WO2016152709A1 - セラミックハニカム構造体及びその製造方法 - Google Patents

セラミックハニカム構造体及びその製造方法 Download PDF

Info

Publication number
WO2016152709A1
WO2016152709A1 PCT/JP2016/058467 JP2016058467W WO2016152709A1 WO 2016152709 A1 WO2016152709 A1 WO 2016152709A1 JP 2016058467 W JP2016058467 W JP 2016058467W WO 2016152709 A1 WO2016152709 A1 WO 2016152709A1
Authority
WO
WIPO (PCT)
Prior art keywords
pore
less
diameter
volume
mass
Prior art date
Application number
PCT/JP2016/058467
Other languages
English (en)
French (fr)
Inventor
岡崎 俊二
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US15/517,026 priority Critical patent/US10072543B2/en
Priority to KR1020177022305A priority patent/KR102439667B1/ko
Priority to EP16768612.0A priority patent/EP3275852B1/en
Priority to JP2016539338A priority patent/JP6004150B1/ja
Priority to CN201680011395.2A priority patent/CN107250083B/zh
Publication of WO2016152709A1 publication Critical patent/WO2016152709A1/ja
Priority to US15/706,794 priority patent/US10077693B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24492Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • B28B3/26Extrusion dies
    • B28B3/269For multi-channeled structures, e.g. honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/20Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2275/00Filter media structures for filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2275/30Porosity of filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3445Magnesium silicates, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0054Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity the pores being microsized or nanosized
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

 多孔質の隔壁で仕切られた多数の流路を有し、前記隔壁は、(a)気孔率が50~60%、(b)水銀圧入法で求めた細孔分布において、(i)累積細孔容積が全細孔容積の5%となる細孔径d5が22μm以上55μm未満、10%となる細孔径d10が15~35μm、50%となる細孔径d50が10~20μm、85%となる細孔径が5~9μm、90%となる細孔径d90が3~8μm、98%となる細孔径d98が2.5μm以下、(d10-d90)/d50が1.3~1.8、(d50-d90)/d50が0.45~0.75及び(d10-d50)/d50が0.75~1.1であり、(ii) 累積細孔容積が全細孔容積の20%となる細孔径の対数と80%となる細孔径の対数との差が0.39以下であるセラミックハニカム構造体及びその製造方法。

Description

セラミックハニカム構造体及びその製造方法
 本発明は、ディーゼル機関の排出ガス中に含まれる微粒子を除去するためのセラミックハニカムフィルタ、特に粒径50 nm以下の微粒子(いわゆるナノ粒子)を除去するためのセラミックハニカムフィルタに用いられるセラミックハニカム構造体に関する。
 ディーゼルエンジンの排気ガス中には、炭素質からなる煤と高沸点炭化水素成分からなるSOF分(Soluble Organic Fraction:可溶性有機成分)とを主成分とするPM(Particulate Matter:粒子状物質)が含まれており、これが大気中に放出されると人体や環境に悪影響を与えるおそれがある。このため、ディーゼルエンジンの排気管の途中に、PMを捕集するためのセラミックハニカムフィルタを装着することが従来から行われている。排気ガス中のPMを捕集し排気ガスを浄化するためのセラミックハニカムフィルタの一例を図1及び図2に示す。セラミックハニカムフィルタ10は、多数の流出側封止流路3及び流入側封止流路4を形成する多孔質隔壁2と外周壁1とからなるセラミックハニカム構造体と、流出側封止流路3及び流入側封止流路4の排気ガス流入側端面8及び排気ガス流出側端面9を市松模様に交互に封止する上流側封止部6aと下流側封止部6cとからなる。セラミックハニカムフィルタの前記外周壁1は、金属メッシュ又はセラミックス製のマット等で形成された把持部材(図示せず)で使用中に動かないように把持され、金属製収納容器(図示せず)内に配置されている。
 セラミックハニカムフィルタ10において、排気ガスは、図2に点線矢印で示すように、排気ガス流入側端面8に開口している流出側封止流路3から流入し、隔壁2を通過する。排気ガスが隔壁2を通過する際に、詳しくは隔壁2の表面及び内部に存在する互いに連通した細孔により形成される連通孔を通過する際に、排気ガス中のPMが捕集され排気ガスの浄化が行われる。浄化された排気ガスは、排気ガス流出側端面9に開口している流入側封止流路4から流出し、大気中に放出される。
 隔壁2にPMが捕集され続けると、隔壁の表面及び内部の連通孔がPMにより目詰まりしてしまい、排気ガスがセラミックハニカムフィルタを通過する際の圧力損失が上昇する。このため、圧力損失が規定値に達する前にPMを燃焼除去してセラミックハニカムフィルタを再生する必要がある。セラミックハニカムフィルタは、微粒子の高い捕集率、及び低圧力損失を満足する必要があるが、両者は相反する関係にあるため、気孔率、細孔容積、隔壁表面に存在する細孔の大きさ等を制御して両者を満足させる技術が従来から検討されている。
 さらに、近年の排出ガス規制のさらなる強化に対応するため、NOxを浄化するSCR装置及び微粒子を浄化するハニカムフィルタの両方を配置した排出ガス浄化装置の検討が行われており、ハニカムフィルタには従来以上に優れた圧力損失特性が求められている。
 PM中には、粒径50 nm以下の、いわゆるナノ粒子が数多く存在する。これらのナノ粒子は、それより大きな同質量の粒子を吸入した場合に比べて、体内に吸入した場合の呼吸器系への沈着率が高い。またナノ粒子は体積当たりの表面積が相対的に大きいため、粒子表面に毒性を有する化学物質が吸着した場合、より強い毒性を有するPM粒子となるおそれがある。PM中に含まれるナノ粒子は質量的には少ないため、現行のPM質量基準の規制では不十分であり、今後の排出ガス規制として、排出される粒子数量に大きく影響するナノ粒子の排出を抑制するための基準(粒子数基準)が設けられると予測されている。このため、ハニカムフィルタには優れた圧力損失特性に加えて、現行のPM質量基準での捕集率ではなく、PM粒子数、とりわけナノ粒子数基準での捕集率を向上させることが要求される。
 特表2005-530616号は、端部を閉塞したコーディエライト・ハニカム構造体からなり、細孔径分布から求めた値d50/(d50+d90)が0.70未満であり、式[d50/(d50+d90)]/[%多孔率/100]により定義されるすす付着時透過率因子Sfが1.55未満であり、熱膨張係数(25~800℃)が17×10-7/℃以下である、ディーゼル排気微粒子を捕捉しかつ燃焼させるセラミックフィルタを開示しており、このような細孔構造(細孔径分布及び細孔連結性)を有することにより、PMが付着している状態であっても低い圧力損失を維持することができると記載している。
 特開2002-219319号は、細孔分布を制御したコーディライトを主結晶相とする材料からなり、前記細孔分布が、細孔径10μm未満の細孔容積が全細孔容積の15%以下であり、細孔径10~50μmの細孔容積が全細孔容積の75%以上であり、細孔径50μmを超える細孔容積が全細孔容積の10%以下である多孔質ハニカムフィルタを開示しており、この多孔質ハニカムフィルタは、前記のような細孔分布を有するため、PM等の捕集効率が高く、かつ細孔の目詰まりによる圧力損失の上昇を防止することができると記載している。特開2002-219319号は、このような細孔分布は、コーディライト化原料のシリカ成分の粒径を制御するとともに、カオリンを低濃度化することにより制御できると記載している。
 特開2003-40687号は、コージェライトを主成分とし、気孔率が55~65%、平均細孔径が15~30μm、隔壁表面に開口した細孔の総面積が隔壁表面の総面積の35%以上であるハニカムセラミックス構造体を開示しており、このハニカムセラミックス構造体により、低い圧力損失と高い捕集効率を達成することができると記載している。
 しかしながら、特表2005-530616号、特開2002-219319号及び特開2003-40687号に記載された排ガス浄化フィルタのPMの捕集性能は、PMがある程度堆積することにより高くなるものの、使用開始初期のPMが堆積する前の状態(セラミックハニカムフィルタを未使用の状態から使用する時、又は再生処理した後再び使用する時)では必ずしも十分でない。特に排ガス規制の強化に伴い問題視されるようになったナノサイズのPMの捕集効率が不十分であり、有害なナノサイズのPMが捕集されずに排出されるという問題がある。
 特開2004-360654号は、隔壁の気孔率が55~75%、平均細孔径が15~40μm、隔壁表面に開口した細孔の総面積が隔壁表面の総面積の10~30%、隔壁表面に開口した細孔のうち円相当径が5~20μmである細孔が300個/mm2以上存在するセラミックハニカムフィルタを開示している。しかしながら、特開2004-360654号に記載のセラミックハニカムフィルタは、PM質量基準での捕集率改善はある程度達成されたものの、使用開始初期のPMが堆積する前の状態では、ナノ粒子を有効に捕集することが困難である。つまり、PM粒子数基準での捕集効率が低く、粒子数基準での規制をクリアできる見込みが低い。
 国際公開第2011/102487号は、(a)気孔率が55~80%、(b)水銀圧入法により測定されたメジアン細孔径d50が5~27μm、(c)表面に開口した細孔の開口面積率が20%以上、(d)表面に開口した細孔を円相当径で表した場合の面積基準でのメジアン開口径d50が10~45μm、(e)表面に開口した細孔の円相当径が10μm以上40μm未満の細孔密度が350個/mm2以上、(f)細孔分布を水銀圧入法により測定した時の細孔径に対する累積細孔容積を示す曲線の傾きの最大値が1.6以上、及び(g)前記メジアン細孔径d50とメジアン開口径d50との比D50/d50が0.65以下である隔壁を有するセラミックハニカム構造体を開示しており、このセラミックハニカム構造体からなるセラミックハニカムフィルタは、使用開始初期のPMが堆積する前の状態であっても、排出される粒子数量に大きく影響するナノ粒子を有効に捕集しPM粒子数基準での捕集率を改善するとともに、PMが捕集され蓄積した際の圧力損失特性の悪化程度が低いと記載している。
 しかしながら、国際公開第2011/102487号に記載のセラミックハニカム構造体からなるセラミックハニカムフィルタをディーゼル車の排ガスフィルタとして使用した場合、市街地等での走行及び停止が繰り返されるような走行状態では、ナノサイズのPMの捕集率が不十分となる場合があり、今後強化されるであろうPM粒子数基準での排ガス規制に対応するにはさらなる捕集率の向上が望まれている。
 特表2009-517327号は、25℃から800℃の平均CTEが9×10-7/℃以下であり、MA<2220及びMT>2660(ただし、MA=3645(IA)-106(CTE)+19(d90)+17(気孔率%)及びMT=4711(IT)+116(CTE)-26(d90)-28(気孔率%)で表され、IAはハニカムの軸断面でXRD測定したときのI比であり、ITはハニカムの隔壁表面でXRD測定したときのI比である。)を満たす機械的強度及び耐熱衝撃性が増加した多孔質コージエライトセラミックハニカム物品を開示しており、前記多孔質ハニカム物品は、40%以上54%未満の気孔率、及び10μm以上のメジアン細孔径を有するのが好ましいと記載している。
 特表2011-516371号は、異方性微細構造を有する多結晶質セラミックからなる多孔質セラミック体であって、前記異方性微細構造は、配向された多結晶質多相網様体(reticular formations)からなり、異方性因子Af-pore-longが、1.2<Af-pore-long<5である多孔質セラミック体を開示しており、狭い細孔径分布及び50%より大きい気孔率を有し、12~25μmの範囲にある任意の中央細孔径を有するセラミック物品を提供できると記載している。このセラミック物品は、高強度、低熱膨張係数(CTE)及び高気孔率を示し、自動車用基体、ディーゼル又はガソリン微粒子フィルタなどの用途、及び部分又は完全NOx添加の機能が組み込まれた触媒フィルタなどの機能性フィルタに使用できると記載している。
 国際公開第2011/027837号は、隔壁の気孔率が40~60%であり、前記隔壁表面に開口した細孔の開口面積率(隔壁表面の単位面積当たりに開口する細孔の総開口面積)が15%以上であり、前記隔壁表面に開口した細孔の開口径を、円相当径(細孔の開口面積と同等の面積を有する円の直径)で表した場合の、前記開口した細孔の面積基準でのメジアン開口径が10μm以上、40μm未満であり、前記円相当径が10μm以上、40μm未満の細孔密度が350個/mm2以上であり、前記円相当径が10μm以上、40μm未満の細孔の円形度の平均値が1~2であることを特徴とするセラミックハニカム構造体を開示している。国際公開第2011/027837号に記載のセラミックハニカム構造体は、低い圧力損失を維持しつつ、再生後の捕集開始初期のPM捕集率が改善されるので、特に排ガス規制の強化に伴い問題視されるようになったナノサイズのPMを効率よく捕集することができると記載している。
 国際公開第2007/108428号は、アルミナ源、シリカ源及びマグネシア源として、体積粒度分布における50体積%での粒度(V50)[μm]が1~25μmであるものを用いるとともに、コーディエライト化原料として、コーディエライト化原料全体の体積粒度分布における、10体積%での粒度(Vall10)[μm]に対する、90体積%での粒度(Vall90)[μm]の割合(体積粒度分布比(Vall90/Vall10))が10以下で、かつ前記90体積%での粒度(Vall90)[μm]と前記10積%での粒度(Vall10)[μm]との差(体積粒度分布幅(Vall90-Vall10))が25m以下であるものを用いるハニカム構造体の製造方法を開示しており、得られたハニカム構造体は、気孔率が高く、かつ細孔径分布がシャープであるため、排ガス用の捕集フィルタ、中でも、ディーゼルエンジンの排ガス中の粒子状物質(パティキュレート)等を捕集するディーゼルパティキュレートフィルター(DPF)として有用であると記載している。
 しかしながら、特表2009-517327号、特表2011-516371号、国際公開第2011/027837号及び国際公開第2007/108428号に記載されたハニカム物品を排ガス浄化フィルタとして使用した場合、PMの捕集性能は、PMがある程度堆積することにより高くなるものの、使用開始初期のPMが堆積する前の状態(セラミックハニカムフィルタを未使用の状態から使用する時、又は再生処理した後再び使用する時)では必ずしも十分でない。特に排ガス規制の強化に伴い問題視されるようになったナノサイズのPMの捕集効率が不十分であり、有害なナノサイズのPMが捕集されずに排出されるという問題がある。
 従って、本発明の目的は、使用開始初期のPMが堆積する前の状態であっても、排出される粒子数量に大きく影響するナノ粒子を有効に捕集しPM粒子数基準での捕集率を改善するとともに、PMが捕集され蓄積した場合であっても圧力損失特性が悪化しにくいセラミックハニカム構造体及びその製造方法を提供することにある。
 すなわち、本発明のセラミックハニカム構造体は、多孔質の隔壁で仕切られた多数の流路を有し、
前記隔壁は、
(a)気孔率が50~60%、
(b)水銀圧入法により測定された細孔分布において、
(i)累積細孔容積が全細孔容積の5%となる細孔径d5が22μm以上55μm未満、
 10%となる細孔径d10が15~35μm、
 50%となる細孔径(メジアン細孔径)d50が10~20μm、
 85%となる細孔径d85が5~9μm、
 90%となる細孔径d90が3~8μm、
 98%となる細孔径d98が2.5μm以下、
 (d10-d90)/d50が1.3~1.8、
 (d50-d90)/d50が0.45~0.75、及び
 (d10-d50)/d50が0.75~1.1であり、
(ii)累積細孔容積が全細孔容積の20%となる細孔径d20の対数と80%となる細孔径d80の対数との差σ=log(d20)-log(d80)が0.39以下であることを特徴とする。
 累積細孔容積が全細孔容積の2%となる細孔径d2は75~250μmであるのが好ましく、20μm以上の細孔容積は0.12 cm3/g以下であるのが好ましい。
 前記気孔率は52~60%であるのが好ましい。前記メジアン細孔径d50は10~18μmであるのが好ましい。前記σは0.3以下であるのが好ましい。
 前記セラミックハニカム構造体を製造する本発明の方法は、
セラミック原料及び中空の樹脂粒子からなる造孔材を含む坏土を所定の成形体に押出成形し、前記成形体を乾燥及び焼成する工程を有し、
前記坏土が、前記セラミック原料100質量%に対して3~9質量%の前記造孔材を含有し、
前記造孔材は、メジアン径D50が20~53μm、粒子径と累積体積との関係を示す曲線において、全体積の5%に相当する累積体積での粒子径D5が12~27μm、全体積の10%に相当する累積体積での粒子径D10が15~30μm、全体積の90%に相当する累積体積での粒子径D90が50~75μm、全体積の95%に相当する累積体積での粒子径D95が60~90μm、及びD50/(D90-D10)が0.85~1.30であり、
前記セラミック原料が、前記セラミック原料100質量%に対して15~25質量%のシリカ、40~43質量%のタルク及び15~30質量%のアルミナを含有し、
前記シリカは、メジアン径D50が15~30μm、D10が10~20μm、D90が40~60μm、5μm以下の粒子径を有する粒子の割合が1質量%以下、10μm以下の粒子径を有する粒子の割合が3質量%以下、100μm以上の粒子径を有する粒子の割合が3質量%以下、及び200μm以上の粒子径を有する粒子の割合が1質量%以下、粒度分布偏差SD[ただし、SD=log(D80)-log(D20)、D20は、粒子径と累積体積との関係を示す曲線において、全体積の20%に相当する累積体積での粒子径であり、D80は同じく全体積の80%に相当する累積体積での粒子径でありD20<D80である。]が0.4以下であり、
前記タルクは、メジアン径D50が5~15μm、D10が10μm以下、及びD90が25μm以上であり、
前記アルミナは、メジアン径D50が3~6μm、D90が20μm以下、及び25μm以上の粒子径を有する粒子の割合が0.4質量%以下であることを特徴とする。
 前記坏土は、前記セラミック原料100質量%に対して3.5~8質量%の前記造孔材を含有するのが好ましい。
 本発明のセラミックハニカム構造体からなるフィルタは、使用開始初期のPMが堆積する前の状態(セラミックハニカムフィルタを未使用の状態から使用する時、又は再生処理した後再び使用する時)であっても、排ガス中の粒子数量に大きく影響するナノサイズのPMを有効に捕集することができる。そのため、PM粒子数基準での捕集率が改善され、かつPMが捕集され蓄積した際の圧力損失特性が低下しないので、さらなる排出ガス規制強化への対応が可能である。
セラミックハニカムフィルタの一例を模式的に示す正面図である。 セラミックハニカムフィルタの一例を模式的に示す軸方向に平行な断面図である。 水銀圧入法によって測定した実施例1のセラミックハニカム構造体の隔壁の細孔径と累積細孔容積との関係を示すグラフである。 水銀圧入法によって測定した細孔径に対する累積細孔容積の関係から、d20を求める方法を説明するためのグラフである。
[1]セラミックハニカム構造体
 本発明のセラミックハニカム構造体は、多孔質の隔壁で仕切られた多数の流路を有し、前記隔壁は、
(a)気孔率が50~60%、(b)水銀圧入法により測定された細孔分布において、
(i)累積細孔容積が全細孔容積の5%となる細孔径d5が22μm以上55μm未満、10%となる細孔径d10が15~35μm、50%となる細孔径(メジアン細孔径)d50が10~20μm、85%となる細孔径d85が5~9μm、90%となる細孔径d90が3~8μm、98%となる細孔径d98が2.5μm以下、(d10-d90)/d50が1.3~1.8、(d50-d90)/d50が0.45~0.75、及び(d10-d50)/d50が0.75~1.1であり、
(ii)累積細孔容積が全細孔容積の20%となる細孔径d20の対数と80%となる細孔径d80の対数との差σ=log(d20)-log(d80)が0.39以下である。
 セラミックハニカム構造体がこのような構成を有することにより、使用開始初期のPMが堆積する前の状態(セラミックハニカムフィルタを未使用の状態から使用する時、又は再生処理した後再び使用する時)においても、排出される粒子数量に大きく影響する微小なPMを有効に捕集することができ、PM粒子数基準での捕集率が改善されるとともに、PMが捕集され蓄積した際の圧力損失特性の悪化程度が低減される。
(a)隔壁の気孔率
 隔壁の気孔率は50~60%である。前記気孔率が50%未満の場合、PMが捕集され蓄積した際の低い圧力損失を維持し難くなり、一方、前記気孔率が60%を超えると、ナノサイズのPM捕集率が低下する。前記気孔率は、好ましくは52~60%、さらに好ましくは54~59%である。なお隔壁の気孔率は後述の水銀圧入法で測定する。
(b)隔壁の細孔分布
(i)d2、d5、d10、d50、d85、d90及びd98
 水銀圧入法により測定された隔壁の細孔分布曲線において、累積細孔容積が全細孔容積の5%となる細孔径d5が22μm以上55μm未満、10%となる細孔径d10が15~35μm未満、50%となる細孔径(メジアン細孔径)d50が10~20μm、85%となる細孔径d85が5~9μm、90%となる細孔径d90が3~8μm、98%となる細孔径d98が2.5μm以下であり、(d10-d90)/d50は1.3~1.8、(d50-d90)/d50が0.45~0.75及び(d10-d50)/d50が0.75~1.1である。さらに累積細孔容積が全細孔容積の2%となる細孔径d2が75~250μmであるのが好ましい。ここで、水銀圧入法により測定された隔壁の細孔分布曲線とは、例えば図3に示すように、細孔径に対して累積細孔容積をプロットした曲線(累積細孔容積曲線)であり、細孔径の大きい側から小さい側に向かって積算して表したものである。なお、d2>d5>d10>d50>d85>d90>d98である。
 累積細孔容積が全細孔容積の2%となる細孔径d2は75~250μmであるのが好ましい。前記細孔径d2が75μm未満である場合、PMが捕集され蓄積した際の低い圧力損失を維持し難くなり、250μm超である場合、ナノサイズのPM捕集率が低下する場合がある。d2は好ましくは80~240μmであり、さらに好ましくは90~230μmである。
 累積細孔容積が全細孔容積の5%となる細孔径d5は22μm以上55μm未満である。前記細孔径d5が22μm未満である場合、PMが捕集され蓄積した際の低い圧力損失を維持し難くなり、55μm以上である場合、ナノサイズのPMを有効に捕集することが難しくなる。d5は好ましくは28~54μmであり、さらに好ましくは33~53μmである。
 累積細孔容積が全細孔容積の10%となる細孔径d10は15~35μmである。前記細孔径d10が15μm未満である場合、使用開始時の初期圧力損失を低く維持することが難しくなり、35μm超である場合、ナノサイズのPM捕集率が低下する。d10は好ましくは21~45μmであり、さらに好ましくは22~40μmである。
 メジアン細孔径d50は10~20μmである。前記メジアン細孔径d50が10μm未満である場合、使用開始時の初期圧力損失を低く維持することが難しくなる。一方、前記メジアン細孔径d50が20μm超の場合、PM捕集に有効な細孔径10~20μmの細孔が少なくなり、ナノサイズのPM捕集率が低下する。前記メジアン細孔径d50は、好ましくは12~18μmであり、さらに好ましくは13~16μmである。
 累積細孔容積が全細孔容積の85%となる細孔径d85は5~9μmである。前記細孔径d85が5μm未満の場合、使用開始時の初期圧力損失を低く維持することが難しくなる。d85は好ましくは5.5μm以上であり、さらに好ましくは6μm以上である。また、前記細孔径d85が9μm超の場合、ナノサイズのPM捕集率が低下する。d85は好ましくは8.5μm以下である。
 累積細孔容積が全細孔容積の90%となる細孔径d90は3~8μmである。前記細孔径d90が3μm未満の場合、使用開始時の初期圧力損失を低く維持することが難しくなる。d90は好ましくは3.5μm以上であり、さらに好ましくは4.5μm以上である。また、前記細孔径d90が8μm超の場合、ナノサイズのPM捕集率が低下する。d90は好ましくは7.5μm以下であり、さらに好ましくは7μm以下である。
 累積細孔容積が全細孔容積の98%となる細孔径d98は2.5μm以下である。前記細孔径d98が2.5μm超の場合、ナノサイズのPM捕集率が低下する。d98は好ましくは2μm以下であり、さらに好ましくは1.5μm以下である。
 (d10-d90)/d50は1.3~1.8である。(d10-d90)/d50が1.3未満の場合、PMが捕集され蓄積した際の低い圧力損失を維持し難くなり、2超の場合、使用開始時の初期圧力損失を低く維持することが難しくなる。(d10-d90)/d50は好ましくは1.35~1.7であり、さらに好ましくは1.4~1.6である。
 (d50-d90)/d50は0.45~0.75である。(d50-d90)/d50が0.45未満の場合、PMが捕集され蓄積した際の低い圧力損失を維持し難くなり、0.75超の場合、ナノサイズのPM捕集率が低下する。(d50-d90)/d50は好ましくは0.5~0.7であり、さらに好ましくは0.55~0.65であり、より好ましくは0.55~0.60である。
 (d10-d50)/d50は0.75~1.1である。(d10-d50)/d50が0.75未満の場合、PMが捕集され蓄積した際の低い圧力損失を維持し難くなり、1.1超の場合、ナノサイズのPM捕集率が低下する。(d10-d50)/d50は好ましくは0.8~1.05であり、さらに好ましくは0.85~1.0である。
(ii)d20の対数と及びd80の対数との差σ
 水銀圧入法により測定された隔壁の細孔分布曲線において、累積細孔容積が全細孔容積の20%となる細孔径d20の対数と80%となる細孔径d80の対数との差σ=log(d20)-log(d80)は0.39以下である。σが0.39超の場合、使用開始時の初期圧力損失を低く維持することが難しくなる。σは好ましくは0.3以下であり、さらに好ましくは0.25以下である。
(iii)100μm超の細孔容積及び20μm以上の細孔容積
 水銀圧入法により測定された隔壁の細孔分布曲線において、100μm超の細孔容積は0.03 cm3/g以下であるのが好ましい。100μm超の細孔容積が0.03 cm3/g超の場合、ナノサイズのPM捕集率が低下する。100μm超の細孔容積は好ましくは0.025 cm3/g以下、さらに好ましくは0.02 cm3/g以下である。なお前述した気孔率が50~60%及び累積細孔容積が全細孔容積の5%となる細孔径d5が22μm以上55μm未満という条件を満たす場合、100μm超の細孔容積が0.03 cm3/g以下という条件も必然的に満たされる。また20μm以上の細孔容積は0.12 cm3/g以下であるのが好ましい。20μm以上の細孔容積が0.12 cm3/g超の場合、ナノサイズのPMを有効に捕集することが難しくなる。20μm以上の細孔容積は好ましくは0.10 cm3/g以下、さらに好ましくは0.08 cm3/g以下である。
(iv)水銀圧入法
 水銀圧入法による累積細孔容積の測定は、Micromeritics社製のオートポアIII 9410を使用して測定することができる。この測定は、セラミックハニカム構造体から切り出した試験片(10 mm×10 mm×10 mm)を測定セル内に収納し、セル内を減圧した後、水銀を導入して加圧したときに、試験片内に存在する細孔中に押し込まれた水銀の体積を求めることによって行う。この時加圧力が大きくなればなるほど、より微細な細孔にまで水銀が浸入するので、加圧力と細孔中に押し込まれた水銀の体積との関係から、細孔径と累積細孔容積(最大の細孔径から特定の細孔径までの細孔容積を累積した値)の関係を求めることができる。水銀の浸入は細孔径の大きいものから小さいものへと順次行われ、前記圧力を細孔径に換算し、細孔径の大きい側から小さい側に向かって積算した累積細孔容積(水銀の体積に相当)を細孔径に対してプロットし、例えば、図3に示すように、細孔径と累積細孔容積との関係を示すグラフを得る。本願において、水銀を導入する圧力は0.5 psi(0.35×10-3 kg/mm2)とし、水銀の加圧力が1800 psi(1.26 kg/mm2、細孔径約0.1μmに相当)での累積細孔容積を全細孔容積とする。
 得られた水銀圧入法の測定結果から、全細孔容積、気孔率、累積細孔容積が全細孔容積の2%となる細孔径d2(μm)、5%となる細孔径d5(μm)、10%となる細孔径d10(μm)、20%となる細孔径d20(μm)、50%となる細孔径(メジアン細孔径)d50(μm)、80%となる細孔径d80(μm)、85%となる細孔径d85(μm)、90%となる細孔径d90(μm)、98%となる細孔径d98(μm)、100μm超の細孔容積、(d10-d90)/d50、(d50-d90)/d50、及び(d10-d50)/d50を求め、さらに累積細孔容積が全細孔容積の20%となる細孔径d20の対数と80%となる細孔径d80の対数との差σ=log(d20)-log(d80)を算出する。
 気孔率は、全細孔容積と、隔壁材質の真比重とから計算によって求めることができる。例えば、セラミックハニカム構造体の隔壁の材質がコーディエライトである場合は、コーディエライトの真比重2.52 g/cm3を用いて、全細孔容積をVとすると、[2.52V/(1+2.52V)]×100(%) から計算する。
(c)熱膨張係数
 セラミックハニカム構造体は、20~800℃間の流路方向(A軸)での熱膨張係数が13×10-7/℃以下であるのが好ましい。このような熱膨張係数を有するセラミックハニカム構造体は、高い耐熱衝撃性を有するので、ディーゼル機関の排出ガス中に含まれる微粒子を除去するためのセラミックハニカムフィルタとして、十分に実用に耐えることができる。前記熱膨張係数は、好ましくは3×10-7~11×10-7である。
(d)隔壁構造
 セラミックハニカム構造体は、平均隔壁厚さが9~15 mil(0.229~0.381 mm)、平均セル密度が150~300 cpsi(23.3~46.5セル/cm2)であるのが好ましい。このような隔壁構造を有することで、使用開始時において圧力損失を低く維持でき、粒子数基準でのPM捕集率を改善することができるとともに、PMが捕集され蓄積した際の圧力損失特性が改良される。平均隔壁厚さが9 mil未満の場合、隔壁の強度が低下し、一方15 milを超える場合、低い圧力損失を維持することが難しくなる。平均セル密度が150c psi未満の場合、隔壁の強度が低下し、一方、300 cpsiを超える場合、低い圧力損失を維持することが難しくなる。セルの流路方向の断面形状は、四角形、六角形等の多角形、円、楕円等のいずれでもよく、流入側端面と流出側端面とで大きさが異なる非対称形状であっても良い。
(e)隔壁の材質
 隔壁の材質としては、セラミックハニカム構造体の用途がディーゼルエンジンから排出される排気ガスを浄化するためのフィルタであることから、耐熱性を有するセラミックス、すなわちアルミナ、ムライト、コーディエライト、炭化珪素、窒化珪素、ジルコニア、チタン酸アルミニウム、リチウムアルミニウムシリケート等を主結晶とするセラミックスであるのが好ましい。中でも耐熱衝撃性に優れる低熱膨張のコーディエライト又はチタン酸アルミニウムを主結晶とするものが好ましい。主結晶相がコーディエライトである場合、スピネル、ムライト、サフィリン等の他の結晶相を含有しても良く、さらにガラス成分を含有しても良い。主結晶相がチタン酸アルミニウムである場合、チタン酸アルミニウム結晶相中にMg、Si等の元素が固溶していても良く、ムライト等の他の結晶相を含有していても良く、また粒界相としてガラス成分を含有していても良い。
[2]セラミックハニカムフィルタ
 セラミックハニカムフィルタは、本発明のセラミックハニカム構造体の流路の排気ガス流入側又は排気ガス流出側を交互に目封止してなる。本発明のセラミックハニカム構造体を使用することで、使用開始時においては、低い圧力損失を維持できるとともに粒子数基準でのPM捕集率を改善することができ、さらにPMが捕集され蓄積した際の圧力損失特性が改良されたセラミックハニカムフィルタとすることができる。ここで、流路に形成される目封止は、必ずしも流路の排気ガス流入側又は排気ガス流出側の端面部に形成する必要はなく、流入側端面又は流出側端面から流路内部に入った位置に形成してもよい。
[3]セラミックハニカム構造体の製造方法
 本発明のセラミックハニカム構造体を製造する方法は、セラミック原料及び中空の樹脂粒子からなる造孔材を含む坏土を所定の成形体に押出成形し、前記成型体を乾燥及び焼成する工程を有し、
前記坏土が、前記セラミック原料100質量%に対して3~9質量%の前記造孔材を含有し、
前記造孔材は、メジアン径D50が20~53μm、粒子径と累積体積との関係を示す曲線において、全体積の5%に相当する累積体積での粒子径D5が12~27μm、全体積の10%に相当する累積体積での粒子径D10が15~30μm、全体積の90%に相当する累積体積での粒子径D90が50~75μm、全体積の95%に相当する累積体積での粒子径D95が60~90μm、及びD50/(D90-D10)が0.85~1.30であり、
前記セラミック原料が、前記セラミック原料100質量%に対して15~25質量%のシリカ、40~43質量%のタルク及び15~30質量%のアルミナを含有し、
前記シリカは、メジアン径D50が15~30μm、D10が10~20μm、D90が40~60μm、5μm以下の粒子径を有する粒子の割合が1質量%以下、10μm以下の粒子径を有する粒子の割合が3質量%以下、100μm以上の粒子径を有する粒子の割合が3質量%以下、及び200μm以上の粒子径を有する粒子の割合が1質量%以下、粒度分布偏差SD[ただし、SD=log(D80)-log(D20)、D20は、粒子径と累積体積との関係を示す曲線において、全体積の20%に相当する累積体積での粒子径であり、D80は同じく全体積の80%に相当する累積体積での粒子径でありD20<D80である。]が0.4以下であり、
前記タルクは、メジアン径D50が5~15μm、D10が10μm以下、及びD90が25μm以上であり、
前記アルミナは、メジアン径D50が3~6μm、D90が20μm以下、及び25μm以上の粒子径を有する粒子の割合が0.4質量%以下である。
 このような方法により、(a)気孔率が50~60%、(b)水銀圧入法により測定された細孔分布において、(i)累積細孔容積が全細孔容積の2%となる細孔径d2が75~250μm、5%となる細孔径d5が22μm以上55μm未満、10%となる細孔径d10が15~35μm、50%となる細孔径(メジアン細孔径)d50が10~20μm、85%となる細孔径d85が5~9μm、90%となる細孔径d90が3~8μm、98%となる細孔径d98が2.5μm以下、(d10-d90)/d50が1.3~1.8、(d50-d90)/d50が0.45~0.75、及び(d10-d50)/d50が0.75~1.1であり、(ii)累積細孔容積が全細孔容積の20%となる細孔径d20の対数と80%となる細孔径d80の対数との差σ=log(d20)-log(d80)が0.39以下である多孔質の隔壁で仕切られた多数の流路を有する本発明のセラミックハニカム構造体を得ることができる。
 セラミックスに形成される細孔は、焼成過程においてセラミック原料の溶融によって生じる細孔と、造孔材が焼失して生じる細孔とからなる。従って、セラミック原料及び造孔材のメジアン径及び粒度分布を上述した範囲とすることにより、セラミックスが焼成された際に生じる細孔を制御することができる。
 本発明の製造方法においては、前記造孔材として中空の樹脂粒子を使用することにより、セラミック原料及び造孔材を含む成形体を焼成した時に、樹脂粒子が燃焼して空隙となるとともに、セラミック原料が焼成して細孔が形成される。本発明においては、中実樹脂粒子に比べて燃焼による発熱量が少ない中空樹脂粒子を使用することにより成形体を焼成する過程での焼成割れが発生し難くなる。このとき、セラミック原料が焼成して生じる細孔と樹脂粒子によって形成される細孔とが連通するため、隔壁表面から内部にかけての細孔の連通性が改良されるとともに、水銀圧入法で測定された隔壁の細孔径を上記の範囲とすることができる。
 このように、セラミック原料が焼成して生じる細孔と造孔材から形成される細孔とを連通性良く所定の細孔径範囲に形成することにより、ナノサイズのPM捕集率が改善されるとともに、PMが捕集され蓄積した際の圧力損失特性が改良された本発明のセラミックハニカム構造体を得ることができる。
(1)造孔材
 本発明で使用する造孔材は、中空の樹脂粒子からなり、その添加量は、セラミック原料100質量%に対して3~9質量%である。前記造孔材の添加量がこの範囲を外れると、前記細孔構造を有する隔壁が得られ難くなる。前記造孔材の添加量が3質量%未満である場合、気孔率50%以上の隔壁が得られ難くなるので、PMが捕集され蓄積した際の圧力損失特性が悪化する。造孔材の添加量が9質量%を超えると、隔壁の気孔率が60%を超える場合があり、ナノサイズのPM捕集率が低下する。前記造孔材の添加量は、好ましくは3.5~8質量%であり、さらに好ましくは4~7質量%である。
 前記造孔材粒子のメジアン径D50は20~53μmである。前記メジアン径D50が20μm未満の場合、PMが捕集され蓄積した際の低い圧力損失が維持できない。前記メジアン径D50が53μmを超えると、形成される細孔が粗大になるので、ナノサイズのPM捕集率が低下する。前記造孔材粒子のメジアン径D50は、好ましくは25~50μmであり、さらに好ましくは30~50μmである。
 前記造孔材粒子は、その粒子径と累積体積(特定の粒子径以下の粒子体積を累積した値)との関係を示す曲線において、全体積の5%に相当する累積体積での粒子径D5が12~27μm、全体積の10%に相当する累積体積での粒子径D10が15~30μm、全体積の90%に相当する累積体積での粒子径D90が50~75μm、全体積の95%に相当する累積体積での粒子径D95が60~90μm、及びD50/(D90-D10)が0.9~1.3である。前記造孔材粒子がこのような粒径分布を有するとともに、後述するセラミック原料の粒径及び粒度分布を調節することにより、前記細孔構造を有する隔壁が得られ易くなる。前記全体積の5%に相当する累積体積での粒子径D5は、好ましくは14~25μmであり、さらに好ましくは16~23μmである。前記全体積の10%に相当する累積体積での粒子径D10は、好ましくは17~28μmであり、さらに好ましくは19~26μmである。前記全体積の90%に相当する累積体積での粒子径D90は、好ましくは55~72μmであり、さらに好ましくは56~70μmであり、最も好ましくは56μm以上66μm未満である。前記全体積の95%に相当する累積体積での粒子径D95は、好ましくは65~88μmであり、さらに好ましくは67~85μmであり、最も好ましくは67~80μmである。また、D50/(D90-D10)は好ましくは、0.90~1.20であり、さらに好ましくは1.0~1.15である。なお、造孔材の粒子径は、日機装(株)製マイクロトラック粒度分布測定装置(MT3000)を用いて測定することができる。
 前記造孔材粒子の真球度は、0.5以上であるのが好ましい。前記造孔材粒子の真球度が0.5未満である場合、破壊の起点となり易い鋭角部を有する細孔が多くなりハニカム構造体の強度が低下する場合があるので好ましくない。前記造孔材粒子の真球度は、好ましくは0.7以上であり、さらに好ましくは0.8以上である。なお、造孔材粒子の真球度は、造孔材粒子の投影面積を、造孔材粒子の重心を通り粒子外周の2点を結ぶ直線の最大値を直径とする円の面積で割った値であり、電子顕微鏡写真から画像解析装置で求めることができる。
 中空の樹脂粒子としては発泡させた樹脂粒子が好ましい。造孔材粒子として用いる樹脂としては、(ポリ)メタクリル酸メチル、ポリメタクリル酸ブチル、ポリアクリル酸エステル、ポリスチレン、ポリアクリルエステル、ポリエチレン、ポリエチレンテレフタレート、メチルメタクリレート・アクリロニトリル共重合体等が好適である。中空の樹脂粒子は、外殻厚さが0.1~3μmであるのが好ましく、炭化水素等のガスを内包させているのが好ましく、前記樹脂粒子はその表面に70~95%の水分を含有するものが好ましい。真比重は0.01~0.05であるのが好ましい。
(2)セラミック原料
 セラミック原料は、前記セラミック原料100質量%に対して15~25質量%のシリカ、40~43質量%のタルク及び15~30質量%のアルミナを含有する。前記セラミック原料はコーディエライト化原料であるのが好ましい。コーディエライト化原料は、主結晶がコーディエライト(主成分の化学組成が42~56質量%のSiO2、30~45質量%のAl2O3及び12~16質量%のMgO)となるように、シリカ源成分、アルミナ源成分及びマグネシア源成分を有する各原料粉末を配合したものである。コーディエライトを主結晶とするセラミックスに形成される細孔は、セラミック原料のシリカ及びタルクが焼成されて生じる細孔と、造孔材が燃焼されて生じる細孔によるものである。従って、前述の造孔材とともに、シリカ、タルク等のセラミック原料の粒径及び粒度分布を調節することにより、コーディエライト質セラミックスが焼成された際に生じる細孔を制御することができる。中でもシリカと造孔材は、形成される細孔の大部分を占めることから、細孔構造に対する寄与が大きい。
(a)シリカ
 シリカは、他の原料に比べて高温まで安定に存在し、1300℃以上で溶融拡散し、細孔を形成することが知られている。このため、15~25質量%のシリカを含有すると、所望の量の細孔が得られる。25質量%を超えてシリカを含有させると、主結晶をコーディエライトに維持するために、他のシリカ源成分であるカオリン及び/又はタルクを低減させなければならず、その結果、カオリンによって得られる低熱膨張化の効果(押出し成形時にカオリンが配向されることで得られる効果)が低減し耐熱衝撃性が低下する。一方、15質量%未満の場合、隔壁表面に開口した細孔の数が少なくなるので、PMが捕集され蓄積した際の低い圧力損失が得られなくなる場合がある。シリカの含有量は、好ましくは17~23質量%である。
 シリカは、メジアン径D50が15~30μm、粒子径と累積体積との関係を示す曲線において、全体積の10%に相当する累積体積での粒子径D10が10~20μm、同じく全体積の90%に相当する累積体積での粒子径D90が40~60μm、5μm以下の粒子径を有する粒子の割合が1質量%以下、10μm以下の粒子径を有する粒子の割合が3質量%以下、100μm以上の粒子径を有する粒子の割合が3質量%以下、及び200μm以上の粒子径を有する粒子の割合が1質量%以下、粒度分布偏差SD[ただし、SD=log(D80)-log(D20)、D20は、粒子径と累積体積との関係を示す曲線において、全体積の20%に相当する累積体積での粒子径であり、D80は同じく全体積の80%に相当する累積体積での粒子径でありD20<D80である。]が0.4以下の粒子分布のものを使用する。このような粒子分布を有するシリカ粒子を前記造孔材と組合せて使用することにより、特定の細孔分布を有する本発明のセラミックハニカム構造体が得られる。
 シリカのメジアン径D50が15μm未満の場合、隔壁表面に開口した細孔のうち微小細孔の割合が多くなり、PMが捕集され蓄積した際に圧力損失を上昇させる原因となる。一方、30μmを超える場合、粗大細孔が多くなり、ナノサイズのPM捕集率を低下させる。シリカのメジアン径D50は、好ましくは17~28μmであり、さらに好ましくは19~26μmである。
 シリカのD10が10μm未満の場合、隔壁表面に開口した細孔のうち圧力損失特性を悪化させる微小細孔の割合が多くなるので好ましくない。一方、20μmを超える場合、ナノサイズのPM捕集率を低下させる粗大細孔の割合が多くなるので好ましくない。シリカのD10は、好ましくは12~18μmであり、さらに好ましくは13~17μmである。
 シリカのD90が40μm未満の場合、隔壁表面に開口した細孔のうち圧力損失特性を悪化させる微小細孔の割合が多くなるので好ましくない。一方、60μmを超える場合、ナノサイズのPM捕集率を低下させる粗大細孔の割合が多くなるので好ましくない。シリカのD90は、好ましくは45~55μmであり、さらに好ましくは47~53μmである。
 5μm以下の粒子径を有するシリカ粒子の割合が1質量%を超える場合や、10μm以下の粒子径を有するシリカ粒子の割合が3質量%を超える場合、隔壁表面に開口した細孔のうち微小細孔の割合が多くなり、PMが捕集され蓄積した際に圧力損失を上昇させる原因となる。粒子径5μm以下のシリカ粒子の割合は、好ましくは0.7質量%以下であり、より好ましくは0.2質量%以下であり、粒子径10μm以下のシリカ粒子の割合は、好ましくは2質量%以下である。100μm以上の粒子径を有する粒子の割合が3質量%を超える場合や、200μm以上の粒子径を有する粒子の割合が1質量%を超える場合、粗大細孔が多くなりナノサイズのPM捕集率を低下させる。粒子径100μm以上のシリカ粒子の割合は、好ましくは2質量%以下であり、粒子径200μm以上のシリカ粒子の割合は、好ましくは0.7質量%以下であり、より好ましくは0.2質量%以下である。シリカの粒度分布偏差SDは、好ましくは0.36以下であり、さらに好ましくは0.33以下である。
 前記シリカ粒子の真球度は、0.5以上であるのが好ましい。シリカ粒子の真球度が、0.5未満である場合、破壊の起点となり易い鋭角部を有する細孔が多くなりハニカム構造体の強度が低下する場合があるので好ましくない。シリカ粒子の真球度は、好ましくは0.6以上であり、さらに好ましくは0.7以上である。シリカ粒子の真球度は、シリカ粒子の投影面積を、シリカ粒子の重心を通り粒子外周の2点を結ぶ直線の最大値を直径とする円の面積で割った値であり、電子顕微鏡写真から画像解析装置で求めることができる。
 前記シリカ粒子は結晶質のもの、又は非晶質のものを用いることができるが、粒度分布を調整する観点から非晶質のものが好ましい。非晶質シリカは高純度の天然珪石を高温溶融して製造したインゴットを粉砕して得ることができる。シリカ粒子は不純物としてNa2O、K2O、CaOを含有しても良いが、熱膨張係数が大きくなるのを防止するため、前記不純物の含有量は合計で0.1%以下であるのが好ましい。
 真球度の高いシリカ粒子は、高純度の天然珪石を微粉砕し高温火炎の中に溶射することにより得られる。高温火炎の中への溶射によりシリカ粒子の溶融と球状化とを同時に行い、真球度の高い非晶質シリカを得ることができる。さらに、この球状シリカ粒子の粒度を分級等の方法により調整するのが好ましい。
(b)カオリン
 コーディエライト化原料に用いるシリカ原料としては、前記シリカ粉末に加えて、カオリン粉末を配合することができる。カオリン粉末は1~15質量%含有するのが好ましい。カオリン粉末をが15質量%を超えて含有すると、セラミックハニカム構造体の細孔分布においてd98を5μm以下に調整することが困難になる場合があり、1質量%未満の場合は、セラミックハニカム構造体の熱膨張係数が大きくなる。カオリン粉末の含有量は、さらに好ましくは4~8質量%である。
 カオリン粒子は、そのc軸が押出し成形されるハニカム構造体の長手方向と直交するように配向すれば、コーディエライト結晶のc軸がハニカム構造体の長手方向と平行となり、ハニカム構造体の熱膨張係数を小さくすることができる。カオリン粒子の配向には、その形状が大きく影響する。カオリン粒子の形状を定量的に示す指数である、カオリン粒子のへき開指数は0.80以上であるのが好ましく、0.85以上であるのがさらに好ましい。カオリン粒子のへき開指数は、特開2006-265034号に記載されているように、一定量のカオリン粒子を容器内にプレス充填し、プレスした面のX線回折測定を行い、得られた(200)面、(020)面及び(002)面の各ピーク強度I(200)、I(020)及びI(002)から、次式:
 へき開指数 = I(002)/[I(200)+I(020)+I(002)
により求めることができる。へき開係数が大きいほどカオリン粒子の配向が良好であると言える。
(c)タルク
 セラミック原料は、前記セラミック原料100質量%に対して40~43質量%のタルクを含有する。前記タルクは、メジアン径D50が5~15μm、粒子径と累積体積(特定の粒子径以下の粒子体積を累積した値)との関係を示す曲線において、全体積の10%に相当する累積体積での粒子径D10が10μm以下、及び同様に全体積の90%に相当する累積体積での粒子径D90が25μm以上である。タルクはMgOとSiO2を主成分とする化合物であり、焼成過程において周囲に存在するAl2O3成分と反応して溶融し、細孔を形成する。従って、Al2O3源原料と共に、粒子径の小さいタルクを配合することで、多数の小径細孔を隔壁中に分散させ、隔壁内の細孔の連通性を向上させることができる。タルクのメジアン径D50が5μm未満の場合、細孔の連通性が低くなり、PMが捕集され蓄積した際の圧力損失特性が低下する。一方、タルクのメジアン径D50が15μmを超える場合、粗大細孔が多くなり、ナノサイズのPM捕集率を低下させる。タルクのメジアン径D50は、好ましくは6~14μmであり、さらに好ましくは8~12μmである。
 タルクのD10は、好ましくは8μm以下であり、さらに好ましくは7μm以下である。またタルクのD90は、好ましくは25~45μmであり、さらに好ましくは25~40μm以下である。
 タルクは結晶相の主成分がコーディエライトであるセラミックハニカム構造体の熱膨張係数を低減する観点から、板状粒子であるのが好ましい。タルク粒子の平板度を示す形態係数は、0.5以上であるのが好ましく、0.6以上であるのがより好ましく、0.7以上であるのが最も好ましい。前記形態係数は、米国特許第5,141,686号に記載されているように、板状のタルク粒子をX線回折測定し、得られた(004)面の回折強度Ix、及び(020)面の回折強度Iyから次式:
 形態係数 = Ix/(Ix+2Iy)
により求めることができる。形態係数が大きいほどタルク粒子の平板度が高い。
 タルクは、不純物としてFe2O3、CaO、Na2O、K2O等を含有しても良い。Fe2O3の含有率は、所望の粒度分布を得るために、マグネシア源原料中、0.5~2.5質量%であるのが好ましく、Na2O、K2O及びCaOの含有率は、熱膨張係数を低くするという観点から、合計で0.5質量%以下であるのが好ましい。
(d)アルミナ
 セラミック原料は、セラミック原料100質量%に対して15~30質量%のアルミナを含有する。前記アルミナは、メジアン径D50が3~6μmであり、粒子径と累積体積との関係を示す曲線において、全体積の90%に相当する累積体積での粒子径D90が20μm以下であり、25μm以上の粒子径を有する粒子の割合が0.4質量%以下である。このようなメジアン径及び粒径分布を有するアルミナを配合することで、多数の小径細孔を隔壁中に分散させることができるため、隔壁内の細孔の連通性を向上させることができ、本発明のセラミックハニカム構造体が有する細孔分布の形成に貢献する。アルミナのメジアン径D50は、好ましくは3.5~6μmであり、さらに好ましくは4~5.5μmであり、D90は好ましくは1~20μmであり、さらに好ましくは5~20μmであり、25μm以上の粒子径を有する粒子の割合は、好ましくは0.2質量%以下ある。アルミナ原料としては、アルミナに加えて水酸化アルミニウムを使用するのが好ましい。アルミナ及び水酸化アルミニウム中の不純物であるNa2O、K2O及びCaOの含有量の合計は、好ましくは0.5質量%以下、より好ましくは0.3質量%以下、最も好ましくは0.1質量%以下である。
(3)製造方法
 セラミックハニカム構造体は、セラミック原料及び造孔材に、バインダー、必要に応じて分散剤、界面活性剤等の添加剤を加えて乾式で混合した後、水を加えて混練し、得られた可塑性の坏土を、公知のハニカム構造体成形用の金型から、公知の押出成形法、例えば、プランジャー式、スクリュー式等の押出成形法により押出してハニカム構造の成形体を形成し、この成形体を乾燥した後、必要に応じて端面及び外周等の加工を施し、焼成することによって製造する。
 焼成は、連続炉又はバッチ炉を用いて、昇温及び冷却の速度を調整しながら行う。セラミック原料がコーディエライト化原料である場合、1350~1450℃で1~50時間保持し、コーディエライト主結晶が十分生成した後、室温まで冷却する。前記昇温速度は、特に外径150 mm以上、及び全長150 mm以上の大型のセラミックハニカム構造体を製造する場合、焼成過程で成形体に亀裂が発生しないよう、バインダーが分解する温度範囲(例えば150~350℃)では0.2~10℃/hr、コーディエライト化反応が進行する温度域(例えば1150~1400℃)では5~20℃/hrであるのが好ましい。冷却は、特に1400~1300℃の範囲では20~40℃/hの速度で行うのが好ましい。
 得られたハニカム構造体は、公知の方法で所望の流路の端部を目封止することによりセラミックハニカムフィルタとすることができる。なお、この目封止部は、焼成前に形成してもよい。
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらに限定されるものではない。
実施例1~3及び比較例1
 表1~表5に示す粒子形状(粒径、粒度分布等)を有するシリカ粉末、タルク粉末及びアルミナ粉末、水酸化アルミニウム粉末及びカオリン粉末を、セラミックス原料の合計量が100質量部となるように表7に示す添加量で配合して、焼成後に化学組成がコーディエライトとなるコーディエライト化原料粉末を得た。
 このコーディエライト化原料粉末に対し、表6に示す粒子形状及び真比重の造孔材を表7に示す量で添加し、メチルセルロースを添加して混合した後、水を加えて混練し、可塑性のセラミック坏土を作製した。造孔材粒子の真球度は、電子顕微鏡により撮影した粒子の画像から画像解析装置で求めた、投影面積A1、及び重心を通り粒子外周の2点を結ぶ直線の最大値を直径とする円の面積A2から、式:A1/A2で算出した値であり、20個の粒子についての平均値で示した。
表1
Figure JPOXMLDOC01-appb-I000001
表1(続き)
Figure JPOXMLDOC01-appb-I000002
注(1):粒度分布偏差SD=log(D80)-log(D20)
表2
Figure JPOXMLDOC01-appb-I000003
表3
Figure JPOXMLDOC01-appb-I000004
表4
Figure JPOXMLDOC01-appb-I000005
表5
Figure JPOXMLDOC01-appb-I000006
表6
Figure JPOXMLDOC01-appb-I000007
表6(続き)
Figure JPOXMLDOC01-appb-I000008
 シリカ粉末、タルク粉末、アルミナ粉末、水酸化アルミニウム粉末、カオリン粉末及び造孔材の粒径及び粒度分布は日機装(株)製マイクロトラック粒度分布測定装置(MT3000)を用いて測定し、粒度分布からメジアン径D50、粒子径10μm以下の割合、25μm以上の割合、100μm以上の割合、D90、D80、D20、D10等を求め、D80及びD20から粒度分布偏差SDを求めた。
表7
Figure JPOXMLDOC01-appb-I000009
表7(続き)
Figure JPOXMLDOC01-appb-I000010
 得られた坏土を押出してハニカム構造の成形体を作製し、乾燥後、周縁部を除去加工し、焼成炉にて210時間のスケジュール(室温~150℃は10℃/h、150~350℃は2℃/hr、350~1150℃は20℃/h及び1150~1410℃は15℃/hrの平均速度で昇温、最高温度1410℃で25 hr保持、並びに1400~1300℃は30℃/hr、及び1300~100℃は80℃/hrの平均速度で冷却)で焼成した。焼成したセラミックハニカム体の外周に、非晶質シリカとコロイダルシリカとからなる外皮材をコーティングして乾燥させ、外径266.7 mm、全長304.8 mm、隔壁厚さ12 mil(0.30 mm)及びセル密度260 cpsi(40.3セル/cm2)を有する実施例1~3及び比較例1のセラミックハニカム構造体を得た。
 これらのセラミックハニカム構造体の流路端部に、交互に目封止されるように、コーディエライト化原料からなる目封止材スラリーを充填した後、目封止材スラリーの乾燥及び焼成を行い、実施例及び比較例の各コーディエライト質セラミックハニカムフィルタを作製した。焼成後の目封止材の長さは7~10 mmの範囲であった。各セラミックハニカムフィルタは、それぞれ同じものを2個ずつ作製した。
 得られた実施例1~3及び比較例1のセラミックハニカムフィルタの1個を用いて、下記の方法で水銀圧入法による細孔分布の測定、及び熱膨張係数の測定を行った。水銀圧入法による測定は、セラミックハニカムフィルタから切り出した試験片(10 mm×10 mm×10 mm)を、Micromeritics社製オートポアIIIの測定セル内に収納し、セル内を減圧した後、水銀を導入して加圧し、加圧時の圧力と試験片内に存在する細孔中に押し込まれた水銀の体積との関係を求めることにより行った。前記圧力を細孔径に換算し、細孔径の大きい側から小さい側に向かって積算した累積細孔容積(水銀の体積に相当)を細孔径に対してプロットし、図3に示すように、細孔径と累積細孔容積との関係を示すグラフを得た。水銀を導入する圧力は0.5 psi(0.35×10-3 kg/mm2)とし、圧力から細孔径を算出する際の常数は、接触角=130°及び表面張力=484 dyne/cmの値を使用した。そして、水銀の加圧力が1800 psi(1.26 kg/mm2、細孔径約0.1μmに相当)での累積細孔容積を全細孔容積とした。
 得られた水銀圧入法の測定結果から、全細孔容積、気孔率、累積細孔容積が全細孔容積の2%となる細孔径d2、5%となる細孔径d5、10%となる細孔径d10、20%となる細孔径d20、50%となる細孔径(メジアン細孔径)d50、80%となる細孔径d80、85%となる細孔径d85、90%となる細孔径d90、98%となる細孔径d98、100μm超の細孔容積、(d10-d90)/d50、(d50-d90)/d50、及び(d10-d50)/d50を求め、さらに累積細孔容積が全細孔容積の20%となる細孔径d20の対数と80%となる細孔径d80の対数との差σ=log(d20)-log(d80)を算出した。ここで細孔径d2、d5、d10、d50、d85、d90及びd98の値は、水銀圧入法の測定で得られた測定点のうち、各細孔径に最も近い前後の2つの測定点を内挿して求めた。例えば、d20の場合、図4に示すように、水銀圧入法の測定で得られた測定点のうち、累積細孔容積が全細孔容積の20%となる値に最も近い前後の2つの測定点A及びBを直線で結び、その直線上で累積細孔容積が全細孔容積の20%となる点における細孔径をd20とした。また気孔率は、全細孔容積の測定値から、コーディエライトの真比重を2.52 g/cm3として計算によって求めた。これらの結果を表8に示す。
表8
Figure JPOXMLDOC01-appb-I000011
表8(続き)
Figure JPOXMLDOC01-appb-I000012
表8(続き)
Figure JPOXMLDOC01-appb-I000013
表8(続き)
Figure JPOXMLDOC01-appb-I000014
 実施例1~3及び比較例1で作製したもう一つのセラミックハニカムフィルタを用いて、初期圧力損失、PM捕集後圧力損失(煤2 g/リットル捕集した時の圧力損失)及び捕集開始初期の粒子数基準でのPM捕集率を下記の方法で測定した。結果を表9に示す。
(a) 初期圧力損失
 初期圧力損失は、圧力損失テストスタンドに固定したセラミックハニカムフィルタに、空気を流量10 Nm3/minで送り込み、流入側と流出側との差圧(圧力損失)で表した。圧力損失が、
1.0 kPaを越える場合を(×)、
0.8 kPaを超え1.0 kPa以下の場合を(△)、
0.6 kPaを超え0.8 kPa以下の場合を(○)、及び
0.6 kPa以下の場合を(◎)
として初期圧力損失を評価した。
(b) PM捕集後圧力損失
 PM捕集後圧力損失は、圧力損失テストスタンドに固定したセラミックハニカムフィルタに、空気流量10 Nm3/minで、平均粒径0.11μmの燃焼煤を1.3 g/hの速度で投入し、フィルタ体積1リットルあたりの煤付着量が2 gとなった時の流入側と流出側との差圧(圧力損失)で表した。圧力損失が、
1.5 kPaを越える場合を(×)、
1.3 kPaを超え1.5 kPa以下の場合を(△)、
1.0 kPaを超え1.3 kPa以下の場合を(○)、及び
1.0 kPa以下の場合を(◎)
として煤捕集圧力損失を評価した。
(c) 捕集開始初期の粒子数基準でのPM捕集率
 捕集開始初期の粒子数基準でのPM捕集率は、圧力損失テストスタンドに固定したセラミックハニカムフィルタに、空気流量10 Nm3/minで、平均粒径0.11μmの燃焼煤を1.3 g/hの速度で投入しながら、1分毎にハニカムフィルタに流入する燃焼煤の粒子数とハニカムフィルタから流出する燃焼煤の粒子数とをSMPS(Scanning Mobility Particle Sizer)(TIS社製モデル3936)を用いて計測し、投入開始40分後から41分後までの1分間にハニカムフィルタに流入する燃焼煤の粒子数Nin、及びハニカムフィルタから流出する燃焼煤の粒子数Noutから、式:(Nin-Nout)/Ninにより求めた。PM捕集率が、
98%以上の場合を(◎)、
96%以上98%未満の場合を(○)、
95%以上96%未満の場合を(△)、及び
95%未満の場合を(×)
としてPM捕集率を評価した。
表9
Figure JPOXMLDOC01-appb-I000015
注(1):煤2 g/リットル捕集した時の圧力損失
注(2):捕集開始初期の粒子数基準でのPM捕集率
 表9より、実施例1~3の本発明のセラミックハニカムフィルタは、低い圧力損失を維持しつつ、捕集開始初期の粒子数基準でのPM捕集率が改善されていることがわかる。
 比較例1のセラミックハニカムフィルタは、メジアン径が大きく25μm以上の粒子径の割合が大きなアルミナを使用したため、累積細孔容積が全細孔容積の5%となる細孔径d5が大きく、PM捕集率が悪かった。

Claims (7)

  1.  多孔質の隔壁で仕切られた多数の流路を有するセラミックハニカム構造体であって、
    前記隔壁は、
    (a)気孔率が50~60%、
    (b)水銀圧入法により測定された細孔分布において、
    (i)累積細孔容積が全細孔容積の5%となる細孔径d5が22μm以上55μm未満、
     10%となる細孔径d10が15~35μm、
     50%となる細孔径(メジアン細孔径)d50が10~20μm、
     85%となる細孔径d85が5~9μm、
     90%となる細孔径d90が3~8μm、
     98%となる細孔径d98が2.5μm以下、
     (d10-d90)/d50が1.3~1.8、
     (d50-d90)/d50が0.45~0.75、及び
     (d10-d50)/d50が0.75~1.1であり、
    (ii)累積細孔容積が全細孔容積の20%となる細孔径d20の対数と80%となる細孔径d80の対数との差σ=log(d20)-log(d80)が0.39以下であることを特徴とするセラミックハニカム構造体。
  2.  請求項1に記載のセラミックハニカム構造体において、
    累積細孔容積が全細孔容積の2%となる細孔径d2が75~250μm、及び20μm以上の細孔容積が0.12 cm3/g以下であることを特徴とするセラミックハニカム構造体。
  3.  請求項1又は2に記載のセラミックハニカム構造体において、前記気孔率が52~60%であることを特徴とするセラミックハニカム構造体。
  4.  請求項1~3のいずれかに記載のセラミックハニカム構造体において、前記メジアン細孔径d50が10~18μmであることを特徴とするセラミックハニカム構造体。
  5.  請求項1~4のいずれかに記載のセラミックハニカム構造体において、前記σが0.3以下であることを特徴とするセラミックハニカム構造体。
  6.  セラミック原料及び中空の樹脂粒子からなる造孔材を含む坏土を所定の成形体に押出成形し、前記成形体を乾燥及び焼成する工程を有するセラミックハニカム構造体の製造方法であって、
    前記坏土が、前記セラミック原料100質量%に対して3~9質量%の前記造孔材を含有し、
    前記造孔材は、メジアン径D50が20~53μm、粒子径と累積体積との関係を示す曲線において、全体積の5%に相当する累積体積での粒子径D5が12~27μm、全体積の10%に相当する累積体積での粒子径D10が15~30μm、全体積の90%に相当する累積体積での粒子径D90が50~75μm、全体積の95%に相当する累積体積での粒子径D95が60~90μm、及びD50/(D90-D10)が0.85~1.30であり、
    前記セラミック原料が、前記セラミック原料100質量%に対して15~25質量%のシリカ、40~43質量%のタルク及び15~30質量%のアルミナを含有し、
    前記シリカは、メジアン径D50が15~30μm、D10が10~20μm、D90が40~60μm、5μm以下の粒子径を有する粒子の割合が1質量%以下、10μm以下の粒子径を有する粒子の割合が3質量%以下、100μm以上の粒子径を有する粒子の割合が3質量%以下、及び200μm以上の粒子径を有する粒子の割合が1質量%以下、粒度分布偏差SD[ただし、SD=log(D80)-log(D20)、D20は、粒子径と累積体積との関係を示す曲線において、全体積の20%に相当する累積体積での粒子径であり、D80は同じく全体積の80%に相当する累積体積での粒子径でありD20<D80である。]が0.4以下であり、
    前記タルクは、メジアン径D50が5~15μm、D10が10μm以下、及びD90が25μm以上であり、
    前記アルミナは、メジアン径D50が3~6μm、D90が20μm以下、及び25μm以上の粒子径を有する粒子の割合が0.4質量%以下であることを特徴とするセラミックハニカム構造体の製造方法。
  7.  請求項6に記載のセラミックハニカム構造体の製造方法において、前記坏土が、前記セラミック原料100質量%に対して3.5~8質量%の前記造孔材を含有することを特徴とするセラミックハニカム構造体の製造方法。
PCT/JP2016/058467 2015-03-24 2016-03-17 セラミックハニカム構造体及びその製造方法 WO2016152709A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/517,026 US10072543B2 (en) 2015-03-24 2016-03-17 Ceramic honeycomb structure and its production method
KR1020177022305A KR102439667B1 (ko) 2015-03-24 2016-03-17 세라믹 허니컴 구조체 및 그의 제조 방법
EP16768612.0A EP3275852B1 (en) 2015-03-24 2016-03-17 Ceramic honeycomb structure and method for producing same
JP2016539338A JP6004150B1 (ja) 2015-03-24 2016-03-17 セラミックハニカム構造体及びその製造方法
CN201680011395.2A CN107250083B (zh) 2015-03-24 2016-03-17 陶瓷蜂窝结构体及其制造方法
US15/706,794 US10077693B2 (en) 2015-03-24 2017-09-18 Ceramic honeycomb structure and its production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015061265 2015-03-24
JP2015-061265 2015-03-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/517,026 A-371-Of-International US10072543B2 (en) 2015-03-24 2016-03-17 Ceramic honeycomb structure and its production method
US15/706,794 Division US10077693B2 (en) 2015-03-24 2017-09-18 Ceramic honeycomb structure and its production method

Publications (1)

Publication Number Publication Date
WO2016152709A1 true WO2016152709A1 (ja) 2016-09-29

Family

ID=56978675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058467 WO2016152709A1 (ja) 2015-03-24 2016-03-17 セラミックハニカム構造体及びその製造方法

Country Status (6)

Country Link
US (2) US10072543B2 (ja)
EP (1) EP3275852B1 (ja)
JP (1) JP6004150B1 (ja)
KR (1) KR102439667B1 (ja)
CN (1) CN107250083B (ja)
WO (1) WO2016152709A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189889A1 (ja) 2018-03-29 2019-10-03 日立金属株式会社 セラミックハニカムフィルタ
JP2020164408A (ja) * 2019-03-28 2020-10-08 日本碍子株式会社 セラミックス多孔体及びその製造方法、並びに集塵用フィルタ

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111886067B (zh) * 2018-03-30 2022-09-09 日本碍子株式会社 膜过滤器用基材及其制造方法
CN109296354A (zh) * 2018-10-18 2019-02-01 中国石油化工股份有限公司 地层砂粒径参数计算方法及系统
JP7097327B2 (ja) * 2019-04-26 2022-07-07 株式会社Soken 排ガス浄化フィルタ
JP7274395B2 (ja) * 2019-10-11 2023-05-16 日本碍子株式会社 ハニカム構造体
JP7449721B2 (ja) * 2020-03-02 2024-03-14 日本碍子株式会社 ハニカムフィルタ
JP7353218B2 (ja) * 2020-03-02 2023-09-29 日本碍子株式会社 ハニカムフィルタ
CN113731062A (zh) * 2021-09-16 2021-12-03 上海洁昊环保股份有限公司 一种透壁式滤芯及除尘装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129015A (ja) * 1984-11-24 1986-06-17 Nippon Denso Co Ltd 排出ガス浄化用フイルタおよびその製造方法
WO2011027837A1 (ja) * 2009-09-04 2011-03-10 日立金属株式会社 セラミックハニカム構造体及びその製造方法
WO2011102487A1 (ja) * 2010-02-22 2011-08-25 日立金属株式会社 セラミックハニカム構造体及びその製造方法
WO2014163036A1 (ja) * 2013-04-02 2014-10-09 日立金属株式会社 セラミックハニカム構造体及びその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040687A (ja) 2000-06-30 2003-02-13 Ngk Insulators Ltd ハニカムセラミックス構造体とその製造方法
JP4094830B2 (ja) * 2000-11-24 2008-06-04 日本碍子株式会社 多孔質ハニカムフィルター及びその製造方法
US6827754B2 (en) * 2001-09-13 2004-12-07 Hitachi Metals, Ltd. Ceramic honeycomb filter
EP1316686B1 (en) * 2001-12-03 2007-09-05 Hitachi Metals, Ltd. Ceramic honeycomb filter
EP1515787A4 (en) 2002-06-26 2006-11-29 Corning Inc ALUMINUM AND MAGNESIUM SILICATE TYPE STRUCTURES FOR DPF APPLICATIONS
JP4750343B2 (ja) * 2002-10-23 2011-08-17 日本碍子株式会社 多孔質ハニカム構造体の製造方法、及びハニカム成形体
JP4577752B2 (ja) 2003-06-06 2010-11-10 日立金属株式会社 セラミックハニカムフィルタ
US7520911B2 (en) 2005-11-30 2009-04-21 Corning Incorporated Porous cordierite ceramic honeycomb article with improved strength and method of manufacturing same
EP1997788B1 (en) 2006-03-17 2012-11-28 NGK Insulators, Ltd. Process for producing a cordierite-based honeycomb structure
US7648548B2 (en) 2006-05-10 2010-01-19 Corning Incorporated High porosity cordierite composition
JP5402638B2 (ja) * 2007-10-12 2014-01-29 日立金属株式会社 コージェライト質セラミックハニカムフィルタ及びその製造方法
US8119234B2 (en) 2008-02-29 2012-02-21 Corning Incorporated Anisotropic porous ceramic article and manufacture thereof
CN102007088B (zh) 2008-02-29 2014-12-10 康宁股份有限公司 稳定化的低微裂纹陶瓷蜂窝体及其方法
EP2254678B1 (en) * 2008-02-29 2018-03-21 Corning Incorporated Honeycomb manufacturing method using ground nut shells
JP5464142B2 (ja) * 2008-07-28 2014-04-09 日立金属株式会社 セラミックハニカム構造体及びその製造方法
JP5486539B2 (ja) * 2011-03-30 2014-05-07 日本碍子株式会社 ハニカム構造体及びその製造方法
US9649587B2 (en) * 2013-09-24 2017-05-16 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129015A (ja) * 1984-11-24 1986-06-17 Nippon Denso Co Ltd 排出ガス浄化用フイルタおよびその製造方法
WO2011027837A1 (ja) * 2009-09-04 2011-03-10 日立金属株式会社 セラミックハニカム構造体及びその製造方法
WO2011102487A1 (ja) * 2010-02-22 2011-08-25 日立金属株式会社 セラミックハニカム構造体及びその製造方法
WO2014163036A1 (ja) * 2013-04-02 2014-10-09 日立金属株式会社 セラミックハニカム構造体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3275852A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189889A1 (ja) 2018-03-29 2019-10-03 日立金属株式会社 セラミックハニカムフィルタ
JPWO2019189889A1 (ja) * 2018-03-29 2021-05-13 日立金属株式会社 セラミックハニカムフィルタ
US11383190B2 (en) 2018-03-29 2022-07-12 Hitachi Metals, Ltd. Ceramic honeycomb filter
JP7180669B2 (ja) 2018-03-29 2022-11-30 日立金属株式会社 セラミックハニカムフィルタ
JP2020164408A (ja) * 2019-03-28 2020-10-08 日本碍子株式会社 セラミックス多孔体及びその製造方法、並びに集塵用フィルタ
JP7289813B2 (ja) 2019-03-28 2023-06-12 日本碍子株式会社 セラミックス多孔体及びその製造方法、並びに集塵用フィルタ

Also Published As

Publication number Publication date
US20180016955A1 (en) 2018-01-18
EP3275852B1 (en) 2022-01-12
CN107250083A (zh) 2017-10-13
US20170298794A1 (en) 2017-10-19
EP3275852A4 (en) 2018-11-21
EP3275852A1 (en) 2018-01-31
US10077693B2 (en) 2018-09-18
KR102439667B1 (ko) 2022-09-01
KR20170129694A (ko) 2017-11-27
JP6004150B1 (ja) 2016-10-05
US10072543B2 (en) 2018-09-11
CN107250083B (zh) 2020-10-16
JPWO2016152709A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6004151B1 (ja) セラミックハニカム構造体
JP5751398B1 (ja) セラミックハニカム構造体及びその製造方法
JP5725247B2 (ja) セラミックハニカム構造体の製造方法
JP6004150B1 (ja) セラミックハニカム構造体及びその製造方法
JP5835395B2 (ja) セラミックハニカム構造体の製造方法
JP5751397B1 (ja) コーディエライト質セラミックハニカム構造体及びその製造方法
WO2021075211A1 (ja) セラミックハニカム構造体及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016539338

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768612

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15517026

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177022305

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016768612

Country of ref document: EP