WO2011101973A1 - 車両用シフト制御装置 - Google Patents

車両用シフト制御装置 Download PDF

Info

Publication number
WO2011101973A1
WO2011101973A1 PCT/JP2010/052472 JP2010052472W WO2011101973A1 WO 2011101973 A1 WO2011101973 A1 WO 2011101973A1 JP 2010052472 W JP2010052472 W JP 2010052472W WO 2011101973 A1 WO2011101973 A1 WO 2011101973A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
supply voltage
actuator
drive motor
vehicle
Prior art date
Application number
PCT/JP2010/052472
Other languages
English (en)
French (fr)
Inventor
金井 理
貴彦 堤
一郎 北折
俊成 鈴木
遠藤 弘淳
弘記 上野
圭介 関谷
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to DE112010005287.5T priority Critical patent/DE112010005287B4/de
Priority to CN201080066228.0A priority patent/CN102859239B/zh
Priority to JP2012500426A priority patent/JP5321728B2/ja
Priority to PCT/JP2010/052472 priority patent/WO2011101973A1/ja
Publication of WO2011101973A1 publication Critical patent/WO2011101973A1/ja
Priority to US13/585,054 priority patent/US8734295B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/34Locking or disabling mechanisms
    • F16H63/3416Parking lock mechanisms or brakes in the transmission
    • F16H63/3458Parking lock mechanisms or brakes in the transmission with electric actuating means, e.g. shift by wire
    • F16H63/3466Parking lock mechanisms or brakes in the transmission with electric actuating means, e.g. shift by wire using electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/34Locking or disabling mechanisms
    • F16H63/3416Parking lock mechanisms or brakes in the transmission
    • F16H63/3491Emergency release or engagement of parking locks or brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/48Signals to a parking brake or parking lock; Control of parking locks or brakes being part of the transmission
    • F16H63/483Circuits for controlling engagement of parking locks or brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/1288Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is an actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/1292Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is the power supply, e.g. the electric power supply

Definitions

  • the present invention relates to processing at the time of failure in a shift-by-wire system.
  • a vehicle shift control device that employs a so-called shift-by-wire (SBW) system that electrically switches a shift position related to running of a vehicle by operating an electric actuator such as an electric motor is well known.
  • SBW shift-by-wire
  • the SBW control device included in the shift range switching device disclosed in Patent Document 1 is this.
  • the SBW control device when its power supply is momentarily interrupted and restarted after the instantaneous interruption, the actuator is not driven before the instantaneous interruption and the electric motor stored before the instantaneous interruption is stored. If the storage of the output shaft position (output shaft rotation angle) of the actuator is maintained, the output shaft position after the restart is recognized as the output shaft position stored before the instantaneous interruption.
  • the vehicle may be in a fail state where the electric actuator cannot operate.
  • a failure state may be caused by a failure of the electric actuator itself or a case where the supply voltage to the electric actuator is lowered and falls below a lower limit voltage at which the electric actuator can be driven.
  • the SBW control device determines that the electric actuator is inoperable after the activation, the electric actuator is not operated after the determination, so that the electric actuator is not operated.
  • Perform fail-safe processing For example, in the fail-safe process, it is not allowed to make a transition to a state where the vehicle can travel.
  • the supply voltage recovers to the upper limit voltage or more, thereby The electric actuator may become operable.
  • the electric actuator becomes operable due to the recovery of the supply voltage, it recognizes that the electric actuator has become operable, cancels the fail-safe process, and operates the electric actuator.
  • it is appropriate to perform normal control assuming that it is possible, such a situation has not been made, and it has been determined that the electric actuator is inoperable. Such a problem is not yet known.
  • the present invention has been made against the background of the above circumstances, and its object is to consider the case where the electric actuator becomes operable after it is determined that the electric actuator is inoperable.
  • An object of the present invention is to provide a vehicle shift control device that can perform appropriate processing.
  • the gist of the present invention is that: (a) by driving an electric actuator, a lock position that restricts the rotation of the wheel and a non-lock position that does not restrict the rotation of the wheel are selectively used; A vehicle shift control device for performing a fail state determination for determining whether or not the actuator is operable in a vehicle having a parking lock device to be switched, wherein (b) the actuator operates according to the fail state determination. After determining that it is impossible, if the supply voltage to the actuator becomes less than a predetermined supply voltage determination value to be equal to or higher than the supply voltage determination value, driving of the actuator is permitted.
  • the appropriate processing includes controlling the actuator in a normal state on the assumption that the actuator is operable when the actuator is operable.
  • improper processing means that when the actuator is operable, it recognizes that the actuator is inoperable and does not operate the actuator.
  • the supply voltage determination value is a lower limit value of the supply voltage of the actuator. In this way, when it is determined that the actuator cannot be operated, it can be more appropriately determined that the cause is due to the decrease in the supply voltage.
  • the supply voltage to the actuator becomes less than the supply voltage determination value to be equal to or higher than the supply voltage determination value.
  • the fail state determination is performed again, and the actuator is allowed to be driven only when it is determined that the actuator is operable in the second fail state determination. In this way, it is possible to permit the actuator to be driven after reliably recognizing that the actuator has become operable due to the recovery of the supply voltage to the actuator.
  • the supply voltage to the actuator becomes less than the supply voltage determination value to be equal to or higher than the supply voltage determination value.
  • the actuator is allowed to be driven on condition that an operation by a predetermined passenger is performed after the supply voltage becomes equal to or higher than the supply voltage determination value. In this way, even if the actuator is driven, it is after the operation by the occupant, so that, for example, when the occupant recognizes that the actuator is inoperable, the occupant is prevented from feeling uncomfortable. it can.
  • the predetermined operation by the occupant is an operation of switching the vehicle to a state capable of traveling.
  • the operation for switching the vehicle to a state in which the vehicle can run is an operation necessary for starting the vehicle traveling, no special operation by the occupant is required when permitting driving of the actuator.
  • the actuator when it is determined in the fail state determination that the actuator is inoperable, the actuator is prohibited from being driven, and (b) the actuator is prohibited from being driven. Is permitted after the prohibition is lifted. This avoids trying to drive the actuator when the actuator is inoperable. Further, it is possible to avoid the complication of prohibiting and permitting the driving of the actuator.
  • the vehicle includes a vehicle power transmission device in a power transmission path from a power source to a drive wheel, for example.
  • a power source for example, a gasoline engine such as an internal combustion engine that generates power by combustion of fuel, a diesel engine, or the like is preferably used.
  • other prime movers such as an electric motor may be employed alone or in combination with the engine. it can. That is, for example, the vehicle is powered by an engine-driven vehicle that uses only the engine as a power source, an electric vehicle that uses only the motor as a power source, a hybrid vehicle that uses both the engine and the motor as power sources, and a prime mover other than the engine and motor.
  • the vehicle includes a vehicle provided as a source, or a vehicle including three or more prime movers.
  • the vehicle power transmission device includes, for example, a transmission alone, a torque converter, a transmission having a plurality of transmission ratios, or a reduction mechanism section and a differential mechanism section in addition to the transmission.
  • the transmission includes a reduction gear such as a planetary gear device to which the electric motor is connected in the electric vehicle, and a plurality of gear stages by selectively connecting rotation elements of a plurality of sets of planetary gear devices by an engagement device.
  • (Speed stage) can be achieved alternatively, for example, various planetary gear type automatic transmissions having four forward speeds, five forward speeds, six forward speeds, and more, etc.
  • a synchronous mesh type parallel two-shaft automatic transmission capable of automatically switching gears by a synchronizer, a transmission belt functioning as a power transmission member is wound around a pair of variable pulleys having variable effective diameters
  • a so-called belt-type continuously variable transmission in which the gear ratio is continuously changed steplessly, a pair of cones rotated around a common shaft center, and a plurality of rollers that can rotate around the shaft center and rotate around the shaft center.
  • a so-called traction type continuously variable transmission in which the transmission ratio is variable by changing the crossing angle between the rotation center of the roller and the shaft center by being pinched between a pair of cones.
  • a differential mechanism constituted by, for example, a planetary gear device that distributes to the output shaft, and a second electric motor provided on the output shaft of the differential mechanism. Electricity that changes the gear ratio electrically by mechanically transmitting the main part to the drive wheel side and electrically transmitting the remaining power from the engine using the electric path from the first motor to the second motor.
  • Continuously variable transmission Automatic transmission which functions as, or composed of an automatic transmission capable of transmitting power to the electric motor is mounted on a so-called parallel hybrid vehicle provided in such an engine shaft and the output shaft.
  • the parking lock device is in a locked state by meshing a lock tooth with a rotating tooth that rotates together with the wheel at the locked position, and the unlocked state in which the locked state is released at the unlocked position. It becomes.
  • the said rotation tooth is fixed to the output rotation member of the transmission connected with the said wheel, for example, it can also be fixed to the other rotation member of the direct connection range with respect to the wheel.
  • FIG. 1 is a diagram for explaining a schematic configuration of a power transmission path from an engine to a drive wheel constituting a vehicle to which the present invention is applied, and also shows a main part of a control system provided in the vehicle for controlling a parking lock device and the like. It is a block diagram to explain. It is a figure which shows an example of the shift operation apparatus as a switching apparatus (operation apparatus) which switches a multiple types of shift position by manual operation in the transmission with which the vehicle of FIG. 1 is equipped.
  • FIG. 2 is a diagram illustrating a configuration of a parking lock device that mechanically blocks rotation of drive wheels in the vehicle of FIG. 1. It is a figure explaining the structure of the detent plate with which the parking lock apparatus of FIG. 3 is provided. In the parking lock device of FIG.
  • FIG. 3 it is a figure explaining the correspondence of the rotation amount of the P lock drive motor with which the parking lock device is equipped, ie, an encoder count, and a shift position.
  • FIG. 2 is a diagram for explaining a control method for detecting a P wall position in P wall position detection control executed by a P-ECU of FIG. 1;
  • FIG. 2 is a diagram for explaining a control method for detecting a P wall position in P wall position detection control executed by a P-ECU of FIG. 1;
  • FIG. 7 is a diagram for explaining a control method for detecting a non-P wall position in the non-P wall position detection control executed by the P-ECU of FIG. 1.
  • FIG. 4 is a diagram for explaining a waveform of an energization command pulse applied to an actuator (P lock drive motor) included in the parking lock device in the parking lock device of FIG. 3.
  • P lock drive motor an actuator included in the parking lock device in the parking lock device of FIG. 3.
  • FIG. 2 is a functional block diagram illustrating a main part of a control function provided in the shift control device (P-ECU) of FIG.
  • FIG. 12 is a flowchart for explaining a main part of a control operation of the P-ECU of FIG. 11, that is, a control operation for prohibiting or permitting the driving of the P lock drive motor.
  • FIG. 12 is a diagram illustrating how the P-ECU of FIG. 11 is activated.
  • FIG. 13 is a flowchart for explaining a main part of a control operation of a P-ECU in the prior art for comparison with the control operation described in the flowchart of FIG. 12.
  • FIG. 1 is a diagram illustrating a schematic configuration of a power transmission path from an engine 12 to a drive wheel 14 constituting a vehicle 10 to which the present invention is applied, and also for the vehicle 10 to control a parking lock device 16 and the like. It is a block diagram explaining the principal part of the provided control system.
  • a vehicle 10 includes a parking lock device 16, a transmission 18, a shift operation device 30, and the like, and electrically shifts a shift position related to travel of the vehicle 10, that is, a shift position (shift range) of the transmission 18.
  • the by-wire (SBW) method is adopted.
  • the transmission 18 is preferably used in, for example, an FF (front engine / front drive) type vehicle that is placed horizontally in the vehicle 10, and uses the power of the engine 12 that is an internal combustion engine as a driving power source for traveling. From an output gear 22 as an output rotating member of the transmission 18 constituting one of the counter gear pair 20, a counter gear pair 20, a final gear pair 24, a differential gear device (differential gear) 26 as a power transmission device, and a pair Are transmitted to the pair of driving wheels 14 sequentially through the axles (drive shaft (D / S)) 28 and the like.
  • the transmission 18, the counter gear pair 20, the final gear pair 24, the differential gear device (differential gear) 26, and the like constitute a transaxle (T / A).
  • the vehicle to which the present invention is applied adopts a shift-by-wire system.
  • any type of vehicle such as a normal engine vehicle, a hybrid vehicle, an electric vehicle, or a fuel cell vehicle may be used.
  • the vehicle 10 is provided with an electronic control device 100 including a vehicle shift control device for controlling the operating state of the parking lock device 16 and the like.
  • the electronic control device 100 includes, for example, a so-called microcomputer having a CPU, a RAM, a ROM, an input / output interface, and the like, and the CPU uses a temporary storage function of the RAM according to a program stored in the ROM in advance.
  • hybrid drive control such as output control of the engine 12 and drive control of the motor M, shift control of the transmission 18, shift position switching control of the transmission 18 using a shift-by-wire system, parking lock device 16 operation state switching control and the like are executed.
  • the operation position (operation position) P SH of the shift lever 32 is detected according to the operation position P SH from the shift sensor 36 and the select sensor 38 (see FIG. 2) that are position sensors.
  • the electronic control unit 100 receives, for example, an engine output control command signal for output control of the engine 12, a motor control command signal for drive control of the electric motor M in the transmission 18, and a shift control of the transmission 18.
  • Hybrid control command signal such as a shift control command signal, a shift position switching control command signal for switching the shift position of the transmission 18, and a well-known combination meter as a display device for clearly indicating to the user vehicle information related to vehicle travel
  • a vehicle speed display control command signal for displaying the current vehicle speed V by operating a speedometer 58 provided in 56, and a shift position indicator (shift position display device) 60 provided in the combination meter 56 are operated.
  • the P position indicator lamp 62 serving as a lock display lamp for indicating that the shift position is in the P position by lighting, the P position indicator control command signal, during the operation of the P lock (parking lock state, P lock state)
  • a parking lock display control command signal (P lock display control command signal) for displaying the P lock state, a P switching control command signal for switching control of the parking lock device 16, and the like are output.
  • the P position indicator lamp 62 is a display lamp that is operated without being interlocked with the operation (lighting / extinguishing) of the combination meter 56, and is provided in the P switch 34, for example.
  • the electronic control unit 100 includes a power control and hybrid control computer (hereinafter referred to as “PM-HV-ECU”) 104, a parking control computer (hereinafter referred to as “P-ECU”) 106, A meter control computer (hereinafter, referred to as “meter ECU”) 108 is provided.
  • the P-ECU 106 corresponds to the vehicle shift control device of the present invention.
  • PM-HV-ECU 104 switches the power supply switching state of vehicle 10 based on, for example, a power switch signal from vehicle power switch 40 operated by the user.
  • the power supply switching state of the vehicle 10 is, for example, a power off state (ALL-OFF state, IG / ACC-OFF state) for disabling vehicle travel, or vehicle travel impossibility.
  • Partial power-on state (ACC-ON state, IG-OFF state) so that only a part of the functions of the vehicle 10 can be operated with the combination meter 56 turned off, and the power source for driving the vehicle by turning on the combination meter 56 Is turned on (IG-ON state) and the vehicle can be controlled by a hybrid control command signal related to vehicle running, and the vehicle 10 can start and run when the accelerator is turned on. Transition to either (READY-ON state) is possible.
  • Making only a part of the functions of the vehicle 10 operable is, for example, energization for enabling operation of the navigation system or the audio system 64, or energization of a battery power outlet socket (not shown).
  • the IG-ON state is the power-on state, but other functions can be controlled other than controlling the vehicle running by the hybrid control command signal (for example, a state where the shift position of the transmission 18 can be switched and controlled) In other words, the engine 12 does not start and the electric motor M cannot be driven, that is, the vehicle 10 cannot start or run even when the accelerator is on.
  • the initial of the P-ECU 106 itself executed prior to switching to the READY-ON state The condition is that no failure occurs in the process (initial process) or the initial drive control in the parking lock device 16. That is, even if the vehicle power switch 40 that switches to the READY-ON state is operated, if such a failure occurs, the vehicle switches to the other switching state such as the IG-ON state without switching to the READY-ON state. .
  • the PM-HV-ECU 104 detects the input of the power switch signal in the brake-on state B ON when in the P position, the power supply switching state of the vehicle 10 is changed to the READY-ON state from any state. Switch to. Further, when the PM-HV-ECU 104 is in the P position and the vehicle speed V is less than the predetermined stop vehicle speed V ′ in the IG-ON state or the READY-ON state and the input of the power switch signal is detected, Switch the power supply switching state to the ALL-OFF state.
  • the PM-HV-ECU 104 detects the input of the power switch signal in the P position when the brake on state B is not ON , the power supply switching state of the vehicle 10 is changed from the ALL-OFF state to the ACC-ON. It changes every time the power switch signal is input in the order of state ⁇ IG-ON state ⁇ ALL-OFF state ⁇ . Further, when the PM-HV-ECU 104 is in the non-P position and the vehicle speed V is less than the predetermined stop vehicle speed V ′ in the IG-ON state and the input of the power switch signal is detected, the PM-HV-ECU 104 operates the parking lock device 16.
  • an automatic P lock switching request signal for automatically setting the shift position to the P position is output to the P-ECU 106, and after the P position is determined, the power supply switching state of the vehicle 10 is switched to the ALL-OFF state (this A series of operations is called "auto P operation").
  • the predetermined stop vehicle speed V ′ is, for example, a vehicle stop determination vehicle speed that is experimentally obtained and stored in advance for determining that the vehicle is in a stopped state.
  • the PM-HV-ECU 104 controls, for example, the operation of the transmission 18 in an integrated manner. For example, when the PM-HV-ECU 104 switches the power supply switching state of the vehicle 10 to the READY-ON state, the PM-HV-ECU 104 activates a hybrid system for enabling the vehicle to travel and issues a hybrid control command relating to the vehicle traveling to the engine 12. , Output to the motor M and the transmission 18 to control the vehicle travel. Moreover, PM-HV-ECU 104 switches the shift position of the shift position switching control command based on the shift lever position signal corresponding to the operation position P SH of the shift sensor 36 and the select sensor 38 and outputs to the transmission 18.
  • the PM-HV-ECU 104 is for switching the shift position of the transmission 18 from the P position to the non-P position based on the shift lever position signal.
  • a P release switching request signal is output to the P-ECU 106.
  • PM-HV-ECU 104 also outputs a P lock switching request signal for switching the shift position of transmission 18 from the non-P position to the P position based on a P switch signal from P switch 34 to P-ECU 106.
  • PM-HV-ECU 104 also outputs a shift position display signal for displaying the shift position state to meter ECU 108.
  • the PM-HV-ECU 104 displays a parking lock display control command signal (P) for displaying the P lock state (P position) based on the P lock state signal indicating the P position from the P-ECU 106.
  • P lock display control command signal is output to the P switch 34, and the P position indicator lamp 62 in the P switch 34 is lit to clearly indicate that the P lock state is established.
  • the power storage device 46 is a DC power source that can be charged and discharged, and is composed of, for example, a secondary battery such as nickel metal hydride or lithium ion.
  • a secondary battery such as nickel metal hydride or lithium ion.
  • the stored electric power is supplied to the electric motor M through the inverter 48.
  • the electric power generated by the electric motor M is stored in the power storage device 46 through the inverter 48.
  • the P-ECU 106 shifts the shift position between a P position and a non-P position based on, for example, an auto P lock switch request signal or a P switch request signal (P lock switch request signal, P release switch request signal) from the PM-HV-ECU 104. In order to switch between them, the driving of the parking lock device 16 is controlled to activate or release the parking lock. Further, the P-ECU 106 determines whether the shift position of the transmission 18 is the P position or the non-P position based on the P position signal indicating the parking lock operating state from the parking lock device 16 and the determination. The result is output to the PM-HV-ECU 104 or the like as a P lock state signal.
  • P lock switch request signal P release switch request signal
  • the P-ECU 106 when the power supply switching state of the vehicle 10 is switched from the ALL-OFF state or the ACC-ON state to the IG-ON state or the READY-ON state, the P-ECU 106, as will be described later, The initial drive control at 16 is executed, and the detection control of the P wall position and the non-P wall position for appropriately obtaining the P position signal and the non-P position signal is executed. Further, the P-ECU 106 performs a series of initial control in the parking lock device 16 when the power supply switching state of the vehicle 10 is switched from the ALL-OFF state or the ACC-ON state to the IG-ON state or the READY-ON state. Is executed, the initial process (initial process) of the P-ECU 106 itself is executed.
  • the P-ECU 106 is not activated when the power supply switching state of the vehicle 10 is the ALL-OFF state or the ACC-ON state, while the power supply switching state of the vehicle 10 is IG. If it is in the -ON state or READY-ON state, it is activated.
  • the non-activated state of the P-ECU 106 is, for example, a state where the power source of the P-ECU 106 is cut off, and the activated state of the P-ECU 106 is a state where the power source of the P-ECU 106 is turned on.
  • the meter ECU 108 outputs a vehicle speed display control command signal for displaying the current vehicle speed V to the speedometer 58 in the combination meter 56 and displays the current vehicle speed V.
  • the meter ECU 108 determines the meter display vehicle speed signal V by counting (counting) a rectangular waveform of the vehicle speed pulse signal based on the wheel speed pulse signal output from the wheel speed sensor 42. Then, the meter ECU 108 operates the speedometer 58 based on the determined meter display vehicle speed signal V to turn on the corresponding segment and display the current vehicle speed V.
  • the meter ECU 108 also outputs a shift position display control command signal for displaying the shift position state based on the shift position display signal output from the PM-HV-ECU 104 to the shift position indicator 60 in the combination meter 56.
  • the current shift position state is displayed on the shift position indicator 60. For example, the notation position of the shift position on the corresponding shift position indicator 60 is turned on.
  • FIG. 2 is a diagram illustrating an example of a shift operation device 30 as a switching device (operation device) for switching a plurality of types of shift positions in the transmission 18 by an artificial operation.
  • the shift operating device 30 is, for example, arranged near the driver's seat, automatically returns to the operator i.e. solving an operating force when the original position of the momentary to be operated to a plurality of operating positions P SH (initial position)
  • P SH initial position
  • a shift lever 32 is provided as an automatic return type operator.
  • the shift operating device 30 of the present embodiment has a P switch 34 as a momentary type operating element for locking the parking position with the shift position of the transmission 18 as a parking position (P position).
  • P position parking position
  • the shift lever 32 has three operation positions PSH arranged in the front-rear direction or the up-down direction, that is, the vertical direction of the vehicle, ie, an R operation position (R operation position) and an N operation position (N operation position). , The D operation position (D operation position), and the M operation position (M operation position) and B operation position (B operation position) arranged in parallel with each other, the operation position P SH A shift lever position signal corresponding to the above is output to PM-HV-ECU 104.
  • the shift lever 32 can be operated in the vertical direction between the R operation position, the N operation position, and the D operation position, and can be operated in the vertical direction between the M operation position and the B operation position.
  • the vehicle can be operated in the lateral direction of the vehicle perpendicular to the longitudinal direction between the N operation position and the B operation position.
  • the P switch 34 is, for example, a momentary push button switch, and outputs a P switch signal to the PM-HV-ECU 104 every time the user performs a push operation. For example, if the P switch 34 is pressed when the shift position of the transmission 18 is in the non-P position, PM-HV- if a predetermined condition such as the vehicle speed V is equal to or less than the P lock permission vehicle speed Vp is satisfied. Based on the P lock switching request signal from the ECU 104, the P-ECU 106 sets the shift position to the P position.
  • the P position is a parking position where the power transmission path in the transmission 18 is interrupted and the parking lock is executed by the parking lock device 16 to mechanically prevent the drive wheels 14 from rotating.
  • the P switch 34 has a built-in P position indicator lamp 62. If the P lock state signal from the P-ECU 106 indicates that the P position is indicated, the P-position indicator is indicated by the PM-HV-ECU 104. The lamp 62 is turned on.
  • the M operation position of the shift operation device 30 is the initial position (home position) of the shift lever 32, even if the shift operation is performed to an operation position P SH (R, N, D, B operation position) other than the M operation position.
  • P SH operation position
  • the shift lever 32 is returned to the M operation position by a mechanical mechanism such as a spring.
  • the shift operating device 30 is shift-operated to the operating position P SH is corresponding to the operation position P SH after the shift operation based on the shift lever position signal corresponding to the operation position P SH by PM-HV-ECU 104
  • the shift position indicator 60 displays the current operation position PSH, that is, the state of the shift position of the transmission 18.
  • the R position selected when the shift lever 32 is shifted to the R operation position is a reverse travel position in which a driving force for moving the vehicle backward is transmitted to the drive wheels 14.
  • the neutral position (N position) selected by shifting the shift lever 32 to the N operation position is a neutral position for setting the neutral state in which the power transmission path in the transmission 18 is interrupted.
  • the D position selected by shifting the shift lever 32 to the D operation position is a forward travel position in which a driving force for moving the vehicle forward is transmitted to the drive wheels 14.
  • P SH specifically, R R
  • P release switching for releasing the parking lock if it is determined that the shift operation is performed to the operation position, the N operation position, or the D operation position) if a predetermined condition such as the brake on state B ON is satisfied.
  • a request signal is output to the P-ECU 106.
  • the P-ECU 106 outputs a P switching control command signal for releasing the parking lock to the parking lock device 16 based on the P release switching request signal from the PM-HV-ECU 104 to release the parking lock. Then, PM-HV-ECU104 switches to the shift position corresponding to the operating position P SH after the shift operation.
  • the B position selected by the shift lever 32 being shifted to the B operation position is such that, for example, regenerative braking that causes the electric motor M to generate regenerative torque in the D position causes the engine braking effect to rotate.
  • This is a decelerating forward travel position (engine brake range) that decelerates. Therefore, the PM-HV-ECU 104 invalidates the shift operation even if the shift lever 32 is shifted to the B operation position when the current shift position is a shift position other than the D position, and only when the shift lever 32 is in the D position.
  • the shift operation to the B operation position is made valid. For example, even if the driver performs a shift operation to the B operation position at the P position, the shift position is continued as the P position.
  • the shift position indicator 60 is provided at a position that is easy for the driver to see, and is displayed on the shift position indicator 60 even when the selected shift position is the P position.
  • a so-called shift-by-wire (SBW) method is employed, and the shift operation device 30 is a first direction P1 that is the vertical direction and a first direction that intersects the direction P1 (orthogonal in FIG. 2). Since the shift operation is two-dimensionally performed in two directions P2, in order to output the operation position P SH as a detection signal of the position sensor to the electronic control device 100, a first shift operation in the first direction P1 is detected.
  • a shift sensor 36 as a direction detection unit and a select sensor 38 as a second direction detection unit for detecting the shift operation in the second direction P2 are provided.
  • Both the shift sensor 36 and the select sensor 38 output a voltage as a detection signal (shift lever position signal) corresponding to the operation position PSH to the electronic control device 100, and the electronic control device 100 is based on the detection signal voltage.
  • the operation position PSH is recognized (determined). That is, the first direction detection unit (shift sensor 36) and the second direction detection unit (select sensor 38) constitute an operation position detection unit that detects the operation position P SH of the shift operation device 30 as a whole. It can be said.
  • the detection signal voltage V SF of the shift sensor 36 is the first direction first position P1_1 indicating the R operation position, the first direction second indicating the M operation position or the N operation position.
  • the voltage level (for example, each voltage in the low range, mid range, and high range) corresponding to each position of the position P1_2 and the first direction third position P1_3 indicating the B operation position or the D operation position is obtained.
  • the detection signal voltage V SL of the select sensor 38 is a second direction first position P2_1 indicating the M operation position or the B operation position, and a second direction second indicating the R operation position, the N operation position, or the D operation position.
  • the voltage level corresponds to each position of the position P2_2 (for example, each voltage in the low range and the high range).
  • the PM-HV-ECU 104 detects the detection signal voltages V SF and V SL that change in this way, and thereby, according to a combination of each voltage level, the operation position P SH (R, N, D, M, B operation position). Recognize
  • FIG. 3 is a diagram for explaining the configuration of the parking lock device 16 that mechanically blocks the rotation of the drive wheels 14.
  • the parking lock device 16 includes a P lock mechanism (parking lock mechanism) 66, a P lock drive motor (parking lock drive motor) 68 that is an electric actuator, an encoder 70, and the like. It operates to prevent movement of the vehicle 10 based on the control signal.
  • the P-lock drive motor 68 corresponds to the actuator of the present invention, and is constituted by, for example, a switched reluctance motor (SR motor), receives a command (control signal) from the P-ECU 106, and a P-lock mechanism by a shift-by-wire system. 66 is driven.
  • the P lock drive motor 68 is provided with a P motor power relay (not shown) that turns on or off the power supply to the P lock drive motor 68.
  • the P motor power relay turns off the power supply to the P lock drive motor 68 when the supply voltage V MR to the P lock drive motor 68 is equal to or lower than a predetermined relay switching voltage. 68 is disabled.
  • the power supply to the P lock drive motor 68 is turned on to enable the P lock drive motor 68 to operate.
  • the relay switching voltage is a determination value for the supply voltage VMR that is experimentally determined in advance so that the P-lock drive motor 68 exhibits a sufficient torque for rotating the detent plate 74 and performs a stable operation.
  • the encoder 70 is a rotary encoder that outputs, for example, A-phase, B-phase, and Z-phase signals.
  • the encoder 70 rotates integrally with the P-lock drive motor 68, detects the rotation status of the SR motor, and represents the rotation status.
  • a signal that is, a pulse signal for obtaining a count value (encoder count) corresponding to the movement amount (rotation amount) of the P lock drive motor 68 is supplied to the P-ECU 106.
  • the P-ECU 106 obtains a signal supplied from the encoder 70, grasps the rotation state of the SR motor, and controls energization for driving the SR motor.
  • the P lock mechanism 66 is linked to the shaft 72 rotated by the P lock drive motor 68, the detent plate 74 that rotates as the shaft 72 rotates, the rod 76 that operates as the detent plate 74 rotates, and the drive wheel 14.
  • the parking gear 78 rotating, the parking lock pawl 80 for preventing the parking gear 78 from rotating, the detent spring 82 for limiting the rotation of the detent plate 74 and fixing the shift position, and the rollers 84.
  • the parking gear 78 is not limited in the location provided if the drive wheel 14 is also locked when the parking gear 78 is locked.
  • the parking gear 78 is concentrically fixed to the output gear 22 of the transmission 18. (See FIG. 1).
  • the detent plate 74 is operatively connected to the drive shaft of the P lock drive motor 68 via the shaft 72, and is driven by the P lock drive motor 68 together with the rod 76, the detent spring 82, the roller 84, etc. to the P position. It functions as a parking lock positioning member for switching between a corresponding parking lock position and a non-parking lock position corresponding to each shift position (non-P position) other than the P position.
  • the shaft 72, the detent plate 74, the rod 76, the detent spring 82, and the roller 84 serve as a parking lock switching mechanism.
  • FIG. 3 shows a state when the non-parking lock position, that is, the shift position is the non-P position.
  • the parking lock pole 80 does not lock the parking gear 78, the rotation of the drive wheel 14 is not hindered by the P lock mechanism 66.
  • the shaft 72 is rotated in the direction of arrow C shown in FIG. 3 by the P lock drive motor 68, the rod 76 is pushed in the direction of arrow A shown in FIG.
  • the parking lock pole 80 is pushed up in the direction of arrow B shown in FIG. 3 by the taper member 86 provided at the tip.
  • the detent spring 82 is in one of the two valleys provided at the top of the detent plate 74, that is, in the non-parking lock position 90 (hereinafter, non-P position 90 (see FIG. 4)).
  • the roller 84 moves over the mountain 88 and moves to the other valley, that is, the parking lock position 92 (hereinafter referred to as the P position 92 (see FIG. 4)).
  • the roller 84 is provided on the detent spring 82 so as to be rotatable about its axis.
  • the rotation of the drive wheel 14 that rotates in conjunction with the parking gear 78 is mechanically blocked, and the shift position is switched to the P position.
  • the P-ECU 106 in order to reduce the load applied to the P lock mechanism 66 such as the detent plate 74, the detent spring 82, and the shaft 72 when the shift position is switched between the P position and the non-P position, the P-ECU 106, for example, The rotation amount of the P lock drive motor 68 is controlled so that the impact when the roller 84 of the detent spring 82 falls over the mountain 88 is reduced.
  • the switching position where the roller 84 is in the P position 92 is the locking position (P position) that restrains the rotation of the drive wheel (wheel) 14, and the switching position where the roller 84 is in the non-P position 90.
  • P position the locking position
  • non-P position the non-lock position
  • the parking lock device 16 selectively switches the switching position of the parking lock device 16 between the locked position and the unlocked position by driving the P lock drive motor 68 based on a command from the P-ECU 106. It is done. In other words, the parking lock device 16 is in a locked state in which the parking gear 78 as a rotating tooth that rotates together with the wheel (drive wheel 14) is engaged with the parking gear 78 and the parking lock pawl 80 as the locking tooth based on the operation of the driver. (P lock state) and non-lock state (non-P lock state) where the lock state is released are switched.
  • FIG. 4 is a diagram for explaining the configuration of the detent plate 74.
  • the surface located on the side away from the mountain 88 is called a wall. That is, the wall exists at a position where the roller 84 of the detent spring 82 collides with the roller 84 when the roller 84 of the detent spring 82 climbs over the mountain 88 and falls into the valley without performing the following control by the P-ECU 106.
  • the wall at the P position 92 is called “P wall”
  • the wall at the non-P position 90 is called “non-P wall”.
  • the P-ECU 106 controls the P lock drive motor 68 so that the non-P wall 94 does not collide with the roller 84. Specifically, the P-ECU 106 stops the rotation of the P lock drive motor 68 at a position before the non-P wall 94 collides with the roller 84. This position is referred to as “non-P target rotation position”. Further, when the roller 84 moves from the non-P position 90 to the P position 92, the P-ECU 106 controls the P lock drive motor 68 so that the P wall 96 does not collide with the roller 84.
  • the P-ECU 106 stops the rotation of the P lock drive motor 68 at a position before the P wall 96 collides with the roller 84. This position is referred to as “P target rotation position”.
  • P target rotation position By controlling the P lock drive motor 68 by the P-ECU 106, the load applied to the P lock mechanism 66 such as the detent plate 74, the detent spring 82, and the shaft 72 at the time of shift position switching can be greatly reduced. By reducing the load, the P lock mechanism 66 can be reduced in weight and cost.
  • FIG. 5 is a diagram for explaining the correspondence between the rotation amount of the P lock drive motor 68, that is, the encoder count and the shift position.
  • the P lock drive motor 68 rotationally drives the detent plate 74, and the rotation amount of the P lock drive motor 68 is regulated by the non-P wall 94 and the P wall 96.
  • FIG. 5 conceptually shows the position of the P wall 96 (P wall position) and the position of the non-P wall 94 (non-P wall position) when the rotation control of the P lock drive motor 68 is performed.
  • the range from the P wall position to the non-P wall position is referred to as the movable rotation amount of the P lock drive motor 68.
  • the range from the P determination position to the P wall position is the P position range
  • the range from the non-P determination position to the non-P wall position is the non-P position range.
  • the P target rotation position is set within the P position range
  • the non-P target rotation position is set within the non-P position range.
  • the P target rotation position is a position where the P wall 96 does not collide with the roller 84 of the detent spring 82 when switching from the non-P position to the P position, and is determined with a predetermined margin from the P wall position.
  • This predetermined margin is set with a margin in consideration of a backlash due to a change with time. Thereby, if it is used to some extent, the change with time can be absorbed, and the collision with the P wall 96 and 84 when the shift position is switched from the non-P position to the P position can be avoided.
  • the non-P target rotational position is a position where the non-P wall 94 does not collide with the roller 84 of the detent spring 82 when switching from the P position to the non-P position, and is determined with a predetermined margin from the non-P wall position.
  • This predetermined margin is set with a margin in consideration of play due to changes over time, etc., and can be absorbed over time if it is used to some extent, and at the time of shift position switching from the P position to the non-P position. The collision with the non-P wall 94 and the place 84 can be avoided.
  • the margin from the non-P wall position and the margin from the P wall position need not be the same, and may differ depending on the shape of the detent plate 74 and the like.
  • the P-ECU 106 acquires an encoder count corresponding to the rotation amount of the P lock drive motor 68 based on the pulse signal output from the encoder 70. For example, the P-ECU 106 sets the encoder count to zero when the power supply switching state of the vehicle 10 is the ALL-OFF state or the ACC-ON state, and from the ALL-OFF state or the ACC-ON state to the IG-ON state or When the state is switched to the READY-ON state, the encoder count is sequentially updated based on the signal output from the encoder 70 thereafter. In this embodiment, the encoder count by rotation in the direction of the P wall position (rotation in the direction of arrow C in FIG. 3) is set as negative.
  • the P-ECU 106 controls the P lock drive motor 68 so that the acquired encoder count matches a preset target encoder count (target count value, target count value).
  • the target count value is, for example, a target value that is experimentally obtained and set in advance for stopping the P lock drive motor 68 at the P target rotational position or the non-P target rotational position.
  • the encoder 70 is a relative position sensor, and the P-ECU 106 loses information on the absolute position of the P lock drive motor 68 such as the P wall position and the non-P wall position in the non-activated state.
  • the encoder 70 loses information on the absolute position of the P lock drive motor 68 such as the P wall position and the non-P wall position in the non-activated state.
  • a method for controlling the position of the P lock drive motor 68 using the encoder 70 that detects relative position information will be specifically described below.
  • FIG. 6 shows that the vehicle power switch 40 is switched from the ALL-OFF state or the ACC-ON state to the IG-ON state and the P-ECU 106 is activated from the non-activated state to the activated state.
  • It is a state transition diagram explaining a series of initial control in the parking lock apparatus 16 at the time of switching to.
  • the P-ECU 106 is moved from the non-activated state.
  • the system is switched to the activated state, and an initial standby is performed as a period of waiting for the relay of the P lock drive motor 68 (P motor power relay) to be connected [state B].
  • the P-ECU 106 performs an initial process of the P-ECU 106 itself.
  • the P-ECU 106 performs initial drive control of the P lock drive motor 68 such as excitation matching (phase alignment) of the P lock drive motor 68 in order to appropriately control the rotation of the P lock drive motor 68 [state] C].
  • the P-ECU 106 detects the P wall position or the non-P wall position of the P lock drive motor 68 and sets a reference position [state D].
  • the P-ECU 106 After setting the reference position, the P-ECU 106 performs normal control for executing the operation and release of the parking lock based on, for example, the operation of the P switch 34 or the shift operation by the user [state E].
  • a failure for example, the P lock drive motor 68 does not operate in the process of transitioning to the state E). Etc.
  • a control method for detecting the P wall position and the non-P wall position in the above (state D) will be described.
  • FIG. 7 is a diagram for explaining a control method for detecting the P wall position.
  • the P-ECU 106 first drives the P lock drive motor 68 to move the detent plate 74 in the direction of the arrow C shown in FIG. 3, that is, the direction in which the P wall 96 faces the roller 84 of the detent spring 82.
  • the roller 84 and the P wall 96 are brought into contact with each other.
  • the P wall 96 functions as a restricting member that restricts the rotation of the P lock drive motor 68 in the direction of the arrow C shown in FIG. 3 as a predetermined direction at the P position 92, that is, the P position as a predetermined shift position.
  • the P wall 96 may constitute a restricting member in cooperation with the detent spring 82 and the roller 84.
  • an arrow F ⁇ b> 1 indicates a rotational force by the P-lock drive motor 68
  • an arrow F ⁇ b> 2 indicates a spring force by the detent spring 82
  • an arrow F ⁇ b> 3 indicates a push-back force by the rod 76.
  • a detent plate 74 'indicated by a dotted line indicates a position where the P wall 96 and 84 are in contact with each other. Therefore, detecting the position of the detent plate 74 ′ corresponds to detecting the position of the P wall 96.
  • the detent plate 74 resists the spring force of the detent spring 82 from the position indicated by the dotted line in the direction of arrow C shown in FIG. And rotated. As a result, the detent spring 82 is bent, the spring force F2 is increased, and the pushing back force F3 by the rod 76 is also increased. When the rotational force F1 is balanced with the spring force F2 and the pushing back force F3, the rotation of the detent plate 74 is stopped.
  • the P-ECU 106 determines the rotation stop of the detent plate 74 based on the acquired encoder count. For example, the P-ECU 106 determines to stop the rotation of the detent plate 74 and the P lock drive motor 68 when the minimum value or the maximum value of the encoder count does not change for a predetermined time. Whether the minimum value or the maximum value of the encoder count is monitored may be set according to the encoder 70. In any case, if the minimum value or the maximum value does not change for a predetermined time, the detent plate 74 does not move. Indicates the state.
  • the P-ECU 106 detects the position of the detent plate 74 when the rotation is stopped as a temporary P wall position (hereinafter referred to as “provisional P wall position”), and further calculates the deflection amount or the deflection angle of the detent spring 82. To do.
  • This bend amount or bend angle is calculated using, for example, a map indicating the relationship between the bend amount or bend angle corresponding to the voltage applied to the P lock drive motor 68 (supply voltage V MR ) stored in advance in the P-ECU 106. Done.
  • the P-ECU 106 calculates a deflection amount or a deflection angle corresponding to the voltage applied to the P lock drive motor 68 when the temporary P wall position is detected from the map.
  • a map using voltage V BAT of power storage device 46 instead of the voltage applied to P lock drive motor 68 may be used.
  • the voltage V BAT of the power storage device 46 is monitored by, for example, the P-ECU 106 and can be easily detected.
  • a map is created in consideration of a voltage drop due to a wire harness or the like from the power storage device 46 to the P lock drive motor 68.
  • the P-ECU 106 corrects the temporary P wall position based on the deflection amount or deflection angle calculated using this map, and determines the map corrected position as the P wall position. At this time, the P-ECU 106 sets the encoder count to CNTP at the determined P wall position. Then, the P-ECU 106 drives the P lock drive motor 68 so that the encoder count becomes zero, and moves the detent plate 74 in the direction of the arrow D shown in FIG. 3, that is, the P wall 96 extends from the roller 84 of the detent spring 82. The detent plate 74 is rotated in the direction of separation, and the position of the detent plate 74 is set to a predetermined P position.
  • the predetermined P position is a predetermined position set in advance in the P position range, and is set such that the encoder count difference from the determined P wall position is CNTP.
  • the predetermined P position may be set as the P target rotation position.
  • the P target rotation position can be set by determining the P wall position.
  • a map showing the relationship between the deflection amount or the deflection angle corresponding to the applied voltage a map showing the relationship between the deflection amount or the deflection angle corresponding to the output torque of the P lock drive motor 68 may be used.
  • a sensor for detecting the amount of deflection or the angle of deflection may be provided to detect it.
  • FIG. 8 is a diagram for explaining a control method for detecting a non-P wall position.
  • the P-ECU 106 first drives the P lock drive motor 68 to move the detent plate 74 in the direction of the arrow D shown in FIG. 3, that is, the non-P wall 94 moves to the roller 84 of the detent spring 82.
  • the roller 84 and the non-P wall 94 are brought into contact with each other.
  • the non-P wall 94 functions as a regulating member that regulates the rotation of the P lock drive motor 68 in the direction of the arrow D shown in FIG. 3 as the predetermined direction at the non-P position 90, that is, the non-P position as a predetermined shift position. To do.
  • the non-P wall 94 may constitute a restricting member in cooperation with the detent spring 82 and the roller 84.
  • an arrow F ⁇ b> 1 indicates a rotational force by the P lock drive motor 68
  • an arrow F ⁇ b> 2 indicates a spring force by the detent spring 82
  • an arrow F ⁇ b> 3 indicates a pulling force by the rod 76.
  • a detent plate 74 ′′ indicated by a dotted line indicates a position where the non-P wall 94 and 84 are in contact with each other. Therefore, detecting the position of the detent plate 74 ′′ corresponds to detecting the position of the non-P wall 94. .
  • the P-ECU 106 determines the rotation stop of the detent plate 74 based on the acquired encoder count. For example, the P-ECU 106 determines to stop the rotation of the detent plate 74 and the P lock drive motor 68 when the minimum value or the maximum value of the encoder count does not change for a predetermined time.
  • the P-ECU 106 detects the position of the detent plate 74 when rotation is stopped as a temporary non-P wall position (hereinafter referred to as “provisional non-P wall position”), and further calculates the amount of extension of the detent spring 82. .
  • the calculation of the extension amount is performed using, for example, a map indicating the relationship of the extension amount corresponding to the voltage applied to the P lock drive motor 68 stored in advance in the P-ECU 106.
  • the P-ECU 106 calculates the amount of elongation corresponding to the voltage applied to the P lock drive motor 68 when the temporary non-P wall position is detected from the map.
  • the P-ECU 106 corrects the temporary non-P wall position based on the extension amount calculated using this map, and determines the map corrected position as the non-P wall position. At this time, the P-ECU 106 sets the encoder count to CNTCP at the determined non-P wall position. Then, the P-ECU 106 drives the P lock drive motor 68 so that the encoder count CP is obtained by reducing the encoder count by a predetermined count value, and moves the detent plate 74 in the direction of the arrow C shown in FIG. The wall 94 is rotated in a direction away from the roller 84 of the detent spring 82, and the position of the detent plate 74 is set to a predetermined non-P position.
  • the predetermined non-P position is a predetermined position set in advance in the non-P position range, and is set so that the encoder count difference from the determined non-P wall position becomes a predetermined count value.
  • the predetermined non-P position may be set as the non-P target rotation position.
  • the non-P target rotational position can be set by determining the non-P wall position.
  • a map indicating the relationship between the amount of expansion corresponding to the applied voltage a map indicating the relationship between the amount of expansion corresponding to the output torque of the P lock drive motor 68 may be used, or instead of calculating using the map.
  • a sensor for detecting the amount of elongation may be provided to detect it.
  • the P lock drive motor 68 is moved in a direction in which the movement (rotation) of the P lock drive motor 68 is restricted.
  • it is possible to set the reference position by detecting the wall position of the P lock drive motor 68 corresponding to a predetermined shift position based on the acquired encoder count.
  • FIG. 9 is a diagram for explaining the waveform of the energization command pulse applied to the P lock drive motor 68.
  • a signal having a long high period is applied to the P lock drive motor 68 as an energization command pulse.
  • the output per unit time of the P lock drive motor 68 as an energization command pulse is compared with the output per unit time of the P lock drive motor 68 during normal control of shift position switching. Is applied to the P-lock drive motor 68. Specifically, the ON width of the energization command pulse applied to the P lock drive motor 68 is reduced.
  • the impact with the walls (non-P wall 94 and P wall 96) 84 can be reduced.
  • the energization command pulse shown in FIG. 9 is on and the UVW three-phase energization command in the P lock drive motor 68 is on, the respective phases of the UVW three phases are energized.
  • the switch operation of the vehicle power switch 40 that switches the power supply switching state of the vehicle 10 to the IG-ON state or the READY-ON state is performed, that is, the P-ECU 106 is changed from the non-activated state to the activated state.
  • initial processing of the P-ECU 106 itself is executed, and then initial control in the parking lock device 16 is executed to detect the wall position. That is, as the initial control in the parking lock device 16, the initial drive control of the P lock drive motor 68 is performed, and then the P wall position and the non-P wall position of the P lock drive motor 68 are detected and the reference position is set. Is done.
  • the actual movable rotation amount (actual movable rotation amount) of the P lock drive motor 68 based on the detected P wall position and non-P wall position is a range between two wall positions, and one shift position. After the wall position detection control is performed to detect the wall position, the wall position detection control is performed at the other shift position to detect the other wall position. Since the absolute position of the P lock drive motor 68 can be grasped by detecting the wall position, the target rotation position can be set.
  • the motor It is recognized that there is a failure, and basically, the power supply switching state of the vehicle 10 is changed to the READY-ON state without executing the wall position detection control that needs to drive the P-lock drive motor 68. Is prohibited.
  • a supply voltage V MR (hereinafter, “P”
  • the motor supply voltage V MR is lower than a minimum voltage (for example, the relay switching voltage) necessary for operating the P-lock drive motor 68.
  • a minimum voltage for example, the relay switching voltage
  • Figure 10 is a time that was like the engine 12 in the starting state of P-ECU 106 is left not be actuated, taken as an example the case where the battery voltage is P motor supply voltage V MR gradually decreases from 12V It is a chart. Note that the P motor described in FIG. 10 is the P lock drive motor 68.
  • the decreasing P motor supply voltage V MR reaches the relay switching voltage (eg, 6.6 V). Therefore, after the time t1, the P motor power relay turns off the power supply to the P lock drive motor 68, and the P lock drive motor 68 becomes inoperable.
  • the relay switching voltage eg, 6.6 V
  • the P motor supply voltage V MR further decreases from the time point t1, and an ECU stop voltage (for example 5 .8V), the P-ECU 106 is temporarily in an inactive state (ECU stop) between the time t2 and the time t3. Then, P-ECU 106 since P motor supply voltage V MR at t3 after the time has recovered above the ECU stop voltage is made again activated state.
  • ECU stop for example 5 .8V
  • the operation of the P motor supply voltage V MR is, the ECU stop voltage higher than and the relay switch voltage set lower than the P-lock drive motor 68 Since the diagnosis voltage for diagnosis (for example, 6.0 V) is exceeded, the P-ECU 106 performs an operation diagnosis of the P lock drive motor 68, that is, determines whether or not the P lock drive motor 68 is operable. .
  • P P lock drive motor 68 since the motor supply voltage V MR is below the relay switching voltage does not operate, P-ECU 106 is, P lock drive motor 68 is inoperable It is determined that That, P motor supply voltage V MR after P-ECU 106 is switched to the activation state from the non-active state, as indicated by the shaded portion A01 of FIG. 10, it is less than the relay switching voltage there is the diagnostic voltage or If it is within the range, it is determined that the P lock drive motor 68 is inoperable due to a decrease in the P motor supply voltage VMR even if the P lock drive motor 68 itself is not a hardware failure.
  • P-ECU 106 can be determined once the P lock drive motor 68 is inoperable, if recovery is P motor supply voltage V MR (rise), and can transition to the READY-ON state To do. The main part of the control function will be described below.
  • FIG. 11 is a functional block diagram for explaining the main part of the control function provided in the P-ECU 106.
  • the P-ECU 106 includes a supply voltage detection determination unit 130, an actuator operation determination unit 132, an occupant operation determination unit 134, an actuator drive permission unit 136, a wall position detection control unit 138, and a vehicle travel permission unit 140. It has.
  • Supply voltage detection determining means 130 P-ECU 106 is in the case of switching from the non-activated state to the activated state, sequentially detects the P motor supply voltage V MR from that time.
  • the supply voltage detection determining means 130 determines whether the P or motor supply voltage V MR is the supply voltage determination value V1 MR than the predetermined, in other words, P motor supply voltage V MR supply voltage Judgment value V1 It is judged whether it is less than MR .
  • the supply voltage judgment value V1 MR is a lower limit value of the P motor supply voltage V MR and is, for example, a guaranteed voltage that is a lower limit voltage that guarantees a normal operation of the P lock drive motor 68 higher than the relay switching voltage. (For example, 8V).
  • the supply voltage detection determination means 130 determines that the P motor supply voltage V MR is less than the supply voltage determination value V1 MR . Then, if the P motor supply voltage V MR equal to or higher than the supply voltage determination value V1 MR from the supply voltage determination value less than V1 MR, the supply voltage detection determining means 130, the supply voltage determination P motor supply voltage V MR judging from less than a value V1 MR and equal to or greater than the supply voltage determination value V1 MR.
  • the actuator operation determination unit 132 performs a failure state determination that determines whether or not the P lock drive motor 68 is operable. Specifically, the actuator operation determination unit 132 performs the above-described fail state determination in, for example, the state C of FIG. 6 when the P-ECU 106 is switched from the non-activated state to the activated state. Further, the actuator operation determining means 132, after determining that the P lock drive motor 68 in the fail state determination is inoperable, P motor supply voltage V MR supply voltage determination value from the supply voltage determination value less than V1 MR The above fail status is also determined when V1 MR is exceeded.
  • the P motor supply voltage V MR is the whether it is above the supply voltage determination value V1 MR from the supply voltage determination value less than V1 MR, it is determined by the supply voltage detecting judging means 130.
  • the actuator operation determination means 132 gives a command to rotate the P lock drive motor 68 by a predetermined amount in both directions of arrows C and D in FIG. 3, and according to the rotation of the P lock drive motor 68. If the pulse signal output from the encoder 70 cannot be detected in any rotation direction, it is determined that the P lock drive motor 68 is inoperable. Further, it may be determined whether or not the P lock drive motor 68 is operable using other methods, sensors, or the like.
  • the occupant operation determination means 134 determines whether or not an operation by a predetermined occupant has been performed.
  • the predetermined operation by the occupant is specifically an operation for switching the vehicle 10 to a travelable state, that is, switching the power supply switching state of the vehicle 10 to the travelable state (READY-ON state). This is an operation (hereinafter referred to as “running enable operation”). Whether or not this operation has been performed is acquired from the PM-HV-ECU 104.
  • Actuator drive permission means 136 permits the drive of the P lock drive motor 68 when the actuator operation determination means 132 determines that the P lock drive motor 68 is operable in the fail state determination. With this permission, the P-lock drive motor 68 can be driven. On the other hand, the actuator drive permission unit 136 prohibits the drive of the P lock drive motor 68 when the actuator operation determination unit 132 determines that the P lock drive motor 68 is not operable in the fail state determination. This prohibition prevents the P-lock drive motor 68 from being driven.
  • the actuator drive permission unit 136 permits the drive of the P lock drive motor 68 after that even when the actuator operation determination unit 132 determines that the P lock drive motor 68 is not operable in the fail state determination.
  • the actuator drive permission unit 136 determines that the P motor supply voltage VMR is the supply voltage after the actuator operation determination unit 132 determines that the P lock drive motor 68 is inoperable in the fail state determination.
  • the determination value V1 MR is less than the supply voltage determination value V1 MR , the drive of the P lock drive motor 68 is permitted.
  • the actuator drive permission means 136 since the actuator drive permission means 136 once prohibits the driving of the P-lock drive motor 68 and then permits the above-mentioned permission, in order to avoid the confusion between the prohibition and the permission, after canceling the prohibition. Grant that permission.
  • the actuator drive permission unit 136 determines that the P motor supply voltage VMR is the supply voltage after the actuator operation determination unit 132 determines that the P lock drive motor 68 is inoperable in the fail state determination. when changed from less than the determination value V1 MR than the supply voltage determination value V1 MR is to permit driving of the P-lock drive motor 68 may further increase the conditions for the authorization. For example, when the P motor supply voltage V MR becomes less than the supply voltage determination value V1 MR to the supply voltage determination value V1 MR or more, the actuator operation determination means 132 operates the P lock drive motor 68 in the second failure state determination. Only when it is determined that it is possible, the actuator drive permission unit 136 may permit the drive of the P lock drive motor 68.
  • the actuator drive permission means 136 The drive of the lock drive motor 68 may be permitted. Further, the driving of the P lock drive motor 68 may be permitted by combining these conditions.
  • the P whether or not the motor supply voltage V MR is equal to or higher than the supply voltage determination value V1 MR from the supply voltage determination value less than V1 MR is determined by the supply voltage detecting determination unit 130, whether the running enabling operation is performed This is determined by the occupant operation determination means 134.
  • the wall position detection control unit 138 allows the P wall position detection control and the P wall position detection control unit 138 to perform the P wall position detection control and the Non-P wall position detection control is executed to detect the P wall position and the non-P wall position.
  • the wall position detection control means 138 does not execute the P wall position detection control and the non-P wall position detection control if the actuator drive permission means 136 prohibits the driving of the P lock drive motor 68.
  • the vehicle travel permission unit 140 changes the power supply switching state of the vehicle 10 to the travelable state (READY-ON state). Switching is permitted to the PM-HV-ECU 104.
  • the PM-HV-ECU 104 changes the power supply switching state of the vehicle 10 to the travelable state if the travel enabling operation is performed or if the travel enabling operation is already performed. Switch to (READY-ON state). That is, when the actuator drive permission means 136 permits the drive of the P lock drive motor 68, if the travel enabling operation is performed, the power supply switching state of the vehicle 10 is set to the travel ready state (READY-ON State).
  • the vehicle travel permission unit 140 switches the power supply switching state of the vehicle 10 to the travelable state (READY-ON state) when the actuator drive permission unit 136 prohibits the driving of the P lock drive motor 68. This is not permitted to the PM-HV-ECU 104. Since the permission is not made, the PM-HV-ECU 104 does not switch the power supply switching state of the vehicle 10 to the travelable state (READY-ON state). For example, when the travel enabling operation has been performed, the switching state is not set to the travel enabled state (READY-ON state) but the power on state (IG-ON state).
  • FIG. 12 is a flowchart for explaining a main part of the control operation of the P-ECU 106 of this embodiment, that is, a control operation for prohibiting or permitting the drive of the P lock drive motor 68.
  • This flowchart is executed alone or in parallel with other control operations.
  • This flowchart is executed when, for example, the P-ECU 106 is switched from the non-activated state to the activated state.
  • the P-ECU 106 switches from the non-activated state to the activated state, for example, as shown in FIG. 13, the switching state of the power supply of the vehicle 10 is changed to the ALL-OFF state or the ACC-ON state by the switch operation of the vehicle power switch 40.
  • the P motor supply voltage V MR Is switched to the IG-ON state, or the P motor supply voltage V MR is lowered to some extent, and the P-ECU 106 is momentarily cut off due to noise or the like, and then the P motor supply voltage V MR becomes the ECU stop voltage.
  • the auxiliary voltage according to Figure 13 a voltage supplied to the auxiliary machinery such as air conditioner, navigation and audio such 64, since in this embodiment is the battery voltage, the P motor supply voltage V MR Is the same.
  • step when the P-ECU 106 switches from the non-activated state to the activated state, the process proceeds to step (hereinafter, step is omitted) SA1.
  • SA1 the P motor supply voltage VMR is sequentially detected and stored. The detection of the P motor supply voltage VMR and the like starts from SA1 and continues thereafter. After SA1, the process proceeds to SA2.
  • This SA1 corresponds to the supply voltage detection determination means 130.
  • SA2 the fail state determination for determining whether or not the P lock drive motor 68 is operable is performed. If the determination of SA2 is affirmative, that is, if the P lock drive motor 68 is operable, the process proceeds to SA3. On the other hand, when the determination of SA2 is negative, the process proceeds to SA7. This SA2 corresponds to the actuator operation determining means 132.
  • SA3 corresponds to the actuator drive permission means 136.
  • SA4 corresponds to the wall position detection control means 138.
  • SA5 it is determined whether or not an operation (running enabling operation) by the occupant that switches the power supply switching state of the vehicle 10 to the READY-ON state, that is, a start switch operation by the occupant is performed. Even if the start switch operation is performed when the P-ECU 106 is switched to the activated state, the determination in SA5 is affirmed. If the determination of SA5 is affirmative, that is, if the start switch operation is performed, the process proceeds to SA6. SA5 corresponds to the occupant operation determination means 134.
  • the PM-HV-ECU 104 is permitted to switch the power supply switching state of the vehicle 10 to the travelable state (READY-ON state). With this permission, the PM-HV-ECU 104 switches the switching state to the travelable state (READY-ON state).
  • SA6 corresponds to the vehicle travel permission means 140.
  • SA7 it is determined that the P lock drive motor 68 is in an abnormal state (fail state). Then, the drive of the P lock drive motor 68 is prohibited. SA7 corresponds to the actuator drive permission means 136. After SA7, the process proceeds to SA8.
  • SA10 corresponds to the supply voltage detection determination means 130.
  • SA11 the by the occupant start switch operation (traveling enable operation), after affirmative determination in SA10, i.e., is performed at after the P motor supply voltage V MR has returned to above the supply voltage determination value V1 MR It is determined whether or not. If the determination of SA11 is affirmed, that is, if the start switch operation is performed after the determination of SA10 is affirmed, the process proceeds to SA12. SA11 corresponds to the occupant operation determination means 134.
  • SA12 the abnormality determination that the P-lock drive motor 68 made in SA7 is in an abnormal state is canceled (cleared). Then, the prohibition of driving of the P lock drive motor 68 is released. SA12 corresponds to the actuator drive permission means 136. After SA12, the process proceeds to SA13.
  • the fail state determination is performed to determine whether or not the P lock drive motor 68 is operable. Since the fail state determination has already been performed once in SA2, it can be said that the fail state determination performed in SA13 is a second fail state determination. If the determination at SA13 is affirmative, that is, if the P lock drive motor 68 is operable, the process proceeds to SA14. On the other hand, if the determination at SA13 is negative, the operation goes to SA16. This SA 13 corresponds to the actuator operation determination means 132.
  • SA14 the drive of the P lock drive motor 68 is permitted. After SA14, the process proceeds to SA15.
  • SA14 corresponds to the actuator drive permission unit 136.
  • SA15 the P wall position detection control and the non-P wall position detection control are executed, and the P wall position and the non-P wall position are detected.
  • SA6 the process proceeds to SA6.
  • SA15 corresponds to the wall position detection control means 138.
  • SA16 it is determined that there is a hardware failure of the P lock drive motor 68 itself, that is, a motor failure. Then, the drive of the P lock drive motor 68 is prohibited, and if the drive of the P lock drive motor 68 is already prohibited, the prohibition is continued. SA16 corresponds to the actuator drive permission means 136. After SA16, the process proceeds to SA17.
  • the PM-HV-ECU 104 is not permitted to switch the power supply switching state of the vehicle 10 to the travelable state (READY-ON state). Since the permission is not made, the PM-HV-ECU 104 does not switch the power supply switching state of the vehicle 10 to the travelable state (READY-ON state). For example, the switching state is left in the power-on state (IG-ON state).
  • SA17 corresponds to the vehicle travel permission means 140.
  • FIG. 14 is a flowchart for explaining the main part of the control operation of the P-ECU in the prior art, in order to contrast with the control operation described in FIG. This flowchart is also executed when the P-ECU is switched from the non-activated state to the activated state, for example, as shown in FIG. 13, as in FIG.
  • SB1 of FIG. 14 it is determined whether or not the P lock drive motor 68 is operable. If the P lock drive motor 68 is operable, SB2 to SB4 are executed. On the other hand, if the P lock drive motor 68 is not operable, SB5 to SB7 are executed.
  • the wall pad learning is performed in the same manner as SA4 in FIG.
  • SB5 it is determined that the P-lock drive motor 68 is in an abnormal state (fail state), similarly to SA7 in FIG. 12, and in SB6, it is determined that the motor has failed as in SA16 in FIG. Is done.
  • PM-HV-ECU 104 is not permitted to switch the power supply switching state of vehicle 10 to the READY-ON state. Since the permission is not granted, the PM-HV-ECU 104 does not switch the power supply switching state of the vehicle 10 to the READY-ON state even if the start switch operation is performed. For example, the switching state is left in the IG-ON state.
  • the actuator operation determination unit 132 performs the fail state determination for determining whether or not the P lock drive motor (actuator) 68 is operable. Then, after the actuator operation determination unit 132 determines that the P lock drive motor 68 is inoperable in the fail state determination, the actuator drive permission unit 136 determines that the P motor supply voltage VMR is the supply voltage determination value V1. When the supply voltage judgment value V1 MR is greater than or equal to MR , the drive of the P lock drive motor 68 is permitted.
  • the P motor supply voltage V MR recovers from less than the supply voltage determination value V1 MR to the supply voltage determination value V1 MR or more, the P lock drive motor 68 made before the recovery cannot operate.
  • the supply voltage determination value V1 MR is the lower limit value of the P motor supply voltage V MR , and therefore, when the P lock drive motor 68 is determined to be inoperable, the cause is the P motor supply. It can be determined more appropriately that the voltage V MR is lowered.
  • the actuator operation determining means 132 determines that the P lock drive motor 68 is not operable in the fail state determination, and then the P motor supply voltage VMR is the supply voltage determination value V1. If the supply voltage judgment value V1 MR is greater than or equal to MR below the MR , the fail state judgment is performed again.
  • the actuator drive permission means 136 permits the drive of the P lock drive motor 68 only when the actuator operation determination means 132 determines that the P lock drive motor 68 is operable in the second failure state determination. Also good. As a result, the P-lock drive motor 68 can be operated after the P-lock drive motor 68 can be operated by the recovery of the P-motor supply voltage V MR to the supply voltage judgment value V1 MR or more. It is possible to permit driving of the motor 68.
  • the P motor supply voltage VMR is the supply voltage determination value V1.
  • the travel enabling operation is performed after the P motor supply voltage VMR becomes less than the supply voltage judgment value V1 MR to the supply voltage judgment value V1 MR or more.
  • the actuator drive permission means 136 may permit the drive of the P lock drive motor 68 on the condition that it has been done. If so, even if the P-lock drive motor 68 is driven, it is after the operation by the occupant. For example, when the occupant recognizes that the P-lock drive motor 68 cannot be operated, the occupant It is possible to avoid creating a sense of incongruity.
  • the predetermined operation by the occupant in which the presence / absence of the operation is determined by the occupant operation determination means 134 refers to the power supply switching state of the vehicle 10 in the travelable state (READY-ON state).
  • the travel enabling operation is an operation necessary for starting the vehicle travel, and a special operation by the occupant when permitting the drive of the P lock drive motor 68 is performed. There is an advantage that is not required.
  • the actuator drive permission unit 136 determines that the P lock drive motor is not operated when the actuator operation determination unit 132 determines that the P lock drive motor 68 is inoperable in the fail state determination. The driving of 68 is prohibited. Further, when the drive of the P-lock drive motor 68 is permitted after the prohibition of the drive of the P-lock drive motor 68, the actuator drive permission means 136 permits the drive after releasing the prohibition. Therefore, it is possible to avoid the complication of prohibiting and permitting the driving of the P lock drive motor 68.
  • the P lock drive motor is compared with the case where it is determined whether or not the P lock drive motor 68 is operable by periodically performing the failure state determination again. The burden on 68 mag is reduced.
  • the determination value for the P motor supply voltage V MR is common to the supply voltage determination value V1 MR in both SA8 and SA10 in FIG. 12, and therefore, a separate determination value is set in each step. There is no need to do.
  • the battery that supplies power to the P lock drive motor 68 or the like may be included in the power storage device 46 or may be provided in the vehicle 10 as a power source separate from the power storage device 46. Good.
  • the supply voltage determination value V1 MR is set to the guaranteed voltage of the P lock drive motor 68.
  • other voltage values may be set, for example, P lock drive
  • the relay switching voltage which is the lower limit voltage for supplying power to the motor 68, may be set.
  • the predetermined operation by the occupant determined by the occupant operation determination means 134 is described as the travel enabling operation.
  • the operation is not limited to this, but by the occupant. Other operations can be used.
  • the PM-HV-ECU 104 detects the input of the power switch signal in the brake-on state B ON when in the P position, the power supply switching state of the vehicle 10 is changed to any state.
  • SA11 in the flowchart of FIG. 12 is provided before SA14.
  • a flowchart in which SA11 is not before SA14 but between SA14 and SA6 is also considered. obtain.
  • SA13 is provided in the flowchart of FIG. 12, but it is also possible to consider a flowchart in which SA13 is not provided and the process proceeds to SA14 next to SA12.
  • SA9 is provided in the flowchart of FIG. 12, but this SA9 may be omitted.
  • the actuator operation determining means 132 is exemplified to perform the fail state determination when the P-ECU 106 is switched from the non-activated state to the activated state. In this case, for example, even when the PM-HV-ECU 104 or the P-ECU 106 detects any failure, the fail state determination may be performed. Further, the fail state determination may be performed periodically with a predetermined time interval.
  • Vehicle 14 Drive wheel (wheel) 16: Parking lock device 68: P lock drive motor (actuator) 106: P-ECU (vehicle shift control device)

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gear-Shifting Mechanisms (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 電動アクチュエータが動作不可能と判定された場合において、その後に電動アクチュエータが動作可能になる場合を加味して適切な処理を行うことができる車両用シフト制御装置を提供する。 アクチュエータ動作判定手段132は、Pロック駆動モータ(電動アクチュエータ)68が動作可能であるか否かを判定する。そして、アクチュエータ駆動許可手段136は、アクチュエータ動作判定手段132がPロック駆動モータ68が動作不可能であると判定した後に、Pモータ供給電圧VMRが供給電圧判定値V1MR未満から供給電圧判定値V1MR以上になった場合には、Pロック駆動モータ68の駆動を許可する。従って、Pロック駆動モータ68が動作不可能と判定された場合において、その後にPモータ供給電圧VMRが供給電圧判定値V1MR以上に回復することによりPロック駆動モータ68が動作可能になる場合を加味して適切な処理を行うことができる。

Description

車両用シフト制御装置
 本発明は、シフトバイワイヤシステムにおいて、それのフェイル時の処理に関するものである。
 電動モータ等の電動アクチュエータを作動させて車両の走行に関わるシフトポジションを電気的に切り替える所謂シフトバイワイヤ(SBW)方式を採用した車両用シフト制御装置が良く知られている。例えば、特許文献1に開示されているシフトレンジ切替装置が有するSBW制御装置がそれである。そのSBW制御装置は、それの電源が瞬断されその瞬断後に再起動された場合に、その瞬断前に前記アクチュエータが駆動されておらず、且つ、その瞬断前に記憶された前記電動アクチュエータの出力軸位置(出力軸回転角度)の記憶が維持されていれば、再起動後における上記出力軸位置が上記瞬断前に記憶された出力軸位置であるとして認識する。
特開2006-336840号公報 特開2003-034157号公報
 前記SBW制御装置の電源が瞬断された後のようにそのSBW制御装置が起動された後に、車両が前記電動アクチュエータの動作不可能なフェイル状態になっていることもあり得ることである。例えば、そのようなフェイル状態になる原因としては、その電動アクチュエータ自身の故障や、その電動アクチュエータへの供給電圧が低下してその電動アクチュエータを駆動できる下限電圧を下回っている場合などが考えられる。
 通常、前記SBW制御装置は、それの起動後に前記電動アクチュエータが動作不可能であると判断した場合には、その判断以後、その電動アクチュエータは動作不可能であるとして、その電動アクチュエータを動作させないようフェイルセーフ処理を行う。例えば、そのフェイルセーフ処理では車両走行できる状態に遷移させないようにする。
 しかし、前記電動アクチュエータが動作不可能である原因が前記供給電圧の低下によるものである場合すなわちその供給電圧の不足によるものである場合には、その供給電圧が前記下限電圧以上に回復しそれにより前記電動アクチュエータが動作可能になることがあり得る。このような場合、上記供給電圧の回復により前記電動アクチュエータが動作可能になれば、その電動アクチュエータが動作可能になったことを認識して、上記フェイルセーフ処理を解除して、その電動アクチュエータが動作可能であることを前提とした正常時の制御を行うことが適切であるが、そのようなことはなされておらず、前記電動アクチュエータが動作不可能であるとの判断が継続されていた。なお、このような課題は未公知である。
 本発明は、以上の事情を背景として為されたものであり、その目的とするところは、前記電動アクチュエータが動作不可能と判定された場合において、その後に電動アクチュエータが動作可能になる場合を加味して適切な処理を行うことができる車両用シフト制御装置を提供することにある。
 前記目的を達成するための本発明の要旨とするところは、(a)電動のアクチュエータの駆動により、車輪の回転を拘束するロック位置とその車輪の回転を拘束しない非ロック位置とに選択的に切り替えられるパーキングロック装置を備えた車両において、前記アクチュエータが動作可能であるか否かを判定するフェイル状態判定を行う車両用シフト制御装置であって、(b)前記フェイル状態判定で前記アクチュエータが動作不可能であると判定した後に、前記アクチュエータへの供給電圧が予め定められた供給電圧判定値未満からその供給電圧判定値以上になった場合には、前記アクチュエータの駆動を許可することにある。
 電動の前記アクチュエータへの供給電圧が前記供給電圧判定値未満から供給電圧判定値以上に回復したとすれば、その回復前になされた前記アクチュエータが動作不可能であるとの判定は前記アクチュエータへの供給電圧の低下に起因するものと考えられ、また、その供給電圧の回復後には前記アクチュエータが動作可能な状態になっているものと考えられる。従って、上記の本発明によれば、前記アクチュエータが動作不可能と判定された場合において、その後に上記アクチュエータが動作可能になる場合、具体的には前記供給電圧が回復する場合を加味して適切な処理を行うことができる。例えば、適切な処理とは、前記アクチュエータが動作可能である場合にはそのアクチュエータが動作可能であることを前提として正常時のアクチュエータの制御をすること等である。一方、不適切な処理とは、前記アクチュエータが動作可能である場合にそれが動作不可能であると認識してそのアクチュエータを動作させない等のフェイル時の処理をすることである。
 ここで、好適には、前記供給電圧判定値は、前記アクチュエータの供給電圧の下限値である。このようにすれば、前記アクチュエータが動作不可能と判定された場合においてその原因が上記供給電圧の低下によるものであることを、より適切に判断できる。
 また、好適には、前記フェイル状態判定で前記アクチュエータが動作不可能であると判定した後に、前記アクチュエータへの供給電圧が前記供給電圧判定値未満からその供給電圧判定値以上になった場合には、前記フェイル状態判定を再度行い、その再度のフェイル状態判定で前記アクチュエータが動作可能であると判定した場合に限り前記アクチュエータの駆動を許可する。このようにすれば、前記アクチュエータへの供給電圧の回復によってそのアクチュエータが動作可能になったことを確実に認識した上で、前記アクチュエータの駆動を許可することが可能である。
 また、好適には、前記フェイル状態判定で前記アクチュエータが動作不可能であると判定した後に、前記アクチュエータへの供給電圧が前記供給電圧判定値未満からその供給電圧判定値以上になった場合には、予め定められた乗員による操作が前記供給電圧が前記供給電圧判定値以上になった後になされたことを条件に、前記アクチュエータの駆動を許可する。このようにすれば、前記アクチュエータが駆動するとしてもそれは乗員による操作の後であるので、例えば乗員が前記アクチュエータの動作不可能を認識しているときに、その乗員に違和感を生じさせることを回避できる。
 また、好適には、前記予め定められた乗員による操作は、前記車両を走行可能な状態に切り替える操作である。このようにすれば、その車両を走行可能な状態に切り替える操作は車両走行を開始するには必要な操作であるので、前記アクチュエータの駆動を許可する際に乗員による特別な操作が必要とされないという利点がある。
 また、好適には、(a)前記フェイル状態判定で前記アクチュエータが動作不可能であると判定した場合には、前記アクチュエータの駆動を禁止し、(b)前記アクチュエータの駆動を禁止した後にそのアクチュエータの駆動を許可する場合には、その禁止を解除してからその許可をする。このようにすれば、前記アクチュエータが動作不可能である場合にそのアクチュエータを駆動させようとすることが回避される。また、前記アクチュエータの駆動を禁止することと許可することとが錯綜するのを回避できる。
 また、好適には、前記車両は、例えば動力源から駆動輪までの動力伝達経路に車両用動力伝達装置を備えている。この動力源としては、例えば燃料の燃焼によって動力を発生する内燃機関等のガソリンエンジンやディーゼルエンジン等が好適に用いられるが、電動機等の他の原動機を単独で或いはエンジンと組み合わせて採用することもできる。つまり、前記車両は、例えばエンジンのみを動力源とするエンジン駆動車両や、電動機のみを動力源とする電気自動車、エンジンおよび電動機の両方を動力源とするハイブリッド車両、エンジンや電動機以外の原動機を動力源として備えている車両、或いは3つ以上の原動機を備えている車両などにより構成される。
 また、好適には、前記車両用動力伝達装置は、例えば変速機単体、トルクコンバータ及び複数の変速比を有する変速機、或いはこの変速機等に加え減速機構部やディファレンシャル機構部により構成される。この変速機は、例えば前記電気自動車において前記電動機が連結される遊星歯車装置等の減速機、複数組の遊星歯車装置の回転要素が係合装置によって選択的に連結されることにより複数のギヤ段(変速段)が択一的に達成される例えば前進4段、前進5段、前進6段、更にはそれ以上の変速段を有する等の種々の遊星歯車式自動変速機、常時噛み合う複数対の変速ギヤを2軸間に備えてそれら複数対の変速ギヤのいずれかを同期装置によって択一的に動力伝達状態とする同期噛合型平行2軸式変速機ではあるが、油圧アクチュエータにより駆動される同期装置によって変速段が自動的に切換られることが可能な同期噛合型平行2軸式自動変速機、動力伝達部材として機能する伝動ベルトが有効径が可変である一対の可変プーリに巻き掛けられ変速比が無段階に連続的に変化させられる所謂ベルト式無段変速機、共通の軸心まわりに回転させられる一対のコーンとその軸心と交差する回転中心回転可能な複数個のローラがそれら一対のコーンの間で挟圧されそのローラの回転中心と軸心との交差角が変化させられることによって変速比が可変とされた所謂トラクション型無段変速機、エンジンからの動力を第1電動機および出力軸へ分配する例えば遊星歯車装置で構成される差動機構とその差動機構の出力軸に設けられた第2電動機とを備えてその差動機構の差動作用によりエンジンからの動力の主部を駆動輪側へ機械的に伝達しエンジンからの動力の残部を第1電動機から第2電動機への電気パスを用いて電気的に伝達することにより電気的に変速比が変更される電気式無段変速機として機能する自動変速機、或いはエンジン軸や出力軸などに動力伝達可能に電動機が備えられる所謂パラレル式のハイブリッド車両に搭載される自動変速機などにより構成される。
 また、好適には、前記パーキングロック装置は、前記ロック位置では前記車輪と共に回転する回転歯にロック歯を噛み合わせることによりロック状態となり、前記非ロック位置ではそのロック状態が解除された非ロック状態となる。そして、上記回転歯は、例えば上記車輪に連結された変速機の出力回転部材に固定されるが、その車輪に対して直結範囲の他の回転部材に固定することもできる。
本発明が適用される車両を構成するエンジンから駆動輪までの動力伝達経路の概略構成を説明する図であると共に、パーキングロック装置などを制御するために車両に設けられた制御系統の要部を説明するブロック線図である。 図1の車両が備える変速機において複数種類のシフトポジションを人為的操作により切り換える切換装置(操作装置)としてのシフト操作装置の一例を示す図である。 図1の車両において、駆動輪の回転を機械的に阻止するパーキングロック装置の構成を説明する図である。 図3のパーキングロック装置が備えるディテントプレートの構成を説明する図である。 図3のパーキングロック装置において、そのパーキングロック装置が備えるPロック駆動モータの回転量すなわちエンコーダカウントとシフトポジションとの対応関係を説明する図である。 図1の車両の電源供給の切替状態がALL-OFF状態やACC-ON状態からIG-ON状態とされて、P-ECUが非起動状態から起動状態へ切り替えられた際のパーキングロック装置における一連の初期制御を説明する状態遷移図である。 図1のP-ECUが実行するP壁位置検出制御において、P壁位置を検出する制御方法を説明するための図である。 図1のP-ECUが実行する非P壁位置検出制御において、非P壁位置を検出する制御方法を説明するための図である。 図3のパーキングロック装置において、そのパーキングロック装置が備えるアクチュエータ(Pロック駆動モータ)に印加する通電指令パルスの波形を説明する図である。 図1のP-ECUの起動状態においてエンジンが作動させられておらずに放置される等して、Pモータ供給電圧であるバッテリ電圧が12Vから次第に低下する場合を例として、P-ECUが瞬断後に再起動される場合を説明するためのタイムチャートである。 図1のシフト制御装置(P-ECU)に備えられた制御機能の要部を説明する機能ブロック線図である。 図11のP-ECUの制御作動の要部、すなわち、Pロック駆動モータの駆動を禁止しまたは許可する制御作動を説明するフローチャートである。 図11のP-ECUがどのようにして起動されるかを例示した図である。 図12のフローチャートで説明した制御作動と対比するため、従来技術におけるP-ECUの制御作動の要部を説明するためのフローチャートである。
 以下、本発明の実施例を図面を参照しつつ詳細に説明する。
 図1は、本発明が適用される車両10を構成するエンジン12から駆動輪14までの動力伝達経路の概略構成を説明する図であると共に、パーキングロック装置16などを制御するために車両10に設けられた制御系統の要部を説明するブロック線図である。図1において、車両10は、パーキングロック装置16、変速機18、シフト操作装置30などを備え、車両10の走行に関わるシフトポジションすなわち変速機18のシフトポジション(シフトレンジ)を電気的に切り替えるシフトバイワイヤ(SBW)方式を採用している。また、変速機18は、例えば車両10において横置きされるFF(フロントエンジン・フロントドライブ)型車両に好適に用いられるものであり、走行用駆動力源としての内燃機関であるエンジン12の動力をカウンタギヤ対20の一方を構成する変速機18の出力回転部材としての出力歯車22から、動力伝達装置としてのカウンタギヤ対20、ファイナルギヤ対24、差動歯車装置(ディファレンシャルギヤ)26、及び一対の車軸(ドライブシャフト(D/S))28等を順次介して一対の駆動輪14へ伝達する。これら変速機18、カウンタギヤ対20、ファイナルギヤ対24、差動歯車装置(ディファレンシャルギヤ)26等によりトランスアクスル(T/A)が構成される。尚、以下においては、駆動力源としてのエンジン12及び電動機Mを備えたハイブリッド車両に本発明が適用された場合の例について説明するが、本発明が適用される車両は、シフトバイワイヤ方式を採用しておれば、通常のエンジン車両、ハイブリッド車両、電動車両、燃料電池車両などどのような形式の車両であっても構わない。
 また、車両10には、パーキングロック装置16の作動状態などを制御する為の車両用のシフト制御装置を含む電子制御装置100が備えられている。電子制御装置100は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより、エンジン12の出力制御や電動機Mの駆動制御等のハイブリッド駆動制御、変速機18の変速制御、シフトバイワイヤ方式を用いた変速機18のシフトポジションの切替制御、パーキングロック装置16の作動状態の切替制御などを実行する。
 電子制御装置100には、例えばシフトレバー32の操作位置(操作ポジション)PSHを検出する為の位置センサであるシフトセンサ36及びセレクトセンサ38(図2参照)からの操作ポジションPSHに応じたシフトレバー位置信号、ユーザにより操作されて変速機18のシフトポジションをパーキングポジション(Pポジション)以外の非PポジションからPポジションへ切り替える為のPスイッチ34におけるスイッチ操作を表すPスイッチ信号、パーキングロック(Pロック)を作動或いは解除して変速機18のシフトポジションをPポジションと非Pポジションとの間で切り替える為のパーキングロック装置16におけるPロックの作動状態を表すP位置信号、ユーザにより操作されて車両10の電源供給の切替状態を切り替える為の車両電源スイッチ40におけるスイッチ操作を表すパワースイッチ信号、回転速度センサとしての車輪速センサ42からの各車輪(駆動輪14及び従動輪)の回転速度Nを表す車速Vに対応する車輪速パルス信号、常用ブレーキの作動を検出する為の不図示のフットブレーキペダルが操作されたことを示すブレーキスイッチ44からのブレーキオン状態BONを表すブレーキ操作信号、蓄電装置46の充電電流または放電電流ICDを表す信号、蓄電装置46の電圧VBATを表す信号、蓄電装置46の充電状態(充電残量)SOCを表す信号などが、それぞれ供給される。
 また、電子制御装置100からは、例えばエンジン12の出力制御の為のエンジン出力制御指令信号や変速機18内の電動機Mの駆動制御の為のモータ制御指令信号や変速機18の変速制御の為の変速制御指令信号などのハイブリッド制御指令信号、変速機18のシフトポジションを切り替える為のシフトポジション切換制御指令信号、車両走行に関わる車両情報をユーザに明示する為の表示装置としての公知のコンビネーションメータ56内に設けられたスピードメータ58を作動させて現在の車速Vを表示する為の車速表示制御指令信号、コンビネーションメータ56内に設けられたシフトポジションインジケータ(シフトポジション表示装置)60を作動させて変速機18におけるシフトポジションの切替状態を表示する為のシフトポジション表示制御指令信号、Pロックの作動中(パーキングロック状態、Pロック状態)すなわちシフトポジションがPポジションにあることを点灯により明示する為のロック表示ランプとしてのPポジションインジケータランプ62を作動させてPロック状態を表示する為のパーキングロック表示制御指令信号(Pロック表示制御指令信号)、パーキングロック装置16の切換制御の為のP切替制御指令信号等が、それぞれ出力される。尚、Pポジションインジケータランプ62は、コンビネーションメータ56の作動(点灯/消灯)とは連動せずに作動させられる表示ランプであって、例えばPスイッチ34に設けられている。
 具体的には、電子制御装置100は、電源制御及びハイブリッド制御用コンピュータ(以下、「PM-HV-ECU」と表す)104、パーキング制御用コンピュータ(以下、「P-ECU」と表す)106、メータ制御用コンピュータ(以下、「メータECU」と表す)108などを備えている。なお、上記P-ECU106が本発明の車両用シフト制御装置に対応する。
 PM-HV-ECU104は、例えばユーザにより操作される車両電源スイッチ40からのパワースイッチ信号に基づいて車両10の電源供給の切替状態を切り替える。ここで、本実施例では、車両10の電源供給の切替状態として、例えば車両走行を不能とする為の電源オフ状態(ALL-OFF状態、IG/ACC-OFF状態)、車両走行不能ではあるがコンビネーションメータ56を消灯したまま車両10の一部の機能のみ稼働可能とする為の電源一部オン状態(ACC-ON状態、IG-OFF状態)、コンビネーションメータ56を点灯して車両走行に係わる電源がオンにされた電源オン状態(IG-ON状態)、及び、車両走行に関わるハイブリッド制御指令信号により車両走行を制御できる状態であって、アクセルオンすれば車両10が発進・走行できる走行可能状態(READY-ON状態)の何れかに遷移可能である。上記車両10の一部の機能のみ稼働可能とすることは、例えばナビやオーディオ類64を稼働可能とする為の通電であったり、不図示のバッテリ電源取出ソケットへの通電などである。尚、上記IG-ON状態は、前記電源オン状態であるが、ハイブリッド制御指令信号により車両走行を制御する以外の他の機能は制御できる状態(例えば変速機18のシフトポジションを切替制御できる状態等)であって、エンジン12が起動せず且つ電動機Mを駆動できない状態すなわちアクセルオンとしても車両10が発進・走行できない状態である。また、上記車両電源スイッチ40の操作によってREADY-ON状態となるためには、その車両電源スイッチ40の操作以外に、READY-ON状態に切り替えられることに先立って実行されるP-ECU106自体のイニシャル処理(初期処理)や、パーキングロック装置16における初期駆動制御などでフェイルが発生しないことが条件となる。すなわち、READY-ON状態に切り替える車両電源スイッチ40の操作がなされたとしても、そのようなフェイルが発生した場合には、READY-ON状態に切り替わらずそれ以外の切替状態たとえばIG-ON状態に切り替わる。
 例えば、PM-HV-ECU104は、Pポジションにあるときに、ブレーキオン状態BONで前記パワースイッチ信号の入力を検知すると、車両10の電源供給の切替状態を何れの状態からもREADY-ON状態へ切り替える。また、PM-HV-ECU104は、Pポジションにあるときに、IG-ON状態又はREADY-ON状態で車速Vが所定停止車速V’未満であり且つパワースイッチ信号の入力を検知すると、車両10の電源供給の切替状態をALL-OFF状態へ切り替える。また、PM-HV-ECU104は、Pポジションにあるときに、ブレーキオン状態BONでない状態でパワースイッチ信号の入力を検知すると、車両10の電源供給の切替状態をALL-OFF状態→ACC-ON状態→IG-ON状態→ALL-OFF状態→・・・の順でパワースイッチ信号の入力毎に切り替える。また、PM-HV-ECU104は、非Pポジションにあるときに、IG-ON状態で車速Vが所定停止車速V’未満であり且つパワースイッチ信号の入力を検知すると、パーキングロック装置16を作動させてシフトポジションを自動的にPポジションとする為のオートPロック切替要求信号をP-ECU106へ出力すると共に、Pポジションの確定後に車両10の電源供給の切替状態をALL-OFF状態へ切り替える(この一連の作動を「オートP作動」という)。上記所定停止車速V’は、例えば車両停止状態であると判断する為の予め実験的に求められて記憶された車両停止判定車速である。
 また、PM-HV-ECU104は、例えば変速機18の作動を統括的に制御する。例えば、PM-HV-ECU104は、車両10の電源供給の切替状態をREADY-ON状態へ切り替えると、車両走行を可能とする為のハイブリッドシステムを起動し、車両走行に関わるハイブリッド制御指令をエンジン12、電動機M、及び変速機18へ出力して車両走行を制御する。また、PM-HV-ECU104は、シフトセンサ36及びセレクトセンサ38からの操作ポジションPSHに応じたシフトレバー位置信号に基づいてシフトポジション切換制御指令を変速機18へ出力してシフトポジションを切り替える。この際、変速機18のシフトポジションがPポジションにある場合には、PM-HV-ECU104は、上記シフトレバー位置信号に基づいて変速機18のシフトポジションをPポジションから非Pポジションへ切り替える為のP解除切替要求信号をP-ECU106へ出力する。また、PM-HV-ECU104は、Pスイッチ34からのPスイッチ信号に基づいて変速機18のシフトポジションを非PポジションからPポジションへ切り替える為のPロック切替要求信号をP-ECU106へ出力する。また、PM-HV-ECU104は、シフトポジションの状態を表示する為のシフトポジション表示信号をメータECU108へ出力する。また、PM-HV-ECU104は、P-ECU106からのPポジションであることを示すPロック状態信号に基づいてPロック状態(Pポジション)であることを表示する為のパーキングロック表示制御指令信号(Pロック表示制御指令信号)をPスイッチ34へ出力し、Pスイッチ34内のPポジションインジケータランプ62を点灯してPロック状態にあることを明示する。
 ここで、蓄電装置46は、充放電可能な直流電源であり、例えばニッケル水素やリチウムイオン等の二次電池から成る。例えば、車両加速走行時やモータ走行時には、蓄電された電力がインバータ48を通して電動機Mへ供給される。また、車両減速走行時の回生制動の際には、電動機Mにより発電された電力がインバータ48を通して蓄電装置46に蓄電される。
 P-ECU106は、例えばPM-HV-ECU104からのオートPロック切替要求信号やP切替要求信号(Pロック切替要求信号、P解除切替要求信号)に基づいてシフトポジションをPポジションと非Pポジションとの間で切り替える為に、パーキングロック装置16の駆動を制御してパーキングロックを作動させるか或いは解除させる。また、P-ECU106は、パーキングロック装置16からのパーキングロックの作動状態を表すP位置信号に基づいて変速機18のシフトポジションがPポジションであるか非Pポジションであるかを判断し、その判断した結果をPロック状態信号としてPM-HV-ECU104等へ出力する。
 また、P-ECU106は、車両10の電源供給の切替状態がALL-OFF状態やACC-ON状態からIG-ON状態又はREADY-ON状態へ切り替えられる際には、後述するように、パーキングロック装置16における初期駆動制御を実行し、P位置信号や非P位置信号が適切に得られる為のP壁位置及び非P壁位置の検出制御を実行する。また、P-ECU106は、車両10の電源供給の切替状態がALL-OFF状態やACC-ON状態からIG-ON状態又はREADY-ON状態へ切り替えられる際の上記パーキングロック装置16における一連の初期制御を実行する前に、P-ECU106自体のイニシャル処理(初期処理)を実行する。なお、P-ECU106は、車両10の電源供給の切替状態がALL-OFF状態またはACC-ON状態である場合には非起動状態とされる一方で、その車両10の電源供給の切替状態がIG-ON状態またはREADY-ON状態である場合には起動状態とされる。P-ECU106の前記非起動状態とは例えばP-ECU106の電源が遮断されている状態であり、P-ECU106の前記起動状態とはP-ECU106の電源が投入されている状態である。
 メータECU108は、現在の車速Vを表示する為の車速表示制御指令信号をコンビネーションメータ56内のスピードメータ58へ出力して、現在の車速Vを表示する。例えば、メータECU108は、車輪速センサ42から出力される車輪速パルス信号に基づいた車速パルス信号の矩形波形をカウント(計数)することによりメータ表示用車速信号Vを決定する。そして、メータECU108は、その決定したメータ表示用車速信号Vに基づいてスピードメータ58を作動させることにより該当するセグメントを点灯させて現在の車速Vを表示する。また、メータECU108は、PM-HV-ECU104から出力されるシフトポジション表示信号に基づいたシフトポジションの状態を表示する為のシフトポジション表示制御指令信号をコンビネーションメータ56内のシフトポジションインジケータ60へ出力し、現在のシフトポジションの状態をシフトポジションインジケータ60に表示する。例えば、該当するシフトポジションインジケータ60上のシフトポジションの表記位置を点灯させる。
 図2は、変速機18において複数種類のシフトポジションを人為的操作により切り換える切換装置(操作装置)としてのシフト操作装置30の一例を示す図である。このシフト操作装置30は、例えば運転席の近傍に配設され、複数の操作ポジションPSHへ操作されるモーメンタリ式の操作子すなわち操作力を解くと元位置(初期位置)へ自動的に復帰する自動復帰式の操作子としてのシフトレバー32を備えている。また、本実施例のシフト操作装置30は、変速機18のシフトポジションをパーキングポジション(Pポジション)としてパーキングロックする為のモーメンタリ式の操作子としてのPスイッチ34をシフトレバー32の近傍に別スイッチとして備えている。
 シフトレバー32は、図2に示すように車両の前後方向または上下方向すなわち縦方向に配列された3つの操作ポジションPSHであるR操作ポジション(R操作位置)、N操作ポジション(N操作位置)、D操作ポジション(D操作位置)と、それに平行に配列されたM操作ポジション(M操作位置)、B操作ポジション(B操作位置)とへそれぞれ操作されるようになっており、操作ポジションPSHに応じたシフトレバー位置信号をPM-HV-ECU104へ出力する。また、シフトレバー32は、R操作ポジションとN操作ポジションとD操作ポジションとの相互間で縦方向に操作可能とされ、M操作ポジションとB操作ポジションとの相互間で縦方向に操作可能とされ、更に、N操作ポジションとB操作ポジションとの相互間で上記縦方向に直交する車両の横方向に操作可能とされている。
 Pスイッチ34は、例えばモーメンタリ式の押しボタンスイッチであって、ユーザにより押込み操作される毎にPスイッチ信号をPM-HV-ECU104へ出力する。例えば変速機18のシフトポジションが非PポジションにあるときにPスイッチ34が押されると、車速VがPロック許可車速Vp以下であるなどの所定の条件が満たされていれば、PM-HV-ECU104からのPロック切替要求信号に基づいてP-ECU106によりシフトポジションがPポジションとされる。このPポジションは、変速機18内の動力伝達経路が遮断され、且つ、パーキングロック装置16により駆動輪14の回転を機械的に阻止するパーキングロックが実行される駐車ポジションである。また、このPスイッチ34にはPポジションインジケータランプ62が内蔵されており、P-ECU106からのPロック状態信号がPポジションであることを示すものであれば、PM-HV-ECU104によりPポジションインジケータランプ62が点灯される。
 シフト操作装置30のM操作ポジションはシフトレバー32の初期位置(ホームポジション)であり、M操作ポジション以外の操作ポジションPSH(R,N,D,B操作ポジション)へシフト操作されていたとしても、運転者がシフトレバー32を解放すればすなわちシフトレバー32に作用する外力が無くなれば、バネなどの機械的機構によりシフトレバー32はM操作ポジションへ戻るようになっている。シフト操作装置30が各操作ポジションPSHへシフト操作された際には、PM-HV-ECU104により操作ポジションPSHに対応したシフトレバー位置信号に基づいてそのシフト操作後の操作ポジションPSHに対応したシフトポジションに切り替えられると共に、現在の操作ポジションPSHすなわち変速機18のシフトポジションの状態がシフトポジションインジケータ60に表示される。
 各シフトポジションについて説明すると、シフトレバー32がR操作ポジションへシフト操作されることにより選択されるRポジションは、車両を後進させる駆動力が駆動輪14に伝達される後進走行ポジションである。また、シフトレバー32がN操作ポジションへシフト操作されることにより選択されるニュートラルポジション(Nポジション)は、変速機18内の動力伝達経路が遮断されるニュートラル状態とするための中立ポジションである。また、シフトレバー32がD操作ポジションへシフト操作されることにより選択されるDポジションは、車両を前進させる駆動力が駆動輪14に伝達される前進走行ポジションである。例えば、PM-HV-ECU104は、シフトポジションがPポジションであるときに、シフトレバー位置信号に基づいて車両の移動防止(パーキングロック)を解除する所定の操作ポジションPSH(具体的には、R操作ポジション、N操作ポジション、又はD操作ポジション)へシフト操作されたと判断した場合には、ブレーキオン状態BONであるなどの所定の条件が満たされていれば、パーキングロックを解除させるP解除切替要求信号をP-ECU106へ出力する。P-ECU106は、PM-HV-ECU104からのP解除切替要求信号に基づいてパーキングロック装置16に対してパーキングロックを解除するP切換制御指令信号を出力してパーキングロックを解除させる。そして、PM-HV-ECU104は、そのシフト操作後の操作ポジションPSHに対応したシフトポジションへ切り換える。
 また、シフトレバー32がB操作ポジションへシフト操作されることにより選択されるBポジションは、Dポジションにおいて例えば電動機Mに回生トルクを発生させる回生制動などによりエンジンブレーキ効果を発揮させ駆動輪14の回転を減速させる減速前進走行ポジション(エンジンブレーキレンジ)である。従って、PM-HV-ECU104は、現在のシフトポジションがDポジション以外のシフトポジションであるときにシフトレバー32がB操作ポジションへシフト操作されてもそのシフト操作を無効とし、DポジションであるときのみB操作ポジションへのシフト操作を有効とする。例えば、Pポジションであるときに運転者がB操作ポジションへシフト操作したとしてもシフトポジションはPポジションのまま継続される。
 本実施例のシフト操作装置30では、シフトレバー32に作用する外力が無くなればM操作ポジションへ戻されるので、シフトレバー32の操作ポジションPSHを視認しただけでは選択中のシフトポジションを認識することは出来ない。そのため、運転者の見易い位置にシフトポジションインジケータ60が設けられており、選択中のシフトポジションがPポジションである場合も含めてシフトポジションインジケータ60に表示されるようになっている。
 本実施例では所謂シフトバイワイヤ(SBW)方式を採用しており、シフト操作装置30は上記縦方向である第1方向P1とその方向P1と交差する(図2では直交する)横方向である第2方向P2とに2次元的にシフト操作されるので、その操作ポジションPSHを位置センサの検出信号として電子制御装置100に出力するために、上記第1方向P1のシフト操作を検出する第1方向検出部としてのシフトセンサ36と上記第2方向P2のシフト操作を検出する第2方向検出部としてのセレクトセンサ38とを備えている。シフトセンサ36とセレクトセンサ38との何れも操作ポジションPSHに応じた検出信号(シフトレバー位置信号)としての電圧を電子制御装置100に対し出力し、その検出信号電圧に基づき電子制御装置100は操作ポジションPSHを認識(判定)する。すなわち、上記第1方向検出部(シフトセンサ36)と第2方向検出部(セレクトセンサ38)とが全体として、シフト操作装置30の操作ポジションPSHを検出する操作ポジション検出部を構成していると言える。
 操作ポジションPSHの認識について一例を示せば、シフトセンサ36の検出信号電圧VSFは、R操作ポジションを示す第1方向第1位置P1_1、M操作ポジションもしくはN操作ポジションを示す第1方向第2位置P1_2、及びB操作ポジションもしくはD操作ポジションを示す第1方向第3位置P1_3の各位置に対応する電圧レベル(例えばlow範囲、mid範囲、high範囲内の各電圧)になる。また、セレクトセンサ38の検出信号電圧VSLは、M操作ポジションもしくはB操作ポジションを示す第2方向第1位置P2_1、及びR操作ポジション、N操作ポジション、もしくはD操作ポジションを示す第2方向第2位置P2_2の各位置に対応する電圧レベル(例えばlow範囲、high範囲内の各電圧)になる。PM-HV-ECU104は、このように変化する上記検出信号電圧VSF,VSLを検出することにより、各電圧レベルの組み合わせによって操作ポジションPSH(R、N、D、M、B操作ポジション)を認識する。
 図3は、駆動輪14の回転を機械的に阻止するパーキングロック装置16の構成を説明する図である。図3において、パーキングロック装置16は、Pロック機構(パーキングロック機構)66、電動のアクチュエータであるPロック駆動モータ(パーキングロック駆動モータ)68、及びエンコーダ70などを備え、電子制御装置100からの制御信号に基づき車両10の移動を防止するために作動する。
 Pロック駆動モータ68は、本発明のアクチュエータに対応しており、例えばスイッチトリラクタンスモータ(SRモータ)により構成され、P-ECU106からの指令(制御信号)を受けてシフトバイワイヤシステムによってPロック機構66を駆動する。Pロック駆動モータ68には、Pロック駆動モータ68への電力供給をオン又はオフにするPモータ電源リレー(図示せず)が設けられている。そのPモータ電源リレーは、Pロック駆動モータ68への供給電圧VMRが予め定められたリレー切替電圧以下である場合には、Pロック駆動モータ68への電力供給をオフにしてPロック駆動モータ68を動作不可能にする。その一方で、上記供給電圧VMRが上記リレー切替電圧よりも高い場合には、Pロック駆動モータ68への電力供給をオンにしてPロック駆動モータ68を動作可能にする。上記リレー切替電圧は、Pロック駆動モータ68がディテントプレート74を回動させる十分なトルクを発揮し安定した動作をするように予め実験的に定められた上記供給電圧VMRに対する判定値である。
 エンコーダ70は、例えばA相、B相及びZ相の信号を出力するロータリエンコーダであって、Pロック駆動モータ68と一体的に回転し、SRモータの回転状況を検知してその回転状況を表す信号すなわちPロック駆動モータ68の移動量(回転量)に応じた計数値(エンコーダカウント)を取得するためのパルス信号をP-ECU106へ供給する。P-ECU106は、エンコーダ70から供給される信号を取得してSRモータの回転状況を把握し、SRモータを駆動するための通電の制御を行う。
 Pロック機構66は、Pロック駆動モータ68により回転駆動されるシャフト72、シャフト72の回転に伴って回転するディテントプレート74、ディテントプレート74の回転に伴って動作するロッド76、駆動輪14と連動して回転するパーキングギヤ78、パーキングギヤ78を回転阻止(ロック)するためのパーキングロックポール80、ディテントプレート74の回転を制限してシフトポジションを固定するディテントスプリング82、及びころ84を備えている。パーキングギヤ78は、それがロック状態とされれば駆動輪14もロック状態とされる関係にあれば設けられる場所に制限は無いが、例えば変速機18の出力歯車22に同心上に固定されている(図1参照)。
 ディテントプレート74は、シャフト72を介してPロック駆動モータ68の駆動軸に作動的に連結されており、ロッド76、ディテントスプリング82、ころ84などと共にPロック駆動モータ68により駆動されてPポジションに対応するパーキングロックポジションとPポジション以外の各シフトポジション(非Pポジション)に対応する非パーキングロックポジションとを切り替えるためのパーキングロック位置決め部材として機能する。シャフト72、ディテントプレート74、ロッド76、ディテントスプリング82、及びころ84は、パーキングロック切替機構の役割を果たす。
 図3は、非パーキングロックポジションすなわちシフトポジションが非Pポジションであるときの状態を示している。この状態では、パーキングロックポール80がパーキングギヤ78をロック状態としていないので、駆動輪14の回転はPロック機構66によっては妨げられない。この状態から、Pロック駆動モータ68によりシャフト72を図3に示す矢印Cの方向に回転させると、ディテントプレート74を介してロッド76が図3に示す矢印Aの方向に押され、ロッド76の先端に設けられたテーパー部材86によりパーキングロックポール80が図3に示す矢印Bの方向に押し上げられる。ディテントプレート74の回転に伴って、ディテントプレート74の頂部に設けられた2つの谷のうち一方、すなわち非パーキングロックポジション90(以下、非P位置90(図4参照))にあったディテントスプリング82のころ84は、山88を乗り越えて他方の谷、すなわちパーキングロックポジション92(以下、P位置92(図4参照))へ移る。ころ84は、その軸心を中心として回転可能にディテントスプリング82に設けられている。ころ84がP位置92に来るまでディテントプレート74が回転したとき、パーキングロックポール80は、パーキングギヤ78と噛み合う位置まで押し上げられる。これにより、パーキングギヤ78と連動して回転する駆動輪14の回転が機械的に阻止され、シフトポジションがPポジションに切り替わる。パーキングロック装置16では、Pポジションと非Pポジションとの間のシフトポジション切替時にディテントプレート74、ディテントスプリング82、シャフト72などのPロック機構66にかかる負荷を低減する為に、例えばP-ECU106はディテントスプリング82のころ84が山88を乗り越えて落ちるときの衝撃が少なくなるようにPロック駆動モータ68の回転量を制御する。なお、パーキングロック装置16では、ころ84がP位置92にある切替位置が駆動輪(車輪)14の回転を拘束するロック位置(P位置)であり、ころ84が非P位置90にある切替位置が駆動輪(車輪)14の回転を拘束しない非ロック位置(非P位置)であると言うことができる。
 このように、パーキングロック装置16は、P-ECU106からの指令に基づくPロック駆動モータ68の駆動により、そのパーキングロック装置16の切替位置が前記ロック位置と前記非ロック位置とに選択的に切り替えられる。言い換えれば、パーキングロック装置16は、運転者の操作に基づいて、車輪(駆動輪14)と共に回転する回転歯としてのパーキングギヤ78をパーキングギヤ78にロック歯としてのパーキングロックポール80が噛み合うロック状態(Pロック状態)とそのロック状態が解除される非ロック状態(非Pロック状態)とに切り替える。
 図4は、ディテントプレート74の構成を説明する図である。それぞれの谷において、山88から離れた側に位置する面を壁と言う。すなわち壁は、P-ECU106による以下に示す制御を行わない状態で、ディテントスプリング82のころ84が山88を乗り越えて谷に落ちるときに、ころ84とぶつかる位置に存在する。P位置92における壁を「P壁」と呼び、非P位置90における壁を「非P壁」と呼ぶ。ころ84がP位置92から非P位置90に移動する場合、P-ECU106は、非P壁94がころ84に衝突しないようにPロック駆動モータ68を制御する。具体的には、P-ECU106は、非P壁94がころ84に衝突する手前の位置でPロック駆動モータ68の回転を停止する。この位置を「非P目標回転位置」と言う。また、ころ84が非P位置90からP位置92に移動する場合、P-ECU106は、P壁96がころ84に衝突しないようにPロック駆動モータ68を制御する。具体的には、P-ECU106は、P壁96がころ84に衝突する手前の位置でPロック駆動モータ68の回転を停止する。この位置を「P目標回転位置」と言う。P-ECU106によるPロック駆動モータ68の制御により、シフトポジション切替時においてディテントプレート74、ディテントスプリング82、シャフト72などのPロック機構66にかかる負荷を大幅に低減することができる。負荷を低減することにより、Pロック機構66の軽量化、低コスト化を図ることもできる。
 図5は、Pロック駆動モータ68の回転量すなわちエンコーダカウントとシフトポジションとの対応関係を説明する図である。Pロック駆動モータ68はディテントプレート74を回転駆動し、そのPロック駆動モータ68の回転量は非P壁94及びP壁96により規制される。図5に、Pロック駆動モータ68の回転制御を行う上でのP壁96の位置(P壁位置)及び非P壁94の位置(非P壁位置)を概念的に示した。このP壁位置から非P壁位置までをPロック駆動モータ68の可動回転量と言う。また、図5に示したP判定位置および非P判定位置は、いずれもシフトポジションの切替えが判定されるディテントプレート74の所定位置である。すなわち、P判定位置からP壁位置までがPポジション範囲であり、非P判定位置から非P壁位置までが非Pポジション範囲である。エンコーダ70で検出したPロック駆動モータ68の回転量がPポジション範囲にあるときには、シフトポジションがPポジションであることが判定される一方で、Pロック駆動モータ68の回転量が非Pポジション範囲にあるときには、シフトポジションが非Pポジションであることが判定される。尚、Pロック駆動モータ68の回転量がP判定位置から非P判定位置の間にあるときには、シフトポジションが不定、またはシフトポジションが切替中であることが判定される。以上の判定は、P-ECU106により実行される。
 また、図5に示すように、Pポジション範囲内にP目標回転位置が設定され、非Pポジション範囲内に非P目標回転位置が設定される。P目標回転位置は、非PポジションからPポジションへの切替時に、P壁96がディテントスプリング82のころ84に衝突しない位置であり、P壁位置から所定のマージンをもって定められる。この所定のマージンは、経時変化などによるガタを考慮して余裕をもって設定される。これにより、ある程度の使用回数であれば、経時変化を吸収することができ、非PポジションからPポジションへのシフトポジション切替時におけるP壁96ところ84との衝突を回避できる。同様に、非P目標回転位置は、Pポジションから非Pポジションへの切替時に、非P壁94がディテントスプリング82のころ84に衝突しない位置であり、非P壁位置から所定のマージンをもって定められる。この所定のマージンは、経時変化などによるガタを考慮して余裕をもって設定され、ある程度の使用回数であれば、経時変化を吸収することができ、Pポジションから非Pポジションへのシフトポジション切替時における非P壁94ところ84との衝突を回避することができる。尚、非P壁位置からのマージンとP壁位置からのマージンとは同一である必要はなく、ディテントプレート74の形状などに依存して異なってもよい。
 このように構成されたパーキングロック装置16において、P-ECU106はエンコーダ70により出力されたパルス信号に基づいてPロック駆動モータ68の回転量に応じたエンコーダカウントを取得する。また、P-ECU106は、例えば車両10の電源供給の切替状態がALL-OFF状態やACC-ON状態ではエンコーダカウントを零に設定し、ALL-OFF状態やACC-ON状態からIG-ON状態又はREADY-ON状態へ切り替えられたときには、その後のエンコーダ70からの信号出力に基づいて順次エンコーダカウントを更新する。尚、本実施例では、P壁位置方向への回転(図3の矢印C方向への回転)によるエンコーダカウントを負として設定する。また、P-ECU106は、取得したエンコーダカウントを予め設定された目標エンコーダカウント(目標カウント値、目標計数値)に一致させるようにPロック駆動モータ68を制御する。この目標カウント値は、例えばPロック駆動モータ68をP目標回転位置や非P目標回転位置に停止させる為の予め実験的に求められて設定された目標値である。
 以上、Pロック駆動モータ68の回転量とシフトポジションとの対応関係を説明した。ところで、エンコーダ70は相対位置センサでありP-ECU106は前記非起動状態ではPロック駆動モータ68の絶対位置たとえば前記P壁位置および前記非P壁位置の情報を喪失するので、P-ECU106が非起動状態から起動状態へ切り替えられた際にはPロック駆動モータ68の絶対位置を把握する必要がある。以下に、相対的な位置情報を検出するエンコーダ70を用いて、Pロック駆動モータ68の位置制御を行う方法を具体的に説明する。
 図6は、車両10の電源供給の切替状態をALL-OFF状態やACC-ON状態からIG-ON状態に切り替える車両電源スイッチ40のスイッチ操作がなされて、P-ECU106が非起動状態から起動状態へ切り替えられた際のパーキングロック装置16における一連の初期制御を説明する状態遷移図である。図6において、PM-HV-ECU104により車両10の電源供給の切替状態がALL-OFF状態やACC-ON状態からIG-ON状態に切り替えられると[状態A]、P-ECU106は非起動状態から起動状態へ切り替えられ、Pロック駆動モータ68のリレー(Pモータ電源リレー)が繋がるのを待つ期間として初期待機を行う[状態B]。この状態Bでは、例えばP-ECU106はP-ECU106自体のイニシャル処理を行う。続いて、P-ECU106は、Pロック駆動モータ68の回転を適切に制御する為に、Pロック駆動モータ68の励磁合わせ(位相合わせ)などのPロック駆動モータ68の初期駆動制御を行う[状態C]。続いて、P-ECU106は、Pロック駆動モータ68の前記P壁位置、または非P壁位置を検出して、基準位置を設定する[状態D]。P-ECU106は、基準位置を設定した後は、例えばユーザによるPスイッチ34の操作またはシフト操作に基づくパーキングロックの作動や解除を実行する通常制御を行う[状態E]。なお、車両10の電源供給の切替状態をREADY-ON状態に切り替える車両電源スイッチ40のスイッチ操作がなされた場合において、この状態Eにまで遷移する過程でフェイル(例えばPロック駆動モータ68が動作しない等)が発生した場合には、READY-ON状態に切り替えられないことがあるが、この点は図11,12等を用いて後述する。以下に、上記(状態D)におけるP壁位置及び非P壁位置を検出する制御方法を説明する。
 図7は、P壁位置を検出する制御方法を説明するための図である。P-ECU106は、P壁位置検出制御では、先ず、Pロック駆動モータ68を駆動させてディテントプレート74を図3に示す矢印Cの方向、すなわちP壁96がディテントスプリング82のころ84に向かう方向に回転させ、ころ84とP壁96とを接触させる。P壁96は、P位置92においてすなわち所定のシフトポジションとしてのPポジションにおいて、Pロック駆動モータ68の所定方向としての図3に示す矢印Cの方向の回転を規制する規制部材として機能する。尚、P壁96は、ディテントスプリング82及びころ84と協同して規制部材を構成してもよい。図7において、矢印F1はPロック駆動モータ68による回転力、矢印F2はディテントスプリング82によるバネ力、矢印F3はロッド76による押し戻し力を示す。点線で示すディテントプレート74’は、P壁96ところ84とが接触した位置を示す。従って、ディテントプレート74’の位置を検出することが、P壁96の位置を検出することに相当する。
 ディテントプレート74は、P壁96ところ84との接触後も、点線で示す位置から、Pロック駆動モータ68の回転力F1により図3に示す矢印Cの方向に、ディテントスプリング82のバネ力に抗して回転される。これによりディテントスプリング82に撓みが生じて、バネ力F2が増加し、またロッド76による押し戻し力F3も増加する。回転力F1が、バネ力F2及び押し戻し力F3と釣り合ったところで、ディテントプレート74の回転が停止する。
 P-ECU106は、取得したエンコーダカウントに基づいてディテントプレート74の回転停止を判定する。例えば、P-ECU106は、エンコーダカウントの最小値又は最大値が所定時間変化しない場合に、ディテントプレート74及びPロック駆動モータ68の回転停止を判定する。エンコーダカウントの最小値又は最大値の何れを監視するかは、エンコーダ70に応じて設定されればよく、何れにしても最小値又は最大値が所定時間変化しないことは、ディテントプレート74が動かなくなった状態を示す。
 P-ECU106は、回転停止時のディテントプレート74の位置を暫定的なP壁位置(以下、「暫定P壁位置」と言う)として検出し、更に、ディテントスプリング82の撓み量又は撓み角を算出する。この撓み量又は撓み角の算出は、例えばP-ECU106に予め記憶されているPロック駆動モータ68への印加電圧(供給電圧VMR)に対応する撓み量又は撓み角の関係を示すマップを用いて行われる。P-ECU106は、そのマップから暫定P壁位置検出時のPロック駆動モータ68への印加電圧に対応する撓み量又は撓み角を算出する。尚、Pロック駆動モータ68の印加電圧の代わりに、蓄電装置46の電圧VBATを用いたマップであってもよい。蓄電装置46の電圧VBATは例えばP-ECU106により監視されており、容易に検出することができる。尚、この場合は、蓄電装置46からPロック駆動モータ68までのワイヤーハーネスなどによる電圧降下分を考慮して、マップが作成されることになる。
 P-ECU106は、このマップを用いて算出した撓み量又は撓み角から暫定P壁位置をマップ補正し、マップ補正した位置をP壁位置として確定する。このとき、P-ECU106は、確定したP壁位置において、エンコーダカウントをCNTPに設定する。そして、P-ECU106は、エンコーダカウントを零にするように、Pロック駆動モータ68を駆動させてディテントプレート74を図3に示す矢印Dの方向、すなわちP壁96がディテントスプリング82のころ84から離反する方向に回転させ、ディテントプレート74の位置を所定のP位置とする。この所定のP位置は、Pポジション範囲において予め設定された所定位置であって、確定されたP壁位置とのエンコーダカウント差がCNTPとなるように設定されている。また、この所定のP位置をP目標回転位置としても良い。このように、P壁位置を確定することによりP目標回転位置を設定することができる。尚、印加電圧に対応する撓み量又は撓み角の関係を示すマップの代わりに、Pロック駆動モータ68の出力トルクに対応する撓み量又は撓み角の関係を示すマップであってもよいし、マップを用いて算出する代わりに、撓み量又は撓み角を検出するセンサを設け、それにより検出するようにしてもよい。
 図8は、非P壁位置を検出する制御方法を説明するための図である。P-ECU106は、非P壁位置検出制御では、先ず、Pロック駆動モータ68を駆動させてディテントプレート74を図3に示す矢印Dの方向、すなわち非P壁94がディテントスプリング82のころ84に向かう方向に回転させ、ころ84と非P壁94とを接触させる。非P壁94は、非P位置90においてすなわち所定のシフトポジションとしての非Pポジションにおいて、Pロック駆動モータ68の所定方向としての図3に示す矢印Dの方向の回転を規制する規制部材として機能する。尚、非P壁94は、ディテントスプリング82及びころ84と協同して規制部材を構成してもよい。図8において、矢印F1はPロック駆動モータ68による回転力、矢印F2はディテントスプリング82によるバネ力、矢印F3はロッド76による引っ張り力を示す。点線で示すディテントプレート74”は、非P壁94ところ84とが接触した位置を示す。従って、ディテントプレート74”の位置を検出することが、非P壁94の位置を検出することに相当する。
 ディテントプレート74は、非P壁94ところ84との接触後も、点線で示す位置から、Pロック駆動モータ68の回転力F1により図3に示す矢印Dの方向に、ディテントスプリング82の引っ張り力に抗して回転される。これによりディテントスプリング82に伸びが生じて、バネ力F2が増加し、またロッド76による引っ張り力F3も増加する。回転力F1が、バネ力F2及び引っ張り力F3と釣り合ったところで、ディテントプレート74の回転が停止する。
 P-ECU106は、取得したエンコーダカウントに基づいてディテントプレート74の回転停止を判定する。例えば、P-ECU106は、エンコーダカウントの最小値又は最大値が所定時間変化しない場合に、ディテントプレート74及びPロック駆動モータ68の回転停止を判定する。
 P-ECU106は、回転停止時のディテントプレート74の位置を暫定的な非P壁位置(以下、「暫定非P壁位置」と言う)として検出し、更に、ディテントスプリング82の伸び量を算出する。この伸び量の算出は、例えばP-ECU106に予め記憶されているPロック駆動モータ68への印加電圧に対応する伸び量の関係を示すマップを用いて行われる。P-ECU106は、そのマップから暫定非P壁位置検出時のPロック駆動モータ68への印加電圧に対応する伸び量を算出する。
 P-ECU106は、このマップを用いて算出した伸び量から暫定非P壁位置をマップ補正し、マップ補正した位置を非P壁位置として確定する。このとき、P-ECU106は、確定した非P壁位置において、エンコーダカウントをCNTCPに設定する。そして、P-ECU106は、エンコーダカウントを所定計数値だけ減少させたエンコーダカウントCPとするように、Pロック駆動モータ68を駆動させてディテントプレート74を図3に示す矢印Cの方向、すなわち非P壁94がディテントスプリング82のころ84から離反する方向に回転させ、ディテントプレート74の位置を所定の非P位置とする。この所定の非P位置は、非Pポジション範囲において予め設定された所定位置であって、確定された非P壁位置とのエンコーダカウント差が所定計数値となるように設定されている。また、この所定の非P位置を非P目標回転位置としても良い。このように、非P壁位置を確定することにより非P目標回転位置を設定することができる。尚、印加電圧に対応する伸び量の関係を示すマップの代わりに、Pロック駆動モータ68の出力トルクに対応する伸び量の関係を示すマップであってもよいし、マップを用いて算出する代わりに、伸び量を検出するセンサを設け、それにより検出するようにしてもよい。
 このように、車両10の電源供給の切替状態がIG-ON状態とされたP-ECU106の起動状態では、Pロック駆動モータ68の移動(回転)が規制される方向にPロック駆動モータ68を移動するとき、取得されたエンコーダカウントに基づいて所定のシフトポジションに対応したPロック駆動モータ68の壁位置を検出して、基準位置を設定することができる。
 図9は、Pロック駆動モータ68に印加する通電指令パルスの波形を説明する図である。シフトポジション切替えの通常制御時は、通電指令パルスとしてハイ期間の長い信号をPロック駆動モータ68に印加する。一方、P-ECU106による壁位置検出制御時には、通電指令パルスとして、Pロック駆動モータ68の単位時間当たりの出力を、シフトポジション切替えの通常制御時におけるPロック駆動モータ68の単位時間当たりの出力よりも小さくする信号をPロック駆動モータ68に印加する。具体的には、Pロック駆動モータ68に印加する通電指令パルスのオン幅を小さくする。壁位置検出制御時のPロック駆動モータ68の回転速度を遅くすることにより、壁(非P壁94、P壁96)ところ84との衝撃を低減できる。尚、例えば図9に示す通電指令パルスがオン且つPロック駆動モータ68におけるUVW三相の通電指令がオンであるときに、UVW三相のそれぞれの相に通電される。
 以上のように、車両10の電源供給の切替状態をIG-ON状態またはREADY-ON状態に切り替える車両電源スイッチ40のスイッチ操作がなされたときには、すなわちP-ECU106の非起動状態から起動状態への切替え時には、P-ECU106自体のイニシャル処理が実行された後、パーキングロック装置16における初期制御が実行されて壁位置が検出される。すなわち、パーキングロック装置16における初期制御として、Pロック駆動モータ68の初期駆動制御が行われ、続いて、Pロック駆動モータ68の前記P壁位置及び非P壁位置が検出されて基準位置が設定される。つまり、検出された前記P壁位置及び非P壁位置に基づくPロック駆動モータ68の実可動回転量(実際の可動回転量)は2つの壁位置の間の範囲であって、一方のシフトポジションにおける壁位置検出制御を行って壁位置を検出した後、他方のシフトポジションにおける壁位置検出制御を行って他方の壁位置を検出することで測定することができる。そして、壁位置を検出することでPロック駆動モータ68の絶対位置が把握できるので、目標回転位置を設定することができる。
 ところで、前記壁位置検出制御に先立って実行されるPロック駆動モータ68の前記初期駆動制御などにおいて、例えば、P-ECU106は、Pロック駆動モータ68が動作不可能であることを検出すると、モータ故障であると認識し、基本的に、Pロック駆動モータ68を駆動する必要がある前記壁位置検出制御を実行せずに、車両10の電源供給の切替状態がREADY-ON状態に遷移することを禁止する。ここで、Pロック駆動モータ68が動作不可能になる場合としては、そのPロック駆動モータ68自体のハード的な故障の他に、Pロック駆動モータ68への供給電圧VMR(以下、「Pモータ供給電圧VMR」という)がPロック駆動モータ68を動作させるのに必要な最低限の電圧(例えば前記リレー切替電圧)を下回って低下した場合などが考えられる。例えば、上記Pモータ供給電圧VMRが低下したことによりPロック駆動モータ68が動作不可能となりそれがP-ECU106に検出される場合を図10を用いて説明できる。
 図10は、P-ECU106の起動状態においてエンジン12が作動させられておらずに放置される等して、Pモータ供給電圧VMRであるバッテリ電圧が12Vから次第に低下する場合を例としたタイムチャートである。なお、図10中に記載のPモータとはPロック駆動モータ68のことである。
 図10のt1時点では、低下しているPモータ供給電圧VMRが、前記リレー切替電圧(例えば6.6V)に達している。従って、t1時点以降では、前記Pモータ電源リレーがPロック駆動モータ68への電力供給をオフにし、Pロック駆動モータ68は動作不可能になる。
 そして、t1時点からPモータ供給電圧VMRは更に低下し、ノイズ等による瞬断によってt2時点とt3時点との間でP-ECU106の起動状態を維持できる最低電圧であるECU停止電圧(例えば5.8V)を下回り、P-ECU106はそのt2時点とt3時点との間で一時的に非起動状態(ECU停止)になっている。そして、t3時点以降ではPモータ供給電圧VMRは上記ECU停止電圧以上に回復しているのでP-ECU106は再び起動状態になっている。
 P-ECU106が非起動状態から起動状態に切り替わった後に、t4時点で、Pモータ供給電圧VMRが、前記ECU停止電圧より高く且つ前記リレー切替電圧より低く設定されたPロック駆動モータ68の動作診断をする診断電圧(例えば6.0V)以上になっているので、P-ECU106は、Pロック駆動モータ68の動作診断を行う、すなわち、Pロック駆動モータ68が動作可能か否かを判定する。そうすると、図10において、t4時点以降で、Pモータ供給電圧VMRが前記リレー切替電圧以下であるのでPロック駆動モータ68は動作せず、P-ECU106は、Pロック駆動モータ68が動作不可能であると判定する。すなわち、P-ECU106が非起動状態から起動状態に切り替わった後のPモータ供給電圧VMRが、図10の斜線部A01に示すように、上記診断電圧以上であって上記リレー切替電圧以下である範囲内にある場合には、Pロック駆動モータ68自体のハード的な故障でなくても、Pモータ供給電圧VMRの低下に起因してPロック駆動モータ68が動作不可能であると判定される。
 このように、Pモータ供給電圧VMRの低下に起因してPロック駆動モータ68が動作不可能となっている場合には、例えばバッテリが外部から充電されるなどしてPモータ供給電圧VMRが回復すればPロック駆動モータ68が動作可能になることがある。本実施例では、P-ECU106は、Pロック駆動モータ68が動作不可能であると一旦判定しても、Pモータ供給電圧VMRが回復(上昇)すれば、READY-ON状態に遷移可能とする。以下に、その制御機能の要部を説明する。
 図11は、P-ECU106に備えられた制御機能の要部を説明する機能ブロック線図である。図11に示すように、P-ECU106は、供給電圧検出判断手段130、アクチュエータ動作判定手段132、乗員操作判断手段134、アクチュエータ駆動許可手段136、壁位置検出制御手段138、及び車両走行許可手段140を備えている。
 供給電圧検出判断手段130は、P-ECU106が非起動状態から起動状態へ切り替えられた場合には、その時からPモータ供給電圧VMRを逐次検出する。そして、供給電圧検出判断手段130は、そのPモータ供給電圧VMRが予め定められた供給電圧判定値V1MR以上であるか否かを判断する、言い換えれば、Pモータ供給電圧VMRが供給電圧判定値V1MR未満であるか否かを判断する。その供給電圧判定値V1MRは、Pモータ供給電圧VMRの下限値であって、例えば、前記リレー切替電圧よりも高いPロック駆動モータ68の正常な動作が保証される下限電圧である保証電圧(例えば8V)に設定されている。
 例えば、Pモータ供給電圧VMRが前記供給電圧判定値V1MR未満であれば、供給電圧検出判断手段130は、Pモータ供給電圧VMRが前記供給電圧判定値V1MR未満であると判断する。その後、Pモータ供給電圧VMRが前記供給電圧判定値V1MR未満から供給電圧判定値V1MR以上になったとすれば、供給電圧検出判断手段130は、Pモータ供給電圧VMRが前記供給電圧判定値V1MR未満から供給電圧判定値V1MR以上になったと判断する。
 アクチュエータ動作判定手段132は、Pロック駆動モータ68が動作可能であるか否かを判定するフェイル状態判定を行う。具体的に、アクチュエータ動作判定手段132は、上記フェイル状態判定を、P-ECU106が非起動状態から起動状態へ切り替えられた場合に、例えば図6の状態Cにおいて行う。また、アクチュエータ動作判定手段132は、上記フェイル状態判定でPロック駆動モータ68が動作不可能であると判定した後に、Pモータ供給電圧VMRが前記供給電圧判定値V1MR未満から供給電圧判定値V1MR以上になった場合にも、上記フェイル状態判定を行う。上記Pモータ供給電圧VMRが上記供給電圧判定値V1MR未満から供給電圧判定値V1MR以上になったか否かは、前記供給電圧検出判断手段130によって判断される。前記フェイル状態判定に関し、アクチュエータ動作判定手段132は、例えば、Pロック駆動モータ68を図3の矢印C,Dの両方向それぞれに所定量回転させる指令をし、Pロック駆動モータ68の回転に応じてエンコーダ70から出力されるパルス信号を何れの回転方向でも検出できなければ、Pロック駆動モータ68が動作不可能であると判定する。また、その他の方法やセンサ等を用いて、Pロック駆動モータ68が動作可能であるか否かを判定してもよい。
 乗員操作判断手段134は、予め定められた乗員による操作がなされたか否かを判断する。その予め定められた乗員による操作とは、具体的には、車両10を走行可能な状態に切り替える操作、すなわち、車両10の電源供給の切替状態を前記走行可能状態(READY-ON状態)に切り替える操作(以下、「走行可能化操作」という)である。この操作がなされたか否かは、PM-HV-ECU104から取得される。
 アクチュエータ駆動許可手段136は、アクチュエータ動作判定手段132が前記フェイル状態判定で、Pロック駆動モータ68が動作可能であると判定した場合には、Pロック駆動モータ68の駆動を許可する。この許可によりPロック駆動モータ68を駆動させることが可能となる。一方、アクチュエータ駆動許可手段136は、アクチュエータ動作判定手段132が前記フェイル状態判定で、Pロック駆動モータ68が動作不可能であると判定した場合には、Pロック駆動モータ68の駆動を禁止する。この禁止によりPロック駆動モータ68を駆動させることができなくなる。
 また、アクチュエータ駆動許可手段136は、アクチュエータ動作判定手段132が前記フェイル状態判定で、Pロック駆動モータ68が動作不可能であると判定した場合でも、その後、Pロック駆動モータ68の駆動を許可することがある。具体的には、アクチュエータ駆動許可手段136は、アクチュエータ動作判定手段132が前記フェイル状態判定で、Pロック駆動モータ68が動作不可能であると判定した後に、Pモータ供給電圧VMRが前記供給電圧判定値V1MR未満から供給電圧判定値V1MR以上になった場合には、Pロック駆動モータ68の駆動を許可する。このとき、アクチュエータ駆動許可手段136は、一旦、Pロック駆動モータ68の駆動を禁止した後に上記許可をすることになるので、その禁止と許可との錯綜を避けるため、その禁止を解除してからその許可をする。
 上記のように、アクチュエータ駆動許可手段136は、アクチュエータ動作判定手段132が前記フェイル状態判定で、Pロック駆動モータ68が動作不可能であると判定した後に、Pモータ供給電圧VMRが前記供給電圧判定値V1MR未満から供給電圧判定値V1MR以上になった場合には、Pロック駆動モータ68の駆動を許可するが、更に、その許可をするための条件を増やしてもよい。例えば、Pモータ供給電圧VMRが前記供給電圧判定値V1MR未満から供給電圧判定値V1MR以上になった後の再度の前記フェイル状態判定でアクチュエータ動作判定手段132がPロック駆動モータ68が動作可能であると判定した場合に限り、アクチュエータ駆動許可手段136は、Pロック駆動モータ68の駆動を許可するとしてもよい。また、Pモータ供給電圧VMRが前記供給電圧判定値V1MR未満から供給電圧判定値V1MR以上になった後に前記走行可能化操作がなされたことを条件に、アクチュエータ駆動許可手段136は、Pロック駆動モータ68の駆動を許可するとしてもよい。また、それらの条件を組み合わせて、Pロック駆動モータ68の駆動を許可するとしてもよい。上記Pモータ供給電圧VMRが前記供給電圧判定値V1MR未満から供給電圧判定値V1MR以上になったか否かは前記供給電圧検出判断手段130によって判断され、上記走行可能化操作がなされたか否かは前記乗員操作判断手段134によって判断される。
 壁位置検出制御手段138は、P-ECU106が非起動状態から起動状態へ切り替えられた場合において、アクチュエータ駆動許可手段136がPロック駆動モータ68の駆動を許可すると、前記P壁位置検出制御および前記非P壁位置検出制御を実行し、前記P壁位置と前記非P壁位置とを検出する。一方で、壁位置検出制御手段138は、アクチュエータ駆動許可手段136がPロック駆動モータ68の駆動を禁止していれば、前記P壁位置検出制御および前記非P壁位置検出制御を実行しない。
 車両走行許可手段140は、壁位置検出制御手段138が前記P壁位置および前記非P壁位置の検出を完了すると、車両10の電源供給の切替状態を前記走行可能状態(READY-ON状態)に切り替えることを、PM-HV-ECU104に対して許可する。その許可がなされると、PM-HV-ECU104は、前記走行可能化操作がなされれば或いは既に前記走行可能化操作がなされていれば、上記車両10の電源供給の切替状態を前記走行可能状態(READY-ON状態)に切り替える。すなわち、アクチュエータ駆動許可手段136がPロック駆動モータ68の駆動を許可した場合に、上記走行可能化操作がなされていれば、上記車両10の電源供給の切替状態が前記走行可能状態(READY-ON状態)に切り替えられることになる。
 一方、車両走行許可手段140は、アクチュエータ駆動許可手段136がPロック駆動モータ68の駆動を禁止した場合には、車両10の電源供給の切替状態を前記走行可能状態(READY-ON状態)に切り替えることを、PM-HV-ECU104に対して許可しない。その許可がなされないので、PM-HV-ECU104は、上記車両10の電源供給の切替状態を前記走行可能状態(READY-ON状態)には切り替えない。例えば、前記走行可能化操作がなされていた場合には、その切替状態を上記走行可能状態(READY-ON状態)にはせずに前記電源オン状態(IG-ON状態)にする。
 図12は、本実施例のP-ECU106の制御作動の要部、すなわち、Pロック駆動モータ68の駆動を禁止しまたは許可する制御作動を説明するフローチャートである。このフローチャートは、単独で或いは他の制御作動と並列的に実行されるものである。また、このフローチャートは、例えば、P-ECU106が非起動状態から起動状態へ切り替わった場合に実行される。P-ECU106が非起動状態から起動状態へ切り替わる場合としては、例えば図13に示すように、車両電源スイッチ40のスイッチ操作によって車両10の電源供給の切替状態がALL-OFF状態またはACC-ON状態からIG-ON状態に切り替えられた場合、或いは、Pモータ供給電圧VMRがある程度低下しておりノイズ等によりP-ECU106が瞬断されその瞬断後にPモータ供給電圧VMRが前記ECU停止電圧以上に回復した場合(図10のタイムチャート参照)などが挙げられる。なお、図13に記載の補機電圧とは、エアコンやナビやオーディオ類64などの補機に供給される電圧であり、本実施例では前記バッテリ電圧であるので、前記Pモータ供給電圧VMRと同じである。
 図12では、P-ECU106が非起動状態から起動状態へ切り替わると、ステップ(以下、ステップを省略する)SA1に移る。そのSA1においては、Pモータ供給電圧VMRが逐次検出され記憶される。このPモータ供給電圧VMRの検出等はこのSA1から開始されそれ以降も継続する。SA1の次はSA2へ移る。このSA1は供給電圧検出判断手段130に対応する。
 SA2においては、Pロック駆動モータ68が動作可能であるか否かを判定する前記フェイル状態判定が行われる。このSA2の判定が肯定された場合、すなわち、Pロック駆動モータ68が動作可能である場合には、SA3に移る。一方、このSA2の判定が否定された場合には、SA7に移る。このSA2はアクチュエータ動作判定手段132に対応する。
 SA3においては、Pロック駆動モータ68の駆動が許可される。SA3の次はSA4へ移る。SA3はアクチュエータ駆動許可手段136に対応する。
 SA4においては、前記P壁位置検出制御および前記非P壁位置検出制御が実行され、前記P壁位置および前記非P壁位置が検出される。前記P壁位置および前記非P壁位置の検出(壁当て学習)が完了するとSA5に移る。SA4は壁位置検出制御手段138に対応する。
 SA5においては、車両10の電源供給の切替状態をREADY-ON状態に切り替える乗員による操作(走行可能化操作)、すなわち、乗員によるスタートスイッチ操作が実施されたか否かが判断される。P-ECU106の起動状態への切替時に上記スタートスイッチ操作が実施されていてもSA5の判断は肯定される。このSA5の判断が肯定された場合、すなわち、上記スタートスイッチ操作が実施された場合に、SA6に移る。SA5は乗員操作判断手段134に対応する。
 SA6においては、車両10の電源供給の切替状態を前記走行可能状態(READY-ON状態)に切り替えることが、PM-HV-ECU104に対して許可される。その許可により、PM-HV-ECU104は、上記切替状態を前記走行可能状態(READY-ON状態)に切り替える。SA6は車両走行許可手段140に対応する。
 SA7においては、Pロック駆動モータ68が異常状態(フェイル状態)であると判定される。そして、Pロック駆動モータ68の駆動が禁止される。SA7はアクチュエータ駆動許可手段136に対応する。SA7の次はSA8へ移る。
 SA8においては、Pモータ供給電圧VMRが低下(不足)しているか否か、具体的には、Pモータ供給電圧VMRが前記供給電圧判定値V1MR未満であるか否かが判断される。このSA8の判断が肯定された場合、すなわち、Pモータ供給電圧VMRが前記供給電圧判定値V1MR未満である場合には、前記SA2にてPロック駆動モータ68が動作不可能であると判定された原因が上記Pモータ供給電圧VMRの低下にあると考えられ、SA9に移る。一方、このSA8の判断が否定された場合には、上記原因が上記Pモータ供給電圧VMRに問題は無くPロック駆動モータ68自体のハード的な故障にあると考えられ、SA16に移る。SA8は供給電圧検出判断手段130に対応する。
 SA9においては、「低電圧によるPロック駆動モータ68の異常(フェイル)発生」という履歴を残す。SA9の次はSA10へ移る。
 SA10においては、Pモータ供給電圧VMR(=補機電圧)が供給電圧判定値V1MR以上に復帰したか否かが判断される。Pモータ供給電圧VMRが供給電圧判定値V1MR以上に復帰すれば、SA11に移る。SA10は供給電圧検出判断手段130に対応する。
 SA11においては、乗員による前記スタートスイッチ操作(走行可能化操作)が、上記SA10の判断の肯定後、すなわち、Pモータ供給電圧VMRが供給電圧判定値V1MR以上に復帰した後おいて実施されたか否かが判断される。このSA11の判断が肯定された場合、すなわち、上記スタートスイッチ操作が上記SA10の判断の肯定後に実施された場合に、SA12に移る。SA11は乗員操作判断手段134に対応する。
 SA12においては、前記SA7にてなされたPロック駆動モータ68が異常状態であるとの異常判定が解除(クリア)される。そして、Pロック駆動モータ68の駆動禁止が解除される。SA12はアクチュエータ駆動許可手段136に対応する。SA12の次はSA13へ移る。
 SA13においては、Pロック駆動モータ68が動作可能であるか否かを判定する前記フェイル状態判定が行われる。既にSA2にてそのフェイル状態判定は一度行われているので、このSA13にて行われるフェイル状態判定は、再度のフェイル状態判定であると言える。このSA13の判定が肯定された場合、すなわち、Pロック駆動モータ68が動作可能である場合には、SA14に移る。一方、このSA13の判定が否定された場合には、SA16に移る。このSA13はアクチュエータ動作判定手段132に対応する。
 SA14においては、Pロック駆動モータ68の駆動が許可される。SA14の次はSA15へ移る。SA14はアクチュエータ駆動許可手段136に対応する。
 SA15においては、前記P壁位置検出制御および前記非P壁位置検出制御が実行され、前記P壁位置および前記非P壁位置が検出される。前記P壁位置および前記非P壁位置の検出(壁当て学習)が完了するとSA6に移る。SA15は壁位置検出制御手段138に対応する。
 SA16においては、Pロック駆動モータ68自体のハード的な故障すなわちモータ故障であると判定される。そして、Pロック駆動モータ68の駆動が禁止され、既にPロック駆動モータ68の駆動が禁止されているのであればその禁止が継続される。SA16はアクチュエータ駆動許可手段136に対応する。SA16の次はSA17へ移る。
 SA17においては、車両10の電源供給の切替状態を前記走行可能状態(READY-ON状態)に切り替えることが、PM-HV-ECU104に対して許可されない。その許可がなされないので、PM-HV-ECU104は、上記車両10の電源供給の切替状態を前記走行可能状態(READY-ON状態)には切り替えない。例えば、その切替状態を前記電源オン状態(IG-ON状態)のままにする。SA17は車両走行許可手段140に対応する。
 図14は、図12で説明した制御作動と対比するため、従来技術におけるP-ECUの制御作動の要部を説明するためのフローチャートである。このフローチャートも図12と同様に、例えば図13に示すようにして、P-ECUが非起動状態から起動状態へ切り替わった場合に実行される。
 図14のSB1においては、Pロック駆動モータ68が動作可能であるか否かが判定され、Pロック駆動モータ68が動作可能であればSB2~SB4が実行される。一方で、Pロック駆動モータ68が動作不可能であればSB5~SB7が実行される。
 SB2においては、図12のSA4と同様に前記壁当て学習が行わる。その壁当て学習が完了すると、SB3において、図12のSA5と同様に、前記スタートスイッチ操作が実施されたか否かが判断される。そして、そのSB3の判断が肯定されると、SB4において、車両10の電源供給の切替状態をREADY-ON状態に切り替えることが、PM-HV-ECU104に対して許可される。その許可により、PM-HV-ECU104は、上記切替状態をREADY-ON状態に切り替える。
 一方、SB5においては、図12のSA7と同様にPロック駆動モータ68が異常状態(フェイル状態)であると判定され、続くSB6においては、図12のSA16と同様に前記モータ故障であると判定される。そして、SB7においては、車両10の電源供給の切替状態をREADY-ON状態に切り替えることが、PM-HV-ECU104に対して許可されない。その許可がなされないので、PM-HV-ECU104は、前記スタートスイッチ操作が実施されたとしても、上記車両10の電源供給の切替状態をREADY-ON状態には切り替えない。例えば、その切替状態をIG-ON状態のままにする。
 このように、図14に示す従来技術では、一旦、Pロック駆動モータ68が動作不可能であると判定されると、その後Pモータ供給電圧VMRの回復によりPロック駆動モータ68が動作可能になったとしても、P-ECUを再起動しない限り、車両10の電源供給の切替状態をREADY-ON状態には切り替えることができないという問題点があった。しかし、図12に示す本実施例の制御作動では、そのような従来技術の問題点が解消されている。
 本実施例によれば、アクチュエータ動作判定手段132は、Pロック駆動モータ(アクチュエータ)68が動作可能であるか否かを判定する前記フェイル状態判定を行う。そして、アクチュエータ駆動許可手段136は、アクチュエータ動作判定手段132が前記フェイル状態判定で、Pロック駆動モータ68が動作不可能であると判定した後に、Pモータ供給電圧VMRが前記供給電圧判定値V1MR未満から供給電圧判定値V1MR以上になった場合には、Pロック駆動モータ68の駆動を許可する。ここで、Pモータ供給電圧VMRが前記供給電圧判定値V1MR未満から供給電圧判定値V1MR以上に回復したとすれば、その回復前になされたPロック駆動モータ68が動作不可能であるとの判定はPモータ供給電圧VMRの低下に起因するものと考えられ、また、そのPモータ供給電圧VMRの回復後にはPロック駆動モータ68が動作可能な状態になっているものと考えられる。従って、Pロック駆動モータ68が動作不可能と判定された場合において、その後にPロック駆動モータ68が動作可能になる場合、具体的にはPモータ供給電圧VMRが回復する場合を加味して適切な処理を行うことができる。このような適切な処理を行うことにより、運転者の快適性を損なう機会を抑制できる。なお、適切な処理とは、例えば、Pロック駆動モータ68が動作可能である場合にはそのPロック駆動モータ68が動作可能であることを前提として正常時のPロック駆動モータ68の制御をすること等である。一方、不適切な処理とは、Pロック駆動モータ68が動作可能である場合にそれが動作不可能であると認識してそのPロック駆動モータ68を動作させない等のフェイル時の処理をすることである。
 また、本実施例によれば、供給電圧判定値V1MRはPモータ供給電圧VMRの下限値であるので、Pロック駆動モータ68が動作不可能と判定された場合においてその原因がPモータ供給電圧VMRの低下によるものであることを、より適切に判断できる。
 また、本実施例によれば、アクチュエータ動作判定手段132は、前記フェイル状態判定でPロック駆動モータ68が動作不可能であると判定した後に、Pモータ供給電圧VMRが前記供給電圧判定値V1MR未満から供給電圧判定値V1MR以上になった場合には、上記フェイル状態判定を再度行う。そして、その再度のフェイル状態判定でアクチュエータ動作判定手段132がPロック駆動モータ68が動作可能であると判定した場合に限り、アクチュエータ駆動許可手段136は、Pロック駆動モータ68の駆動を許可するとしてもよい。そのようにしたとすれば、Pモータ供給電圧VMRが供給電圧判定値V1MR以上に回復したことによりPロック駆動モータ68が動作可能になったことを確実に認識した上で、Pロック駆動モータ68の駆動を許可することが可能である。
 また、本実施例によれば、アクチュエータ動作判定手段132が前記フェイル状態判定で、Pロック駆動モータ68が動作不可能であると判定した後に、Pモータ供給電圧VMRが前記供給電圧判定値V1MR未満から供給電圧判定値V1MR以上になった場合には、Pモータ供給電圧VMRが前記供給電圧判定値V1MR未満から供給電圧判定値V1MR以上になった後に前記走行可能化操作がなされたことを条件に、アクチュエータ駆動許可手段136は、Pロック駆動モータ68の駆動を許可するとしてもよい。そのようにしたとすれば、Pロック駆動モータ68が駆動するとしてもそれは乗員による操作の後であるので、例えば乗員がPロック駆動モータ68の動作不可能を認識しているときに、その乗員に違和感を生じさせることを回避できる。
 また、本実施例によれば、乗員操作判断手段134によって操作の有無が判断される予め定められた乗員による操作とは、車両10の電源供給の切替状態を前記走行可能状態(READY-ON状態)に切り替える操作(走行可能化操作)であるので、その走行可能化操作は車両走行を開始するには必要な操作であり、Pロック駆動モータ68の駆動を許可する際に乗員による特別な操作が必要とされないという利点がある。
 また、本実施例によれば、アクチュエータ駆動許可手段136は、アクチュエータ動作判定手段132が前記フェイル状態判定で、Pロック駆動モータ68が動作不可能であると判定した場合には、Pロック駆動モータ68の駆動を禁止する。また、アクチュエータ駆動許可手段136は、Pロック駆動モータ68の駆動を禁止した後にそのPロック駆動モータ68の駆動を許可する場合には、その禁止を解除してからその許可をする。従って、Pロック駆動モータ68の駆動を禁止することと許可することとが錯綜するのを回避できる。
 また、本実施例によれば、図12のSA2においてPロック駆動モータ68が動作不可能であると判定された後に、SA8において、Pモータ供給電圧VMRが低下(不足)しているか否かが判断されるので、上記SA2にてPロック駆動モータ68が動作不可能であると判定された原因が、上記Pモータ供給電圧VMRの低下にあるのか、または、Pロック駆動モータ68自体のハード的な故障にあるのかを正しく判定できる。
 また、本実施例によれば、図12のSA10においてPモータ供給電圧VMRが供給電圧判定値V1MR以上に復帰したと判断された後にSA13で再度のフェイル状態判定が行われるので、例えば、上記Pモータ供給電圧VMRに拘わらず、その再度のフェイル状態判定を定期的に行ってPロック駆動モータ68が動作可能であるか否かを判定する場合などと比較して、Pロック駆動モータ68等にかける負担が軽減される。
 また、本実施例によれば、図12のSA8でもSA10でも、Pモータ供給電圧VMRに対する判定値は供給電圧判定値V1MRで共通しているので、それぞれのステップで別個の判定値を設定する必要がない。
 以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
 例えば、前述の実施例において、Pロック駆動モータ68等に電力供給するバッテリは、蓄電装置46に含まれていてもよいし、蓄電装置46とは別個の電源として車両10に設けられていてもよい。
 また、前述の実施例において、供給電圧判定値V1MRは、Pロック駆動モータ68の前記保証電圧に設定されているが、それ以外の電圧値が設定されていてもよく、例えば、Pロック駆動モータ68に電力供給する下限電圧である前記リレー切替電圧に設定されていても差し支えない。
 また、前述の実施例において、乗員操作判断手段134によって判断される予め定められた乗員による操作は、前記走行可能化操作であると説明されているが、それに限定されるわけではなく、乗員による他の操作であっても差し支えない。
 また、前述の実施例において、PM-HV-ECU104は、Pポジションにあるときに、ブレーキオン状態BONで前記パワースイッチ信号の入力を検知すると、車両10の電源供給の切替状態を何れの状態からもREADY-ON状態へ切り替えることが例示されているが、このREADY-ON状態へ切り替える乗員による操作に替えて或いはこの操作と共にこれ以外の乗員による操作によってREADY-ON状態へ切り替えても差し支えない。
 また、前述の実施例において、図12のフローチャートのSA11は、SA14よりも前に設けられているが、そのSA11がSA14よりも前ではなくSA14とSA6との間に設けられているフローチャートも考え得る。
 また、前述の実施例において、図12のフローチャートにSA13が設けられているが、そのSA13が設けられておらずにSA12の次にはSA14へ移るフローチャートも考え得る。
 また、前述の実施例において、図12のフローチャートにSA9が設けられているが、このSA9は無くても差し支えない。
 また、前述の実施例において、アクチュエータ動作判定手段132は、前記フェイル状態判定を、P-ECU106が非起動状態から起動状態へ切り替えられた場合などに行うことが例示されているが、それ以外の場合、例えばPM-HV-ECU104又はP-ECU106が何らかのフェイルを検出した場合においても、前記フェイル状態判定を行うこととしても差し支えない。また、所定の時間間隔を空けて定期的に前記フェイル状態判定を行っても差し支えない。
 なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
10:車両
14:駆動輪(車輪)
16:パーキングロック装置
68:Pロック駆動モータ(アクチュエータ)
106:P-ECU(車両用シフト制御装置)

Claims (6)

  1.  電動のアクチュエータの駆動により、車輪の回転を拘束するロック位置と該車輪の回転を拘束しない非ロック位置とに選択的に切り替えられるパーキングロック装置を備えた車両において、前記アクチュエータが動作可能であるか否かを判定するフェイル状態判定を行う車両用シフト制御装置であって、
     前記フェイル状態判定で前記アクチュエータが動作不可能であると判定した後に、前記アクチュエータへの供給電圧が予め定められた供給電圧判定値未満から該供給電圧判定値以上になった場合には、前記アクチュエータの駆動を許可する
     ことを特徴とする車両用シフト制御装置。
  2.  前記供給電圧判定値は、前記アクチュエータの供給電圧の下限値である
     ことを特徴とする請求項1に記載の車両用シフト制御装置。
  3.  前記フェイル状態判定で前記アクチュエータが動作不可能であると判定した後に、前記アクチュエータへの供給電圧が前記供給電圧判定値未満から該供給電圧判定値以上になった場合には、前記フェイル状態判定を再度行い、該再度のフェイル状態判定で前記アクチュエータが動作可能であると判定した場合に限り前記アクチュエータの駆動を許可する
     ことを特徴とする請求項1又は2に記載の車両用シフト制御装置。
  4.  前記フェイル状態判定で前記アクチュエータが動作不可能であると判定した後に、前記アクチュエータへの供給電圧が前記供給電圧判定値未満から該供給電圧判定値以上になった場合には、予め定められた乗員による操作が前記供給電圧が前記供給電圧判定値以上になった後になされたことを条件に、前記アクチュエータの駆動を許可する
     ことを特徴とする請求項1乃至3の何れか1項に記載の車両用シフト制御装置。
  5.  前記予め定められた乗員による操作は、前記車両を走行可能な状態に切り替える操作である
     ことを特徴とする請求項4に記載の車両用シフト制御装置。
  6.  前記フェイル状態判定で前記アクチュエータが動作不可能であると判定した場合には、前記アクチュエータの駆動を禁止し、
     前記アクチュエータの駆動を禁止した後に該アクチュエータの駆動を許可する場合には、該禁止を解除してから該許可をする
     ことを特徴とする請求項1乃至5の何れか1項に記載の車両用シフト制御装置。
PCT/JP2010/052472 2010-02-18 2010-02-18 車両用シフト制御装置 WO2011101973A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112010005287.5T DE112010005287B4 (de) 2010-02-18 2010-02-18 Fahrzeugschaltungssteuerungsgerät für ein Fahrzeug, das mit einer Parksperrenvorrichtung versehen ist
CN201080066228.0A CN102859239B (zh) 2010-02-18 2010-02-18 车辆用换档控制装置
JP2012500426A JP5321728B2 (ja) 2010-02-18 2010-02-18 車両用シフト制御装置
PCT/JP2010/052472 WO2011101973A1 (ja) 2010-02-18 2010-02-18 車両用シフト制御装置
US13/585,054 US8734295B2 (en) 2010-02-18 2012-08-14 Vehicular shift control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/052472 WO2011101973A1 (ja) 2010-02-18 2010-02-18 車両用シフト制御装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/585,054 Continuation-In-Part US8734295B2 (en) 2010-02-18 2012-08-14 Vehicular shift control apparatus

Publications (1)

Publication Number Publication Date
WO2011101973A1 true WO2011101973A1 (ja) 2011-08-25

Family

ID=44482591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052472 WO2011101973A1 (ja) 2010-02-18 2010-02-18 車両用シフト制御装置

Country Status (5)

Country Link
US (1) US8734295B2 (ja)
JP (1) JP5321728B2 (ja)
CN (1) CN102859239B (ja)
DE (1) DE112010005287B4 (ja)
WO (1) WO2011101973A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013133089A (ja) * 2011-12-27 2013-07-08 Fujitsu Ten Ltd マイコン監視装置、車両の電気負荷を制御する電子制御装置およびマイコン監視方法
JP2016094949A (ja) * 2014-11-12 2016-05-26 株式会社デンソー レンジ切換制御装置
JP2018025234A (ja) * 2016-08-09 2018-02-15 トヨタ自動車株式会社 車両のシフト制御装置
JP2018084322A (ja) * 2016-11-25 2018-05-31 トヨタ自動車株式会社 車両の制御装置
WO2020166210A1 (ja) * 2019-02-15 2020-08-20 パナソニックIpマネジメント株式会社 シフトバイワイヤ用バックアップ電源システム、制御プログラム
JP2020139579A (ja) * 2019-02-28 2020-09-03 日本電産株式会社 駆動装置
CN114559887A (zh) * 2022-03-01 2022-05-31 东风汽车集团股份有限公司 一种p挡故障诊断方法及装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110062865A (ko) * 2009-12-04 2011-06-10 현대자동차주식회사 쉬프트 바이 와이어 변속장치를 탑재한 차량의 세차모드 제어방법
DE112010005550B4 (de) * 2010-05-11 2017-01-05 Toyota Jidosha Kabushiki Kaisha Fahrzeugschaltungssteuerungsvorrichtung
US9410616B2 (en) * 2014-12-02 2016-08-09 Toyota Jidosha Kabushiki Kaisha Shift lever position determination device for vehicle
JP6525146B2 (ja) * 2015-04-24 2019-06-05 三菱自動車工業株式会社 シフト制御装置
JP6300858B2 (ja) * 2016-04-08 2018-03-28 本田技研工業株式会社 電動パーキングロック装置
JP6787762B2 (ja) * 2016-11-30 2020-11-18 トヨタ自動車株式会社 車両用パーキングロック制御装置
JP7207105B2 (ja) * 2019-04-01 2023-01-18 トヨタ自動車株式会社 車両の制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03219165A (ja) * 1990-01-25 1991-09-26 Nissan Motor Co Ltd 自動変速機のシフト指示装置
JPH061157A (ja) * 1992-06-23 1994-01-11 Toyota Motor Corp 自動変速機のシフト制御装置
JP2002349701A (ja) * 2001-05-29 2002-12-04 Jatco Ltd シフトバイワイヤシステム
JP2006336840A (ja) * 2005-06-06 2006-12-14 Denso Corp シフトレンジ切替装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3219165B2 (ja) 1992-08-31 2001-10-15 ティーディーケイ株式会社 金属膜パターン形成方法
JP2003034157A (ja) 2001-07-19 2003-02-04 Toyota Motor Corp 変速機のシフト制御装置及び変速機のシフト操作装置
JP4356353B2 (ja) * 2002-12-27 2009-11-04 アイシン・エィ・ダブリュ株式会社 ポジション判断装置、ポジション判断方法及びプログラム
CN100427812C (zh) * 2004-09-29 2008-10-22 丰田自动车株式会社 自动变速器的档位切换装置
JP4930457B2 (ja) 2008-05-26 2012-05-16 トヨタ自動車株式会社 車両の制御装置
JP5169930B2 (ja) * 2009-03-23 2013-03-27 トヨタ自動車株式会社 車両用シフト制御装置
JP5375253B2 (ja) * 2009-03-26 2013-12-25 トヨタ自動車株式会社 車両用シフト制御装置
JP5404685B2 (ja) * 2011-04-06 2014-02-05 株式会社東芝 不揮発性半導体記憶装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03219165A (ja) * 1990-01-25 1991-09-26 Nissan Motor Co Ltd 自動変速機のシフト指示装置
JPH061157A (ja) * 1992-06-23 1994-01-11 Toyota Motor Corp 自動変速機のシフト制御装置
JP2002349701A (ja) * 2001-05-29 2002-12-04 Jatco Ltd シフトバイワイヤシステム
JP2006336840A (ja) * 2005-06-06 2006-12-14 Denso Corp シフトレンジ切替装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013133089A (ja) * 2011-12-27 2013-07-08 Fujitsu Ten Ltd マイコン監視装置、車両の電気負荷を制御する電子制御装置およびマイコン監視方法
JP2016094949A (ja) * 2014-11-12 2016-05-26 株式会社デンソー レンジ切換制御装置
JP2018025234A (ja) * 2016-08-09 2018-02-15 トヨタ自動車株式会社 車両のシフト制御装置
US10309533B2 (en) 2016-08-09 2019-06-04 Toyota Jidosha Kabushiki Kaisha Shift controller for vehicle
JP2018084322A (ja) * 2016-11-25 2018-05-31 トヨタ自動車株式会社 車両の制御装置
WO2020166210A1 (ja) * 2019-02-15 2020-08-20 パナソニックIpマネジメント株式会社 シフトバイワイヤ用バックアップ電源システム、制御プログラム
JP2020133716A (ja) * 2019-02-15 2020-08-31 パナソニックIpマネジメント株式会社 シフトバイワイヤ用バックアップ電源システム、制御プログラム
US11881740B2 (en) 2019-02-15 2024-01-23 Panasonic Intellectual Property Management Co., Ltd. Backup power supply system for shift-by-wire system and non-transitory storage medium
JP2020139579A (ja) * 2019-02-28 2020-09-03 日本電産株式会社 駆動装置
JP7338168B2 (ja) 2019-02-28 2023-09-05 ニデック株式会社 駆動装置
CN114559887A (zh) * 2022-03-01 2022-05-31 东风汽车集团股份有限公司 一种p挡故障诊断方法及装置
CN114559887B (zh) * 2022-03-01 2023-06-02 东风汽车集团股份有限公司 一种p挡故障诊断方法及装置

Also Published As

Publication number Publication date
DE112010005287T5 (de) 2013-02-07
JPWO2011101973A1 (ja) 2013-06-17
US20120309590A1 (en) 2012-12-06
DE112010005287B4 (de) 2022-08-04
CN102859239B (zh) 2014-08-13
JP5321728B2 (ja) 2013-10-23
CN102859239A (zh) 2013-01-02
US8734295B2 (en) 2014-05-27

Similar Documents

Publication Publication Date Title
JP5321728B2 (ja) 車両用シフト制御装置
JP5310871B2 (ja) 車両用のシフト制御装置
JP5240172B2 (ja) 車両用シフト制御装置
JP5392409B2 (ja) 車両用シフト制御装置
JP5359459B2 (ja) 車両のシフト制御装置
JP5375253B2 (ja) 車両用シフト制御装置
JP6696856B2 (ja) 車両のシフト制御装置
WO2009145014A1 (ja) 車両の制御装置
JP5071422B2 (ja) 車両用シフト制御装置
JP5267270B2 (ja) 車両のシフト制御装置
JP5733165B2 (ja) 車両の制御装置
WO2010128561A1 (ja) 車両用駐車制御装置
JP5195710B2 (ja) 車両の制御装置
JP6626585B2 (ja) 車両の制御装置及び車両の制御方法
JP2005069407A (ja) 動力伝達機構の制御装置
JP6583074B2 (ja) 車両用パーキングロック機構の制御装置
JP2009097581A (ja) シフト装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080066228.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846110

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012500426

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120100052875

Country of ref document: DE

Ref document number: 112010005287

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846110

Country of ref document: EP

Kind code of ref document: A1