WO2015046012A1 - セラミックハニカム構造体及びその製造方法 - Google Patents

セラミックハニカム構造体及びその製造方法 Download PDF

Info

Publication number
WO2015046012A1
WO2015046012A1 PCT/JP2014/074683 JP2014074683W WO2015046012A1 WO 2015046012 A1 WO2015046012 A1 WO 2015046012A1 JP 2014074683 W JP2014074683 W JP 2014074683W WO 2015046012 A1 WO2015046012 A1 WO 2015046012A1
Authority
WO
WIPO (PCT)
Prior art keywords
pore
less
diameter
volume
mass
Prior art date
Application number
PCT/JP2014/074683
Other languages
English (en)
French (fr)
Inventor
岡崎 俊二
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to EP14847996.7A priority Critical patent/EP2980049B1/en
Priority to CN201480041146.9A priority patent/CN105392759B/zh
Priority to JP2015507840A priority patent/JP5751398B1/ja
Priority to US14/762,071 priority patent/US9649587B2/en
Publication of WO2015046012A1 publication Critical patent/WO2015046012A1/ja
Priority to US15/191,735 priority patent/US10065141B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/04Clay; Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/30Drying methods
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/48Honeycomb supports characterised by their structural details characterised by the number of flow passages, e.g. cell density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a ceramic honeycomb filter for removing fine particles contained in exhaust gas of a diesel engine, particularly a ceramic honeycomb structure used for a ceramic honeycomb filter for removing fine particles (so-called nanoparticles) having a particle diameter of 50 ⁇ m or less. About the body.
  • Diesel engine exhaust gas contains PM (Particulate Matter: particulate matter) whose main component is soot made of carbon and SOF content (Soluble Organic Fraction) consisting of high-boiling hydrocarbon components. If released into the atmosphere, the human body and the environment may be adversely affected. For this reason, it has been conventionally performed to install a ceramic honeycomb filter for collecting PM in the exhaust pipe of a diesel engine. An example of a ceramic honeycomb filter for collecting PM in exhaust gas and purifying the exhaust gas is shown in FIGS.
  • the ceramic honeycomb filter 10 includes a ceramic honeycomb structure including a porous partition wall 2 and an outer peripheral wall 1 forming a large number of outflow side sealing channels 3 and inflow side sealing channels 4, and an outflow side sealing channel 3
  • the upstream side sealing portion 6a and the downstream side sealing portion 6c that alternately seal the exhaust gas inflow side end surface 8 and the exhaust gas outflow side end surface 9 of the inflow side sealing channel 4 in a checkered pattern.
  • the outer peripheral wall 1 of the ceramic honeycomb filter is gripped so as not to move during use by a gripping member (not shown) formed of a metal mesh or ceramic mat or the like, and is placed in a metal storage container (not shown). Is arranged.
  • purification of exhaust gas is performed as follows.
  • the exhaust gas flows in from the outflow side sealing flow path 3 opened in the exhaust gas inflow side end face 8 as indicated by a dotted arrow in FIG.
  • PM in the exhaust gas is collected.
  • the purified exhaust gas flows out from the inflow side sealing flow path 4 opened in the exhaust gas outflow side end face 9, and is released into the atmosphere.
  • nanoparticles with a particle size of 50 mm or less in PM. These nanoparticles have a higher deposition rate on the respiratory system when inhaled into the body than when larger particles of the same mass are inhaled.
  • the nanoparticle since the nanoparticle has a relatively large surface area per volume, when a toxic chemical substance is adsorbed on the particle surface, it may be a PM particle having a stronger toxicity. Since the amount of nanoparticles contained in PM is low in mass, the current PM mass standard regulation is insufficient, and as a future emission regulation, the emission of nanoparticles that greatly affects the number of emitted particles is suppressed. It is predicted that a standard (particle number standard) will be established. For this reason, in addition to excellent pressure loss characteristics, honeycomb filters are required to improve the collection rate based on the number of PM particles, especially the number of nanoparticles, rather than the collection rate based on the current PM mass.
  • honeycomb filters are required to improve the collection rate based on the number of PM particles, especially the
  • Special table 2005-530616 is composed of a cordierite honeycomb structure with the end closed, and the value d50 / (d50 + d90) obtained from the pore size distribution is less than 0.70, and the formula [d50 / (d50 + d90)] / [% porosity / 100]
  • the soot adhesion factor Sf is less than 1.55, and the thermal expansion coefficient (25 to 800 ° C) is 17 ⁇ 10 -7 / ° C or less.
  • a ceramic filter that captures and burns diesel exhaust particulates, and has such a pore structure (pore size distribution and pore connectivity), so that PM is attached. It can be said that low pressure loss can be maintained.
  • Japanese Patent Laid-Open No. 2002-219319 is made of a material having cordierite whose pore distribution is controlled as a main crystal phase, and the pore distribution is such that the pore volume having a pore diameter of less than 10 ⁇ m is 15% or less of the total pore volume.
  • a porous honeycomb filter in which the pore volume with a pore diameter of 10 to 50 ⁇ m is 75% or more of the total pore volume, and the pore volume with a pore diameter of more than 50 ⁇ m is 10% or less of the total pore volume. Since this porous honeycomb filter has the pore distribution as described above, it is described that the collection efficiency of PM and the like is high, and that an increase in pressure loss due to pore clogging can be prevented. Yes. JP 2002-219319 describes that such pore distribution can be controlled by controlling the particle size of the silica component of the cordierite forming raw material and reducing the concentration of kaolin.
  • Japanese Patent Laid-Open No. 2003-40687 has cordierite as a main component, has a porosity of 55 to 65%, an average pore diameter of 15 to 30 ⁇ m, and the total area of pores opened on the partition wall surface is 35% of the total area of the partition wall surface. % Of the honeycomb ceramic structure is disclosed, and it is described that this honeycomb ceramic structure can achieve low pressure loss and high collection efficiency.
  • the PM collection performance of the exhaust gas purification filters described in JP 2005-530616, JP 2002-219319 and JP 2003-40687 is enhanced by the accumulation of PM to some extent, but the use is started.
  • the state before the initial PM is deposited (when the ceramic honeycomb filter is used from an unused state or when it is reused after being regenerated) is not necessarily sufficient.
  • the collection efficiency of nano-sized PM which has come to be regarded as a problem with the tightening of exhaust gas regulations, is insufficient, and harmful nano-sized PM is discharged without being collected.
  • JP-A-2004-360654 discloses that the porosity of the partition wall is 55 to 75%, the average pore diameter is 15 to 40 ⁇ m, the total area of the pores opened on the partition wall surface is 10 to 30% of the total area of the partition wall surface, and the partition wall surface Discloses a ceramic honeycomb filter having 300 or more pores / mm 2 having an equivalent circle diameter of 5 to 20 ⁇ m among the pores opened in the hole.
  • the ceramic honeycomb filter described in Japanese Patent Application Laid-Open No. 2004-360654 has achieved some improvement in the collection rate on the basis of PM mass, it is effective to use nanoparticles in the state before PM is deposited at the beginning of use. It is difficult to collect. In other words, the collection efficiency on the basis of the number of PM particles is low, and it is unlikely that the regulation based on the number of particles will be cleared.
  • JP-T-2011-516371 is a porous ceramic body made of a polycrystalline ceramic having an anisotropic microstructure, wherein the anisotropic microstructure is an oriented polycrystalline multiphase network (reticular).
  • a porous ceramic body with an anisotropy factor Af-pore long of 1.2 ⁇ Af-pore-long ⁇ 5, having a narrow pore size distribution and a porosity greater than 50% Describes that ceramic articles having any median pore size in the range of 12-25 ⁇ m can be provided.
  • This ceramic article exhibits high strength, low coefficient of thermal expansion (CTE) and high porosity, such as automotive substrates, applications such as diesel or gasoline particulate filters, and catalytic filters incorporating the functionality of partial or complete NOx addition It describes that it can be used for functional filters.
  • CTE coefficient of thermal expansion
  • high porosity such as automotive substrates, applications such as diesel or gasoline particulate filters, and catalytic filters incorporating the functionality of partial or complete NOx addition It describes that it can be used for functional filters.
  • the porosity of the partition wall is 40-60%, and the opening area ratio of the pores opened on the partition wall surface (total opening area of the pores opened per unit area of the partition wall surface) Is 15% or more, and the opening diameter of the pores opened on the surface of the partition wall is represented by an equivalent circle diameter (diameter of a circle having an area equivalent to the opening area of the pores).
  • the median opening diameter on the basis of the area is 10 ⁇ m or more and less than 40 ⁇ m
  • the circle equivalent diameter is 10 ⁇ m or more and the pore density of less than 40 ⁇ m is 350 pores / mm 2 or more
  • the circle equivalent diameter is 10 ⁇ m or more and less than 40 ⁇ m
  • a ceramic honeycomb structure is disclosed in which the average value of the circularity of the pores is 1-2.
  • the ceramic honeycomb structure described in International Publication No. 2011/027837 maintains a low pressure loss and improves the PM collection rate at the beginning of collection after regeneration. It describes that nano-sized PM that has come to be seen can be efficiently collected.
  • DPF diesel particulate filter
  • the object of the present invention is to effectively collect nanoparticles that greatly affect the number of discharged particles even in the state before PM is deposited at the beginning of use, and the collection rate based on the number of PM particles It is another object of the present invention to provide a ceramic honeycomb structure and a method for manufacturing the same, in which pressure loss characteristics are hardly deteriorated even when PM is collected and accumulated.
  • the ceramic honeycomb structure of the present invention has a large number of flow paths partitioned by porous partition walls,
  • the partition is (a) The porosity is 55 to 65%, (b) In the pore distribution measured by the mercury intrusion method, (i) A pore diameter d2 at which the cumulative pore volume is 2% of the total pore volume is 100 to 180 ⁇ m, 5% pore diameter d5 is 55-150 ⁇ m, 10% pore diameter d10 is 20 ⁇ m or more and less than 50 ⁇ m, 50% pore diameter (median pore diameter) d50 of 12-23 ⁇ m, 85% pore diameter d85 is 6 ⁇ m or more and less than 10 ⁇ m, 90% pore diameter d90 is 4-8 ⁇ m, 98% pore diameter d98 is 3.5 ⁇ m or less, (d10-d90) / d50 is 1.3-2, (d50-d90) / d50 is 0.45-0.7, and (d10-d50) / d50 is 0.
  • the porosity is preferably 56 to 64%.
  • the median pore diameter d50 is preferably 12-22 ⁇ m.
  • the ⁇ is preferably 0.3 or less.
  • the method of the present invention for producing the ceramic honeycomb structure is as follows. Extruding a clay containing a pore former made of ceramic raw material and hollow resin particles into a predetermined molded body, and drying and firing the molded body, The clay contains 3 to 9% by mass of the pore former with respect to 100% by mass of the ceramic raw material, The pore former has a median diameter D50 of 35 to 53 ⁇ m, a curve showing the relationship between the particle diameter and the cumulative volume, and a particle diameter D5 at a cumulative volume corresponding to 5% of the total volume is 12 to 27 ⁇ m, Particle size D10 at a cumulative volume equivalent to 10% is 15-30 ⁇ m, particle size D90 at a cumulative volume equivalent to 90% of the total volume is 58-75 ⁇ m, particles at a cumulative volume equivalent to 95% of the total volume
  • the diameter D95 is 65 to 85 ⁇ m
  • D50 / (D90-D10) is 0.85 to 1.30.
  • the ceramic raw material contains 15 to 25% by mass of silica, 40 to 43% by mass of talc and 15 to 30% by mass of alumina with respect to 100% by mass of the ceramic raw material;
  • the particle size in the corresponding cumulative volume, D20 ⁇ D80. ] Is 0.4 or less,
  • the talc has a median diameter D50 of 5 to 15 ⁇ m, D10 of 10 ⁇ m or less, and D90 of 25 ⁇ m or more,
  • the alumina has a median diameter D50 of 3 to 10 ⁇ m and D90 of 60 ⁇ m or less.
  • the clay preferably contains 4 to 8% by mass of the pore former with respect to 100% by mass of the ceramic raw material.
  • the filter comprising the ceramic honeycomb structure of the present invention is in a state before PM is deposited at the beginning of use (when the ceramic honeycomb filter is used from an unused state or when it is used again after being regenerated).
  • nano-sized PM that greatly affects the number of particles in the exhaust gas can be effectively collected. Therefore, the collection rate on the basis of the number of PM particles is improved, and the pressure loss characteristic when PM is collected and accumulated does not deteriorate, so it is possible to cope with further strengthening of exhaust gas regulations.
  • Ceramic honeycomb structure has a large number of flow paths partitioned by porous partition walls, and the partition walls include: (a) Porosity is 55-65%, (b) Pore distribution measured by mercury porosimetry, (i) Pore diameter d2 with a cumulative pore volume of 2% of the total pore volume is 100 to 180 ⁇ m, pore diameter d5 with 5% is 55 to 150 ⁇ m, and pore diameter d10 with 10% is 20 ⁇ m or more and less than 50 ⁇ m , 50% pore diameter (median pore diameter) d50 is 12 to 23 ⁇ m, 85% pore diameter d85 is 6 ⁇ m to less than 10 ⁇ m, 90% pore diameter d90 is 4 to 8 ⁇ m, 98% pore diameter d98 Is less than 3.5 ⁇ m, (d10-d90) / d50 is 1.3-2, (d50-d90) / d50 is 0.45-0.7, and (d10-d
  • the ceramic honeycomb structure has such a configuration, in a state before PM is deposited at the initial stage of use (when the ceramic honeycomb filter is used from an unused state or when it is used again after being regenerated). Can effectively collect minute PM that greatly affects the quantity of discharged particles, improves the collection rate on the basis of the number of PM particles, and pressure loss when PM is collected and accumulated A ceramic honeycomb structure in which the degree of deterioration of characteristics is reduced can be obtained.
  • the porosity of the partition wall is 55 to 65%. When the porosity is less than 55%, it is difficult to maintain a low pressure loss when PM is collected and accumulated. On the other hand, when the porosity exceeds 65%, the nano-sized PM collection rate is reduced. .
  • the porosity is preferably 56% to 64%, more preferably 57% to 63%.
  • the porosity of the partition wall is measured by a mercury intrusion method described later.
  • the pore distribution curve of the partition wall measured by the mercury intrusion method is a curve (cumulative pore volume curve) in which the cumulative pore volume is plotted against the pore diameter as shown in FIG. The values are integrated from the larger pore diameter toward the smaller one. Note that d2>d5>d10>d50>d85> d90.
  • the pore diameter d2 at which the cumulative pore volume is 2% of the total pore volume is 100 to 180 ⁇ m.
  • d2 is preferably 110 to 150 ⁇ m, more preferably 110 to 140 ⁇ m.
  • the pore diameter d5 at which the cumulative pore volume is 5% of the total pore volume is 55 to 150 ⁇ m.
  • d5 is preferably 56 to 130 ⁇ m, more preferably 56 to 120 ⁇ m.
  • the pore diameter d10 at which the cumulative pore volume is 10% of the total pore volume is 20 ⁇ m or more and less than 50 ⁇ m.
  • d10 is preferably 21 to 45 ⁇ m, more preferably 22 to 40 ⁇ m.
  • the median pore diameter d50 is 12 to 23 ⁇ m. When the median pore diameter d50 is less than 12 ⁇ m, it is difficult to keep the initial pressure loss at the start of use low. On the other hand, when the median pore diameter d50 is more than 23 ⁇ m, the number of pores having a pore diameter of 12 to 23 ⁇ m effective for PM collection decreases, and the nano-size PM collection rate decreases.
  • the median pore diameter d50 is preferably 12-22 ⁇ m, more preferably 13-21 ⁇ m.
  • the pore diameter d85 at which the cumulative pore volume is 85% of the total pore volume is 6 ⁇ m or more and less than 10 ⁇ m.
  • d85 is preferably 7 ⁇ m or more, more preferably 7.5 ⁇ m or more.
  • d85 is preferably 9.5 ⁇ m or less.
  • the pore diameter d90 at which the cumulative pore volume is 90% of the total pore volume is 4 to 8 ⁇ m.
  • d90 is preferably 5 ⁇ m or more, more preferably 5.5 ⁇ m or more.
  • d90 is preferably 7.5 ⁇ m or less, more preferably 7 ⁇ m or less.
  • the pore diameter d98 at which the cumulative pore volume is 98% of the total pore volume is 3.5 ⁇ m or less.
  • d98 is preferably 3 ⁇ m or less, more preferably 2.5 ⁇ m or less.
  • (D10-d90) / d50 is 1.3-2.
  • (d10-d90) / d50 is less than 1.3, it is difficult to maintain a low pressure loss when PM is collected and accumulated, and when it exceeds 2, it is difficult to maintain a low initial pressure loss at the start of use.
  • (d10-d90) / d50 is preferably 1.4 to 1.9, more preferably 1.5 to 1.8.
  • (D50-d90) / d50 is 0.45-0.7.
  • (d50-d90) / d50 is less than 0.45, it is difficult to maintain a low pressure loss when PM is collected and accumulated, and when it exceeds 0.7, the nano-size PM collection rate is lowered.
  • (d50-d90) / d50 is preferably 0.5 to 0.65, more preferably 0.55 to 0.6.
  • (D10-d50) / d50 is between 0.75 and 1.4.
  • (d10-d50) / d50 is less than 0.75, it is difficult to maintain a low pressure loss when PM is collected and accumulated, and when it exceeds 1.4, the nano-size PM collection rate decreases.
  • (d10-d50) / d50 is preferably 0.8 to 1.15, more preferably 0.85 to 1.1.
  • Pore volume exceeding 100 ⁇ m In the pore distribution curve of the partition walls measured by mercury porosimetry, the pore volume exceeding 100 ⁇ m is 0.05 cm 3 / g or less. When the pore volume of more than 100 ⁇ m is more than 0.05 cm 3 / g, the nano-size PM trapping rate decreases.
  • the pore volume exceeding 100 ⁇ m is preferably 0.04 cm 3 / g or less, more preferably 0.03 cm 3 / g or less.
  • (iv) Mercury Intrusion Method Measurement of the cumulative pore volume by the mercury intrusion method can be performed using, for example, Autopore III 9410 manufactured by Micromeritics. In this measurement, a test piece cut out from a ceramic honeycomb structure is stored in a measurement cell, and after the pressure inside the cell is reduced, mercury is introduced and pressed into the pores existing in the test piece. By determining the volume of mercury produced. At this time, the larger the applied pressure, the more the mercury penetrates into finer pores.Therefore, from the relationship between the applied pressure and the volume of mercury pushed into the pores, the pore diameter and the cumulative pore volume (maximum Of the pore volume from the pore diameter to a specific pore diameter). Here, the intrusion of mercury is sequentially performed from a large pore size to a small pore size.
  • the porosity can be obtained by calculation from the total pore volume and the true specific gravity of cordierite 2.52 g / cm 3 .
  • d2, d5, d10, d20, d50 (median pore diameter), d80, d90 and d98 are curves showing the relationship between the pore diameter and the cumulative pore volume, respectively 2%, 5%, 10% of the total pore volume.
  • the ceramic honeycomb structure preferably has a thermal expansion coefficient of 13 ⁇ 10 ⁇ 7 / ° C. or less in the flow channel direction between 20 and 800 ° C. Since the ceramic honeycomb structure having such a thermal expansion coefficient has high thermal shock resistance, it can sufficiently be practically used as a ceramic honeycomb filter for removing fine particles contained in exhaust gas of a diesel engine. .
  • the thermal expansion coefficient is preferably 3 ⁇ 10 ⁇ 7 to 11 ⁇ 10 ⁇ 7 .
  • the ceramic honeycomb structure preferably has an average partition wall thickness of 9 to 15 mil (0.229 to 0.381 mm) and an average cell density of 150 to 300 cpsi (23.3 to 46.5 cells / cm 2 ).
  • the pressure loss can be kept low at the start of use, the PM collection rate based on the number of particles can be improved, and the pressure loss characteristic when PM is collected and accumulated Is improved.
  • the average partition wall thickness is less than 9 mil, the strength of the partition wall decreases, whereas when it exceeds 15 mil, it is difficult to maintain a low pressure loss.
  • the cross-sectional shape of the cell in the flow channel direction may be any of a quadrilateral, a polygon such as a hexagon, a circle, an ellipse, or the like, or may be an asymmetric shape having a different size between the inflow side end surface and the outflow side end surface.
  • the ceramic honeycomb structure is a filter for purifying exhaust gas exhausted from a diesel engine, so heat-resistant ceramics, that is, alumina, mullite, cordier, etc. Ceramics mainly composed of erlite, silicon carbide, silicon nitride, zirconia, aluminum titanate, lithium aluminum silicate and the like are preferable. Of these, cordierite with excellent thermal shock resistance and cordierite or aluminum titanate as the main crystal are preferred.
  • the main crystal phase is cordierite, it may contain other crystal phases such as spinel, mullite, sapphirine, and may further contain a glass component.
  • the main crystal phase is aluminum titanate, elements such as Mg and Si may be dissolved in the aluminum titanate crystal phase, and other crystal phases such as mullite may be contained. A glass component may be contained as a boundary phase.
  • Ceramic honeycomb filter The ceramic honeycomb filter is formed by alternately plugging the exhaust gas inflow side or the exhaust gas outflow side of the flow path of the ceramic honeycomb structure of the present invention.
  • a low pressure loss can be maintained and the PM collection rate based on the number of particles can be improved, and PM is collected and accumulated.
  • a ceramic honeycomb filter with improved pressure loss characteristics can be obtained.
  • the plugging formed in the flow path does not necessarily have to be formed on the end surface portion on the exhaust gas inflow side or exhaust gas outflow side of the flow path, and enters the flow path from the inflow side end face or the outflow side end face. It may be formed at a different position.
  • a method for manufacturing a ceramic honeycomb structure of the present invention includes extruding a clay containing a pore former made of a ceramic raw material and hollow resin particles into a predetermined molded body, A step of drying and firing the molded body,
  • the clay contains 3 to 9% by mass of the pore former with respect to 100% by mass of the ceramic raw material
  • the pore former has a median diameter D50 of 35 to 53 ⁇ m, a curve showing the relationship between the particle diameter and the cumulative volume, and a particle diameter D5 at a cumulative volume corresponding to 5% of the total volume is 12 to 27 ⁇ m, Particle size D10 at a cumulative volume equivalent to 10% is 15-30 ⁇ m, particle size D90 at a cumulative volume equivalent to 90% of the total volume is 58-75 ⁇ m, particles at a cumulative volume equivalent to 95% of the total volume
  • the diameter D95 is 65 to 85 ⁇ m
  • D50 / (D90-D10) is 0.85 to 1.30.
  • the ceramic raw material contains 15 to 25% by mass of silica, 40 to 43% by mass of talc and 15 to 30% by mass of alumina with respect to 100% by mass of the ceramic raw material;
  • the particle size in the corresponding cumulative volume, D20 ⁇ D80. ] Is 0.4 or less,
  • the talc has a median diameter D50 of 5 to 15 ⁇ m, D10 of 10 ⁇ m or less, and D90 of 25 ⁇ m or more,
  • the alumina has a median diameter D50 of 3 to 10 ⁇ m and D90 of 60 ⁇ m or less.
  • the porosity is 55 to 65%
  • the pore distribution measured by the mercury intrusion method (i) the cumulative pore volume is 2% of the total pore volume.
  • the pores formed in the ceramic are composed of pores generated by melting the ceramic raw material in the firing process and pores generated by burning out the pore former. Therefore, the pores produced when the ceramic is fired can be controlled by setting the median diameter and particle size distribution of the ceramic raw material and the pore former to the ranges described above.
  • the resin particles burn and become voids when the molded body containing the ceramic raw material and the pore former is fired.
  • the raw material is fired to form pores.
  • hollow resin particles that generate less heat by combustion than solid resin particles firing cracks in the process of firing the molded body are less likely to occur.
  • the pore diameter of the partition walls can be in the above range.
  • the nano-size PM trapping rate is improved by forming the pores formed by firing the ceramic raw material and the pores formed from the pore former in a predetermined pore diameter range with good communication.
  • the ceramic honeycomb structure of the present invention having improved pressure loss characteristics when PM is collected and accumulated can be obtained.
  • Pore-forming material used in the present invention comprises hollow resin particles, and the amount added is 3 to 9% by mass with respect to 100% by mass of the ceramic raw material.
  • the added amount of the pore former is out of this range, it is difficult to obtain a partition having the pore structure.
  • the added amount of the pore former is less than 3% by mass, it is difficult to obtain a partition wall having a porosity of 55% or more, and the pressure loss characteristic when PM is collected and accumulated is deteriorated.
  • the added amount of the pore former exceeds 9% by mass, the porosity of the partition wall may exceed 65%, and the nano-sized PM trapping rate decreases.
  • the added amount of the pore former is preferably 4 to 8% by mass, and more preferably 4.5 to 7% by mass.
  • the median diameter D50 of the pore former particles is 35 to 53 ⁇ m. When the median diameter D50 is less than 35 ⁇ m, a low pressure loss when PM is collected and accumulated cannot be maintained. When the median diameter D50 exceeds 53 ⁇ m, the formed pores become coarse, so that the nano-size PM trapping rate decreases.
  • the median diameter D50 of the pore former particles is preferably 38 to 50 ⁇ m, and more preferably 40 to 50 ⁇ m.
  • the pore former particles in a curve showing the relationship between the particle diameter and the cumulative volume (a value obtained by accumulating the particle volume below a specific particle diameter), the particle diameter D5 in the cumulative volume corresponding to 5% of the total volume Is 12-27 ⁇ m, particle size D10 in the cumulative volume corresponding to 10% of the total volume is 15-30 ⁇ m, particle size D90 in the cumulative volume corresponding to 90% of the total volume is 58-75 ⁇ m, 95% of the total volume
  • the particle diameter D95 in the cumulative volume corresponding to is 65 to 85 ⁇ m, and D50 / (D90-D10) is 0.9 to 1.3.
  • the pore former particles have such a particle size distribution, and by adjusting the particle size and particle size distribution of the ceramic raw material, which will be described later, the partition wall having the pore structure can be easily obtained.
  • the particle diameter D5 in the cumulative volume corresponding to 5% of the total volume is preferably 14 to 25 ⁇ m, more preferably 16 to 23 ⁇ m.
  • the particle diameter D10 in the cumulative volume corresponding to 10% of the total volume is preferably 17 to 28 ⁇ m, more preferably 19 to 26 ⁇ m.
  • the particle diameter D90 in a cumulative volume corresponding to 90% of the total volume is preferably 60 to 72 ⁇ m, and more preferably 62 to 70 ⁇ m.
  • the particle diameter D95 in the cumulative volume corresponding to 95% of the total volume is preferably 67 to 83 ⁇ m, more preferably 69 to 81 ⁇ m.
  • D50 / (D90-D10) is preferably 0.90 to 1.20, more preferably 1.0 to 1.15.
  • the particle diameter of the pore former can be measured using a Microtrac particle size distribution measuring device (MT3000) manufactured by Nikkiso Co., Ltd.
  • the sphericity of the pore former particles is preferably 0.5 or more. When the sphericity of the pore former particles is less than 0.5, the pores of the partition walls are not preferable because the pores having sharp corners that are likely to be the starting point of destruction increase and the strength of the honeycomb structure may decrease. .
  • the sphericity of the pore former particles is preferably 0.7 or more, and more preferably 0.8 or more. Note that the sphericity of the pore former particles was obtained by dividing the projected area of the pore former particles by the area of a circle whose diameter is the maximum value of a straight line passing through the center of gravity of the pore former particles and connecting two points on the outer periphery of the particle. Value, which can be obtained from an electron micrograph with an image analyzer.
  • the hollow resin particles are preferably foamed resin particles.
  • the resin used as the pore former particles (poly) methyl methacrylate, polybutyl methacrylate, polyacrylic ester, polystyrene, polyacrylic ester, polyethylene, polyethylene terephthalate, methyl methacrylate / acrylonitrile copolymer and the like are suitable.
  • the hollow resin particles preferably have an outer shell thickness of 0.1 to 3 ⁇ m, and preferably contain a gas such as hydrocarbon, and the resin particles contain 70 to 95% moisture on the surface. Those are preferred.
  • the true specific gravity is preferably 0.01 to 0.05.
  • the ceramic raw material contains 15 to 25% by mass of silica, 40 to 43% by mass of talc and 15 to 30% by mass of alumina with respect to 100% by mass of the ceramic raw material.
  • the ceramic raw material is preferably a cordierite forming raw material.
  • the main crystal is cordierite (the main component has a chemical composition of 42 to 56% by mass of SiO 2 , 30 to 45% by mass of Al 2 O 3 and 12 to 16% by mass of MgO).
  • each raw material powder which has a silica source component, an alumina source component, and a magnesia source component is mix
  • the pores formed in the ceramic having cordierite as the main crystal are due to pores generated by firing the ceramic raw material silica and talc and pores generated by burning the pore former. Therefore, by adjusting the particle size and particle size distribution of the ceramic raw materials such as silica and talc together with the pore former described above, the pores generated when the cordierite ceramic is fired can be controlled. Among these, silica and pore former occupy most of the formed pores, and thus contribute greatly to the pore structure.
  • Silica Silica is known to exist stably up to a higher temperature than other raw materials, and melt and diffuse at 1300 ° C. or higher to form pores. Therefore, when 15 to 25% by mass of silica is contained, a desired amount of pores can be obtained.
  • silica is contained in an amount exceeding 25% by mass, kaolin and / or talc, which are other silica source components, must be reduced in order to maintain the main crystal as cordierite. The effect of lowering thermal expansion (effect obtained by orienting kaolin during extrusion molding) is reduced, and the thermal shock resistance is lowered.
  • the amount is less than 15% by mass, the number of pores opened on the partition wall surface is reduced, so that a low pressure loss may not be obtained when PM is collected and accumulated.
  • the content of silica is preferably 17 to 23% by mass.
  • Silica has a median diameter D50 of 15-30 ⁇ m and a curve showing the relationship between particle diameter and cumulative volume.
  • the particle diameter D10 at a cumulative volume corresponding to 10% of the total volume is 10-20 ⁇ m, and 90% of the total volume.
  • the ratio of particles having a particle diameter D90 of 40-60 ⁇ m and a particle diameter of 5 ⁇ m or less in a cumulative volume corresponding to is 1 mass% or less, the ratio of particles having a particle diameter of 10 ⁇ m or less is 3 mass% or less, 100 ⁇ m or more
  • the median diameter D50 of silica is preferably 17 to 28 ⁇ m, more preferably 19 to 26 ⁇ m.
  • the D10 of silica is preferably 12 to 18 ⁇ m, more preferably 13 to 17 ⁇ m.
  • the D90 of silica is preferably 45 to 55 ⁇ m, more preferably 47 to 53 ⁇ m.
  • the ratio of silica particles having a particle diameter of 5 ⁇ m or less is preferably 0.7% by mass or less, more preferably 0.2% by mass or less, and the ratio of silica particles having a particle diameter of 10 ⁇ m or less is preferably 2% by mass or less.
  • the ratio of silica particles having a particle diameter of 100 ⁇ m or more is preferably 2% by mass or less, and the ratio of silica particles having a particle diameter of 200 ⁇ m or more is preferably 0.7% by mass or less, more preferably 0.2% by mass or less.
  • the particle size distribution deviation SD of silica is preferably 0.36 or less, more preferably 0.33 or less.
  • the sphericity of the silica particles is preferably 0.5 or more. If the sphericity of the silica particles is less than 0.5, it is not preferable because the pores of the partition walls have many sharp corners that tend to be the starting point of destruction, and the strength of the honeycomb structure may be lowered.
  • the sphericity of the silica particles is preferably 0.6 or more, and more preferably 0.7 or more.
  • the sphericity of the silica particle is a value obtained by dividing the projected area of the silica particle by the area of a circle whose diameter is the maximum value of the straight line connecting the two points on the outer periphery of the particle through the center of gravity of the silica particle. It can be obtained by an image analysis apparatus.
  • the silica particles may be crystalline or amorphous, but are preferably amorphous from the viewpoint of adjusting the particle size distribution.
  • Amorphous silica can be obtained by crushing an ingot produced by melting high-purity natural silica at high temperature.
  • Silica particles may contain Na 2 O, K 2 O, and CaO as impurities, but in order to prevent an increase in the thermal expansion coefficient, the content of the impurities is preferably 0.1% or less in total. .
  • Silica particles with high sphericity can be obtained by pulverizing high-purity natural silica and spraying it in a high-temperature flame.
  • the silica particles can be melted and spheroidized simultaneously by thermal spraying into a high-temperature flame to obtain amorphous silica having a high sphericity.
  • Kaolin powder As a silica raw material used as a cordierite forming raw material, kaolin powder can be blended in addition to the silica powder.
  • the kaolin powder is preferably contained in an amount of 1 to 15% by mass. If the kaolin powder exceeds 15% by mass, it may be difficult to adjust d98 to 5 ⁇ m or less in the pore distribution of the ceramic honeycomb structure, and if it is less than 1% by mass, the ceramic honeycomb structure The thermal expansion coefficient of increases.
  • the kaolin powder content is more preferably 4 to 8% by mass.
  • the orientation of kaolin particles is greatly influenced by their shape.
  • the cleavage index of kaolin particles which is an index that quantitatively indicates the shape of kaolin particles, is preferably 0.80 or more, and more preferably 0.85 or more.
  • the ceramic raw material contains 40 to 43% by mass of talc with respect to 100% by mass of the ceramic raw material.
  • the talc is a cumulative volume corresponding to 10% of the total volume in a curve showing a relationship between a median diameter D50 of 5 to 15 ⁇ m, a particle diameter and an accumulated volume (a value obtained by accumulating a particle volume below a specific particle diameter).
  • the particle diameter D10 is 10 ⁇ m or less, and similarly, the particle diameter D90 at a cumulative volume corresponding to 90% of the total volume is 25 ⁇ m or more.
  • Talc is a compound mainly composed of MgO and SiO 2 , reacts with the Al 2 O 3 component present in the surroundings in the firing process, and melts to form pores.
  • talc a large number of small-diameter pores can be dispersed in the partition walls, so that the connectivity of the pores in the partition walls can be improved. it can.
  • the median diameter D50 of talc is less than 5 ⁇ m, the pore connectivity is lowered, and the pressure loss characteristic when PM is collected and accumulated is lowered.
  • the median diameter D50 of talc exceeds 15 ⁇ m, coarse pores increase and the nano-size PM trapping rate is lowered.
  • the median diameter D50 of talc is preferably 6 to 14 ⁇ m, and more preferably 8 to 12 ⁇ m.
  • D10 of talc is preferably 8 ⁇ m or less, more preferably 7 ⁇ m or less.
  • the D90 of talc is preferably 25 to 45 ⁇ m, more preferably 25 to 40 ⁇ m or less.
  • Talc is preferably plate-like particles from the viewpoint of reducing the thermal expansion coefficient of the ceramic honeycomb structure whose main component of the crystal phase is cordierite.
  • the form factor indicating the tabularity of the talc particles is preferably 0.5 or more, more preferably 0.6 or more, and most preferably 0.7 or more.
  • Talc may contain Fe 2 O 3 , CaO, Na 2 O, K 2 O and the like as impurities.
  • the content of Fe 2 O 3 is preferably 0.5 to 2.5% by mass in the magnesia source material, and the content of Na 2 O, K 2 O and CaO is thermal expansion. From the viewpoint of reducing the coefficient, the total content is preferably 0.5% by mass or less.
  • the ceramic raw material contains 15 to 30% by mass of alumina with respect to 100% by mass of the ceramic raw material.
  • the alumina has a median diameter D50 of 3 to 10 ⁇ m, and in a curve showing the relationship between the particle diameter and the cumulative volume, the particle diameter D90 in the cumulative volume corresponding to 90% of the total volume is 60 ⁇ m or less.
  • the median diameter D50 of alumina is preferably 4 to 9 ⁇ m, more preferably 5 to 8 ⁇ m, and D90 is preferably 50 ⁇ m or less, more preferably 25 to 40 ⁇ m.
  • the alumina raw material it is preferable to use aluminum hydroxide in addition to alumina.
  • the total content of Na 2 O, K 2 O and CaO as impurities in alumina and aluminum hydroxide is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, and most preferably 0.1% by mass or less. .
  • the ceramic honeycomb structure is kneaded by adding water, adding a binder, and if necessary, additives such as a dispersant and a surfactant to the ceramic raw material and pore former, followed by dry mixing. Then, the obtained plastic clay is extruded from a known mold for forming a honeycomb structure by a known extrusion method, for example, an extrusion method such as a plunger type or a screw type, to form a honeycomb structure formed body. After forming and drying this molded body, it is manufactured by subjecting the end face and outer periphery to processing as necessary and firing.
  • a known extrusion method for example, an extrusion method such as a plunger type or a screw type
  • Calcination is performed using a continuous furnace or a batch furnace while adjusting the heating and cooling rates.
  • the ceramic raw material is a cordierite forming raw material, it is kept at 1350-1450 ° C. for 1-50 hours, and after the cordierite main crystals are sufficiently formed, it is cooled to room temperature.
  • the temperature increase rate is a temperature range in which the binder decomposes so that cracks do not occur in the formed body in the firing process, particularly when manufacturing a large ceramic honeycomb structure having an outer diameter of 150 mm or more and a total length of 150 mm or more (for example, The temperature is preferably 0.2 to 10 ° C./hr at 150 to 350 ° C.
  • Cooling is preferably performed at a rate of 20 to 40 ° C./h, particularly in the range of 1400 to 1300 ° C.
  • the obtained honeycomb structure can be made into a ceramic honeycomb filter by plugging the end of a desired flow path by a known method. Note that this plugged portion may be formed before firing.
  • Examples 1 to 10 and Comparative Examples 1 to 10 Each of silica powder, talc powder and alumina powder, aluminum hydroxide and kaolin having the particle shapes (particle size, particle size distribution, etc.) shown in Table 1 to Table 5 is displayed so that the total amount of ceramic raw materials is 100 parts by mass.
  • a pore former having the particle shape and true specific gravity shown in Table 6 is added in an amount shown in Table 7, and after adding methylcellulose, kneading with water is added to the plastic cordier.
  • a ceramic clay made of lightening raw material was produced.
  • the sphericity of the pore-forming particles is a circle whose diameter is the maximum value of the straight line connecting the two points on the outer circumference of the projected area A1 and the center of gravity obtained from the image of the particle taken with an electron microscope. From the area A2, the value calculated by the formula: A1 / A2 was expressed as an average value for 20 particles.
  • the particle size and particle size distribution of silica powder, talc powder, alumina powder, aluminum hydroxide powder, kaolin powder, and pore former were measured using a Nikkiso Co., Ltd. Microtrac particle size distribution measuring device (MT3000).
  • the median diameter D50, the ratio of the particle diameter of 10 ⁇ m or less, the ratio of 100 ⁇ m or more, D90, D80, D20, D10 were determined, and the particle size distribution deviation SD was determined from D80 and D20.
  • the resulting clay is extruded to produce a honeycomb-shaped formed body, and after drying, the peripheral portion is removed and processed in a firing furnace for 210 hours (room temperature to 150 ° C is 10 ° C / h, 150 to 350 ° C) Is 2 ° C / hr, 350-1150 ° C is 20 ° C / h and 1150-1410 ° C is heated at an average rate of 15 ° C / hr, the maximum temperature is 1410 ° C and is maintained for 25 hr. hr, and 1300 to 100 ° C. were cooled at an average rate of 80 ° C./hr).
  • the outer periphery of the fired ceramic honeycomb body is coated with an outer shell material made of amorphous silica and colloidal silica and dried, and the outer diameter is 266.7 mm and the total length is 304.8 mm, and the partition wall thickness and cell density shown in Table 8 are performed. Ceramic honeycomb structures of Examples 1 to 10 and Comparative Examples 1 to 10 were obtained.
  • the plugging material slurry made of the cordierite forming raw material is filled in the end portions of the flow paths of these ceramic honeycomb structures so as to be alternately plugged, the plugging material slurry is dried and fired.
  • the cordierite ceramic honeycomb filters of Examples and Comparative Examples were manufactured. The length of the plugged material after firing was in the range of 7 to 10 mm. Each ceramic honeycomb filter was made of two identical ones.
  • the pore distribution was measured by the mercury intrusion method and the thermal expansion coefficient was measured by the following method.
  • the mercury intrusion method the test piece (10 mm x 10 mm x 10 mm) cut out from the ceramic honeycomb filter is placed in a Micromeritics Autopore III measurement cell, the inside of the cell is decompressed, and then mercury is introduced. And pressurizing and determining the relationship between the pressure at the time of pressurization and the volume of mercury pushed into the pores present in the test piece. From the relationship between the pressure and the volume, the relationship between the pore diameter and the cumulative pore volume was determined.
  • the total pore volume, porosity, pore diameter d2 that the cumulative pore volume is 2% of the total pore volume, pore diameter d5 that is 5%, pore diameter d10 that is 10% 20% pore diameter d20, 50% pore diameter (median pore diameter) d50, 80% pore diameter d80, 85% pore diameter d85, 90% pore diameter d90, 98% Obtain pore diameter d98, pore volume exceeding 100 ⁇ m, (d10-d90) / d50, (d50-d90) / d50, and (d10-d50) / d50, and the cumulative pore volume is 20% of the total pore volume.
  • the initial pressure loss is expressed by the pressure difference (pressure loss) between the inflow side and the outflow side when air is sent to the ceramic honeycomb filter fixed to the pressure loss test stand at a flow rate of 10 Nm 3 / min. .
  • Pressure loss is When exceeding 1.0 kPa ( ⁇ ), (0.8) when 0.8 kPa and 1.0 kPa (0.6) when 0.6 kPa and 0.8 kPa When the pressure is 0.6 kPa or less ( ⁇ ) As an initial pressure loss was evaluated.
  • Pressure loss is When exceeding 1.5 kPa ( ⁇ ), ( ⁇ ) when 1.3 kPa and 1.5 kPa or less ( ⁇ ) when 1.0 kPa and 1.3 kPa or less When the pressure is 1.0 kPa or less ( ⁇ ) The soot collection pressure loss was evaluated.
  • (c) PM collection rate on the basis of the number of particles at the beginning of collection The PM collection rate on the basis of the number of particles at the beginning of collection is determined by applying an air flow rate of 10 Nm 3 to a ceramic honeycomb filter fixed to the pressure loss test stand.
  • model 3936 was measured using the number of particles combustion soot flowing into the honeycomb filter 1 minute from the start of feeding three minutes until after 4 minutes N in, and honeycomb From the number N out of the combustion soot particles flowing out from the filter, it was determined by the formula: (N in ⁇ N out ) / N in . PM collection rate 98% or more ( ⁇ ), ( ⁇ ) when 96% or more and less than 98% 95% or more and less than 96% ( ⁇ ), and Less than 95% ( ⁇ ) PM collection rate was evaluated.
  • the ceramic honeycomb filters of the present invention of Examples 1 to 10 have improved PM collection rate based on the number of particles at the beginning of collection while maintaining low pressure loss.
  • the ceramic honeycomb filter of Comparative Example 1 uses only 2.4 parts by mass of the pore former D having a median diameter of 25 ⁇ m (smaller than 35 ⁇ m), and silica, talc and alumina are also relatively small. Since particles having a particle size are used, the median diameter of the formed pores is small, the pressure loss characteristics are low, and the PM collection rate is also low.
  • the ceramic honeycomb filter of Comparative Example 2 uses a pore-forming material E having a median diameter of 54 ⁇ m (greater than 53 ⁇ m) and a relatively broad particle size distribution, and silica, talc and alumina also have a relatively large particle size. Since it was used, the median diameter of the formed pores was large and the pressure loss characteristics were good, but the PM collection rate was low.
  • the ceramic honeycomb filter of Comparative Example 3 uses a pore-forming material F having a median diameter of 36 ⁇ m and a slightly broad particle size distribution, silica F having a relatively broad particle size distribution, and a relatively sharp particle size distribution. Since talc F is used, the pore distribution of the formed pores is broad, and the initial pressure loss and the PM collection rate at the number of particles are poor.
  • the ceramic honeycomb filter of Comparative Example 4 uses a pore-forming material G having a median diameter of 57 ⁇ m (greater than 53 ⁇ m), and silica, talc and alumina are also used having a relatively large particle size, so the formed pores Although the median diameter is large and the pressure loss characteristics are good, the PM collection rate is low.
  • the ceramic honeycomb filter of Comparative Example 5 uses only 1.8 parts by mass of pore-forming material H having a median diameter of 25 ⁇ m (smaller than 35 ⁇ m), and silica, talc and alumina also have a relatively small particle size. Since it was used, the median diameter of the formed pores was small and the pressure loss characteristics were low.
  • the ceramic honeycomb filter of Comparative Example 6 uses the pore-forming material I made of graphite, and silica, talc and alumina are also used having a relatively small particle size, so that the pore distribution of the formed pores is Extremely broad, with low pressure loss characteristics and low PM collection rate.
  • the ceramic honeycomb filter of Comparative Example 7 used the pore former J made of a solid resin, the pores formed had a low porosity and the pore distribution was broad. The pressure loss is bad.
  • the ceramic honeycomb filter of Comparative Example 8 uses silica having a relatively small median diameter, the pore distribution of the formed pores is too narrow, and the pressure loss after PM collection is poor.
  • the ceramic honeycomb filter of Comparative Example 9 uses only 2.0 parts by mass of the pore former H having a median diameter of 25 ⁇ m (smaller than 35 ⁇ m), the formed pores have low porosity, initial pressure loss and PM Poor pressure loss after collection.
  • the ceramic honeycomb filter of Comparative Example 10 used silica, talc and alumina having a relatively large particle size, the formed pores had a wide distribution on the large size side and had good pressure loss characteristics, but PM trapping was good. The collection rate is low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Filtering Materials (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

 多孔質の隔壁で仕切られた多数の流路を有すし、前記隔壁は、(a)気孔率が55~65%、(b)水銀圧入法により測定された細孔分布において、(i)累積細孔容積が全細孔容積の2%となる細孔径が100~180μm、5%となる細孔径d5が55~150μm、10%となる細孔径d10が20μm以上50μm未満、50%となる細孔径d50が12~23μm、85%となる細孔径が6μm以上10μm未満、90%となる細孔径d90が4~8μm、98%となる細孔径d98が3.5μm以下、(d10-d90)/d50が1.3~2、(d50-d90)/d50が0.45~0.7及び(d10-d50)/d50が0.75~1.4であり、(ii) 累積細孔容積が全細孔容積の20%となる細孔径の対数と80%となる細孔径の対数との差が0.39以下であり、(iii)100μm超の細孔容積が0.05 cm3/g以下であることを特徴とするセラミックハニカム構造体。

Description

セラミックハニカム構造体及びその製造方法
 本発明は、ディーゼル機関の排出ガス中に含まれる微粒子を除去するためのセラミックハニカムフィルタ、特に粒径50 nm以下の微粒子(いわゆるナノ粒子)を除去するためのセラミックハニカムフィルタに用いられるセラミックハニカム構造体に関する。
 ディーゼルエンジンの排気ガス中には、炭素質からなる煤と高沸点炭化水素成分からなるSOF分(Soluble Organic Fraction:可溶性有機成分)とを主成分とするPM(Particulate Matter:粒子状物質)が含まれており、これが大気中に放出されると人体や環境に悪影響を与えるおそれがある。このため、ディーゼルエンジンの排気管の途中に、PMを捕集するためのセラミックハニカムフィルタを装着することが従来から行われている。排気ガス中のPMを捕集し排気ガスを浄化するためのセラミックハニカムフィルタの一例を図1及び図2に示す。セラミックハニカムフィルタ10は、多数の流出側封止流路3及び流入側封止流路4を形成する多孔質隔壁2と外周壁1とからなるセラミックハニカム構造体と、流出側封止流路3及び流入側封止流路4の排気ガス流入側端面8及び排気ガス流出側端面9を市松模様に交互に封止する上流側封止部6aと下流側封止部6cとからなる。セラミックハニカムフィルタの前記外周壁1は、金属メッシュ又はセラミックス製のマット等で形成された把持部材(図示せず)で使用中に動かないように把持され、金属製収納容器(図示せず)内に配置されている。
 セラミックハニカムフィルタ10において、排気ガスの浄化は次の通り行われる。排気ガスは図2に点線矢印で示すように、排気ガス流入側端面8に開口している流出側封止流路3から流入する。そして、隔壁2を通過する際に、詳しくは隔壁2の表面及び内部に存在する互いに連通した細孔により形成される連通孔を通過する際に、排気ガス中のPMが捕集される。浄化された排気ガスは、排気ガス流出側端面9に開口している流入側封止流路4から流出し、大気中に放出される。
 隔壁2にPMが捕集され続けると、隔壁の表面及び内部の連通孔がPMにより目詰まりしてしまい、排気ガスがセラミックハニカムフィルタを通過する際の圧力損失が上昇する。このため、圧力損失が規定値に達する前にPMを燃焼除去してセラミックハニカムフィルタを再生する必要がある。セラミックハニカムフィルタは、微粒子の高い捕集率、及び低圧力損失を満足する必要があるが、両者は相反する関係にあるため、気孔率、細孔容積、隔壁表面に存在する細孔の大きさ等を制御して両者を満足させる技術が従来から検討されている。
 さらに、近年の排出ガス規制のさらなる強化に対応するため、NOxを浄化するSCR装置及び微粒子を浄化するハニカムフィルタの両方を配置した排出ガス浄化装置の検討が行われており、ハニカムフィルタには従来以上に優れた圧力損失特性が求められている。
 PM中には、粒径50 nm以下の、いわゆるナノ粒子が数多く存在する。これらのナノ粒子は、それより大きな同質量の粒子を吸入した場合に比べて、体内に吸入した場合の呼吸器系への沈着率が高い。またナノ粒子は体積当たりの表面積が相対的に大きいため、粒子表面に毒性を有する化学物質が吸着した場合、より強い毒性を有するPM粒子となるおそれがある。PM中に含まれるナノ粒子は質量的には少ないため、現行のPM質量基準の規制では不十分であり、今後の排出ガス規制として、排出される粒子数量に大きく影響するナノ粒子の排出を抑制するための基準(粒子数基準)が設けられると予測されている。このため、ハニカムフィルタには優れた圧力損失特性に加えて、現行のPM質量基準での捕集率ではなく、PM粒子数、とりわけナノ粒子数基準での捕集率を向上させることが要求される。
 特表2005-530616号は、端部を閉塞したコーディエライト・ハニカム構造体からなり、細孔径分布から求めた値d50/(d50+d90)が、0.70未満であり、式[d50/(d50+d90)]/[%多孔率/100]により定義されるすす付着時透過率因子Sfが、1.55未満であり、熱膨張係数(25~800℃)が、17×10-7/℃以下である、ディーゼル排気微粒子を捕捉しかつ燃焼させるセラミックフィルタを開示しており、このような細孔構造(細孔径分布及び細孔連結性)を有することにより、PMが付着している状態であっても低い圧力損失を維持することができると記載している。
 特開2002-219319号は、細孔分布を制御したコーディライトを主結晶相とする材料からなり、前記細孔分布が、細孔径10μm未満の細孔容積が全細孔容積の15%以下であり、細孔径10~50μmの細孔容積が全細孔容積の75%以上であり、細孔径50μmを超える細孔容積が全細孔容積の10%以下である多孔質ハニカムフィルタを開示しており、この多孔質ハニカムフィルタは、前記のような細孔分布を有するため、PM等の捕集効率が高く、かつ細孔の目詰まりによる圧力損失の上昇を防止することができると記載している。特開2002-219319号は、このような細孔分布は、コーディライト化原料のシリカ成分の粒径を制御するとともに、カオリンを低濃度化することにより制御できると記載している。
 特開2003-40687号は、コージェライトを主成分とし、気孔率が55~65%、平均細孔径が15~30μm、隔壁表面に開口した細孔の総面積が、隔壁表面の総面積の35%以上であるハニカムセラミックス構造体を開示しており、このハニカムセラミックス構造体により、低い圧力損失と高い捕集効率を達成することができると記載している。
 しかしながら、特表2005-530616号、特開2002-219319号及び特開2003-40687号に記載された排ガス浄化フィルタのPMの捕集性能は、PMがある程度堆積することにより高くなるものの、使用開始初期のPMが堆積する前の状態(セラミックハニカムフィルタを未使用の状態から使用する時、又は再生処理した後再び使用する時)では必ずしも十分でない。特に排ガス規制の強化に伴い問題視されるようになったナノサイズのPMの捕集効率が不十分であり、有害なナノサイズのPMが捕集されずに排出されるという問題がある。
 特開2004-360654号は、隔壁の気孔率が55~75%、平均細孔径が15~40μm、隔壁表面に開口した細孔の総面積が隔壁表面の総面積の10~30%、隔壁表面に開口した細孔のうち円相当径が5~20μmである細孔が300個/mm2以上存在するセラミックハニカムフィルタを開示している。しかしながら、特開2004-360654号に記載のセラミックハニカムフィルタは、PM質量基準での捕集率改善はある程度達成されたものの、使用開始初期のPMが堆積する前の状態では、ナノ粒子を有効に捕集することが困難である。つまり、PM粒子数基準での捕集効率が低く、粒子数基準での規制をクリアできる見込みが低い。
 国際公開第2011/102487号は、(a)気孔率が55~80%、(b)水銀圧入法により測定されたメジアン細孔径d50が5~27μm、(c)表面に開口した細孔の開口面積率が20%以上、(d)表面に開口した細孔を円相当径で表した場合の面積基準でのメジアン開口径d50が10~45μm、(e)表面に開口した細孔の円相当径が10μm以上40μm未満の細孔密度が350個/mm2以上、(f)細孔分布を水銀圧入法により測定した時の細孔径に対する累積細孔容積を示す曲線の傾きの最大値が1.6以上、及び(g)前記メジアン細孔径d50とメジアン開口径d50との比D50/d50が0.65以下である隔壁からなるセラミックハニカム構造体を開示しており、このセラミックハニカム構造体からなるセラミックハニカムフィルタは、使用開始初期のPMが堆積する前の状態であっても、排出される粒子数量に大きく影響するナノ粒子を有効に捕集しPM粒子数基準での捕集率を改善するとともに、PMが捕集され蓄積した際の圧力損失特性の悪化程度が低いと記載している。
 しかしながら、国際公開第2011/102487号に記載のセラミックハニカム構造体からなるセラミックハニカムフィルタをディーゼル車の排ガスフィルタとして使用した場合、市街地等での走行及び停止が繰り返されるような走行状態では、ナノサイズのPMの捕集率が不十分となる場合があり、今後強化されるであろうPM粒子数基準での排ガス規制に対応するにはさらなる捕集率の向上が望まれている。
 特表2009-517327号は、25℃から800℃の平均CTEが9×10-7/℃以下であり、MA<2220及びMT>2660(ただし、MA=3645(IA)-106(CTE)+19(d90)+17(気孔率%)及びMT=4711(IT)+116(CTE)-26(d90)-28(気孔率%)で表され、IAはハニカムの軸断面でXRD測定したときのI比であり、ITはハニカムの隔壁表面でXRD測定したときのI比である。)を満たす機械的強度および耐熱衝撃性が増加した多孔質コージエライトセラミックハニカム物品を開示しており、前記多孔質ハニカム物品は、40%以上54%未満の気孔率、及び10μm以上のメジアン細孔径を有するのが好ましいと記載している。
 特表2011-516371号は、異方性微細構造を有する多結晶質セラミックからなる多孔質セラミック体であって、前記異方性微細構造は、配向された多結晶質多相網様体(reticular formations)からなり、異方性因子Af-pore longが、1.2<Af-pore-long<5である多孔質セラミック体を開示しており、狭い細孔径分布及び50%より大きい気孔率を有し、12~25μmの範囲にある任意の中央細孔径を有するセラミック物品を提供できると記載している。このセラミック物品は、高強度、低熱膨張係数(CTE)及び高気孔率を示し、自動車用基体、ディーゼル又はガソリン微粒子フィルタなどの用途、及び部分又は完全NOx添加の機能が組み込まれた触媒フィルタなどの機能性フィルタに使用できると記載している。
 国際公開第2011/027837号は、隔壁の気孔率が40~60%であり、前記隔壁表面に開口した細孔の開口面積率(隔壁表面の単位面積当たりに開口する細孔の総開口面積)が15%以上であり、前記隔壁表面に開口した細孔の開口径を、円相当径(細孔の開口面積と同等の面積を有する円の直径)で表した場合の、前記開口した細孔の面積基準でのメジアン開口径が10μm以上、40μm未満であり、前記円相当径が10μm以上、40μm未満の細孔密度が350個/mm2以上であり、前記円相当径が10μm以上、40μm未満の細孔の円形度の平均値が1~2であることを特徴とするセラミックハニカム構造体を開示している。国際公開第2011/027837号に記載のセラミックハニカム構造体は、低い圧力損失を維持しつつ、再生後の捕集開始初期のPM捕集率が改善されるので、特に排ガス規制の強化に伴い問題視されるようになったナノサイズのPMを効率よく捕集することができると記載している。
 国際公開第2007/108428号は、アルミナ源、シリカ源、及びマグネシア源として、それぞれの体積粒度分布における、50体積%での粒度(V50)[μm]が、それぞれ1~25μmであるものを用いるとともに、コーディエライト化原料として、コーディエライト化原料全体の体積粒度分布における、10体積%での粒度(Vall10)[μm]に対する、90体積%での粒度(Vall90)[μm]の割合(体積粒度分布比(Vall90/Vall10))が10以下で、かつ前記90体積%での粒度(Vall90)[μm]と前記10積%での粒度(Vall10)[μm]との差(体積粒度分布幅(Vall90-Vall10))が25m以下であるものを用いるハニカム構造体の製造方法を開示しており、得られたハニカム構造体は、気孔率が高く、かつ細孔径分布がシャープであるため、排ガス用の捕集フィルタ、中でも、ディーゼルエンジンの排ガス中の粒子状物質(パティキュレート)等を捕集するディーゼルパティキュレートフィルター(DPF)として有用であると記載している。
 しかしながら、特表2009-517327号、特表2011-516371号、国際公開第2011/027837号及び国際公開第2007/108428号に記載されたハニカム物品を排ガス浄化フィルタとして使用した場合、PMの捕集性能は、PMがある程度堆積することにより高くなるものの、使用開始初期のPMが堆積する前の状態(セラミックハニカムフィルタを未使用の状態から使用する時、又は再生処理した後再び使用する時)では必ずしも十分でない。特に排ガス規制の強化に伴い問題視されるようになったナノサイズのPMの捕集効率が不十分であり、有害なナノサイズのPMが捕集されずに排出されるという問題がある。
 従って、本発明の目的は、使用開始初期のPMが堆積する前の状態であっても、排出される粒子数量に大きく影響するナノ粒子を有効に捕集しPM粒子数基準での捕集率を改善するとともに、PMが捕集され蓄積した場合であっても圧力損失特性が悪化しにくいセラミックハニカム構造体及びその製造方法を提供することにある。
 すなわち、本発明のセラミックハニカム構造体は、多孔質の隔壁で仕切られた多数の流路を有し、
前記隔壁は、
(a)気孔率が55~65%、
(b)水銀圧入法により測定された細孔分布において、
(i)累積細孔容積が全細孔容積の2%となる細孔径d2が100~180μm、
 5%となる細孔径d5が55~150μm、
 10%となる細孔径d10が20μm以上及び50μm未満、
 50%となる細孔径(メジアン細孔径)d50が12~23μm、
 85%となる細孔径d85が6μm以上10μm未満、
 90%となる細孔径d90が4~8μm、
 98%となる細孔径d98が3.5μm以下、
 (d10-d90)/d50が1.3~2、
 (d50-d90)/d50が0.45~0.7、及び
 (d10-d50)/d50が0.75~1.4であり、
(ii)累積細孔容積が全細孔容積の20%となる細孔径d20の対数と80%となる細孔径d80の対数との差σ=log(d20)-log(d80)が0.39以下であり、
(iii)100μm超の細孔容積が0.05 cm3/g以下であることを特徴とする。
 前記気孔率は56~64%であるのが好ましい。前記メジアン細孔径d50は12~22μmであるのが好ましい。前記σは0.3以下であるのが好ましい。
 前記セラミックハニカム構造体を製造する本発明の方法は、
セラミック原料及び中空の樹脂粒子からなる造孔材を含む坏土を所定の成形体に押出成形し、前記成形体を乾燥及び焼成する工程を有し、
前記坏土が、前記セラミック原料100質量%に対して3~9質量%の前記造孔材を含有し、
前記造孔材は、メジアン径D50が35~53μm、粒子径と累積体積との関係を示す曲線において、全体積の5%に相当する累積体積での粒子径D5が12~27μm、全体積の10%に相当する累積体積での粒子径D10が15~30μm、全体積の90%に相当する累積体積での粒子径D90が58~75μm、全体積の95%に相当する累積体積での粒子径D95が65~85μm、及びD50/(D90-D10)が0.85~1.30であり、
前記セラミック原料が、前記セラミック原料100質量%に対して15~25質量%のシリカ、40~43質量%のタルク及び15~30質量%のアルミナを含有し、
前記シリカは、メジアン径D50が15~30μm、D10が10~20μm、D90が40~60μm、5μm以下の粒子径を有する粒子の割合が1質量%以下、10μm以下の粒子径を有する粒子の割合が3質量%以下、100μm以上の粒子径を有する粒子の割合が3質量%以下、及び200μm以上の粒子径を有する粒子の割合が1質量%以下、粒度分布偏差SD[ただし、SD=log(D80)-log(D20)、D20は、粒子径と累積体積との関係を示す曲線において、全体積の20%に相当する累積体積での粒子径であり、D80は同じく全体積の80%に相当する累積体積での粒子径でありD20<D80である。]が0.4以下であり、
前記タルクは、メジアン径D50が5~15μm、D10が10μm以下、及びD90が25μm以上であり、
前記アルミナは、メジアン径D50が3~10μm、及びD90が60μm以下であることを特徴とする。
 前記坏土は、前記セラミック原料100質量%に対して4~8質量%の前記造孔材を含有するのが好ましい。
 本発明のセラミックハニカム構造体からなるフィルタは、使用開始初期のPMが堆積する前の状態(セラミックハニカムフィルタを未使用の状態から使用する時、又は再生処理した後再び使用する時)であっても、排ガス中の粒子数量に大きく影響するナノサイズのPMを有効に捕集することができる。そのため、PM粒子数基準での捕集率が改善され、かつPMが捕集され蓄積した際の圧力損失特性が低下しないので、さらなる排出ガス規制強化への対応が可能である。
セラミックハニカムフィルタの一例を模式的に示す正面図である。 セラミックハニカムフィルタの一例を模式的に示す、軸方向に平行な断面図である。 水銀圧入法によって測定した実施例1のセラミックハニカム構造体の隔壁の細孔径と細孔容積との関係(累積細孔容積曲線)を示すグラフである。
[1]セラミックハニカム構造体
 本発明のセラミックハニカム構造体は、多孔質の隔壁で仕切られた多数の流路を有し、前記隔壁は、
(a)気孔率が55~65%、(b)水銀圧入法により測定された細孔分布において、
(i)累積細孔容積が全細孔容積の2%となる細孔径d2が100~180μm、5%となる細孔径d5が55~150μm、10%となる細孔径d10が20μm以上及び50μm未満、50%となる細孔径(メジアン細孔径)d50が12~23μm、85%となる細孔径d85が6μm以上10μm未満、90%となる細孔径d90が4~8μm、98%となる細孔径d98が3.5μm以下、(d10-d90)/d50が1.3~2、(d50-d90)/d50が0.45~0.7、及び(d10-d50)/d50が0.75~1.4であり、
(ii)累積細孔容積が全細孔容積の20%となる細孔径d20の対数と80%となる細孔径d80の対数との差σ=log(d20)-log(d80)が0.39以下であり、
(iii)100μm超の細孔容積が0.05 cm3/g以下である。
 セラミックハニカム構造体がこのような構成を有することにより、使用開始初期のPMが堆積する前の状態(セラミックハニカムフィルタを未使用の状態から使用する時、又は再生処理した後再び使用する時)においても、排出される粒子数量に大きく影響する微小なPMを有効に捕集することができ、PM粒子数基準での捕集率が改善されるとともに、PMが捕集され蓄積した際の圧力損失特性の悪化程度が低減されたセラミックハニカム構造体を得ることができる。
(a)隔壁の気孔率
 隔壁の気孔率は55~65%である。前記気孔率が55%未満の場合、PMが捕集され蓄積した際の低い圧力損失を維持し難くなり、一方、前記気孔率が65%を超えると、ナノサイズのPM捕集率が低下する。前記気孔率は、好ましくは56%~64%、さらに好ましくは57%~63%である。隔壁の気孔率は後述の水銀圧入法で測定する。
(b)隔壁の細孔分布
(i)d2、d5、d10、d50、d85、d90及びd98
 水銀圧入法により測定された隔壁の細孔分布曲線において、累積細孔容積が全細孔容積の2%となる細孔径d2が100~180μm、5%となる細孔径d5が55~150μm、10%となる細孔径d10が20μm以上及び50μm未満、50%となる細孔径(メジアン細孔径)d50が12~23μm、85%となる細孔径d85が6μm以上10μm未満、90%となる細孔径d90が4~8μm、98%となる細孔径d98が3.5μm以下であり、(d10-d90)/d50は1.3~2、(d50-d90)/d50が0.45~0.7及び(d10-d50)/d50が0.75~1.4である。ここで、水銀圧入法により測定された隔壁の細孔分布曲線とは、図3に示すように、細孔径に対して累積細孔容積をプロットした曲線(累積細孔容積曲線)であり、細孔径の大きい側から小さい側に向かって積算して表したものである。なお、d2>d5>d10>d50>d85>d90である。
 累積細孔容積が全細孔容積の2%となる細孔径d2は100~180μmである。前記細孔径d2が100μm未満である場合、PMが捕集され蓄積した際の低い圧力損失を維持し難くなり、180μm超である場合、ナノサイズのPM捕集率が低下する。d2は好ましくは110~150μmであり、さらに好ましくは110~140μmである。
 累積細孔容積が全細孔容積の5%となる細孔径d5は55~150μmである。前記細孔径d5が55μm未満である場合、PMが捕集され蓄積した際の低い圧力損失を維持し難くなり、150μm超である場合、ナノサイズのPM捕集率が低下する。d5は好ましくは56~130μmであり、さらに好ましくは56~120μmである。
 累積細孔容積が全細孔容積の10%となる細孔径d10は20μm以上及び50μm未満である。前記細孔径d10が20μm未満である場合、使用開始時の初期圧力損失を低く維持することが難しくなり、50μm以上である場合、ナノサイズのPM捕集率が低下する。d10は好ましくは21~45μmであり、さらに好ましくは22~40μmである。
 メジアン細孔径d50は12~23μmである。前記メジアン細孔径d50が12μm未満である場合、使用開始時の初期圧力損失を低く維持することが難しくなる。一方、前記メジアン細孔径d50が23μm超の場合、PM捕集に有効な細孔径12~23μmの細孔が少なくなり、ナノサイズのPM捕集率が低下する。前記メジアン細孔径d50は、好ましくは12~22μmであり、さらに好ましくは13~21μmである。
 累積細孔容積が全細孔容積の85%となる細孔径d85は6μm以上10μm未満である。前記細孔径d85が6μm未満の場合、使用開始時の初期圧力損失を低く維持することが難しくなる。d85は好ましくは7μm以上であり、さらに好ましくは7.5μm以上である。また、前記細孔径d85が10μm以上の場合、ナノサイズのPM捕集率が低下する。d85は好ましくは9.5μm以下である。
 累積細孔容積が全細孔容積の90%となる細孔径d90は4~8μmである。前記細孔径d90が4μm未満の場合、使用開始時の初期圧力損失を低く維持することが難しくなる。d90は好ましくは5μm以上であり、さらに好ましくは5.5μm以上である。また、前記細孔径d90が8μm超の場合、ナノサイズのPM捕集率が低下する。d90は好ましくは7.5μm以下であり、さらに好ましくは7μm以下である。
 累積細孔容積が全細孔容積の98%となる細孔径d98は3.5μm以下である。前記細孔径d98が3.5μm超の場合、ナノサイズのPM捕集率が低下する。d98は好ましくは3μm以下であり、さらに好ましくは2.5μm以下である。
 (d10-d90)/d50は1.3~2である。(d10-d90)/d50が1.3未満の場合、PMが捕集され蓄積した際の低い圧力損失を維持し難くなり、2超の場合、使用開始時の初期圧力損失を低く維持することが難しくなる。(d10-d90)/d50は好ましくは1.4~1.9であり、さらに好ましくは1.5~1.8である。
 (d50-d90)/d50は0.45~0.7である。(d50-d90)/d50が0.45未満の場合、PMが捕集され蓄積した際の低い圧力損失を維持し難くなり、0.7超の場合、ナノサイズのPM捕集率が低下する。(d50-d90)/d50は好ましくは0.5~0.65であり、さらに好ましくは0.55~0.6である。
 (d10-d50)/d50は0.75~1.4である。(d10-d50)/d50が0.75未満の場合、PMが捕集され蓄積した際の低い圧力損失を維持し難くなり、1.4超の場合、ナノサイズのPM捕集率が低下する。(d10-d50)/d50は好ましくは0.8~1.15であり、さらに好ましくは0.85~1.1である。
(ii)d20及びd80
 水銀圧入法により測定された隔壁の細孔分布曲線において、累積細孔容積が全細孔容積の20%となる細孔径d20の対数と80%となる細孔径d80の対数との差σ=log(d20)-log(d80)は0.39以下である。σが0.39超の場合、使用開始時の初期圧力損失を低く維持することが難しくなる。σは好ましくは0.3以下であり、さらに好ましくは0.25以下である。
(iii)100μm超の細孔容積
 水銀圧入法により測定された隔壁の細孔分布曲線において、100μm超の細孔容積は0.05 cm3/g以下である。100μm超の細孔容積が0.05 cm3/g超の場合、ナノサイズのPM捕集率が低下する。100μm超の細孔容積は好ましくは0.04 cm3/g以下、さらに好ましくは0.03 cm3/g以下である。
(iv)水銀圧入法
 水銀圧入法による累積細孔容積の測定は、例えばMicromeritics社製のオートポアIII 9410 を使用して測定することができる。この測定は、セラミックハニカム構造体から切り出した試験片を測定セル内に収納し、セル内を減圧した後、水銀を導入して加圧したときに、試験片内に存在する細孔中に押し込まれた水銀の体積を求めることによって行う。この時加圧力が大きくなればなるほど、より微細な細孔にまで水銀が浸入するので、加圧力と細孔中に押し込まれた水銀の体積との関係から、細孔径と累積細孔容積(最大の細孔径から特定の細孔径までの細孔容積を累積した値)の関係を求めることができる。ここで、水銀の浸入は細孔径の大きいものから小さいものへと順次行われる。
 気孔率は、全細孔容積と、コーディエライトの真比重2.52 g/cm3とから計算によって求めることができる。
 d2、d5、d10、d20、d50(メジアン細孔径)、d80、d90及びd98は、細孔径と累積細孔容積との関係を示す曲線において、それぞれ全細孔容積の2%、5%、10%、20%、50%、80%、90%及び98%に相当する細孔容積での細孔径(μm)である。
(c)熱膨張係数
 セラミックハニカム構造体は、20~800℃間の流路方向での熱膨張係数が13×10-7/℃以下であるのが好ましい。このような熱膨張係数を有するセラミックハニカム構造体は、高い耐熱衝撃性を有するので、ディーゼル機関の排出ガス中に含まれる微粒子を除去するためのセラミックハニカムフィルタとして、十分に実用に耐えることができる。前記熱膨張係数は、好ましくは3×10-7~11×10-7である。
(d)隔壁構造
 セラミックハニカム構造体は、平均隔壁厚さが9~15 mil(0.229~0.381 mm)、平均セル密度が150~300 cpsi(23.3~46.5セル/cm2)であるのが好ましい。このような隔壁構造を有することで、使用開始時において圧力損失を低く維持でき、粒子数基準でのPM捕集率を改善することができるとともに、PMが捕集され蓄積した際の圧力損失特性が改良される。平均隔壁厚さが9 mil未満の場合、隔壁の強度が低下し、一方15 milを超える場合、低い圧力損失を維持することが難しくなる。平均セル密度が150c psi未満の場合、隔壁の強度が低下し、一方、300 cpsiを超える場合、低い圧力損失を維持することが難しくなる。セルの流路方向の断面形状は、四角形、六角形等の多角形、円、楕円等のいずれでもよく、流入側端面と流出側端面とで大きさが異なる非対称形状であっても良い。
(e)隔壁の材質
 隔壁の材質としては、セラミックハニカム構造体の用途がディーゼルエンジンから排出される排気ガスを浄化するためのフィルタであることから、耐熱性を有するセラミックス、すなわちアルミナ、ムライト、コーディエライト、炭化珪素、窒化珪素、ジルコニア、チタン酸アルミニウム、リチウムアルミニウムシリケート等を主結晶とするセラミックスであるのが好ましい。中でも耐熱衝撃性に優れる低熱膨張のコーディエライト又はチタン酸アルミニウムを主結晶とするものが好ましい。主結晶相がコーディエライトである場合、スピネル、ムライト、サフィリン等の他の結晶相を含有しても良く、さらにガラス成分を含有しても良い。主結晶相がチタン酸アルミニウムである場合、チタン酸アルミニウム結晶相中にMg、Si等の元素が固溶していても良く、ムライト等の他の結晶相を含有していても良く、また粒界相としてガラス成分を含有していても良い。
[2]セラミックハニカムフィルタ
 セラミックハニカムフィルタは、本発明のセラミックハニカム構造体の流路の排気ガス流入側又は排気ガス流出側を交互に目封止してなる。本発明のセラミックハニカム構造体を使用することで、使用開始時においては、低い圧力損失を維持できるとともに粒子数基準でのPM捕集率を改善することができ、さらにPMが捕集され蓄積した際の圧力損失特性が改良されたセラミックハニカムフィルタとすることができる。ここで、流路に形成される目封止は、必ずしも流路の排気ガス流入側又は排気ガス流出側の端面部に形成する必要はなく、流入側端面又は流出側端面から流路内部に入った位置に形成してもよい。
[3]セラミックハニカム構造体の製造方法
 本発明のセラミックハニカム構造体を製造する方法は、セラミック原料及び中空の樹脂粒子からなる造孔材を含む坏土を所定の成形体に押出成形し、前記成型体を乾燥及び焼成する工程を有し、
前記坏土が、前記セラミック原料100質量%に対して3~9質量%の前記造孔材を含有し、
前記造孔材は、メジアン径D50が35~53μm、粒子径と累積体積との関係を示す曲線において、全体積の5%に相当する累積体積での粒子径D5が12~27μm、全体積の10%に相当する累積体積での粒子径D10が15~30μm、全体積の90%に相当する累積体積での粒子径D90が58~75μm、全体積の95%に相当する累積体積での粒子径D95が65~85μm、及びD50/(D90-D10)が0.85~1.30であり、
前記セラミック原料が、前記セラミック原料100質量%に対して15~25質量%のシリカ、40~43質量%のタルク及び15~30質量%のアルミナを含有し、
前記シリカは、メジアン径D50が15~30μm、D10が10~20μm、D90が40~60μm、5μm以下の粒子径を有する粒子の割合が1質量%以下、10μm以下の粒子径を有する粒子の割合が3質量%以下、100μm以上の粒子径を有する粒子の割合が3質量%以下、及び200μm以上の粒子径を有する粒子の割合が1質量%以下、粒度分布偏差SD[ただし、SD=log(D80)-log(D20)、D20は、粒子径と累積体積との関係を示す曲線において、全体積の20%に相当する累積体積での粒子径であり、D80は同じく全体積の80%に相当する累積体積での粒子径でありD20<D80である。]が0.4以下であり、
前記タルクは、メジアン径D50が5~15μm、D10が10μm以下、及びD90が25μm以上であり、
前記アルミナは、メジアン径D50が3~10μm、及びD90が60μm以下である。
 このような方法により、(a)気孔率が55~65%、(b)水銀圧入法により測定された細孔分布において、(i)累積細孔容積が全細孔容積の2%となる細孔径d2が100~180μm、5%となる細孔径d5が55~150μm、10%となる細孔径d10が20μm以上及び50μm未満、50%となる細孔径(メジアン細孔径)d50が12~23μm、85%となる細孔径d85が6μm以上10μm未満、90%となる細孔径d90が4~8μm、98%となる細孔径d98が3.5μm以下、(d10-d90)/d50が1.3~2、(d50-d90)/d50が0.45~0.7、及び(d10-d50)/d50が0.75~1.4であり、(ii)累積細孔容積が全細孔容積の20%となる細孔径d20の対数と80%となる細孔径d80の対数との差σ=log(d20)-log(d80)が0.39以下であり、(iii) 100μm超の細孔容積が0.05 cm3/g以下である多孔質の隔壁で仕切られた多数の流路を有する本発明のセラミックハニカム構造体を得ることができる。
 セラミックスに形成される細孔は、焼成過程においてセラミック原料の溶融によって生じる細孔と、造孔材が焼失して生じる細孔とからなる。従って、セラミック原料及び造孔材のメジアン径及び粒度分布を上述した範囲とすることにより、セラミックスが焼成された際に生じる細孔を制御することができる。
 本発明の製造方法においては、前記造孔材として中空の樹脂粒子を使用することにより、セラミック原料及び造孔材を含む成形体を焼成した時に、樹脂粒子が燃焼して空隙となるとともに、セラミック原料が焼成して細孔が形成される。本発明においては、中実樹脂粒子に比べて燃焼による発熱量が少ない中空樹脂粒子を使用することにより成形体を焼成する過程での焼成割れが発生し難くなる。このとき、セラミック原料が焼成して生じる細孔と樹脂粒子によって形成される細孔とが連通するため、隔壁表面から内部にかけての細孔の連通性が改良されるとともに、水銀圧入法で測定された隔壁の細孔径を上記の範囲とすることができる。
 このように、セラミック原料が焼成して生じる細孔と造孔材から形成される細孔とを連通性良く所定の細孔径範囲に形成することにより、ナノサイズのPM捕集率が改善されるとともに、PMが捕集され蓄積した際の圧力損失特性が改良された本発明のセラミックハニカム構造体を得ることができる。
(1)造孔材
 本発明で使用する造孔材は、中空の樹脂粒子からなり、その添加量は、セラミック原料100質量%に対して3~9質量%である。前記造孔材の添加量がこの範囲を外れると、前記細孔構造を有する隔壁が得られ難くなる。前記造孔材の添加量が3質量%未満である場合、気孔率55%以上の隔壁が得られ難くなるので、PMが捕集され蓄積した際の圧力損失特性が悪化する。造孔材の添加量が9質量%を超えると、隔壁の気孔率が65%を超える場合があり、ナノサイズのPM捕集率が低下する。前記造孔材の添加量は、好ましくは4~8質量%であり、さらに好ましくは4.5~7質量%である。
 前記造孔材粒子のメジアン径D50は35~53μmである。前記メジアン径D50が35μm未満の場合、PMが捕集され蓄積した際の低い圧力損失が維持できない。前記メジアン径D50が53μmを超えると、形成される細孔が粗大になるので、ナノサイズのPM捕集率が低下する。前記造孔材粒子のメジアン径D50は、好ましくは38~50μmであり、さらに好ましくは40~50μmである。
 前記造孔材粒子は、その粒子径と累積体積(特定の粒子径以下の粒子体積を累積した値)との関係を示す曲線において、全体積の5%に相当する累積体積での粒子径D5が12~27μm、全体積の10%に相当する累積体積での粒子径D10が15~30μm、全体積の90%に相当する累積体積での粒子径D90が58~75μm、全体積の95%に相当する累積体積での粒子径D95が65~85μm、及びD50/(D90-D10)が0.9~1.3である。前記造孔材粒子がこのような粒径分布を有するとともに、後述するセラミック原料の粒径及び粒度分布を調節することにより、前記細孔構造を有する隔壁が得られ易くなる。前記全体積の5%に相当する累積体積での粒子径D5は、好ましくは14~25μmであり、さらに好ましくは16~23μmである。前記全体積の10%に相当する累積体積での粒子径D10は、好ましくは17~28μmであり、さらに好ましくは19~26μmである。前記全体積の90%に相当する累積体積での粒子径D90は、好ましくは60~72μmであり、さらに好ましくは62~70μmである。前記全体積の95%に相当する累積体積での粒子径D95は、好ましくは67~83μmであり、さらに好ましくは69~81μmである。また、D50/(D90-D10)は好ましくは、0.90~1.20であり、さらに好ましくは1.0~1.15である。なお、造孔材の粒子径は、日機装(株)製マイクロトラック粒度分布測定装置(MT3000)を用いて測定することができる。
 前記造孔材粒子の真球度は、0.5以上であるのが好ましい。前記造孔材粒子の真球度が0.5未満である場合、隔壁の細孔が、破壊の起点となり易い鋭角部を有する細孔が多くなりハニカム構造体の強度が低下する場合があるので好ましくない。前記造孔材粒子の真球度は、好ましくは0.7以上であり、さらに好ましくは0.8以上である。なお、造孔材粒子の真球度は、造孔材粒子の投影面積を、造孔材粒子の重心を通り粒子外周の2点を結ぶ直線の最大値を直径とする円の面積で割った値であり、電子顕微鏡写真から画像解析装置で求めることができる。
 中空の樹脂粒子としては発泡させた樹脂粒子が好ましい。造孔材粒子として用いる樹脂としては、(ポリ)メタクリル酸メチル、ポリメタクリル酸ブチル、ポリアクリル酸エステル、ポリスチレン、ポリアクリルエステル、ポリエチレン、ポリエチレンテレフタレート、メチルメタクリレート・アクリロニトリル共重合体等が好適である。中空の樹脂粒子は、外殻厚さが0.1~3μmであるのが好ましく、炭化水素等のガスを内包させているのが好ましく、前記樹脂粒子はその表面に70~95%の水分を含有するものが好ましい。真比重は0.01~0.05であるのが好ましい。
(2)セラミック原料
 セラミック原料は、前記セラミック原料100質量%に対して15~25質量%のシリカ、40~43質量%のタルク及び15~30質量%のアルミナを含有する。前記セラミック原料はコーディエライト化原料であるのが好ましい。コーディエライト化原料は、主結晶がコーディエライト(主成分の化学組成が42~56質量%のSiO2、30~45質量%のAl2O3及び12~16質量%のMgO)となるように、シリカ源成分、アルミナ源成分及びマグネシア源成分を有する各原料粉末を配合したものである。コーディエライトを主結晶とするセラミックスに形成される細孔は、セラミック原料のシリカ及びタルクが焼成されて生じる細孔と、造孔材が燃焼されて生じる細孔によるものである。従って、前述の造孔材とともに、シリカ、タルク等のセラミック原料の粒径及び粒度分布を調節することにより、コーディエライト質セラミックスが焼成された際に生じる細孔を制御することができる。中でもシリカと造孔材は、形成される細孔の大部分を占めることから、細孔構造に対する寄与が大きい。
(a)シリカ
 シリカは、他の原料に比べて高温まで安定に存在し、1300℃以上で溶融拡散し、細孔を形成することが知られている。このため、15~25質量%のシリカを含有すると、所望の量の細孔が得られる。25質量%を超えてシリカを含有させると、主結晶をコーディエライトに維持するために、他のシリカ源成分であるカオリン及び/又はタルクを低減させなければならず、その結果、カオリンによって得られる低熱膨張化の効果(押出し成形時にカオリンが配向されることで得られる効果)が低減し耐熱衝撃性が低下する。一方、15質量%未満の場合、隔壁表面に開口した細孔の数が少なくなるので、PMが捕集され蓄積した際の低い圧力損失が得られなくなる場合がある。シリカの含有量は、好ましくは17~23質量%である。
 シリカは、メジアン径D50が15~30μm、粒子径と累積体積との関係を示す曲線において、全体積の10%に相当する累積体積での粒子径D10が10~20μm、同じく全体積の90%に相当する累積体積での粒子径D90が40~60μm、5μm以下の粒子径を有する粒子の割合が1質量%以下、10μm以下の粒子径を有する粒子の割合が3質量%以下、100μm以上の粒子径を有する粒子の割合が3質量%以下、及び200μm以上の粒子径を有する粒子の割合が1質量%以下、粒度分布偏差SD[ただし、SD=log(D80)-log(D20)、D20は、粒子径と累積体積との関係を示す曲線において、全体積の20%に相当する累積体積での粒子径であり、D80は同じく全体積の80%に相当する累積体積での粒子径でありD20<D80である。]が0.4以下の粒子分布のものを使用する。このような粒子分布を有するシリカ粒子を前記造孔材と組合せて使用することにより、特定の細孔分布を有する本発明のセラミックハニカム構造体が得られる。
 シリカのメジアン径D50が15μm未満の場合、隔壁表面に開口した細孔のうち微小細孔の割合が多くなり、PMが捕集され蓄積した際に圧力損失を上昇させる原因となる。一方、30μmを超える場合、粗大細孔が多くなり、ナノサイズのPM捕集率を低下させる。シリカのメジアン径D50は、好ましくは17~28μmであり、さらに好ましくは19~26μmである。
 シリカのD10が10μm未満の場合、隔壁表面に開口した細孔のうち圧力損失特性を悪化させる微小細孔の割合が多くなるので好ましくない。一方、20μmを超える場合、ナノサイズのPM捕集率を低下させる粗大細孔の割合が多くなるので好ましくない。シリカのD10は、好ましくは12~18μmであり、さらに好ましくは13~17μmである。
 シリカのD90が40μm未満の場合、隔壁表面に開口した細孔のうち圧力損失特性を悪化させる微小細孔の割合が多くなるので好ましくない。一方、60μmを超える場合、ナノサイズのPM捕集率を低下させる粗大細孔の割合が多くなるので好ましくない。シリカのD90は、好ましくは45~55μmであり、さらに好ましくは47~53μmである。
 5μm以下の粒子径を有するシリカ粒子の割合が1質量%を超える場合や、10μm以下の粒子径を有するシリカ粒子の割合が3質量%を超える場合、隔壁表面に開口した細孔のうち微小細孔の割合が多くなり、PMが捕集され蓄積した際に圧力損失を上昇させる原因となる。粒子径5μm以下のシリカ粒子の割合は、好ましくは0.7質量%以下であり、より好ましくは0.2質量%以下であり、粒子径10μm以下のシリカ粒子の割合は、好ましくは2質量%以下である。粒子径100μm以上の粒子径を有する粒子の割合が3質量%を超える場合や、粒子径200μm以上の粒子径を有する粒子の割合が1質量%を超える場合、粗大細孔が多くなりナノサイズのPM捕集率を低下させる。粒子径100μm以上のシリカ粒子の割合は、好ましくは2質量%以下であり、粒子径200μm以上のシリカ粒子の割合は、好ましくは0.7質量%以下であり、より好ましくは0.2質量%以下である。シリカの粒度分布偏差SDは、好ましくは0.36以下であり、さらに好ましくは0.33以下である。
 前記シリカ粒子の真球度は、0.5以上であるのが好ましい。シリカ粒子の真球度が、0.5未満である場合、隔壁の細孔が、破壊の起点となり易い鋭角部を有する細孔が多くなりハニカム構造体の強度が低下する場合があるので好ましくない。シリカ粒子の真球度は、好ましくは0.6以上であり、さらに好ましくは0.7以上である。シリカ粒子の真球度は、シリカ粒子の投影面積を、シリカ粒子の重心を通り粒子外周の2点を結ぶ直線の最大値を直径とする円の面積で割った値であり、電子顕微鏡写真から画像解析装置で求めることができる。
 前記シリカ粒子は結晶質のもの、又は非晶質のものを用いることができるが、粒度分布を調整する観点から非晶質のものが好ましい。非晶質シリカは高純度の天然珪石を高温溶融して製造したインゴットを粉砕して得ることができる。シリカ粒子は不純物としてNa2O、K2O、CaOを含有しても良いが、熱膨張係数が大きくなるのを防止するため、前記不純物の含有量は合計で0.1%以下であるのが好ましい。
 真球度の高いシリカ粒子は、高純度の天然珪石を微粉砕し高温火炎の中に溶射することにより得られる。高温火炎の中への溶射によりシリカ粒子の溶融と球状化とを同時に行い、真球度の高い非晶質シリカを得ることができる。さらに、この球状シリカ粒子の粒度を分級等の方法により調整するのが好ましい。
(b) カオリン
 コーディエライト化原料に用いるシリカ原料としては、前記シリカ粉末に加えて、カオリン粉末を配合することができる。カオリン粉末は1~15質量%含有するのが好ましい。カオリン粉末をが15質量%を超えて含有すると、セラミックハニカム構造体の細孔分布においてd98を5μm以下に調整することが困難になる場合があり、1質量%未満の場合は、セラミックハニカム構造体の熱膨張係数が大きくなる。カオリン粉末の含有量は、さらに好ましくは4~8質量%である。
 カオリン粒子は、そのc軸が押出し成形されるハニカム構造体の長手方向と直交するように配向すれば、コーディエライト結晶のc軸がハニカム構造体の長手方向と平行となり、ハニカム構造体の熱膨張係数を小さくすることができる。カオリン粒子の配向には、その形状が大きく影響する。カオリン粒子の形状を定量的に示す指数である、カオリン粒子のへき開指数は0.80以上であるのが好ましく、0.85以上であるのがさらに好ましい。カオリン粒子のへき開指数は、プレス成形したカオリン粒子をX線回折測定し、得られた(200)面、(020)面及び(002)面の各ピーク強度I(200)、I(020)及びI(002)から、次式:
 へき開指数 = I(002)/[I(200)+I(020)+I(002)
により求めることができる。へき開係数が大きいほどカオリン粒子の配向が良好であると言える。
(c)タルク
 セラミック原料は、前記セラミック原料100質量%に対して40~43質量%のタルクを含有する。前記タルクは、メジアン径D50が5~15μm、粒子径と累積体積(特定の粒子径以下の粒子体積を累積した値)との関係を示す曲線において、全体積の10%に相当する累積体積での粒子径D10が10μm以下、及び同様に全体積の90%に相当する累積体積での粒子径D90が25μm以上である。タルクはMgOとSiO2を主成分とする化合物であり、焼成過程において周囲に存在するAl2O3成分と反応して溶融し、細孔を形成する。従って、Al2O3源原料と共に、粒子径の小さいタルクを配合することで、多数の小径細孔を隔壁中に分散させることができる為、隔壁内の細孔の連通性を向上させることができる。タルクのメジアン径D50が5μm未満の場合、細孔の連通性が低くなり、PMが捕集され蓄積した際の圧力損失特性が低下する。一方、タルクのメジアン径D50が15μmを超える場合、粗大細孔が多くなり、ナノサイズのPM捕集率を低下させる。タルクのメジアン径D50は、好ましくは6~14μmであり、さらに好ましくは8~12μmである。
 タルクのD10は、好ましくは8μm以下であり、さらに好ましくは7μm以下である。またタルクのD90は、好ましくは25~45μmであり、さらに好ましくは25~40μm以下である。
 タルクは結晶相の主成分がコーディエライトであるセラミックハニカム構造体の熱膨張係数を低減する観点から、板状粒子であるのが好ましい。タルク粒子の平板度を示す形態係数は、0.5以上であるのが好ましく、0.6以上であるのがより好ましく、0.7以上であるのが最も好ましい。前記形態係数は、米国特許第5,141,686号に記載されているように、板状のタルク粒子をX線回折測定し、得られた(004)面の回折強度Ix、及び(020)面の回折強度Iyから次式:
 形態係数 = Ix/(Ix+2Iy)
により求めることができる。形態係数が大きいほどタルク粒子の平板度が高い。
 タルクは、不純物としてFe2O3、CaO、Na2O、K2O等を含有しても良い。Fe2O3の含有率は、所望の粒度分布を得るために、マグネシア源原料中、0.5~2.5質量%であるのが好ましく、Na2O、K2O及びCaOの含有率は、熱膨張係数を低くするという観点から、合計で0.5質量%以下であるのが好ましい。
(d)アルミナ
 セラミック原料は、セラミック原料100質量%に対して15~30質量%のアルミナを含有する。前記アルミナは、メジアン径D50が3~10μmであり、粒子径と累積体積との関係を示す曲線において、全体積の90%に相当する累積体積での粒子径D90が60μm以下である。このようなメジアン径及び粒径分布を有するアルミナを配合することで、多数の小径細孔を隔壁中に分散させることができるため、隔壁内の細孔の連通性を向上させることができ、本発明のセラミックハニカム構造体が有する細孔分布の形成に貢献する。アルミナのメジアン径D50は、好ましくは4~9μmであり、さらに好ましくは5~8μmであり、D90は好ましくは50μm以下であり、さらに好ましくは25~40μmである。アルミナ原料としては、アルミナに加えて水酸化アルミニウムを使用するのが好ましい。アルミナ及び水酸化アルミニウム中の不純物であるNa2O、K2O及びCaOの含有量の合計は、好ましくは0.5質量%以下、より好ましくは0.3質量%以下、最も好ましくは0.1質量%以下である。
(3)製造方法
 セラミックハニカム構造体は、セラミック原料及び造孔材に、バインダー、必要に応じて分散剤、界面活性剤等の添加剤を加えて乾式で混合した後、水を加えて混練し、得られた可塑性の坏土を、公知のハニカム構造体成形用の金型から、公知の押出成形法、例えば、プランジャー式、スクリュー式等の押出成形法により押出してハニカム構造の成形体を形成し、この成形体を乾燥した後、必要に応じて端面及び外周等の加工を施し、焼成することによって製造する。
 焼成は、連続炉又はバッチ炉を用いて、昇温及び冷却の速度を調整しながら行う。セラミック原料がコーディエライト化原料である場合、1350~1450℃で1~50時間保持し、コーディエライト主結晶が十分生成した後、室温まで冷却する。前記昇温速度は、特に外径150 mm以上、及び全長150 mm以上の大型のセラミックハニカム構造体を製造する場合、焼成過程で成形体に亀裂が発生しないよう、バインダーが分解する温度範囲(例えば150~350℃)では0.2~10℃/hr、コーディエライト化反応が進行する温度域(例えば1150~1400℃)では5~20℃/hrであるのが好ましい。冷却は、特に1400~1300℃の範囲では20~40℃/hの速度で行うのが好ましい。
 得られたハニカム構造体は、公知の方法で所望の流路の端部を目封止することによりセラミックハニカムフィルタとすることができる。なお、この目封止部は、焼成前に形成してもよい。
[4]実施例
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらに限定されるものではない。
実施例1~10及び比較例1~10
 それぞれ表1~表5に示す粒子形状(粒径、粒度分布等)を有するシリカ粉末、タルク粉末及びアルミナ粉末、水酸化アルミニウム及びカオリンを、セラミックス原料の合計量が100質量部となるように表7に示す添加量で配合して、化学組成が50質量%のSiO2、36質量%のAl2O3及び14質量%のMgOとなるコーディエライト化原料粉末を得た。
 このコーディエライト化原料粉末に対し、表6に示す粒子形状及び真比重の造孔材を表7に示す量で添加し、メチルセルロースを添加した後、水を加えて混練し、可塑性のコーディエライト化原料からなるセラミック坏土を作製した。造孔材粒子の真球度は、電子顕微鏡により撮影した粒子の画像から画像解析装置で求めた、投影面積A1、及び重心を通り粒子外周の2点を結ぶ直線の最大値を直径とする円の面積A2から、式:A1/A2で算出した値であり、20個の粒子についての平均値で表した。
表1
Figure JPOXMLDOC01-appb-I000001
表1(続き)
Figure JPOXMLDOC01-appb-I000002
表2
Figure JPOXMLDOC01-appb-I000003
表3
Figure JPOXMLDOC01-appb-I000004
表4
Figure JPOXMLDOC01-appb-I000005
表5
Figure JPOXMLDOC01-appb-I000006
表6
Figure JPOXMLDOC01-appb-I000007
表6(続き)
Figure JPOXMLDOC01-appb-I000008
 シリカ粉末、タルク粉末、アルミナ粉末、水酸化アルミニウム粉末、カオリン粉末及び造孔材の粒径及び粒度分布は日機装(株)製マイクロトラック粒度分布測定装置(MT3000)を用いて測定し、粒度分布からメジアン径D50、粒子径10μm以下の割合、100μm以上の割合、D90、D80、D20、D10を求め、D80及びD20から粒度分布偏差SDを求めた。
表7
Figure JPOXMLDOC01-appb-I000009
表7(続き)
Figure JPOXMLDOC01-appb-I000010
 得られた坏土を押出してハニカム構造の成形体を作製し、乾燥後、周縁部を除去加工し、焼成炉にて210時間のスケジュール(室温~150℃は10℃/h、150~350℃は2℃/hr、350~1150℃は20℃/h及び1150~1410℃は15℃/hrの平均速度で昇温、最高温度1410℃で25 hr保持、並びに1400~1300℃は30℃/hr、及び1300~100℃は80℃/hrの平均速度で冷却)で焼成した。焼成したセラミックハニカム体の外周に、非晶質シリカとコロイダルシリカとからなる外皮材をコーティングして乾燥させ、外径266.7 mm及び全長304.8 mm、並びに表8に示す隔壁厚さ及びセル密度の実施例1~10及び比較例1~10のセラミックハニカム構造体を得た。
 これらのセラミックハニカム構造体の流路端部に、交互に目封止されるように、コーディエライト化原料からなる目封止材スラリーを充填した後、目封止材スラリーの乾燥及び焼成を行い、実施例及び比較例の各コーディエライト質セラミックハニカムフィルタを作製した。焼成後の目封止材の長さは7~10 mmの範囲であった。各セラミックハニカムフィルタは、それぞれ同じものを2個ずつ作製した。
 得られた実施例1~10及び比較例1~10のセラミックハニカムフィルタの1個を用いて、下記の方法で水銀圧入法による細孔分布の測定、及び熱膨張係数の測定を行った。水銀圧入法による測定は、セラミックハニカムフィルタから切り出した試験片(10 mm×10 mm×10 mm)を、Micromeritics社製オートポアIIIの測定セル内に収納し、セル内を減圧した後、水銀を導入して加圧し、加圧時の圧力と試験片内に存在する細孔中に押し込まれた水銀の体積との関係を求めることにより行った。前記圧力と体積との関係から細孔径と累積細孔容積との関係を求めた。水銀を導入する圧力は0.5 psi(0.35×10-3 kg/mm2)とし、圧力から細孔径を算出する際の常数は、接触角=130°及び表面張力=484 dyne/cmの値を使用した。
 得られた水銀圧入法の測定結果から、全細孔容積、気孔率、累積気孔容積が全気孔容積の2%となる細孔径d2、5%となる細孔径d5、10%となる細孔径d10、20%となる細孔径d20、50%となる細孔径(メジアン細孔径)d50、80%となる細孔径d80、85%となる細孔径d85、90%となる細孔径d90、98%となる細孔径d98、100μm超の細孔容積、(d10-d90)/d50、(d50-d90)/d50、及び(d10-d50)/d50を求め、さらに累積気孔容積が全気孔容積の20%となる細孔径d20の対数と80%となる細孔径d80の対数との差σ=log(d20)-log(d80)を算出した。なお気孔率は、全細孔容積の測定値から、コーディエライトの真比重を2.52 g/cm3として計算によって求めた。これらの結果を表8に示す。
表8
Figure JPOXMLDOC01-appb-I000011
表8(続き)
Figure JPOXMLDOC01-appb-I000012
表8(続き)
Figure JPOXMLDOC01-appb-I000013
表8(続き)
Figure JPOXMLDOC01-appb-I000014
 実施例1~10及び比較例1~10で作製したもう一つのセラミックハニカムフィルタを用いて、初期圧力損失、PM捕集後圧力損失(煤2 g/リットル捕集した時の圧力損失)、及び捕集開始初期の粒子数基準でのPM捕集率を下記の方法で測定した。結果を表9に示す。
(a) 初期圧力損失
 初期圧力損失は、圧力損失テストスタンドに固定したセラミックハニカムフィルタに、空気を流量10 Nm3/minで送り込み、流入側と流出側との差圧(圧力損失)で表した。圧力損失が、
1.0 kPaを越える場合を(×)、
0.8 kPaを超え1.0 kPa以下の場合を(△)、
0.6 kPaを超え0.8 kPa以下の場合を(○)、及び
0.6 kPa以下の場合を(◎)
として初期圧力損失を評価した。
(b) PM捕集後圧力損失
 PM捕集後圧力損失は、圧力損失テストスタンドに固定したセラミックハニカムフィルタに、空気流量10 Nm3/minで、平均粒径0.042μmの燃焼煤を3 g/hの速度で投入し、フィルタ体積1リットルあたりの煤付着量が2 gとなった時の流入側と流出側との差圧(圧力損失)で表した。圧力損失が、
1.5 kPaを越える場合を(×)、
1.3 kPaを超え1.5 kPa以下の場合を(△)、
1.0 kPaを超え1.3 kPa以下の場合を(○)、及び
1.0 kPa以下の場合を(◎)
として煤捕集圧力損失を評価した。
(c) 捕集開始初期の粒子数基準でのPM捕集率
 捕集開始初期の粒子数基準でのPM捕集率は、圧力損失テストスタンドに固定したセラミックハニカムフィルタに、空気流量10 Nm3/minで、平均粒径0.042μmの燃焼煤を3 g/hの速度で投入しながら、1分毎にハニカムフィルタに流入する燃焼煤の粒子数とハニカムフィルタから流出する燃焼煤の粒子数とをSMPS(Scanning Mobility Particle Sizer)(TIS社製モデル3936)を用いて計測し、投入開始3分後から4分後までの1分間にハニカムフィルタに流入する燃焼煤の粒子数Nin、及びハニカムフィルタから流出する燃焼煤の粒子数Noutから、式:(Nin-Nout)/Ninにより求めた。PM捕集率が、
98%以上の場合を(◎)、
96%以上98%未満の場合を(○)、
95%以上96%未満の場合を(△)、及び
95%未満の場合を(×)
としてPM捕集率を評価した。
表9
Figure JPOXMLDOC01-appb-I000015
注(1):煤2 g/リットル捕集した時の圧力損失
注(2):捕集開始初期の粒子数基準でのPM捕集率
 
 表9より、実施例1~10の本発明のセラミックハニカムフィルタは、低い圧力損失を維持しつつ、捕集開始初期の粒子数基準でのPM捕集率が改善されていることがわかる。
 これに対して、比較例1のセラミックハニカムフィルタは、25μmのメジアン径(35μmより小さい)を有する造孔材Dを2.4質量部しか使用しておらず、またシリカ、タルク及びアルミナも比較的小さな粒径のものを使用したため、形成された細孔のメジアン径が小さく圧力損失特性が低くPM捕集率も低い。
 比較例2のセラミックハニカムフィルタは、54μmのメジアン径(53μmより大きい)及び比較的ブロードな粒径分布を有する造孔材Eを使用し、シリカ、タルク及びアルミナも比較的大きな粒径のものを使用したため、形成された細孔のメジアン径が大きく、圧力損失特性は良いもののPM捕集率が低い。
 比較例3のセラミックハニカムフィルタは、36μmのメジアン径及びややブロードな粒径分布を有する造孔材Fを使用し、比較的ブロードな粒径分布を有するシリカF及び比較的シャープな粒径分布を有するタルクFを使用したため、形成された細孔の細孔分布がブロードで、初期圧損及び粒子数でのPM補集率が悪い。
 比較例4のセラミックハニカムフィルタは、57μmのメジアン径(53μmより大きい)を有する造孔材Gを使用し、シリカ、タルク及びアルミナも比較的大きな粒径のものを使用したため、形成された細孔のメジアン径が大きく、圧力損失特性は良いもののPM捕集率が低い。
 比較例5のセラミックハニカムフィルタは、25μmのメジアン径(35μmより小さい)を有する造孔材Hを1.8質量部しか使用しておらず、またシリカ、タルク及びアルミナも比較的小さな粒径のものを使用したため、形成された細孔のメジアン径が小さく圧力損失特性が低い。
 比較例6のセラミックハニカムフィルタは、グラファイトからなる造孔材Iを使用しており、またシリカ、タルク及びアルミナも比較的小さな粒径のものを使用したため、形成された細孔の細孔分布が著しくブロードで、圧力損失特性が低くPM捕集率も低い。
 比較例7のセラミックハニカムフィルタは、中実の樹脂からなる造孔材Jを使用したため、形成された細孔は気孔率が低く細孔分布がブロードであったため、初期圧損及びPM捕集後の圧力損失が悪い。
 比較例8のセラミックハニカムフィルタは、メジアン径の比較的小さいシリカを使用したため、形成された細孔の細孔分布が狭くなりすぎ、PM捕集後の圧力損失が悪い。
 比較例9のセラミックハニカムフィルタは、25μmのメジアン径(35μmより小さい)を有する造孔材Hを2.0質量部しか使用していないため、形成された細孔は気孔率が低く、初期圧損及びPM捕集後の圧力損失が悪い。
 比較例10のセラミックハニカムフィルタは、比較的大きな粒径のシリカ、タルク及びアルミナを使用したため、形成された細孔は得に大サイズ側に広い分布を有し、圧力損失特性は良いもののPM捕集率が低い。

Claims (6)

  1.  多孔質の隔壁で仕切られた多数の流路を有するセラミックハニカム構造体であって、
    前記隔壁は、
    (a)気孔率が55~65%、
    (b)水銀圧入法により測定された細孔分布において、
    (i)累積細孔容積が全細孔容積の2%となる細孔径d2が100~180μm、
     5%となる細孔径d5が55~150μm、
     10%となる細孔径d10が20μm以上及び50μm未満、
     50%となる細孔径(メジアン細孔径)d50が12~23μm、
     85%となる細孔径d85が6μm以上10μm未満、
     90%となる細孔径d90が4~8μm、
     98%となる細孔径d98が3.5μm以下、
     (d10-d90)/d50が1.3~2、
     (d50-d90)/d50が0.45~0.7、及び
     (d10-d50)/d50が0.75~1.4であり、
    (ii)累積細孔容積が全細孔容積の20%となる細孔径d20の対数と80%となる細孔径d80の対数との差σ=log(d20)-log(d80)が0.39以下であり、
    (iii)100μm超の細孔容積が0.05 cm3/g以下であることを特徴とするセラミックハニカム構造体。
  2.  請求項1に記載のセラミックハニカム構造体において、前記気孔率が56~64%であることを特徴とするセラミックハニカム構造体。
  3.  請求項1又は2に記載のセラミックハニカム構造体において、前記メジアン細孔径d50が12~22μmであることを特徴とするセラミックハニカム構造体。
  4.  請求項1~3のいずれかに記載のセラミックハニカム構造体において、前記σが0.3以下であることを特徴とするセラミックハニカム構造体。
  5.  セラミック原料及び中空の樹脂粒子からなる造孔材を含む坏土を所定の成形体に押出成形し、前記成形体を乾燥及び焼成する工程を有するセラミックハニカム構造体の製造方法であって、
    前記坏土が、前記セラミック原料100質量%に対して3~9質量%の前記造孔材を含有し、
    前記造孔材は、メジアン径D50が35~53μm、粒子径と累積体積との関係を示す曲線において、全体積の5%に相当する累積体積での粒子径D5が12~27μm、全体積の10%に相当する累積体積での粒子径D10が15~30μm、全体積の90%に相当する累積体積での粒子径D90が58~75μm、全体積の95%に相当する累積体積での粒子径D95が65~85μm、及びD50/(D90-D10)が0.85~1.30であり、
    前記セラミック原料が、前記セラミック原料100質量%に対して15~25質量%のシリカ、40~43質量%のタルク及び15~30質量%のアルミナを含有し、
    前記シリカは、メジアン径D50が15~30μm、D10が10~20μm、D90が40~60μm、5μm以下の粒子径を有する粒子の割合が1質量%以下、10μm以下の粒子径を有する粒子の割合が3質量%以下、100μm以上の粒子径を有する粒子の割合が3質量%以下、及び200μm以上の粒子径を有する粒子の割合が1質量%以下、粒度分布偏差SD[ただし、SD=log(D80)-log(D20)、D20は、粒子径と累積体積との関係を示す曲線において、全体積の20%に相当する累積体積での粒子径であり、D80は同じく全体積の80%に相当する累積体積での粒子径でありD20<D80である。]が0.4以下であり、
    前記タルクは、メジアン径D50が5~15μm、D10が10μm以下、及びD90が25μm以上であり、
    前記アルミナは、メジアン径D50が3~10μm、及びD90が60μm以下であることを特徴とするセラミックハニカム構造体の製造方法。
  6.  請求項5に記載のセラミックハニカム構造体の製造方法において、前記坏土が、前記セラミック原料100質量%に対して4~8質量%の前記造孔材を含有することを特徴とするセラミックハニカム構造体の製造方法。
PCT/JP2014/074683 2013-09-24 2014-09-18 セラミックハニカム構造体及びその製造方法 WO2015046012A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14847996.7A EP2980049B1 (en) 2013-09-24 2014-09-18 Ceramic honeycomb structure and production method therefor
CN201480041146.9A CN105392759B (zh) 2013-09-24 2014-09-18 陶瓷蜂窝结构体及其制造方法
JP2015507840A JP5751398B1 (ja) 2013-09-24 2014-09-18 セラミックハニカム構造体及びその製造方法
US14/762,071 US9649587B2 (en) 2013-09-24 2014-09-18 Ceramic honeycomb structure and its production method
US15/191,735 US10065141B2 (en) 2013-09-24 2016-06-24 Ceramic honeycomb structure and its production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013197383 2013-09-24
JP2013-197383 2013-09-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/762,071 A-371-Of-International US9649587B2 (en) 2013-09-24 2014-09-18 Ceramic honeycomb structure and its production method
US15/191,735 Division US10065141B2 (en) 2013-09-24 2016-06-24 Ceramic honeycomb structure and its production method

Publications (1)

Publication Number Publication Date
WO2015046012A1 true WO2015046012A1 (ja) 2015-04-02

Family

ID=52743151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074683 WO2015046012A1 (ja) 2013-09-24 2014-09-18 セラミックハニカム構造体及びその製造方法

Country Status (5)

Country Link
US (2) US9649587B2 (ja)
EP (1) EP2980049B1 (ja)
JP (1) JP5751398B1 (ja)
CN (1) CN105392759B (ja)
WO (1) WO2015046012A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019155276A (ja) * 2018-03-13 2019-09-19 イビデン株式会社 ハニカムフィルタ及びハニカムフィルタの製造方法
WO2021029098A1 (ja) * 2019-08-09 2021-02-18 三井金属鉱業株式会社 排ガス浄化用触媒及びその製造方法
WO2021075211A1 (ja) * 2019-10-16 2021-04-22 日立金属株式会社 セラミックハニカム構造体及びその製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3275853B1 (en) * 2015-03-24 2020-04-22 Hitachi Metals, Ltd. Ceramic honeycomb structure
EP3275852B1 (en) * 2015-03-24 2022-01-12 Hitachi Metals, Ltd. Ceramic honeycomb structure and method for producing same
JP6802096B2 (ja) 2017-03-14 2020-12-16 日本碍子株式会社 目封止ハニカム構造体
JP6693477B2 (ja) * 2017-06-13 2020-05-13 株式会社デンソー 排ガス浄化フィルタ
JP6984962B2 (ja) * 2019-03-29 2021-12-22 株式会社デンソー 排ガス浄化フィルタ
JP7097327B2 (ja) * 2019-04-26 2022-07-07 株式会社Soken 排ガス浄化フィルタ
JP7274395B2 (ja) * 2019-10-11 2023-05-16 日本碍子株式会社 ハニカム構造体
JP7353218B2 (ja) * 2020-03-02 2023-09-29 日本碍子株式会社 ハニカムフィルタ
JP7449721B2 (ja) * 2020-03-02 2024-03-14 日本碍子株式会社 ハニカムフィルタ
JP2022153941A (ja) * 2021-03-30 2022-10-13 日本碍子株式会社 ハニカム構造体
CN113786689A (zh) * 2021-09-22 2021-12-14 重庆奥福精细陶瓷有限公司 一种窄微孔分布堇青石蜂窝陶瓷过滤器及其制备方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141686A (en) 1988-11-21 1992-08-25 Corning Incorporated Method for producing cordierite articles
JP2002219319A (ja) 2000-11-24 2002-08-06 Ngk Insulators Ltd 多孔質ハニカムフィルター及びその製造方法
JP2003040687A (ja) 2000-06-30 2003-02-13 Ngk Insulators Ltd ハニカムセラミックス構造体とその製造方法
JP2004360654A (ja) 2003-06-06 2004-12-24 Hitachi Metals Ltd セラミックハニカムフィルタ
JP2005530616A (ja) 2002-06-26 2005-10-13 コーニング インコーポレイテッド Dpf用途向けのケイ酸アルミニウムマグネシウム構造体
WO2007108428A1 (ja) 2006-03-17 2007-09-27 Ngk Insulators, Ltd. ハニカム構造体の製造方法
JP2009517327A (ja) 2005-11-30 2009-04-30 コーニング インコーポレイテッド 強度が改善された多孔質コージエライトセラミックハニカム物品およびその製造方法
WO2009063997A1 (ja) * 2007-11-14 2009-05-22 Hitachi Metals, Ltd. チタン酸アルミニウム質セラミックハニカム構造体、その製造方法、及びそれを製造するための原料粉末
WO2011027837A1 (ja) 2009-09-04 2011-03-10 日立金属株式会社 セラミックハニカム構造体及びその製造方法
JP2011516371A (ja) 2008-02-29 2011-05-26 コーニング インコーポレイテッド 異方性多孔質セラミック物品およびその製造
WO2011102487A1 (ja) 2010-02-22 2011-08-25 日立金属株式会社 セラミックハニカム構造体及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100458109C (zh) * 2001-09-13 2009-02-04 日立金属株式会社 陶瓷蜂窝状过滤器及其制造方法
US6827754B2 (en) * 2001-09-13 2004-12-07 Hitachi Metals, Ltd. Ceramic honeycomb filter
JP4750343B2 (ja) * 2002-10-23 2011-08-17 日本碍子株式会社 多孔質ハニカム構造体の製造方法、及びハニカム成形体
US7179316B2 (en) * 2003-06-25 2007-02-20 Corning Incorporated Cordierite filters with reduced pressure drop
WO2009048156A1 (ja) * 2007-10-12 2009-04-16 Hitachi Metals, Ltd. コージェライト質セラミックハニカムフィルタ及びその製造方法
WO2010013509A1 (ja) * 2008-07-28 2010-02-04 日立金属株式会社 セラミックハニカム構造体及びその製造方法
JP5486539B2 (ja) * 2011-03-30 2014-05-07 日本碍子株式会社 ハニカム構造体及びその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141686A (en) 1988-11-21 1992-08-25 Corning Incorporated Method for producing cordierite articles
JP2003040687A (ja) 2000-06-30 2003-02-13 Ngk Insulators Ltd ハニカムセラミックス構造体とその製造方法
JP2002219319A (ja) 2000-11-24 2002-08-06 Ngk Insulators Ltd 多孔質ハニカムフィルター及びその製造方法
JP2005530616A (ja) 2002-06-26 2005-10-13 コーニング インコーポレイテッド Dpf用途向けのケイ酸アルミニウムマグネシウム構造体
JP2004360654A (ja) 2003-06-06 2004-12-24 Hitachi Metals Ltd セラミックハニカムフィルタ
JP2009517327A (ja) 2005-11-30 2009-04-30 コーニング インコーポレイテッド 強度が改善された多孔質コージエライトセラミックハニカム物品およびその製造方法
WO2007108428A1 (ja) 2006-03-17 2007-09-27 Ngk Insulators, Ltd. ハニカム構造体の製造方法
WO2009063997A1 (ja) * 2007-11-14 2009-05-22 Hitachi Metals, Ltd. チタン酸アルミニウム質セラミックハニカム構造体、その製造方法、及びそれを製造するための原料粉末
JP2011516371A (ja) 2008-02-29 2011-05-26 コーニング インコーポレイテッド 異方性多孔質セラミック物品およびその製造
WO2011027837A1 (ja) 2009-09-04 2011-03-10 日立金属株式会社 セラミックハニカム構造体及びその製造方法
WO2011102487A1 (ja) 2010-02-22 2011-08-25 日立金属株式会社 セラミックハニカム構造体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2980049A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019155276A (ja) * 2018-03-13 2019-09-19 イビデン株式会社 ハニカムフィルタ及びハニカムフィルタの製造方法
WO2019176868A1 (ja) * 2018-03-13 2019-09-19 イビデン株式会社 ハニカムフィルタ及びハニカムフィルタの製造方法
US11433382B2 (en) 2018-03-13 2022-09-06 Ibiden Co., Ltd. Honeycomb filter and method for manufacturing honeycomb filters
WO2021029098A1 (ja) * 2019-08-09 2021-02-18 三井金属鉱業株式会社 排ガス浄化用触媒及びその製造方法
JP6876876B1 (ja) * 2019-08-09 2021-05-26 三井金属鉱業株式会社 排ガス浄化用触媒及びその製造方法
US11433377B2 (en) 2019-08-09 2022-09-06 Mitsui Mining & Smelting Co., Ltd. Exhaust gas purification catalyst and production method therefor
WO2021075211A1 (ja) * 2019-10-16 2021-04-22 日立金属株式会社 セラミックハニカム構造体及びその製造方法
JP7501540B2 (ja) 2019-10-16 2024-06-18 株式会社プロテリアル セラミックハニカム構造体及びその製造方法

Also Published As

Publication number Publication date
JPWO2015046012A1 (ja) 2017-03-09
US20160303500A1 (en) 2016-10-20
EP2980049A1 (en) 2016-02-03
US20150360162A1 (en) 2015-12-17
CN105392759B (zh) 2018-01-26
US9649587B2 (en) 2017-05-16
CN105392759A (zh) 2016-03-09
US10065141B2 (en) 2018-09-04
EP2980049A4 (en) 2016-06-08
EP2980049B1 (en) 2017-06-07
JP5751398B1 (ja) 2015-07-22

Similar Documents

Publication Publication Date Title
JP5751398B1 (ja) セラミックハニカム構造体及びその製造方法
JP6004151B1 (ja) セラミックハニカム構造体
JP5725247B2 (ja) セラミックハニカム構造体の製造方法
JP5835395B2 (ja) セラミックハニカム構造体の製造方法
JP6004150B1 (ja) セラミックハニカム構造体及びその製造方法
JP5751397B1 (ja) コーディエライト質セラミックハニカム構造体及びその製造方法
JP5724873B2 (ja) セラミックハニカム構造体及びその製造方法
WO2016152236A1 (ja) セラミックハニカム構造体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480041146.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2015507840

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847996

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14762071

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014847996

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014847996

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE