように配合し、この粉末 100質量部に対して、表 1 に示す質量部のフライアッシュバルーンを添加した。次いで、上記フライアッシュバル ーンを溶融するに十分な量のアルカリ土類金属を含む化合物、及び有機バインダー としてメチルセルロース 6質量部、界面活性剤 2. 5質量部、及び水 24質量部を加え 、均一に混合及び混練して成形用の坏土を得た。得られた坏土を、押出成形機にて 外径 45mm、長さ 120mm、隔壁厚さ 0. 43mm,セル密度 100セル/平方インチ(1 6セル/ cm2)のハニカム形状に成形し、次いで、 500°Cで 5時間、脱脂のための仮 焼を行った後、非酸化雰囲気において 1450°Cで 2時間の焼成を行い、ノ、二カム構 造のセラミックス多孔質体(実施例 1)を作製した。
[0046] (実施例 2)
フライアッシュバルーンに加えて、更に有機造孔剤(デンプン(平均粒径 50 μ m) ) を 20質量部添加すること以外は、前述の実施例 1と同様の操作によりハニカム構造 のセラミックス多孔質体(実施例 2)を作製した。
[0047] (実施例 3)
平均粒径 33 z mの炭化珪素(SiC)原料粉末と、フライアッシュバルーンを含まない コーデイエライトイ匕原料粉末とを、質量比で 80 : 20の組成となるように配合し、この粉 末 100質量部に対して、表 1に示す質量部のフライアッシュバルーンを添カ卩した。次 いで、有機造孔剤(デンプン (平均粒径 50 μ ΐη) )を 20質量部、更に、有機バインダ 一としてメチルセルロース 6質量部、界面活性剤 2. 5質量部、及び水 24質量部をカロ え、均一に混合及び混練して成形用の坏土を得た。得られた坏土を、押出成形機に て外径 45mm、長さ 120mm、隔壁厚さ 0. 43mm,セル密度 100セル/平方インチ (16セル/ cm2)のハニカム形状に成形し、次いで、 500°Cで 5時間、脱脂のための 仮焼を行った後、酸化雰囲気において 1420°Cで 2時間の焼成を行い、ノ、二カム構 造のセラミックス多孔質体(実施例 3)を作製した。
[0048] (比較例 1)
フライアッシュバルーンとアルカリ土類金属を含む化合物を添カ卩しないこと以外は、 前述の実施例 1と同様の操作によりハニカム構造のセラミックス多孔質体(比較例 1) を作製した。
[0049] (比較例 2)
フライアッシュバルーンとアルカリ土類金属を含む化合物を添加しないこと、及び有 機造孔剤(デンプン (平均粒径 50 μ m) )の添加量を 30質量部とすること以外は、前 述の実施例 2と同様の操作によりハニカム構造のセラミックス多孔質体(比較例 2)を 作製した。 [0050] (比較例 3)
フライアッシュバルーンとアルカリ土類金属を含む化合物を添加しないこと、及び発 泡樹脂(アクリロニトリル系プラスチックバルーン (平均粒径 50 μ m) )を 15質量部添 加すること、並びに有機造孔剤(デンプン (平均粒径 50 μ m) )の添加量を 15質量部 とすること以外は、前述の実施例 2と同様の操作によりハニカム構造のセラミックス多 孔質体 (比較例 3)を作製した。
[0051] (比較例 4)
平均粒径 142 μ mのムライト(3A1 O .2SiO )原料粉末と、平均粒径 3 μ mの結合 材粉末(B 0、 SiO )とを、質量比で 75 : 25の組成となるように配合した。次いで、有 機バインダーとしてメチルセルロース 6質量部、界面活性剤 2. 5質量部、及び水 24 質量部を加え、均一に混合及び混練して成形用の坏土を得た。得られた坏土を、押 出成形機にて外径 45mm、長さ 120mm、隔壁厚さ 0. 43mm,セル密度 100セル Z 平方インチ(16セル/ cm2)のハニカム形状に成形し、次いで、 500°Cで 5時間、脱 脂のための仮焼を行った後、酸化雰囲気において 1000°Cで 2時間の焼成を行い、 ハニカム構造のセラミックス多孔質体 (比較例 4)を作製した。
[0052] (比較例 5)
フライアッシュバルーンとアルカリ土類金属を含む化合物を添加しないこと、及び発 泡樹脂(アクリロニトリル系プラスチックバルーン (平均粒径 50 μ m) )を 40質量部添 加すること、並びに有機造孔剤(デンプン (平均粒径 50 μ m) )の添力卩量を 40質量部 とすること以外は、前述の実施例 2と同様の操作によりハニカム構造のセラミックス多 孔質体 (比較例 5)を作製した。
[0053] [表 1] 骨材 結合材 その他添加物
刀 LJ里 刀 IJ里 斉幌カ□量 n 县m. 種類 種類 /¾县 種類
貝里 pil 街县 、 貝里 PI 芙删タ !J丄 灰 1ϋ¾: on on
糸 ou 糸 マノノイつ 7/ッノュ,ハ /\" ]1/ - \ノ u 夫 HE ' J ώ 炭化珪素 80 金属珪素 20 U フライアッシュハ'ル-ン 20 実施例 3 炭化珪素 80 コ -テ"イエラ仆 20 20 フライアッシュハ'ル-ン 20 比較例 1 炭化珪素 80 金属珪素 20
比較例 2 炭化珪素 80 金属珪素 20 30
比較例 3 炭化珪素 80 金属珪素 20 1 5 発泡樹脂 1 5 比較例 4 ムラ仆 75 B20, S i 02 25
比較例 5 炭化珪素 80 金属珪素 20 40 発泡樹脂 40
[0054] (物性値評価)
作製した各セラミックス多孔質体について、以下に示す物性値を測定した。結果を 表 2に示す。
[0055] [気孔率] :アルキメデス法にて測定した。
[0056] [平均気孔径] :水銀ポロシメーターにて測定した。
[0057] [4点曲げ強度] : JIS R1601に記載の方法に準拠し、室温条件下で測定した。
[0058] [透過率]:パームポロメーター(PMI社製)にて測定した。
[0059] [捕集効率]:単位時間当りに一定のパティキュレートを発生するエンジンを使用して その出口側に濾紙を配設し、フィルタ(セラミックス多孔質体)を付けないときに濾紙 に堆積するパティキュレートの質量を 100とした場合において、フィルタ(セラミックス 多孔質体)を付けたときに濾紙に堆積するパティキュレートの質量を差し引いた値を 捕集効率 (%)として算出した。
[0060] (画像解析)
画像解析用アプリケーション(Image—pro Plus (商品名)(MEDIA CYBERNE TICS社製))を使用して、各セラミックス多孔質体の画像解析を実施した。具体的に は、まず作製した各セラミックス多孔質体の任意の部分を切断するとともに切断面を 研磨して、その平面画像を PCに取り込み、二値化処理して、図 1 (a)に示すような白 色部分の気孔部 1と黒色部分の非気孔部 2とに抽出した。次いで、この画像上で、図 1 (b)に示すような気孔部 1の中央部を通る中央線 3を引き、気孔部平均幅 (D ( μ ηι
Ρ
) )、及び気孔部平均長さ (L ( x m) )を測定'算出した。得られた結果を表 2に示す。 また、「 ε X (D /2) 2」の値に対して透過率をプロットしたグラフを図 2に、「 ε X (D
Η Ρ
/2) 2/L」の値に対して透過率をプロットしたグラフを図 3に示す。なお、図 2、図 3中 の斜線は、プロットした点に基づレ、て描レ、た線形近似曲線である。
[表 2]
平均 ,っ気孑つ 1し 1 均幅 5 P于 づ
気孔率 ε ¾i"LB
径 DH 透過
DP 長さ L ε X(D„/2)2 ε X (Dp/2)2/L
(¾) (/ill) (/ m) (urn) (X10一12 実施例 1 54 27 12.5 8.7 9842 242 9.68 実施例 2 63.9 30 14.7 9.58 14378 360 18 実施例 3 62 31.3 15 9.84 15185 354 15.6 比較例 1 46 20 11 12.3 4600 113 2.9 比較例 2 59 24 14.6 17 8496 185 6.03 比較例 3 59 31 18 17.4 14175 275 10 比較例 4 29 44 32.5 39.7 14036 193 5.39 比較例 5 82
[0062] 表 2に示すように、実施例 1一 3のセラミックス多孔質体は、比較例 1一 5のセラミック ス多孔質体に比べて、十分な強度 ·捕集効率を示すとともに高レ、透過率を有するも のであることが明らかである。また、比較例 4のセラミックス多孔質体は、その平均気 孔径(D ( x m) )の値が大きいものであるにもかかわらず、その透過率は低いことが
Η
明らかである。これは、気孔部平均長さ(L ( z m) )の値が他のセラミックス多孔質体 に比して大きいこと、即ち気孔の枝分かれが少なぐ導入された流体が独立した 1本 の長い気孔部内を蛇行して流れなければならないためであると考えられる。これに対 して、実施例 1一 3のセラミックス多孔質体は、これらの気孔部平均長さ(L ( z m) )の 値が比較例 1一 4のセラミックス多孔質体に比して小さい、即ち気孔の枝分かれがより 細かぐ導入された流体が複数の気孔部内をより自由度の大きい状態で透過すること ができ、最も圧力損失の低くなる流路を選択できるために、高い透過率を有するため であると考えられる。
[0063] また、図 2と図 3との比較からも明らかなように、セラミックス多孔質体の透過率は、「
ε X (D /2Υ (図 2)に比して「 ε X (D /2) VLj (図 3)の方がより密接な比例関
H P
係にあることが明らかである。従って、「 ε X (D /2) 2/L」の値を指標としてセラミツ
P
タス多孔質体の透過性能の優劣を判定する本発明の評価方法によれば、対象とする セラミックス多孔質体の透過性能を、従前の評価方法ではなし得なかった良好な精 度で、簡便かつ容易に判別'評価することができる。更に、単に透過性能の優劣を評 価するだけでなぐその透過性能の優劣の要因となるパラメーターを気孔率、気孔径 だけでなぐ気孔の形状からも評価することができるために、 L≤D /2を満たすセラ
H
ミックス多孔質体を DPFの構成材料としてより優れた気孔形状をもつ多孔質体である と判別'評価することができる。即ち、本発明の評価方法を採用しつつ所定の条件を 満たすように作製したセラミックス多孔質体は、高気孔率でありながらも十分な強度を 保持し、かつ、高捕集効率 ·高透過率なものである。
産業上の利用可能性
[0064] 以上説明したように、本発明のセラミックス多孔質体は、所定の切断面の平面画像 を画像解析で二値化処理することにより、気孔部と非気孔部とに区別し、気孔部の中 央部を通る中央線を引いた場合に、気孔率(ε (%) )と、気孔部平均幅 (D ( ) )
P と、気孔部平均長さ(L ( μ ΐη) )とが所定の関係を満たすものであるため、 DPF等のフ ィルタを構成する材料として、優れた透過性能及び気孔形状を有するものであり、高 気孔率でありながらも十分な強度を保持し、かつ、高捕集効率'高透過率であるとい う特性を備えている。
一方、本発明のセラミックス多孔質体の透過性能評価方法によれば、所定の切断 面の平面画像を画像解析で二値化処理することにより、気孔部と非気孔部とに区別 し、気孔部の中央部を通る中央線を引いた場合に、気孔率( ε (%) )と、気孔部平均 幅 (D !!! 気孔部平均長さ^ ^!!^ 平均気孔径 ( z m) )とが所定の
P H
関係を満たすときに、そのセラミックス多孔質体が DPFの構成材料として優れた透過 性能及び気孔形状を有すると判定するために、高気孔率でありながらも十分な強度 を保持し、かつ、高捕集効率'高透過率なセラミックス多孔質体を製造するための指 標とすることができる。

Claims

請求の範囲
[1] 所定の端面を有するセラミックスからなる基材に、前記基材の端面間を連通するとと もに分岐を有する多数の気孔が所定の気孔率で形成されてなるセラミックス多孔質 体であって、
所定の平面で切断された前記基材の切断面の平面画像を、画像解析で二値化処 理することにより、前記気孔に由来して特定される気孔部と、前記基材に由来して特 定される非気孔部とに区別し、区別された画像上で前記気孔部の中央部を通る中央 線を引いた場合に、
前記気孔率( ε (%) )と、前記気孔部を特定する互いに対向する外形線間の、前 記中央線に直交する距離の平均値により表される気孔部平均幅 (D m) )と、前
P
記中央線上の前記分岐に由来して特定される複数の分岐点のうち互いに隣接する 隣接分岐点相互間における前記中央線の長さ、及び前記中央線の末端と前記中央 線の末端に隣接する前記分岐点との間における前記中央線の長さの平均値により 表される気孔部平均長さ(L ( x m) )と、平均気孔径 (D ( μ ΐη) )とが、下記式(1)及
Η
び(2)の関係を満たすセラミックス多孔質体。
200≤ ε X (D /2) 2/L …ひ)
p
L≤D /2 - - - (2)
H
[2] 透過率が、 5 X 10— 12m2以上である請求項 1に記載のセラミックス多孔質体。
[3] 透過率が、 1 X 10— um2以上である請求項 1に記載のセラミックス多孔質体。
[4] 前記セラミックスが、アルミナ、ムライト、コーディエライト、窒化珪素、及び炭化珪素 力 なる群より選択される少なくとも一種を含む請求項 1一 3のいずれか一項に記載 のセラミックス多孔質体。
[5] 4点曲げ強度力 lOMPa以上である請求項 1一 4のいずれか一項に記載のセラミツ タス多孔質体。
[6] 所定の端面を有するセラミックスからなる基材に、前記基材の端面間を連通するとと もに分岐を有する多数の気孔が所定の気孔率で形成されてなるセラミックス多孔質 体の、ディーゼルパティキュレートフィルタの構成材料としての透過性能の優劣、及 び前記透過性能の優劣の要因を明らかにすることができる評価方法であって、 前記セラミックス多孔質体を所定の平面で切断することにより得られる前記基材の 切断面の平面画像を、画像解析で二値化処理することにより、前記気孔に由来して 特定される気孔部と、前記基材に由来して特定される非気孔部とに区別し、区別され た画像上で前記気孔部の中央部を通る中央線を引いた場合に、
前記気孔率( ε (%))と、前記気孔部を特定する互いに対向する外形線間の、前 記中央線に直交する距離の平均値により表される気孔部平均幅 (D ( xm))と、前
P
記中央線上の前記分岐に由来して特定される複数の分岐点のうち互いに隣接する 隣接分岐点相互間における前記中央線の長さ、及び前記中央線の末端と前記中央 線の末端に隣接する前記分岐点との間における前記中央線の長さの平均値により 表される気孔部平均長さ (L( xm))と、平均気孔径 (D ( xm))とが、下記式(1)及
H
び(2)の関係を満たすときに、前記セラミックス多孔質体がディーゼルパティキュレー トフィルタの構成材料として優れた透過性能及び気孔形状を有すると判定するセラミ ックス多孔質体の透過性能評価方法。
200≤ ε X (D /2)ソ L
ρ
L≤D /2 ---(2)
H
PCT/JP2004/010473 2003-07-25 2004-07-23 セラミックス多孔質体及びその透過性能評価方法 WO2005009922A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04747861.5A EP1655274B1 (en) 2003-07-25 2004-07-23 Ceramic porous body and method for evaluating its permeability
US10/565,645 US7488366B2 (en) 2003-07-25 2004-07-23 Ceramic porous body and method for evaluating its permeability
JP2005512027A JP4805676B2 (ja) 2003-07-25 2004-07-23 セラミックス多孔質体及びその透過性能評価方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-201923 2003-07-25
JP2003201923 2003-07-25

Publications (1)

Publication Number Publication Date
WO2005009922A1 true WO2005009922A1 (ja) 2005-02-03

Family

ID=34100526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010473 WO2005009922A1 (ja) 2003-07-25 2004-07-23 セラミックス多孔質体及びその透過性能評価方法

Country Status (4)

Country Link
US (1) US7488366B2 (ja)
EP (1) EP1655274B1 (ja)
JP (1) JP4805676B2 (ja)
WO (1) WO2005009922A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009517208A (ja) * 2005-11-30 2009-04-30 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン 気体用ろ過構造体を選択する方法
WO2009122534A1 (ja) * 2008-03-31 2009-10-08 イビデン株式会社 ハニカム構造体
WO2009122532A1 (ja) * 2008-03-31 2009-10-08 イビデン株式会社 ハニカム構造体
JP2009544460A (ja) * 2006-07-21 2009-12-17 ダウ グローバル テクノロジーズ インコーポレイティド 改善されたディーゼル粒子フィルター
WO2012128149A1 (ja) * 2011-03-18 2012-09-27 日本碍子株式会社 炭化珪素質多孔体、ハニカム構造体及び電気加熱式触媒担体
JP2014087743A (ja) * 2012-10-30 2014-05-15 Ngk Insulators Ltd ハニカムフィルタ
JP2014184422A (ja) * 2013-03-25 2014-10-02 Ngk Insulators Ltd 触媒コートフィルタ及び触媒コートフィルタ用担体
JP2015178445A (ja) * 2014-03-18 2015-10-08 日本碍子株式会社 ハニカム構造体
JP2016199450A (ja) * 2015-04-14 2016-12-01 日本碍子株式会社 多孔質体の微構造解析方法、そのプログラム及び微構造解析装置
WO2018230611A1 (ja) * 2017-06-13 2018-12-20 株式会社デンソー 排ガス浄化フィルタ
WO2022202910A1 (ja) * 2021-03-26 2022-09-29 日立金属株式会社 炭化珪素質セラミックハニカム構造体及びその製造方法
WO2023176062A1 (ja) * 2022-03-15 2023-09-21 日本碍子株式会社 多孔質体の設計方法及び多孔質体の製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1914536A1 (en) * 2006-10-17 2008-04-23 Ibiden Co., Ltd. Particulate matter sensor for exhaust gas purifying apparatus
EP1914537A1 (en) * 2006-10-17 2008-04-23 Ibiden Co., Ltd. Particulate matter sensor
WO2009048994A2 (en) * 2007-10-12 2009-04-16 Dow Global Technologies Inc. Improved thermal shock resistant soot filter
FR2931366B1 (fr) * 2008-05-22 2011-01-21 Saint Gobain Ct Recherches Filtre composite sic-vitroceramique
WO2011125797A1 (ja) * 2010-04-01 2011-10-13 日立金属株式会社 セラミックハニカムフィルタ及びその製造方法
US9000199B2 (en) 2010-06-30 2015-04-07 National University Of Singapore Porous ceramic matrix
JP6502133B2 (ja) 2014-03-28 2019-04-17 日本碍子株式会社 多孔質体、ハニカムフィルタ、多孔質体の製造方法、及びハニカムフィルタの製造方法
JP6702305B2 (ja) * 2015-03-24 2020-06-03 日立金属株式会社 セラミックハニカム構造体
DE102018203225A1 (de) * 2018-03-05 2019-09-05 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben eines Partikelfilters eines Fahrzeugs, sowie Partikelfilter für eine Verbrennungskraftmaschine eines Fahrzeugs
CN108395232B (zh) * 2018-04-26 2021-01-15 武汉理工大学 一种高渗流速率的堇青石基多孔陶瓷的制备方法
DE102019123873A1 (de) * 2018-10-01 2020-04-02 Denso Corporation Abgasreinigungsfilter und Verfahren zum Herstellen desselben
CN112479714A (zh) * 2020-12-03 2021-03-12 重庆奥福精细陶瓷有限公司 一种锶长石结合碳化硅质柴油颗粒过滤器的制备方法
US20220349679A1 (en) * 2021-02-23 2022-11-03 Saint-Gobain Ceramics & Plastics, Inc. Porous ballistic armor
CN113292325B (zh) * 2021-05-29 2022-10-28 九江汇泰科技有限公司 一种颜色不黄变的多孔陶瓷及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256069A (ja) * 1993-02-26 1994-09-13 Kikusui Kagaku Kogyo Kk セラミック多孔体およびその製造方法
JP2001072478A (ja) * 1999-08-31 2001-03-21 Kyocera Corp 流体透過部材およびその製造方法
JP2001240480A (ja) * 2000-02-29 2001-09-04 Kyocera Corp 多孔質セラミック構造体およびその製造方法並びに流体透過部材

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129015A (ja) * 1984-11-24 1986-06-17 Nippon Denso Co Ltd 排出ガス浄化用フイルタおよびその製造方法
JP3548914B2 (ja) 1992-12-16 2004-08-04 イビデン株式会社 触媒担体の製造方法
JP3405083B2 (ja) * 1996-08-22 2003-05-12 宇部興産株式会社 多孔質セラミックス材料
JP4455708B2 (ja) * 2000-01-17 2010-04-21 日本碍子株式会社 ハニカム構造体及びその製造方法
JP4176278B2 (ja) * 2000-03-15 2008-11-05 株式会社成田製陶所 セラミックス多孔体及びその製造方法
ATE516065T1 (de) * 2000-06-01 2011-07-15 Corning Inc Formkörper aus cordierit
JP2003040687A (ja) * 2000-06-30 2003-02-13 Ngk Insulators Ltd ハニカムセラミックス構造体とその製造方法
JP4473438B2 (ja) * 2000-10-12 2010-06-02 日本碍子株式会社 コージェライトハニカム構造体及びその製造方法
JP4094830B2 (ja) * 2000-11-24 2008-06-04 日本碍子株式会社 多孔質ハニカムフィルター及びその製造方法
JP4464568B2 (ja) * 2001-02-02 2010-05-19 日本碍子株式会社 ハニカム構造体及びその製造方法
JP4111439B2 (ja) * 2001-03-02 2008-07-02 日本碍子株式会社 ハニカム構造体
JP4094824B2 (ja) * 2001-04-04 2008-06-04 日本碍子株式会社 ハニカム型セラミックス質フィルター
JP2002326881A (ja) * 2001-04-27 2002-11-12 Hitachi Metals Ltd 多孔質セラミックスの製造方法
JP2002356384A (ja) * 2001-06-01 2002-12-13 Asahi Glass Co Ltd 炭化ケイ素質多孔体およびその製造方法
JP3983117B2 (ja) * 2001-07-31 2007-09-26 日本碍子株式会社 ハニカム構造体及びその製造方法
JP4246425B2 (ja) * 2001-10-15 2009-04-02 日本碍子株式会社 ハニカムフィルター
US6620751B1 (en) * 2002-03-14 2003-09-16 Corning Incorporated Strontium feldspar aluminum titanate for high temperature applications
JP4398260B2 (ja) * 2002-03-29 2010-01-13 日本碍子株式会社 炭化珪素質多孔体及びその製造方法
JP2004000901A (ja) * 2002-03-29 2004-01-08 Ngk Insulators Ltd 多孔質ハニカム構造体
EP1515787A4 (en) * 2002-06-26 2006-11-29 Corning Inc ALUMINUM AND MAGNESIUM SILICATE TYPE STRUCTURES FOR DPF APPLICATIONS
US6849181B2 (en) * 2002-07-31 2005-02-01 Corning Incorporated Mullite-aluminum titanate diesel exhaust filter
JP3874270B2 (ja) * 2002-09-13 2007-01-31 トヨタ自動車株式会社 排ガス浄化フィルタ触媒及びその製造方法
US6864198B2 (en) * 2003-01-30 2005-03-08 Corning Incorporated Cordierite ceramic body and method
US7179316B2 (en) * 2003-06-25 2007-02-20 Corning Incorporated Cordierite filters with reduced pressure drop
US20060021308A1 (en) * 2004-07-29 2006-02-02 Merkel Gregory A Mullite-aluminum titanate body and method for making same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256069A (ja) * 1993-02-26 1994-09-13 Kikusui Kagaku Kogyo Kk セラミック多孔体およびその製造方法
JP2001072478A (ja) * 1999-08-31 2001-03-21 Kyocera Corp 流体透過部材およびその製造方法
JP2001240480A (ja) * 2000-02-29 2001-09-04 Kyocera Corp 多孔質セラミック構造体およびその製造方法並びに流体透過部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1655274A4 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8066798B2 (en) 2005-11-30 2011-11-29 Saint-Gobain Centre De Recherches Et D'etudes European Method for selecting a gas filtering structure
JP2009517208A (ja) * 2005-11-30 2009-04-30 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン 気体用ろ過構造体を選択する方法
JP2009544460A (ja) * 2006-07-21 2009-12-17 ダウ グローバル テクノロジーズ インコーポレイティド 改善されたディーゼル粒子フィルター
US8518855B2 (en) 2008-03-31 2013-08-27 Ibiden Co., Ltd. Honeycomb structure
WO2009122534A1 (ja) * 2008-03-31 2009-10-08 イビデン株式会社 ハニカム構造体
WO2009122532A1 (ja) * 2008-03-31 2009-10-08 イビデン株式会社 ハニカム構造体
JPWO2009122534A1 (ja) * 2008-03-31 2011-07-28 イビデン株式会社 ハニカム構造体
US8481454B2 (en) 2008-03-31 2013-07-09 Ibiden Co., Ltd. Honeycomb structure
WO2012128149A1 (ja) * 2011-03-18 2012-09-27 日本碍子株式会社 炭化珪素質多孔体、ハニカム構造体及び電気加熱式触媒担体
CN103415490A (zh) * 2011-03-18 2013-11-27 日本碍子株式会社 碳化硅质多孔体、蜂窝结构体及电加热式催化剂载体
US9440225B2 (en) 2011-03-18 2016-09-13 Ngk Insulators, Ltd. Silicon carbide porous body, honeycomb structure, and electric heating type catalyst carrier
CN103415490B (zh) * 2011-03-18 2015-12-09 日本碍子株式会社 碳化硅质多孔体、蜂窝结构体及电加热式催化剂载体
JP2014087743A (ja) * 2012-10-30 2014-05-15 Ngk Insulators Ltd ハニカムフィルタ
JP2014184422A (ja) * 2013-03-25 2014-10-02 Ngk Insulators Ltd 触媒コートフィルタ及び触媒コートフィルタ用担体
JP2015178445A (ja) * 2014-03-18 2015-10-08 日本碍子株式会社 ハニカム構造体
JP2016199450A (ja) * 2015-04-14 2016-12-01 日本碍子株式会社 多孔質体の微構造解析方法、そのプログラム及び微構造解析装置
WO2018230611A1 (ja) * 2017-06-13 2018-12-20 株式会社デンソー 排ガス浄化フィルタ
JP2019002298A (ja) * 2017-06-13 2019-01-10 株式会社デンソー 排ガス浄化フィルタ
WO2022202910A1 (ja) * 2021-03-26 2022-09-29 日立金属株式会社 炭化珪素質セラミックハニカム構造体及びその製造方法
JP7188652B1 (ja) * 2021-03-26 2022-12-13 日立金属株式会社 炭化珪素質セラミックハニカム構造体及びその製造方法
JP7215636B1 (ja) 2021-03-26 2023-01-31 日立金属株式会社 炭化珪素質セラミックハニカム構造体及びその製造方法
JP2023022129A (ja) * 2021-03-26 2023-02-14 株式会社プロテリアル 炭化珪素質セラミックハニカム構造体及びその製造方法
US11993545B2 (en) 2021-03-26 2024-05-28 Proterial, Ltd. Silicon carbide ceramic honeycomb structure and its production method
WO2023176062A1 (ja) * 2022-03-15 2023-09-21 日本碍子株式会社 多孔質体の設計方法及び多孔質体の製造方法

Also Published As

Publication number Publication date
JPWO2005009922A1 (ja) 2007-09-27
EP1655274A1 (en) 2006-05-10
JP4805676B2 (ja) 2011-11-02
US20070033912A1 (en) 2007-02-15
EP1655274B1 (en) 2013-11-27
US7488366B2 (en) 2009-02-10
EP1655274A4 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
JP4805676B2 (ja) セラミックス多孔質体及びその透過性能評価方法
JP5544882B2 (ja) チタン酸アルミニウム質セラミックハニカム構造体、その製造方法、及びそれを製造するための原料粉末
JP4111439B2 (ja) ハニカム構造体
EP1491734B1 (en) Ceramic honeycomb filter
JP4398260B2 (ja) 炭化珪素質多孔体及びその製造方法
KR101894341B1 (ko) 세라믹 허니컴 구조체 및 그 제조 방법
JP4495152B2 (ja) ハニカム構造体及びその製造方法
JP5095215B2 (ja) 多孔体の製造方法、多孔体及びハニカム構造体
JP4426459B2 (ja) 炭化珪素質多孔体及びその製造方法、並びにハニカム構造体
EP1452512A1 (en) Method for producing porous ceramic article
JP6912412B2 (ja) 炭化珪素質多孔体及びその製造方法
WO2001079138A1 (fr) Structure en nid d'abeille et son procede de production
EP2343113A1 (en) Honeycomb structure
JP2005519834A (ja) 高温用途のストロンチウム・フェルドスパー・アルミニウム・チタネート
JP6654085B2 (ja) 多孔質材料、及び多孔質材料の製造方法並びにハニカム構造体
EP2957548A1 (en) Honeycomb structure
JP2002154876A (ja) ハニカム構造体及びその製造方法
CN113613754A (zh) 蜂窝结构体及废气净化装置
JP5707203B2 (ja) ハニカム構造体
JP4900820B2 (ja) セラミックハニカムフィルタ
JP2007152342A (ja) ハニカム構造体の製造方法
JP2004250324A (ja) セラミックハニカム構造体の製造方法、およびコージェライト化原料
JP2022128501A (ja) セラミックス多孔体及びその製造方法、並びに集塵用フィルタ
WO2003099742A1 (fr) Procede pour realiser un materiau composite
JP2005047796A (ja) 窒化ケイ素質フィルタの製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005512027

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004747861

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004747861

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007033912

Country of ref document: US

Ref document number: 10565645

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10565645

Country of ref document: US