WO2022202910A1 - 炭化珪素質セラミックハニカム構造体及びその製造方法 - Google Patents

炭化珪素質セラミックハニカム構造体及びその製造方法 Download PDF

Info

Publication number
WO2022202910A1
WO2022202910A1 PCT/JP2022/013577 JP2022013577W WO2022202910A1 WO 2022202910 A1 WO2022202910 A1 WO 2022202910A1 JP 2022013577 W JP2022013577 W JP 2022013577W WO 2022202910 A1 WO2022202910 A1 WO 2022202910A1
Authority
WO
WIPO (PCT)
Prior art keywords
pore
silicon carbide
volume
honeycomb structure
ceramic honeycomb
Prior art date
Application number
PCT/JP2022/013577
Other languages
English (en)
French (fr)
Inventor
健一郎 清水
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to KR1020237018000A priority Critical patent/KR102590833B1/ko
Priority to CN202280008598.1A priority patent/CN116685386B/zh
Priority to US18/037,677 priority patent/US11993545B2/en
Priority to JP2022539770A priority patent/JP7188652B1/ja
Priority to EP22775692.1A priority patent/EP4230280A1/en
Publication of WO2022202910A1 publication Critical patent/WO2022202910A1/ja
Priority to JP2022185333A priority patent/JP7215636B1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2072Other inorganic materials, e.g. ceramics the material being particulate or granular
    • B01D39/2075Other inorganic materials, e.g. ceramics the material being particulate or granular sintered or bonded by inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0009Honeycomb structures characterised by features relating to the cell walls, e.g. wall thickness or distribution of pores in the walls
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0054Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity the pores being microsized or nanosized
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/007Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores
    • C04B38/0074Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores expressed as porosity percentage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1208Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1216Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1241Particle diameter
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00413Materials having an inhomogeneous concentration of ingredients or irregular properties in different layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5481Monomodal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths

Definitions

  • the present invention relates to a silicon carbide ceramic honeycomb structure used in a ceramic honeycomb filter and a method for manufacturing the silicon carbide ceramic honeycomb structure.
  • the NOx and PM contained in the exhaust gas of diesel engines can have a negative impact on the human body and the environment if they are released into the atmosphere.
  • a structure and a ceramic honeycomb filter for trapping PM are attached.
  • An example of a ceramic honeycomb filter for collecting PM in exhaust gas and purifying the exhaust gas is shown in FIGS. 1(a) and 1(b).
  • the ceramic honeycomb filter 100 includes a ceramic honeycomb structure 110 including porous partition walls 12 and an outer peripheral wall 11 forming a plurality of outflow-side plugged channels 13 and inflow-side plugged channels 14, channels 13, It consists of an inflow-side sealing portion 16a and an outflow-side sealing portion 16b that alternately seal the exhaust gas inflow-side end face 15a and the outflow-side end face 15b of 14 in a checkered pattern. As indicated by the dotted arrow in FIG. 1(b), the exhaust gas flows from the outflow-side sealed channel 13 opening at the exhaust-gas inflow-side end face 15a, and flows through the thin lines formed on the surface and inside of the partition wall 12.
  • Patent Document 1 describes a honeycomb structure capable of capturing even nano-sized fine particles, which comprises a ceramic powder and a binder that binds the ceramic particles that make up the ceramic powder.
  • the distance between the 10% particle size (D10) and the 90% particle size (D90) is 10 ⁇ m or more
  • the 20% particle size (D20) and the 80% particle size (D80) are logD20 /logD80 ⁇ 0.85 and having two or more peaks when the particle size distribution is measured.
  • a binder such as colloidal silica.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2018-149510 (Patent Document 2) describes a plugged honeycomb structure that is excellent in collection performance and capable of suppressing variations in pressure loss.
  • a columnar honeycomb structure portion having porous partition walls arranged to surround a plurality of cells serving as channels, and a plugging portion provided in an opening portion of each cell on the inflow end face side or the outflow end face side.
  • the pore diameter at which the cumulative pore volume is 10% is D10
  • the pore diameter at which the cumulative pore volume is 30% is D30
  • the cumulative pore volume is
  • D50 is the pore diameter at 50%
  • D70 is the pore diameter at which the cumulative pore volume is 70%
  • D90 is the pore diameter at which the cumulative pore volume is 90%
  • the pore diameter D10 is 6 ⁇ m or more
  • Honeycomb structures made with metallic silica powder are described.
  • Patent Document 3 discloses a honeycomb structure capable of suppressing an increase in pressure loss even after a catalyst is supported on partition walls, and a fluid flow path extending from a first end surface to a second end surface.
  • a columnar honeycomb structure having porous partition walls arranged to surround a plurality of cells, wherein the partition walls have a porosity of 45 to 65% and the partition walls have an average pore diameter of 15 to 25 ⁇ m
  • the pore volume ratio of pores with a pore diameter of 10 ⁇ m or less is 10% or less of the total pore volume of the partition walls, and the pore diameter is 40 ⁇ m or more.
  • the honeycomb structure has a pore volume ratio of 10% or less, and the partition walls of the honeycomb structure are made of silicon carbide, cordierite, silicon-silicon carbide composite material, cordierite-silicon carbide composite material, silicon nitride , mullite, alumina, and aluminum titanate.
  • Patent Document 4 discloses a honeycomb structure capable of improving collection performance, which is arranged so as to surround a plurality of cells serving as fluid flow paths extending from a first end surface to a second end surface. a columnar honeycomb structure portion having porous partition walls; and plugging portions provided in openings of each cell on the first end face side or the second end face side, wherein the partition walls contain silicon carbide.
  • the partition wall porosity measured by mercury porosimetry is 42 to 52%, the thickness of the partition walls is 0.15 to 0.36 mm, and the cumulative pore volume of the partition walls measured by mercury porosimetry , the ratio of pore volume with a pore diameter of 10 ⁇ m or less to the total pore volume of the partition walls is 41% or less, and the ratio of pore volume with a pore diameter of 18 to 36 ⁇ m to the total pore volume is 10% or less.
  • the pore size at which the log differential pore volume is the maximum value is in the range of 10 to 16 ⁇ m
  • the log differential pore It discloses a plugged honeycomb structure in which the half-value width of a peak including the maximum value of volume is 5 ⁇ m or less.
  • an object of the present invention is to maintain thermal shock resistance, have a PM collection rate that effectively collects nano-sized PM that greatly affects the number of PM particles, and reduce pressure loss after PM collection.
  • An object of the present invention is to provide a good silicon carbide ceramic honeycomb structure and a method for manufacturing the same.
  • the present inventors have focused on the morphology of the pores in the cross section of the partition walls of the ceramic honeycomb structure, and as a result, found that the partition walls of the honeycomb structure having a specific pore structure can achieve the above objects. and arrived at the present invention.
  • the silicon carbide ceramic honeycomb structure of the present invention has a plurality of flow paths penetrating in the axial direction partitioned by partition walls of the silicon carbide porous body, and the partition walls have a porosity of 35 to 50%.
  • the median pore diameter is 8 to 18 ⁇ m, and in the cross section of the partition wall orthogonal to the axial direction, a straight line C passing through the center of the thickness T direction of the partition wall and parallel to the surface of the partition wall, and a straight line C from the straight line C to the partition wall Draw a straight line parallel to the straight line C drawn at ⁇ T / 5 and ⁇ 2T / 5 apart in the thickness direction, and measure the length of the pore portion (pore width) and the number of pores
  • the average pore width W which is the average value of the pore widths of all the pores measured, is 10 to 25 ⁇ m, and the unit length, which is the value obtained by dividing the total number of pores measured by the total length of each straight line measured It is
  • the relationship between the pore diameter of the partition walls and the cumulative pore volume measured by the mercury intrusion method shows that the pore volume of the partition walls having a pore diameter of 20 ⁇ m or more is the total pore volume. Preferably 10-20% of the volume.
  • the relationship between the pore diameter of the partition walls and the cumulative pore volume measured by the mercury intrusion method shows that the pore volume of the pore diameters of 9 ⁇ m or less of the partition walls is the total pore volume. preferably 3 to 25% of the
  • ceramic particles containing an aggregate and a binder and an organic binder are blended, mixed and kneaded, and the resulting clay is formed into a honeycomb shape.
  • the aggregate is silicon carbide particles
  • the ceramic particles are Median particle size D50 is 35-45 ⁇ m
  • Particle diameter D10 at the cumulative particle volume equivalent to 10% of the total particle volume is 5 to 20 ⁇ m
  • Particle diameter D90 at the cumulative particle volume equivalent to 90% of the total particle volume is 50 to 65 ⁇ m
  • the binder is at least one selected from the group consisting of alumina particles, aluminum hydroxide particles, magnesium oxide particles and magnesium hydroxide particles. preferable.
  • a ceramic honeycomb can effectively trap nano-sized PM, which greatly affects the number of particles in exhaust gas, while maintaining thermal shock resistance, and has good pressure loss after PM trapping.
  • a structure can be provided.
  • FIG. 1 is a front view schematically showing an example of a ceramic honeycomb filter
  • FIG. FIG. 2 is a partial cross-sectional view parallel to the axial direction schematically showing an example of a ceramic honeycomb filter
  • 1 is a perspective view schematically showing a ceramic honeycomb segment
  • FIG. 1 is a perspective view schematically showing an example of a ceramic honeycomb filter formed by joining and integrating
  • FIG. 4 is a photograph obtained by binarizing a partition wall cross-sectional SEM photograph of the silicon carbide ceramic honeycomb structure of Example 2.
  • FIG. It is a schematic diagram for demonstrating the position which measures average pore width and the number of pores per unit length in a partition wall cross section.
  • 1 is a graph showing the particle size distribution of ceramic particles used in Examples of the present invention.
  • Silicon carbide ceramic honeycomb structure has a plurality of flow paths penetrating in the axial direction partitioned by partition walls of a silicon carbide porous body.
  • the partition wall has a porosity of 35 to 50% and a median pore diameter of 8 to 18 ⁇ m, and in a cross section of the partition wall orthogonal to the axial direction, a straight line C passing through the center of the thickness T direction of the partition wall and parallel to the surface of the partition wall.
  • the average pore width W which is the average value of the pore widths of all the pores measured, is 10 to 25 ⁇ m
  • the total length of each straight line that measures the total number of pores measured The number of pores N per unit length, which is the value divided by , is 20 to 40/mm.
  • the ceramic honeycomb structure having such a configuration can effectively trap nano-sized PM while maintaining thermal shock resistance, and the ceramic honeycomb structure has good pressure loss after PM trapping. body can be provided.
  • the average pore width W which is the average value of the pore widths measured in the cross section of the partition wall, is 10-25 ⁇ m.
  • the lower limit of the average pore width W is preferably 12 ⁇ m, and the upper limit is preferably 23 ⁇ m, more preferably 19 ⁇ m.
  • the number of pores N per unit length measured in the cross section of the partition is 20 to 40/mm. If the number of pores N per unit length is less than 20/mm, it becomes difficult to maintain a low pressure loss after collecting PM. On the other hand, if it exceeds 40/mm, the nano-sized PM collection rate is lowered.
  • the lower limit of the number of pores N per unit length is preferably 22/mm, and the upper limit is preferably 37/mm.
  • the average pore width W and the number of pores per unit length N are obtained by scanning electron microscopy (SEM) of the cross section of the partition wall in the cross section perpendicular to the axial direction of the ceramic honeycomb structure. is obtained as follows using image analysis software (Media Cybernetics Image-Pro Plus ver.7.0). First, the obtained SEM photograph is subjected to black-and-white binarization processing.
  • FIG. 4 shows an example of an image subjected to black-and-white binarization processing. Next, as shown in FIG.
  • the porosity is 35-50%. If the porosity is less than 35%, it becomes difficult to maintain a low pressure loss after collecting PM. On the other hand, if it exceeds 50%, the nano-sized PM trapping rate decreases.
  • the lower limit of porosity is preferably 38%, more preferably 40%.
  • the upper limit of porosity is preferably 49%, more preferably 48%, most preferably 46%.
  • the porosity of the partition walls is measured by a mercury intrusion method, which will be described later.
  • the median pore size is 8-18 ⁇ m. If the median pore size is less than 8 ⁇ m, it becomes difficult to maintain a low pressure loss after collecting PM. On the other hand, when it exceeds 18 ⁇ m, the nano-sized PM trapping rate is lowered.
  • the median pore size is preferably 10-15 ⁇ m.
  • the median pore diameter is the pore diameter at which the cumulative pore volume is 50% of the total pore volume in the pore distribution curve of partition walls measured by the mercury intrusion method described below.
  • the pore volume with a pore diameter of 20 ⁇ m or more is preferably 10-20% of the total pore volume. If the pore volume of 20 ⁇ m or more is less than 10% of the total pore volume, it may be difficult to maintain a low pressure drop after collecting PM. On the other hand, if it exceeds 20%, the capture rate of nano-sized PM may decrease. Preferably, it is 12-18%.
  • the pore volume with a pore diameter of 9 ⁇ m or less is preferably 3 to 25% of the total pore volume. If the pore volume with a pore diameter of 9 ⁇ m or less is less than 3% of the total pore volume, it may be difficult to maintain a low pressure loss after PM collection. On the other hand, if it exceeds 25%, the capture rate of nano-sized PM may decrease.
  • the lower limit is preferably 4% and the upper limit is preferably 23%.
  • Measurement of cumulative pore volume by mercury porosimetry is performed using, for example, Autopore III 9410 manufactured by Micromeritics.
  • the cumulative pore volume was measured by the mercury intrusion method.
  • a test piece (10 mm ⁇ 10 mm ⁇ 10 mm) cut from a ceramic honeycomb structure was placed in a measurement cell, the pressure inside the cell was reduced, and then mercury was introduced. This is done by determining the volume of mercury forced into the pores present in the specimen when the specimen is pressurized with At this time, as the pressure increases, mercury penetrates into finer pores. It is possible to obtain the relationship between the accumulated pore volume from the pore diameter of 1 to the specific pore diameter).
  • Mercury permeates sequentially from the larger pore diameter to the smaller pore diameter, and the pressure is converted to the pore diameter, and the cumulative pore volume (equivalent to the volume of mercury) integrated from the larger pore diameter side to the smaller pore diameter side ) is plotted against the pore size.
  • the pressure for introducing mercury is 0.5 psi (0.35 ⁇ 10 ⁇ 3 kg/mm 2 , equivalent to a pore diameter of about 362 ⁇ m), and the pressure of mercury is 1800 psi (1.26 kg/mm 2 , a pore diameter of about 0.1 ⁇ m equivalent to ) is the total pore volume.
  • the silicon carbide ceramic honeycomb structure of the present invention is used as honeycomb segments 211, and as shown in FIG. A silicon ceramic honeycomb structure 210 may be used.
  • the plurality of honeycomb segments 211 are joined and integrated by the joining material layer 29, they are processed so that the outer peripheral shape of the cross section perpendicular to the flow path is circular, elliptical, triangular, square, or any other desired shape.
  • a coating material is applied to the subsequent outer peripheral surface to form the outer peripheral wall 21 .
  • the exhaust gas inlet side 25a or the exhaust gas outlet side 25b of the flow path is plugged alternately in a checkered pattern by a known method to form the ceramic honeycomb filters 100, 200.
  • the sealing portions 26a and 26b may be formed in the honeycomb segments 211 before being joined, or the sealing portions 26a may be formed after joining and integrating. , 26b may be formed.
  • these sealing portions may be formed on the end surface portion of the exhaust gas inflow side or the exhaust gas outflow side of the flow path, or may be formed at a position inside the flow path from the inflow side end surface 25a or the outflow side end surface 26b. may be formed in
  • the particle diameter D10 at the cumulative particle volume is 5-20 ⁇ m
  • the particle diameter D90 at the cumulative particle volume equivalent to 90% of the total particle volume is 50-65 ⁇ m
  • the particle size distribution deviation SD log(D80)-log (D20), where D20 is the particle diameter at the cumulative particle volume equivalent to 20% of the total particle volume, D80 is the particle diameter at the cumulative particle volume equivalent to 80% of the total particle volume, and D20 ⁇ D80 ] is between 0.20 and 0.40.
  • the porosity of the partition walls is 35 to 50%
  • the median pore diameter is 8 to 18 ⁇ m
  • the average pore width W is 10 to 25 ⁇ m and per unit length in the partition wall cross section orthogonal to the axial direction.
  • a silicon carbide ceramic honeycomb structure having a number of pores N of 20 to 40/mm can be obtained.
  • the particle size of the ceramic particles can be measured, for example, using a Microtrac particle size distribution analyzer (MT3000) manufactured by Nikkiso Co., Ltd.
  • FIG. 6 shows an example of the relationship between the measured particle diameter and the cumulative particle volume (a value obtained by accumulating the volume of particles with a specific particle diameter or less).
  • D10 ( ⁇ m) is the particle diameter at the cumulative particle volume equivalent to 10% of the total particle volume
  • D50 ( ⁇ m) the median particle diameter
  • D90 ( ⁇ m) is the particle diameter at the cumulative particle volume corresponding to 90% of the total particle volume.
  • the ceramic particles have a median particle diameter D50 of 35 to 45 ⁇ m.
  • D50 median particle size
  • the lower limit of the median particle size D50 is preferably 37 ⁇ m, and the upper limit is preferably 43 ⁇ m.
  • the D10 of the ceramic particles is 5-20 ⁇ m. If D10 is less than 5 ⁇ m, the ratio of micropores that deteriorate the pressure loss characteristics increases among the pores formed in the partition walls, which is not preferable. On the other hand, if it exceeds 20 ⁇ m, it may be difficult to effectively collect nano-sized PM.
  • the lower limit of D10 is preferably 7 ⁇ m and the upper limit is preferably 18 ⁇ m.
  • the D90 of ceramic particles is 50-65 ⁇ m.
  • D90 is less than 50 ⁇ m, it becomes difficult to maintain low pressure loss when PM is trapped.
  • the nano-sized PM trapping rate is lowered.
  • the lower limit of D90 is preferably 52 ⁇ m and the upper limit is 63 ⁇ m.
  • SD log(D80) - log(D20), where D20 is the particle diameter in the cumulative particle volume equivalent to 20% of the total particle volume, D80 is the 80% of the total particle volume. % and D20 ⁇ D80] is 0.20 to 0.40. If the SD is less than 0.20, the ratio of micropores among the pores formed in the partition walls increases, making it difficult to maintain a low pressure drop when PM is trapped. On the other hand, if it exceeds 0.40, the ratio of coarse pores, which lowers the capture rate of nano-sized PM, increases, which is not preferable.
  • the lower limit of SD is preferably 0.22 and the upper limit is preferably 0.38.
  • the binder is preferably at least one selected from the group consisting of alumina particles, aluminum hydroxide particles, magnesium oxide particles, and magnesium hydroxide particles.
  • organic binders examples include methylcellulose, ethylcellulose, ethylmethylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose, hydroxyethylcellulose, hydroxymethylcellulose, and hydroxyethylethylcellulose. Among these, it is preferable to use hydroxypropylmethylcellulose and/or methylcellulose.
  • the organic binder is preferably contained in an amount of 5 to 15% by mass with respect to 100% by mass of the forming raw material (total of silicon carbide particles and binder).
  • a plastic clay is formed by blending ceramic particles containing aggregates and binders with an organic binder, adding water to the mixed raw materials, and kneading them.
  • the content of water is adjusted so as to provide a moldable clay hardness, and is preferably 20 to 50% by mass based on the forming raw material.
  • the formed clay is extruded from a known honeycomb structure forming mold by a known extrusion method to form a honeycomb structure formed body. After drying the formed body, the end face, outer circumference, etc. are processed as necessary, and the body is fired in an oxidizing atmosphere at a temperature range of 1200 to 1350° C. to produce a silicon carbide ceramic honeycomb structure.
  • the drying method is not particularly limited, but examples include hot air drying, microwave heating drying, and high frequency heating drying.
  • binder particles at least one selected from the group consisting of alumina particles, aluminum hydroxide particles, magnesium oxide particles, and magnesium hydroxide particles
  • sintering can be performed at a relatively low sintering temperature in this manner, the sintering cost for forming the bonding layer can be kept lower than in the conventional art. If the temperature is less than 1200° C., the bonding between the silicon carbide particles and the binder phase becomes insufficient and sufficient strength cannot be obtained. On the other hand, if the temperature exceeds 1350°C, the thermal shock resistance is lowered. Moreover, since the firing is performed in an oxidizing atmosphere, an increase in cost in the firing process can be suppressed.
  • Examples 1-5 Silicon carbide particles having particle diameters shown in Table 1 and particles other than silicon carbide in the amounts shown in Table 1 were blended and mixed together with hydroxypropylmethyl cellulose as an organic binder. Water is added to the mixed raw materials and kneaded to form a plastic clay, which is extruded from a mold for forming a honeycomb structure using a screw forming machine to obtain a square outer shape with a side of 34 mm and a length. A 304 mm honeycomb structure molded body was molded.
  • Comparative Examples 1 and 7 The types and amounts of silicon carbide particles and binder particles were changed as shown in Table 1, and after the compact was dried with hot air, a degreasing process was added at 550°C for 3 hours, followed by argon at a maximum temperature of 1450°C. Silicon carbide ceramic honeycomb structures of Comparative Examples 1 and 7 were obtained in the same manner as in Example 1, except that they were fired in the atmosphere for 2 hours.
  • Comparative Examples 2-6 The types and amounts of the silicon carbide particles and binder particles were changed as shown in Table 1, and honeycomb structure molded bodies were formed in the same manner as in Example 1. Silicon carbide ceramic honeycomb structures of Comparative Examples 2 to 6 were obtained in the same manner as in Example 1, except that in Comparative Example 3 the firing was performed at a maximum temperature of 1400° C. in an oxidizing atmosphere.
  • Average pore width and number of pores per unit length are measured as follows. A cross section of the partition walls in a cross section perpendicular to the axial direction of the ceramic honeycomb structure is imaged with a scanning electron microscope (SEM) at a magnification of 200 times. The captured SEM photograph is measured with image analysis software (Image-Pro Plus ver.7.0 manufactured by Media Cybernetics). Specifically, the captured SEM photograph is subjected to black-and-white binarization processing shown in FIG. 4 using image analysis software. Then, as shown in FIG.
  • Porosity and median pore diameter were measured by a mercury intrusion method.
  • a test piece (10 mm ⁇ 10 mm ⁇ 10 mm) cut from a ceramic honeycomb structure was placed in a measurement cell of Autopore III manufactured by Micromeritics. The relationship between the pressure during pressing and the volume of mercury forced into the pores existing in the test piece was obtained. The pressure is converted to a pore diameter, and the cumulative pore volume (corresponding to the volume of mercury) integrated from the larger pore diameter side to the smaller pore diameter side is plotted against the pore diameter, and the pore diameter and the cumulative pore volume are plotted.
  • plugging material slurries made of silicon carbide particles were applied so as to alternately plug the channel ends of the silicon carbide ceramic honeycomb structures of Examples 1 to 5 and Comparative Examples 1 to 7. After filling, the plugging material slurry was dried to form a sealed portion.
  • a silicon carbide ceramic honeycomb structure in which a sealing portion is formed is used as a honeycomb segment, a bonding material composed of silicon carbide particles and colloidal silica is applied to the outer peripheral surface of the honeycomb segment, and 6 pieces ⁇ 6 layers are joined and integrated, The outer peripheral portion was removed so that the outer peripheral shape of the cross section perpendicular to the axial direction was circular.
  • the removed outer periphery is coated with a skin material made of amorphous silica and colloidal silica and dried to form an outer peripheral wall.
  • Bonded silicon carbide ceramic honeycomb filters of Examples 1-5 and Comparative Examples 1-7 having a cell density of 300 cpsi (46.5 cells/cm 2 ) were obtained. Two identical ceramic honeycomb filters were manufactured.
  • the pressure loss is (x) when exceeding 2.8 kPa, ( ⁇ ) when exceeding 2.5 kPa and 2.8 kPa or less, ( ⁇ ) when exceeding 2.3 kPa and 2.5 kPa or less, and 2.3 kPa or less ( ⁇ ) was evaluated as the pressure loss after PM collection.
  • PM collection rate based on the number of particles after collection Then, while feeding combustion soot with an average particle size of 0.11 ⁇ m at a rate of 1.3 g/h, the number of combustion soot particles flowing into the honeycomb filter and the number of combustion soot particles flowing out of the honeycomb filter per minute were counted by SMPS. (Scanning Mobility Particle Sizer) (TIS model 3936), the number of particles Nin of combustion soot flowing into the honeycomb filter and outflowing from the honeycomb filter in 1 minute from 40 minutes to 41 minutes after the start of feeding The PM collection rate was obtained from the number of particles Nout of the combusted soot by the formula: (Nin-Nout)/Nin. PM collection rate is 98% or more ( ⁇ ), ( ⁇ ) when 96% or more and less than 98% ( ⁇ ) when 95% or more and less than 96%, and If less than 95% ( ⁇ ) was evaluated as the PM collection rate after PM collection.
  • the ceramic honeycomb filters of Examples 1 to 5 whose porosity, median pore diameter, average pore width in the cross section of partition walls, and number of pores are within the scope of the present invention, meet these requirements. Compared to the ceramic honeycomb filters of Comparative Examples 1 to 7, which are out of the range of It turns out that it is good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Geometry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

炭化珪素質多孔質体の隔壁により仕切られた軸方向に貫通する複数の流路を有する炭化珪素質セラミックハニカム構造体であって、前記隔壁の気孔率が35~50%、メジアン細孔径が8~18μmであり、前記軸方向に直交する前記隔壁の断面において、前記隔壁の厚さT方向の中心を通り前記隔壁の表面に平行な直線C、並びに前記直線Cから前記隔壁の厚さ方向に±T/5及び±2T/5離れた位置に引いた直線Cに平行な直線を引き、各直線が横切る気孔部分の長さ(気孔幅)及び気孔の数を所定の長さについて測定したとき、測定した全ての気孔の気孔幅の平均値である平均気孔幅Wが10~25μm、及び測定した気孔の総数を測定した各直線の全長さで割った値である単位長さ当たりの気孔数Nが20~40個/mmであることを特徴とする炭化珪素質セラミックハニカム構造体。

Description

炭化珪素質セラミックハニカム構造体及びその製造方法
 本発明は、セラミックハニカムフィルタに用いられる炭化珪素質セラミックハニカム構造体、及び前記炭化珪素質セラミックハニカム構造体の製造方法に関する。
 ディーゼルエンジンの排気ガス中に含まれるNOxやPMが大気中に放出されると人体や環境に悪影響を与えるおそれがあるため、排気装置としてディーゼルエンジンの排気管の途中に、NOx触媒を担持したハニカム構造体と、PMを捕集するためのセラミックハニカムフィルタを装着することが従来から行われている。排気ガス中のPMを捕集し排気ガスを浄化するためのセラミックハニカムフィルタの一例を図1(a)及び図1(b)に示す。セラミックハニカムフィルタ100は、複数の流出側封止流路13、及び流入側封止流路14を形成する多孔質の隔壁12と外周壁11とからなるセラミックハニカム構造体110と、流路13、14の排気ガス流入側端面15a及び流出側端面15bを市松模様に交互に封止する流入側封止部16a及び流出側封止部16bとからなる。排気ガスは、図1(b)に点線矢印で示すように、排気ガス流入側端面15aに開口している流出側封止流路13から流入し、隔壁12の表面及び内部に形成された細孔からなる連通孔を通過し、流入側封止流路14から排出される。排気ガスが隔壁12に形成された連通孔を通過する際に、排気ガス中のPMが捕集され排気ガスの浄化が行われる。捕集されたPMは、その体積が所定の量になると燃焼して再生される。このようなセラミックハニカム構造体は、PM中に含まれる、特にナノサイズの粒子の捕集性能をより向上させることが重要となってきている。また、排気ガス中の有毒なガス成分を浄化するために、多孔質の隔壁に触媒を担持することが行われている。セラミックハニカム構造体の構成材料として、耐熱衝撃性に優れる炭化珪素(SiC)粒子のような耐火性粒子を使用することが知られている。
 例えば、特開2009-196104号(特許文献1)は、ナノサイズの微細粒子までも捕集できるハニカム構造体として、セラミックス粉末と、前記セラミックス粉末を構成するセラミックス粒子同士を結合する結合材とを有し、前記セラミックス粉末が、10%粒径(D10)と90%粒径(D90)との間隔が10μm以上であり、20%粒径(D20)と80%粒径(D80)とがlogD20/logD80<0.85を満たし、粒径分布を測定したときに2つ以上のピークを有することを特徴とする多孔質セラミックスからなるハニカム構造体を開示しており、セラミックス粉末として、炭化珪素及び窒化珪素の少なくとも一種と、コロイダルシリカ等の結合材とを用いると記載している。
 特開2018-149510号(特許文献2)は、捕集性能に優れるとともに、圧力損失のばらつきの発生を抑制することができる目封止ハニカム構造体として、流入端面から流出端面まで延びる流体の流路となる複数のセルを取り囲むように配置された多孔質の隔壁を有する柱状のハニカム構造部と、各セルの流入端面側又は流出端面側の開口部に配設された目封止部とを備え、水銀圧入法によって測定された隔壁の累積細孔容積において、累積細孔容積が10%となる細孔径をD10、累積細孔容積が30%となる細孔径をD30、累積細孔容積が50%となる細孔径をD50、累積細孔容積が70%となる細孔径をD70、及び累積細孔容積が90%となる細孔径をD90としたとき、細孔径D10が6μm以上であり、細孔径D90が58μm以下であり、かつ式(1):0.35≦(D70-D30)/D50≦1.5の関係を満たす目封止ハニカム構造体を開示しており、実施例として、炭化珪素粉末と金属珪粉末とで製造されたハニカム構造体を記載している。
 特開2019-150737号(特許文献3)は、隔壁に触媒を担持した後においても圧力損失の上昇を抑制することができるハニカム構造体として、第一端面から第二端面まで延びる流体の流路となる複数のセルを取り囲むように配置された多孔質の隔壁を有する柱状のハニカム構造部を備え、前記隔壁の気孔率が45~65%であり、前記隔壁の平均細孔径が15~25μmであり、水銀圧入法によって測定された前記隔壁の累積細孔容積において、隔壁の総細孔容積に対して、細孔径が10μm以下の細孔容積率が10%以下であり、細孔径が40μm以上の細孔容積率が10%以下であるハニカム構造体を開示しており、ハニカム構造体の隔壁が、炭化珪素、コージェライト、珪素-炭化珪素複合材料、コージェライト-炭化珪素複合材、窒化珪素、ムライト、アルミナ、チタン酸アルミニウムからなる群から選ばれた少なくとも1種の材料からなると記載している。
 特開2018-122261号(特許文献4)は、捕集性能を向上させることができるハニカム構造体として、第一端面から第二端面まで延びる流体の流路となる複数のセルを取り囲むように配置された多孔質の隔壁を有する柱状のハニカム構造部と、各セルの第一端面側又は第二端面側の開口部に配設された目封止部とを備え、前記隔壁が炭化珪素を含む材料から構成され、水銀圧入法によって測定された隔壁の気孔率が42~52%であり、隔壁の厚さが0.15~0.36 mmであり、水銀圧入法によって測定された前記隔壁の累積細孔容積において、隔壁の全細孔容積に対する細孔径が10μm以下の細孔容積の比率が41%以下であり、全細孔容積に対する細孔径が18~36μmの細孔容積の比率が10%以下であり、横軸を細孔径とし、縦軸をlog微分細孔容積とした隔壁の細孔径分布において、log微分細孔容積が最大値となる細孔径が10~16μmの範囲にあり、log微分細孔容積の最大値を含むピークの半値幅が5μm以下である目封止ハニカム構造体を開示しており、実施例として、炭化珪素粉末と金属珪粉末とで製造されたハニカム構造体を記載している。
 しかしながら、特許文献1~4に記載されたセラミックハニカム構造体においては、排ガス中の粒子数量に大きく影響するナノサイズのPMを有効に捕集することができない場合があるとともに、PM捕集後の圧力損失が十分でない場合があり、さらなる改善が望まれている。
 従って、本発明の目的は、耐熱衝撃性を維持しつつ、PM粒子数量に大きく影響するナノサイズのPMを有効に捕集するPM捕集率を有し、かつPM捕集後の圧力損失が良好な炭化珪素質セラミックハニカム構造体、及びその製造方法を提供することにある。
 上記目的に鑑み、本発明者は、セラミックハニカム構造体の隔壁断面における気孔の形態に着目して鋭意検討した結果、ハニカム構造体の隔壁が特定の気孔構造を有することにより、前記目的が達成できることを見出し、本発明に想到した。
 すなわち、本発明の炭化珪素質セラミックハニカム構造体は、炭化珪素質多孔質体の隔壁により仕切られた軸方向に貫通する複数の流路を有し、前記隔壁の気孔率が35~50%、メジアン細孔径が8~18μmであり、前記軸方向に直交する前記隔壁の断面において、前記隔壁の厚さT方向の中心を通り前記隔壁の表面に平行な直線C、並びに前記直線Cから前記隔壁の厚さ方向に±T/5及び±2T/5離れた位置に引いた直線Cに平行な直線を引き、各直線が横切る気孔部分の長さ(気孔幅)及び気孔の数を所定の長さについて測定したとき、測定した全ての気孔の気孔幅の平均値である平均気孔幅Wが10~25μm、及び測定した気孔の総数を測定した各直線の全長さで割った値である単位長さ当たりの気孔数Nが20~40個/mmであることを特徴とする。
 本発明の炭化珪素質セラミックハニカム構造体において、水銀圧入法によって測定された前記隔壁の細孔径と累積細孔容積との関係において、前記隔壁の細孔径が20μm以上の細孔容積が全細孔容積の10~20%であるのが好ましい。
 本発明の炭化珪素質セラミックハニカム構造体において、水銀圧入法によって測定された前記隔壁の細孔径と累積細孔容積との関係において、前記隔壁の細孔径9μm以下の細孔容積が全細孔容積の3~25%であるのが好ましい。
 前記炭化珪素質セラミックハニカム構造体を製造する本発明の方法は、骨材と結合材とを含むセラミックス粒子と、有機バインダーとを配合し、混合、混練して得られた坏土をハニカム形状に押出成形し、得られた成形体を乾燥後、焼成して製造する方法であって、
前記骨材が炭化珪素粒子であり、
前記セラミックス粒子は、
メジアン粒子径D50が35~45μm、
粒子径と累積粒子体積との関係を示す曲線において、
 全粒子体積の10%に相当する累積粒子体積での粒子径D10が5~20μm、
 全粒子体積の90%に相当する累積粒子体積での粒子径D90が50~65μm、
 粒度分布偏差SD[ただし、SD=log(D80)-log(D20)であり、D20は全粒子体積の20%に相当する累積粒子体積での粒子径、D80は全粒子体積の80%に相当する累積粒子体積での粒子径でありD20<D80である]が0.20~0.40であることを特徴とする。
 本発明の炭化珪素質セラミックハニカム構造体の製造方法において、前記結合材は、アルミナ粒子、水酸化アルミニウム粒子、酸化マグネシウム粒子、水酸化マグネシウム粒子からなる群から選ばれた少なくとも1種であるのが好ましい。
 本発明によれば、耐熱衝撃性を維持しつつ、排ガス中の粒子数量に大きく影響するナノサイズのPMを有効に捕集することができるとともに、PM捕集後の圧力損失が良好なセラミックハニカム構造体を提供することができる。
セラミックハニカムフィルタの一例を模式的に示す正面図である。 セラミックハニカムフィルタの一例を模式的に示す軸方向に平行な部分断面図である。 セラミックハニカムセグメントを模式的に示す斜視図である。 接合一体化して形成されたセラミックハニカムフィルタの一例を模式的に示す斜視図である。 実施例2の炭化珪素質セラミックハニカム構造体の隔壁断面SEM写真を2値化処理した写真である。 隔壁断面において、平均気孔幅、及び単位長さ当たりの気孔数を測定する位置を説明するための模式図である。 本発明の実施例で使用したセラミックス粒子の粒度分布を示すグラフである。
 以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。
[1]炭化珪素質セラミックハニカム構造体
 本発明の炭化珪素質セラミックハニカム構造体は、炭化珪素質多孔質体の隔壁により仕切られた軸方向に貫通する複数の流路を有し、前記隔壁の気孔率が35~50%、メジアン細孔径が8~18μmであり、前記軸方向に直交する前記隔壁の断面において、前記隔壁の厚さT方向の中心を通り前記隔壁の表面に平行な直線C、並びに前記直線Cから前記隔壁の厚さ方向に±T/5及び±2T/5離れた位置に引いた直線Cに平行な直線を引き、各直線が横切る気孔部分の長さ(気孔幅)及び気孔の数を所定の長さについて測定したとき、測定した全ての気孔の気孔幅の平均値である平均気孔幅Wが10~25μm、及び測定した気孔の総数を測定した各直線の全長さで割った値である単位長さ当たりの気孔数Nが20~40個/mmである。
 セラミックハニカム構造体がこのような構成を有することにより、耐熱衝撃性を維持しつつ、ナノサイズのPMを有効に捕集することができるとともに、PM捕集後の圧力損失が良好なセラミックハニカム構造体を提供することができる。
 隔壁の断面において測定された気孔幅の平均値である平均気孔幅Wは10~25μmである。平均気孔幅Wが10μm未満の場合、PM捕集後の低い圧力損失を維持し難くなる。一方、25μmを超える場合ナノサイズのPM捕集率が低下する。平均気孔幅Wの下限は、好ましくは12μmであり、上限は、好ましくは23μm、より好ましくは19である。
 また、隔壁の断面において測定された単位長さ当たりの気孔数Nは20~40個/mmである。単位長さ当たりの気孔数Nが20個/mm未満の場合、PM捕集後の低い圧力損失を維持し難くなる。一方、40個/mmを超える場合、ナノサイズのPM捕集率が低下する。単位長さ当たりの気孔数Nの下限は、好ましくは22個/mmであり、上限は、好ましくは37個/mmである。
 ここで、平均気孔幅Wと単位長さ当たりの気孔数Nは、セラミックスハニカム構造体の軸方向に直交する断面における隔壁の断面を走査型電子顕微鏡(SEM)で撮像し、得られたSEM写真から画像解析ソフト(Media Cybernetics 社製 Image-Pro Plus ver.7.0)を用いて以下のようにして求める。まず得られたSEM写真に白黒2値化処理を施す。図4に白黒2値化処理を施した画像の一例を示す。次に、図5に示すように、撮像された隔壁12の断面において、隔壁の厚さT方向の中心を通り隔壁の表面に平行な直線Cと、この直線Cから隔壁の厚さ方向に±T/5及び±2T/5離れた位置に直線Cに平行な直線を引く。各直線が横切る気孔部分の長さである気孔幅と、各直線が横切る気孔の数とを所定の長さについて測定したとき、測定した全ての気孔幅の合計長さを、測定した気孔の総数で割った値を平均気孔幅Wとし、測定した気孔の総数を、測定した各直線の全長さで割った値を単位長さ当たりの気孔数Nとした。
 気孔率は35~50%である。気孔率が35%未満の場合、PM捕集後の低い圧力損失を維持し難くなる。一方、50%を超える場合、ナノサイズのPM捕集率が低下する。気孔率の下限は好ましくは38%、より好ましくは40%である。一方、気孔率の上限は好ましくは49%、より好ましくは48%、最も好ましくは46%である。なお、隔壁の気孔率は後述の水銀圧入法で測定する。
 メジアン細孔径は8~18μmである。メジアン細孔径が8μm未満の場合、PM捕集後の低い圧力損失を維持し難くなる。一方、18μmを超える場合、ナノサイズのPM捕集率が低下する。メジアン細孔径は、好ましくは10~15μmである。なお、メジアン細孔径は、後述する水銀圧入法により測定された隔壁の細孔分布曲線において、累積細孔容積が全細孔容積の50%となる細孔径である。
 細孔径が20μm以上の細孔容積は全細孔容積の10~20%であるのが好ましい。20μm以上の細孔容積が全細孔容積の10%未満の場合、PM捕集後の低い圧力損失を維持し難くなる場合がある。一方、20%を超える場合、ナノサイズのPM捕集率が低下する場合がある。好ましくは、12~18%である。
 細孔径が9μm以下の細孔容積は全細孔容積の3~25%であるのが好ましい。細孔径が9μm以下の細孔容積が全細孔容積の3%未満の場合、PM捕集後の低い圧力損失を維持し難くなる場合がある。一方、25%を超える場合、ナノサイズのPM捕集率が低下する場合がある。下限は好ましくは4%、上限は好ましくは23%である。
 水銀圧入法による累積細孔容積の測定は、例えば、Micromeritics社製のオートポアIII 9410を使用して行う。水銀圧入法による累積細孔容積の測定は、セラミックハニカム構造体から切り出した試験片(10 mm×10 mm×10 mm)を測定セル内に収納し、セル内を減圧した後、水銀を導入して加圧したときに、試験片内に存在する細孔中に押し込まれた水銀の体積を求めることによって行う。この時加圧力が大きくなればなるほど、より微細な細孔にまで水銀が浸入するので、加圧力と細孔中に押し込まれた水銀の体積との関係から、細孔径と累積細孔容積(最大の細孔径から特定の細孔径までの細孔容積を累積した値)の関係を求めることができる。水銀の浸入は細孔径の大きいものから小さいものへと順次行われ、前記圧力を細孔径に換算し、細孔径の大きい側から小さい側に向かって積算した累積細孔容積(水銀の体積に相当)を細孔径に対してプロットする。本願において、水銀を導入する圧力は0.5 psi(0.35×10-3 kg/mm2、細孔径約362μmに相当)とし、水銀の加圧力が1800 psi(1.26kg/mm2、細孔径約0.1μmに相当)での累積細孔容積を全細孔容積とする。
 図2に示すように、本発明の炭化珪素質セラミックハニカム構造体をハニカムセグメント211とし、図3に示すように、複数のハニカムセグメント211を接合材層29によって接合一体化して、接合された炭化珪素質セラミックハニカム構造体210としても良い。複数のハニカムセグメント211を接合材層29によって接合一体化した後は、その流路に直交する断面の外周形状が円形、楕円形、三角形、四角形、その他所望の形状となるように加工し、加工後の外周面にコーティング材を被覆し、外周壁21を形成する。
 本発明の炭化珪素質セラミックハニカム構造体110,210は、その流路の排気ガス流入側25a又は排気ガス流出側25bを公知の方法で交互に市松模様となるように目封止してセラミックハニカムフィルタ100,200とすることができる。ここで、接合一体化して形成されたセラミックハニカムフィルタ200の場合、接合される前のハニカムセグメント211に封止部26a、26bが形成されていても良いし、接合一体化した後に封止部26a、26bが形成されていても良い。さらに、これらの封止部は流路の排気ガス流入側又は排気ガス流出側の端面部に形成されていても良いし、流入側端25a面又は流出側端面26bから流路内部に入った位置に形成されていても良い。
[2]炭化珪素質セラミックハニカム構造体の製造方法
 本発明の炭化珪素質セラミックハニカム構造体の製造方法について、その一実施形態を説明する。
 骨材と結合材とを含むセラミックス粒子と、有機バインダーとを配合し、混合、混練して得られた坏土をハニカム形状に押出成形し、得られた成形体を乾燥後、焼成して製造する。ここで、前記骨材が炭化珪素粒子であり、前記セラミックス粒子は、メジアン粒子径D50が35~45μm、粒子径と累積粒子体積との関係を示す曲線において、全粒子体積の10%に相当する累積粒子体積での粒子径D10が5~20μm、全粒子体積の90%に相当する累積粒子体積での粒子径D90が50~65μm、粒度分布偏差SD[ただし、SD=log(D80)-log(D20)であり、D20は全粒子体積の20%に相当する累積粒子体積での粒子径、D80は全粒子体積の80%に相当する累積粒子体積での粒子径でありD20<D80である]が0.20~0.40である。
 このような方法により、隔壁の気孔率が35~50%、及びメジアン細孔径が8~18μmであり、軸方向に直交する隔壁断面において、平均気孔幅Wが10~25μm、及び単位長さ当たりの気孔数Nが20~40個/mmである炭化珪素質セラミックハニカム構造体を得ることができる。
 ここで、セラミックス粒子の粒子径は、例えば、日機装(株)製マイクロトラック粒度分布測定装置(MT3000)を用いて測定することができる。測定された粒子径と累積粒子体積(特定の粒子径以下の粒子体積を累積した値)との関係の一例を図6に示す。図6に示す曲線において、全粒子体積の10%に相当する累積粒子体積での粒子径をD10(μm)、全粒子体積の50%に相当する累積粒子体積での粒子径をメジアン粒子径(D50)(μm)、及び全粒子体積の90%に相当する累積粒子体積での粒子径をD90(μm)とする。また、粒度分布偏差SDは、SD=log(D80)-log(D20)で表され、D20は、全粒子体積の20%に相当する累積粒子体積での粒子径(μm)を示し、D80は同様に全粒子体積の80%に相当する累積粒子体積での粒子径(μm)を示す。なおD20<D80である。
 前記セラミックス粒子は、メジアン粒子径D50が35~45μmである。メジアン粒子径D50が35μm未満の場合、隔壁に形成される細孔径が小さくなり、PMが捕集された際の低い圧力損失を維持し難くなる。一方、45μmを超える場合、隔壁に形成される細孔径が大きくなり、ナノサイズのPM捕集率が低下する。メジアン粒子径D50の下限は好ましくは37μm、上限は好ましくは43μmである。
 セラミックス粒子のD10は5~20μmである。D10が5μm未満の場合、隔壁に形成される細孔のうち、圧力損失特性を悪化させる微小細孔の割合が多くなるので好ましくない。一方、20μmを超える場合、ナノサイズのPMが有効に捕集され難くなる場合がある。D10の下限は好ましくは7μm、上限は好ましくは18μmである。
 セラミックス粒子のD90は50~65μmである。D90が50μm未満の場合、PMが捕集された際の低い圧力損失を維持し難くなる。一方、65μmを超える場合、ナノサイズのPM捕集率が低下する。D90の下限は好ましくは、52μm、上限は63μmである。
 セラミックス粒子の粒度分布偏差SD[ただし、SD=log(D80)-log(D20)であり、D20は全粒子体積の20%に相当する累積粒子体積での粒子径、D80は全粒子体積の80%に相当する累積粒子体積での粒子径でありD20<D80である]は0.20~0.40である。SDが0.20未満の場合、隔壁に形成される細孔の内微小細孔の割合が多くなり、PMが捕集された際の低い圧力損失を維持し難くなる。一方、0.40を超える場合、ナノサイズのPM捕集率を低下させる粗大細孔の割合が多くなるので好ましくない。SDの下限は好ましくは0.22、上限は好ましくは0.38である。
 前記結合材は、アルミナ粒子、水酸化アルミニウム粒子、酸化マグネシウム粒子、及び水酸化マグネシウム粒子からなる群から選ばれた少なくとも1種であるのが好ましい。
 有機バインダーは、メチルセルロース、エチルセルロース、エチルメチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルエチルセルロース等を挙げることができる。これらの中でも、ヒドロキシプロピルメチルセルロース、及び/又はメチルセルロースを用いるのが好ましい。有機バインダーは、成形原料(炭化珪素粒子と結合材の合計)100質量%に対して5~15質量%含有するのが好ましい。
 骨材と結合材とを含むセラミックス粒子と、有機バインダーとを配合し、混合した原料に水を添加して混練して可塑性の坏土を形成する。水の含有量は、成形可能な坏土の硬度となるように調整されるが、成形原料に対して20~50質量%であるのが好ましい。
 形成された坏土を公知のハニカム構造体成形用の金型から、公知の押出成形法により押出成形して、ハニカム構造の成形体を形成する。この成形体を乾燥後、必要により端面、外周等の加工を施し、1200~1350℃の温度範囲で、酸化雰囲気で焼成することにより炭化珪素質セラミックハニカム構造体を製造する。
 乾燥の方法は、特に限定されないが、例えば、熱風乾燥、マイクロ波加熱乾燥、高周波加熱乾燥等の方法を挙げることができる。
 1200~1350℃の温度範囲で焼成を行うことで、結合材粒子(アルミナ粒子、水酸化アルミニウム粒子、酸化マグネシウム粒子、及び水酸化マグネシウム粒子からなる群から選ばれた少なくとも1種)が焼結により炭化珪素粒子同士を結合する結合層となる。このように比較的低い焼成温度で焼成が可能なので、結合層を形成するための焼成コストを従来よりも低コストに抑えることができる。1200℃未満の場合、炭化珪素粒子と結合相との結合が不十分となり、十分な強度を得られない。一方、1350℃を超える場合、耐熱衝撃性が低下する。また、酸化雰囲気で焼成を行うので、焼成工程におけるコスト増を抑制できる。
 以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は、これらの実施例に限定されるものではない。
実施例1~5
 表1に示す粒径を有する炭化珪素粒子、炭化珪素以外の粒子を表1に示す添加量で有機バインダーとしてヒドロキシプロピルメチルセルロースとともに配合し混合した。混合した原料に水を添加して混練して可塑性の坏土を形成し、ハニカム構造体成形用の金型から、スクリュー成形機により押出成形して、一辺が34 mmの外形四角形状で長さ304 mmのハニカム構造成形体を成形した。この成形体を熱風乾燥機にて120℃で2時間乾燥後、1300℃の最高温度で酸化雰囲気で焼成して、隔壁厚さ8 mil(0.20 mm)及びセル密度300 cpsi(46.5セル/cm2)を有する実施例1~5の炭化珪素質セラミックハニカム構造体を得た。
比較例1及び7
 炭化珪素粒子及び結合材の粒子の種類及び添加量を表1に示すように変更し、さらに成形体を熱風乾燥した後に550℃で3時間の脱脂工程を追加し、1450℃の最高温度でアルゴン雰囲気で2時間焼成した以外は実施例1と同様にして、比較例1及び7の炭化珪素質セラミックハニカム構造体を得た。
比較例2~6
 炭化珪素粒子及び結合材の粒子の種類及び添加量を表1に示すように変更して、実施例1と同様にハニカム構造成形体を成形し、比較例2及び4~6は1300℃の最高温度で、比較例3は1400℃の最高温度で酸化雰囲気で焼成した以外は実施例1と同様にして、比較例2~6の炭化珪素質セラミックハニカム構造体を得た。
 得られた実施例1~5及び比較例1~7の炭化珪素質セラミックハニカム構造体の1個を用いて、平均気孔幅、単位長さ当たりの気孔数、気孔率、メジアン細孔径、及び熱膨張係数の測定を行った。
(a)平均気孔幅、及び単位長さ当たりの気孔数
 平均気孔幅、及び単位長さ当たりの気孔数は、次のように測定する。
 セラミックスハニカム構造体の軸方向に直交する断面における隔壁の断面を走査型電子顕微鏡(SEM)で倍率200倍で撮像する。撮像されたSEM写真を画像解析ソフト(Media Cybernetics 社製 Image-Pro Plus ver.7.0)で測定する。具体的には、撮像されたSEM写真を画像解析ソフトで図4に示す白黒2値化処理を行う。そして、図5に示すように、撮像された隔壁12の断面において、隔壁の厚さT方向の中心を通り隔壁の表面に平行な直線Cと、この直線Cから隔壁の厚さ方向に±T/5及び±2T/5離れた位置に直線Cに平行な直線を引く。各直線が横切る気孔部分の長さである気孔幅と、各直線が横切る気孔の数とを所定の長さについて測定したとき、測定した全ての気孔幅の合計長さを、測定した気孔の総数で割った値を平均気孔幅Wとし、測定した気孔の総数を、測定した各直線の全長さで割った値を単位長さ当たりの気孔数Nとした。
(b)気孔率、及びメジアン細孔径の測定
 気孔率、及びメジアン細孔径は、水銀圧入法により測定した。セラミックハニカム構造体から切り出した試験片(10 mm×10 mm×10 mm)を、Micromeritics社製オートポアIIIの測定セル内に収納し、セル内を減圧した後、水銀を導入して加圧し、加圧時の圧力と試験片内に存在する細孔中に押し込まれた水銀の体積との関係を求めた。前記圧力を細孔径に換算し、細孔径の大きい側から小さい側に向かって積算した累積細孔容積(水銀の体積に相当)を細孔径に対してプロットし、細孔径と累積細孔容積との関係を示すグラフを得た。水銀を導入する圧力は0.5 psi(0.35×10-3 kg/mm2)とし、圧力から細孔径を算出する際の常数は、接触角=130°及び表面張力=484 dyne/cmの値を使用した。なお水銀の加圧力が1800 psi(1.26 kg/mm2、細孔径約0.1μmに相当)での累積細孔容積を全細孔容積とした。
 得られた水銀圧入法の測定結果から、全細孔容積、及び累積細孔容積が全細孔容積の50%となる細孔径であるメジアン細孔径を求めた。これらの結果を表2に示す。
(c)熱膨張係数の測定
 熱膨張係数は、4.5 mm×4.5 mmの断面形状及び50 mmの長さの試験片を、長手方向が流路方向にほぼ一致するように切り出し、熱機械分析装置(TMA、リガク社製ThermoPlus、圧縮荷重方式/示差膨張方式)を用いて、一定荷重20 gをかけながら、昇温速度10℃/minで室温から800℃まで加熱した時の全長方向の長さの増加量を測定して、40~800℃間の平均熱膨張係数として求めた。結果を表2に示す。
 次に、実施例1~5及び比較例1~7の各炭化珪素質セラミックハニカム構造体の流路端部に、交互に目封止されるように、炭化珪素粒子からなる目封止材スラリーを充填した後、目封止材スラリーを乾燥させて封止部を形成した。封止部が形成された炭化珪素質セラミックハニカム構造体をハニカムセグメントとして、ハニカムセグメントの外周面に炭化珪素粒子及びコロイダルシリカからなる接合材を塗布して、6個×6層に接合一体化し、軸方向に直行する断面の外周形状が円形となるように外周部を除去加工した。除去加工された外周に、非晶質シリカとコロイダルシリカとからなる外皮材をコーティングして乾燥させて外周壁を形成し、外径266.7 mm、全長304.8vmm、隔壁厚さ8vmil(0.20 mm)及びセル密度300 cpsi(46.5セル/cm2)を有する実施例1~5及び比較例1~7の接合された炭化珪素質セラミックハニカムフィルタを得た。セラミックハニカムフィルタは、それぞれ同じものを2個ずつ製作した。
 得られた実施例1~5及び比較例1~7のセラミックハニカムフィルタの1個を用いて、下記の方法で、PM捕集初期圧力損失、及び捕集開始後の粒子数基準でのPM捕集率の測定を行った。
(d)PM捕集後の圧力損失
 PM捕集後の圧力損失は、圧力損失テストスタンドに固定したセラミックハニカムフィルタに、空気流量10 Nm3/minで、平均粒径0.11μmの燃焼煤を1.3 g/hの速度で投入し、フィルタ体積1リットルあたりの煤付着量が2 gとなった時の流入側と流出側との差圧(圧力損失)から以下の基準により評価した。すなわち、圧力損失が、
2.8 kPaを越える場合を(×)、
2.5 kPaを超え2.8 kPa以下の場合を(△)、
2.3 kPaを超え2.5 kPa以下の場合を(○)、及び
2.3 kPa以下の場合を(◎)
としてPM捕集後の圧力損失を評価した。
(e)捕集後の粒子数基準でのPM捕集率
 捕集後の粒子数基準でのPM捕集率は、圧力損失テストスタンドに固定したセラミックハニカムフィルタに、空気流量10 Nm3/minで、平均粒径0.11μmの燃焼煤を1.3 g/hの速度で投入しながら、1分毎にハニカムフィルタに流入する燃焼煤の粒子数とハニカムフィルタから流出する燃焼煤の粒子数とをSMPS(Scanning Mobility Particle Sizer)(TIS社製モデル3936)を用いて計測し、投入開始40分後から41分後までの1分間にハニカムフィルタに流入する燃焼煤の粒子数Nin、及びハニカムフィルタから流出する燃焼煤の粒子数Noutから、式:(Nin-Nout)/Nin によりPM捕集率を求めた。PM捕集率が、
98%以上の場合を(◎)、
96%以上98%未満の場合を(○)、
95%以上96%未満の場合を(△)、及び
95%未満の場合を(×)
としてPM捕集後のPM捕集率を評価した。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表1及び2より、気孔率、メジアン細孔径、並びに隔壁の断面における平均気孔幅、及び気孔数が本発明の範囲内にある実施例1~5のセラミックハニカムフィルタは、これらの要件が本発明の範囲を外れている比較例1~7のセラミックハニカムフィルタに対して、熱膨張係数が同等であることから耐熱衝撃性が同等であり、かつPM捕集後の圧力損失及びPM捕集率が良好であることがわかる。

Claims (5)

  1.  炭化珪素質多孔質体の隔壁により仕切られた軸方向に貫通する複数の流路を有する炭化珪素質セラミックハニカム構造体であって、
     前記隔壁の気孔率が35~50%、メジアン細孔径が8~18μmであり、
     前記軸方向に直交する前記隔壁の断面において、
      前記隔壁の厚さT方向の中心を通り前記隔壁の表面に平行な直線C、並びに前記直線Cから前記隔壁の厚さ方向に±T/5及び±2T/5離れた位置に引いた直線Cに平行な直線を引き、
    各直線が横切る気孔部分の長さ(気孔幅)及び気孔の数を所定の長さについて測定したとき、
    測定した全ての気孔の気孔幅の平均値である平均気孔幅Wが10~25μm、及び
    測定した気孔の総数を測定した各直線の全長さで割った値である単位長さ当たりの気孔数Nが20~40個/mm
    であることを特徴とする炭化珪素質セラミックハニカム構造体。
  2.  水銀圧入法によって測定された前記隔壁の細孔径と累積細孔容積との関係において、前記隔壁の細孔径が20μm以上の細孔容積が全細孔容積の10~20%であることを特徴とする請求項1に記載の炭化珪素質セラミックハニカム構造体。
  3.  水銀圧入法によって測定された前記隔壁の細孔径と累積細孔容積との関係において、前記隔壁の細孔径9μm以下の細孔容積が全細孔容積の3~25%であることを特徴とする請求項1又は2に記載の炭化珪素質セラミックハニカム構造体。
  4.  骨材と結合材とを含むセラミックス粒子と、有機バインダーとを配合し、混合、混練して得られた坏土をハニカム形状に押出成形し、得られた成形体を乾燥後、焼成して請求項1~3のいずれか1項に記載の炭化珪素質セラミックハニカム構造体を製造する方法であって、
     前記骨材が炭化珪素粒子であり、
     前記セラミックス粒子は、
      メジアン粒子径D50が35~45μmであり、
      粒子径と累積粒子体積との関係を示す曲線において、
       全粒子体積の10%に相当する累積粒子体積での粒子径D10が5~20μm、
       全粒子体積の90%に相当する累積粒子体積での粒子径D90が50~65μm、
       粒度分布偏差SD[ただし、SD=log(D80)-log(D20)であり、D20は全粒子体積の20%に相当する累積粒子体積での粒子径、D80は全粒子体積の80%に相当する累積粒子体積での粒子径でありD20<D80である]が0.20~0.40
    であることを特徴とする炭化珪素質セラミックハニカム構造体の製造方法。
  5.  前記結合材が、アルミナ粒子、水酸化アルミニウム粒子、酸化マグネシウム粒子、水酸化マグネシウム粒子からなる群から選ばれた少なくとも1種であることを特徴とする請求項4に記載の炭化珪素質セラミックハニカム構造体の製造方法。
     
PCT/JP2022/013577 2021-03-26 2022-03-23 炭化珪素質セラミックハニカム構造体及びその製造方法 WO2022202910A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020237018000A KR102590833B1 (ko) 2021-03-26 2022-03-23 탄화규소질 세라믹 허니컴 구조체 및 그 제조 방법
CN202280008598.1A CN116685386B (zh) 2021-03-26 2022-03-23 碳化硅陶瓷蜂窝状结构体及其制造方法
US18/037,677 US11993545B2 (en) 2021-03-26 2022-03-23 Silicon carbide ceramic honeycomb structure and its production method
JP2022539770A JP7188652B1 (ja) 2021-03-26 2022-03-23 炭化珪素質セラミックハニカム構造体及びその製造方法
EP22775692.1A EP4230280A1 (en) 2021-03-26 2022-03-23 Silicon carbide-based ceramic honeycomb structure and production method therefor
JP2022185333A JP7215636B1 (ja) 2021-03-26 2022-11-18 炭化珪素質セラミックハニカム構造体及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-054390 2021-03-26
JP2021054390 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022202910A1 true WO2022202910A1 (ja) 2022-09-29

Family

ID=83395740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013577 WO2022202910A1 (ja) 2021-03-26 2022-03-23 炭化珪素質セラミックハニカム構造体及びその製造方法

Country Status (6)

Country Link
US (1) US11993545B2 (ja)
EP (1) EP4230280A1 (ja)
JP (2) JP7188652B1 (ja)
KR (1) KR102590833B1 (ja)
CN (1) CN116685386B (ja)
WO (1) WO2022202910A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106265A1 (ja) * 2003-05-29 2004-12-09 Ngk Insulators, Ltd. ハニカム構造体の製造方法及びハニカム構造体製造用炭化珪素粒子
WO2005009922A1 (ja) * 2003-07-25 2005-02-03 Ngk Insulators, Ltd. セラミックス多孔質体及びその透過性能評価方法
JP2007290951A (ja) * 2006-03-31 2007-11-08 Ibiden Co Ltd ハニカム構造体およびその製造方法
JP2009196104A (ja) 2008-02-19 2009-09-03 Tokyo Yogyo Co Ltd ハニカム構造体
WO2016152236A1 (ja) * 2015-03-24 2016-09-29 日立金属株式会社 セラミックハニカム構造体
JP2018122261A (ja) 2017-02-02 2018-08-09 日本碍子株式会社 目封止ハニカム構造体
JP2018149510A (ja) 2017-03-14 2018-09-27 日本碍子株式会社 目封止ハニカム構造体
JP2019150737A (ja) 2018-02-28 2019-09-12 日本碍子株式会社 ハニカム構造体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5066400B2 (ja) * 2007-07-13 2012-11-07 日野自動車株式会社 排気浄化装置
JP6006782B2 (ja) * 2012-03-28 2016-10-12 日本碍子株式会社 多孔質材料及びハニカム構造体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106265A1 (ja) * 2003-05-29 2004-12-09 Ngk Insulators, Ltd. ハニカム構造体の製造方法及びハニカム構造体製造用炭化珪素粒子
WO2005009922A1 (ja) * 2003-07-25 2005-02-03 Ngk Insulators, Ltd. セラミックス多孔質体及びその透過性能評価方法
JP2007290951A (ja) * 2006-03-31 2007-11-08 Ibiden Co Ltd ハニカム構造体およびその製造方法
JP2009196104A (ja) 2008-02-19 2009-09-03 Tokyo Yogyo Co Ltd ハニカム構造体
WO2016152236A1 (ja) * 2015-03-24 2016-09-29 日立金属株式会社 セラミックハニカム構造体
JP2018122261A (ja) 2017-02-02 2018-08-09 日本碍子株式会社 目封止ハニカム構造体
JP2018149510A (ja) 2017-03-14 2018-09-27 日本碍子株式会社 目封止ハニカム構造体
JP2019150737A (ja) 2018-02-28 2019-09-12 日本碍子株式会社 ハニカム構造体

Also Published As

Publication number Publication date
JP7215636B1 (ja) 2023-01-31
KR20230091174A (ko) 2023-06-22
JP7188652B1 (ja) 2022-12-13
JPWO2022202910A1 (ja) 2022-09-29
KR102590833B1 (ko) 2023-10-17
EP4230280A1 (en) 2023-08-23
JP2023022129A (ja) 2023-02-14
CN116685386A (zh) 2023-09-01
US11993545B2 (en) 2024-05-28
CN116685386B (zh) 2024-04-26
US20240034685A1 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
JP5267131B2 (ja) チタン酸アルミニウム質セラミックハニカム構造体の製造方法
JP4920752B2 (ja) ハニカム構造体
JP5864329B2 (ja) ハニカム構造体
EP2937143B1 (en) Ceramic honeycomb structure and method for producing same
US9045372B2 (en) Honeycomb structure body
JP6285225B2 (ja) ハニカム構造体
WO2009108362A2 (en) Honeycomb manufacturing method using ground nut shells and honeycomb body produced thereby
WO2011114511A1 (ja) ハニカム構造体
EP2698191A1 (en) Plugged honeycomb structure
JP6074306B2 (ja) ハニカム構造体
JP2021155236A (ja) 炭化珪素含有ハニカム構造体の製造方法
US9168479B2 (en) Plugged honeycomb structure
WO2022202910A1 (ja) 炭化珪素質セラミックハニカム構造体及びその製造方法
JP6043227B2 (ja) ハニカム構造体
JP6872395B2 (ja) セラミックス成形体の押出成形方法
JP7205671B1 (ja) 炭化珪素質セラミックハニカム構造体及びその製造方法
JP7318841B1 (ja) セラミックハニカム構造体及びその製造方法
CN218816601U (zh) 蜂窝过滤器
CN115138156B (zh) 多孔质蜂窝结构体及其制造方法
CN114699860B (en) Porous ceramic composition, filter and article
JP2023150220A (ja) ハニカムフィルタ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022539770

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775692

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237018000

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022775692

Country of ref document: EP

Effective date: 20230519

WWE Wipo information: entry into national phase

Ref document number: 202280008598.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE