WO2009122534A1 - ハニカム構造体 - Google Patents

ハニカム構造体 Download PDF

Info

Publication number
WO2009122534A1
WO2009122534A1 PCT/JP2008/056408 JP2008056408W WO2009122534A1 WO 2009122534 A1 WO2009122534 A1 WO 2009122534A1 JP 2008056408 W JP2008056408 W JP 2008056408W WO 2009122534 A1 WO2009122534 A1 WO 2009122534A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb structure
pore diameter
cell wall
average pore
pores
Prior art date
Application number
PCT/JP2008/056408
Other languages
English (en)
French (fr)
Inventor
大野一茂
山寄一徳
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41134955&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009122534(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to PCT/JP2008/056408 priority Critical patent/WO2009122534A1/ja
Priority to EP08739521.6A priority patent/EP2258459B1/en
Priority to JP2010505193A priority patent/JPWO2009122534A1/ja
Publication of WO2009122534A1 publication Critical patent/WO2009122534A1/ja
Priority to US12/756,194 priority patent/US8518855B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24492Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2455Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the whole honeycomb or segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0009Honeycomb structures characterised by features relating to the cell walls, e.g. wall thickness or distribution of pores in the walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3472Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/612Machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a honeycomb structure.
  • exhaust gas discharged from an internal combustion engine such as a diesel engine contains particulate matter (hereinafter also referred to as PM).
  • PM particulate matter
  • various honeycomb filters made of a honeycomb structure using cordierite, silicon carbide, aluminum titanate, etc. have been proposed as exhaust gas filters that collect PM in exhaust gas and purify the exhaust gas.
  • the honeycomb structure using aluminum titanate has a higher melting temperature than the honeycomb structure using cordierite, so that it is difficult for melting damage to occur when burning PM as a honeycomb filter, Since the thermal expansion coefficient is lower than that of a honeycomb structure using silicon carbide, it is known that even a large filter is not easily destroyed by heat applied during PM combustion.
  • Patent Document 1 includes, as a main component, aluminum titanate, which is manufactured by adding an oxide such as Bi, Ca, and Y to a raw material mixture mainly composed of Al 2 O 3 and TiO 2 and firing the mixture.
  • a honeycomb filter including a honeycomb structure with little variation in pore size distribution is disclosed.
  • FIG. 7 (a) is a perspective view schematically showing a conventional honeycomb structure mainly made of aluminum titanate
  • FIG. 7 (b) shows a cell wall of the honeycomb structure shown in FIG. 7 (a).
  • FIG. 8 is a cross-sectional view (cross-sectional view taken along the line DD in FIG. 7A) schematically showing a cross section of a cell wall exposed by cutting in parallel to the longitudinal direction.
  • the honeycomb structure 410 mainly made of aluminum titanate, a plurality of cells 411 are formed along the longitudinal direction across the cell walls 413, and the cell walls 413 separating the cells 411 from each other. Functions as a filter. That is, in the honeycomb structure 410, the cells 411 are sealed so that either the inlet side (inlet side) or the outlet side (outlet side) of the exhaust gas has a checkered pattern by the sealing material 412.
  • the exhaust gas flowing into one cell always passes through the cell wall 413 separating the one cell and then flows out from the other cell.
  • PM is captured inside the cell wall 413, and the exhaust gas is purified.
  • the exhaust gas filter using the honeycomb structure mainly composed of aluminum titanate described in Patent Document 1 cannot be said to have a sufficiently high PM collection efficiency and a sufficiently high breaking strength. There is a problem, and further improvement in PM collection efficiency and breaking strength has been desired. Therefore, in order to solve these problems, the present inventors studied a honeycomb structure mainly made of aluminum titanate.
  • FIG. 8 is a partially enlarged image (taken at 150 times) of a part of the cross section of the cell wall of the conventional honeycomb structure shown in FIG. 7B, taken by a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • FIG. 9 is a cross-sectional view schematically showing the vicinity of the air hole in the partial enlarged image of the cell wall shown in FIG.
  • the direction of the arrow schematically indicates the direction in which the exhaust gas flows
  • the line width of the arrow schematically indicates the amount of the exhaust gas flowing.
  • the PM collection efficiency is low. That is, as shown in FIG. 9, in the air hole portion 425, it is presumed that the exhaust gas easily flows and the chance that the PM 426 contacts the cell wall is reduced, so the PM 426 passes and is collected by the base material 421. It is considered difficult. As a result, the exhaust gas flowing in from the cell 411a opened on the inflow side flows out through the cell 411b opened on the outflow side without collecting part of the PM 426 in the exhaust gas on the base material 421. it is conceivable that. The above phenomenon is considered to be the cause of the PM collection efficiency of the honeycomb structure 410 being lowered.
  • the present invention has been made based on these examination results, and an object thereof is to provide a honeycomb structure having high PM collection efficiency and high fracture strength.
  • the honeycomb structure according to claim 1 is a columnar honeycomb structure made of aluminum titanate in which a plurality of cells separated by cell walls are formed along a longitudinal direction.
  • the average pore size is 10-20 ⁇ m.
  • a microscopic image of a cross section parallel to the longitudinal direction of the cell wall is a binarized image in which the base material portion and the pore portion are distinguished, the image is drawn in a direction perpendicular to the thickness direction of the cell wall.
  • the maximum length of the pores in the line segment is not more than 8 times the average pore diameter.
  • the honeycomb structure according to claim 1 since the average pore diameter of the honeycomb structure is set to 10 to 20 ⁇ m, the honeycomb structure made of aluminum titanate having a high PM collection efficiency while maintaining a low pressure loss. It can be.
  • the honeycomb structure of the first aspect since the maximum length of the pores is 8 times or less of the average pore diameter, PM is easily collected. This is because exhaust gas flows evenly over the entire cell wall, so that the cell wall of the entire honeycomb structure can be more effectively used to collect PM in the exhaust gas. Therefore, a honeycomb structure made of aluminum titanate having high PM collection efficiency can be obtained. This will be described in detail with reference to the drawings.
  • FIG. 1 (a) shows an example of a honeycomb structure according to claim 1, wherein a part of a cross section of a cell wall exposed by cutting the cell wall in parallel to the longitudinal direction is shown by a scanning electron microscope ( 1B is a partially enlarged image (taken at 150 ⁇ ) taken by SEM, and FIG. 1B performs binarized image processing on the partially enlarged image of FIG. On the other hand, it is a binarized image in which the pores are white as the pores and distinguished from each other.
  • FIG. 1C shows a portion (FIG. 1B) including a line segment (AA line in FIG. 1B) drawn in a direction perpendicular to the thickness direction of the cell wall in FIG. It is an enlarged view of a broken line part in (b).
  • FIG. 1A when the inside of the cell wall 13 of the honeycomb structure is observed in detail, the base material 21 made of aluminum titanate and pores 23 are formed in the cell wall 13 of the honeycomb structure.
  • the honeycomb structure has a porous structure
  • FIGS. 1B and 1C a part of the cross section of the cell wall 13 exposed by cutting the cell wall 13 of the honeycomb structure parallel to the longitudinal direction was photographed by SEM.
  • the binarized image processing is performed on the partially enlarged image, and in the binarized image in which the base material 21 is distinguished from the base material portion 22 (black) and the pores 23 are classified into the pore portions 24 (white), the thickness of the cell wall 13
  • the maximum length of the pores 24 double arrow line in FIG. 1 (c)
  • the length is 8 times or less ( ⁇ 8 ⁇ ⁇ ) of the average pore diameter ( ⁇ ).
  • FIG. 2 is a cross-sectional view schematically showing a part of the partially enlarged image of the cell wall 13 shown in FIG.
  • the direction of the arrow schematically indicates the direction in which the exhaust gas flows
  • the line width of the arrow schematically indicates the amount of the exhaust gas that flows.
  • a line BB indicates a line segment drawn in a direction perpendicular to the thickness direction of the cell wall 13.
  • the part indicated by the double-pointed arrow line is the longest pore part in the BB line when the corresponding partially enlarged image is subjected to the binarized image processing, and this length is the average pore diameter.
  • the length is 8 times or less of ( ⁇ ). (In FIG. 2, expressed as ⁇ 8 ⁇ ⁇ ).
  • the honeycomb structure according to claim 1 can be made of an aluminum titanate honeycomb structure having a high PM collection efficiency.
  • the cell wall strength is locally low, and it is estimated that the maximum length of the pores is 8 to the average pore diameter. Since there is no portion exceeding the double, a honeycomb structure made of aluminum titanate having high breaking strength can be obtained.
  • the maximum length of the pores is not more than 7 times the average pore diameter.
  • the honeycomb structure according to the second aspect there is no pore portion where the maximum length of the pore portion exceeds 7 times the average pore diameter, and PM is more easily collected. Further, the exhaust gas flows more evenly over the entire cell wall, and the PM in the exhaust gas can be collected using the cell wall of the entire honeycomb structure more effectively. Therefore, a honeycomb structure made of aluminum titanate having higher PM collection efficiency can be obtained. Moreover, in the honeycomb structure according to claim 2, the cell wall strength is locally low, and the maximum length of the pores is estimated to be a starting point of cracks, and the maximum pore size exceeds 7 times the average pore diameter. Since there is no portion, a honeycomb structure made of aluminum titanate having higher breaking strength can be obtained.
  • the maximum length of the pores is not more than 5 times the average pore diameter.
  • honeycomb structured body according to claim 3 there is no pore portion in which the maximum length of the pore portion exceeds 5 times the average pore diameter, and PM is very easily collected. Further, the exhaust gas flows through the entire cell wall very evenly, and the PM in the exhaust gas can be collected using the cell wall of the entire honeycomb structure very effectively. Therefore, a honeycomb structure made of aluminum titanate having extremely high PM collection efficiency can be obtained. Further, according to the honeycomb structure according to claim 3, in the honeycomb structure, the cell wall strength is locally low, and the maximum length of the pore portion, which is assumed to be a starting point of the crack, is an average pore diameter. Therefore, the honeycomb structure made of aluminum titanate having extremely high fracture strength can be obtained.
  • the honeycomb structure according to claim 4 has a pore volume included in a range of not less than (the average pore diameter ⁇ 2 ⁇ m) and not more than (the average pore diameter + 2 ⁇ m) in the pore diameter distribution in the total pore volume. Occupy the above.
  • honeycomb structure according to claim 4 is suitable for PM collection because pores occupying 60% or more of the total pore volume have pore diameters in a range suitable for PM collection.
  • honeycomb structure made of aluminum titanate having a relatively large number of pores and higher PM collection efficiency can be obtained.
  • honeycomb structure according to claim 5 is suitable for PM collection because pores occupying 70% or more of the total pore volume have pore diameters in a range suitable for PM collection.
  • honeycomb structure made of aluminum titanate having a relatively large number of pores and extremely high PM collection efficiency can be obtained.
  • the porosity is 40 to 50%.
  • the honeycomb structure according to claim 6 has a porosity of 40 to 50%, and therefore has a higher fracture strength and is less likely to break. Therefore, a honeycomb structure made of aluminum titanate having higher fracture strength can be obtained.
  • one end of the cell is plugged.
  • it can be used as a filter for purifying exhaust gas.
  • FIG. Fig. 3 (a) is a perspective view schematically showing an example of the honeycomb structure of the present invention
  • Fig. 3 (b) shows the cell wall of the honeycomb structure shown in Fig. 3 (a) in the longitudinal direction.
  • FIG. 6 is a cross-sectional view (cross-sectional view taken along the line CC in FIG. 3A) schematically showing an example of a cross section of a cell wall exposed by cutting in parallel with respect to the cell wall.
  • the honeycomb structure 10 is made of aluminum titanate and has a cylindrical shape.
  • a plurality of cells 11 are formed along the longitudinal direction of the honeycomb structure 10, and each cell 11 is separated by a cell wall 13. .
  • One end of the cell 11 is sealed with a sealing material 12.
  • the sealing material 12 is made of the same material as the honeycomb structure 10 and is made of aluminum titanate.
  • the sealing material 12 seals the honeycomb structure 10 so that the exhaust gas does not leak from one end of the cell 11. For this reason, the exhaust gas flowing into one cell (indicated by an arrow in FIG. 3B) always passes through the cell wall 13 separating the one cell and then flows out from the other cells. Therefore, when exhaust gas passes through the cell wall 13, PM is collected inside the cell wall 13 and the exhaust gas is purified.
  • the inside of the cell wall 13 of the honeycomb structure 10 has a porous structure in which the base material 21 made of aluminum titanate and the pores 23 exist. ing.
  • the average value of the pore diameters measured by the mercury intrusion method is 10 to 20 ⁇ m.
  • the honeycomb structure of the present embodiment of the total pore volume measured by the mercury intrusion method, pores included in a range of (average pore diameter-2 ⁇ m) or more and (average pore diameter + 2 ⁇ m) or less in the pore diameter distribution.
  • the volume occupies 60% or more.
  • the honeycomb structure 10 has a porosity of 40 to 50% measured by a mercury intrusion method.
  • One honeycomb structure is cut into a cube having a width of 1 cm to obtain a sample.
  • the obtained sample was measured for pore diameter and pore distribution (pore diameter distribution) within a pore diameter range of 0.2 to 500 ⁇ m using a mercury porosimetry pore distribution measuring device, and the average pore diameter and pore diameter were measured. Calculate the rate.
  • a partially enlarged image obtained by SEM of a cross section parallel to the longitudinal direction of the cell wall 13 is a binarized image in which a base material is distinguished from a base material portion and pores are classified into pore portions.
  • the maximum length of the pore portion in the line segment drawn in the direction perpendicular to the thickness direction of the cell wall 13 is measured, the length is 8 times or less of the average pore diameter. For example, if the average pore diameter of the honeycomb structure 10 is 15 ⁇ m, the maximum length of the pores of the honeycomb structure 10 is 120 ⁇ m or less.
  • a cross section parallel to the longitudinal direction of the cell wall of the honeycomb structure is photographed with a magnification of 150 times using an SEM, and this is taken as a partially enlarged image of the cross section of the cell wall.
  • the portion (pixel) where the base material is densely photographed is brighter, and on the contrary, the portion (pixel) corresponding to the pores where the base material is hardly present is photographed darker and contrasted with the brightness. It becomes the image which has.
  • raw material powder is obtained by mixing additives such as MgO and alkali feldspar with Al 2 O 3 and TiO 2 powders.
  • the obtained raw material powder is heated, dried, and sintered to produce a sintered body of aluminum titanate.
  • the coarse powder of aluminum titanate is produced by grind
  • the fine powder of aluminum titanate is produced by changing the degree of pulverization and classification.
  • the above-mentioned aluminum titanate coarse powder, the above-mentioned aluminum titanate fine powder, a pore-forming agent, an organic binder, a plasticizer, a lubricant and water are mixed, and a mixture is prepared by sufficiently stirring.
  • the average pore size and the length of the pores of the manufactured honeycomb structure can be controlled.
  • the mixture is extruded using an extruder, and a long honeycomb molded body having a cylindrical shape in which a plurality of cells separated by cell walls is formed along the longitudinal direction is produced.
  • the obtained honeycomb formed body is cut with a microwave dryer and a hot air dryer. Dry at 100 to 150 ° C. in an air atmosphere for 1 to 30 minutes.
  • the plug material paste having the same composition as that of the above mixture is filled into a predetermined cell of the honeycomb molded body so that the plug material paste is filled into any one end portion of the cells of the honeycomb molded body.
  • the honeycomb formed body in which the plug material paste is filled at either one end of the cell is dried again. Thereafter, degreasing is performed in a degreasing furnace at 250 to 400 ° C., oxygen concentration of 5% by volume to atmospheric atmosphere for 3 to 15 hours, and then baking is performed in a baking furnace at 1300 to 1600 ° C. for 3 to 24 hours.
  • the honeycomb structure of the present embodiment is manufactured through the above steps.
  • the average pore diameter of the honeycomb structure is 10 to 20 ⁇ m, it is possible to obtain a honeycomb structure made of aluminum titanate having high PM collection efficiency while keeping the pressure loss low.
  • pores that occupy 60% or more of the total pore volume are included in the range of (average pore diameter ⁇ 2 ⁇ m) in the pore diameter distribution. Will have a pore size in a range suitable for PM collection. Since the honeycomb structure of the present embodiment has a pore size distribution within the above range, the number of pores suitable for PM collection can be relatively increased, and aluminum titanate with high PM collection efficiency. A honeycomb structure can be obtained.
  • the honeycomb structure Since the porosity is 40 to 50%, the honeycomb structure has sufficient fracture strength and is not easily damaged. Therefore, a honeycomb structure made of aluminum titanate having high breaking strength can be obtained.
  • the honeycomb structure of the present embodiment can be used as a filter for purifying exhaust gas because one end of the cell is sealed.
  • Example 1 (1) Mixing step Aluminum titanate coarse powder (average particle size 25 ⁇ m) 2000 parts by weight, aluminum titanate fine powder (average particle size 0.5 ⁇ m) 500 parts by weight, pore former (spherical acrylic particles) 300 parts by weight A mixture was prepared by mixing 188 parts by weight of an organic binder (methyl cellulose), 96 parts by weight of a plasticizer (Unilube manufactured by NOF Corporation), 44 parts by weight of a lubricant (glycerin) and 725 parts by weight of water, and stirring sufficiently. As the pore-forming agent, one having an average particle size of 20 ⁇ m and a particle size distribution of 1.8 was used.
  • the mixture obtained in the extrusion step (1) is put into a cylinder from a mixture tank of a plunger type extruder, the piston is pushed into the die side, the mixture is pushed out from a cylindrical die, and the cell wall A long body of a honeycomb formed body made of a cylindrical aluminum titanate in which a plurality of separated cells was formed along the longitudinal direction was produced.
  • the honeycomb formed body obtained in the drying step (3) is dried at 120 ° C. for 20 minutes in an air atmosphere by a microwave dryer and a hot air dryer to remove moisture contained in the honeycomb formed body. Removed.
  • the honeycomb formed body obtained in the degreasing and firing step (5) is dried again at 120 ° C. for 10 minutes in the air atmosphere, and then in a degreasing furnace at 300 ° C. under an oxygen concentration of 6% by volume. This was degreased for 12 hours, and further fired in a firing furnace at 1500 ° C. for 15 hours.
  • a honeycomb structure made of aluminum titanate having a cell thickness of 143.8 mm and a length of 150 mm in the longitudinal direction, having cells with a wall thickness of 0.25 mm and 46.5 cells / cm 2 along the longitudinal direction. The body was manufactured.
  • the average pore diameter was 15 micrometers and the porosity was 40%.
  • the pore volume included in the pore size range of 13 to 17 ⁇ m accounted for 60% or more of the total pore volume.
  • the cell wall of the honeycomb structure is cut parallel to the longitudinal direction by using the above-described binary image processing method of the honeycomb structure and the method of measuring the maximum length of the pores in the binary image.
  • a partial enlarged image obtained by SEM of the cross section of the exposed cell wall is taken at five arbitrary locations, and a binarized image in which the base material is classified into the base material portion (black) and the pores are classified into the pore portions (white), and In this case, the maximum length of the pore portion of the line segment drawn in the direction perpendicular to the thickness direction of the cell wall was measured. As a result, the maximum length was 72 ⁇ m, corresponding to 4.8 times the average pore diameter.
  • honeycomb structure manufactured in this example was measured for collection efficiency and fracture strength, and its characteristics were evaluated.
  • FIG. 4 is an explanatory diagram of a collection efficiency measuring device.
  • the collection efficiency measuring device 170 includes a 2L (liter) common rail diesel engine 176, an exhaust gas pipe 177 that circulates exhaust gas from the engine 176, and a honeycomb structure 10 that is connected to the exhaust gas pipe 177 and wound with an alumina mat 172. Sampled by a metal casing 171 for fixing the exhaust gas, a sampler 178 for sampling exhaust gas before flowing through the honeycomb structure 10, a sampler 179 for sampling exhaust gas after flowing through the honeycomb structure 10, and samplers 178 and 179.
  • Scanning mobility particle size analyzer provided with a diluter 180 for diluting exhaust gas and a PM counter 181 (Aggregated particle counter 3022A-S, manufactured by TSI) for measuring the amount of PM contained in the diluted exhaust gas Mobility P rticle Sizer SMPS) is configured as.
  • Example 1 shows the particle size of coarse particles of aluminum titanate powder contained in the raw material of the honeycomb structure, the particle size and particle size distribution of spherical acrylic particles as a pore-forming agent, and the firing time in the firing step.
  • a honeycomb structure was manufactured in the same manner as Example 1 except for the change. And about the manufactured honeycomb structure, it carried out similarly to Example 1, and measured the average pore diameter, porosity, pore diameter distribution, the maximum length of a pore part, and the measurement of PM collection efficiency and fracture strength. went.
  • Table 1 shows the characteristics and evaluation results of the honeycomb structures manufactured in Examples 2 to 5 and Comparative Examples 1 and 2.
  • the “ratio” in Table 1 indicates the ratio of the maximum length of the pores to the average pore diameter.
  • FIG. 6 is a graph in which the horizontal axis represents the ratio of the maximum length of the pores to the average pore diameter in Comparative Example 1 and the vertical axis represents the fracture strength.
  • honeycomb structures of Examples 1 to 5 were able to be a honeycomb structure having high collection efficiency and high fracture strength.
  • the collection efficiency was low and the breaking strength was low.
  • the threshold value when performing binarized image processing on a partially enlarged image by SEM is not particularly limited, and a value that can be distinguished by binarizing the base material portion and the pore portion according to the luminance. May be selected as appropriate.
  • the color classification of the binarized image processing is not particularly limited in color selection or the like as long as the base material portion and the pore portion can be binarized and distinguished.
  • the average pore diameter of the honeycomb structure of the present invention is measured with a mercury porosimeter.
  • the porosity can be measured by a known method such as a mercury intrusion method, a gravimetric method, or an Archimedes method.
  • the shape of the cross section perpendicular to the longitudinal direction of the honeycomb structure of the present invention is not particularly limited to a circle, and may be various shapes such as a rectangle, but is surrounded only by a curve or by a curve and a straight line. It is desirable to have a shape.
  • a shape in which a part of a simple closed curve such as an ellipse, an ellipse, a racetrack, an ellipse, or an ellipse has a concave portion (concave shape) can be given.
  • the desirable value of the aperture ratio of the honeycomb structure of the present invention is a lower limit of 50% and an upper limit of 75%.
  • the opening ratio is less than 50%, the pressure loss when the exhaust gas flows into and out of the honeycomb structure may increase, and when it exceeds 75%, the strength of the honeycomb structure may decrease.
  • the cell wall thickness is preferably 0.15 mm or more. This is because if the thickness is less than 0.15 mm, the strength of the honeycomb structure may be lowered.
  • the desirable upper limit of the cell wall thickness is 0.4 mm. If the cell wall is too thick, the cell aperture ratio and / or the filtration area may be reduced, and the pressure loss may increase accordingly.
  • the cell density in the direction perpendicular to the longitudinal direction is not particularly limited, and the desirable lower limit is 23.3 / cm 2 (150 / in 2 ) and the desirable upper limit is 93.0). / Cm 2 (600 / in 2 ), the more desirable lower limit is 31 / cm 2 (200 / in 2 ), and the more desirable upper limit is 77.5 / cm 2 (500.0 / in 2 ). It is.
  • the shape of the cell in plan view is not particularly limited to a quadrangle, and examples thereof include a triangle, a hexagon, an octagon, a dodecagon, a circle, an ellipse, and a star.
  • the average particle size of the aluminum titanate coarse powder is desirably 5.0 to 50.0 ⁇ m, and the average particle size of the fine aluminum titanate powder is 0.1 to 3.0 ⁇ m. desirable.
  • the mixing ratio of the aluminum titanate coarse powder and the aluminum titanate fine powder in the raw material powder is preferably 9: 1 to 6: 4. It is because shrinkage
  • the organic binder used when preparing the said mixture is not specifically limited, For example, methylcellulose, carboxymethylcellulose, hydroxyethylcellulose, polyethyleneglycol etc. are mentioned. Of these, methylcellulose is desirable.
  • the blending amount of the organic binder is usually preferably 1 to 10 parts by weight with respect to 100 parts by weight of the aluminum titanate powder.
  • the plasticizer and lubricant used in preparing the mixture are not particularly limited, and examples of the plasticizer include glycerin.
  • examples of the lubricant include polyoxyalkylene compounds such as polyoxyethylene alkyl ether and polyoxypropylene alkyl ether.
  • Specific examples of the lubricant include polyoxyethylene monobutyl ether and polyoxypropylene monobutyl ether. In some cases, the plasticizer and the lubricant may not be contained in the above mixture.
  • a dispersion medium liquid may be used.
  • the dispersion medium liquid include water, alcohols such as methanol, and organic solvents such as benzene and toluene.
  • a molding aid may be added to the mixture.
  • the molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid, fatty acid soap, polyalcohol and the like.
  • the prepared mixture preferably has a temperature of 10 ° C. or lower during molding. It is because an organic binder may gelatinize when temperature is too high.
  • Examples of the pore forming agent to be added to the mixture include spherical acrylic particles and graphite. Note that the pore former may not be contained in the above mixture depending on the case.
  • the encapsulant paste for sealing the cells is not particularly limited, but it is desirable that the porosity of the encapsulant produced through a subsequent process is 40 to 50%, for example, the same as the above mixture is used. be able to.
  • a catalyst may be supported on the honeycomb structure as necessary.
  • the type of catalyst supported on the honeycomb structure is not particularly limited, and examples thereof include noble metal elements, alkali metal elements, alkaline earth metal elements, and metal oxides. These may be used alone or in combination of two or more.
  • Examples of the noble metal element include platinum, palladium, rhodium and the like, examples of the alkali metal element include potassium and sodium, and examples of the alkaline earth metal element include barium and the like. It is done.
  • Examples of the metal oxide include CeO 2 , K 2 O, ZrO 2 , FeO 2 , Fe 2 O 3 , CuO, CuO 2 , Mn 2 O 3 , MnO, composition formula An B 1-n CO 3 (where 0 ⁇ n ⁇ 1, A is La, Nd, Sm, Eu, Gd or Y, B is an alkali metal or alkaline earth metal, and C is Mn, Co, Fe or Ni) ) And the like.
  • the PM combustion temperature can be lowered when the honeycomb structure is used as a honeycomb filter for the regeneration treatment.
  • an alumina film having a high specific surface area may be formed on the surface of the honeycomb structure, and the catalyst may be applied to the surface of the alumina film.
  • the apparatus used for producing the elongated body of the honeycomb molded body is not particularly limited, and is a single-screw extruder, a multi-screw extruder, a plunger type. Examples thereof include a molding machine. Among these, a plunger type molding machine can be particularly preferably used.
  • the dryer used for drying the honeycomb formed body after the cutting step or the honeycomb formed body after the sealing step is not particularly limited.
  • a microwave heating dryer for example, a hot air dryer, an infrared dryer, etc.
  • a plurality of devices may be combined.
  • FIG. 1A shows a part of a cross section of a cell wall exposed by cutting the cell wall in parallel to the longitudinal direction of an example of the honeycomb structure of the present invention using a scanning electron microscope (SEM).
  • FIG. 1B is a partially enlarged image taken (taken at 150 ⁇ ), and FIG. 1B performs binarized image processing on the partially enlarged image of FIG. Is a binarized image in which the two are distinguished from each other with white as a pore portion.
  • FIG. 1C shows a portion (FIG. 1B) including a line segment (AA line in FIG. 1B) drawn in a direction perpendicular to the thickness direction of the cell wall in FIG. It is an enlarged view of a broken line part in (b).
  • FIG. 3 (a) is a perspective view schematically showing an example of the honeycomb structure of the present invention
  • Fig. 3 (b) shows the cell wall of the honeycomb structure shown in Fig. 3 (a) in the longitudinal direction.
  • FIG. 5 is a cross-sectional view (a cross-sectional view taken along the line CC of FIG. 3A) showing a cross-section of the cell wall exposed by cutting in parallel with respect to FIG. It is explanatory drawing of a collection efficiency measuring apparatus.
  • FIG. 3 is a graph in which the horizontal axis represents the ratio of the maximum length of the pore portion to the average pore diameter in Examples 1 to 3 and Comparative Example 1, and the vertical axis represents the collection efficiency.
  • 4 is a graph in which the horizontal axis represents the ratio of the maximum length of the pore portion to the average pore diameter in Examples 1 to 3 and Comparative Example 1, and the vertical axis represents fracture strength.
  • Fig. 7 (a) is a perspective view schematically showing a conventional honeycomb structure mainly made of aluminum titanate
  • Fig. 7 (b) is a cell wall of the honeycomb structure shown in Fig. 7 (a).
  • FIG. 8 is a cross-sectional view (cross-sectional view taken along the line DD in FIG.
  • FIG. 7A schematically showing a cross-section of the cell wall exposed by cutting the cell in parallel with the longitudinal direction. It is the partial enlarged image which image
  • FIG. 9 is a cross-sectional view schematically showing the vicinity of an air hole in the partially enlarged image shown in FIG. 8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filtering Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

本発明は、PMの捕集効率が高く、破壊強度が高いハニカム構造体を提供することを目的とするものであり、本発明のハニカム構造体は、セル壁で隔てられた複数のセルが長手方向に沿って形成された、チタン酸アルミニウムからなる柱状のハニカム構造体であって、平均気孔径が、10~20μmであり、上記セル壁の長手方向に対して平行な断面の顕微鏡画像を、基材部と気孔部とに区別した二値化画像とした際に、上記セル壁の厚さ方向に対して垂直方向に引かれた線分における上記気孔部の最大長さが、上記平均気孔径の8倍以下であることを特徴とする。

Description

ハニカム構造体
本発明は、ハニカム構造体に関する。
従来、ディーゼルエンジン等の内燃機関から排出される排ガス中には、パティキュレートマター(以下、PMともいう)が含まれており、近年、このPMが環境や人体に害を及ぼすことが問題となっている。
そこで、排ガス中のPMを捕集して排ガスを浄化する排ガスフィルタとして、コージェライト、炭化珪素、チタン酸アルミニウムなどを用いたハニカム構造体からなるハニカムフィルタが種々提案されている。
これらのなかで、チタン酸アルミニウムを用いたハニカム構造体は、コージェライトを用いたハニカム構造体よりも溶融温度が高いので、ハニカムフィルタとしてPMを燃焼させる際に溶損が発生しにくく、また、炭化珪素を用いたハニカム構造体よりも熱膨張率が低いので、大型のフィルタであってもPMの燃焼に際してかかる熱によって破壊されにくいことが知られている。
特許文献1には、AlとTiOとから主に構成される原料混合物にBi、Ca、Y等の酸化物を添加し、焼成することにより製造される、チタン酸アルミニウムを主成分とし、気孔径分布のバラツキが少ないハニカム構造体からなるハニカムフィルタが開示されている。
図7(a)は、主にチタン酸アルミニウムからなる従来のハニカム構造体を模式的に示す斜視図であり、図7(b)は、図7(a)に示すハニカム構造体のセル壁を長手方向に対して平行に切断することにより露出したセル壁の断面を、模式的に示す断面図(図7(a)のD-D線断面図)である。
図7(b)に示すように、主にチタン酸アルミニウムからなるハニカム構造体410は、複数のセル411がセル壁413を隔てて長手方向に沿って形成され、セル411同士を隔てるセル壁413がフィルタとして機能するようになっている。
即ち、ハニカム構造体410において、セル411は、排ガスの入口側(流入口側)又は出口側(流出口側)の端部のいずれかが封止材412により市松模様となるように目封じされ、一のセルに流入した排ガスは、必ず一のセルを隔てるセル壁413を通過した後、他のセルから流出するようになっている。そして、排ガスがセル壁413を通過する際、PMがセル壁413内部で捕捉され、排ガスが浄化されることとなる。
米国特許出願公開第2006/0021309号明細書
しかしながら、特許文献1に記載の主にチタン酸アルミニウムからなるハニカム構造体を用いた排ガスフィルタは、PMの捕集効率が充分高いとはいえず、また、破壊強度も充分高いとはいえないという問題があり、PMの捕集効率及び破壊強度のさらなる向上が望まれていた。
そこで、これらの課題を解決するために、本発明者らは主にチタン酸アルミニウムからなるハニカム構造体について検討した。
図8は、図7(b)に示す従来のハニカム構造体のセル壁の断面の一部を、走査型電子顕微鏡(SEM)によって撮影した部分拡大画像である(150倍で撮影)。
本発明者らは、主にチタン酸アルミニウムからなるハニカム構造体410のセル壁413内を細部に渡って観察した。すると、図8に示すように、チタン酸アルミニウムからなる基材421と気孔423とが観察された。更に、セル壁413の断面における気孔長さが10μm以上である比較的大きな気孔部分425(以下、このような部分を大気孔部ともいう)が存在していることも観察された。
このハニカム構造体は、水銀圧入法で測定された気孔径分布のバラツキが少ないとされていたが、この観察結果からセル壁内には大気孔部が存在していることが分かった。
これは、特許文献1においては水銀圧入法により気孔径分布を測定しており、このような水銀圧入法による気孔径分布の測定においては、セル壁の表面の気孔径分布が評価されるので、セル壁内に大気孔部が存在しているハニカム構造体であっても、気孔径分布のバラツキが少なく測定されることがあるためと推測される。
ここで、大気孔部について、図面を用いて説明する。
図9は、図8に示したセル壁の部分拡大画像における大気孔部近傍を模式的に示した断面図である。なお、図9中、矢印の方向は、排ガスの流れる方向を模式的に示し、また、矢印の線幅は、排ガスが流れる量の多少を模式的に示す。
一般に、ハニカム構造体は、セル壁における気孔径のバラツキが大きいと、PMの捕集効率が低いと推測される。
すなわち、図9に示すように、大気孔部425では、排ガスが流れやすく、PM426がセル壁に接触する機会が減少すると推測されるので、PM426が通過してしまい、基材421に捕集されにくいと考えられる。
その結果、流入口側に開口したセル411aから流入した排ガスは、排ガス中のPM426の一部が基材421に捕集されずに、流出口側に開口したセル411bを通って流出してしまうと考えられる。以上の現象がハニカム構造体410のPMの捕集効率が低くなる原因であると考えられる。
また、セル壁413内に大気孔部425が存在すると、大気孔部425近傍のセル壁413の強度が局部的に低くなってクラックの起点になるものと推測される。このことがハニカム構造体410の破壊強度が低くなる原因であると考えられる。
本発明は、これらの検討結果に基づいてなされたものであり、PMの捕集効率が高く、破壊強度が高いハニカム構造体を提供することを目的とするものである。
上記目的を達成するための請求項1に記載のハニカム構造体は、セル壁で隔てられた複数のセルが長手方向に沿って形成された、チタン酸アルミニウムからなる柱状のハニカム構造体であって、
平均気孔径が、10~20μmであり、
上記セル壁の長手方向に対して平行な断面の顕微鏡画像を、基材部と気孔部とに区別した二値化画像とした際に、上記セル壁の厚さ方向に対して垂直方向に引かれた線分における上記気孔部の最大長さが、上記平均気孔径の8倍以下であることを特徴とする。
即ち、請求項1に記載のハニカム構造体によると、ハニカム構造体の平均気孔径を10~20μmとしたため、圧力損失を低く保ちつつ、PMの捕集効率の高いチタン酸アルミニウム製のハニカム構造体とすることができる。
また、請求項1に記載のハニカム構造体によると、上記気孔部の最大長さが、上記平均気孔径の8倍以下であるので、PMが捕集されやすい。なぜならば、セル壁全体に排ガスが均等に流れるため、ハニカム構造体全体のセル壁をより有効に利用して排ガス中のPMを捕集することができるからである。
従って、PMの捕集効率が高いチタン酸アルミニウム製のハニカム構造体とすることができる。これについて、図面を用いて詳しく説明することとする。
図1(a)は、請求項1に記載のハニカム構造体の一例について、セル壁を長手方向に対して平行に切断することにより露出したセル壁の断面の一部を、走査型電子顕微鏡(SEM)によって撮影した部分拡大画像(150倍で撮影)であり、図1(b)は、図1(a)の部分拡大画像に二値化画像処理を行い、基材を基材部として黒とし、一方、気孔を気孔部として白として両者を区別した二値化画像である。図1(c)は、図1(b)において、セル壁の厚さ方向に対して垂直方向に引かれた線分(図1(b)中、A-A線)を含む部分(図1(b)中、破線部分)の拡大図である。
図1(a)に示すように、このハニカム構造体のセル壁13内を細部に渡って観察すると、ハニカム構造体のセル壁13内には、チタン酸アルミニウムからなる基材21と気孔23とが存在し、ハニカム構造体は、多孔質構造となっている。
さらに、この多孔質構造についてさらに詳しく解析する。図1(b)及び図1(c)に示すように、ハニカム構造体のセル壁13を長手方向に対して平行に切断することにより露出したセル壁13の断面の一部をSEMによって撮影した部分拡大画像に二値化画像処理を行い、基材21を基材部22(黒)と、気孔23を気孔部24(白)とに区別した二値化画像において、セル壁13の厚さ方向に対して垂直方向に引かれた線分(図1(b)中、A-A線)における気孔部24の最大長さ(図1(c)中、両矢印線)を測定すると、この長さが、平均気孔径(α)の8倍以下(≦8×α)となっている。
このような、気孔部の最大長さが平均気孔径の8倍以下のハニカム構造体のセル壁を排ガスが流れ、排ガス中のPMが捕集される機構について、図面を用いて説明する。
図2は、図1(a)に示すセル壁13の部分拡大画像の一部を模式的に示した断面図である。なお、図2中、矢印の方向は、排ガスの流れる方向を模式的に示し、矢印の線幅は、排ガスの流れる量の多少を模式的に示す。また、図2中、B-B線は、セル壁13の厚さ方向に対して垂直方向に引いた線分を示す。このB-B線において両矢印線で示した部分は、対応する部分拡大画像を二値化画像処理した際のB-B線における最も長い気孔部であって、この長さは、平均気孔径(α)の8倍以下の長さである。(図2中、≦8×αと表記)。
図2に示すセル壁13内には、気孔部の最大長さが平均気孔径の8倍を超えるような部分がない。
流入側に開口したセル11aからこのようなセル壁13に排ガスが流れると、セル壁13全体に排ガスがより均等に流れやすくなり、ハニカム構造体全体のセル壁を有効に利用して排ガス中のPM26を捕集することができると推測される。このため、流出口側に開口したセル11bを通って流出する排ガスには、PM26が殆ど含まれない。
このような理由によって、請求項1に記載のハニカム構造体は、PMの捕集効率が高いチタン酸アルミニウム製のハニカム構造体とすることができる。
また、請求項1に記載のハニカム構造体によると、ハニカム構造体には、セル壁の強度が局部的に低くクラックの起点になると推測される、気孔部の最大長さが平均気孔径の8倍を超えるような部分がないので、破壊強度が高いチタン酸アルミニウム製のハニカム構造体とすることができる。
請求項2に記載のハニカム構造体では、上記気孔部の最大長さが、上記平均気孔径の7倍以下である。
この請求項2に記載のハニカム構造体は、上記気孔部の最大長さが上記平均気孔径の7倍を超える気孔部がなく、PMがより捕集されやすい。さらに、セル壁全体に排ガスがより均等に流れることとなり、上記ハニカム構造体全体のセル壁をより有効に利用して排ガス中のPMを捕集することができる。
そのため、PMの捕集効率がより高いチタン酸アルミニウム製のハニカム構造体とすることができる。
また、請求項2に記載のハニカム構造体には、セル壁の強度が局部的に低く、クラックの起点になると推測される、気孔部の最大長さが平均気孔径の7倍を超えるような部分がないので、破壊強度がより高いチタン酸アルミニウム製のハニカム構造体とすることができる。
請求項3に記載のハニカム構造体では、上記気孔部の最大長さが、上記平均気孔径の5倍以下である。
この請求項3に記載のハニカム構造体は、上記気孔部の最大長さが上記平均気孔径の5倍を超える気孔部がなく、PMが極めて捕集されやすい。さらに、セル壁全体に排ガスが極めて均等に流れることとなり、上記ハニカム構造体全体のセル壁を極めて有効に利用して排ガス中のPMを捕集することができる。
そのため、PMの捕集効率が極めて高いチタン酸アルミニウム製のハニカム構造体とすることができる。
また、請求項3に記載のハニカム構造体によると、上記ハニカム構造体には、セル壁の強度が局部的に低く、クラックの起点になると推測される、気孔部の最大長さが平均気孔径の5倍を超えるような部分がないので、破壊強度が極めて高いチタン酸アルミニウム製のハニカム構造体とすることができる。
請求項4のハニカム構造体は、全気孔容積のうち、気孔径分布における(上記平均気孔径-2μm)以上、かつ、(上記平均気孔径+2μm)以下の範囲に含まれる気孔の容積が60%以上を占める。
この請求項4に記載のハニカム構造体は、全気孔容積のうち60%以上の気孔の容積を占める気孔が、PMの捕集に適した範囲の気孔径を有するので、PMの捕集に適した気孔の数が相対的に多くなり、PMの捕集効率がより高いチタン酸アルミニウム製のハニカム構造体とすることができる。
請求項5に記載のハニカム構造体は、全気孔容積のうち、気孔径分布における(上記平均気孔径-2μm)以上、かつ、(上記平均気孔径+2μm)以下の範囲に含まれる気孔の容積が70%以上を占める。
この請求項5に記載のハニカム構造体は、全気孔容積のうち70%以上の気孔の容積を占める気孔が、PMの捕集により適した範囲の気孔径を有するので、PMの捕集に適した気孔の数が相対的により多くなり、PMの捕集効率が極めて高いチタン酸アルミニウム製のハニカム構造体とすることができる。
請求項6に記載のハニカム構造体においては、気孔率が、40~50%である。
この請求項6に記載のハニカム構造体は、気孔率が40~50%であるので、破壊強度がより高く、破損しにくい。
従って、破壊強度がより高いチタン酸アルミニウム製のハニカム構造体とすることができる。
請求項7に記載のハニカム構造体では、上記セルの一端が目封じされている。
セルのいずれか一方の端部が目封じされていると、排ガスを浄化するためのフィルタとして用いることができる。
以下、本発明の一実施形態である第一実施形態について、図3を参照しながら説明する。
図3(a)は、本発明のハニカム構造体の一例を模式的に示した斜視図であり、図3(b)は、図3(a)に示すハニカム構造体のセル壁を長手方向に対して平行に切断することにより露出したセル壁の断面の一例を模式的に示す断面図(図3(a)のC-C線断面図)である。
図3(a)に示すように、ハニカム構造体10は、チタン酸アルミニウムからなり、その形状は、円柱形状である。そして、その内部においては、図3(b)に示すように、複数のセル11がハニカム構造体10の長手方向に沿って形成されており、各セル11は、セル壁13によって隔てられている。
また、セル11の一端は、封止材12によって目封じされている。
封止材12は、ハニカム構造体10と同様の材質からなり、チタン酸アルミニウムから構成されている。この封止材12によって、ハニカム構造体10は、セル11の一端から排ガスが洩れない様に目封じされている。このため、一のセルに流入した排ガス(図3(b)中、矢印で示す)は、必ず一のセルを隔てるセル壁13を通過した後、他のセルから流出するようになっている。従って、排ガスがこのセル壁13を通過する際にPMがセル壁13の内部で捕集され、排ガスが浄化されることとなる。
また、ハニカム構造体10のセル壁13内を細部に渡って観察すると、ハニカム構造体10のセル壁13内は、チタン酸アルミニウムからなる基材21と気孔23とが存在する多孔質構造となっている。
このハニカム構造体10において、水銀圧入法により測定した上記気孔の気孔径の平均値、即ち、平均気孔径は、10~20μmである。
本実施形態のハニカム構造体では、水銀圧入法により測定した全気孔容積のうち、気孔径分布における(平均気孔径-2μm)以上、かつ、(平均気孔径+2μm)以下の範囲に含まれる気孔の容積が60%以上を占める。
例えば、ハニカム構造体10の平均気孔径が15μmであれば、全気孔の60%以上が、気孔径13~17μmの範囲に含まれる。
さらに、ハニカム構造体10は、水銀圧入法により測定した気孔率が40~50%である。
ここで、ハニカム構造体に形成された気孔の平均気孔径、気孔率及び気孔径分布の各特性値の測定方法を詳しく説明する。
ハニカム構造体1個について1cmの幅の立方体となるように切断してサンプルとする。得られたサンプルについて、水銀圧入法による細孔分布測定装置を用いて、細孔直径0.2~500μmの範囲で気孔径及び細孔分布(気孔径分布)を測定し、平均気孔径及び気孔率を算出する。
また、ハニカム構造体10は、セル壁13の長手方向に対して平行な断面のSEMによる部分拡大画像を、基材を基材部と、気孔を気孔部とに区別した二値化画像とした際に、セル壁13の厚さ方向に対して垂直方向に引かれた線分における気孔部の最大長さを測定すると、その長さが平均気孔径の8倍以下となっている。例えば、ハニカム構造体10の平均気孔径が15μmであれば、ハニカム構造体10の上記気孔部の最大長さは、120μm以下となっている。
ここで、ハニカム構造体の二値化画像処理方法及び二値化画像における気孔部の最大長さの測定方法を詳しく述べる。
まず、ハニカム構造体のセル壁の長手方向に対して平行な断面について、SEMを用いて150倍に拡大して撮影し、これをセル壁の断面の部分拡大画像とする。この部分拡大画像においては、基材が密に存在している部分(画素)ほど明るく、それとは反対に、基材が殆ど存在しない気孔に相当する部分(画素)ほど暗く撮影され、輝度にコントラストを有する画像となる。
次に、得られた部分拡大画像において、ある輝度を有する各画素について、所定のしきい値をもって明暗を判別し、明るい画素を黒に、暗い画素を白に、即ち、基材を基材部として黒、気孔を気孔部として白に色分けすることにより二値化画像処理を行い、セル壁の断面の二値化画像を得る。
このセル壁の断面の部分拡大画像を基材部と気孔部とに区別した二値化画像において、ハニカム構造体のセル壁の厚さ方向に対して垂直方向に、かつ、少なくとも基材部と気孔部とをそれぞれ2つ含むように線分を引き、この線分の中で、最も長い気孔部(白)の長さをスケールを用いて測定する。
そして、ハニカム構造体の平均気孔径と、最も長い気孔部の長さとの比を算出する。
以下、本実施形態のハニカム構造体10の製造方法について説明する。
まず、Al及びTiOの粉末にMgO、アルカリ長石等の添加剤を混合して原料粉末を得る。得られた原料粉末を加熱、乾燥、焼結することによりチタン酸アルミニウムの焼結体を作製する。
そして、作製したチタン酸アルミニウムの焼結体を粉砕、分級することによってチタン酸アルミニウムの粗粉末を作製する。
また、粉砕、分級の程度を変更して、チタン酸アルミニウムの微粉末を作製する。
上記チタン酸アルミニウムの粗粉末、上記チタン酸アルミニウムの微粉末、造孔剤、有機バインダ、可塑剤、潤滑剤及び水を混合し、充分攪拌することによって混合物を調製する。
混合物を調製する際に加える造孔剤の粒子径又は粒度分布を変更することによって、製造されるハニカム構造体の平均気孔径及び気孔部の長さを制御することができる。
なお、造孔剤の粒度分布は、造孔剤の粒子径分布をレーザ回折・散乱法によって測定し、90%粒子径D90、50%粒子径D50、10%粒子径D10を測定して、下記式で定める値とする。
粒度分布=(D90-D10)/D50
次に、上記混合物を押出成形機により押出成形し、セル壁で隔てられた複数のセルが長手方向に沿って形成された円柱形状のハニカム成形体の長尺体を作製する。
次に、上記ハニカム成形体の長尺体を、切断ディスクが切断部材として備えられた切断装置により所定の長さに切断した後、得られたハニカム成形体をマイクロ波乾燥機及び熱風乾燥機により、100~150℃、大気雰囲気下、1~30分乾燥する。
次に、ハニカム成形体のセルのいずれか一方の端部に封止材ペーストが充填されるように、上記混合物と同様の組成の封止材ペーストをハニカム成形体の所定のセルに充填する。
さらに、セルのいずれか一方の端部に封止材ペーストが充填されたハニカム成形体を再度乾燥させる。その後、脱脂炉中で、250~400℃、酸素濃度5容積%~大気雰囲気下で、3~15時間脱脂した後、焼成炉中で、1300~1600℃で3~24時間焼成する。
以上の工程により、本実施形態のハニカム構造体を製造する。
以下、第一実施形態のハニカム構造体についての作用効果を列挙する。
(1)ハニカム構造体の平均気孔径が10~20μmであるため、圧力損失を低く保ちつつ、PMの捕集効率の高いチタン酸アルミニウム製のハニカム構造体とすることができる。
(2)また、セル壁の長手方向に対して平行な断面の顕微鏡画像を、基材部と気孔部とに区別した二値化画像とした際に、セル壁の厚さ方向に対して垂直方向に引かれた線分における気孔部の最大長さが平均気孔径の8倍以下であるので、PMが捕集されやすい。さらに、セル壁全体に排ガスが均等に流れやすく、ハニカム構造体全体のセル壁を有効に利用して排ガス中のPMを捕集することができる。
そのため、PMの捕集効率が高いチタン酸アルミニウム製のハニカム構造体とすることができる。
(3)また、セル壁の強度が局部的に低くクラックの起点になると推測される、気孔部の最大長さが平均気孔径の8倍を超えるような部分がないので、破壊強度が高いチタン酸アルミニウム製のハニカム構造体とすることができる。
(4)上記ハニカム構造体において、全気孔容積のうち、60%以上の気孔の容積を占める気孔が、気孔径分布における(平均気孔径±2μm)の範囲に含まれており、このような気孔はPMの捕集に適した範囲の気孔径を有することとなる。本実施形態のハニカム構造体は、気孔径分布が上記範囲内にあるので、PMの捕集に適した気孔の数を相対的に多くすることができ、PMの捕集効率が高いチタン酸アルミニウム製のハニカム構造体とすることができる。
(5)気孔率が40~50%であるので、ハニカム構造体の破壊強度が充分となり破損しにくい。
従って、破壊強度が高いチタン酸アルミニウム製のハニカム構造体とすることができる。
(6)本実施形態のハニカム構造体は、セルの一端が目封じされているので、排ガスを浄化するためのフィルタとして用いることができる。
以下、本発明の第一実施形態をより具体的に開示した実施例を示すが、本実施形態はこれら実施例のみに限定されるものではない。
(実施例1)
(1)混合工程
チタン酸アルミニウムの粗粉末(平均粒径25μm)2000重量部、チタン酸アルミニウムの微粉末(平均粒径0.5μm)500重量部、造孔剤(球状アクリル粒子)300重量部、有機バインダ(メチルセルロース)188重量部、可塑剤(日本油脂社製 ユニルーブ)96重量部、潤滑剤(グリセリン)44重量部及び水725重量部を混合し、充分攪拌することによって混合物を調製した。
なお、造孔剤としては、平均粒子径が20μmであって、その粒度分布が1.8であるものを用いた。
(2)押出成形工程
(1)で得られた混合物をプランジャー式押出成形機の混合物タンクよりシリンダー内に投入し、ピストンをダイス側に押し込んで円柱形状のダイスより混合物を押し出し、セル壁で隔てられた複数のセルが長手方向に沿って形成された円柱形状のチタン酸アルミニウムからなるハニカム成形体の長尺体を作製した。
(3)切断工程
(2)で得られたハニカム成形体の長尺体を、切断ディスクを切断部材として備えた切断装置を用いて切断した。これにより、円柱形状のチタン酸アルミニウムからなるハニカム成形体を得た。
(4)乾燥工程
(3)で得られたハニカム成形体を、マイクロ波乾燥機及び熱風乾燥機により、大気雰囲気下、120℃で20分、乾燥処理し、ハニカム成形体中に含まれる水分を除去した。
(5)封止工程
(4)で得られた乾燥処理後のハニカム成形体のセルのいずれか一方の端部に封止材ペーストが充填されるように、(1)で作製した混合物と同様の組成の封止材ペーストをハニカム成形体の所定のセルに充填した。
(6)脱脂、焼成工程
(5)で得られたハニカム成形体を大気雰囲気下、120℃で10分、再度乾燥処理した後、脱脂炉中で、300℃、酸素濃度6容量%の下で12時間脱脂し、さらに、焼成炉中、1500℃、15時間で焼成した。
上記工程により、長手方向に沿って壁厚0.25mm、46.5個/cmのセルを有する、直径143.8mm、長手方向における長さが150mmの大きさのチタン酸アルミニウムからなるハニカム構造体を製造した。
なお、上述した水銀圧入法を用いて、上記ハニカム構造体の各特性値について測定したところ、平均気孔径が15μm、気孔率が40%であった。また、気孔径分布において気孔径13~17μmの範囲に含まれる気孔の容積が、全気孔容積の60%以上を占めていた。
また、上述したハニカム構造体の二値化画像処理方法及び二値化画像における気孔部の最大長さの測定方法を用いて、上記ハニカム構造体のセル壁を長手方向に対して平行に切断することにより露出したセル壁の断面のSEMによる部分拡大画像を任意の5ヶ所で撮影し、基材を基材部(黒)と、気孔を気孔部(白)とに区別した二値化画像とした際に、セル壁の厚さ方向に対して垂直方向に引かれた線分の気孔部の最大長さを測定した。その結果、その最大長さは、72μmであり、平均気孔径の4.8倍に相当する長さとなっていた。
本実施例で製造したハニカム構造体について、捕集効率及び破壊強度の測定を行い、その特性を評価した。
(PMの捕集効率の評価)
図4に示したような捕集効率測定装置170を用いてPMの捕集効率を測定した。図4は、捕集効率測定装置の説明図である。
この捕集効率測定装置170は、2L(リットル)のコモンレール式ディーゼルエンジン176と、エンジン176からの排ガスを流通する排ガス管177と、排ガス管177に接続されアルミナマット172を巻いたハニカム構造体10を固定する金属ケーシング171と、ハニカム構造体10を流通する前の排ガスをサンプリングするサンプラー178と、ハニカム構造体10を流通した後の排ガスをサンプリングするサンプラー179と、サンプラー178、179によりサンプリングされた排ガスを希釈する希釈器180と、希釈された排ガスに含まれるPMの量を測定するPMカウンタ181(TSI社製、凝集粒子カウンタ3022A-S)とを備えた走査型モビリティ粒子径分析装置(Scanning Mobility Particle Sizer SMPS)として構成されている。
次に、測定手順を説明する。エンジン176を回転数が3000min-1、トルクが30    Nmとなるように運転し、エンジン176からの排ガスをハニカム構造体10に流通させた。このとき、ハニカム構造体10を流通する前のPM量Pと、ハニカム構造体10を通過した後のPM量PとをPMカウンタ181を用いて測定した。そして、下記計算式を用いて捕集効率を算出した。
捕集効率(%)=〔(P-P)/P〕×100
その結果、実施例1で製造したハニカム構造体のPMの捕集効率は、95%であった。
(破壊強度の評価)
ハニカム構造体から34.3mm角、長さ150mmの試験片を切り出し、JIS R 1601に準拠して、インストロン5582を用い、スパン間距離:130mm、スピード0.5mm/分で3点曲げ試験を行い、ハニカム構造体の曲げ強度を測定した。
その結果、実施例1で製造したハニカム構造体の破壊強度は、6.8MPaであった。
実施例1で製造したハニカム構造体の特性及び評価結果をまとめて表1に示した。
(実施例2~5、比較例1、2)
ハニカム構造体の原料に含まれるチタン酸アルミニウム粉末の粗粉末の粒子径及び造孔剤としての球状アクリル粒子の粒子径及び粒度分布を、並びに、焼成工程における焼成時間をそれぞれ表1に示すように変更した他は、実施例1と同様にして、ハニカム構造体を製造した。
そして、製造したハニカム構造体について、実施例1と同様にして、平均気孔径、気孔率、気孔径分布、気孔部の最大長さの測定、並びに、PMの捕集効率及び破壊強度の測定を行った。
なお、実施例2~5で製造したハニカム構造体の気孔径分布においても、(平均気孔径±2μm)の範囲に含まれる気孔の容積が、全気孔容積の60%以上を占めていた。
実施例2~5及び比較例1、2で製造した各ハニカム構造体の特性及び評価結果を表1に示した。
なお、表1中の「比」は、平均気孔径に対する気孔部の最大長さの比を示す。
Figure JPOXMLDOC01-appb-T000001
また、実施例1~3及び比較例1における平均気孔径に対する気孔部の最大長さの比を横軸にとり、捕集効率を縦軸にとったグラフを図5に、実施例1~3及び比較例1における平均気孔径に対する気孔部の最大長さの比を横軸にとり、破壊強度を縦軸にとったグラフを図6に示した。
これらの結果から、実施例1~5のハニカム構造体では、捕集効率が高く、破壊強度が高いハニカム構造体とすることができた。
一方、比較例1、2のハニカム構造体では、捕集効率が低く、また、破壊強度が低くなっていた。
(その他の実施形態)
SEMによる部分拡大画像に対して二値化画像処理を行う際のしきい値については、特に限定されず、基材部と気孔部とを二値化して区別することができる値を輝度に応じて適宜選択すればよい。また、二値化画像処理の色分けについても、基材部と気孔部とを二値化して区別することができれば、色の選択等において、特に限定されることはない。
二値化画像処理及び二値化画像における気孔部の最大長さの測定においては、顕微鏡画像の撮影から、得られた二値化画像における最も長い気孔部の長さの測定まで、その一部の操作又は全ての操作について、あらかじめ所定の情報が入力された装置を用いることで自動的に行ってもよい。
本発明のハニカム構造体の平均気孔径は、水銀ポロシメータにより測定する。
また、気孔率は、水銀圧入法、重量法、アルキメデス法などの周知の方法によって測定することができる。
本発明のハニカム構造体の長手方向に対して垂直な断面の形状は、特に円形に限られるものではなく、矩形等、種々の形状とすることができるが、曲線のみ又は曲線と直線とで囲まれた形状であることが望ましい。
その具体例として、円形以外には、例えば、楕円形、長円形、レーストラック形、楕円形又は長円形等の単純閉曲線の一部が凹部を有する形状(concave形状)等を挙げることができる。
本発明のハニカム構造体の開口率の望ましい値は、下限が50%であり、上限が75%である。
上記開口率が50%未満では、ハニカム構造体に排ガスが流入出する際の圧力損失が大きくなる場合があり、75%を超えると、ハニカム構造体の強度が低下したりする場合がある。
また、上記ハニカム構造体において、セル壁の厚さは、0.15mm以上であることが望ましい。0.15mm未満では、ハニカム構造体の強度が低下することがあるからである。
一方、上記セル壁の厚さの望ましい上限は0.4mmである。セル壁の厚さが厚すぎるとセルの開口率及び/又は濾過面積が小さくなり、それに伴って圧力損失が増加することがある。
上記ハニカム構造体において、長手方向に対して垂直方向におけるセル密度は特に限定されず、望ましい下限は、23.3個/cm(150個/in)、望ましい上限は、93.0)個/cm(600個/in)、より望ましい下限は、31個/cm(200個/in)、より望ましい上限は、77.5個/cm(500.0個/in)である。
なお、上記セルの平面視形状については特に四角形に限定されず、例えば、三角形、六角形、八角形、十二角形、円形、楕円形、星型等の形状を挙げることができる。
チタン酸アルミニウムの粗粉末の平均粒径は、5.0~50.0μmであることが望ましく、また、チタン酸アルミニウムの微粉末の平均粒径は、0.1~3.0μmであることが望ましい。
上述の原料粉末におけるチタン酸アルミニウムの粗粉末とチタン酸アルミニウムの微粉末との混合比は、9:1~6:4が望ましい。上記範囲内であると、焼成工程での収縮を抑制することができるとともに、平均気孔径、気孔径分布及び気孔率を制御することができるからである。
上記混合物を調製する際に使用する有機バインダは、特に限定されず、例えば、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール等が挙げられる。このなかでは、メチルセルロースが望ましい。有機バインダの配合量は、通常、チタン酸アルミニウム粉末100重量部に対して、1~10重量部が望ましい。
上記混合物を調製する際に使用する可塑剤や潤滑剤は、特に限定されず、可塑剤としては、例えば、グリセリン等が挙げられる。また、潤滑剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシプロピレンアルキルエーテル等のポリオキシアルキレン系化合物等が挙げられる。
潤滑剤の具体例としては、例えば、ポリオキシエチレンモノブチルエーテル、ポリオキシプロピレンモノブチルエーテル等が挙げられる。
なお、可塑剤、潤滑剤は、場合によっては、上記混合物に含まれていなくてもよい。
また、上記混合物を調製する際には、分散媒液を使用してもよく、分散媒液としては、例えば、水、メタノール等のアルコール、ベンゼン、トルエン等の有機溶媒が挙げられる。
さらに、上記混合物中には、成形助剤が添加されていてもよい。
成形助剤としては特に限定されず、例えば、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコール等が挙げられる。
また、調製された上記混合物は、成形時にその温度が10℃以下であることが望ましい。温度が高すぎると、有機バインダがゲル化してしまうことがあるからである。
上記混合物に添加する造孔剤としては、例えば、、球状アクリル粒子、グラファイト等が挙げられる。
なお、造孔材は、場合によっては、上記混合物に含まれていなくてもよい。
セルを封止する封止材ペーストとしては特に限定されないが、後工程を経て製造される封止材の気孔率が40~50%となるものが望ましく、例えば、上記混合物と同様のものを用いることができる。
上記ハニカム構造体には、必要に応じて、触媒を担持させてもよい。ハニカム構造体に担持させる触媒の種類は特に限定されるものでないが、例えば、貴金属元素、アルカリ金属元素、アルカリ土類金属元素、金属酸化物等が挙げられる。これらは、単独で用いてもよいし、2種以上併用してもよい。
上記貴金属元素としては、例えば、白金、パラジウム、ロジウム等が挙げられ、上記アルカリ金属元素としては、例えば、カリウム、ナトリウム等が挙げられ、上記アルカリ土類金属元素としては、例えば、バリウム等が挙げられる。また、上記金属酸化物としては、例えば、CeO、KO、ZrO、FeO、Fe、CuO、CuO、Mn、MnO、組成式A1-nCO(式中、0≦n≦1であり、AはLa、Nd、Sm、Eu、Gd又はYであり、Bはアルカリ金属又はアルカリ土類金属であり、CはMn、Co、Fe又はNi)で表される複合酸化物等が挙げられる。
上記触媒を担持させることにより、上記ハニカム構造体をハニカムフィルタとして再生処理に用いる際に、PMの燃焼温度を低下させることができる。
また、上記触媒を担持させる場合には、ハニカム構造体の表面に高い比表面積のアルミナ膜を形成し、このアルミナ膜の表面に上記触媒を付与してもよい。
また、押出成形工程において、ハニカム成形体の長尺体を作製する際に用いる装置は、特に限定されるものではなく、単軸スクリュー式押出成形機、多軸スクリュー式押出成形機、プランジャー式成形機等を挙げることができる。この中でも、プランジャー式成形機を特に好適に用いることができる。
切断工程後のハニカム成形体又は封止工程後のハニカム成形体の乾燥に用いる乾燥機としては、特に限定されるものではないが、例えば、マイクロ波加熱乾燥機、熱風乾燥機、赤外線乾燥機等を挙げることができ、複数の装置を組み合わせてもよい。
図1(a)は、本発明のハニカム構造体の一例について、セル壁を長手方向に対して平行に切断することにより露出したセル壁の断面の一部を、走査型電子顕微鏡(SEM)によって撮影した部分拡大画像(150倍で撮影)であり、図1(b)は、図1(a)の部分拡大画像に二値化画像処理を行い、基材を基材部として黒とし、気孔を気孔部として白として両者を区別した二値化画像である。図1(c)は、図1(b)において、セル壁の厚さ方向に対して垂直方向に引かれた線分(図1(b)中、A-A線)を含む部分(図1(b)中、破線部分)の拡大図である。 図1(a)に示す部分拡大画像の一部を模式的に示した断面図である。 図3(a)は、本発明のハニカム構造体の一例を、模式的に示した斜視図であり、図3(b)は、図3(a)に示すハニカム構造体のセル壁を長手方向に対して平行に切断することにより露出したセル壁の断面を示す断面図(図3(a)のC-C線断面図)である。 捕集効率測定装置の説明図である。 実施例1~3及び比較例1における平均気孔径に対する気孔部の最大長さの比を横軸にとり、捕集効率を縦軸にとったグラフである。 実施例1~3及び比較例1における平均気孔径に対する気孔部の最大長さの比を横軸にとり、破壊強度を縦軸にとったグラフである。 図7(a)は、主にチタン酸アルミニウムからなる従来のハニカム構造体を、模式的に示す斜視図であり、図7(b)は、図7(a)に示すハニカム構造体のセル壁を長手方向に対して平行に切断することにより露出したセル壁の断面を、模式的に示す断面図(図7(a)のD-D線断面図)である。 図7(b)に示す従来のハニカム構造体のセル壁の断面の一部を、走査型電子顕微鏡(SEM)によって撮影した部分拡大画像である(150倍で撮影)。 図8に示した部分拡大画像における大気孔部近傍について、模式的に示した断面図である。
符号の説明
10 ハニカム構造体
11、11a、11b セル
12 封止材
13 セル壁
21 基材
22 基材部
23 気孔
24 気孔部

Claims (7)

  1. セル壁で隔てられた複数のセルが長手方向に沿って形成された、チタン酸アルミニウムからなる柱状のハニカム構造体であって、
    平均気孔径が、10~20μmであり、
    前記セル壁の長手方向に対して平行な断面の顕微鏡画像を、基材部と気孔部とに区別した二値化画像とした際に、前記セル壁の厚さ方向に対して垂直方向に引かれた線分における前記気孔部の最大長さが、前記平均気孔径の8倍以下であることを特徴とするハニカム構造体。
  2. 前記気孔部の最大長さが、前記平均気孔径の7倍以下である請求項1に記載のハニカム構造体。
  3. 前記気孔部の最大長さが、前記平均気孔径の5倍以下である請求項1に記載のハニカム構造体。
  4. 全気孔容積のうち、気孔径分布における(前記平均気孔径-2μm)以上、かつ、(前記平均気孔径+2μm)以下の範囲に含まれる気孔の容積が60%以上を占める請求項1~3のいずれかに記載のハニカム構造体。
  5. 全気孔容積のうち、気孔径分布における(前記平均気孔径-2μm)以上、かつ、(前記平均気孔径+2μm)以下の範囲に含まれる気孔の容積が70%以上を占める請求項1~3のいずれかに記載のハニカム構造体。
  6. 気孔率が、40~50%である請求項1~5のいずれかに記載のハニカム構造体。
  7. 前記セルの一端が目封じされている請求項1~6のいずれかに記載のハニカム構造体。
PCT/JP2008/056408 2008-03-31 2008-03-31 ハニカム構造体 WO2009122534A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2008/056408 WO2009122534A1 (ja) 2008-03-31 2008-03-31 ハニカム構造体
EP08739521.6A EP2258459B1 (en) 2008-03-31 2008-03-31 Honeycomb structure
JP2010505193A JPWO2009122534A1 (ja) 2008-03-31 2008-03-31 ハニカム構造体
US12/756,194 US8518855B2 (en) 2008-03-31 2010-04-08 Honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/056408 WO2009122534A1 (ja) 2008-03-31 2008-03-31 ハニカム構造体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/756,194 Continuation US8518855B2 (en) 2008-03-31 2010-04-08 Honeycomb structure

Publications (1)

Publication Number Publication Date
WO2009122534A1 true WO2009122534A1 (ja) 2009-10-08

Family

ID=41134955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/056408 WO2009122534A1 (ja) 2008-03-31 2008-03-31 ハニカム構造体

Country Status (4)

Country Link
US (1) US8518855B2 (ja)
EP (1) EP2258459B1 (ja)
JP (1) JPWO2009122534A1 (ja)
WO (1) WO2009122534A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009122537A1 (ja) * 2008-03-31 2011-07-28 イビデン株式会社 ハニカム構造体の製造方法
JPWO2009122535A1 (ja) * 2008-03-31 2011-07-28 イビデン株式会社 ハニカム構造体の製造方法
JPWO2009122536A1 (ja) * 2008-03-31 2011-07-28 イビデン株式会社 ハニカム構造体の製造方法
WO2018230611A1 (ja) * 2017-06-13 2018-12-20 株式会社デンソー 排ガス浄化フィルタ
US20190299144A1 (en) * 2018-03-30 2019-10-03 Ngk Insulators, Ltd. Ceramic porous body and dust collecting filter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5864329B2 (ja) * 2012-03-28 2016-02-17 日本碍子株式会社 ハニカム構造体
JP6633952B2 (ja) * 2016-03-28 2020-01-22 日本碍子株式会社 ハニカム構造体

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003135918A (ja) * 2002-07-25 2003-05-13 Matsushita Electric Ind Co Ltd 排ガスフィルター
JP2003193820A (ja) * 2001-09-13 2003-07-09 Hitachi Metals Ltd セラミックハニカムフィルタ
JP2003210922A (ja) * 2002-01-23 2003-07-29 Ibiden Co Ltd セラミックハニカムフィルタ
WO2005009922A1 (ja) * 2003-07-25 2005-02-03 Ngk Insulators, Ltd. セラミックス多孔質体及びその透過性能評価方法
WO2005021463A1 (ja) * 2003-08-29 2005-03-10 Hitachi Metals, Ltd. セラミックハニカム構造体及びその押出成形に用いる坏土
WO2005068397A1 (ja) * 2004-01-13 2005-07-28 Ibiden Co., Ltd. 多孔体用造孔材、多孔体用造孔材の製造方法、多孔体の製造方法、多孔体及びハニカム構造体
WO2006030811A1 (ja) * 2004-09-14 2006-03-23 Ngk Insulators, Ltd. 多孔質ハニカムフィルター
JP2007296512A (ja) * 2006-04-05 2007-11-15 Ngk Insulators Ltd ハニカムフィルタ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620751B1 (en) 2002-03-14 2003-09-16 Corning Incorporated Strontium feldspar aluminum titanate for high temperature applications
JP2004000901A (ja) 2002-03-29 2004-01-08 Ngk Insulators Ltd 多孔質ハニカム構造体
GB0304939D0 (en) 2003-03-05 2003-04-09 Johnson Matthey Plc Light-duty diesel engine and a particulate filter therefor
KR100680097B1 (ko) 2004-02-23 2007-02-09 이비덴 가부시키가이샤 허니콤 구조체 및 배기 가스 정화 장치
US20060021308A1 (en) * 2004-07-29 2006-02-02 Merkel Gregory A Mullite-aluminum titanate body and method for making same
JP4473693B2 (ja) * 2004-09-28 2010-06-02 日本碍子株式会社 ハニカムフィルタ
JP2006096634A (ja) 2004-09-30 2006-04-13 Hitachi Metals Ltd 多孔質セラミック体
PL1707251T3 (pl) * 2004-12-28 2013-03-29 Ibiden Co Ltd Filtr i zespół filtra
US7867598B2 (en) 2005-08-31 2011-01-11 Ngk Insulators, Ltd. Honeycomb structure and honeycomb catalytic body
US8609581B2 (en) 2005-08-31 2013-12-17 Ngk Insulators, Ltd. Honeycomb structure and honeycomb catalytic body
CN100560180C (zh) 2005-11-18 2009-11-18 揖斐电株式会社 蜂窝结构体
ATE540907T1 (de) * 2005-11-30 2012-01-15 Corning Inc Poröser keramikwabenfilter mit gesteuerter porengrössenverteilung
US7547393B2 (en) * 2005-12-07 2009-06-16 General Electric Company Membrane structure and method of making
WO2007102561A1 (ja) 2006-03-07 2007-09-13 Ngk Insulators, Ltd. セラミック構造体及びその製造方法
US7648550B2 (en) 2006-08-25 2010-01-19 Corning Incorporated Narrow pore size distribution cordierite ceramic honeycomb articles and methods for manufacturing same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193820A (ja) * 2001-09-13 2003-07-09 Hitachi Metals Ltd セラミックハニカムフィルタ
JP2003210922A (ja) * 2002-01-23 2003-07-29 Ibiden Co Ltd セラミックハニカムフィルタ
JP2003135918A (ja) * 2002-07-25 2003-05-13 Matsushita Electric Ind Co Ltd 排ガスフィルター
WO2005009922A1 (ja) * 2003-07-25 2005-02-03 Ngk Insulators, Ltd. セラミックス多孔質体及びその透過性能評価方法
WO2005021463A1 (ja) * 2003-08-29 2005-03-10 Hitachi Metals, Ltd. セラミックハニカム構造体及びその押出成形に用いる坏土
WO2005068397A1 (ja) * 2004-01-13 2005-07-28 Ibiden Co., Ltd. 多孔体用造孔材、多孔体用造孔材の製造方法、多孔体の製造方法、多孔体及びハニカム構造体
WO2006030811A1 (ja) * 2004-09-14 2006-03-23 Ngk Insulators, Ltd. 多孔質ハニカムフィルター
JP2007296512A (ja) * 2006-04-05 2007-11-15 Ngk Insulators Ltd ハニカムフィルタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2258459A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009122537A1 (ja) * 2008-03-31 2011-07-28 イビデン株式会社 ハニカム構造体の製造方法
JPWO2009122535A1 (ja) * 2008-03-31 2011-07-28 イビデン株式会社 ハニカム構造体の製造方法
JPWO2009122536A1 (ja) * 2008-03-31 2011-07-28 イビデン株式会社 ハニカム構造体の製造方法
WO2018230611A1 (ja) * 2017-06-13 2018-12-20 株式会社デンソー 排ガス浄化フィルタ
JP2019002298A (ja) * 2017-06-13 2019-01-10 株式会社デンソー 排ガス浄化フィルタ
CN110741139A (zh) * 2017-06-13 2020-01-31 株式会社电装 废气净化过滤器
CN110741139B (zh) * 2017-06-13 2021-07-20 株式会社电装 废气净化过滤器
US20190299144A1 (en) * 2018-03-30 2019-10-03 Ngk Insulators, Ltd. Ceramic porous body and dust collecting filter
JP2019178045A (ja) * 2018-03-30 2019-10-17 日本碍子株式会社 セラミックス多孔体及び集塵用フィルタ
US10974186B2 (en) * 2018-03-30 2021-04-13 Ngk Insulators, Ltd. Ceramic porous body and dust collecting filter
JP7038585B2 (ja) 2018-03-30 2022-03-18 日本碍子株式会社 セラミックス多孔体及び集塵用フィルタ

Also Published As

Publication number Publication date
US20100222213A1 (en) 2010-09-02
US8518855B2 (en) 2013-08-27
EP2258459A4 (en) 2014-01-01
EP2258459B1 (en) 2016-03-23
EP2258459A1 (en) 2010-12-08
JPWO2009122534A1 (ja) 2011-07-28

Similar Documents

Publication Publication Date Title
WO2009122532A1 (ja) ハニカム構造体
WO2009122534A1 (ja) ハニカム構造体
WO2009122535A1 (ja) ハニカム構造体の製造方法
JP3954501B2 (ja) ウォールフローモノリスフィルターの製造方法
US10335727B2 (en) Honeycomb filter
EP2604323A1 (en) Honeycomb filter and production method for same
EP3070066B1 (en) Plugged honeycomb structure
WO2009122539A1 (ja) ハニカム構造体
US20140208706A1 (en) Honeycomb structure
EP2668990B1 (en) Honeycomb structure
DE102015003218A1 (de) Wabenstruktur
JP2010221154A (ja) ハニカム触媒体
US10300424B2 (en) Honeycomb filter
JP2010221153A (ja) ハニカム構造体
WO2009122536A1 (ja) ハニカム構造体の製造方法
WO2009122537A1 (ja) ハニカム構造体の製造方法
US11071937B2 (en) Ceramic porous body and method for producing the same, and dust collecting filter
JP7234180B2 (ja) セラミックス製のフィルタ
JP2005224666A (ja) フィルタ触媒およびその触媒層の解析方法
WO2020026411A1 (ja) 多孔質複合体
JP2011057539A (ja) ハニカム構造体用シール材、ハニカム構造体、及び、ハニカム構造体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08739521

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008739521

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010505193

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE