WO2009122536A1 - ハニカム構造体の製造方法 - Google Patents

ハニカム構造体の製造方法 Download PDF

Info

Publication number
WO2009122536A1
WO2009122536A1 PCT/JP2008/056411 JP2008056411W WO2009122536A1 WO 2009122536 A1 WO2009122536 A1 WO 2009122536A1 JP 2008056411 W JP2008056411 W JP 2008056411W WO 2009122536 A1 WO2009122536 A1 WO 2009122536A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
aluminum titanate
honeycomb structure
honeycomb
powder
Prior art date
Application number
PCT/JP2008/056411
Other languages
English (en)
French (fr)
Inventor
大野一茂
山寄一徳
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to PCT/JP2008/056411 priority Critical patent/WO2009122536A1/ja
Priority to JP2010505195A priority patent/JPWO2009122536A1/ja
Publication of WO2009122536A1 publication Critical patent/WO2009122536A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present invention relates to a method for manufacturing a honeycomb structure.
  • exhaust gas discharged from an internal combustion engine such as a diesel engine contains particulate matter (hereinafter also referred to as PM).
  • PM particulate matter
  • various filters using honeycomb structures made of cordierite, silicon carbide, aluminum titanate, etc. have been proposed as filters for collecting PM in exhaust gas and purifying the exhaust gas.
  • a honeycomb structure made of aluminum titanate has a higher melting temperature than a honeycomb structure made of cordierite, and is less resistant to melting when burning PM. ing.
  • a honeycomb structure made of aluminum titanate has a lower thermal expansion coefficient than that of a honeycomb structure made of silicon carbide, so that cracks due to thermal stress are unlikely to occur and the thermal shock resistance is high.
  • a method for manufacturing a honeycomb structure made of aluminum titanate as described above for example, a method disclosed in Patent Document 1 is known.
  • Patent Document 1 discloses a method for manufacturing a honeycomb structure, in which a honeycomb structure mainly made of aluminum titanate is manufactured by adding alkali feldspar and MgO to a mixture of TiO 2 and Al 2 O 3 and firing the mixture. Is disclosed.
  • Patent Document 1 describes that by using the method for manufacturing a honeycomb structure described in this document, a honeycomb structure mainly made of aluminum titanate having high heat resistance and thermal shock resistance can be manufactured. ing.
  • the honeycomb structure manufactured by the manufacturing method described in Patent Document 1 is said to have high thermal decomposition resistance and high fracture strength due to the effects of alkali feldspar-derived components and MgO-derived Mg.
  • the present inventors have intensively studied to solve the above problems, and have a relatively large average particle diameter of aluminum titanate coarse powder (hereinafter also simply referred to as coarse powder) and a relatively small average particle diameter. It has been found that a honeycomb structure with high fracture strength can be produced by using aluminum titanate fine powder (hereinafter also simply referred to as fine powder). In particular, by using an aluminum titanate coarse powder having a specific composition ratio and an aluminum titanate fine powder having a specific composition ratio, the honeycomb structure has high fracture strength and high durability against repeated regeneration treatments. And the present invention was completed.
  • an aluminum titanate fine powder means that whose average particle diameter is smaller than the average particle diameter of aluminum titanate coarse powder. Therefore, when the average particle diameter of the aluminum titanate coarse powder is 3 ⁇ m, the average particle diameter of the aluminum titanate fine powder is less than 3 ⁇ m.
  • the production method of the present invention is characterized by using aluminum titanate fine powder and aluminum titanate coarse powder as aluminum titanate powder.
  • aluminum titanate fine powder and titanic acid are used.
  • aluminum titanate powder refers to both an aluminum titanate fine powder and an aluminum titanate coarse powder.
  • honeycomb structured body In the method for manufacturing a honeycomb structured body according to claim 1, after forming a honeycomb formed body using a mixture containing aluminum titanate coarse powder and aluminum titanate fine powder having a specific composition ratio prepared in advance. The honeycomb formed body is fired to produce a honeycomb structure.
  • the aluminum titanate coarse powder and the aluminum titanate fine powder contain Mg and Si, and the aluminum titanate powder containing Mg and Si is more heated than the aluminum titanate powder not containing Mg and Si. It is an aluminum titanate powder that is difficult to decompose and has high heat resistance.
  • the fine powder in which the total of MgO and SiO 2 is 8% by mass or more and 15% by mass or less is more heat resistant than the coarse powder in which the total of MgO and SiO 2 is 1% by mass or more and less than 8% by mass.
  • High aluminum titanate powder is 8% by mass or more and 15% by mass or less.
  • honeycomb formed body composed of such a mixture containing a fine powder having a relatively high heat resistance and a coarse powder having a relatively low heat resistance, the fracture strength is high, and further, repeated reprocessing.
  • a honeycomb structure with high durability can be manufactured.
  • the honeycomb formed body is fired at 1200 to 1700 ° C. Therefore, the particles can be bonded to each other, the degree of shrinkage during firing can be reduced, and the decomposition of aluminum titanate can be suppressed. Moreover, by firing at a temperature in the above range, the honeycomb fired body is sintered without excess and deficiency, and the variation in the pore size distribution of the manufactured honeycomb structure is reduced. Therefore, in the method for manufacturing a honeycomb structure of the present invention, a honeycomb structure having a high breaking strength can be manufactured stably.
  • the firing temperature is less than 1200 ° C., the sintering of aluminum titanate may not sufficiently proceed.
  • the said calcination temperature exceeds 1700 degreeC, the shrinkage degree at the time of baking will become large, As a result, a pore diameter may not be uniform.
  • aluminum titanate may be decomposed.
  • the method for manufacturing a honeycomb structure according to claim 2 wherein the method for manufacturing the honeycomb structure according to claim 1,
  • the composition ratio of the aluminum titanate coarse powder is 50 to 60% by mass of Al 2 O 3 , 30 to 40% by mass of TiO 2 , and the total of MgO and SiO 2 is 1 to 5% by mass.
  • the composition ratio of the aluminum titanate fine powder is 40 to 50% by mass of Al 2 O 3 , 40 to 50% by mass of TiO 2 , and the total of MgO and SiO 2 is 8 to 12% by mass.
  • a method for manufacturing a honeycomb structure according to claim 4 wherein the method for manufacturing a honeycomb structure according to any one of claims 1 to 3, A sealing step of filling any one end of each cell of the honeycomb formed body with a sealing material paste is performed.
  • the manufactured honeycomb structured body since the sealing step is performed, the manufactured honeycomb structured body can be used as a filter for purifying exhaust gas.
  • Fig. 1 (a) is a perspective view schematically showing the honeycomb structure manufactured in the first embodiment of the present invention
  • Fig. 1 (b) is an A of the honeycomb structure shown in Fig. 1 (a).
  • FIG. 1 (a) is a perspective view schematically showing the honeycomb structure manufactured in the first embodiment of the present invention
  • Fig. 1 (b) is an A of the honeycomb structure shown in Fig. 1 (a).
  • a honeycomb structure 10 shown in FIG. 1 (a) is made of aluminum titanate and has a cylindrical shape. In the interior thereof, as shown in FIG. 1B, a plurality of cells 11 are formed along the longitudinal direction of the honeycomb structure 10, and each cell 11 is separated by a cell wall 13. . One end of the cell 11 is sealed with a sealing material 12.
  • the sealing material 12 is made of the same material as the honeycomb structure 10 and is made of aluminum titanate.
  • the sealing material 12 seals the honeycomb structure 10 so that the exhaust gas does not leak from one end of the cell 11. For this reason, the exhaust gas flowing into one cell (indicated by an arrow in FIG. 1B) always passes through the cell wall 13 separating the one cell and then flows out from the other cells. Therefore, when exhaust gas passes through the cell wall 13, PM is collected inside the cell wall 13 and the exhaust gas is purified.
  • a wet mixture is prepared by mixing aluminum titanate fine powder, aluminum titanate coarse powder, a pore-forming agent, an organic binder, a plasticizer, a lubricant and water and stirring sufficiently.
  • the aluminum titanate coarse powder has an average particle diameter of 3 to 50 ⁇ m, Al 2 O 3 of 40 to 60% by mass, TiO 2 of 30 to 50% by mass, and a total of MgO and SiO 2 of 1 mass.
  • An aluminum titanate powder having a composition ratio of not less than 8% and less than 8% by mass is used.
  • the aluminum titanate fine powder has an average particle size of 0.1 to 3 ⁇ m, Al 2 O 3 of 40 to 60% by mass, TiO 2 of 30 to 50% by mass, and the total of MgO and SiO 2 is 8%.
  • An aluminum titanate powder having a composition ratio of not less than 15% by mass and not more than 15% by mass is used.
  • the composition ratio of the aluminum titanate powder is measured using ICP emission spectroscopic analysis.
  • ICP emission spectroscopic analysis plasma energy is applied to an analysis sample from the outside, the contained elements (atoms) are excited, and emitted light (spectrum) is emitted when the excited atoms return to a low energy level. Line) for each photon wavelength. Then, the type of the component element is determined from the position of the emission line, and the content of the component element is obtained from the intensity of the emission line.
  • the reason why the composition ratio of the aluminum titanate coarse powder and the aluminum titanate fine powder is in the above range is as follows. That is, when the composition ratio is out of the above range, when the manufactured honeycomb structure is used, the honeycomb structure is repeatedly exposed to heat such as exhaust gas, so that the aluminum titanate becomes Al 2 O 3 and TiO 2. Will gradually decompose. As a result, the physical properties of aluminum titanate cannot be exhibited, and the strength of the honeycomb structure is reduced.
  • the honeycomb structure is repeatedly exposed to heat such as exhaust gas when the manufactured honeycomb structure is used. Cracks due to expansion may occur.
  • the lower limit of the total composition ratio of MgO and SiO 2 in the aluminum titanate coarse powder is preferably 2.5% by mass. This is because when the content is 2.5% by mass or more, the decomposition of aluminum titanate is less likely to proceed.
  • the composition ratio of the aluminum titanate coarse powder is as follows: Al 2 O 3 is 50 to 60 mass%, TiO 2 is 30 to 40 mass%, and the total of MgO and SiO 2 is 1 mass% or more and 5 mass%. % Or less is more desirable.
  • the composition ratio of the aluminum titanate fine powder is 40-50 mass% for Al 2 O 3, 40-50 mass% for TiO 2 , and the total of MgO and SiO 2 is 8 mass% or more and 12 mass% or less. Is more desirable.
  • the wet mixture is extrusion-molded by an extruder to produce a columnar honeycomb molded body having a large number of cells arranged in parallel in the longitudinal direction. Thereafter, the long body of the honeycomb formed body is cut by a cutting device having a cutting disk as a cutting member to obtain a honeycomb formed body having a predetermined length.
  • the honeycomb formed body is dried for 1 to 30 minutes under a condition of 100 to 150 ° C. in an air atmosphere using a microwave dryer and a hot air dryer.
  • the honeycomb formed body in which one end of each cell is filled with the plug material paste is dried again.
  • the sealing material paste a paste having the same composition as the wet mixture is used.
  • the honeycomb formed body is degreased in a degreasing furnace for 3 to 15 hours under conditions of an oxygen concentration of 5% by volume to an atmospheric atmosphere at 250 to 400 ° C. Thereafter, firing is performed at a temperature of 1200 to 1700 ° C. for 0.5 to 24 hours in a firing furnace.
  • firing is performed at the above temperature, the particles can be bonded to each other, the degree of shrinkage during firing can be reduced, and the decomposition of aluminum titanate can be suppressed.
  • the sintering of the honeycomb fired body proceeds without excess and deficiency, and variation in pore size distribution is reduced in the manufactured honeycomb structure.
  • the firing temperature is less than 1200 ° C.
  • the sintering of aluminum titanate may not proceed sufficiently.
  • the said calcination temperature exceeds 1700 degreeC, the shrinkage degree at the time of baking will become large, As a result, a pore diameter may not be uniform.
  • aluminum titanate may be decomposed.
  • the honeycomb structure 10 described above can be manufactured through such steps.
  • a honeycomb formed body made of a wet mixture containing a fine powder having a relatively high heat resistance and a coarse powder having a relatively low heat resistance is fired. Therefore, it is possible to manufacture a honeycomb structure having high fracture strength and high durability against repeated regeneration processing.
  • the coarse particle of the aluminum titanate powder has an average particle diameter of 3 to 50 ⁇ m, Al 2 O 3 of 40 to 60% by mass, and TiO 2 of 30 to 30%.
  • An aluminum titanate powder having a composition ratio of 50% by mass and a total of MgO and SiO 2 of 1% by mass to less than 8% by mass is used, and the average particle size is 0.1 to 3 ⁇ m as a fine powder of the aluminum titanate powder.
  • Aluminum titanate powder having a composition ratio of Al 2 O 3 of 40 to 60% by mass, TiO 2 of 30 to 50% by mass, and the total of MgO and SiO 2 of 8% by mass to 15% by mass is used. ing. Therefore, in the manufactured honeycomb structure, decomposition of aluminum titanate does not proceed, and cracks due to thermal expansion do not occur in the manufactured honeycomb structure.
  • the honeycomb formed body is fired at 1200 to 1700 ° C., so that the particles are bonded to each other, the degree of shrinkage during firing is reduced, and the aluminum titanate is decomposed. Can be suppressed.
  • the sintering of the honeycomb fired body proceeds without excess and deficiency, and variation in pore size distribution is reduced in the manufactured honeycomb structure.
  • the aluminum titanate powder As the aluminum titanate powder, the aluminum titanate coarse powder having an average particle diameter of 3 to 50 ⁇ m and the aluminum titanate fine powder having an average particle diameter of 0.1 to 3 ⁇ m Powder is used.
  • the average particle size of each powder should be appropriately selected.
  • the pore diameter of the honeycomb structure can be controlled.
  • a sealing step of filling a plug material paste into one end of each cell of the honeycomb formed body is performed. Therefore, the manufactured honeycomb structure can be used as a filter for purifying exhaust gas.
  • aluminum titanate powders A to D having different composition ratios were prepared.
  • the composition ratios of the aluminum titanate powders A to D are as shown in Table 1.
  • Aluminum titanate powders A and C are aluminum titanate powders in which the total of MgO and SiO 2 is 1% by mass or more and less than 8% by mass.
  • Aluminum titanate powders B and D are aluminum titanate powders in which the total of MgO and SiO 2 is 8% by mass or more and 15% by mass or less.
  • the total amount of each component is not 100% by mass, because the aluminum titanate powder contains impurities.
  • the impurities include alkali feldspar-derived substances (K 2 O, Na 2 O, etc.), Al 2 O 3 powder as a raw material for iron compounds and aluminum titanate powders when the aluminum titanate powder is pulverized or mixed. And substances originally contained in TiO 2 powder.
  • the classification process was performed about each aluminum titanate powder, and the aluminum titanate fine powder which has a predetermined
  • a powder having a large average particle size was used as a coarse powder, and a powder having a small average particle size was used as a fine powder.
  • Example 1 2000 parts by weight of coarse powder of aluminum titanate A having an average particle diameter of 20 ⁇ m, 500 parts by weight of fine powder of aluminum titanate B having an average particle diameter of 0.5 ⁇ m, and 300 parts by weight of a pore-forming agent (spherical acrylic particles)
  • a wet mixture was prepared by mixing 188 parts by weight of an organic binder (methyl cellulose), 96 parts by weight of a plasticizer (Unilube manufactured by NOF Corporation), 44 parts by weight of a lubricant (glycerin) and 725 parts by weight of water. .
  • honeycomb formed body was cut using a cutting device provided with a cutting disk as a cutting member. Thereby, a honeycomb formed body made of columnar aluminum titanate was obtained.
  • honeycomb formed body was dried with a microwave dryer and a hot air dryer under the atmosphere at 120 ° C. for 20 minutes to remove moisture contained in the honeycomb formed body.
  • the degreased honeycomb formed body was fired in a firing furnace at 1500 ° C. for 1 hour.
  • a cell having a wall thickness of 0.2 mm, a cell density of 46.5 cells / cm 2 and a diameter of 143 along the longitudinal direction is obtained.
  • a honeycomb structure made of aluminum titanate having a length of 0.8 mm and a length in the longitudinal direction of 150 mm was completed.
  • Examples 2 to 6, Comparative Examples 1 to 4 A honeycomb structure was manufactured in the same manner as in Example 1 except that the types and average particle diameters of the aluminum titanate coarse powder and the aluminum titanate fine powder were changed as shown in Table 2.
  • the types and average particle diameters of the aluminum titanate powders used in the examples and comparative examples are as shown in Table 2 below. In Table 2, the types and average particle diameters of the aluminum titanate coarse powder and aluminum titanate fine powder used in Example 1 are listed. Table 2 also shows the porosity of the honeycomb structures manufactured in Examples 1 to 6 and Comparative Examples 1 to 4.
  • the honeycomb structures of the example and the comparative example are respectively disposed in the exhaust passage of a 2 L engine, and further on the gas inflow side of the honeycomb structure, a catalyst support (diameter: 200 mm, Length: 100 mm, cell density: 400 cells / inch 2 , platinum carrying amount: 5 g / L) is set as an exhaust gas purification device, and the engine is collected for 7 hours at a rotational speed of 3000 min ⁇ 1 and a torque of 50 Nm. did. The amount of particulates collected was 10 g / L. After that, the engine is set at a rotational speed of 1250 min ⁇ 1 and a torque of 60 Nm, and the filter temperature is kept constant for 1 minute.
  • the post-injection is performed, and the exhaust gas temperature is raised using the oxidation catalyst in front.
  • the particulates were burned.
  • the post-injection conditions were set so that the temperature of the exhaust gas flowing into the honeycomb structure after 1 minute from the start became substantially constant at 600 ° C.
  • the mixing ratio of the aluminum titanate fine powder and the aluminum titanate coarse powder is desirably 9: 1 to 6: 4.
  • the mixing ratio of the two is within the above range, when the honeycomb formed body is fired, the size after firing can be prevented from being reduced by shrinkage, and the average pore diameter, pore diameter distribution, and porosity can be reduced. This is because it can be controlled.
  • the firing time when firing the honeycomb formed body is preferably 0.5 to 24 hours. This is because if the firing time is less than 0.5 hours, firing may not proceed, and if it exceeds 24 hours, shrinkage after firing may increase.
  • the organic binder used when preparing the said wet mixture is not specifically limited, For example, methylcellulose, carboxymethylcellulose, hydroxyethylcellulose, polyethyleneglycol etc. are mentioned. Of these, methylcellulose is desirable.
  • the amount of the organic binder is desirably 1 to 10 parts by weight per 100 parts by weight of the aluminum titanate powder.
  • the plasticizer and lubricant used in preparing the wet mixture are not particularly limited, and examples of the plasticizer include glycerin.
  • examples of the lubricant include polyoxyalkylene compounds such as polyoxyethylene alkyl ether and polyoxypropylene alkyl ether.
  • Specific examples of the lubricant include polyoxyethylene monobutyl ether and polyoxypropylene monobutyl ether. In some cases, the plasticizer and the lubricant may not be contained in the wet mixture.
  • the pore forming agent used when preparing the wet mixture is not particularly limited, and examples thereof include spherical acrylic particles and graphite. In some cases, the pore-forming agent may not be contained in the wet mixture.
  • a dispersion medium liquid other than water may be used.
  • examples of such a dispersion medium liquid include alcohols such as methanol and organic solvents such as benzene and toluene. Can be mentioned.
  • a molding aid may be added to the wet mixture.
  • the molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid, fatty acid soap, polyalcohol and the like.
  • the temperature of the wet mixture is preferably 10 ° C. or lower. It is because an organic binder may gelatinize when temperature is too high.
  • the plug material paste for sealing cells is not particularly limited, but the porosity of the plug material formed through a subsequent process is 40 to 50%.
  • a thing similar to the said wet mixture can be used, for example.
  • an apparatus used for producing a long body of a honeycomb formed body by extrusion molding is not particularly limited, and for example, a single screw extrusion molding Machine, multi-screw type extruder, plunger type machine and the like.
  • a plunger type molding machine can be particularly preferably used.
  • the dryer used for drying the honeycomb formed body is not particularly limited, and examples thereof include a microwave heating dryer, a hot air dryer, an infrared dryer, and the like. Is mentioned. These may be used alone or in combination.
  • the shape of the cross section perpendicular to the longitudinal direction of the honeycomb structure manufactured in the embodiment of the present invention is not particularly limited to a circular shape, and may be various shapes such as a rectangle. And a shape surrounded by a straight line.
  • a shape in which a part of a simple closed curve such as an ellipse, an ellipse, a racetrack, an ellipse, or an ellipse has a concave portion (concave shape) can be given.
  • a desirable value of the aperture ratio of the honeycomb structure manufactured in the embodiment of the present invention is a lower limit of 50% and an upper limit of 75%.
  • the opening ratio is less than 50%, the pressure loss when the exhaust gas flows into and out of the honeycomb structure may increase, and when it exceeds 75%, the strength of the honeycomb structure may decrease.
  • a desirable lower limit of the cell wall thickness is 0.15 mm. This is because if the thickness is less than 0.15 mm, the strength of the honeycomb structure may be lowered.
  • the desirable upper limit of the cell wall thickness is 0.4 mm. When the thickness of the cell wall exceeds 0.4 mm, the cell aperture ratio and / or the filtration area may be reduced, and the pressure loss may increase accordingly.
  • the cell density is not particularly limited, and a desirable lower limit is 23.3 / cm 2 (150 / in 2 ), and a desirable upper limit is 93.0) / cm 2 (600 / in 2 ), the more desirable lower limit is 31 / cm 2 (200 / in 2 ), and the more desirable upper limit is 77.5 / cm 2 (500.0 / in 2 ). is there.
  • the shape of the cell in plan view is not particularly limited to a quadrangle, and examples thereof include a triangle, a hexagon, an octagon, a dodecagon, a circle, an ellipse, and a star.
  • a catalyst may be supported on the honeycomb structure as necessary.
  • the type of catalyst supported on the honeycomb structure is not particularly limited, and examples thereof include noble metal elements, alkali metal elements, alkaline earth metal elements, and metal oxides. These may be used alone or in combination of two or more.
  • Examples of the noble metal element include platinum, palladium, rhodium and the like, examples of the alkali metal element include potassium and sodium, and examples of the alkaline earth metal element include barium and the like. It is done.
  • Examples of the metal oxide include CeO 2 , K 2 O, ZrO 2 , FeO 2 , Fe 2 O 3 , CuO, CuO 2 , Mn 2 O 3 , MnO, composition formula An B 1-n CO 3 (where 0 ⁇ n ⁇ 1, A is La, Nd, Sm, Eu, Gd or Y, B is an alkali metal or alkaline earth metal, and C is Mn, Co, Fe or Ni) ) And the like.
  • the PM combustion temperature can be lowered when the honeycomb structure is used as a honeycomb filter for the regeneration treatment.
  • an alumina film having a high specific surface area may be formed on the surface of the honeycomb structure, and the catalyst may be applied to the surface of the alumina film.
  • FIG. 1 (a) is a perspective view schematically showing the honeycomb structure manufactured in the first embodiment of the present invention
  • FIG. 1 (b) is a cross-sectional view taken along the line AA in FIG. 1 (a). It is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Filtering Materials (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

本発明は、チタン酸アルミニウムを主成分とする破壊強度が高いハニカム構造体の製造方法を提供することを目的とするものであり、本発明のハニカム構造体の製造方法は、平均粒子径が3~50μmで、Alが40~60質量%、TiOが30~50質量%、MgO及びSiOの合計が1質量%以上8質量%未満である組成比のチタン酸アルミニウム粗粉末と、平均粒子径が0.1~3μmで、Alが40~60質量%、TiOが30~50質量%、MgO及びSiOの合計が8質量%以上15質量%以下である組成比のチタン酸アルミニウム微粉末とを含む湿潤混合物を成形して、長手方向に多数のセルが並設された柱状のハニカム成形体を作製する成形工程と、上記ハニカム成形体を1200°C~1700°Cで焼成する焼成工程とを行う。

Description

ハニカム構造体の製造方法
本発明は、ハニカム構造体の製造方法に関する。
従来、ディーゼルエンジン等の内燃機関から排出される排ガス中には、パティキュレートマター(以下、PMともいう)が含まれており、近年、このPMが環境や人体に害を及ぼすことが問題となっている。
そこで、排ガス中のPMを捕集して排ガスを浄化するフィルタとして、コージェライト、炭化ケイ素、チタン酸アルミニウムなどからなるハニカム構造体を用いたものが種々提案されている。
これらのなかで、チタン酸アルミニウムからなるハニカム構造体は、コージェライトからなるハニカム構造体よりも溶融温度が高く、PMを燃焼させた際に溶損が発生しにくいため、耐熱性が高いとされている。
また、チタン酸アルミニウムからなるハニカム構造体は、炭化ケイ素からなるハニカム構造体よりも熱膨張係数が低いので、熱応力によるクラックが発生しにくく耐熱衝撃性が高いとされている。
そして、上述したようなチタン酸アルミニウムからなるハニカム構造体を製造する方法としては、例えば、特許文献1に開示された方法が知られている。
特許文献1には、TiOとAlとからなる混合物に、アルカリ長石、MgOを添加し、焼成することにより主にチタン酸アルミニウムからなるハニカム構造体を製造するハニカム構造体の製造方法が開示されている。
特開第2005/87797号公報
特許文献1には、この文献に記載のハニカム構造体の製造方法を用いることにより、耐熱性及び耐熱衝撃性の高い、主にチタン酸アルミニウムからなるハニカム構造体を製造することができると記載されている。
また、特許文献1に記載の製造方法で製造したハニカム構造体は、アルカリ長石由来の成分及びMgO由来のMgの効果により、耐熱分解性及び破壊強度が高いとされている。
しかしながら、特許文献1に記載のハニカム構造体の製造方法によって製造されたハニカム構造体を排ガス浄化用のフィルタとして使用し、ハニカム構造体内に捕集されたPMを燃焼する再生処理を繰り返し行うと、破壊強度が低くなっていることがあった。
すなわち、特許文献1に記載のハニカム構造体の製造方法によって製造されたハニカム構造体は、繰り返しの再生処理に対する耐久性が不充分なものであった。
そのため、繰り返しの再生処理に対する耐久性が高いハニカム構造体を製造する方法が望まれていた。
本発明者らは、上記課題を解決するために鋭意検討を行い、平均粒子径が相対的に大きいチタン酸アルミニウム粗粉末(以下、単に粗粉末ともいう)と、平均粒子径が相対的に小さいチタン酸アルミニウム微粉末(以下、単に微粉末ともいう)とを用いることにより、破壊強度の高いハニカム構造体を製造することができることを見出した。
特に、特定の組成比を有するチタン酸アルミニウム粗粉末と、特定の組成比を有するチタン酸アルミニウム微粉末とを用いることにより、破壊強度が高く、さらに繰り返しの再生処理に対する耐久性が高いハニカム構造体を製造することができることを見出し、本発明を完成した。
請求項1に記載のハニカム構造体の製造方法は、
平均粒子径が3~50μmで、Alが40~60質量%、TiOが30~50質量%、MgO及びSiOの合計が1質量%以上8質量%未満である組成比のチタン酸アルミニウム粗粉末と、平均粒子径が0.1~3μmで、Alが40~60質量%、TiOが30~50質量%、MgO及びSiOの合計が8質量%以上15質量%以下である組成比のチタン酸アルミニウム微粉末とを含む湿潤混合物を成形して、長手方向に多数のセルが並設された柱状のハニカム成形体を作製する成形工程と、
上記ハニカム成形体を1200℃~1700℃で焼成する焼成工程とを行うことを特徴とする。
なお、本明細書において、チタン酸アルミニウム微粉末とは、その平均粒子径が、チタン酸アルミニウム粗粉末の平均粒子径よりも小さいものをいう。
従って、上記チタン酸アルミニウム粗粉末の平均粒子径が3μmの場合には、上記チタン酸アルミニウム微粉末の平均粒子径は3μm未満となる。
また、本発明の製造方法は、チタン酸アルミニウム粉末として、チタン酸アルミニウム微粉末とチタン酸アルミニウム粗粉末とを使用することを特徴としているが、以下の説明において、チタン酸アルミニウム微粉末とチタン酸アルミニウム粗粉末とを特に区別する必要がないときは、両者を合せて、単にチタン酸アルミニウム粉末と表記する。従って、本明細書において、チタン酸アルミニウム粉末と表記した場合、チタン酸アルミニウム微粉末とチタン酸アルミニウム粗粉末との両者を指すこととする。
請求項1に記載のハニカム構造体の製造方法では、予め作製しておいた特定の組成比のチタン酸アルミニウム粗粉末とチタン酸アルミニウム微粉末とを含む混合物を用いてハニカム成形体を作製した後、このハニカム成形体を焼成することによりハニカム構造体を製造する。
チタン酸アルミニウム粗粉末及びチタン酸アルミニウム微粉末には、Mg及びSiが含まれており、Mg及びSiを含むチタン酸アルミニウム粉末は、Mg及びSiを含まないチタン酸アルミニウム粉末と比較して、熱分解しにくく耐熱性の高いチタン酸アルミニウム粉末である。
特に、MgO及びSiOの合計が8質量%以上15質量%以下である微粉末は、MgO及びSiOの合計が1質量%以上8質量%未満である粗粉末と比較して耐熱性がより高いチタン酸アルミニウム粉末である。
このような、耐熱性が相対的に高い微粉末と、耐熱性が相対的に低い粗粉末とを含む混合物からなるハニカム成形体を焼成することによって、破壊強度が高く、さらに繰り返しの再生処理に対する耐久性が高いハニカム構造体を製造することができる。
この理由は定かではないが、上記のような耐熱性の異なるチタン酸アルミニウム粗粉末とチタン酸アルミニウム微粉末を含む混合物を用いて成形したハニカム成形体を焼成する場合、耐熱性が相対的に低い粗粉末が先に焼結しやすい状態となり、その後で耐熱性が相対的に高い微粉末が焼結しやすい状態となるため、ハニカム成形体内で粗粉末の焼結が確実に進行すると推測される。
そして、このように粗粉末の焼結が確実に進行することにより、ハニカム構造体の強度が確保され、その結果、全体として繰り返しの再生処理に対する耐久性が高いハニカム構造体となるものと推測される。
また、請求項1に記載のハニカム構造体の製造方法では、ハニカム成形体を1200~1700℃で焼成する。
そのため、粒子同士を結合させ、焼成時の収縮度合いを低減し、チタン酸アルミニウムの分解を抑えることができる。また、上記範囲の温度で焼成を行うことにより、ハニカム焼成体の焼結が過不足なく進行し、製造したハニカム構造体の気孔径分布のバラツキが小さくなる。
従って、本発明のハニカム構造体の製造方法では、破壊強度の高いハニカム構造体を安定して製造することができる。
一方、上記焼成温度が1200℃未満では、チタン酸アルミニウムの焼結が充分に進行しないことがある。
また、上記焼成温度が1700℃を超えると、焼成時の収縮度合が大きくなり、その結果、気孔径が揃わない場合がある。また、チタン酸アルミニウムが分解してしまうことがある。
請求項2に記載のハニカム構造体の製造方法は、請求項1に記載のハニカム構造体の製造方法において、
上記チタン酸アルミニウム粗粉末の組成比が、Alが50~60質量%、TiOが30~40質量%、MgO及びSiOの合計が1質量%以上5質量%以下である。
請求項3に記載のハニカム構造体の製造方法は、請求項1又は2に記載のハニカム構造体の製造方法において、
上記チタン酸アルミニウム微粉末の組成比は、Alが40~50質量%、TiOが40~50質量%、MgO及びSiOの合計が8質量%以上12質量%以下である。
請求項4に記載のハニカム構造体の製造方法は、請求項1~3のいずれかに記載のハニカム構造体の製造方法において、
上記ハニカム成形体の各セルのいずれか一方の端部に封止材ペーストを充填する封止工程を行う。
請求項4に記載のハニカム構造体の製造方法では、上記封止工程を行うため、製造されたハニカム構造体は、排ガスを浄化するためのフィルタとして用いることができる。
以下、本発明の一実施形態である第一実施形態について説明する。
まず、第一実施形態で製造するハニカム構造体について、図面を参照しながら簡単に説明する。
図1(a)は、本発明の第一実施形態で製造するハニカム構造体を模式的に示した斜視図であり、図1(b)は、図1(a)に示すハニカム構造体のA-A線断面図である。
図1(a)に示すハニカム構造体10は、チタン酸アルミニウムからなり、その形状は、円柱形状である。そして、その内部においては、図1(b)に示すように、複数のセル11がハニカム構造体10の長手方向に沿って形成されており、各セル11は、セル壁13によって隔てられている。
また、セル11の一端は、封止材12によって目封じされている。
封止材12は、ハニカム構造体10と同様の材質からなり、チタン酸アルミニウムから構成されている。この封止材12によって、ハニカム構造体10は、セル11の一端から排ガスが洩れない様に目封じされている。このため、一のセルに流入した排ガス(図1(b)中、矢印で示す)は、必ず一のセルを隔てるセル壁13を通過した後、他のセルから流出するようになっている。従って、排ガスがこのセル壁13を通過する際にPMがセル壁13の内部で捕集され、排ガスが浄化されることとなる。
次に、本実施形態のハニカム構造体の製造方法について工程順に説明する。
(1)チタン酸アルミニウム微粉末、チタン酸アルミニウム粗粉末、造孔剤、有機バインダ、可塑剤、潤滑剤及び水を混合し、充分攪拌することによって湿潤混合物を調製する。
ここで、上記チタン酸アルミニウム粗粉末としては、平均粒子径が3~50μmで、Alが40~60質量%、TiOが30~50質量%、MgO及びSiOの合計が1質量%以上8質量%未満である組成比のチタン酸アルミニウム粉末を使用する。
また、上記チタン酸アルミニウム微粉末としては、平均粒子径が0.1~3μmで、Alが40~60質量%、TiOが30~50質量%、MgO及びSiOの合計が8質量%以上15質量%以下である組成比のチタン酸アルミニウム粉末を使用する。
チタン酸アルミニウム粉末の組成比は、ICP発光分光分析法を用いて測定する。
ICP発光分光分析法では、分析試料にプラズマのエネルギを外部から与え、含有されている元素(原子)を励起させ、その励起された原子が低いエネルギ準位に戻る際に放出する発光線(スペクトル線)を光子の波長別に測定する。そして、発光線の位置から成分元素の種類を判定し、発光線の強度から成分元素の含有量を求める。
本発明の実施形態において、上記チタン酸アルミニウム粗粉末及び上記チタン酸アルミニウム微粉末の組成比が上記範囲にある理由は以下のとおりである。
即ち、組成比が上記範囲を外れる場合には、製造したハニカム構造体を使用した際、上記ハニカム構造体が排ガスなどの熱に繰り返しさらされることにより、チタン酸アルミニウムがAlとTiOに徐々に分解してしまう。
その結果、チタン酸アルミニウムが持つ物性を発揮できなくなり、ハニカム構造体の強度の低下などが発生することとなる。
また、チタン酸アルミニウム微粉末のMgOとSiOの合計の組成比が15質量%を超えると、製造したハニカム構造体を使用した際、上記ハニカム構造体が排ガスなどの熱に繰り返しさらされ、熱膨張によるクラックが発生することがある。
なお、上記チタン酸アルミニウム粗粉末のMgOとSiOの合計の組成比の下限は、2.5質量%が望ましい。2.5質量%以上であると、チタン酸アルミニウムの分解がより進行しにくくなるからである。
なお、本実施形態において、チタン酸アルミニウム粗粉末の組成比は、Alが50~60質量%、TiOが30~40質量%、MgO及びSiOの合計が1質量%以上5質量%以下であることがより望ましい。
また、チタン酸アルミニウム微粉末の組成比は、Alが40~50質量%、TiOが40~50質量%、MgO及びSiOの合計が8質量%以上12質量%以下であることがより望ましい。
(2)上記湿潤混合物を押出成形機により押出成形し、長手方向に多数のセルが並設された円柱状のハニカム成形体の長尺体を作製する。その後、上記ハニカム成形体の長尺体を、切断ディスクを切断部材として備えた切断装置により切断し、所定の長さのハニカム成形体とする。
(3)上記ハニカム成形体をマイクロ波乾燥機及び熱風乾燥機を用いて、大気雰囲気下、100~150℃の条件で1~30分間乾燥する。
(4)上記ハニカム成形体の各セルのいずれか一方の端部が封止されるように、所定の端部に封止材ペーストを充填する。その後、各セルのいずれか一方の端部に封止材ペーストが充填されたハニカム成形体を再度乾燥させる。
上記封止材ペーストとしては、上記湿潤混合物と同様の組成のペーストを使用する。
(5)上記ハニカム成形体を、脱脂炉中で、酸素濃度5容積%~大気雰囲気下、250~400℃の条件で3~15時間脱脂する。
その後、焼成炉中で、1200~1700℃の温度で0.5~24時間焼成する。
上記温度で焼成することにより、粒子同士を結合させ、焼成時の収縮度合いを低減し、チタン酸アルミニウムの分解を抑えることができる。また、ハニカム焼成体の焼結が過不足なく進行し、製造したハニカム構造体において、気孔径分布のバラツキが小さくなる。
これに対し、上記焼成温度が1200℃未満ではチタン酸アルミニウムの焼結が充分に進行しないことがある。
また、上記焼成温度が1700℃を超えると、焼成時の収縮度合が大きくなり、その結果、気孔径が揃わない場合がある。また、チタン酸アルミニウムが分解してしまうことがある。
このような工程を経ることにより、上述したハニカム構造体10を製造することができる。
以下、第一実施形態のハニカム構造体の製造方法についての作用効果を列挙する。
(1)本実施形態のハニカム構造体の製造方法では、耐熱性が相対的に高い微粉末と、耐熱性が相対的に低い粗粉末とを含む湿潤混合物からなるハニカム成形体を焼成しているため、破壊強度が高く、繰り返しの再生処理に対する耐久性が高いハニカム構造体を製造することができる。
(2)本実施形態のハニカム構造体の製造方法では、チタン酸アルミニウム粉末の粗粉末として、平均粒子径が3~50μmであり、Alが40~60質量%、TiOが30~50質量%、MgO及びSiOの合計が1質量%以上8質量%未満である組成比のチタン酸アルミニウム粉末を使用し、チタン酸アルミニウム粉末の微粉末として、平均粒子径が0.1~3μmであり、Alが40~60質量%、TiOが30~50質量%、MgO及びSiOの合計が8質量%以上15質量%以下である組成比のチタン酸アルミニウム粉末を使用している。
そのため、製造したハニカム構造体において、チタン酸アルミニウムの分解が進行したり、製造したハニカム構造体に熱膨張によるクラックが発生したりすることがない。
(3)本実施形態のハニカム構造体の製造方法では、ハニカム成形体を1200~1700℃で焼成しているため、粒子同士を結合させ、焼成時の収縮度合いを低減し、チタン酸アルミニウムの分解を抑えることができる。また、ハニカム焼成体の焼結が過不足なく進行し、製造したハニカム構造体において、気孔径分布のバラツキが小さくなる。
(4)本実施形態のハニカム構造体の製造方法では、チタン酸アルミニウム粉末として、平均粒子径が3~50μmのチタン酸アルミニウム粗粉末と、平均粒子径が0.1~3μmのチタン酸アルミニウム微粉末とを用いている。
このように、平均粒子径が3~50μmのチタン酸アルミニウム粗粉末と、平均粒子径が0.1~3μmのチタン酸アルミニウム微粉末とを用いる場合、各粉末の平均粒子径を適宜選択することにより、ハニカム構造体の気孔径を制御することができる。
(5)本実施形態のハニカム構造体の製造方法では、前記ハニカム成形体の各セルのいずれか一方の端部に封止材ペーストを充填する封止工程を行う。そのため、製造したハニカム構造体は、排ガスを浄化するためのフィルタとして用いることができる。
以下、本発明の第一実施形態をより具体的に開示した実施例を示すが、本実施形態はこれら実施例のみに限定されるものではない。
ここでは、まず、組成比の異なるチタン酸アルミニウム粉末A~Dを用意した。
チタン酸アルミニウム粉末A~Dの各組成比は表1に示すとおりである。
チタン酸アルミニウム粉末A、CはMgO及びSiOの合計が1質量%以上8質量%未満であるチタン酸アルミニウム粉末である。
チタン酸アルミニウム粉末B、DはMgO及びSiOの合計が8質量%以上15質量%以下であるチタン酸アルミニウム粉末である。
なお、表1に示したチタン酸アルミニウム粉末A~Dの組成比において、各成分の合計量は100質量%となっていないが、これは、チタン酸アルミニウム粉末中に不純物が含まれるからである。
上記不純物は、アルカリ長石由来の物質(KO、NaO等)、チタン酸アルミニウム粉末を粉砕したり、混合したりする際に鉄化合物、チタン酸アルミニウム粉末の原料のAl粉末やTiO粉末に元々含まれる物質等である。
Figure JPOXMLDOC01-appb-T000001
そして、各チタン酸アルミニウム粉末について、分級工程を行い、所定の平均粒子径を有するチタン酸アルミニウム微粉末を調整した。
そして、湿潤混合物を調製する際に、平均粒子径の大きい粉末を粗粉末として使用し、平均粒子径の小さい粉末を微粉末として使用した。
(実施例1)
(1)平均粒子径が20μmのチタン酸アルミニウムAの粗粉末2000重量部、平均粒子径が0.5μmのチタン酸アルミニウムBの微粉末500重量部、造孔剤(球状アクリル粒子)300重量部、有機バインダ(メチルセルロース)188重量部、可塑剤(日本油脂社製 ユニルーブ)96重量部、潤滑剤(グリセリン)44重量部及び水725重量部を混合し、充分攪拌することによって湿潤混合物を調製した。
(2)上記湿潤混合物をプランジャー式押出成形機の混合物タンクよりシリンダー内に投入し、ピストンをダイス側に押し込んで円柱形状のダイスより湿潤混合物を押し出し、セル壁で隔てられた多数のセルが長手方向に沿って形成された円柱形状のチタン酸アルミニウムからなるハニカム成形体の長尺体を作製した。
(3)上記ハニカム成形体の長尺体を、切断ディスクを切断部材として備えた切断装置を用いて切断した。これにより、円柱形状のチタン酸アルミニウムからなるハニカム成形体を得た。
(4)上記ハニカム成形体を、マイクロ波乾燥機及び熱風乾燥機により、大気雰囲気下、120℃の条件で20分間、乾燥処理し、ハニカム成形体中に含まれる水分を除去した。
(5)上記乾燥処理後のハニカム成形体の各セルのいずれか一方の端部に封止材ペーストが充填されるように、(1)で調整した湿潤混合物と同様の組成の封止材ペーストをハニカム成形体の所定のセルに充填した。
(6)上記封止材ペーストを充填したハニカム成形体を大気雰囲気下、120℃の条件で10分間、再度乾燥処理した。その後、脱脂炉中で、酸素濃度6容量%の下、300℃の条件で12時間脱脂処理した。
(7)上記脱脂処理したハニカム成形体を、焼成炉中、1500℃の条件で1時間焼成処理した。
このような(1)~(7)の工程を経ることにより、長手方向に沿って、壁厚が0.2mmで、セル密度が46.5個/cmのセルを有し、直径が143.8mmで、長手方向の長さが150mmのチタン酸アルミニウムからなるハニカム構造体を完成した。
なお、実施例1で製造したハニカム構造体の気孔率は40%であった。
上記気孔率は、水銀圧入法により測定した。
(実施例2~6、比較例1~4)
チタン酸アルミニウム粗粉末及びチタン酸アルミニウム微粉末の種類と平均粒子径とを表2に示すように変更した以外は、実施例1と同様にして、ハニカム構造体を製造した。
各実施例及び比較例で使用したチタン酸アルミニウム粉末の種類及び平均粒子径は、下記表2に示したとおりである。なお、表2には、実施例1で使用したチタン酸アルミニウム粗粉末及びチタン酸アルミニウム微粉末の種類と平均粒子径とを合せて記載した。
また、表2には、実施例1~6及び比較例1~4で製造したハニカム構造体の気孔率も記載した。
Figure JPOXMLDOC01-appb-T000002
(ハニカム構造体の評価)
実施例1~6及び比較例1~4で製造したハニカム構造体について、下記の方法による再生処理を20回行い、その後、下記の方法によりハニカム構造体の破壊強度を測定した。
(再生処理)
実施例及び比較例のハニカム構造体をそれぞれ、2Lのエンジンの排気通路に配置し、さらにハニカム構造体よりガス流入側に、市販のコージェライトからなるハニカム構造体の触媒担持体(直径:200mm、長さ:100mm、セル密度:400セル/inch、白金担持量:5g/L)を設置して排気ガス浄化装置とし、エンジンを回転数3000min-1、トルク50Nmでパティキュレートを7時間捕集した。パティキュレートの捕集量は、10g/Lであった。
その後、エンジンを回転数1250min-1、トルク60Nmとし、フィルタの温度が一定となった状態で、1分間保持した後、ポストインジェクションを行い、前方にある酸化触媒を利用して排気温度を上昇させ、パティキュレートを燃焼させた。
上記ポストインジェクションの条件は、開始1分間後からハニカム構造体に流入する排ガスの温度が600℃でほぼ一定になるように設定した。
(破壊強度の測定)
上記再生処理を20回行ったハニカム構造体から34.3mm角、長さ150mmの試験片を切り出し、JIS R 1601に準拠して、インストロン5582を用い、スパン間距離:130mm、スピード0.5mm/分で3点曲げ試験を行い、各実施例及び比較例のハニカム構造体の曲げ強度を測定した。
結果を表3に示した。
Figure JPOXMLDOC01-appb-T000003
表3に示した結果より、実施例1~6のように、MgO及びSiOの合計が8質量%以上15質量%以下であるチタン酸アルミニウム微粉末と、MgO及びSiOの合計が1質量%以上8質量%未満であるチタン酸アルミニウム粗粉末とを用いてハニカム構造体を製造した場合には、20回の再生処理を行った後でも高い破壊強度を有するハニカム構造体を製造することができることが明らかとなった。
これに対して、比較例1~4のように、同一の組成比のチタン酸アルミニウム微粉末とチタン酸アルミニウム粗粉末とを用いて製造したハニカム構造体は、20回の再生処理を行った後において、破壊強度が低くなっていた。このような破壊強度の低下は、再生処理によって一部のチタン酸アルミニウムがAlとTiOとに分解していたために生じたものと考えられる。
(その他の実施形態)
本発明の実施形態のハニカム構造体の製造方法において、チタン酸アルミニウム微粉末とチタン酸アルミニウム粗粉末との混合比は、9:1~6:4が望ましい。
両者の混合比が上記範囲内であると、ハニカム成形体を焼成した際に、焼成後のサイズが収縮により小さくなることを抑制することができるとともに、平均気孔径、気孔径分布及び気孔率を制御することができるからである。
本発明の実施形態のハニカム構造体の製造方法において、ハニカム成形体を焼成する際の焼成時間は、0.5~24時間であることが望ましい。
上記焼成時間が、0.5時間未満では、焼成が進まないことがあり、24時間を超えると、焼成後の収縮が大きくなる場合があるからである。
上記湿潤混合物を調製する際に使用する有機バインダは、特に限定されず、例えば、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール等が挙げられる。このなかでは、メチルセルロースが望ましい。
上記有機バインダの配合量は、通常、チタン酸アルミニウム粉末100重量部に対して、1~10重量部が望ましい。
上記湿潤混合物を調製する際に使用する可塑剤や潤滑剤は、特に限定されず、可塑剤としては、例えば、グリセリン等が挙げられる。また、潤滑剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシプロピレンアルキルエーテル等のポリオキシアルキレン系化合物等が挙げられる。
潤滑剤の具体例としては、例えば、ポリオキシエチレンモノブチルエーテル、ポリオキシプロピレンモノブチルエーテル等が挙げられる。
なお、可塑剤、潤滑剤は、場合によっては、上記湿潤混合物に含まれていなくてもよい。
上記湿潤混合物を調製する際に使用する造孔剤は、特に限定されず、例えば、球状アクリル粒子、グラファイト等が挙げられる。
なお、造孔剤は、場合によっては、上記湿潤混合物に含まれていなくてもよい。
また、上記湿潤混合物を調製する際には、水以外の分散媒液を使用してもよく、このような分散媒液としては、例えば、メタノール等のアルコール、ベンゼン、トルエン等の有機溶媒等が挙げられる。
さらに、上記湿潤混合物中には、成形助剤が添加されていてもよい。
成形助剤としては特に限定されず、例えば、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコール等が挙げられる。
本発明の実施形態のハニカム構造体の製造方法において、上記湿潤混合物を成形してハニカム成形体を作製する際、上記湿潤混合物の温度は10℃以下であることが望ましい。温度が高すぎると、有機バインダがゲル化してしまうことがあるからである。
本発明の実施形態のハニカム構造体の製造方法において、セルを封止する封止材ペーストとしては特に限定されないが、後工程を経て形成される封止材の気孔率が40~50%となるものが望ましく、例えば、上記湿潤混合物と同様のものを用いることができる。
本発明の実施形態のハニカム構造体の製造方法において、押出成形により、ハニカム成形体の長尺体を作製する際に用いる装置は、特に限定されるものではなく、例えば、単軸スクリュー式押出成形機、多軸スクリュー式押出成形機、プランジャー式成形機等が挙げられる。この中でも、プランジャー式成形機を特に好適に用いることができる。
本発明の実施形態のハニカム構造体の製造方法において、ハニカム成形体の乾燥に用いる乾燥機としては、特に限定されるものではなく、例えば、マイクロ波加熱乾燥機、熱風乾燥機、赤外線乾燥機等が挙げられる。これらは単独で用いてもよいし、複数組み合わせてもよい。
本発明の実施形態で製造するハニカム構造体の長手方向に対して垂直な断面の形状は、特に円形に限られるものではなく、矩形等、種々の形状とすることができるが、曲線のみ又は曲線と直線とで囲まれた形状であることが望ましい。
その具体例として、円形以外には、例えば、楕円形、長円形、レーストラック形、楕円形又は長円形等の単純閉曲線の一部が凹部を有する形状(concave形状)等を挙げることができる。
本発明の実施形態で製造するハニカム構造体の開口率の望ましい値は、下限が50%であり、上限が75%である。
上記開口率が50%未満では、ハニカム構造体に排ガスが流入出する際の圧力損失が大きくなる場合があり、75%を超えると、ハニカム構造体の強度が低下したりする場合がある。
本発明の実施形態で製造するハニカム構造体において、セル壁の厚さの望ましい下限は0.15mmである。0.15mm未満では、ハニカム構造体の強度が低下することがあるからである。
一方、上記セル壁の厚さの望ましい上限は0.4mmである。セル壁の厚さが0.4mmを超えると、セルの開口率及び/又は濾過面積が小さくなり、それに伴って圧力損失が増加することがある。
本発明の実施形態で製造するハニカム構造体において、セル密度は特に限定されず、望ましい下限は、23.3個/cm(150個/in)、望ましい上限は、93.0)個/cm(600個/in)、より望ましい下限は、31個/cm(200個/in)、より望ましい上限は、77.5個/cm(500.0個/in)である。
なお、上記セルの平面視形状については特に四角形に限定されず、例えば、三角形、六角形、八角形、十二角形、円形、楕円形、星型等の形状を挙げることができる。
上記ハニカム構造体には、必要に応じて、触媒を担持させてもよい。ハニカム構造体に担持させる触媒の種類は特に限定されるものでないが、例えば、貴金属元素、アルカリ金属元素、アルカリ土類金属元素、金属酸化物等が挙げられる。これらは、単独で用いてもよいし、2種以上併用してもよい。
上記貴金属元素としては、例えば、白金、パラジウム、ロジウム等が挙げられ、上記アルカリ金属元素としては、例えば、カリウム、ナトリウム等が挙げられ、上記アルカリ土類金属元素としては、例えば、バリウム等が挙げられる。また、上記金属酸化物としては、例えば、CeO、KO、ZrO、FeO、Fe、CuO、CuO、Mn、MnO、組成式A1-nCO(式中、0≦n≦1であり、AはLa、Nd、Sm、Eu、Gd又はYであり、Bはアルカリ金属又はアルカリ土類金属であり、CはMn、Co、Fe又はNi)で表される複合酸化物等が挙げられる。
上記触媒を担持させることにより、上記ハニカム構造体をハニカムフィルタとして再生処理に用いる際に、PMの燃焼温度を低下させることができる。
また、上記触媒を担持させる場合には、ハニカム構造体の表面に高い比表面積のアルミナ膜を形成し、このアルミナ膜の表面に上記触媒を付与してもよい。
図1(a)は、本発明の第一実施形態で製造するハニカム構造体を模式的に示した斜視図であり、図1(b)は、図1(a)のA-A線断面図である。
符号の説明
10 ハニカム構造体
11 セル
12 封止材
13 セル壁

Claims (4)

  1. 平均粒子径が3~50μmで、Alが40~60質量%、TiOが30~50質量%、MgO及びSiOの合計が1質量%以上8質量%未満である組成比のチタン酸アルミニウム粗粉末と、平均粒子径が0.1~3μmで、Alが40~60質量%、TiOが30~50質量%、MgO及びSiOの合計が8質量%以上15質量%以下である組成比のチタン酸アルミニウム微粉末とを含む湿潤混合物を成形して、長手方向に多数のセルが並設された柱状のハニカム成形体を作製する成形工程と、
    前記ハニカム成形体を1200℃~1700℃で焼成する焼成工程とを行うことを特徴とするハニカム構造体の製造方法。
  2. 前記チタン酸アルミニウム粗粉末の組成比は、Alが50~60質量%、TiOが30~40質量%、MgO及びSiOの合計が1質量%以上5質量%以下である請求項1に記載のハニカム構造体の製造方法。
  3. 前記チタン酸アルミニウム微粉末の組成比は、Alが40~50質量%、TiOが40~50質量%、MgO及びSiOの合計が8質量%以上12質量%以下である請求項1又は2に記載のハニカム構造体の製造方法。
  4. 前記ハニカム成形体の各セルのいずれか一方の端部に封止材ペーストを充填する封止工程を行う請求項1~3のいずれかに記載のハニカム構造体の製造方法。
PCT/JP2008/056411 2008-03-31 2008-03-31 ハニカム構造体の製造方法 WO2009122536A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2008/056411 WO2009122536A1 (ja) 2008-03-31 2008-03-31 ハニカム構造体の製造方法
JP2010505195A JPWO2009122536A1 (ja) 2008-03-31 2008-03-31 ハニカム構造体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/056411 WO2009122536A1 (ja) 2008-03-31 2008-03-31 ハニカム構造体の製造方法

Publications (1)

Publication Number Publication Date
WO2009122536A1 true WO2009122536A1 (ja) 2009-10-08

Family

ID=41134957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/056411 WO2009122536A1 (ja) 2008-03-31 2008-03-31 ハニカム構造体の製造方法

Country Status (2)

Country Link
JP (1) JPWO2009122536A1 (ja)
WO (1) WO2009122536A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011526573A (ja) * 2008-07-04 2011-10-13 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン チタン酸アルミニウム型の多孔質構造体を製造するための粒子混合物
WO2012014684A1 (ja) * 2010-07-28 2012-02-02 住友化学株式会社 グリーン成形体
WO2012014681A1 (ja) * 2010-07-28 2012-02-02 住友化学株式会社 グリーン成形体
JP2019147111A (ja) * 2018-02-27 2019-09-05 イビデン株式会社 排ガス浄化システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138083A (ja) * 1993-11-11 1995-05-30 Toyota Motor Corp 多孔質チタン酸アルミニウム焼結体の製造方法
JPH08290963A (ja) * 1995-04-21 1996-11-05 Matsushita Electric Ind Co Ltd 低熱膨張材料及びそれを用いた排ガスフィルター

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129064A (ja) * 1988-11-08 1990-05-17 Toyota Motor Corp チタン酸アルミニウム製鋳ぐるみ部品
JPH07122536A (ja) * 1993-10-21 1995-05-12 Hitachi Ltd 半導体装置の製造装置
JP4945056B2 (ja) * 2003-09-12 2012-06-06 オーセラ株式会社 排ガス浄化触媒用ハニカム担体及びその製造方法
JP2005269886A (ja) * 2004-02-18 2005-09-29 Tdk Corp 円筒状磁石及びその製造方法
EP2260921A4 (en) * 2008-03-31 2011-11-30 Ibiden Co Ltd HONEYCOMB STRUCTURE
WO2009122538A1 (ja) * 2008-03-31 2009-10-08 イビデン株式会社 ハニカム構造体
JPWO2009122534A1 (ja) * 2008-03-31 2011-07-28 イビデン株式会社 ハニカム構造体
WO2009122539A1 (ja) * 2008-03-31 2009-10-08 イビデン株式会社 ハニカム構造体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138083A (ja) * 1993-11-11 1995-05-30 Toyota Motor Corp 多孔質チタン酸アルミニウム焼結体の製造方法
JPH08290963A (ja) * 1995-04-21 1996-11-05 Matsushita Electric Ind Co Ltd 低熱膨張材料及びそれを用いた排ガスフィルター

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011526573A (ja) * 2008-07-04 2011-10-13 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン チタン酸アルミニウム型の多孔質構造体を製造するための粒子混合物
WO2012014684A1 (ja) * 2010-07-28 2012-02-02 住友化学株式会社 グリーン成形体
WO2012014681A1 (ja) * 2010-07-28 2012-02-02 住友化学株式会社 グリーン成形体
JP2019147111A (ja) * 2018-02-27 2019-09-05 イビデン株式会社 排ガス浄化システム
JP7011951B2 (ja) 2018-02-27 2022-01-27 イビデン株式会社 排ガス浄化システム

Also Published As

Publication number Publication date
JPWO2009122536A1 (ja) 2011-07-28

Similar Documents

Publication Publication Date Title
WO2009122535A1 (ja) ハニカム構造体の製造方法
EP1977809B1 (en) Honeycomb filter
EP1974792B1 (en) Honeycomb filter
EP1974795B1 (en) Honeycomb filter
EP1977813B1 (en) Honeycomb filter
WO2009122539A1 (ja) ハニカム構造体
EP1982766B1 (en) Honeycomb filter
EP1974813B1 (en) Honeycomb structured body
JP5260982B2 (ja) ハニカムフィルタ
US20150071829A1 (en) Honeycomb filter, exhaust gas purifying apparatus, and method for purifying exhaust gas
WO2009122536A1 (ja) ハニカム構造体の製造方法
JP5199618B2 (ja) ハニカム構造体の製造方法
JP2012102004A (ja) ハニカム構造体及び排ガス浄化装置
JP5856793B2 (ja) チタン酸アルミニウム質ハニカム構造体
WO2009122537A1 (ja) ハニカム構造体の製造方法
KR20090106483A (ko) 탄화 규소를 기초로 한 다공성 구조물을 얻는 방법
EP2329874B1 (en) Honeycomb filter and exhaust gas purifying apparatus
US11071937B2 (en) Ceramic porous body and method for producing the same, and dust collecting filter
JP2011224538A (ja) ハニカムフィルタ及び排ガス浄化装置
JP2008303133A (ja) 炭化ケイ素焼成用原料の製造方法、及び、ハニカム構造体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08739524

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010505195

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08739524

Country of ref document: EP

Kind code of ref document: A1