WO2011090084A1 - シラン表面処理金属酸化物微粒子およびその製造方法 - Google Patents

シラン表面処理金属酸化物微粒子およびその製造方法 Download PDF

Info

Publication number
WO2011090084A1
WO2011090084A1 PCT/JP2011/050893 JP2011050893W WO2011090084A1 WO 2011090084 A1 WO2011090084 A1 WO 2011090084A1 JP 2011050893 W JP2011050893 W JP 2011050893W WO 2011090084 A1 WO2011090084 A1 WO 2011090084A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
colloidal particles
sol
metal oxide
oxide colloidal
Prior art date
Application number
PCT/JP2011/050893
Other languages
English (en)
French (fr)
Inventor
欣也 小山
根子 浅田
智規 古川
なつ美 築比地
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to US13/520,907 priority Critical patent/US9150421B2/en
Priority to JP2011550933A priority patent/JP5704345B2/ja
Priority to KR1020127021637A priority patent/KR101712886B1/ko
Priority to CN201180012682.2A priority patent/CN102781821B/zh
Priority to EP11734690.8A priority patent/EP2527293B1/en
Publication of WO2011090084A1 publication Critical patent/WO2011090084A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/36Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions
    • C01B13/363Mixtures of oxides or hydroxides by precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0047Preparation of sols containing a metal oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0081Composite particulate pigments or fillers, i.e. containing at least two solid phases, except those consisting of coated particles of one compound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3653Treatment with inorganic compounds
    • C09C1/3661Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention is a modified metal oxide colloidal particle obtained by coating a metal oxide colloidal particle as a nucleus and coating the outer surface with a composite oxide colloidal particle, and has a primary particle diameter of 5 to 60 nm.
  • Zr, Sn, Ta, Nb, Y, Mo, W, Pb, In, Bi and Sr as the core and the outer surface of the oxide colloidal particles (A) of at least one metal selected from the group consisting of: In a molar ratio of M / (SnO 2 + SiO 2 ) (where M represents an amine compound) in which the mass ratio of silicon dioxide / stannic oxide is 0.1 to 5.0 and 0.001 to 0.08.
  • the present invention relates to organic solvent-dispersed sols and an efficient method for producing these sols.
  • the hydrophilic organic solvent-dispersed sol of the silane-treated modified metal oxide colloidal particles of the present invention or the hydrophobic organic solvent-dispersed sol having a water solubility of 0.05 to 12% by mass is a transparent material applied to resins, plastics, glass and the like. It is used for various applications such as a curable ultraviolet absorbing material, a transparent heat ray absorbing material, a high refractive index hard coat agent, an antireflection agent, and a sealing material.
  • metal oxide sols using a hydrophobic organic solvent as a dispersion medium for example, primary alkoxyl groups having 3 to 12 carbon atoms are bonded to silicon atoms on the surface of inorganic oxide fine particles, and inorganic oxide fine particles such as methyl ethyl ketone are used.
  • a method for producing an organic solvent-dispersed inorganic oxide sol stably dispersed in an organic solvent is known (see Patent Document 1).
  • colloidal particles of stannic oxide and colloidal particles of zirconium oxide are bonded in a ratio of 0.02 to 1.0 as ZrO 2 / SnO 2 based on the weight of these oxides, and 4 to 50 nm
  • the surface has a WO 3 / SnO 2 mass ratio of 0.1 to 100 and a SiO 2 / SnO 2 mass ratio of 0.1 to 100
  • modified stannic oxide having a particle size of 4.5 to 60 nm formed by coating with a colloidal particle of tungsten oxide-stannic oxide-silicon dioxide composite having a particle size of 2 to 7 nm
  • Patent Document 2 A stable sol composed of zirconium oxide composite colloidal particles and containing 2 to 50% by mass of these all metal oxides and a method for producing the same are described (Patent Document 2). Irradiation).
  • a stable sol comprising 2 to 50% by mass of these all metal oxides is used as a dispersion medium, particularly a highly hydrophobic organic solvent such as methyl ethyl ketone or xylene
  • the metal oxide colloid particles was not sufficient to disperse in a state close to the primary particle size without agglomerating.
  • Modified stannic oxide-zirconium oxide composite obtained by coating at least a part of the surface of colloidal stannic oxide-zirconium oxide composite in Patent Document 3 with colloidal particles of stannic oxide-tungsten oxide-silicon oxide composite
  • the coating composition containing body colloidal particles and an organosilicon compound has insufficient reaction to the organosilicon compound on the surface of the colloidal particles, and cannot be dispersed in a hydrophobic organic solvent that is stable at a high concentration.
  • the present invention relates to Ti, Fe, Zr, Sn, Ta, Nb, Y, Mo, W, having a primary particle size of 5 to 60 nm that can be dispersed in a hydrophobic organic solvent having a water solubility of 0.05 to 12% by mass.
  • At least one metal oxide colloidal particle selected from the group consisting of Pb, In, Bi and Sr and its hydrophilic organic solvent dispersion sol or hydrophobic organic solvent dispersion sol having a water solubility of 0.05 to 12% by mass Further, it is an object to provide fine powder of metal oxide colloidal particles that can be redispersed in various organic solvents.
  • a modified metal oxide colloidal particle having a metal oxide colloidal particle as a nucleus and an outer surface thereof coated with a composite oxide colloidal particle having a primary particle diameter of 5 to 60 nm.
  • M represents an amine compound
  • metal The mass ratio (B) / (A) of the composite oxide colloidal particles (B) to the oxide colloidal particles (A) is 0.05 to 0.50, and the surface area of the colloidal particles (C) has a surface area.
  • Silane-treated modified metal oxide colloidal particles wherein 1 to 4 silyl groups are bonded per 1 nm 2 ;
  • the silyl group is represented by the following formula (I): -Si (R 1 ) a (X) 3-a (I) (Wherein R 1 is a substituted or unsubstituted alkyl group or halogenated alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 12 carbon atoms, a substituted or unsubstituted alkenyl group having 6 to 12 carbon atoms, or Represents an unsubstituted aryl group or a halogenated aryl group, or represents an epoxy group, an acryloyl group, a methacryloyl group, a methacryloxyalkyl group, a mercapto group, an amino group, or a cyano group, and X represents a hydroxyl group or 1 to
  • the amine compound is a silane-treated modified metal oxide colloidal particle according to the first aspect, which is at least one compound selected from the group consisting of a primary amine, a secondary amine, and a tertiary amine
  • a hydrophilic organic solvent-dispersed sol of silane-treated modified metal oxide colloidal particles according to any one of the first to third aspects is at least one selected from the group consisting of methyl alcohol, ethyl alcohol, isopropyl alcohol, dimethylformamide, ethyl cellosolve, butyl cellosolve, ethylene glycol, and propylene glycol monomethyl ether.
  • Hydrophilic organic solvent dispersion sol of silane-treated modified metal oxide colloidal particles according to As a sixth aspect, a hydrophobic organic solvent-dispersed sol having a water solubility of 0.05 to 12% by mass, including the silane-treated modified metal oxide colloidal particles according to any one of the first to third aspects,
  • the hydrophobic organic solvent having a water solubility of 0.05 to 12% by mass comprises methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, hexane, ethyl acetate, butyl acetate, methyl methacrylate, diisopropyl ether, and toluene.
  • the hydrophobic organic solvent-dispersed sol according to the sixth aspect which is at least one selected from the group,
  • the hydrophilicity of the silane-treated modified metal oxide colloidal particles according to claim 4 comprising the following steps (a), (b), (c), (d), (e) and (f): Production method of organic solvent dispersion sol: Step (a): An aqueous solution containing an alkali stannate and an alkali silicate in an amount such that the mass ratio of silicon dioxide / stannic oxide is 0.1 to 5 is prepared, and then a cation present in the aqueous solution is prepared.
  • An aqueous sol of colloidal particles of silicon dioxide-stannic oxide composite having a primary particle diameter of 1 to 4 nm is prepared by removal, and M / (SnO 2 + SiO 2 ) (where M is an amine compound).
  • M an amine compound
  • the metal oxide colloidal particles (A) are mixed with the silicon dioxide-stannic oxide by mixing in an amount such that the mass ratio (B ′) / (A) of B ′) is 0.05 to 0.50.
  • R 1 is a substituted or unsubstituted alkyl group or halogenated alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 12 carbon atoms, a substituted or unsubstituted alkenyl group having 6 to 12 carbon atoms, or Represents an unsubstituted aryl group or a halogenated aryl group, or represents an epoxy group, an acryloyl group, a methacryloyl group, a methacryloxyalkyl group, a mercapto group, an amino group or a cyano group, and X represents a hydroxyl group or a group having 1 to 4 carbon atoms Represents an alkoxy group, a represents an integer of 0 to 3), and a step of bonding the silyl group represented by the surface of the
  • a method for producing a hydrophilic organic solvent-dispersed sol of silane-treated modified metal oxide colloidal particles according to the ninth aspect includes the following steps (a), (b), (c), (d), (e), (f), and (g).
  • An aqueous sol of colloidal particles of silicon dioxide-stannic oxide composite having a primary particle diameter of 1 to 4 nm is prepared by removal, and M / (SnO 2 + SiO 2 ) (where M is an amine compound).
  • the metal oxide colloidal particles (A) are mixed with the silicon dioxide-stannic oxide by mixing in an amount such that the mass ratio (B ′) / (A) of B ′) is 0.05 to 0.50.
  • the oxide colloidal particles (A) are used as nuclei and the outer surface thereof is made of silicon dioxide / oxidized. 1 in which the amine compound is bound at a molar ratio of M / (SnO 2 + SiO 2 ) in which the mass ratio of stannic is 0.1 to 5.0 and 0.001 to 0.08 (where M is an amine compound).
  • Colloid (C) coated with silicon dioxide-stannic oxide composite oxide colloidal particles (B) having a primary particle diameter of 4 nm to 4 nm, and the colloidal particles (A) of the metal oxide Silicon dioxide A step of obtaining an aqueous sol of modified metal oxide colloidal particles (C) in which the mass ratio (B) / (A) of the stannic oxide composite oxide colloidal particles (B) is 0.05 to 0.50; (E) step: a step of replacing the dispersion medium of the aqueous sol obtained in step (d) with a hydrophilic organic solvent, Step (f): The hydrophilic organic solvent-dispersed sol obtained in the step (e) is added to the following general formula (II) Si (R 1 ) a (X) 4-a (II) (Wherein R 1 is a substituted or unsubstituted alkyl group or halogenated alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 12
  • R 1 is a substituted or unsubstituted alkyl group or halogenated alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 12 carbon atoms, a substituted or unsubstituted alkenyl group having 6 to 12 carbon atoms, or Represents an unsubstituted aryl group or a halogenated aryl group, or represents an epoxy group, an acryloyl group, a methacryloyl group, a methacryloxyalkyl group, a mercapto group, an amino group or a cyano group, and X represents a hydroxyl group or a group having 1 to 4 carbon atoms Represents an alkoxy group, a represents an integer of 0 to 3), and a step of bonding the silyl group represented by the surface of the
  • hydrophobic organic solvent having a water solubility of .05 to 12% by mass
  • at least one kind consisting of methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, hexane, ethyl acetate, butyl acetate, methyl methacrylate, diisopropyl ether, and toluene is used.
  • a method for producing a hydrophobic organic solvent-dispersed sol according to the 11th aspect or the 12th aspect As a fourteenth aspect, a composition of a polymerizable organic compound comprising the silane-treated modified metal oxide colloidal particle according to any one of the first to third aspects and a polymerizable organic compound, As a fifteenth aspect, the polymerizable organic compound composition according to the fourteenth aspect, wherein the polymerizable organic compound is a cationic polymerizable resin, As a sixteenth aspect, the polymerizable organic compound composition according to the fourteenth aspect, wherein the polymerizable organic compound is a polymerizable liquid epoxy resin, As a seventeenth aspect, the polymerizable organic compound composition according to the fourteenth aspect, wherein the polymerizable organic compound is a polymerizable epoxy resin having one or more epoxycyclohexyl groups in the molecule, The composition of the polymerizable organic compound according to claim 14, wherein the polymerizable organic compound is an acrylic monomer and / or an
  • the silane-treated modified metal oxide colloidal particles of the present invention can be obtained as a sol of a hydrophilic organic solvent or a hydrophobic organic solvent having a water solubility of 0.05 to 12% by mass.
  • the metal oxide colloidal particles can be dispersed in various polymerizable organic compounds to obtain a composition of the polymerizable organic compound, and the fine powder composed of the silane-treated modified metal oxide colloidal particles can be variously used. It can be redispersed in an organic solvent. Because of these properties, it has high dispersibility in various organic solvents and does not cause agglomeration of primary particles. Therefore, it can be applied by adding to various materials.
  • the colloidal particles have characteristics such as high refractive index, ultrafine particles, and high hardness, various performances of the cured film obtained by dispersing them in various polymerizable organic compounds, for example, transparency It can be expected to increase flame retardancy, heat resistance, light resistance, weather resistance, electrical insulation, chemical resistance, hardness, mechanical strength, and the like.
  • Oxide colloidal particles of at least one metal selected from the group consisting of Ti, Fe, Zr, Sn, Ta, Nb, Y, Mo, W, Pb, In, Bi and Sr having a primary particle size of 5 to 60 nm (A) can be produced by a known method such as an ion exchange method, a peptization method, a hydrolysis method, or a reaction method.
  • the ion exchange method include a method of treating the acidic salt of the metal with a hydrogen ion exchange resin or a method of treating the basic salt of the metal with a hydroxyl type anion exchange resin.
  • Examples of the peptization method include neutralizing the acid salt of the metal with a base, or washing the gel obtained by neutralizing the basic salt of the metal with an acid, and then dissolving with an acid or a base.
  • the method of glueing is mentioned.
  • Examples of the hydrolysis method include a method of hydrolyzing the alkoxide of the metal, or a method of removing an unnecessary acid after hydrolyzing the basic salt of the metal under heating.
  • Examples of the reaction method include a method of reacting the metal powder with an acid.
  • the core metal oxide colloidal particles (A) are at least one selected from the group consisting of Ti, Fe, Zr, Sn, Ta, Nb, Y, Mo, W, Pb, In, Bi, and Sr. It is a metal oxide.
  • the colloidal particles (A) of the metal oxide are metal oxides having a valence of 2 to 6, and as their forms, for example, TiO 2 , Fe 2 O 3 , ZrO 2 , SnO 2 , Ta 2 O 5 , Examples thereof include Nb 2 O 5 , Y 2 O 3 , MoO 3 , WO 3 , PbO, In 2 O 3 Bi 2 O 3 , SrO and the like. These metal oxides can be used alone or in combination.
  • Examples of the combination include a method of mixing several kinds of the metal oxide, a method of compounding the metal oxide, or a method of solidifying the metal oxide at an atomic level.
  • SnO 2 —WO 3 composite colloidal particles in which SnO 2 particles and WO 3 particles are chemically combined at their interfaces to form composites, and SnO 2 particles and ZrO 2 particles are chemically bonded at their interfaces.
  • the metal oxide colloidal particles (A) serving as the nucleus can also be used as a compound by a combination of metal components, and examples thereof include TiSrO 3 and TiBaO 3 .
  • the aqueous sol of metal oxide colloidal particles (A) serving as a nucleus in the present invention may have a pH of 5 to 11.5, preferably a pH of 7 to 11.5.
  • the pH of the aqueous sol can be adjusted with an alkali component as required.
  • the alkali component used include alkali metal hydroxides such as lithium, sodium and potassium, and alkaline earth metals such as calcium, magnesium and strontium.
  • a silicon dioxide-stannic oxide composite oxide colloidal particle (B) having a primary particle diameter of 1 to 4 nm to which an amine compound is bonded at a molar ratio of M (wherein M represents an amine compound) is used as a precursor thereof.
  • Mass ratio of stannic oxide is 0.1 to 5.0 and is present in a molar ratio of M / (SnO 2 + SiO 2 ) (where M represents an amine compound) of 0.1 to 1.0. 1 stabilized with amine compounds
  • An aqueous sol of silicon dioxide-stannic oxide composite oxide colloidal particles (B ′) having a primary particle size of 4 nm is prepared, and this aqueous sol is added to the aqueous sol of the metal oxide colloidal particles (A). Then, after the surface of the metal oxide colloidal particles (A) is coated with the silicon dioxide-stannic oxide composite oxide colloidal particles (B ′), an amine compound for stabilization is obtained by cation exchange.
  • the amount of the amine compound suitable for stabilizing the modified metal oxide colloidal particles (C) is 0.001 to 0.08 as a molar ratio of M / (SnO 2 + SiO 2 ) (where M represents an amine compound). Is the amount.
  • the amount of the amine compound bound to the silicon dioxide-stannic oxide composite oxide colloidal particles (B) is less than 0.001 as the molar ratio of the M / (SnO 2 + SiO 2 ), the hydrophilic property of the present invention.
  • the dispersion stability of the organic solvent-dispersed sol or the hydrophobic organic solvent-dispersed sol having a water solubility of 0.05 to 12% by mass is insufficient, it is not preferable.
  • the molar ratio of M / (SnO 2 + SiO 2 ) exceeds 0.08, it is represented by the general formula (I) bonded to the particle surface of the modified metal oxide colloidal particles (C). This is not preferable because it prevents the bonding of silyl groups.
  • the silicon dioxide-stannic oxide composite oxide colloidal particles (B ′) can be obtained by using the following known methods (for example, Japanese Patent Publication No. 50-40119). That is, a silicon dioxide-stannic oxide composite colloid having a primary particle size of 1 to 4 nm is obtained by mixing an alkali silicate aqueous solution or silicate sol solution and an alkali stannate aqueous solution and then removing the cation with a cation exchange resin. Particles are formed, and then an amine compound is added to and mixed with the colloidal solution in which the colloidal particles are dispersed to obtain an aqueous sol of silicon dioxide-stannic oxide composite colloidal particles stabilized by the amine compound. it can.
  • the amine compound is adsorbed on the surface of the silicon dioxide-stannic oxide composite oxide colloidal particles (B ′), and also dissolved in the dispersion medium of the aqueous sol, so that the colloidal particles (B ′) It is estimated that the dispersion stability is maintained.
  • the colloidal solution obtained by mixing the alkali silicate aqueous solution or silicate sol solution and the alkali stannate aqueous solution and then removing the cation with a cation exchange resin does not add an amine compound or the M / Addition of an amine compound in an amount that gives a molar ratio of (SnO 2 + SiO 2 ) cannot be used because it loses stability and gels when left for several hours.
  • an amine compound in an amount of a molar ratio of 0.1 to 1.0 M / (SnO 2 + SiO 2 ) (wherein M represents an amine compound) is the above-mentioned silicon dioxide-stannic oxide composite oxide.
  • the amount is sufficient to maintain the dispersion stability of the aqueous sol of colloidal particles (B ′). Even if the molar ratio of M / (SnO 2 + SiO 2 ) exceeds 1.0, the amine compound is present in excess, which is not efficient.
  • Sodium silicate and potassium silicate can be used as the alkali silicate aqueous solution, and active silicic acid obtained by cation exchange of these alkali silicate aqueous solutions can be used as the silicate sol solution.
  • a sodium stannate aqueous solution can be preferably used as the alkali stannate aqueous solution.
  • the amine compound used in the present invention is at least one selected from the group consisting of primary amines, secondary amines and tertiary amines.
  • Primary amines include methylamine, ethylamine, propylamine, isopropylamine, butylamine, isobutylamine, amylamine, allylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, dodecylamine, cyclopropylamine, cyclobutylamine, cyclopentylamine And cyclohexylamine.
  • Secondary amines include dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, diisobutylamine, N-ethyl-1,2-dimethylpropylamine, diamylamine and diallylamine.
  • Tertiary amines include trimethylamine, triethylamine, tripropylamine, tributylamine, triamylamine and triallylamine.
  • the silane-treated modified metal oxide colloidal particle of the present invention is a modified metal oxide colloidal particle having a metal oxide colloidal particle as a nucleus and an outer surface thereof coated with a composite oxide colloidal particle having a thickness of 5 to 60 nm.
  • Modified metal oxidation of particles (C) wherein the mass ratio (B) / (A) of the composite oxide colloidal particles (B) to the metal oxide colloidal particles (A) is 0.05 to 0.50 1 to 4 silyl groups are bonded to the particle surface of the product colloidal particles (C) per 1 nm 2 of the surface area.
  • the modified metal oxide colloidal particles (C) have an aqueous sol of the metal oxide colloidal particles (A) used as nuclei and a mass ratio of silicon dioxide / stannic oxide of 0.1 to 5.0. And silicon dioxide having a primary particle size of 1 to 4 nm stabilized with an amine compound present in a molar ratio of M / (SnO 2 + SiO 2 ) (wherein M represents an amine compound) of 0.1 to 1.0 -Mixing the aqueous sol of stannic oxide composite oxide colloidal particles (B ') in an amount of 0.05 to 0.50 in terms of the mass ratio of (B') / (A) converted to the metal oxide
  • the amine compound is removed from the aqueous sol by cation exchange, and the silicon dioxide-stannic oxide composite oxide colloidal particles are further removed.
  • Molar ratio of amine compound to (B ′) As M / (SnO 2 + SiO 2 ) (where M represents an amine compound) can be obtained by adding an amine compound in an amount of 0.001 to 0.08.
  • the aqueous sol of the modified metal oxide colloidal particles (C) can contain other optional components as long as the object of the present invention is achieved.
  • oxycarboxylic acids are contained in an amount of about 10% by weight or less based on the total amount of all metal oxides, a colloid with further improved performance such as dispersibility can be obtained.
  • oxycarboxylic acid used examples include lactic acid, tartaric acid, malic acid, citric acid, gluconic acid and the like.
  • an alkali component can be contained, for example, hydroxides of alkali metals such as lithium, sodium, potassium, rubidium, and cesium, ammonia, and the like can also be contained. These can also be used in combination with the above acidic components.
  • the aqueous sol of the modified metal oxide colloidal particles (C) is concentrated to about 50% by mass as the total amount of all metal oxides of the modified metal oxide colloidal particles (C) by, for example, evaporation method, ultrafiltration method or the like. be able to.
  • the silane-treated modified metal oxide colloidal particles of the present invention have the following general formula (I) on the surface of the modified metal oxide colloidal particles (C). -Si (R 1 ) a (X) 3-a (I) (Wherein R 1 is a substituted or unsubstituted alkyl group or halogenated alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 12 carbon atoms, a substituted or unsubstituted alkenyl group having 6 to 12 carbon atoms, or Represents an unsubstituted aryl group or a halogenated aryl group, or represents an epoxy group, an acryloyl group, a methacryloyl group, a methacryloxyalkyl group, a mercapto group, an amino group, or a cyano group, and X represents a hydroxyl group or 1 to 4 carbon atoms Wherein a represents an integer of
  • the number of silyl groups per 1 nm 2 of surface area of the modified metal oxide colloidal particles (C) can be measured using ICP emission spectroscopic analysis or CHN elemental analysis.
  • the specific surface area of the modified metal oxide colloidal particles (C) can be measured by a nitrogen adsorption method.
  • the silyl group bonded to the surface of the modified metal oxide colloidal particles (C) of the present invention has the following general formula (II): (R 1 ) a Si (X) 4-a (II) (Wherein R 1 is a substituted or unsubstituted alkyl group or halogenated alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 12 carbon atoms, a substituted or unsubstituted alkenyl group having 6 to 12 carbon atoms, or Represents an unsubstituted aryl group or a halogenated aryl group, or represents an epoxy group, an acryloyl group, a methacryloyl group, a methacryloxyalkyl group, a mercapto group, an amino group, or a cyano group, and X is a hydroxyl group or 1 to 4 carbon atoms A represents an integer of 0 to 3) or the general
  • R 1 is a substituted or unsubstituted alkyl group or halogenated alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 12 carbon atoms, a carbon atom
  • R 1 represents a substituted or unsubstituted aryl group or halogenated aryl group of formula 6 to 12, or represents an epoxy group, an acryloyl group, a methacryloyl group, a methacryloxyalkyl group, a mercapto group, an amino group or a cyano group
  • X is a hydroxyl group or An alkoxy group having 1 to 4 carbon atoms is represented.
  • a represents an integer of 0 to 3.
  • the alkyl group is preferably one having 1 to 30 carbon atoms, more preferably 1 to 18 carbon atoms, methyl group, ethyl group, propyl group, isopropyl group, hexyl group, t-butyl group, sec-butyl group, A decyl group, a dodecyl group, an octadecyl group, etc. are mentioned.
  • the aryl group include a phenyl group and a naphthyl group. A phenyl group is preferred.
  • X is a hydroxyl group or a hydrolyzable group, and is an alkoxy group having 1 to 4 carbon atoms.
  • alkoxy group examples include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group.
  • a represents an integer of 0 to 3.
  • the plurality of R 1 or X may be the same or different, respectively.
  • a is preferably 1 or 2, particularly preferably 1.
  • the substituent contained in R 1 is not particularly limited, but is a halogen atom (fluorine atom, chlorine atom, bromine atom, etc.), hydroxyl group, mercapto group, carboxyl group, epoxy group, alkyl group (methyl, ethyl, isopropyl, propyl).
  • organosilicon compound represented by the general formula (II) examples include tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, tetraacetoxysilane, methyltrimethoxysilane, Methyltriethoxysilane, methyltripropoxysilane, methyltriacetoxysilane, methyltributoxysilane, methyltripropoxysilane, methyltriamyloxysilane, methyltriphenoxysilane, methyltribenzyloxysilane, methyltriphenethyloxysilane, propyltri Methoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltrimethoxysilane,
  • hydrolyzate of the organosilicon compound of the general formula (II) is a compound in which a part or all of R 1 and X in the formula are replaced with hydrogen atoms.
  • hydrolysates of organosilicon compounds of general formula (II) can be used alone or in combination of two or more. Hydrolysis of the organosilicon compound is carried out by adding water or an acidic aqueous solution of a hydrochloric acid aqueous solution, a sulfuric acid aqueous solution or an acetic acid aqueous solution to the organosilicon compound, and stirring.
  • the organosilicon compound used for silylation is preferably at least one selected from the group consisting of the compound represented by formula (II) and a hydrolyzate thereof.
  • the compound represented by formula (II) is preferably at least one selected from the group consisting of the compound represented by formula (II) and a hydrolyzate thereof.
  • methyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, methacryloxypropyltrimethoxysilane and / or a hydrolyzate thereof are preferable.
  • organosilicon compound represented by the general formula (III) examples include hexamethyldisilazane, hexaethyldisilazane, hexa (t-butyl) disilazane, hexabutyldisilazane, hexaoctyldisilazane, hexacyclohexyldisilazane, And hexaphenyldisilazane.
  • the silylation is performed by combining at least one selected from the group consisting of a compound represented by general formula (II) and a hydrolyzate thereof with an organosilicon compound represented by general formula (III). It is also preferable to use them.
  • the silane-treated modified metal oxide colloidal particles of the present invention can be obtained as a hydrophilic organic solvent-dispersed sol.
  • the hydrophilic organic solvent include lower alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, cyclic amides such as dimethylformamide, glycols such as ethyl cellosolve, butyl cellosolve, ethylene glycol, propylene glycol monomethyl ether, and the like. May be combined.
  • the hydrophilic organic solvent dispersion sol of the silane-treated modified metal oxide colloidal particles of the present invention is 0.1 to 50% by mass as the total concentration of all the metal oxides of the modified metal oxide colloidal particles (C), The content is preferably 1 to 30% by mass. The total concentration of all metal oxides can be higher than 50% by weight as required.
  • the silane-treated modified metal oxide colloidal particles of the present invention can be obtained as a hydrophobic organic solvent-dispersed sol having a water solubility of 0.05 to 12% by mass.
  • the water solubility of the hydrophobic organic solvent refers to the content of water in the organic phase when the organic solvent is mixed with water at 20 ° C. to form two phases.
  • hydrophobic organic solvent having a water solubility of 0.05 to 12% by mass examples include 1-pentanol (water solubility 6.8% by mass), methyl ethyl ketone (9.9% by mass), methyl isobutyl ketone ( 1.8% by mass), cyclohexanone (8% by mass), ethyl acetate (2.9% by mass), butyl acetate (1.9% by mass), methyl methacrylate (1.1% by mass), diisopropyl ether (0. 55% by mass), dibutyl ether (0.2% by mass), or toluene (0.05% by mass).
  • the hydrophobic organic solvent-dispersed sol having a water solubility of 0.05 to 12% by mass containing the silane-treated modified metal oxide colloidal particles of the present invention is the sum of all the metal oxides of the modified metal oxide colloidal particles (C).
  • the concentration of is 0.1 to 50% by mass, preferably 1 to 30% by mass.
  • the total concentration of all metal oxides can be higher than 50% by weight as required.
  • the hydrophilic organic solvent dispersion sol of the silane-treated modified metal oxide colloidal particles of the present invention is produced by a method including the following steps (a), (b), (c), (d), (e) and (f). can do.
  • An aqueous sol of colloidal particles of silicon dioxide-stannic oxide composite having a primary particle diameter of 1 to 4 nm is prepared by removal, and M / (SnO 2 + SiO 2 ) (where M is an amine compound).
  • the metal oxide colloidal particles (A) are mixed with the silicon dioxide-stannic oxide by mixing in an amount such that the mass ratio (B ′) / (A) of B ′) is 0.05 to 0.50.
  • An aqueous sol of modified metal oxide colloidal particles (C) having a mass ratio (B) / (A) of the silicon dioxide-stannic oxide composite oxide colloidal particles (B) of 0.05 to 0.50 is obtained.
  • Step (f): The hydrophilic organic solvent-dispersed sol obtained in the step (e) is added to the following general formula (II) Si (R 1 ) a (X) 4-a (II) (Wherein R 1 is a substituted or unsubstituted alkyl group or halogenated alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 12 carbon atoms, a substituted or unsubstituted alkenyl group having 6 to 12 carbon atoms, or Represents an unsubstituted aryl group or a halogenated aryl group, or represents an epoxy group, an acryloyl group, a methacryloyl group, a methacryloxyalkyl group, a mercapto group, an amino group or
  • R 1 is a substituted or unsubstituted alkyl group or halogenated alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 12 carbon atoms, a substituted or unsubstituted alkenyl group having 6 to 12 carbon atoms, or Represents an unsubstituted aryl group or a halogenated aryl group, or represents an epoxy group, an acryloyl group, a methacryloyl group, a methacryloxyalkyl group, a mercapto group, an amino group or a cyano group, and X represents a hydroxyl group or a group having 1 to 4 carbon atoms
  • a step of bonding the silyl group represented by (a represents an integer of 0 to 3) to the surface of the modified metal oxide colloidal particles (C).
  • sodium stannate or potassium stannate can be used as the alkali stannate, and sodium stannate is preferred.
  • silicate alkali sodium silicate and potassium silicate can be used.
  • Alkali stannate and alkali silicate are prepared as an aqueous solution containing silicon dioxide / stannic oxide in a mass ratio of 0.1 to 5, and then the cation present in the aqueous solution is converted to a cation exchange resin. Remove.
  • the alkali stannate and the alkali silicate are prepared by being measured so that the mass ratio of silicon dioxide / stannic oxide is a ratio of 0.1 to 5.0 and dissolved in water.
  • a preferable solid content concentration of the aqueous solution is 1 to 12% by mass as (SnO 2 + SiO 2 ).
  • Cations are removed from the prepared aqueous solution using a cation exchange resin.
  • the cation exchange resin is preferably a hydrogen-type strongly acidic cation exchange resin.
  • Amberlite (registered trademark) 120B can be packed in a column and used. By performing this cation exchange, the silicic acid component and the stannic acid component are polymerized to produce silicon dioxide-stannic oxide composite colloidal particles having a primary particle diameter of 1 to 4 nm.
  • This colloidal particle of silicon dioxide-stannic oxide composite is poor in stability and gels within a few hours if left standing. Therefore, after the cation exchange, the amine compound is quickly added to stabilize the silicon dioxide / oxide
  • M represents an amine compound
  • a molar ratio of M / (SnO 2 + SiO 2 ) (where M represents an amine compound) is 0.1 to 1.
  • Addition of an amine compound in an amount of 0.0 is appropriate.
  • Addition of an amine compound having a molar ratio of M / (SnO 2 + SiO 2 ) of 0.1 to less than 1.0 is not preferable because it loses its stability when left for several hours and gels.
  • step (b) at least one selected from the group consisting of Ti, Fe, Zr, Sn, Ta, Nb, Y, Mo, W, Pb, In, Bi and Sr having a primary particle size of 5 to 60 nm.
  • the mass ratio of the aqueous sol of the metal oxide colloidal particles (A) and the silicon dioxide / stannic oxide obtained in the step (a) is 0.1 to 5.0 and 0.1 to 1.0.
  • M represents an amine compound
  • B ′ is a mass ratio (B ′) / (A) of the silicon dioxide-stannic oxide composite oxide colloidal particles (B ′) to the metal oxide colloidal particles (A).
  • the solid content concentration of the aqueous sol of the metal oxide colloidal particles (A) is 0.5 to 50% by mass, and preferably 5 to 30% by
  • the aqueous sol of the metal oxide colloidal particles (A) may have a pH of 5 to 11.5, preferably a pH of 7 to 11.5.
  • the pH of the aqueous sol can be adjusted with an alkali component as required.
  • alkali component used include alkali metal hydroxides such as lithium, sodium and potassium, and alkaline earth metals such as calcium, magnesium and strontium.
  • aqueous sol of the metal oxide colloidal particles (A) and the aqueous sol obtained in the step (a) is preferably performed with stirring.
  • the mixing ratio of the silicon dioxide-stannic oxide composite oxide colloidal particles (B ′) to the metal oxide colloidal particles (A) is 0.05 to 0.00 as a mass ratio (B ′) / (A).
  • 50 is preferable, and if it is less than 0.05, the metal oxide colloidal particles (A) serving as nuclei cannot be sufficiently coated with the silicon dioxide-stannic oxide composite oxide colloidal particles (B ′), A stable hydrophilic organic solvent-dispersed sol or a hydrophobic organic solvent-dispersed sol having a water solubility of 0.05 to 12% by mass cannot be obtained. Further, 0.50 is sufficient as the mass ratio, and even if it exceeds 0.50, it is not efficient.
  • step (c) cation exchange of the aqueous sol of the modified metal oxide colloidal particles (C ′) obtained in step (b) is performed. It is preferable to use a hydrogen type strongly acidic cation exchange resin for the cation exchange.
  • step (d) M / (SnO 2 + SiO 2 ) is used as the molar ratio of the amine compound to the silicon dioxide-stannic oxide composite oxide colloidal particles (B ′) in the aqueous sol obtained in step (c). ) (Wherein M represents an amine compound) is added in an amount of 0.001 to 0.08 of the amine compound. If the amount of the amine compound to be added is less than 0.001 as the molar ratio of M / (SnO 2 + SiO 2 ), the dispersion stability of the hydrophilic organic solvent-dispersed sol of the present invention becomes insufficient, such being undesirable.
  • step (e) the aqueous sol obtained in step (d) is replaced with a hydrophilic organic solvent.
  • a known method can be used as a method for replacing the dispersion medium from water with a hydrophilic organic solvent, such as an evaporation substitution method, an ultrafiltration membrane method, a solvent extraction method, or the like under normal pressure or reduced pressure.
  • the aqueous sol obtained in step (d) is prepared in advance so that the concentration of the modified metal oxide colloidal particles (C) contained is in the range of 1 to 70% by mass, or 10 to 50% by mass. It is preferable to concentrate.
  • the sol can be concentrated by a known method such as a heat evaporation method or an ultrafiltration method.
  • the temperature of the sol at the time of solvent replacement is in the range of room temperature to the boiling point of the hydrophilic solvent.
  • the solvent replacement is performed until the water content in the sol becomes less than 5% by mass.
  • the solid content concentration of the sol obtained in the step (e) is 20 to 70% by mass as the total metal oxide concentration of the modified metal oxide colloidal particles (C).
  • the hydrophilic organic solvent used include lower alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol, cyclic amides such as dimethylformamide, glycols such as ethyl cellosolve, butyl cellosolve, ethylene glycol, and propylene glycol monomethyl ether. .
  • step (f) the hydrophilic organic solvent-dispersed sol obtained in step (e) is added to the following general formula (II): Si (R 1 ) a (X) 4-a (II) (Wherein R 1 is a substituted or unsubstituted alkyl group or halogenated alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 12 carbon atoms, a substituted or unsubstituted alkenyl group having 6 to 12 carbon atoms, or Represents an unsubstituted aryl group or a halogenated aryl group, or represents an epoxy group, an acryloyl group, a methacryloyl group, a methacryloxyalkyl group, a mercapto group, an amino group or a cyano group, and X represents a hydroxyl group or a group having 1 to 4 carbon atoms Represents an alkoxy group,
  • R 1 is a substituted or unsubstituted alkyl group or halogenated alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 12 carbon atoms, a substituted or unsubstituted alkenyl group having 6 to 12 carbon atoms, or Represents an unsubstituted aryl group or a halogenated aryl group, or represents an epoxy group, an acryloyl group, a methacryloyl group, a methacryloxyalkyl group, a mercapto group, an amino group, or a cyano group, and X is a hydroxyl group or 1 to 4 carbon atoms And a silyl group represented by a) is bonded to the surface of the modified metal oxide colloidal particle (C).
  • organosilicon compounds of the general formulas (II) and (III) used in the step (f) are as described above, and the hydrophilic organic of the modified metal oxide colloidal particles (C) obtained in the step (e).
  • the above formula (I ) Is bonded to the surface of the modified metal oxide colloidal particles (C).
  • 1 to 4 per 1 mol of the organosilicon compound is used.
  • Molar water is required. This necessary water may be contained in advance in the hydrophilic organic solvent-dispersed sol, or may be added after the addition of the organosilicon compound.
  • the aging temperature can be carried out in the range of the boiling point of the hydrophilic organic solvent used from room temperature, and it is preferable to carry out the reaction at around the boiling point of the organic solvent because the reaction efficiency of the silyl group is good.
  • the aging can be performed under atmospheric pressure, and is preferably performed under reflux.
  • the organosilicon compound of the general formula (II) may be added after hydrolysis.
  • the hydrolyzate of the organosilicon compound can be obtained by adding water or an acidic aqueous solution of a hydrochloric acid aqueous solution, a sulfuric acid aqueous solution, or an acetic acid aqueous solution to the organosilicon compound and stirring the mixture.
  • the organosilicon compound used is particularly preferably methyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, methacryloxypropyltrimethoxysilane and / or a hydrolyzate thereof.
  • the hydrophilic organic solvent dispersion of the silane-treated modified metal oxide colloidal particles in which 1 to 4 silyl groups are bonded per 1 nm 2 of surface area of the modified metal oxide colloidal particles A sol is obtained.
  • the solid content concentration of the obtained hydrophilic organic solvent-dispersed sol is 20 to 70% by mass as the total metal oxide concentration of the modified metal oxide colloidal particles (C).
  • the modified metal oxide colloidal particles of the present invention wherein the metal oxide colloidal particles are used as nuclei and the outer surface thereof is coated with the composite oxide colloidal particles, and have a primary particle diameter of 5 to 60 nm.
  • the method includes the steps (a), (b), (c), (d), (e) and (f), which are methods for producing a hydrophilic organic solvent-dispersed sol of the silane-treated modified metal oxide colloidal particles. Thereafter, the method includes a step (g) of replacing the hydrophilic organic solvent with a hydrophobic organic solvent having a water so
  • the temperature of the sol when the dispersion medium is replaced from a hydrophilic organic solvent with a hydrophobic organic solvent having a water solubility of 0.05 to 12% by mass is a hydrophobic organic having a water solubility of 0.05 to 12% by mass from room temperature. It is performed in the range of the boiling point of the solvent. The solvent replacement is performed until the hydrophilic solvent concentration in the sol becomes less than 2% by mass.
  • the total metal oxide concentration of the sol obtained in the step (g) is 20 to 70% by mass as the total metal oxide concentration of the modified metal oxide colloidal particles (C).
  • the present invention is a modified metal oxide colloidal particle obtained by coating a metal oxide colloidal particle as a nucleus and coating the outer surface with a composite oxide colloidal particle, and has a primary particle diameter of 5 to 60 nm.
  • Zr, Sn, Ta, Nb, Y, Mo, W, Pb, In, Bi and Sr as the core and the outer surface of the oxide colloidal particles (A) of at least one metal selected from the group consisting of: In a molar ratio of M / (SnO 2 + SiO 2 ) (where M represents an amine compound) in which the mass ratio of silicon dioxide / stannic oxide is 0.1 to 5.0 and 0.001 to 0.08.
  • the polymerizable organic compound used in the present invention is an organic compound having one or more polymerizable groups in the molecule and is liquid at 30 ° C.
  • the polymerizable organic compound used in the present invention may be any of a monomer, an oligomer and a prepolymer. Examples thereof include acrylic monomers, acrylic oligomers, polymerizable liquid epoxy resins, polymerizable oxetane resins, and polymerizable vinyl ether resins.
  • the present invention is particularly effective when a cationic polymerizable resin such as a polymerizable epoxy resin, a polymerizable oxetane resin, or a polymerizable vinyl ether resin is used.
  • the present invention is particularly effective for polymerizable epoxy resins having one or more epoxycyclohexyl groups in the molecule among the polymerizable epoxy resins.
  • the acrylic monomer is not particularly limited, but specific examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, and tetraethylene glycol di (meth) acrylate.
  • ethylene glycol di (meth) acrylate means ethylene glycol diacrylate and ethylene glycol dimethacrylate. Although it does not specifically limit as an acrylic oligomer, An epoxy acrylate oligomer, a urethane acrylate oligomer, a polyester acrylate oligomer etc. are mentioned as a typical thing.
  • the polymerizable epoxy resin is not particularly limited, but specific examples include 1,4-butanediol diglycidyl ether, 1,2-epoxy-4- (epoxyethyl) cyclohexane, glycerol triglycidyl ether, Diethylene glycol diglycidyl ether, 2,6-diglycidylphenyl glycidyl ether, 1,1,3-tris [p- (2,3-epoxypropoxy) phenyl] propane, 1,2-cyclohexanedicarboxylic acid diglycidyl ester, 4, 4'-methylenebis (N, N-diglycidylaniline), 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, trimethylolethane triglycidyl ether, triglycidyl-p-aminophenol, tetraglycidyl Rumetaxylenediamine, t
  • polymerizable epoxy resins containing one or more epoxycyclohexyl groups in the molecule include 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, 3,4-epoxycyclohexyloxirane, 2- (3,4-epoxycyclohexyl) -3 ′, 4′-epoxy-1,3-dioxane-5-spirocyclohexane, 1,2-ethylenedioxy-bis (3,4-epoxycyclohexylmethane), 4 ′, 5′-epoxy-2′-methylcyclohexylmethyl-4,5-epoxy-2-methylcyclohexanecarboxylate, ethylene glycol-bis (3,4-epoxycyclohexanecarboxylate), bis- (3,4-epoxycyclohexylmethyl) Adipate and bis (2,3-epoxy Lopentyl) ether
  • the polymerizable oxetane resin is not particularly limited, and examples thereof include 3-ethyl-3-hydroxymethyl oxetane, 3-ethyl-3- (phenoxymethyl) oxetane, 3,3-diethyl oxetane, and 3-ethyl oxetane.
  • the polymerizable vinyl ether resin is not particularly limited.
  • the present invention also relates to a modified metal oxide colloidal particle having a metal oxide colloidal particle as a core and an outer surface thereof coated with a composite oxide colloidal particle having a primary particle diameter of 5 to 60 nm.
  • Fe, Zr, Sn, Ta, Nb, Y, Mo, W, Pb, In, Bi and Sr at least one metal selected from the group consisting of oxide colloidal particles (A) as the core and its outer surface M / (SnO 2 + SiO 2 ) (wherein M represents an amine compound) having a mass ratio of silicon dioxide / stannic oxide of 0.1 to 5.0 and 0.001 to 0.08
  • a modified metal oxide colloidal particle (C) formed by coating with a silicon dioxide-stannic oxide composite oxide colloidal particle (B) having a primary particle diameter of 1 to 4 nm by binding an amine compound in a ratio, And metal Weight ratio of the composite oxide colloidal particles (B) for the product colloidal particles (A) (B) / (A) is 0.05 to 0.
  • the fine powder is a hydrophilic organic solvent-dispersed sol of silane-treated modified metal oxide colloidal particles produced in the eighth to tenth aspects or the silane-treated modified metal oxide produced in the eleventh to thirteenth aspects. It is obtained by drying a hydrophobic organic solvent-dispersed sol having a water solubility of 0.05 to 12% by mass of the colloidal particles. Drying can be performed by a known method such as vacuum drying or freeze drying. Further, after the drying, dry pulverization may be performed in order to adjust the average particle size of the obtained fine powder. The average particle diameter of the obtained fine powder can be measured by a method such as a laser diffraction particle size distribution measurement method.
  • the fine powder composed of the silane-treated modified metal oxide colloidal particles of the present invention has good redispersibility in an organic solvent and has various hydrophilic organic solvents and water solubility of 0.05 to 12% by mass. By adding to the hydrophobic organic solvent and stirring, it is dispersed in the organic solvent as particles having an average particle diameter of less than 100 nm.
  • Examples of the present invention are shown below. The present invention is not limited to these examples.
  • the measuring method of physical properties is shown below. [Moisture] It was determined by Karl Fischer titration. [Dynamic Light Scattering Particle Size] The sol was diluted with a dispersion solvent and measured with a dynamic light scattering measuring device: COULTER N4PLUS (trade name: manufactured by COULTER, USA) using the solvent parameters. [Specific gravity] The specific gravity was determined by a float balance method. [Viscosity] Determined with an Ostwald viscometer (20 ° C).
  • the aqueous solution thus obtained was passed through a column packed with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B), whereby an aqueous sol of acidic stannic oxide-silica composite colloidal particles (pH 2.4, SnO 2 containing 0.44% by mass, SiO 2 containing 0.87% by mass, SiO 2 / SnO 2 mass ratio 2.0) 1240 g was obtained.
  • 3.2 g of diisopropylamine was added to the obtained aqueous sol.
  • the obtained sol was an aqueous sol of alkaline stannic oxide-silica composite colloidal particles and had a pH of 8.0.
  • colloidal particles having a primary particle diameter of 5 nm or less were observed with a transmission electron microscope.
  • the molar ratio of diisopropylamine / (SnO 2 + SiO 2 ) was 0.15.
  • Production Example 2 32.8 g of JIS No. 3 sodium silicate (containing 14.7% by mass as SiO 2 , manufactured by Fuji Chemical Co., Ltd.) was dissolved in 178 g of pure water, and then sodium stannate NaSnO 3 .H 2 O (55.7 as SnO 2). 2.9 g (mass% content, manufactured by Showa Kako Co., Ltd.) was dissolved. The obtained aqueous solution was passed through a column packed with a hydrogen-type cation exchange resin (Amberlite IR-120B), whereby an aqueous sol of acidic stannic oxide-silica composite colloidal particles (pH 2.8, 0 as SnO 2).
  • a hydrogen-type cation exchange resin Amberlite IR-120B
  • the obtained sol was an aqueous sol of alkaline stannic oxide-silica composite colloidal particles and oligomers, and had a pH of 6.1.
  • colloidal particles having a primary particle diameter of 5 nm or less were observed with a transmission electron microscope.
  • the molar ratio of diisopropylamine / (SnO 2 + SiO 2 ) was 0.20.
  • Production Example 3 97.6 g of pure water was put into a 300 mL beaker, 17.4 g of oxalic acid dihydrate (manufactured by Ube Industries), 30.3 g of titanium tetraisopropoxide (containing 8.5 g in terms of TiO 2 ), Kanto Chemical Co., Ltd.) and 67.8 g of a 25 mass% tetramethylammonium hydroxide aqueous solution (manufactured by Tama Chemical Industry Co., Ltd.) were added with stirring.
  • the resulting mixed solution had an oxalic acid / titanium atom molar ratio of 1.5 and a tetramethylammonium hydroxide / oxalic acid molar ratio of 1.33.
  • 213.1 g of the mixed solution was kept at 88 to 92 ° C. for 3 hours in an open system under atmospheric pressure, and by-product isopropanol was distilled off to prepare 187.5 g of a titanium-containing aqueous solution.
  • 25.6 g of pure water was added to the obtained titanium-containing aqueous solution to adjust the TiO 2 equivalent concentration of the titanium-containing aqueous solution to 4.0% by mass.
  • the pH of the aqueous titanium-containing solution after concentration adjustment was 5.9, and the conductivity was 28.4 mS / cm.
  • 213.1 g of the above titanium-containing aqueous solution was put into a 300 mL stainless steel autoclave container, and hydrothermally treated at 140 ° C. for 5 hours.
  • the treated solution taken out was a highly transparent titanium oxide sol.
  • the obtained sol had a specific gravity of 1.048, pH of 4.2, conductivity of 31.1 mS / cm, TiO 2 concentration of 4.0% by mass, tetramethylammonium hydroxide concentration of 11.9% by mass, and oxalic acid concentration of 8.8. Mass%, dynamic light scattering particle diameter (measured by COULTER N5) 12 nm, viscosity 3.2 mPa ⁇ s (B-type viscometer), transmission electron microscope observation shows a substantially spherical particle with a primary particle diameter of 5 nm. It was.
  • the powder obtained by drying the obtained sol at 110 ° C. was subjected to X-ray diffraction analysis and confirmed to be anatase type crystals.
  • the obtained anatase-type titanium oxide sol was allowed to stand at room temperature for 1 month, but the transparency was maintained and no precipitate was generated.
  • Production Example 4 (A) Step: In a 1 m 3 vessel, tetramethylammonium hydrogencarbonate (manufactured by Tama Chemical Industry Co., Ltd., containing 42.4% by mass in terms of tetramethylammonium hydroxide), 251.85 kg of an aqueous solution, 95.6 kg of pure water was added to make a diluted aqueous solution. While stirring this aqueous solution, zirconium oxycarbonate powder (ZrOCO 3 , manufactured by AMR, containing 40.11% by mass as ZrO 2 ) was gradually added to the aqueous solution, and a total of 491.85 kg was added.
  • ZrOCO 3 zirconium oxycarbonate powder
  • the sol was washed and concentrated while adding pure water with an ultrafiltration device.
  • a zirconium oxide-tin oxide composite colloidal particle having a specific gravity of 1.052 and a pH of 9.43 was obtained.
  • 1040 kg of sol containing was obtained.
  • the obtained zirconium oxide-stannic oxide composite colloid had a particle diameter of 5 to 15 nm as observed with an electron microscope.
  • Example 1 Aqueous solution of alkaline silicon dioxide-stannic oxide composite colloidal particles prepared in Production Example 1 to 830 g of aqueous sol of zirconium oxide-stannic oxide composite colloidal particles prepared in Production Example 4 (containing 50 g as all metal oxides) 769 g of sol was added and stirred thoroughly. Next, the mixture was aged by heating at 95 ° C. for 2 hours to obtain 1599 g of an aqueous sol of modified zirconium oxide-stannic oxide composite colloidal particles coated with silicon dioxide-stannic oxide composite colloidal particles. The obtained sol had a pH of 8.3 and a total metal oxide concentration of 3.7% by mass.
  • the obtained aqueous sol of modified zirconium oxide-stannic oxide composite colloidal particles is passed through a column packed with a hydrogen type cation exchange resin (Amberlite IR-120B), and an acidic modified zirconium oxide-stannic oxide composite colloid is obtained.
  • 1980 g of an aqueous sol of particles was obtained.
  • the obtained sol had a pH of 2.7 and a total metal oxide concentration of 3.0% by mass.
  • 0.5 g of diisobutylamine was added to the obtained acidic sol, and diisobutylamine was bound to the surface of the modified zirconium oxide-stannic oxide colloidal particles.
  • the pH of the sol at this time was 4.3.
  • the obtained sol was concentrated to a total metal oxide concentration of 20% by mass using an ultrafiltration device.
  • the concentrated sol had a specific gravity of 1.211 and a pH of 3.7.
  • This concentrated aqueous sol was put into an evaporator with an eggplant-shaped flask, and water was distilled off at 600 Torr while adding methanol to the sol, whereby methanol of modified zirconium oxide-stannic oxide colloid particles bound with diisobutylamine was added. A sol was obtained.
  • the obtained methanol sol had a specific gravity of 0.961, a viscosity of 1.0 mPa ⁇ s, a pH of 4.9 (diluted with the same mass of water as the sol), a total metal oxide concentration of 21% by mass, and a water content of 2.3%. . 6 g of methyltrimethoxysilane (trade name LS-530, manufactured by Shin-Etsu Silicone) was added to the obtained methanol sol, and silylation was carried out by heating for 5 hours to change the methyldimethoxysilyl group to a modified zirconium oxide-oxidized oxide. Bonded to the surface of colloidal tin particles.
  • methanol was distilled off while adding methyl ethyl ketone at 80 Torr using an evaporator, so that the methanol was replaced with methyl ethyl ketone, and the modified zirconium oxide-stannic oxide colloidal particles having diisobutylamine and methyldimethoxysilyl groups bonded to the surface thereof.
  • a methyl ethyl ketone sol was obtained.
  • the obtained sol had a specific gravity of 1.084, a viscosity of 1.0 mPa ⁇ s, a total metal oxide concentration of 30.6% by mass, a primary particle diameter of 5 to 10 nm by observation with a transmission electron microscope, and a dynamic light scattering particle diameter of It was 10 nm.
  • the molar ratio of diisobutylamine / (SnO 2 + SiO 2 ) is 0.030, and the number of silyl groups bonded to the surface of the modified zirconium oxide-stannic oxide colloidal particles is 2.1 per 1 nm 2 of surface area. It was a piece.
  • Example 2 After 1000 g of aqueous sol of titanium oxide colloidal particles prepared in Production Example 3 (containing 40 g as total metal oxide) was poured and washed with an ultrafiltration membrane to remove the electrolyte, alkaline silicon dioxide prepared in Production Example 1 was used. -Add 960 g of aqueous sol of stannic oxide composite colloidal particles and stir well. Next, the mixture was aged by heating at 95 ° C. for 2 hours to obtain 1920 g of an aqueous sol of modified titanium oxide colloidal particles coated with silicon dioxide-stannic oxide composite colloidal particles. The obtained sol had a pH of 8.3 and a total metal oxide concentration of 3.7% by mass.
  • the obtained aqueous sol of modified titanium oxide composite colloidal particles was passed through a column packed with a hydrogen-type cation exchange resin (Amberlite IR-120B) to obtain 1980 g of an aqueous sol of acidic modified titanium oxide composite colloidal particles.
  • the obtained sol had a pH of 2.7 and a total metal oxide concentration of 3.0% by mass.
  • 0.5 g of diisobutylamine was added to the obtained sol, and diisobutylamine was bound to the surface of the modified titanium oxide colloidal particles.
  • the pH of the sol at this time was 4.3.
  • the obtained sol was concentrated to a total metal oxide concentration of 20% by mass using an ultrafiltration device.
  • the concentrated sol had a specific gravity of 1.211 and a pH of 3.7.
  • the concentrated aqueous sol was put into an evaporator with an eggplant type flask, and methanol was added to the sol while distilling off water at 600 Torr to obtain a methanol sol of modified titanium oxide colloidal particles bound with diisobutylamine.
  • the obtained methanol sol had a specific gravity of 0.961, a viscosity of 1.0 mPa ⁇ s, a pH of 4.9 (diluted with the same mass of water as the sol), a total metal oxide concentration of 21% by mass, and a water content of 2.3%. .
  • methyltrimethoxysilane (trade name LS-530, manufactured by Shin-Etsu Silicone) was added to the obtained methanol sol, and silylation was carried out by heating for 5 hours to convert the methyldimethoxysilyl group into the modified titanium oxide colloidal particles. Bonded to the surface.
  • silylation was carried out by heating for 5 hours to convert the methyldimethoxysilyl group into the modified titanium oxide colloidal particles. Bonded to the surface.
  • the methanol was replaced with methyl ethyl ketone to obtain methyl ethyl ketone sol of modified titanium oxide colloidal particles having diisobutylamine and methyldimethoxysilyl groups bonded to the surface. It was.
  • the obtained sol had a specific gravity of 1.084, a viscosity of 1.0 mPa ⁇ s, a total metal oxide concentration of 30.6% by mass, a primary particle diameter of 5 to 10 nm by observation with a transmission electron microscope, and a dynamic light scattering particle diameter of It was 10 nm.
  • the molar ratio of diisobutylamine / (SnO 2 + SiO 2 ) was 0.024, and the number of silyl groups bonded to the surface of the modified titanium oxide colloidal particles was 2.1 per 1 nm 2 of surface area.
  • Example 3 1000 g of aqueous sol of titanium oxide colloidal particles (A) prepared in Production Example 3 (containing 40 g as a total metal oxide) was poured and washed with an ultrafiltration membrane to remove the electrolyte, and then the alkaline prepared in Production Example 1 was used. 923.1 g of an aqueous sol of stannic oxide-silica colloidal particles and oligomers thereof were added and sufficiently stirred. Subsequently, aging was performed at 95 ° C. for 2 hours to obtain 1923.1 g of an aqueous sol of modified titanium oxide colloidal particles coated with stannic oxide-silica composite colloidal particles and oligomers thereof. The obtained sol had a pH of 10.4 and a total metal oxide concentration of 2.7% by mass.
  • the obtained aqueous sol of modified titanium oxide composite colloidal particles was passed through a column packed with a hydrogen-type cation exchange resin (Amberlite IR-120B) to obtain 2080 g of an aqueous sol of acidic modified titanium oxide composite colloidal particles.
  • the obtained sol had a pH of 2.7 and a total metal oxide concentration of 2.5% by mass.
  • 0.5 g of diisobutylamine was added to the obtained sol, and diisobutylamine was bound to the surface of the modified titanium oxide colloidal particles.
  • the pH of the sol at this time was 3.0.
  • the obtained sol was put into an evaporator with an eggplant-shaped flask and concentrated, and water was distilled off at 600 Torr while adding methanol to obtain 253.7 g of methanol sol of modified titanium oxide colloid particles bound with diisobutylamine. Obtained.
  • the obtained methanol sol had a specific gravity of 0.949, a viscosity of 1.2 mPa ⁇ s, a pH of 4.6 (diluted with water of the same mass as the sol), a total metal oxide concentration of 20.5% by mass, and a water content of 0.3%. there were.
  • phenyltrimethoxysilane (trade name KBM-103, manufactured by Shin-Etsu Silicone) was added to 126.9 g of the obtained methanol sol, and silylation was carried out by heating for 5 hours to modify the phenyldimethoxysilyl group. Bonded to the surface of the titanium oxide colloidal particles.
  • the obtained sol has a specific gravity of 0.982, a viscosity of 2.0 mPa ⁇ s, a total metal oxide concentration of 10.5% by mass, a primary particle diameter of 5 to 10 nm by observation with a transmission electron microscope, and a dynamic light scattering particle diameter.
  • the molar ratio of diisobutylamine / (SnO 2 + SiO 2 ) was 0.024, and the number of silyl groups bonded to the surface of the surface-modified titanium oxide colloidal particles was 1.2 per 1 nm 2 of surface area. .
  • Example 4 1000 g of aqueous sol of titanium oxide colloidal particles (A) prepared in Production Example 3 (containing 40 g as a total metal oxide) was poured and washed with an ultrafiltration membrane to remove the electrolyte, and then the alkaline prepared in Production Example 1 was used. 923.1 g of an aqueous sol of stannic oxide-silica colloidal particles and oligomers thereof were added and sufficiently stirred. Subsequently, aging was performed at 95 ° C. for 2 hours to obtain 1923.1 g of an aqueous sol of modified titanium oxide colloidal particles coated with stannic oxide-silica composite colloidal particles and oligomers thereof. The obtained sol had a pH of 10.4 and a total metal oxide concentration of 3.0% by mass.
  • the obtained modified titanium oxide composite colloidal particle aqueous sol was passed through a column packed with a hydrogen-type cation exchange resin (Amberlite IR-120B) to obtain 1923.1 g of an acidic modified titanium oxide composite colloidal particle aqueous sol. .
  • the obtained sol had a pH of 2.7 and a total metal oxide concentration of 2.7% by mass.
  • 0.5 g of diisobutylamine was added to the obtained sol, and diisobutylamine was bound to the surface of the modified titanium oxide colloidal particles.
  • the pH of the sol at this time was 3.0.
  • the obtained sol was put into an evaporator with an eggplant-shaped flask and concentrated, and water was distilled off at 600 Torr while adding methanol to obtain 253.7 g of methanol sol of modified titanium oxide colloid particles bound with diisobutylamine. Obtained.
  • the obtained methanol sol had a specific gravity of 0.949, a viscosity of 1.2 mPa ⁇ s, a pH of 4.6 (diluted with water of the same mass as the sol), a total metal oxide concentration of 20.5% by mass, and a water content of 0.3%. there were.
  • phenyltrimethoxysilane (trade name KBM-103, manufactured by Shin-Etsu Silicone) was added, reflux heating was performed for 5 hours, and hexamethyldisilazane (trade name, manufactured by Shin-Etsu Silicone) was added.
  • LS-7150 was added and reflux heating was performed for 3 hours to bond phenyldimethoxysilyl groups and trimethylsilyl groups to the surface of the modified titanium oxide colloidal particles.
  • the methanol was replaced by propylene glycol monomethyl ether by distilling off methanol while adding propylene glycol monomethyl ether at 80 Torr using an evaporator, and modified oxidation in which diisobutylamine, phenyldimethoxysilyl group, and trimethylsilyl group were bonded to the surface.
  • 252.6 g of propylene glycol monomethyl ether sol of titanium colloid particles was obtained.
  • the obtained sol has a specific gravity of 0.980, a viscosity of 2.5 mPa ⁇ s, a total metal oxide concentration of 10.3% by mass, a primary particle diameter of 5 to 10 nm by observation with a transmission electron microscope, and a dynamic light scattering particle diameter.
  • a specific gravity 0.980
  • a viscosity of 2.5 mPa ⁇ s a total metal oxide concentration of 10.3% by mass
  • a primary particle diameter of 5 to 10 nm by observation with a transmission electron microscope and a dynamic light scattering
  • the molar ratio of diisobutylamine / (SnO 2 + SiO 2 ) was 0.024, and the number of silyl groups bonded to the surface of the surface-modified titanium oxide colloidal particles was 4.0 per 1 nm 2 of surface area.
  • Example 5 Alkaline stannic oxide-silica colloidal particles prepared in Production Example 1 were added to 830 g of aqueous sol of zirconium oxide-stannic oxide composite colloidal particles (A) prepared in Production Example 4 (containing 50 g of total metal oxide). 769 g of an aqueous sol of the oligomer was added and stirred thoroughly. Subsequently, the mixture was aged by heating at 95 ° C. for 2 hours to obtain 1599 g of an aqueous sol of modified zirconium oxide-stannic oxide colloidal particles coated with stannic oxide-silica composite colloidal particles and oligomers thereof. The obtained sol had a pH of 8.3 and a total metal oxide concentration of 3.7% by mass.
  • the obtained modified zirconium oxide-stannic oxide composite colloidal particle aqueous sol was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite IR-120B), and the aqueous sol was recovered using pure water. 1980 g of an aqueous sol of acidic modified zirconium oxide-stannic oxide composite colloidal particles was obtained.
  • the obtained sol had a pH of 2.7 and a total metal oxide concentration of 3.0% by mass.
  • 0.5 g of diisobutylamine was added to the obtained sol, and diisobutylamine was bonded to the surface of the modified zirconium oxide-stannic oxide colloidal particles.
  • the pH of the sol at this time was 4.3.
  • the obtained sol was concentrated to a total metal oxide concentration of 20% by mass using an ultrafiltration device.
  • the concentrated sol had a specific gravity of 1.211 and a pH of 3.7.
  • This concentrated aqueous sol was put into an evaporator with an eggplant-shaped flask, and water was distilled off at 600 Torr while adding methanol to the sol, whereby methanol of modified zirconium oxide-stannic oxide colloid particles bound with diisobutylamine was added. 285.7 g of sol was obtained.
  • the obtained methanol sol had a specific gravity of 0.961, a viscosity of 1.0 mPa ⁇ s, a pH of 4.9 (diluted with the same mass of water as the sol), a total metal oxide concentration of 21% by mass, and a water content of 2.3%. .
  • decyltrimethoxysilane (trade name KBM-3103C, manufactured by Shin-Etsu Silicone) was added, reflux heating was performed for 5 hours, and hexamethyldisilazane (trade name: LS- manufactured by Shin-Etsu Silicone) was further added.
  • the obtained sol had a specific gravity of 1.122, a viscosity of 1.3 mPa ⁇ s, a total metal oxide concentration of 30.6% by mass, a primary particle diameter of 5 to 10 nm as observed by a transmission electron microscope, and a dynamic light scattering particle diameter.
  • the molar ratio of diisobutylamine / (SnO 2 + SiO 2 ) is 0.030, and the number of silyl groups bonded to the surface of the surface-modified zirconium oxide-stannic oxide colloidal particles is 4.0 per 1 nm 2 of surface area. It was a piece.
  • Example 6 Alkaline stannic oxide-silica colloidal particles prepared in Production Example 1 were added to 830 g of aqueous sol of zirconium oxide-stannic oxide composite colloidal particles (A) prepared in Production Example 4 (containing 50 g of total metal oxide). 769 g of an aqueous sol of the oligomer was added and stirred thoroughly. Subsequently, the mixture was aged by heating at 95 ° C. for 2 hours to obtain 1599 g of an aqueous sol of modified zirconium oxide-stannic oxide colloidal particles coated with stannic oxide-silica composite colloidal particles and oligomers thereof. The obtained sol had a pH of 8.3 and a total metal oxide concentration of 3.7% by mass.
  • the obtained modified zirconium oxide-stannic oxide composite colloidal particle aqueous sol was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite IR-120B), and the aqueous sol was recovered using pure water. 1980 g of an aqueous sol of acidic modified zirconium oxide-stannic oxide composite colloidal particles was obtained.
  • the obtained sol had a pH of 2.7 and a total metal oxide concentration of 3.0% by mass.
  • 0.5 g of diisobutylamine was added to the obtained sol, and diisobutylamine was bonded to the surface of the modified zirconium oxide-stannic oxide colloidal particles.
  • the pH of the sol at this time was 4.3.
  • the obtained sol was concentrated to a total metal oxide concentration of 20% by mass using an ultrafiltration device.
  • the concentrated sol had a specific gravity of 1.211 and a pH of 3.7.
  • This concentrated aqueous sol was put into an evaporator with an eggplant-shaped flask, and water was distilled off at 600 Torr while adding methanol to the sol, whereby methanol of modified zirconium oxide-stannic oxide colloid particles bound with diisobutylamine was added. 285.7 g of sol was obtained.
  • the obtained methanol sol had a specific gravity of 0.961, a viscosity of 1.0 mPa ⁇ s, a pH of 4.9 (diluted with the same mass of water as the sol), a total metal oxide concentration of 21% by mass, and a water content of 2.3%. .
  • styryltrimethoxysilane (trade name KBM-1403, manufactured by Shin-Etsu Silicone Co., Ltd.) was added, and silylation was carried out by heating for 5 hours to change the styryldimethoxysilyl group to the modified zirconium oxide- Bonded to the surface of colloidal stannic oxide particles.
  • methanol was distilled off while adding methyl ethyl ketone at 80 Torr using an evaporator to replace methanol with methyl ethyl ketone, and methyl ethyl ketone of modified zirconium oxide-stannic oxide colloidal particles in which diisobutylamine and styryldimethoxysilyl groups were bonded to the surface.
  • 200 g of sol was obtained.
  • the obtained sol has a specific gravity of 1.095, a viscosity of 3.1 mPa ⁇ s, a total metal oxide concentration of 30.0% by mass, a primary particle diameter of 5 to 10 nm by observation with a transmission electron microscope, and a dynamic light scattering particle diameter.
  • the molar ratio of diisobutylamine / (SnO 2 + SiO 2 ) is 0.030, and the number of silyl groups bonded to the surface of the surface-modified zirconium oxide-stannic oxide colloidal particles is 1.5 per 1 nm 2 of surface area. It was a piece.
  • Example 7 Alkaline stannic oxide-silica colloidal particles prepared in Production Example 1 were added to 830 g of aqueous sol of zirconium oxide-stannic oxide composite colloidal particles (A) prepared in Production Example 4 (containing 50 g of total metal oxide). 769 g of an aqueous sol of the oligomer was added and stirred thoroughly. Subsequently, the mixture was aged by heating at 95 ° C. for 2 hours to obtain 1599 g of an aqueous sol of modified zirconium oxide-stannic oxide colloidal particles coated with stannic oxide-silica composite colloidal particles and oligomers thereof. The obtained sol had a pH of 8.3 and a total metal oxide concentration of 3.7% by mass.
  • the obtained modified zirconium oxide-stannic oxide composite colloidal particle aqueous sol was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite IR-120B), and the aqueous sol was recovered using pure water. 1980 g of an aqueous sol of acidic modified zirconium oxide-stannic oxide composite colloidal particles was obtained.
  • the obtained sol had a pH of 2.7 and a total metal oxide concentration of 3.0% by mass.
  • 0.5 g of diisobutylamine was added to the obtained sol, and diisobutylamine was bonded to the surface of the modified zirconium oxide-stannic oxide colloidal particles.
  • the pH of the sol at this time was 4.3.
  • the obtained sol was concentrated to a total metal oxide concentration of 20% by mass using an ultrafiltration device.
  • the concentrated sol had a specific gravity of 1.211 and a pH of 3.7.
  • This concentrated aqueous sol was put into an evaporator with an eggplant-shaped flask, and water was distilled off at 600 Torr while adding methanol to the sol, whereby methanol of modified zirconium oxide-stannic oxide colloid particles bound with diisobutylamine was added. 285.7 g of sol was obtained.
  • the obtained methanol sol had a specific gravity of 0.961, a viscosity of 1.0 mPa ⁇ s, a pH of 4.9 (diluted with the same mass of water as the sol), a total metal oxide concentration of 21% by mass, and a water content of 2.3%. . 13.4 g of styryltrimethoxysilane (trade name KBM-1403, manufactured by Shin-Etsu Silicone) was added to the obtained methanol sol, and silylation was carried out by heating for 5 hours to change the styryltrimethoxysilyl group to the modified zirconium oxide. -Bound to the surface of colloidal stannic oxide particles.
  • methanol was distilled off while adding methyl ethyl ketone at 80 Torr using an evaporator to replace methanol with methyl ethyl ketone, and methyl ethyl ketone of modified zirconium oxide-stannic oxide colloidal particles in which diisobutylamine and styryldimethoxysilyl groups were bonded to the surface.
  • 200 g of sol was obtained.
  • the obtained sol had a specific gravity of 1.095, a viscosity of 3.5 mPa ⁇ s, a total metal oxide concentration of 30.0% by mass, a primary particle diameter of 5 to 10 nm as observed by a transmission electron microscope, and a dynamic light scattering particle diameter.
  • the molar ratio of diisobutylamine / (SnO 2 + SiO 2 ) was 0.030, and the number of silyl groups bonded to the surface of the surface-modified zirconium oxide-stannic oxide colloidal particles was 3.0 per 1 nm 2 of surface area. It was a piece.
  • Example 8 Alkaline stannic oxide-silica colloidal particles prepared in Production Example 1 were added to 830 g of aqueous sol of zirconium oxide-stannic oxide composite colloidal particles (A) prepared in Production Example 4 (containing 50 g of total metal oxide). 769 g of an aqueous sol of the oligomer was added and stirred thoroughly. Subsequently, the mixture was aged by heating at 95 ° C. for 2 hours to obtain 1599 g of an aqueous sol of modified zirconium oxide-stannic oxide colloidal particles coated with stannic oxide-silica composite colloidal particles and oligomers thereof. The obtained sol had a pH of 8.3 and a total metal oxide concentration of 3.7% by mass.
  • the obtained modified zirconium oxide-stannic oxide composite colloidal particle aqueous sol was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite IR-120B), and the aqueous sol was recovered using pure water. 1980 g of an aqueous sol of acidic modified zirconium oxide-stannic oxide composite colloidal particles was obtained.
  • the obtained sol had a pH of 2.7 and a total metal oxide concentration of 3.0% by mass.
  • 0.5 g of diisobutylamine was added to the obtained sol, and diisobutylamine was bonded to the surface of the modified zirconium oxide-stannic oxide colloidal particles.
  • the pH of the sol at this time was 4.3.
  • the obtained sol was concentrated to a total metal oxide concentration of 20% by mass using an ultrafiltration device.
  • the concentrated sol had a specific gravity of 1.211 and a pH of 3.7.
  • This concentrated aqueous sol was put into an evaporator with an eggplant-shaped flask, and water was distilled off at 600 Torr while adding methanol to the sol, whereby methanol of modified zirconium oxide-stannic oxide colloid particles bound with diisobutylamine was added. 285.7 g of sol was obtained.
  • the obtained methanol sol had a specific gravity of 0.961, a viscosity of 1.0 mPa ⁇ s, a pH of 4.9 (diluted with the same mass of water as the sol), a total metal oxide concentration of 21% by mass, and a water content of 2.3%. .
  • phenyltrimethoxysilane (trade name LS-7150, manufactured by Shin-Etsu Silicone) was added, and silylation was carried out by heating for 5 hours to convert the phenyldimethoxysilyl group to a modified zirconium oxide- Bonded to the surface of colloidal stannic oxide particles.
  • methanol was distilled off while adding methyl ethyl ketone at 80 Torr using an evaporator to replace methanol with methyl ethyl ketone, and methyl ethyl ketone of modified zirconium oxide-stannic oxide colloidal particles having diisobutylamine and phenyldimethoxysilyl groups bonded to the surface.
  • 200 g of sol was obtained.
  • the obtained sol had a specific gravity of 1.095, a viscosity of 3.3 mPa ⁇ s, a total metal oxide concentration of 30.0% by mass, a primary particle diameter of 5 to 10 nm as observed by a transmission electron microscope, and a dynamic light scattering particle diameter.
  • the molar ratio of diisobutylamine / (SnO 2 + SiO 2 ) is 0.030, and the number of silyl groups bonded to the surface of the surface-modified zirconium oxide-stannic oxide colloidal particles is 1.5 per 1 nm 2 of surface area. It was a piece.
  • Example 9 Alkaline stannic oxide-silica colloidal particles prepared in Production Example 1 were added to 830 g of aqueous sol of zirconium oxide-stannic oxide composite colloidal particles (A) prepared in Production Example 4 (containing 50 g of total metal oxide). 769 g of an aqueous sol of the oligomer was added and stirred thoroughly. Subsequently, the mixture was aged by heating at 95 ° C. for 2 hours to obtain 1599 g of an aqueous sol of modified zirconium oxide-stannic oxide colloidal particles coated with stannic oxide-silica composite colloidal particles and oligomers thereof. The obtained sol had a pH of 8.3 and a total metal oxide concentration of 3.7% by mass.
  • the obtained modified zirconium oxide-stannic oxide composite colloidal particle aqueous sol was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite IR-120B), and the aqueous sol was recovered using pure water. 1980 g of an aqueous sol of acidic modified zirconium oxide-stannic oxide composite colloidal particles was obtained.
  • the obtained sol had a pH of 2.7 and a total metal oxide concentration of 3.0% by mass.
  • 0.5 g of diisobutylamine was added to the obtained sol, and diisobutylamine was bonded to the surface of the modified zirconium oxide-stannic oxide colloidal particles.
  • the pH of the sol at this time was 4.3.
  • the obtained sol was concentrated to a total metal oxide concentration of 20% by mass using an ultrafiltration device.
  • the concentrated sol had a specific gravity of 1.211 and a pH of 3.7.
  • This concentrated aqueous sol was put into an evaporator with an eggplant-shaped flask, and water was distilled off at 600 Torr while adding methanol to the sol, whereby methanol of modified zirconium oxide-stannic oxide colloid particles bound with diisobutylamine was added. 285.7 g of sol was obtained.
  • the obtained methanol sol had a specific gravity of 0.961, a viscosity of 1.0 mPa ⁇ s, a pH of 4.9 (diluted with the same mass of water as the sol), a total metal oxide concentration of 21% by mass, and a water content of 2.3%. . 11.8 g of phenyltrimethoxysilane (trade name LS-7150, manufactured by Shin-Etsu Silicone) was added to the obtained methanol sol, and silylation was carried out by heating for 5 hours to modify the phenyldimethoxy group with modified zirconium oxide-oxidation. Bonded to the surface of stannic colloidal particles.
  • methanol was distilled off while adding methyl ethyl ketone at 80 Torr using an evaporator to replace methanol with methyl ethyl ketone, and methyl ethyl ketone of modified zirconium oxide-stannic oxide colloidal particles having diisobutylamine and phenyldimethoxysilyl groups bonded to the surface.
  • 200 g of sol was obtained.
  • the obtained sol had a specific gravity of 1.095, a viscosity of 3.6 mPa ⁇ s, a total metal oxide concentration of 30.0% by mass, a primary particle diameter of 5 to 10 nm as observed with a transmission electron microscope, and a dynamic light scattering particle diameter.
  • Example 10 Aqueous solution of alkaline silicon dioxide-stannic oxide composite colloidal particles prepared in Production Example 1 to 830 g of aqueous sol of zirconium oxide-stannic oxide composite colloidal particles prepared in Production Example 4 (containing 50 g as all metal oxides) 769 g of sol was added and stirred thoroughly. Next, the mixture was aged by heating at 95 ° C. for 2 hours to obtain 1599 g of an aqueous sol of modified zirconium oxide-stannic oxide composite colloidal particles coated with silicon dioxide-stannic oxide composite colloidal particles. The obtained sol had a pH of 8.3 and a total metal oxide concentration of 3.7% by mass.
  • the obtained aqueous sol of modified zirconium oxide-stannic oxide composite colloidal particles is passed through a column packed with a hydrogen type cation exchange resin (Amberlite IR-120B), and an acidic modified zirconium oxide-stannic oxide composite colloid is obtained.
  • 1980 g of an aqueous sol of particles was obtained.
  • the obtained sol had a pH of 2.7 and a total metal oxide concentration of 3.0% by mass.
  • 0.5 g of diisobutylamine was added to the obtained acidic sol, and diisobutylamine was bound to the surface of the modified zirconium oxide-stannic oxide colloidal particles.
  • the pH of the sol at this time was 4.3.
  • the obtained sol was concentrated to a total metal oxide concentration of 20% by mass using an ultrafiltration device.
  • the concentrated sol had a specific gravity of 1.211 and a pH of 3.7.
  • This concentrated aqueous sol was put into an evaporator with an eggplant-shaped flask, and water was distilled off at 600 Torr while adding methanol to the sol, whereby methanol of modified zirconium oxide-stannic oxide colloid particles bound with diisobutylamine was added. A sol was obtained.
  • the obtained methanol sol had a specific gravity of 0.961, a viscosity of 1.0 mPa ⁇ s, a pH of 4.9 (diluted with the same mass of water as the sol), a total metal oxide concentration of 21% by mass, and a water content of 2.3%. .
  • To the obtained methanol sol 4.45 g of dimethyldimethoxysilane (trade name KBM-22, manufactured by Shin-Etsu Silicone) and 16.6 g of 1-propanol were added, and silylation was performed by reflux heating for 5 hours. Silyl groups were bonded to the surface of the modified zirconium oxide-stannic oxide colloidal particles.
  • methyl ethyl ketone sol was obtained.
  • the obtained sol had a specific gravity of 1.080, a viscosity of 1.7 mPa ⁇ s, a total metal oxide concentration of 30.6% by mass, a primary particle diameter of 5 to 10 nm as observed with a transmission electron microscope, and a dynamic light scattering particle diameter of It was 46 nm.
  • the molar ratio of diisobutylamine / (SnO 2 + SiO 2 ) is 0.030, and the number of silyl groups bonded to the surface of the surface-modified zirconium oxide-stannic oxide colloid particles is 1.2 per 1 nm 2 of surface area. It was a piece.
  • Example 11 Aqueous solution of alkaline silicon dioxide-stannic oxide composite colloidal particles prepared in Production Example 1 to 830 g of aqueous sol of zirconium oxide-stannic oxide composite colloidal particles prepared in Production Example 4 (containing 50 g as all metal oxides) 769 g of sol was added and stirred thoroughly. Next, the mixture was aged by heating at 95 ° C. for 2 hours to obtain 1599 g of an aqueous sol of modified zirconium oxide-stannic oxide composite colloidal particles coated with silicon dioxide-stannic oxide composite colloidal particles. The obtained sol had a pH of 8.3 and a total metal oxide concentration of 3.7% by mass.
  • the obtained aqueous sol of modified zirconium oxide-stannic oxide composite colloidal particles is passed through a column packed with a hydrogen type cation exchange resin (Amberlite IR-120B), and an acidic modified zirconium oxide-stannic oxide composite colloid is obtained.
  • 1980 g of an aqueous sol of particles was obtained.
  • the obtained sol had a pH of 2.7 and a total metal oxide concentration of 3.0% by mass.
  • 0.5 g of diisobutylamine was added to the obtained acidic sol, and diisobutylamine was bound to the surface of the modified zirconium oxide-stannic oxide colloidal particles.
  • the pH of the sol at this time was 4.3.
  • the obtained sol was concentrated to a total metal oxide concentration of 20% by mass using an ultrafiltration device.
  • the concentrated sol had a specific gravity of 1.211 and a pH of 3.7.
  • This concentrated aqueous sol was put into an evaporator with an eggplant-shaped flask, and water was distilled off at 600 Torr while adding methanol to the sol, whereby methanol of modified zirconium oxide-stannic oxide colloid particles bound with diisobutylamine was added. A sol was obtained.
  • the obtained methanol sol had a specific gravity of 0.961, a viscosity of 1.0 mPa ⁇ s, a pH of 4.9 (diluted with the same mass of water as the sol), a total metal oxide concentration of 21% by mass, and a water content of 2.3%.
  • Silica was obtained by adding 5.0 g of methacryloxypropyltrimethoxysilane (trade name: KBM503, manufactured by Shin-Etsu Silicone) and 17.2 g of 1-propanol to the methanol sol thus obtained, and performing reflux heating for 5 hours. Methacryloxypropyltrimethoxysilyl groups were bonded to the surface of the modified zirconium oxide-stannic oxide colloidal particles.
  • methanol was distilled off while adding methyl ethyl ketone at 110 Torr using an evaporator to replace methanol with methyl ethyl ketone, and a modified zirconium oxide-stannic oxide colloid in which diisobutylamine and methacryloxypropyldimethoxysilyl groups were bonded to the surface.
  • a particulate methyl ethyl ketone sol was obtained.
  • the obtained sol had a specific gravity of 1.088, a viscosity of 0.9 mPa ⁇ s, a total metal oxide concentration of 30.3% by mass, a primary particle size of 5 to 10 nm as observed with a transmission electron microscope, and a dynamic light scattering particle size of It was 8.6 nm.
  • the molar ratio of diisobutylamine / (SnO 2 + SiO 2 ) is 0.030, and the number of silyl groups bonded to the surface of the surface-modified zirconium oxide-stannic oxide colloid particles is 1.0 per 1 nm 2 of surface area. It was a piece.
  • Example 12 50 g of methyl ethyl ketone sol of the modified zirconium oxide-stannic oxide colloidal particles having diisobutylamine and methyldimethoxysilyl groups bonded to the surface obtained in Example 1 was collected in a glass petri dish and dried in a vacuum dryer for 3 hours to obtain a fine particle. About 15 g of powder was obtained. When the average particle diameter of this fine powder was measured using a laser diffraction particle size distribution analyzer, it was 8 ⁇ m.
  • the pH of the sol at this time was 4.2.
  • the obtained sol was concentrated to a total metal oxide concentration of 20% by mass using an ultrafiltration device.
  • the concentrated sol had a specific gravity of 1.116 and a pH of 2.8.
  • This concentrated aqueous sol was replaced with methanol in the same manner as in Example 1.
  • the obtained methanol sol had a specific gravity of 0.950, a viscosity of 8.1 mPa ⁇ s, a pH of 3.8 (diluted with water of the same mass as the sol), a total metal oxide concentration of 20% by mass, and a water content of 1.4%. .
  • methyltrimethoxysilane (trade name: LS-530, manufactured by Shin-Etsu Silicone) was added, and silylation was carried out by heating for 5 hours to convert the methyldimethoxysilyl group to a modified zirconium oxide. -Bound to the surface of stannic oxide composite colloidal particles.
  • the viscosity gradually increased and gelled while maintaining transparency to obtain methyl ethyl ketone sol. I could't.
  • Comparative Example 2 Methanol replacement was carried out in the same manner as in Example 1 except that diisobutylamine was not added to the aqueous sol of the acidic modified zirconium oxide-stannic oxide composite colloidal particles. The methyl ethyl ketone sol could not be obtained.
  • Comparative Example 3 The same procedure as in Example 1 was carried out except that methyltrimethoxysilane was not added to the methanol sol of the modified zirconium oxide-stannic oxide composite colloidal particles to which diisobutylamine was bound. It gelled and a methyl ethyl ketone sol could not be obtained.
  • Comparative Example 4 The aqueous sol of modified zirconium oxide-stannic oxide colloidal particles prepared in the same manner as in Example 1 except that diisobutylamine was not added was distilled into water by distilling water at 600 Torr while adding methanol using an evaporator. Although the substitution was performed, the appearance became cloudy, and the modified zirconium oxide-stannic oxide colloidal particles were aggregated, so that a methanol sol could not be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Colloid Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

【課題】疎水性有機溶媒に分散可能なTi、Fe、Zr、Sn、Ta、Nb、Y、Mo、W、Pb、In、Bi及びSrからなる群から選ばれる少なくとも1種の金属の酸化物コロイド粒子及びその親水性有機溶媒ゾル又は0.05乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾルを提供し、更に各種有機溶媒に再分散可能な金属酸化物コロイド粒子の微粉末を提供すること。 【解決手段】金属酸化物のコロイド粒子を核として、シリカと酸化第二スズとからなり、且つシリカ/酸化第二スズの質量比が0.1乃至5である複合酸化物のコロイド粒子で被覆された変性金属酸化物のコロイド粒子の表面にアミン化合物及びその表面積1nm2あたり1~4個のシリル基が結合したシラン処理変性金属酸化物コロイド粒子による。

Description

シラン表面処理金属酸化物微粒子およびその製造方法
 本発明は、金属の酸化物コロイド粒子を核として、その外表面を複合酸化物コロイド粒子で被覆してなる変性金属酸化物コロイド粒子であって、5乃至60nmの一次粒子径を有するTi、Fe、Zr、Sn、Ta、Nb、Y、Mo、W、Pb、In、Bi及びSrからなる群から選ばれる少なくとも1種の金属の酸化物コロイド粒子(A)を核とし且つその外表面を、二酸化珪素/酸化第二スズの質量比が0.1乃至5.0であり且つ0.001乃至0.08のM/(SnO2+SiO2)(但しMはアミン化合物を表す)のモル比でアミン化合物が結合し1乃至4nmの一次粒子径を有するところの二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B)で被覆してなる変性金属酸化物コロイド粒子(C)であって、且つ金属の酸化物コロイド粒子(A)に対する複合酸化物コロイド粒子(B)の質量比(B)/(A)が0.05乃至0.50であり、そして該コロイド粒子(C)の粒子表面にその表面積1nm2あたり1乃至4個のシリル基が結合してなることを特徴とするシラン処理変性金属酸化物コロイド粒子、及びその親水性有機溶媒分散ゾル又は0.05乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾル並びにそれらゾルの効率的な製造法に関する。
 本発明のシラン処理変性金属酸化物コロイド粒子の親水性有機溶媒分散ゾル又は0.05乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾルは、樹脂、プラスチックス、ガラス等に適用する透明性紫外線吸収材料、透明性熱線吸収材料、高屈折率ハードコート剤、反射防止剤、封止材料等の様々な用途に用いられる。
 疎水性有機溶媒を分散媒とした金属酸化物ゾルに関しては、例えば炭素原子数3乃至12の1級アルコキシル基が無機酸化物微粒子の表面の珪素原子に結合した、無機酸化物微粒子がメチルエチルケトン等の有機溶媒に安定に分散した有機溶媒分散無機酸化物ゾルの製造方法が知られている(特許文献1参照)。
 また、酸化第二スズのコロイド粒子と酸化ジルコニウムのコロイド粒子とがこれらの酸化物の重量に基づいてZrO2/SnO2として0.02乃至1.0の比率に結合した構造と4乃至50nmの粒子径を有する酸化第二スズ-酸化ジルコニウムの複合体コロイド粒子を核として、その表面が0.1乃至100のWO3/SnO2質量比と0.1乃至100のSiO2/SnO2質量比と2乃至7nmの粒子径とを有する酸化タングステン-酸化第二スズ-二酸化珪素複合体のコロイド粒子で被覆されることによって形成された粒子径4.5乃至60nmの変性された酸化第二スズ-酸化ジルコニウム複合体コロイド粒子からなり、そしてこれら全金属酸化物を2乃至50質量%含む安定なゾル及びその製造法が記載されている(特許文献2参照)。
特開2005-200294号公報 特開2000-281344号公報 特開2000-281973号公報
 特許文献2に記載された、酸化タングステン-酸化第二スズ-二酸化珪素複合体のコロイド粒子で被覆されることによって形成された粒子径4.5乃至60nmの変性された酸化第二スズ-酸化ジルコニウム複合体コロイド粒子からなり、これらの全金属酸化物を2乃至50質量%含む安定なゾルを、特にメチルエチルケトンやキシレンといった疎水性の高い有機溶媒を分散媒とする場合は、上記金属酸化物コロイド粒子を凝集せずに一次粒子径に近い状態で分散させるには不十分であった。
 特許文献3における酸化第二スズ-酸化ジルコニウム複合体コロイドの表面の少なくとも一部を、酸化第二スズ-酸化タングステン-酸化珪素複合体コロイド粒子で被覆してなる変性酸化第二スズ-酸化ジルコニウム複合体コロイド粒子と有機珪素化合物とを含有するコーティング組成物は、上記コロイド粒子表面に有機珪素化合物への反応が不充分であり、高濃度に安定な疎水性有機溶媒に分散することはできない。
 本発明は、水溶解度が0.05乃至12質量%の疎水性有機溶媒に分散可能な5乃至60nmの一次粒子径を有するTi、Fe、Zr、Sn、Ta、Nb、Y、Mo、W、Pb、In、Bi及びSrからなる群から選ばれる少なくとも1種の金属の酸化物コロイド粒子及びその親水性有機溶媒分散ゾル又は0.05乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾルを提供することを目的とし、更に各種有機溶媒に再分散可能な金属酸化物コロイド粒子の微粉末を提供することを目的とする。
 第1の観点として、金属の酸化物コロイド粒子を核として、その外表面を複合酸化物コロイド粒子で被覆してなる変性金属酸化物コロイド粒子であって、5乃至60nmの一次粒子径を有するTi、Fe、Zr、Sn、Ta、Nb、Y、Mo、W、Pb、In、Bi及びSrからなる群から選ばれる少なくとも1種の金属の酸化物コロイド粒子(A)を核とし且つその外表面を、二酸化珪素/酸化第二スズの質量比が0.1乃至5.0であり且つ0.001乃至0.08のM/(SnO2+SiO2)(但しMはアミン化合物を表す)のモル比でアミン化合物が結合し1乃至4nmの一次粒子径を有するところの二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B)で被覆してなる変性金属酸化物コロイド粒子(C)であって、且つ金属の酸化物コロイド粒子(A)に対する複合酸化物コロイド粒子(B)の質量比(B)/(A)が0.05乃至0.50であり、そして該コロイド粒子(C)の粒子表面にその表面積1nm2あたり1乃至4個のシリル基が結合してなることを特徴とするシラン処理変性金属酸化物コロイド粒子、
第2観点として、前記シリル基が下記式(I)
 -Si(R1a(X)3-a     (I)
(但し、R1は炭素原子数1乃至12の置換若しくは無置換のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至12の置換若しくは無置換のアルケニル基、炭素原子数6乃至12の置換若しくは無置換のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メタクリロキシアルキル基、メルカプト基、アミノ基若しくはシアノ基を表し、Xは水酸基又は炭素原子数1乃至4のアルコキシ基を表す。aは0乃至3の整数を表す。)で表される第1観点に記載のシラン処理変性金属酸化物コロイド粒子、
第3観点として、前記アミン化合物が第一アミン、第二アミン及び第三アミンからなる群より選ばれる少なくとも1種の化合物である第1観点に記載のシラン処理変性金属酸化物コロイド粒子、
第4観点として、第1観点乃至第3観点のいずれか一つに記載のシラン処理変性金属酸化物コロイド粒子の親水性有機溶媒分散ゾル、
第5観点として、前記親水性有機溶媒がメチルアルコール、エチルアルコール、イソプロピルアルコール、ジメチルホルムアミド、エチルセロソルブ、ブチルセロソルブ、エチレングリコール、及びプロピレングリコールモノメチルエーテルかなる群から選ばれる少なくとも1種である第4観点に記載のシラン処理変性金属酸化物コロイド粒子の親水性有機溶媒分散ゾル、
第6観点として、第1観点乃至第3観点のいずれか一つに記載のシラン処理変性金属酸化物コロイド粒子を含む0.05乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾル、
第7観点として、前記0.05乃至12質量%の水溶解度を有する疎水性有機溶媒がメチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ヘキサン、酢酸エチル、酢酸ブチル、メタクリル酸メチル、ジイソプロピルエーテル、及びトルエンからなる群より選ばれる少なくとも1種である第6観点に記載の疎水性有機溶媒分散ゾル、
第8観点として、下記の(a)、(b)、(c)、(d)、(e)及び(f)工程を含む請求項4に記載のシラン処理変性金属酸化物コロイド粒子の親水性有機溶媒分散ゾルの製造方法:
(a)工程:スズ酸アルカリと珪酸アルカリとを二酸化珪素/酸化第二スズの質量比が0.1乃至5となる量で含有する水溶液を調製し、次いでその水溶液中に存在する陽イオンを除去して1乃至4nmの一次粒子径を有する二酸化珪素-酸化第二スズ複合体コロイド粒子の水性ゾルを調製し、更に該水性ゾルにM/(SnO2+SiO2)(但しMはアミン化合物を表す)のモル比が0.1乃至1.0となる量のアミン化合物を添加することにより、二酸化珪素/酸化第二スズの質量比が0.1乃至5.0であり且つ0.1乃至1.0のM/(SnO2+SiO2)(但しMはアミン化合物を表す)のモル比で存在するアミン化合物で安定化された1乃至4nmの一次粒子径を有する二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)の水性ゾルを得る工程、
(b)工程:5乃至60nmの一次粒子径を有するTi、Fe、Zr、Sn、Ta、Nb、Y、Mo、W、Pb、In、Bi及びSrからなる群から選ばれる少なくとも1種の金属の酸化物コロイド粒子(A)の水性ゾルと(a)工程で得られた水性ゾルとを、前記金属の酸化物コロイド粒子(A)に対する前記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)の質量比(B’)/(A)が0.05乃至0.50となる量で混合することにより、前記金属の酸化物コロイド粒子(A)が前記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)により被覆されてなる変性金属酸化物コロイド粒子(C’)の水性ゾルを得る工程、
(c)工程:(b)工程で得られた変性金属酸化物コロイド粒子(C’)の水性ゾルを陽イオン交換し、(a)工程で添加したアミン化合物を除去する工程、
(d)工程:(c)工程で得られた水性ゾルに、前記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)に対するアミン化合物のモル比M/(SnO2+SiO2)(但しMはアミン化合物を表す)が0.001乃至0.08となる量のアミン化合物を添加することにより、前記酸化物コロイド粒子(A)を核とし且つその外表面を、二酸化珪素/酸化第二スズの質量比が0.1乃至5.0であり且つ0.001乃至0.08のM/(SnO2+SiO2)のモル比(但しMはアミン化合物)でアミン化合物が結合した1乃至4nmの一次粒子径を有する二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B)で被覆してなる変性金属酸化物コロイド粒子(C)であって、且つ前記金属の酸化物のコロイド粒子(A)に対する前記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B)の質量比(B)/(A)が0.05乃至0.50である変性金属酸化物コロイド粒子(C)の水性ゾルを得る工程、
(e)工程:(d)工程で得られた水性ゾルの分散媒を親水性有機溶媒に置換する工程、
(f)工程:前記(e)工程で得られた親水性有機溶媒分散ゾルに下記の一般式(II)
 Si(R1a(X)4-a    (II)
(但し、R1は炭素原子数1乃至12の置換若しくは無置換のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至12の置換若しくは無置換のアルケニル基、炭素原子数6乃至12の置換若しくは無置換のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メタクリロキシアルキル基、メルカプト基、アミノ基若しくはシアノ基を表し、Xは水酸基又は炭素数1乃至4のアルコキシ基を表す。aは0乃至3の整数を表す。)で表される有機珪素化合物及びその加水分解物、並びに下記の一般式(III)
 (R1 3Si)2NH       (III)
(但し、R1は炭素原子数1乃至12の置換若しくは無置換のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至12の置換若しくは無置換のアルケニル基、炭素原子数6乃至12の置換若しくは無置換のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メタクリロキシアルキル基、メルカプト基、アミノ基若しくはシアノ基を表す。)
で表される有機珪素化合物からなる群から選択される少なくとも1種の化合物を前記変性金属酸化物コロイド粒子(C)に対する有機珪素化合物の質量比が0.01乃至0.50となるように添加して、一般式(I)
 -Si(R1a(X)3-a     (I)
(但し、R1は炭素原子数1乃至12の置換若しくは無置換のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至12の置換若しくは無置換のアルケニル基、炭素原子数6乃至12の置換若しくは無置換のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メタクリロキシアルキル基、メルカプト基、アミノ基若しくはシアノ基を表し、Xは水酸基又は炭素数1乃至4のアルコキシ基を表す。aは0乃至3の整数を表す。)で表されるシリル基を前記変性金属酸化物コロイド粒子(C)の表面に結合させる工程、
第9観点として前記アミン化合物として第一アミン、第二アミン及び第三アミンからなる群より選ばれる少なくとも1種の化合物を用いる第8観点に記載のシラン処理変性金属酸化物コロイド粒子の親水性有機溶媒分散ゾルの製造方法、
第10観点として前記親水性有機溶媒としてメチルアルコール、エチルアルコール、イソプロピルアルコール、ジメチルホルムアミド、エチルセロソルブ、ブチルセロソルブ、エチレングリコール、及びプロピレングリコールモノメチルエーテルかなる群から選ばれる少なくとも1種を用いる第8観点又は第9観点に記載のシラン処理変性金属酸化物コロイド粒子の親水性有機溶媒分散ゾルの製造方法、
第11観点として、下記の(a)、(b)、(c)、(d)、(e)、(f)及び(g)工程を含む第6観点又は第7観点に記載のシラン処理変性金属酸化物コロイド粒子を含む0.05乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾルの製造方法:
(a)工程:スズ酸アルカリと珪酸アルカリとを二酸化珪素/酸化第二スズの質量比が0.1乃至5となる量で含有する水溶液を調製し、次いでその水溶液中に存在する陽イオンを除去して1乃至4nmの一次粒子径を有する二酸化珪素-酸化第二スズ複合体コロイド粒子の水性ゾルを調製し、更に該水性ゾルにM/(SnO2+SiO2)(但しMはアミン化合物を表す)のモル比が0.1乃至1.0となる量のアミン化合物を添加することにより、二酸化珪素/酸化第二スズの質量比が0.1乃至5.0であり且つ0.1乃至1.0のM/(SnO2+SiO2)(但しMはアミン化合物を表す)のモル比で存在するアミン化合物で安定化された1乃至4nmの一次粒子径を有する二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)の水性ゾルを得る工程、
(b)工程:5乃至60nmの一次粒子径を有するTi、Fe、Zr、Sn、Ta、Nb、Y、Mo、W、Pb、In、Bi及びSrからなる群から選ばれる少なくとも1種の金属の酸化物コロイド粒子(A)の水性ゾルと(a)工程で得られた水性ゾルとを、前記金属の酸化物コロイド粒子(A)に対する前記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)の質量比(B’)/(A)が0.05乃至0.50となる量で混合することにより、前記金属の酸化物コロイド粒子(A)が前記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)により被覆されてなる変性金属酸化物コロイド粒子(C’)の水性ゾルを得る工程、
(c)工程:(b)工程で得られた変性金属酸化物コロイド粒子(C’)の水性ゾルを陽イオン交換し、(a)工程で添加したアミン化合物を除去する工程、
(d)工程:前記(c)工程で得られた水性ゾルに、前記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)に対するアミン化合物のモル比としてM/(SnO2+SiO2)(但しMはアミン化合物を表す)が0.001乃至0.08となる量のアミン化合物を添加することにより、前記酸化物コロイド粒子(A)を核とし且つその外表面を、二酸化珪素/酸化第二スズの質量比が0.1乃至5.0であり且つ0.001乃至0.08のM/(SnO2+SiO2)のモル比(但しMはアミン化合物)でアミン化合物が結合した1乃至4nmの一次粒子径を有する二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B)で被覆してなるコロイド(C)であって、且つ前記金属の酸化物のコロイド粒子(A)に対する前記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B)の質量比(B)/(A)が0.05乃至0.50である変性金属酸化物コロイド粒子(C)の水性ゾルを得る工程、
(e)工程:(d)工程で得られた水性ゾルの分散媒を親水性有機溶媒に置換する工程、
(f)工程:前記(e)工程で得られた親水性有機溶媒分散ゾルに下記の一般式(II)
 Si(R1a(X)4-a    (II)
(但し、R1は炭素原子数1乃至12の置換若しくは無置換のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至12の置換若しくは無置換のアルケニル基、炭素原子数6乃至12の置換若しくは無置換のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メタクリロキシアルキル基、メルカプト基、アミノ基若しくはシアノ基を表し、Xは水酸基又は炭素数1乃至4のアルコキシ基を表す。aは0乃至3の整数を表す。)で表される有機珪素化合物及びその加水分解物、並びに下記の一般式(III)
 (R1 3Si)2NH       (III)
(但し、R1は炭素原子数1乃至12の置換若しくは無置換のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至12の置換若しくは無置換のアルケニル基、炭素原子数6乃至12の置換若しくは無置換のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メタクリロキシアルキル基、メルカプト基、アミノ基若しくはシアノ基を表す。)
で表される有機珪素化合物からなる群から選択される少なくとも1種の化合物を前記変性金属酸化物コロイド粒子(C)に対する有機珪素化合物の質量比が0.01乃至0.50となるように添加して、一般式(I)
 -Si(R1a(X)3-a     (I)
(但し、R1は炭素原子数1乃至12の置換若しくは無置換のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至12の置換若しくは無置換のアルケニル基、炭素原子数6乃至12の置換若しくは無置換のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メタクリロキシアルキル基、メルカプト基、アミノ基若しくはシアノ基を表し、Xは水酸基又は炭素数1乃至4のアルコキシ基を表す。aは0乃至3の整数を表す。)で表されるシリル基を前記変性金属酸化物コロイド粒子(C)の表面に結合させる工程、
(g)工程:(f)工程で得られた親水性溶媒分散ゾルの分散媒を0.05乃至12質量%の水溶解度を有する疎水性有機溶媒に置換する工程、
第12観点として、前記アミン化合物に第一アミン、第二アミン及び第三アミンからなる群より選ばれる少なくとも1種を用いる第11観点に記載の疎水性有機溶媒分散ゾルの製造方法、
第13観点として、前記親水性有機溶媒としてメチルアルコール、エチルアルコール、イソプロピルアルコール、ジメチルホルムアミド、エチルセロソルブ、ブチルセロソルブ、エチレングリコール、及びプロピレングリコールモノメチルエーテルからなる群から選ばれる少なくとも1種を用い、前記0.05乃至12質量%の水溶解度を有する疎水性有機溶媒としてメチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ヘキサン、酢酸エチル、酢酸ブチル、メタクリル酸メチル、ジイソプロピルエーテル、及びトルエンからなる少なくも1種を用いる第11観点又は第12観点に記載の疎水性有機溶媒分散ゾルの製造方法、
第14観点として、第1観点乃至第3観点のいずれか一つに記載のシラン処理変性金属酸化物コロイド粒子と重合性有機化合物とを含む重合性有機化合物の組成物、
第15観点として、前記重合性有機化合物がカチオン重合性樹脂である第14観点に記載の重合性有機化合物の組成物、
第16観点として、前記重合性有機化合物が重合性液状エポキシ樹脂である第14観点に記載の重合性有機化合物の組成物、
第17観点として、前記重合性有機化合物が分子内に1個以上のエポキシシクロヘキシル基を有する重合性エポキシ樹脂である第14観点に記載の重合性有機化合物の組成物、
第18観点として、重合性有機化合物がアクリルモノマー及びアクリルオリゴマーの両方又はいずれか一方である請求項14に記載の重合性有機化合物の組成物、
第19観点として、第1観点乃至第3観点のいずれか一つに記載のシラン処理変性金属酸化物コロイド粒子により構成される平均粒子径0.1乃至100μmの微粉末、
である。
 本発明のシラン処理変性金属酸化物コロイド粒子は、親水性有機溶媒又は0.05乃至12質量%の水溶解度を有する疎水性有機溶媒のゾルとして得ることができ、また、本発明のシラン処理変性金属酸化物コロイド粒子は、各種の重合性有機化合物に分散されて重合性有機化合物の組成物を得ることができ、更には該シラン処理変性金属酸化物コロイド粒子で構成される微粉末は各種の有機溶媒に再分散が可能なものである。これらの性質により、各種の有機溶媒に対して高い分散性を有し、一次粒子の凝集が起こらないことから、様々な材料に添加して適用することが可能である。そして、該コロイド粒子は、高屈折率、超微粒子、高硬度等の特徴を有することから、各種の重合性有機化合物に分散して用いることにより、得られる硬化膜の種々の性能、例えば透明性、難燃性、耐熱性、耐光性、耐候性、電気絶縁性、耐薬品性、硬度、力学的強度等を高めることが期待できる。
 5乃至60nmの一次粒子径を有するTi、Fe、Zr、Sn、Ta、Nb、Y、Mo、W、Pb、In、Bi及びSrからなる群から選ばれる少なくとも1種の金属の酸化物コロイド粒子(A)は、公知の方法、例えば、イオン交換法、解膠法、加水分解法、反応法により製造することができる。
 上記のイオン交換法の例としては、上記金属の酸性塩を水素型イオン交換樹脂で処理する方法又は上記金属の塩基性塩を水酸基型陰イオン交換樹脂で処理する方法が挙げられる。
 上記解膠法の例としては、上記金属の酸性塩を塩基で中和するか、又は上記金属の塩基性塩を酸で中和させることによって得られるゲルを洗浄した後、酸又は塩基で解膠する方法が挙げられる。
 上記加水分解法の例としては、上記金属のアルコキシドを加水分解する方法、又は上記金属の塩基性塩を加熱下で加水分解した後、不要な酸を除去する方法が挙げられる。
 上記反応法の例としては、上記金属の粉末と酸とを反応させる方法が挙げられる。
 核となる金属の酸化物コロイド粒子(A)は、Ti、Fe、Zr、Sn、Ta、Nb、Y、Mo、W、Pb、In、Bi及びSrからなる群から選ばれる少なくとも1種である金属の酸化物である。この金属の酸化物のコロイド粒子(A)は、原子価2乃至6の金属の酸化物であり、それらの形態として例えばTiO2、Fe23、ZrO2、SnO2、Ta25、Nb25、Y23、MoO3、WO3、PbO、In23Bi23、SrO等を例示することができる。
 そしてこれらの金属の酸化物は単独で用いることも、組み合わせて用いることもできる。組み合わせとしては、上記金属酸化物を数種類混合する方法や、上記金属酸化物を複合化させる方法、又は金属酸化物を原子レベルで固溶体化する方法が挙げられる。
 例えばSnO2粒子とWO3粒子とがその界面で化学的な結合を生じて複合化されたSnO2-WO3複合コロイド粒子、SnO2粒子とZrO2粒子とがその界面で化学的結合を生じて複合化されたSnO2-ZrO2複合体コロイド粒子、TiO2とZrO2とSnO2が原子レベルで固溶体を形成して得られたTiO2-ZrO2-SnO2複合コロイド粒子が挙げられる。
 上記の核となる金属の酸化物コロイド粒子(A)は、金属成分の組み合わせによる化合物として用いることもでき、例えばTiSrO3、TiBaO3が挙げられる。
 本発明において核となる金属の酸化物コロイド粒子(A)の水性ゾルは、pH5乃至11.5、好ましくはpH7乃至11.5のものを用いることができる。該水性ゾルのpHは必要に応じてアルカリ成分により調整することができ、用いられるアルカリ成分としてはリチウム、ナトリウム、カリウム等のアルカリ金属水酸化物、カルシウム、マグネシウム、ストロンチウム等のアルカリ土類金属の水酸化物、アンモニア、エチルアミン、トリエチルアミン、イソプロピルアミン、n-プロピルアミン等のアルキルアミン、ベンジルアミン等のアラルキルアミン、ピペリジン等の脂環式アミン、モノエタノールアミン、トリエタノールアミン等のアルカノールアミン、第4級アンモニウム水酸化物等が挙げられる。
 本発明において核となる5乃至60nmの一次粒子径を有するTi、Fe、Zr、Sn、Ta、Nb、Y、Mo、W、Pb、In、Bi及びSrからなる群から選ばれる少なくとも1種の金属の酸化物コロイド粒子(A)を被覆する、二酸化珪素/酸化第二スズの質量比が0.1乃至5.0であり且つ0.001乃至0.08のM/(SnO2+SiO2)(但しMはアミン化合物を表す)のモル比でアミン化合物が結合した1乃至4nmの一次粒子径を有する二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B)は、その前駆体として二酸化珪素/酸化第二スズの質量比が0.1乃至5.0であり且つ0.1乃至1.0のM/(SnO2+SiO2)(但しMはアミン化合物を表す)のモル比で存在するアミン化合物で安定化された1乃至4nmの一次粒子径を有する二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)の水性ゾルが作製され、この水性ゾルが前記金属の酸化物コロイド粒子(A)の水性ゾルに添加され、前記金属の酸化物コロイド粒子(A)の表面に前記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)が被覆された後に、陽イオン交換により安定化のためのアミン化合物が除去され、続いて前記変性金属酸化物コロイド粒子(C)の安定化に適した量のアミン化合物をその表面に結合させることにより得られるものである。前記変性金属酸化物コロイド粒子(C)の安定化に適したアミン化合物の量は、M/(SnO2+SiO2)(但しMはアミン化合物を表す)のモル比として0.001乃至0.08の量である。前記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B)に結合するアミン化合物の量が前記M/(SnO2+SiO2)のモル比として0.001未満の量では、本発明の親水性有機溶媒分散ゾル又は0.05乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾルの分散安定性が不十分であるため好ましくない。また、前記M/(SnO2+SiO2)のモル比として0.08を超える量の場合は、前記変性金属酸化物コロイド粒子(C)の粒子表面に結合させる前記一般式(I)で表されるシリル基の結合の妨げになるため好ましくない。
 前記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)は、下記に示す公知の方法(例えば特公昭50-40119号)を利用して得ることができる。即ち珪酸アルカリ水溶液又は珪酸ゾル液とスズ酸アルカリ水溶液とを混合した後、陽イオン交換樹脂により陽イオンを除去することにより1乃至4nmの一次粒子径を有する二酸化珪素-酸化第二スズ複合体コロイド粒子を生成させ、次いで該コロイド粒子が分散したコロイド溶液にアミン化合物を添加し混合することにより、アミン化合物により安定化された二酸化珪素-酸化第二スズ複合体コロイド粒子の水性ゾルとして得ることができる。
 アミン化合物は二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)の表面に吸着するものの他、水性ゾルの分散媒中に溶解して存在することにより、該コロイド粒子(B’)の分散安定性を保持させるものと推定される。上記珪酸アルカリ水溶液又は珪酸ゾル液とスズ酸アルカリ水溶液とを混合した後、陽イオン交換樹脂により陽イオンを除去して得られるコロイド溶液は、アミン化合物を加えない又は上記0.1未満のM/(SnO2+SiO2)のモル比となる量のアミン化合物の添加では、数時間の放置により安定性を失いゲル化してしまうため、使用することができない。上記0.1乃至1.0のM/(SnO2+SiO2)(但しMはアミン化合物を表す)のモル比となる量のアミン化合物の添加は、上記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)の水性ゾルの分散安定性の保持に十分な量である。M/(SnO2+SiO2)のモル比が1.0を超えてもアミン化合物が過剰に存在するだけで効率的ではない。
 珪酸アルカリ水溶液としては珪酸ナトリウム、珪酸カリウムを、また珪酸ゾル液としてはこれらの珪酸アルカリ水溶液を陽イオン交換して得られる活性珪酸を用いることができる。スズ酸アルカリ水溶液としては、好ましくはスズ酸ナトリウム水溶液を用いることができる。
 本発明に用いられるアミン化合物は、第一アミン、第二アミン及び第三アミンからなる群より選ばれる少なくとも1種である。第一アミンとしては、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、イソブチルアミン、アミルアミン、アリルアミン、ヘキシルアミン、ヘピチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、シクロプロピルアミン、シクロブチルアミン、シクロペンチルアミン及びシクロヘキシルアミンが挙げられる。第二アミンとしては、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミン、ジイソブチルアミン、N-エチル-1,2-ジメチルプロピルアミン、ジアミルアミン及びジアリルアミンが挙げられる。第三アミンとしては、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリアミルアミン及びトリアリルアミンが挙げられる。
 本発明のシラン処理変性金属酸化物コロイド粒子は、金属の酸化物コロイド粒子を核として、その外表面を複合酸化物コロイド粒子で被覆してなる変性金属酸化物コロイド粒子であって、5乃至60nmの一次粒子径を有するTi、Fe、Zr、Sn、Ta、Nb、Y、Mo、W、Pb、In、Bi及びSrからなる群から選ばれる少なくとも1種の金属の酸化物コロイド粒子(A)を核とし且つその外表面を、二酸化珪素/酸化第二スズの質量比が0.1乃至5.0であり且つ0.001乃至0.08のM/(SnO2+SiO2)(但しMはアミン化合物を表す)のモル比でアミン化合物が結合し1乃至4nmの一次粒子径を有するところの二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B)で被覆してなる変性金属酸化物コロイド粒子(C)であって、且つ金属の酸化物コロイド粒子(A)に対する複合酸化物コロイド粒子(B)の質量比(B)/(A)が0.05乃至0.50である変性金属酸化物コロイド粒子(C)の粒子表面に、その表面積1nm2あたり1乃至4個のシリル基が結合しているものである。
 前記変性金属酸化物コロイド粒子(C)は、核として用いられる前記金属の酸化物コロイド粒子(A)の水性ゾルと二酸化珪素/酸化第二スズの質量比が0.1乃至5.0であり且つ0.1乃至1.0のM/(SnO2+SiO2)(但しMはアミン化合物を表す)のモル比で存在するアミン化合物で安定化された1乃至4nmの一次粒子径を有する二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)の水性ゾルとをその金属酸化物に換算した(B’)/(A)の質量比で0.05乃至0.50となる量で混合して前記変性金属酸化物コロイド粒子(C’)の水性ゾルを得た後、該水性ゾルを陽イオン交換によりアミン化合物を除去して、更に前記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)に対するアミン化合物のモル比としてM/(SnO2+SiO2)(但しMはアミン化合物を表す)が0.001乃至0.08となる量のアミン化合物を添加することにより得ることができる。
 前記変性金属酸化物コロイド粒子(C)の水性ゾルは、本発明の目的が達成される限り、他の任意成分を含有することができる。特にオキシカルボン酸類を全金属酸化物の合計量に対し約10重量%以下に含有させると分散性等の性能が更に改良されたコロイドが得られる。
 用いられるオキシカルボン酸の例としては、乳酸、酒石酸、リンゴ酸、クエン酸、グルコン酸等が挙げられる。また、アルカリ成分を含有することができ、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等のアルカリ金属の水酸化物、アンモニア等を含有することもできる。これらは上記の酸性成分と併用することもできる。
 前記変性金属酸化物コロイド粒子(C)の水性ゾルは、例えば蒸発法、限外濾過法等により変性金属酸化物コロイド粒子(C)の全金属酸化物の合計量として約50質量%に濃縮することができる。
 本発明のシラン処理変性金属酸化物コロイド粒子は、前記変性金属酸化物コロイド粒子(C)の表面に下記の一般式(I)
 -Si(R1a(X)3-a     (I)
(但し、R1は炭素原子数1乃至12の置換若しくは無置換のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至12の置換若しくは無置換のアルケニル基、炭素原子数6乃至12の置換若しくは無置換のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メタクリロキシアルキル基、メルカプト基、アミノ基若しくはシアノ基を表し、Xは水酸基又は炭素原子数1乃至4のアルコキシ基を表す。aは0乃至3の整数を表す。)で表されるシリル基が、その表面積1nm2あたり1乃至4個結合したものである。
 前記変性金属酸化物コロイド粒子(C)の表面積1nm2あたりのシリル基の個数は、ICP発光分光分析法、CHN元素分析法を用いて測定することができる。前記変性金属酸化物コロイド粒子(C)の比表面積は窒素吸着法により測定することができる。
 本発明の変性金属酸化物コロイド粒子(C)の表面に結合するシリル基は、下記の一般式(II) 
(R1aSi(X)4-a     (II)
(但し、R1は炭素原子数1乃至12の置換若しくは無置換のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至12の置換若しくは無置換のアルケニル基、炭素原子数6乃至12の置換若しくは無置換のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メタクリロキシアルキル基、メルカプト基、アミノ基若しくはシアノ基を表し、Xは水酸基又は炭素原子数1乃至4のアルコキシ基を表す。aは0乃至3の整数を表す。)又は一般式(III)
 (R1 3Si)2NH       (III)
(但し、R1は炭素原子数1乃至12の置換若しくは無置換のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至12の置換若しくは無置換のアルケニル基、炭素原子数6乃至12の置換若しくは無置換のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メタクリロキシアルキル基、メルカプト基、アミノ基若しくはシアノ基を表す。)
で表される有機珪素化合物をコロイド粒子表面と反応させることにより結合させることができる。
本発明のシリル化に用いられる有機珪素化合物について詳細に説明する。
 一般式(II)及び(III)においてR1は炭素原子数1乃至12の置換若しくは無置換のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至12の置換若しくは無置換のアルケニル基、炭素原子数6乃至12の置換若しくは無置換のアリール基若しくはハロゲン化アリール基を表すか又はエポキシ基、アクリロイル基、メタクリロイル基、メタクリロキシアルキル基、メルカプト基、アミノ基若しくはシアノ基を表し、Xは水酸基又は炭素原子数1乃至4のアルコキシ基を表す。aは0乃至3の整数を表す。
 アルキル基としては、好ましくは炭素原子数1乃至30、より好ましくは1乃至18のものであり、メチル基、エチル基、プロピル基、イソプロピル基、ヘキシル基、t-ブチル基、sec-ブチル基、デシル基、ドデシル基、オクタデシル基等が挙げられる。
 アリール基としては、フェニル基、ナフチル基等が挙げられる。好ましくはフェニル基である。
 一般式(II)において、Xは水酸基または加水分解可能な基であり、炭素原子数1乃至4のアルコキシ基である。アルコキシ基は、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基が挙げられる。aは0乃至3の整数を表す。R1又はXが複数存在するとき、複数のR1又はXはそれぞれ同じであっても異なってもよい。aとして好ましくは1又は2であり、特に好ましくは1である。
 R1に含まれる置換基としては特に制限はないが、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基(メチル、エチル、イソプロピル、プロピル、t-ブチル等)、アリール基(フェニル、ナフチル等)、芳香族へテロ環基(フリル、ピラゾリル、ピリジル等)、アルコキシ基(メトキシ、エトキシ、イソプロポキシ等)、アリールオキシ(フェノキシ等)、アルケニル基(ビニル、1-プロペニル等)、アシルオキシ基(アセトキシ、アクリロイルオキシ、メタクリロイルオキシ等)、アルコキシカルボニル基(メトキシカルボニル、エトキシカルボニル等)、アリールオキシカルボニル基(フェノキシカルボニル等)、カルバモイル基(カルバモイル、N-メチルカルバモイル等)、アシルアミノ基(アセチルアミノ、ベンゾイルアミノ、アクリルアミノ、メタクリルアミノ等)が挙げられ、これら置換基は更に置換されていてもよい。
 R1が複数ある場合は、少なくとも一つが置換アルキル基又は置換アリール基であることが好ましい。
 上記一般式(II)で示される有機珪素化合物は、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトライソプロポキシシラン、テトラn-ブトキシシラン、テトラアセトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、メチルトリプロポキシシラン、メチルトリアミロキシシラン、メチルトリフェノキシシラン、メチルトリベンジルオキシシラン、メチルトリフェネチルオキシシラン、プロピルトリメトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、ドデシルトリエトキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、αーグリシドキシエチルトリメトキシシラン、α-グリシドキシエチルトリエトキシシラン、β-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリエトキシシラン、α-グリシドキシプロピルトリメトキシシラン、α-グリシドキシプロピルトリエトキシシラン、β-グリシドキシプロピルトリメトキシシラン、β-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリプロポキシシラン、γ-グリシドキシプロピルトリブトキシシラン、γ-グリシドキシプロピルトリフェノキシシラン、α-グリシドキシブチルトリメトキシシラン、α-グリシドキシブチルトリエトキシシラン、β-グリシドキシブチルトリエトキシシラン、γ-グリシドキシブチルトリメトキシシラン、γ-グリシドキシブチルトリエトキシシラン、δ-グリシドキシブチルトリメトキシシラン、δ-グリシドキシブチルトリエトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリプロポキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリブトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリフェノキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、δ-(3,4-エポキシシクロヘキシル)ブチルトリメトキシシラン、δ-(3,4-エポキシシクロヘキシル)ブチルトリエトキシシラン、グリシドキシメチルメチルジメトキシシラン、グリシドキシメチルメチルジエトキシシラン、α-グリシドキシエチルメチルジメトキシシラン、α-グリシドキシエチルメチルジエトキシシラン、β-グリシドキシエチルメチルジメトキシシラン、β-グリシドキシエチルエチルジメトキシシラン、α-グリシドキシプロピルメチルジメトキシシラン、α-グリシドキシプロピルメチルジエトキシシラン、β-グリシドキシプロピルメチルジメトキシシラン、β-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジプロポキシシラン、γ-グリシドキシプロピルメチルジブトキシシラン、γ-グリシドキシプロピルメチルジフェノキシシラン、γ-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルエチルジエトキシシラン、γ-グリシドキシプロピルビニルジメトキシシラン、γ-グリシドキシプロピルビニルジエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-クロロプロピルトリエトキシシラン、γ-クロロプロピルトリアセトキシシラン、3、3、3-トリフロロプロピルトリメトキシシラン、γ-メタクリルオキシプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、β-シアノエチルトリエトキシシラン、クロロメチルトリメトキシシラン、クロロメチルトリエトキシシラン、N-(β-アミノエチル)γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-(β-アミノエチル)γ-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)γ-アミノプロピルメチルジエトキシシラン、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジエトキシシラン、γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ-メタクリルオキシプロピルメチルジメトキシシラン、γ-メタクリルオキシプロピルメチルジエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトメチルジエトキシシラン、メチルビニルジメトキシシラン、メチルビニルジエトキシシラン等が挙げられ、これらを単独で又は2種以上を組み合わせて使用することができる。 
 また、前記一般式(II)の有機珪素化合物の加水分解物は、式中のR1、Xの一部又は全部が水素原子に置換された化合物である。これら一般式(II)の有機珪素化合物の加水分解物は、単独で又は2種以上を組み合わせて使用することができる。
 上記有機珪素化合物の加水分解は、この有機珪素化合物に水又は所望により塩酸水溶液、硫酸水溶液若しくは酢酸水溶液の酸性水溶液を添加し、攪拌することにより行われる。
 本発明において、シリル化に用いる有機珪素化合物は一般式(II)で表される化合物及びその加水分解物からなる群より選ばれる少なくとも1種を用いることが好ましい。特にメチルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、メタクリロキシプロピルトリメトキシシラン及び/又はそれら加水分解物が好ましい。
 上記一般式(III)で表される有機珪素化合物は、例えば、ヘキサメチルジシラザン、ヘキサエチルジシラザン、ヘキサ(t-ブチル)ジシラザン、ヘキサブチルジシラザン、ヘキサオクチルジシラザン、ヘキサシクロヘキシルジシラザン、ヘキサフェニルジシラザン等が挙げられる。本発明において、特にヘキサメチルジシラザンを用いることが好ましい。
 また、本発明において、シリル化には一般式(II)で表される化合物及びその加水分解物からなる群より選ばれる少なくとも1種と、一般式(III)で示される有機珪素化合物とを併せて用いることも好ましい。
 本発明のシラン処理変性金属酸化物コロイド粒子は、親水性有機溶媒分散ゾルとして得ることができる。
 親水性有機溶媒としては、メチルアルコール、エチルアルコール、イソプロピルアルコール等の低級アルコール、ジメチルホルムアミド等の環状アミド類、エチルセロソルブ、ブチルセロソルブ、エチレングリコール、プロピレングリコールモノメチルエーテル等のグリコール類等が挙げられ、これらを組み合わせてもよい。
 本発明のシラン処理変性金属酸化物コロイド粒子の親水性有機溶媒分散ゾルは、前記変性金属酸化物コロイド粒子(C)の全金属酸化物の合計の濃度として0.1乃至50質量%であり、好ましくは1乃至30質量%である。全金属酸化物の合計の濃度は必要に応じて50質量%より高くすることもできる。
 本発明のシラン処理変性金属酸化物コロイド粒子は、0.05乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾルとして得ることができる。
 本発明において疎水性有機溶媒の水溶解度とは、20℃において有機溶媒を水と混合し2相を形成させたときの、有機相中の水の含有率を指す。
 本発明に用いる0.05乃至12質量%の水溶解度を有する疎水性有機溶媒は、例えば1-ペンタノール(水溶解度6.8質量%)、メチルエチルケトン(9.9質量%)、メチルイソブチルケトン(1.8質量%)、シクロヘキサノン(8質量%)、酢酸エチル(2.9質量%)、酢酸ブチル(1.9質量%)、メタクリル酸メチル(1.1質量%)、ジイソプロピルエーテル(0.55質量%)、ジブチルエーテル(0.2質量%)、又はトルエン(0.05質量%)が挙げられる。
 本発明のシラン処理変性金属酸化物コロイド粒子を含む0.05乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾルは、前記変性金属酸化物コロイド粒子(C)の全金属酸化物の合計の濃度として0.1乃至50質量%であり、好ましくは1乃至30質量%である。全金属酸化物の合計の濃度は必要に応じて50質量%より高くすることもできる。
 本発明のシラン処理変性金属酸化物コロイド粒子の親水性有機溶媒分散ゾルは下記の(a)、(b)、(c)、(d)、(e)及び(f)工程を含む方法により製造することができる。
(a)工程:スズ酸アルカリと珪酸アルカリとを二酸化珪素/酸化第二スズの質量比が0.1乃至5となる量で含有する水溶液を調製し、次いでその水溶液中に存在する陽イオンを除去して1乃至4nmの一次粒子径を有する二酸化珪素-酸化第二スズ複合体コロイド粒子の水性ゾルを調製し、更に該水性ゾルにM/(SnO2+SiO2)(但しMはアミン化合物を表す)のモル比が0.1乃至1.0となる量のアミン化合物を添加することにより、二酸化珪素/酸化第二スズの質量比が0.1乃至5.0であり且つ0.1乃至1.0のM/(SnO2+SiO2)(但しMはアミン化合物を表す)のモル比で存在するアミン化合物で安定化された1乃至4nmの一次粒子径を有する二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)の水性ゾルを得る工程、
(b)工程:5乃至60nmの一次粒子径を有するTi、Fe、Zr、Sn、Ta、Nb、Y、Mo、W、Pb、In、Bi及びSrからなる群から選ばれる少なくとも1種の金属の酸化物コロイド粒子(A)の水性ゾルと(a)工程で得られた水性ゾルとを、前記金属の酸化物コロイド粒子(A)に対する前記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)の質量比(B’)/(A)が0.05乃至0.50となる量で混合することにより、前記金属の酸化物コロイド粒子(A)が前記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)により被覆されてなる変性金属酸化物コロイド粒子(C’)の水性ゾルを得る工程、
(c)工程:前記(b)工程で得られた変性金属酸化物コロイド粒子(C’)の水性ゾルを陽イオン交換し、(a)工程で添加したアミン化合物を除去する工程、
(d)工程:前記(c)工程で得られた水性ゾルに、前記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)に対するアミン化合物のモル比M/(SnO2+SiO2)(但しMはアミン化合物を表す)が0.001乃至0.08となる量のアミン化合物を添加することにより、前記酸化物コロイド粒子(A)を核とし且つその外表面を、二酸化珪素/酸化第二スズの質量比が0.1乃至5.0であり且つ0.001乃至0.08のM/(SnO2+SiO2)のモル比(但しMはアミン化合物)でアミン化合物が結合した1乃至4nmの一次粒子径を有する二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B)で被覆してなる変性金属酸化物コロイド粒子(C)であって、且つ前記金属の酸化物のコロイド粒子(A)に対する前記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B)の質量比(B)/(A)が0.05乃至0.50である変性金属酸化物コロイド粒子(C)の水性ゾルを得る工程、
(e)工程:前記(d)工程で得られた水性ゾルの分散媒を親水性有機溶媒に置換する工程、及び、
(f)工程:前記(e)工程で得られた親水性有機溶媒分散ゾルに下記の一般式(II)
 Si(R1a(X)4-a    (II)
(但し、R1は炭素原子数1乃至12の置換若しくは無置換のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至12の置換若しくは無置換のアルケニル基、炭素原子数6乃至12の置換若しくは無置換のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メタクリロキシアルキル基、メルカプト基、アミノ基若しくはシアノ基を表し、Xは水酸基又は炭素数1乃至4のアルコキシ基を表す。aは0乃至3の整数を表す。)で表される有機珪素化合物及びその加水分解物、並びに下記の一般式(III)
 (R1 3Si)2NH       (III)
(但し、R1は炭素原子数1乃至12の置換若しくは無置換のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至12の置換若しくは無置換のアルケニル基、炭素原子数6乃至12の置換若しくは無置換のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メタクリロキシアルキル基、メルカプト基、アミノ基若しくはシアノ基を表す。)
で表される有機珪素化合物からなる群から選択される少なくとも1種の化合物を前記変性金属酸化物コロイド粒子(C)に対する有機珪素化合物の質量比が0.01乃至0.50となるように添加して、一般式(I)
 -Si(R1a(X)3-a     (I)
(但し、R1は炭素原子数1乃至12の置換若しくは無置換のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至12の置換若しくは無置換のアルケニル基、炭素原子数6乃至12の置換若しくは無置換のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メタクリロキシアルキル基、メルカプト基、アミノ基若しくはシアノ基を表し、Xは水酸基又は炭素数1乃至4のアルコキシ基を表す。aは0乃至3の整数を表す。)で表されるシリル基を前記変性金属酸化物コロイド粒子(C)の表面に結合させる工程。
 (a)工程においてスズ酸アルカリとしては、スズ酸ナトリウム又はスズ酸カリウムを用いることができ、好ましくはスズ酸ナトリウムである。
 珪酸アルカリとしては珪酸ナトリウム、珪酸カリウムを用いることができる。
 スズ酸アルカリと珪酸アルカリとは、二酸化珪素/酸化第二スズを質量比として0.1乃至5の比率で含有する水溶液として調製され、次いでその水溶液中に存在する陽イオンを陽イオン交換樹脂により除去する。
 スズ酸アルカリと珪酸アルカリとは、二酸化珪素/酸化第二スズの質量比が0.1乃至5.0の比率となるよう計量されて水に溶解され調製される。好ましい水溶液の固形分濃度は(SnO2+SiO2)として1乃至12質量%である。
 調製された水溶液は陽イオン交換樹脂を用いて陽イオンが除去される。陽イオン交換樹脂としては水素型の強酸性陽イオン交換樹脂が好ましく、例えばアンバーライト(登録商標)120B等をカラムに充填して用いることができる。この陽イオン交換を行うことにより、珪酸成分とスズ酸成分とが重合し、1乃至4nmの一次粒子径を有する二酸化珪素-酸化第二スズ複合体コロイド粒子が生成する。
 この二酸化珪素-酸化第二スズ複合体コロイド粒子は安定性に乏しく、放置すると数時間でゲル化するため、陽イオン交換後は速やかにアミン化合物を添加して安定化させて、二酸化珪素/酸化第二スズの質量比が0.1乃至5.0であり且つ0.1乃至1.0のM/(SnO2+SiO2)(但しMはアミン化合物を表す)のモル比で存在するアミン化合物で安定化された1乃至4nmの一次粒子径を有する二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)の水性ゾルとすることが必要である。得られる水性ゾルは(SnO2+SiO2)として0.1乃至10質量%である。
 前記陽イオン交換により生成する二酸化珪素-酸化第二スズ複合体コロイド粒子の安定化には、M/(SnO2+SiO2)(但しMはアミン化合物を表す)のモル比として0.1乃至1.0となる量のアミン化合物の添加が適切である。M/(SnO2+SiO2)のモル比が0.1乃至1.0の未満のアミン化合物の添加では、数時間の放置により安定性を失いゲル化するため好ましくない。
 次いで(b)工程において、5乃至60nmの一次粒子径を有するTi、Fe、Zr、Sn、Ta、Nb、Y、Mo、W、Pb、In、Bi及びSrからなる群から選ばれる少なくとも1種の金属の酸化物コロイド粒子(A)の水性ゾルと(a)工程で得られた二酸化珪素/酸化第二スズの質量比が0.1乃至5.0であり且つ0.1乃至1.0のM/(SnO2+SiO2)(但しMはアミン化合物を表す)のモル比のアミン化合物で安定化された1乃至4nmの一次粒子径を有する二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)の水性ゾルとを、前記金属の酸化物コロイド粒子(A)に対する前記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)の質量比(B’)/(A)として0.05乃至0.50の比で混合することにより、前記金属の酸化物コロイド粒子(A)が前記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)により被覆されてなる変性金属酸化物コロイド粒子(C’)の水性ゾルを得ることができる。
 前記金属の酸化物コロイド粒子(A)の水性ゾルの固形分濃度は0.5乃至50質量%であり、5乃至30質量%であることが好ましい。
 前記金属の酸化物コロイド粒子(A)の水性ゾルは、pH5乃至11.5、好ましくはpH7乃至11.5のものを用いることができる。該水性ゾルのpHは必要に応じてアルカリ成分により調整することができ、用いられるアルカリ成分としてはリチウム、ナトリウム、カリウム等のアルカリ金属水酸化物、カルシウム、マグネシウム、ストロンチウム等のアルカリ土類金属の水酸化物、アンモニア、エチルアミン、トリエチルアミン、イソプロピルアミン、n-プロピルアミン等のアルキルアミン、ベンジルアミン等のアラルキルアミン、ピペリジン等の脂環式アミン、モノエタノールアミン、トリエタノールアミン等のアルカノールアミン、第4級アンモニウム水酸化物等が挙げられる。
 前記金属の酸化物コロイド粒子(A)の水性ゾルと前記(a)工程で得られた水性ゾルとの混合は、攪拌下で行うことが好ましい。
 前記金属の酸化物コロイド粒子(A)に対する前記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)の混合比は、質量比(B’)/(A)として0.05乃至0.50が好ましく、0.05未満では二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)による核となる前記金属の酸化物コロイド粒子(A)の被覆を十分に行うことができず、安定な親水性有機溶媒分散ゾル又は0.05乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾルを得ることができない。また、前記質量比は0.50で十分であり、0.50を超えても効率的ではない。
 次いで(c)工程において(b)工程で得られた変性金属酸化物コロイド粒子(C’)の水性ゾルの陽イオン交換を行う。陽イオン交換は水素型の強酸性陽イオン交換樹脂を用いることが好ましい。
 次いで(d)工程では、(c)工程で得られた水性ゾルに、前記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)に対するアミン化合物のモル比としてM/(SnO2+SiO2)(但しMはアミン化合物を表す)が0.001乃至0.08となる量のアミン化合物を添加する。添加するアミン化合物の量が前記M/(SnO2+SiO2)のモル比として0.001未満では、本発明の親水性有機溶媒分散ゾルの分散安定性が不十分となるため好ましくない。また、前記M/(SnO2+SiO2)のモル比として0.08を超える場合は、前記変性金属酸化物コロイド粒子(C)の粒子表面に結合させる前記一般式(I)で表されるシリル基の結合の妨げになるため好ましくない。
 次いで(e)工程では、(d)工程で得られた水性ゾルを親水性有機溶媒に置換する。分散媒を水から親水性有機溶媒に置換する方法は公知の方法を用いることができ、常圧下又は減圧下における蒸発置換法、限外濾過膜法、溶媒抽出法等である。
 溶媒置換を効率よく行うため、(d)工程で得られた水性ゾルは、含まれる変性金属酸化物コロイド粒子(C)の濃度を1乃至70質量%、又は10乃至50質量%の範囲で予め濃縮しておくことが好ましい。ゾルの濃縮は、加熱蒸発法、限外濾過法等の公知の方法を用いることができる。溶媒置換の際のゾルの温度は室温から親水性溶媒の沸点の範囲で行われる。溶媒置換はゾル中の水分が5質量%未満となるまで行われる。(e)工程で得られるゾルの固形分濃度は、前記変性金属酸化物コロイド粒子(C)の全金属酸化物濃度として20乃至70質量%である。
 用いられる親水性有機溶媒としては、メチルアルコール、エチルアルコール、イソプロピルアルコール等の低級アルコール、ジメチルホルムアミド等の環状アミド類、エチルセロソルブ、ブチルセロソルブ、エチレングリコール、プロピレングリコールモノメチルエーテル等のグリコール類等が挙げられる。
 次いで(f)工程では、(e)工程で得られた親水性有機溶媒分散ゾルに下記の一般式(II)
 Si(R1a(X)4-a    (II)
(但し、R1は炭素原子数1乃至12の置換若しくは無置換のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至12の置換若しくは無置換のアルケニル基、炭素原子数6乃至12の置換若しくは無置換のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メタクリロキシアルキル基、メルカプト基、アミノ基若しくはシアノ基を表し、Xは水酸基又は炭素数1乃至4のアルコキシ基を表す。aは0乃至3の整数を表す。)で表される有機珪素化合物及びその加水分解物、並びに下記の一般式(III)
 (R1 3Si)2NH       (III)
(但し、R1は炭素原子数1乃至12の置換若しくは無置換のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至12の置換若しくは無置換のアルケニル基、炭素原子数6乃至12の置換若しくは無置換のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メタクリロキシアルキル基、メルカプト基、アミノ基若しくはシアノ基を表す。)
で表される有機珪素化合物からなる群から選択される少なくとも1種の化合物を前記変性金属酸化物コロイド粒子(C)に対する有機珪素化合物の質量比が0.01乃至0.50となるように添加して、一般式(I)
 -Si(R1a(X)3-a     (I)
(但し、R1は炭素原子数1乃至12の置換若しくは無置換のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至12の置換若しくは無置換のアルケニル基、炭素原子数6乃至12の置換若しくは無置換のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メタクリロキシアルキル基、メルカプト基、アミノ基若しくはシアノ基を表し、Xは水酸基又は炭素原子数1乃至4のアルコキシ基を表す。aは0乃至3の整数を表す。)で表されるシリル基を前記変性金属酸化物コロイド粒子(C)の表面に結合させる。
 (f)工程に用いられる一般式(II)及び(III)の有機珪素化合物の例示は上述の通りであり、(e)工程で得られた変性金属酸化物コロイド粒子(C)の親水性有機溶媒分散ゾルに前記一般式(II)で表される有機珪素化合物及び一般式(III)で表される有機珪素化合物の両方、またはいずれか一方を添加して熟成することにより、前記式(I)で表されるシリル基が前記変性金属酸化物コロイド粒子(C)の表面に結合される。
 前記一般式(II)又は一般式(III)で表される有機珪素化合物から前記式(I)で表されるシリル基が生成するためには、前記有機珪素化合物1モルに対して1乃至4モルの水が必要である。この必要な水は、あらかじめ親水性有機溶媒分散ゾルに含有させてもよく、また有機珪素化合物の添加後に加えてもよい。
 前記有機珪素化合物が添加された後は熟成が行われる。熟成温度は常温から用いられる親水性有機溶媒の沸点の範囲で行うことができ、前記有機溶媒の沸点付近で行う方がシリル基の反応効率がよく、好ましい。
 上記の熟成は、大気圧下で行うことができ、還流下で行うことが好ましい。
 前記一般式(II)の有機珪素化合物は予め加水分解を行ったものを添加してもよい。上記有機珪素化合物の加水分解物は、この有機珪素化合物に水又は所望により塩酸水溶液、硫酸水溶液若しくは酢酸水溶液の酸性水溶液を添加し、攪拌することにより得ることができる。
 用いられる有機珪素化合物は、特にメチルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、メタクリロキシプロピルトリメトキシシラン及び/又はそれら加水分解物が好ましい。
(f)工程を行うことにより、前記変性金属酸化物コロイド粒子(C)の表面積1nm2あたり1乃至4個のシリル基が結合しているシラン処理変性金属酸化物コロイド粒子の親水性有機溶媒分散ゾルが得られる。得られる親水性有機溶媒分散ゾルの固形分濃度は、前記変性金属酸化物コロイド粒子(C)の全金属酸化物濃度として20乃至70質量%である。
 本発明の、金属の酸化物コロイド粒子を核として、その外表面を複合酸化物コロイド粒子で被覆してなる変性金属酸化物コロイド粒子であって、5乃至60nmの一次粒子径を有するTi、Fe、Zr、Sn、Ta、Nb、Y、Mo、W、Pb、In、Bi及びSrからなる群から選ばれる少なくとも1種の金属の酸化物コロイド粒子(A)を核とし且つその外表面を、二酸化珪素/酸化第二スズの質量比が0.1乃至5.0であり且つ0.001乃至0.08のM/(SnO2+SiO2)(但しMはアミン化合物を表す)のモル比でアミン化合物が結合し1乃至4nmの一次粒子径を有するところの二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B)で被覆してなる変性金属酸化物コロイド粒子(C)であって、且つ金属の酸化物コロイド粒子(A)に対する複合酸化物コロイド粒子(B)の質量比(B)/(A)が0.05乃至0.50である変性金属酸化物コロイド粒子(C)の粒子表面に、その表面積1nm2あたり1乃至4個のシリル基が結合していることを特徴とするシラン処理変性金属酸化物コロイド粒子を含む、0.05乃至12質量%の水溶解度を有する疎水性有機溶媒ゾルの製造方法は、前記シラン処理変性金属酸化物コロイド粒子の親水性有機溶媒分散ゾルの製造方法である前記(a)、(b)、(c)、(d)、(e)及び(f)工程の後、親水性有機溶媒を0.05乃至12質量%の水溶解度を有する疎水性有機溶媒に置換する(g)工程を含む方法である。
 分散媒を親水性有機溶媒から0.05乃至12質量%の水溶解度を有する疎水性有機溶媒に置換する際のゾルの温度は室温から0.05乃至12質量%の水溶解度を有する疎水性有機溶媒の沸点の範囲で行われる。溶媒置換はゾル中の親水性溶媒濃度が2質量%未満となるまで行われる。
 (g)工程で得られるゾルの全金属酸化物濃度は、前記変性金属酸化物コロイド粒子(C)の全金属酸化物濃度として20乃至70質量%である。
 本発明は、金属の酸化物コロイド粒子を核として、その外表面を複合酸化物コロイド粒子で被覆してなる変性金属酸化物コロイド粒子であって、5乃至60nmの一次粒子径を有するTi、Fe、Zr、Sn、Ta、Nb、Y、Mo、W、Pb、In、Bi及びSrからなる群から選ばれる少なくとも1種の金属の酸化物コロイド粒子(A)を核とし且つその外表面を、二酸化珪素/酸化第二スズの質量比が0.1乃至5.0であり且つ0.001乃至0.08のM/(SnO2+SiO2)(但しMはアミン化合物を表す)のモル比でアミン化合物が結合し1乃至4nmの一次粒子径を有するところの二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B)で被覆してなる変性金属酸化物コロイド粒子(C)であって、且つ金属の酸化物コロイド粒子(A)に対する複合酸化物コロイド粒子(B)の質量比(B)/(A)が0.05乃至0.50であり、そして該コロイド粒子(C)の粒子表面にその表面積1nm2あたり1乃至4個のシリル基が結合してなることを特徴とするシラン処理変性金属酸化物コロイド粒子と重合性有機化合物との重合性化合物の組成物である。
 本発明に用いられる重合性有機化合物とは、分子内に1個以上の重合性基を有する有機化合物であり、30℃で液状のものである。本発明に用いられる重合性有機化合物としてはモノマー、オリゴマー、プレポリマーのいずれでもよい。例えばアクリルモノマー、アクリルオリゴマー、重合性液状エポキシ樹脂、重合性オキセタン樹脂又は重合性ビニルエーテル樹脂等が挙げられる。
 本発明は、重合性エポキシ樹脂、重合性オキセタン樹脂、重合性ビニルエーテル樹脂等のカチオン重合性樹脂を用いる場合に特に効果を発揮する。また、重合性エポキシ樹脂の中でも分子内に1個以上のエポキシシクロヘキシル基を持つ重合性エポキシ樹脂に対して特に効果を発揮する。
 アクリルモノマーとしては特に限定されるものではないが、具体例としては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ノナエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ノナプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、2,2-ビス〔4-((メタ)アクリロキシジエトキシ)フェニル〕プロパン、3-フェノキシ-2-プロパノイルアクリレート、1,6-ビス(3-アクリロキシ-2-ヒドロキシプロピル)-ヘキシルエーテル、トリメチロールプロパントリ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、トリス-(2-ヒドロキシルエチル)-イソシアヌル酸エステル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-ノルボルニルメチルメタクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2,2-ジメチルブチルアクリレート、2-ヒドロキシブチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-メトキシメトキシエチルアクリレート、3-ペンチル(メタ)アクリレート、3-メチル-2-ノルボルニルメチルメタクリレート、3-メトキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、4-メチル-2-プロピルペンチルアクリレート、5-ノルボルネン-2-イルメチルメタクリレート、i-プロピル(メタ)アクリレート、n-オクタデシル(メタ)アクリレート、n-ノニル(メタ)アクリレート、sec-ブチル(メタ)クリレート、t-ペンチル(メタ)アクリレート、α-ヒドロキシメチルアクリル酸エチル、α-ヒドロキシメチルアクリル酸ブチル、α-ヒドロキシメチルアクリル酸メチル、(メタ)アクリル酸、アクリル酸n-ステアリル、イソオクチルアクリレート、イソノニルアクリレート、イソボルニル(メタ)アクリレート、エチル(メタ)アクリレート、エチルカルビトールアクリレート、エトキシエチル(メタ)アクリレート、エトキシエトキシエチル(メタ)アクリレート、エトキシジエチレングリコールアクリレート、シクロヘキシル(メタ)アクリレート、シクロヘキシルメチル(メタ)アクリレート、シクロペンチルアクリレート、ジシクロペンテニルオキシエチルアクリレート、セチルアクリレート、テトラヒドロフルフリル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フタル酸水素(メタ)アクリロイルオキシエチル、ベンジル(メタ)アクリレート、メチル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、メトキシエトキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ラウリル(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、アリル化シクロヘキシルジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ネオペンチルグリコールアジペートジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコールヒドロキシピバリン酸エステルジアクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、トリメチロールプロパンポリエトキシトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールテトラ(メタ)アクリレート、プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート、グリシジルメタクリレート等が挙げられる。
 なお、ここで例えばエチレングリコールジ(メタ)アクリレートとはエチレングリコールジアクリレートとエチレングリコールジメタクリレートとを意味する。
 アクリルオリゴマーとしては特に限定されるものではないが、代表的なものとして、エポキシアクリレートオリゴマー、ウレタンアクリレートオリゴマー、ポリエステルアクリレートオリゴマー等が挙げられる。
 重合性エポキシ樹脂としては、特に限定されるものではないが、具体例としては、1,4-ブタンジオールジグリシジルエーテル、1,2-エポキシ-4-(エポキシエチル)シクロヘキサン、グリセロールトリグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、2,6-ジグリシジルフェニルグリシジルエーテル、1,1,3-トリス[p-(2,3-エポキシプロポキシ)フェニル]プロパン、1,2-シクロヘキサンジカルボン酸ジグリシジルエステル、4,4’-メチレンビス(N,N-ジグリシジルアニリン)、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、トリメチロールエタントリグリシジルエーテル、トリグリシジル-p-アミノフェノール、テトラグリシジルメタキシレンジアミン、テトラグリシジルジアミノジフェニルメタン、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン、ビスフェノール-A-ジグリシジルエーテル、ビスフェノール-S-ジグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテルレゾルシノールジグリシジルエーテル、フタル酸ジグリシジルエステル、ネオペンチルグリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、テトラブロモビスフェノール-A-ジグリシジルエーテル、ビスフェノールヘキサフルオロアセトンジグリシジルエーテル、ペンタエリスリトールジグリシジルエーテル、水素化ビスフェノール-A-ジグリシジルエーテル、トリス-(2,3-エポキシプロピル)イソシアヌレート、1-{2,3-ジ(プロピオニルオキシ)}-3,5-ビス(2,3-エポキシプロピル)-1,3,5-トリアジン-2,4,6・(1H,3H,5H)-トリオン、1,3-ビス{2,3-ジ(プロピオニルオキシ)}-5-(2,3-エポキシプロピル)-1,3,5-トリアジン-2,4,6・(1H,3H,5H)-トリオン、モノアリルジグリシジルイソシアヌレート、ジグリセロールポリジグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、1,4-ビス(2,3-エポキシプロポキシパーフルオロイソプロピル)シクロヘキサン、ソルビトールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、レゾルシンジグリシジルエーテル、1,6-へキサンジオールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、フェニルグリシジルエーテル、p-ターシャリーブチルフェニルグリシジルエーテル、アジピン酸ジグリシジルエーテル、o-フタル酸ジグリシジルエーテル、ジブロモフェニルグリシジルエーテル、1,2,7,8-ジエポキシオクタン、1,6-ジメチロールパーフルオロヘキサンジグリシジルエーテル、4,4’-ビス(2,3-エポキシプロポキシパーフルオロイソプロピル)ジフェニルエーテル、2,2-ビス(4-グリシジルオキシフェニル)プロパン、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、3,4-エポキシシクロヘキシルオキシラン、2-(3,4-エポキシシクロヘキシル)-3’,4’-エポキシ-1,3-ジオキサン-5-スピロシクロヘキサン、1,2-エチレンジオキシ-ビス(3,4-エポキシシクロヘキシルメタン)、4’,5’-エポキシ-2’-メチルシクロヘキシルメチル-4,5-エポキシ-2-メチルシクロヘキサンカルボキシレート、エチレングリコール-ビス(3,4-エポキシシクロヘキサンカルボキシレート)、ビス-(3,4-エポキシシクロヘキシルメチル)アジペート、及びビス(2,3-エポキシシクロペンチル)エーテルを挙げることができる。
 上記のうち分子内に1個以上のエポキシシクロヘキシル基を含む重合性エポキシ樹脂としては3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、3,4-エポキシシクロヘキシルオキシラン、2-(3,4-エポキシシクロヘキシル)-3’,4’-エポキシ-1,3-ジオキサン-5-スピロシクロヘキサン、1,2-エチレンジオキシ-ビス(3,4-エポキシシクロヘキシルメタン)、4’,5’-エポキシ-2’-メチルシクロヘキシルメチル-4,5-エポキシ-2-メチルシクロヘキサンカルボキシレート、エチレングリコール-ビス(3,4-エポキシシクロヘキサンカルボキシレート)、ビス-(3,4-エポキシシクロヘキシルメチル)アジペート、及びビス(2,3-エポキシシクロペンチル)エーテルを挙げることができる。
 重合性オキセタン樹脂としては、特に限定されるものではないが、例えば、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(フェノキシメチル)オキセタン、3,3-ジエチルオキセタン、及び3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン、1,4-ビス(((3-エチル-3-オキセタニル)メトキシ)メチル)ベンゼン、ジ((3-エチル-3-オキセタニル)メチル)エーテル、及びペンタエリスリトールテトラキス((3-エチル-3-オキセタニル)メチル)エーテル等を挙げることができる。
 重合性ビニルエーテル樹脂としては、特に限定されるものではないが、例えば、ビニル-2-クロロエチルエーテル、ビニル-ノルマルブチルエーテル、1,4-シクロヘキサンジメタノールジビニルエーテル、ビニルグリシジルエーテル、ビス(4-(ビニロキシメチル)シクロヘキシルメチル)グルタレート、トリ(エチレングリコール)ジビニルエーテル、アジピン酸ジビニルエステル、ジエチレングリコールジビニルエーテル、トリス(4-ビニロキシ)ブチルトリメリレート、ビス(4-(ビニロキシ)ブチル)テレフタレート、ビス(4-(ビニロキシ)ブチルイソフタレート、エチレングリコールジビニルエーテル、1,4-ブタンジオールジビニルエーテル、テトラメチレングリコールジビニルエーテル、テトラエチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、トリメチロールエタントリビニルエーテル、ヘキサンジオールジビニルエーテル、1,4-シクロヘキサンジオールジビニルエーテル、テトラエチレングリコールジビニルエーテル、ペンタエリスリトールジビニルエーテル、ペンタエリスリトールトリビニルエーテル及びシクロヘキサンジメタノールジビニルエーテル等を挙げることができる。
 前記重合性化合物組成物は、各種重合性化合物の重合条件下で重合反応を行うことにより、シラン処理変性金属酸化物コロイド粒子が分散された重合物が得られる。
 また、本発明は、金属の酸化物コロイド粒子を核として、その外表面を複合酸化物コロイド粒子で被覆してなる変性金属酸化物コロイド粒子であって、5乃至60nmの一次粒子径を有するTi、Fe、Zr、Sn、Ta、Nb、Y、Mo、W、Pb、In、Bi及びSrからなる群から選ばれる少なくとも1種の金属の酸化物コロイド粒子(A)を核とし且つその外表面を、二酸化珪素/酸化第二スズの質量比が0.1乃至5.0であり且つ0.001乃至0.08のM/(SnO2+SiO2)(但しMはアミン化合物を表す)のモル比でアミン化合物が結合し1乃至4nmの一次粒子径を有するところの二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B)で被覆してなる変性金属酸化物コロイド粒子(C)であって、且つ金属の酸化物コロイド粒子(A)に対する複合酸化物コロイド粒子(B)の質量比(B)/(A)が0.05乃至0.50であり、そして該コロイド粒子(C)の粒子表面にその表面積1nm2あたり1乃至4個のシリル基が結合してなることを特徴とするシラン処理変性金属酸化物コロイド粒子により構成される平均粒子径0.1乃至100μmの微粉末である。
 前記微粉末は、前記第8観点乃至第10観点で製造されたシラン処理変性金属酸化物コロイド粒子の親水性有機溶媒分散ゾル又は第11観点乃至第13観点で製造されたシラン処理変性金属酸化物コロイド粒子の0.05乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾルを乾燥することにより得られたものである。乾燥は、真空乾燥、凍結乾燥等の公知の方法で行うことができる。
 また、乾燥後、得られた微粉末の平均粒子径を調整するために乾式粉砕を行ってもよい。
 得られた微粉末の平均粒子径は、レーザー回折粒度分布測定法等の方法で測定することができる。
 本発明のシラン処理変性金属酸化物コロイド粒子により構成される微粉末は、有機溶媒への再分散性が良好であり、各種の親水性有機溶媒、0.05乃至12質量%の水溶解度を有する疎水性有機溶媒に添加して、攪拌を行うことにより、平均粒子径が100nm未満の粒子として有機溶媒に分散する。
 以下、実施例および比較例により本発明は具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 以下に本発明の実施例を示す。尚、本発明はこれらの実施例に限定されるものではない。物性の測定方法は以下に示す。
〔水分〕カールフィッシャー滴定法にて求めた。
〔動的光散乱法粒子径〕ゾルを分散溶媒で希釈し、溶媒のパラメーターを用いて、動的光散乱法測定装置:COULTER N4PLUS(商品名:米国COULTER社製)で測定した。
〔比重〕浮き秤法にて求めた。
〔粘度〕オストワルド粘度計にて求めた(20℃)。
 製造例1
 JIS3号珪酸ナトリウム(SiO2として29.8質量%含有、富士化学(株)製)36gを純水400gに溶解し、次いでスズ酸ナトリウムNaSnO3・H2O(SnO2として55.1質量%含有、昭和化工(株)製)9.8gを溶解した。得られた水溶液を水素型陽イオン交換樹脂(アンバーライト(登録商標)IR-120B)を充填したカラムに通すことにより、酸性の酸化第二スズ-シリカ複合コロイド粒子の水性ゾル(pH2.4、SnO2として0.44質量%、SiO2として0.87質量%を含有、SiO2/SnO2質量比2.0)1240gを得た。次いで得られた水性ゾルにジイソプロピルアミンを3.2g添加した。得られたゾルはアルカリ性の酸化第二スズ-シリカ複合コロイド粒子の水性ゾルであり、pH8.0であった。該水性ゾルは、透過型電子顕微鏡により5nm以下の1次粒子径のコロイド粒子が観察された。また、ジイソプロピルアミン/(SnO2+SiO2)のモル比は、0.15であった。
 製造例2
 JIS3号珪酸ナトリウム(SiO2として14.7質量%含有、富士化学(株)製)32.8gを純水178gに溶解し、次いでスズ酸ナトリウムNaSnO3・H2O(SnO2として55.7質量%含有、昭和化工(株)製)2.9gを溶解した。得られた水溶液を水素型陽イオン交換樹脂(アンバーライトIR-120B)を充填したカラムに通すことにより、酸性の酸化第二スズ-シリカ複合コロイド粒子の水性ゾル(pH2.8、SnO2として0.31質量%、SiO2として0.94質量%を含有、SiO2/SnO2質量比3.0)510gを得た。次いで得られた水性ゾルにジイソプロピルアミンを1.8g添加した。得られたゾルはアルカリ性の酸化第二スズ-シリカ複合コロイド粒子とそのオリゴマーの水性ゾルであり、pH6.1であった。該水性ゾルは、透過型電子顕微鏡により5nm以下の1次粒子径のコロイド粒子が観察された。また、ジイソプロピルアミン/(SnO2+SiO2)のモル比は、0.20であった。
 製造例3
 300mLのビーカーに純水97.6gを入れ、シュウ酸二水和物17.4g(宇部興産(株)製)、チタンテトライソプロポキシド30.3g(TiO2換算して8.5g含有、関東化学(株)製)、25質量%水酸化テトラメチルアンモニウム水溶液67.8g(多摩化学工業(株)製)を攪拌下に添加した。得られた混合溶液は、シュウ酸/チタン原子のモル比1.5、水酸化テトラメチルアンモニウム/シュウ酸のモル比1.33であった。該混合溶液213.1gを大気圧下、開放系で88乃至92℃で3時間保持し、副生するイソプロパノールを蒸留除去して、チタン含有水溶液187.5gを調製した。得られたチタン含有水溶液に純水25.6gを添加して、チタン含有水溶液のTiO2換算濃度を4.0質量%に調整した。濃度調整後のチタン含有水溶液のpHは5.9、電導度は28.4mS/cmであった。300mLのステンレス製オートクレーブ容器に上記チタン含有水溶液213.1gを投入し、140℃で5時間水熱処理を行った。室温に冷却後、取り出された処理後の溶液は透明性の高い酸化チタンゾルであった。得られたゾルは、比重1.048、pH4.2、電導度31.1mS/cm、TiO2濃度4.0質量%、水酸化テトラメチルアンモニウム濃度11.9質量%、シュウ酸濃度8.8質量%、動的光散乱法粒子径(COULTER社N5で測定)12nm、粘度3.2mPa・s(B型粘度計)、透過型電子顕微鏡観察では一次粒子径5nmの略球状の粒子が観察された。得られたゾルを110℃で乾燥させた粉末のX線回折分析を行い、アナターゼ型結晶であることが確認された。得られたアナターゼ型酸化チタンゾルを室温で1ヶ月静置したが、透明性を維持したままであり、沈降物は生成しなかった。
 製造例4
 (a)工程:1m3のベッセルに、炭酸水素テトラメチルアンモニウム(多摩化学工業(株)製、水酸化テトラメチルアンモニウムに換算して42.4質量%を含有する。)水溶液251.85kgと、純水95.6kgとを投入し希釈水溶液とした。この水溶液を攪拌しながら、オキシ炭酸ジルコニウム粉末(ZrOCO3、AMR製、ZrO2として40.11質量%を含有する。)を水溶液中に徐々に添加し、合計で491.85kg投入した。添加終了後、85℃に加温後、メタスズ酸8.23kg(昭和化工(株)製、SnO2として7.08kg含有する。)を徐々に添加し、105℃にて5時間加温熟成を行った。この加熱熟成終了時点では混合液はゾル状であった。更に145℃にて5時間の水熱処理を行った。水熱処理後に得られたものは、酸化ジルコニウム-酸化第二スズ複合体のコロイド粒子を含有するゾルであり、(ZrO2+SnO2)濃度として12.86質量%、比重1.180、pH10.62であった。次いでこのゾルを限外ろ過装置にて純水を添加しながら、ゾルを洗浄、濃縮したところ、濃度6.03質量%の比重1.052、pH9.43の酸化ジルコニウム-酸化スズ複合体コロイド粒子を含むゾル1040kgが得られた。得られた酸化ジルコニウム-酸化第二スズ複合体コロイドは、電子顕微鏡観察による粒子径が5乃至15nmであった。
 実施例1
 製造例4で調製した酸化ジルコニウム-酸化第二スズ複合コロイド粒子の水性ゾル830g(全金属酸化物として50g含有)に製造例1で調製したアルカリ性の二酸化珪素-酸化第二スズ複合コロイド粒子の水性ゾル769gを添加し、十分に攪拌した。次いで95℃で2時間加熱熟成して、二酸化珪素-酸化第二スズ複合コロイド粒子で被覆された変性酸化ジルコニウム-酸化第二スズ複合コロイド粒子の水性ゾル1599gを得た。得られたゾルのpHは8.3、全金属酸化物濃度は3.7質量%であった。得られた変性酸化ジルコニウム-酸化第二スズ複合コロイド粒子の水性ゾルを水素型陽イオン交換樹脂(アンバーライトIR-120B)を充填したカラムに通し、酸性の変性酸化ジルコニウム-酸化第二スズ複合コロイド粒子の水性ゾル1980gを得た。得られたゾルはpH2.7、全金属酸化物濃度は3.0質量%であった。得られた酸性ゾルにジイソブチルアミンを0.5g添加し、変性酸化ジルコニウム-酸化第二スズコロイド粒子の表面にジイソブチルアミンを結合させた。このときのゾルのpHは4.3であった。次いで得られたゾルを限外濾過装置を用いて全金属酸化物濃度20質量%まで濃縮した。濃縮後のゾルの比重は1.211、pHは3.7であった。この濃縮された水性ゾルをナス型フラスコ付きエバポレータに投入し、該ゾルにメタノールを添加しながら600Torrで水を留去することにより、ジイソブチルアミンが結合した変性酸化ジルコニウム-酸化第二スズコロイド粒子のメタノールゾルを得た。得られたメタノールゾルは、比重0.961、粘度1.0mPa・s、pH4.9(ゾルと同質量の水で希釈)、全金属酸化物濃度21質量%、水分2.3%であった。得られたメタノールゾルにメチルトリメトキシシラン(信越シリコーン製 商品名LS-530)を6g添加し、還留加熱を5時間行うことでシリル化を行い、メチルジメトキシシリル基を変性酸化ジルコニウム-酸化第二スズコロイド粒子の表面に結合させた。次いでエバポレータを用いて80Torrでメチルエチルケトンを添加しながらメタノールを留去することにより、メタノールをメチルエチルケトンに置換して、ジイソブチルアミン及びメチルジメトキシシリル基が表面に結合した変性酸化ジルコニウム-酸化第二スズコロイド粒子のメチルエチルケトンゾルが得られた。得られたゾルは比重1.084、粘度1.0mPa・s、全金属酸化物濃度30.6質量%、透過型電子顕微鏡観察による一次粒子径は5乃至10nm、動的光散乱法粒子径は10nmであった。また、ジイソブチルアミン/(SnO2+SiO2)のモル比は、0.030であり、変性酸化ジルコニウム-酸化第二スズコロイド粒子の表面に結合したシリル基の個数は、表面積1nm2当たり、2.1個であった。
 実施例2
 製造例3で調製した酸化チタンコロイド粒子の水性ゾル1000g(全金属酸化物として40g含有)を限外ろ過膜にて注水洗浄して電解質を除去した後、製造例1で調製したアルカリ性の二酸化珪素-酸化第二スズ複合コロイド粒子の水性ゾル960gを添加し、十分に攪拌した。次いで95℃で2時間加熱熟成して、二酸化珪素-酸化第二スズ複合コロイド粒子で被覆された変性酸化チタンコロイド粒子の水性ゾル1920gを得た。得られたゾルのpHは8.3、全金属酸化物濃度は3.7質量%であった。得られた変性酸化チタン複合コロイド粒子の水性ゾルを水素型陽イオン交換樹脂(アンバーライトIR-120B)を充填したカラムに通し、酸性の変性酸化チタン複合コロイド粒子の水性ゾル1980gを得た。得られたゾルはpH2.7、全金属酸化物濃度は3.0質量%であった。得られたゾルにジイソブチルアミンを0.5g添加し、変性酸化チタンコロイド粒子の表面にジイソブチルアミンを結合させた。このときのゾルのpHは4.3であった。次いで得られたゾルを限外濾過装置を用いて全金属酸化物濃度20質量%まで濃縮した。濃縮後のゾルの比重は1.211、pHは3.7であった。この濃縮された水性ゾルをナス型フラスコ付きエバポレータに投入し、該ゾルにメタノールを添加しながら600Torrで水を留去することにより、ジイソブチルアミンが結合した変性酸化チタンコロイド粒子のメタノールゾルを得た。得られたメタノールゾルは、比重0.961、粘度1.0mPa・s、pH4.9(ゾルと同質量の水で希釈)、全金属酸化物濃度21質量%、水分2.3%であった。得られたメタノールゾルにメチルトリメトキシシラン(信越シリコーン製 商品名LS-530)を6g添加し、還留加熱を5時間行うことでシリル化を行い、メチルジメトキシシリル基を変性酸化チタンコロイド粒子の表面に結合させた。次いでエバポレータを用いて80Torrでメチルエチルケトンを添加しながらメタノールを留去することにより、メタノールをメチルエチルケトンに置換して、ジイソブチルアミン及びメチルジメトキシシリル基が表面に結合した変性酸化チタンコロイド粒子のメチルエチルケトンゾルが得られた。得られたゾルは比重1.084、粘度1.0mPa・s、全金属酸化物濃度30.6質量%、透過型電子顕微鏡観察による一次粒子径は5乃至10nm、動的光散乱法粒子径は10nmであった。また、ジイソブチルアミン/(SnO2+SiO2)のモル比は、0.024であり、変性酸化チタンコロイド粒子の表面に結合したシリル基の個数は、表面積1nm2当たり2.1個であった。
 実施例3 
 製造例3で調製した酸化チタンコロイド粒子(A)の水性ゾル1000g(総金属酸化物として40g含有)を限外ろ過膜にて注水洗浄し、電解質を除去した後、製造例1で調製したアルカリ性の酸化第二スズ-シリカコロイド粒子とそのオリゴマーの水性ゾル923.1gを添加し、十分に攪拌した。次いで95℃で2時間加熱熟成して、酸化第二スズ-シリカ複合コロイド粒子とそのオリゴマーで被覆された変性酸化チタンコロイド粒子の水性ゾル1923.1gを得た。得られたゾルのpHは10.4、全金属酸化物濃度は2.7質量%であった。得られた変性酸化チタン複合コロイド粒子の水性ゾルを水素型陽イオン交換樹脂(アンバーライトIR-120B)を充填したカラムに通し、酸性の変性酸化チタン複合コロイド粒子の水性ゾル2080gを得た。得られたゾルはpH2.7、全金属酸化物濃度は2.5質量%であった。得られたゾルにジイソブチルアミンを0.5g添加し、変性酸化チタンコロイド粒子の表面にジイソブチルアミンを結合させた。このときのゾルのpHは3.0であった。次いで得られたゾルをナス型フラスコ付きエバポレーターに投入して濃縮し、メタノールを添加しながら600Torrで水を留去することにより、ジイソブチルアミンが結合した変性酸化チタンコロイド粒子のメタノールゾル253.7gを得た。得られたメタノールゾルは、比重0.949、粘度1.2mPa・s、pH4.6(ゾルと同質量の水で希釈)、全金属酸化物濃度20.5質量%、水分0.3%であった。得られたメタノールゾル126.9gにフェニルトリメトキシシラン(信越シリコーン製 商品名KBM-103)を3.8g添加し、還留加熱を5時間行うことでシリル化を行い、フェニルジメトキシシリル基を変性酸化チタンコロイド粒子の表面に結合させた。次いでエバポレータを用いて100Torrでプロピレングリコールモノメチルエーテルを添加しながらメタノールを留去することによりメタノールをプロピレングリコールモノメチルエーテルに置換して、ジイソブチルアミン及びフェニルジメトキシシリル基が表面に結合した変性酸化チタンコロイド粒子のプロピレングリコールモノメチルエーテルゾル247.7gが得られた。得られたゾルは比重0.982、粘度2.0mPa・s、全金属酸化物濃度10.5質量%、透過型電子顕微鏡観察による1次粒子径は5乃至10nm、動的光散乱法粒子径は11nmであった。また、ジイソブチルアミン/(SnO2+SiO2)のモル比は、0.024であり、表面変性酸化チタンコロイド粒子の表面に結合したシリル基の個数は、表面積1nm2あたり1.2個であった。
 実施例4
 製造例3で調製した酸化チタンコロイド粒子(A)の水性ゾル1000g(総金属酸化物として40g含有)を限外ろ過膜にて注水洗浄し、電解質を除去した後、製造例1で調製したアルカリ性の酸化第二スズ-シリカコロイド粒子とそのオリゴマーの水性ゾル923.1gを添加し、十分に攪拌した。次いで95℃で2時間加熱熟成して、酸化第二スズ-シリカ複合コロイド粒子とそのオリゴマーで被覆された変性酸化チタンコロイド粒子の水性ゾル1923.1gを得た。得られたゾルのpHは10.4、全金属酸化物濃度は3.0質量%であった。得られた変性酸化チタン複合コロイド粒子の水性ゾルを水素型陽イオン交換樹脂(アンバーライトIR-120B)を充填したカラムに通し、酸性の変性酸化チタン複合コロイド粒子の水性ゾル1923.1gを得た。得られたゾルはpH2.7、全金属酸化物濃度は2.7質量%であった。得られたゾルにジイソブチルアミンを0.5g添加し、変性酸化チタンコロイド粒子の表面にジイソブチルアミンを結合させた。このときのゾルのpHは3.0であった。次いで得られたゾルをナス型フラスコ付きエバポレーターに投入して濃縮し、メタノールを添加しながら600Torrで水を留去することにより、ジイソブチルアミンが結合した変性酸化チタンコロイド粒子のメタノールゾル253.7gを得た。得られたメタノールゾルは、比重0.949、粘度1.2mPa・s、pH4.6(ゾルと同質量の水で希釈)、全金属酸化物濃度20.5質量%、水分0.3%であった。得られたメタノールゾル126.9にフェニルトリメトキシシラン(信越シリコーン製 商品名KBM-103)を3.8g添加し、還留加熱を5時間行い、さらに、ヘキサメチルジシラザン(信越シリコーン製 商品名LS-7150)を5.2g添加し、還流過熱を3時間行うことで、フェニルジメトキシシリル基、トリメチルシリル基を変性酸化チタンコロイド粒子の表面に結合させた。次いでエバポレータを用いて80Torrでプロピレングリコールモノメチルエーテルを添加しながらメタノールを留去することによりメタノールをプロピレングリコールモノメチルエーテルに置換して、ジイソブチルアミン及びフェニルジメトキシシリル基、トリメチルシリル基が表面に結合した変性酸化チタンコロイド粒子のプロピレングリコールモノメチルエーテルゾルが252.6g得られた。得られたゾルは比重0.980、粘度2.5mPa・s、全金属酸化物濃度10.3質量%、透過型電子顕微鏡観察による1次粒子径は5乃至10nm、動的光散乱法粒子径は21nmであった。また、ジイソブチルアミン/(SnO2+SiO2)のモル比は、0.024、表面変性酸化チタンコロイド粒子の表面に結合したシリル基の個数は、表面積1nm2あたり4.0個であった。
 実施例5 
 製造例4で調製した酸化ジルコニウム-酸化第二スズ複合コロイド粒子(A)の水性ゾル830g(総金属酸化物として50g含有)に製造例1で調製したアルカリ性の酸化第二スズ-シリカコロイド粒子とそのオリゴマーの水性ゾル769gを添加し、十分に攪拌した。次いで95℃で2時間加熱熟成して、酸化第二スズ-シリカ複合コロイド粒子とそのオリゴマーで被覆された変性酸化ジルコニウム-酸化第二スズコロイド粒子の水性ゾル1599gを得た。得られたゾルのpHは8.3、全金属酸化物濃度は3.7質量%であった。得られた変性酸化ジルコニウム-酸化第二スズ複合コロイド粒子の水性ゾルを水素型陽イオン交換樹脂(アンバーライトIR-120B)を充填したカラムに通し、純水を用いて該水性ゾルを回収して、酸性の変性酸化ジルコニウム-酸化第二スズ複合コロイド粒子の水性ゾル1980gを得た。得られたゾルはpH2.7、全金属酸化物濃度は3.0質量%であった。得られたゾルにジイソブチルアミンを0.5g添加し、変性酸化ジルコニウム-酸化第二スズコロイド粒子の表面にジイソブチルアミンを結合させた。このときのゾルのpHは4.3であった。次いで得られたゾルを限外濾過装置を用いて全金属酸化物濃度20質量%まで濃縮した。濃縮後のゾルの比重は1.211、pHは3.7であった。この濃縮された水性ゾルをナス型フラスコ付きエバポレータに投入し、該ゾルにメタノールを添加しながら600Torrで水を留去することにより、ジイソブチルアミンが結合した変性酸化ジルコニウム-酸化第二スズコロイド粒子のメタノールゾル285.7gを得た。得られたメタノールゾルは、比重0.961、粘度1.0mPa・s、pH4.9(ゾルと同質量の水で希釈)、全金属酸化物濃度21質量%、水分2.3%であった。得られたメタノールゾルにデシルトリメトキシシラン(信越シリコーン製 商品名KBM-3103C)を15.7g添加し、還留加熱を5時間行行い、さらに、ヘキサメチルジシラザン(信越シリコーン製 商品名LS-7150)を1.8g添加し、還流過熱を5時間行うことで、デシルジメトキシ基、トリメチル基を変性酸化チタンコロイド粒子の表面に結合させた。次いでエバポレータを用いて110Torrでトルエンを添加しながらメタノールを留去することによりメタノールをトルエンに置換して、ジイソブチルアミン及びデシルトリメトキシリル基、トリメチルシリル基が表面に結合した変性酸化ジルコニウム-酸化第二スズコロイド粒子のトルエンゾルが196g得られた。得られたゾルは比重1.122、粘度1.3mPa・s、全金属酸化物濃度30.6質量%、透過型電子顕微鏡観察による1次粒子径は5乃至10nm、動的光散乱法粒子径は31nmであった。また、ジイソブチルアミン/(SnO2+SiO2)のモル比は、0.030であり、表面変性酸化ジルコニウム-酸化第二スズコロイド粒子の表面に結合したシリル基の個数は、表面積1nm2あたり4.0個であった。
 実施例6 
 製造例4で調製した酸化ジルコニウム-酸化第二スズ複合コロイド粒子(A)の水性ゾル830g(総金属酸化物として50g含有)に製造例1で調製したアルカリ性の酸化第二スズ-シリカコロイド粒子とそのオリゴマーの水性ゾル769gを添加し、十分に攪拌した。次いで95℃で2時間加熱熟成して、酸化第二スズ-シリカ複合コロイド粒子とそのオリゴマーで被覆された変性酸化ジルコニウム-酸化第二スズコロイド粒子の水性ゾル1599gを得た。得られたゾルのpHは8.3、全金属酸化物濃度は3.7質量%であった。得られた変性酸化ジルコニウム-酸化第二スズ複合コロイド粒子の水性ゾルを水素型陽イオン交換樹脂(アンバーライトIR-120B)を充填したカラムに通し、純水を用いて該水性ゾルを回収して、酸性の変性酸化ジルコニウム-酸化第二スズ複合コロイド粒子の水性ゾル1980gを得た。得られたゾルはpH2.7、全金属酸化物濃度は3.0質量%であった。得られたゾルにジイソブチルアミンを0.5g添加し、変性酸化ジルコニウム-酸化第二スズコロイド粒子の表面にジイソブチルアミンを結合させた。このときのゾルのpHは4.3であった。次いで得られたゾルを限外濾過装置を用いて全金属酸化物濃度20質量%まで濃縮した。濃縮後のゾルの比重は1.211、pHは3.7であった。この濃縮された水性ゾルをナス型フラスコ付きエバポレータに投入し、該ゾルにメタノールを添加しながら600Torrで水を留去することにより、ジイソブチルアミンが結合した変性酸化ジルコニウム-酸化第二スズコロイド粒子のメタノールゾル285.7gを得た。得られたメタノールゾルは、比重0.961、粘度1.0mPa・s、pH4.9(ゾルと同質量の水で希釈)、全金属酸化物濃度21質量%、水分2.3%であった。得られたメタノールゾルにスチリルトリメトキシシラン(信越シリコーン製 商品名KBM-1403)を6.7g添加し、還留加熱を5時間行うことでシリル化を行い、スチリルジメトキシシリル基を変性酸化ジルコニウム-酸化第二スズコロイド粒子の表面に結合させた。次いでエバポレータを用いて80Torrでメチルエチルケトンを添加しながらメタノールを留去することによりメタノールをメチルエチルケトンに置換して、ジイソブチルアミン及びスチリルジメトキシシリル基が表面に結合した変性酸化ジルコニウム-酸化第二スズコロイド粒子のメチルエチルケトンゾル200gが得られた。得られたゾルは比重1.095、粘度3.1mPa・s、全金属酸化物濃度30.0質量%、透過型電子顕微鏡観察による1次粒子径は5乃至10nm、動的光散乱法粒子径は10nmであった。また、ジイソブチルアミン/(SnO2+SiO2)のモル比は、0.030であり、表面変性酸化ジルコニウム-酸化第二スズコロイド粒子の表面に結合したシリル基の個数は、表面積1nm2あたり1.5個であった。
 実施例7 
 製造例4で調製した酸化ジルコニウム-酸化第二スズ複合コロイド粒子(A)の水性ゾル830g(総金属酸化物として50g含有)に製造例1で調製したアルカリ性の酸化第二スズ-シリカコロイド粒子とそのオリゴマーの水性ゾル769gを添加し、十分に攪拌した。次いで95℃で2時間加熱熟成して、酸化第二スズ-シリカ複合コロイド粒子とそのオリゴマーで被覆された変性酸化ジルコニウム-酸化第二スズコロイド粒子の水性ゾル1599gを得た。得られたゾルのpHは8.3、全金属酸化物濃度は3.7質量%であった。得られた変性酸化ジルコニウム-酸化第二スズ複合コロイド粒子の水性ゾルを水素型陽イオン交換樹脂(アンバーライトIR-120B)を充填したカラムに通し、純水を用いて該水性ゾルを回収して、酸性の変性酸化ジルコニウム-酸化第二スズ複合コロイド粒子の水性ゾル1980gを得た。得られたゾルはpH2.7、全金属酸化物濃度は3.0質量%であった。得られたゾルにジイソブチルアミンを0.5g添加し、変性酸化ジルコニウム-酸化第二スズコロイド粒子の表面にジイソブチルアミンを結合させた。このときのゾルのpHは4.3であった。次いで得られたゾルを限外濾過装置を用いて全金属酸化物濃度20質量%まで濃縮した。濃縮後のゾルの比重は1.211、pHは3.7であった。この濃縮された水性ゾルをナス型フラスコ付きエバポレータに投入し、該ゾルにメタノールを添加しながら600Torrで水を留去することにより、ジイソブチルアミンが結合した変性酸化ジルコニウム-酸化第二スズコロイド粒子のメタノールゾル285.7gを得た。得られたメタノールゾルは、比重0.961、粘度1.0mPa・s、pH4.9(ゾルと同質量の水で希釈)、全金属酸化物濃度21質量%、水分2.3%であった。得られたメタノールゾルにスチリルトリメトキシシラン(信越シリコーン製 商品名KBM-1403)を13.4g添加し、還留加熱を5時間行うことでシリル化を行い、スチリルトリメトキシシリル基を変性酸化ジルコニウム-酸化第二スズコロイド粒子の表面に結合させた。次いでエバポレータを用いて80Torrでメチルエチルケトンを添加しながらメタノールを留去することによりメタノールをメチルエチルケトンに置換して、ジイソブチルアミン及びスチリルジメトキシシリル基が表面に結合した変性酸化ジルコニウム-酸化第二スズコロイド粒子のメチルエチルケトンゾル200gが得られた。得られたゾルは比重1.095、粘度3.5mPa・s、全金属酸化物濃度30.0質量%、透過型電子顕微鏡観察による1次粒子径は5乃至10nm、動的光散乱法粒子径は10nmであった。また、ジイソブチルアミン/(SnO2+SiO2)のモル比は、0.030であり、表面変性酸化ジルコニウム-酸化第二スズコロイド粒子の表面に結合したシリル基の個数は、表面積1nm2あたり3.0個であった。
 実施例8
 製造例4で調製した酸化ジルコニウム-酸化第二スズ複合コロイド粒子(A)の水性ゾル830g(総金属酸化物として50g含有)に製造例1で調製したアルカリ性の酸化第二スズ-シリカコロイド粒子とそのオリゴマーの水性ゾル769gを添加し、十分に攪拌した。次いで95℃で2時間加熱熟成して、酸化第二スズ-シリカ複合コロイド粒子とそのオリゴマーで被覆された変性酸化ジルコニウム-酸化第二スズコロイド粒子の水性ゾル1599gを得た。得られたゾルのpHは8.3、全金属酸化物濃度は3.7質量%であった。得られた変性酸化ジルコニウム-酸化第二スズ複合コロイド粒子の水性ゾルを水素型陽イオン交換樹脂(アンバーライトIR-120B)を充填したカラムに通し、純水を用いて該水性ゾルを回収して、酸性の変性酸化ジルコニウム-酸化第二スズ複合コロイド粒子の水性ゾル1980gを得た。得られたゾルはpH2.7、全金属酸化物濃度は3.0質量%であった。得られたゾルにジイソブチルアミンを0.5g添加し、変性酸化ジルコニウム-酸化第二スズコロイド粒子の表面にジイソブチルアミンを結合させた。このときのゾルのpHは4.3であった。次いで得られたゾルを限外濾過装置を用いて全金属酸化物濃度20質量%まで濃縮した。濃縮後のゾルの比重は1.211、pHは3.7であった。この濃縮された水性ゾルをナス型フラスコ付きエバポレータに投入し、該ゾルにメタノールを添加しながら600Torrで水を留去することにより、ジイソブチルアミンが結合した変性酸化ジルコニウム-酸化第二スズコロイド粒子のメタノールゾル285.7gを得た。得られたメタノールゾルは、比重0.961、粘度1.0mPa・s、pH4.9(ゾルと同質量の水で希釈)、全金属酸化物濃度21質量%、水分2.3%であった。得られたメタノールゾルにフェニルトリメトキシシラン(信越シリコーン製 商品名LS-7150)を5.9g添加し、還留加熱を5時間行うことでシリル化を行い、フェニルジメトキシシリル基を変性酸化ジルコニウム-酸化第二スズコロイド粒子の表面に結合させた。次いでエバポレータを用いて80Torrでメチルエチルケトンを添加しながらメタノールを留去することによりメタノールをメチルエチルケトンに置換して、ジイソブチルアミン及びフェニルジメトキシシリル基が表面に結合した変性酸化ジルコニウム-酸化第二スズコロイド粒子のメチルエチルケトンゾル200gが得られた。得られたゾルは比重1.095、粘度3.3mPa・s、全金属酸化物濃度30.0質量%、透過型電子顕微鏡観察による1次粒子径は5乃至10nm、動的光散乱法粒子径は11nmであった。また、ジイソブチルアミン/(SnO2+SiO2)のモル比は、0.030であり、表面変性酸化ジルコニウム-酸化第二スズコロイド粒子の表面に結合したシリル基の個数は、表面積1nm2あたり1.5個であった。
 実施例9 
 製造例4で調製した酸化ジルコニウム-酸化第二スズ複合コロイド粒子(A)の水性ゾル830g(総金属酸化物として50g含有)に製造例1で調製したアルカリ性の酸化第二スズ-シリカコロイド粒子とそのオリゴマーの水性ゾル769gを添加し、十分に攪拌した。次いで95℃で2時間加熱熟成して、酸化第二スズ-シリカ複合コロイド粒子とそのオリゴマーで被覆された変性酸化ジルコニウム-酸化第二スズコロイド粒子の水性ゾル1599gを得た。得られたゾルのpHは8.3、全金属酸化物濃度は3.7質量%であった。得られた変性酸化ジルコニウム-酸化第二スズ複合コロイド粒子の水性ゾルを水素型陽イオン交換樹脂(アンバーライトIR-120B)を充填したカラムに通し、純水を用いて該水性ゾルを回収して、酸性の変性酸化ジルコニウム-酸化第二スズ複合コロイド粒子の水性ゾル1980gを得た。得られたゾルはpH2.7、全金属酸化物濃度は3.0質量%であった。得られたゾルにジイソブチルアミンを0.5g添加し、変性酸化ジルコニウム-酸化第二スズコロイド粒子の表面にジイソブチルアミンを結合させた。このときのゾルのpHは4.3であった。次いで得られたゾルを限外濾過装置を用いて全金属酸化物濃度20質量%まで濃縮した。濃縮後のゾルの比重は1.211、pHは3.7であった。この濃縮された水性ゾルをナス型フラスコ付きエバポレータに投入し、該ゾルにメタノールを添加しながら600Torrで水を留去することにより、ジイソブチルアミンが結合した変性酸化ジルコニウム-酸化第二スズコロイド粒子のメタノールゾル285.7gを得た。得られたメタノールゾルは、比重0.961、粘度1.0mPa・s、pH4.9(ゾルと同質量の水で希釈)、全金属酸化物濃度21質量%、水分2.3%であった。得られたメタノールゾルにフェニルトリメトキシシラン(信越シリコーン製 商品名LS-7150)を11.8g添加し、還留加熱を5時間行うことでシリル化を行い、フェニルジメトキシ基を変性酸化ジルコニウム-酸化第二スズコロイド粒子の表面に結合させた。次いでエバポレータを用いて80Torrでメチルエチルケトンを添加しながらメタノールを留去することによりメタノールをメチルエチルケトンに置換して、ジイソブチルアミン及びフェニルジメトキシシリル基が表面に結合した変性酸化ジルコニウム-酸化第二スズコロイド粒子のメチルエチルケトンゾル200gが得られた。得られたゾルは比重1.095、粘度3.6mPa・s、全金属酸化物濃度30.0質量%、透過型電子顕微鏡観察による1次粒子径は5乃至10nm、動的光散乱法粒子径は9nmであった。また、ジイソブチルアミン/(SnO2+SiO2)のモル比は、0.030であり、表面変性酸化ジルコニウム-酸化第二スズコロイド粒子の表面に結合したシリル基の個数は、表面積1nm2あたり3.0個であった。
 実施例10
 製造例4で調製した酸化ジルコニウム-酸化第二スズ複合コロイド粒子の水性ゾル830g(全金属酸化物として50g含有)に製造例1で調製したアルカリ性の二酸化珪素-酸化第二スズ複合コロイド粒子の水性ゾル769gを添加し、十分に攪拌した。次いで95℃で2時間加熱熟成して、二酸化珪素-酸化第二スズ複合コロイド粒子で被覆された変性酸化ジルコニウム-酸化第二スズ複合コロイド粒子の水性ゾル1599gを得た。得られたゾルのpHは8.3、全金属酸化物濃度は3.7質量%であった。得られた変性酸化ジルコニウム-酸化第二スズ複合コロイド粒子の水性ゾルを水素型陽イオン交換樹脂(アンバーライトIR-120B)を充填したカラムに通し、酸性の変性酸化ジルコニウム-酸化第二スズ複合コロイド粒子の水性ゾル1980gを得た。得られたゾルはpH2.7、全金属酸化物濃度は3.0質量%であった。得られた酸性ゾルにジイソブチルアミンを0.5g添加し、変性酸化ジルコニウム-酸化第二スズコロイド粒子の表面にジイソブチルアミンを結合させた。このときのゾルのpHは4.3であった。次いで得られたゾルを限外濾過装置を用いて全金属酸化物濃度20質量%まで濃縮した。濃縮後のゾルの比重は1.211、pHは3.7であった。この濃縮された水性ゾルをナス型フラスコ付きエバポレータに投入し、該ゾルにメタノールを添加しながら600Torrで水を留去することにより、ジイソブチルアミンが結合した変性酸化ジルコニウム-酸化第二スズコロイド粒子のメタノールゾルを得た。得られたメタノールゾルは、比重0.961、粘度1.0mPa・s、pH4.9(ゾルと同質量の水で希釈)、全金属酸化物濃度21質量%、水分2.3%であった。得られたメタノールゾルにジメチルジメトキシシラン(信越シリコーン製 商品名KBM-22)を4.45gと1-プロパノール16.6gを添加し、還留加熱を5時間行うことでシリル化を行い、ジメチルジメトキシシリル基を変性酸化ジルコニウム-酸化第二スズコロイド粒子の表面に結合させた。次いでエバポレータを用いて110Torrでメチルエチルケトンを添加しながらメタノールを留去することにより、メタノールをメチルエチルケトンに置換して、ジイソブチルアミン及びジメチルエトキシシリル基が表面に結合した変性酸化ジルコニウム-酸化第二スズコロイド粒子のメチルエチルケトンゾルが得られた。得られたゾルは比重1.080、粘度1.7mPa・s、全金属酸化物濃度30.6質量%、透過型電子顕微鏡観察による一次粒子径は5乃至10nm、動的光散乱法粒子径は46nmであった。また、ジイソブチルアミン/(SnO2+SiO2)のモル比は、0.030であり、表面変性酸化ジルコニウム-酸化第二スズコロイド粒子の表面に結合したシリル基の個数は、表面積1nm2あたり1.2個であった。
 実施例11
 製造例4で調製した酸化ジルコニウム-酸化第二スズ複合コロイド粒子の水性ゾル830g(全金属酸化物として50g含有)に製造例1で調製したアルカリ性の二酸化珪素-酸化第二スズ複合コロイド粒子の水性ゾル769gを添加し、十分に攪拌した。次いで95℃で2時間加熱熟成して、二酸化珪素-酸化第二スズ複合コロイド粒子で被覆された変性酸化ジルコニウム-酸化第二スズ複合コロイド粒子の水性ゾル1599gを得た。得られたゾルのpHは8.3、全金属酸化物濃度は3.7質量%であった。得られた変性酸化ジルコニウム-酸化第二スズ複合コロイド粒子の水性ゾルを水素型陽イオン交換樹脂(アンバーライトIR-120B)を充填したカラムに通し、酸性の変性酸化ジルコニウム-酸化第二スズ複合コロイド粒子の水性ゾル1980gを得た。得られたゾルはpH2.7、全金属酸化物濃度は3.0質量%であった。得られた酸性ゾルにジイソブチルアミンを0.5g添加し、変性酸化ジルコニウム-酸化第二スズコロイド粒子の表面にジイソブチルアミンを結合させた。このときのゾルのpHは4.3であった。次いで得られたゾルを限外濾過装置を用いて全金属酸化物濃度20質量%まで濃縮した。濃縮後のゾルの比重は1.211、pHは3.7であった。この濃縮された水性ゾルをナス型フラスコ付きエバポレータに投入し、該ゾルにメタノールを添加しながら600Torrで水を留去することにより、ジイソブチルアミンが結合した変性酸化ジルコニウム-酸化第二スズコロイド粒子のメタノールゾルを得た。得られたメタノールゾルは、比重0.961、粘度1.0mPa・s、pH4.9(ゾルと同質量の水で希釈)、全金属酸化物濃度21質量%、水分2.3%であった。得られたメタノールゾルにメタクリロキシプロピルトリメトキシシラン(信越シリコーン製 商品名:KBM503)を5.0gと1-プロパノール17.2gを添加し、還留加熱を5時間行うことでシリル化を行い、メタクリロキシプロピルトリメトキシシリル基を変性酸化ジルコニウム-酸化第二スズコロイド粒子の表面に結合させた。次いでエバポレータを用いて110Torrでメチルエチルケトンを添加しながらメタノールを留去することにより、メタノールをメチルエチルケトンに置換して、ジイソブチルアミン及びメタクリロキシプロピルジメトキシシリル基が表面に結合した変性酸化ジルコニウム-酸化第二スズコロイド粒子のメチルエチルケトンゾルが得られた。得られたゾルは比重1.088、粘度0.9mPa・s、全金属酸化物濃度30.3質量%、透過型電子顕微鏡観察による一次粒子径は5乃至10nm、動的光散乱法粒子径は8.6nmであった。また、ジイソブチルアミン/(SnO2+SiO2)のモル比は、0.030であり、表面変性酸化ジルコニウム-酸化第二スズコロイド粒子の表面に結合したシリル基の個数は、表面積1nm2あたり1.0個であった。
 実施例12
 実施例1で得られたジイソブチルアミン及びメチルジメトキシシリル基が表面に結合した変性酸化ジルコニウム-酸化第二スズコロイド粒子のメチルエチルケトンゾル50gをガラスシャーレに分取し、真空乾燥機で3時間乾燥させて微粉末約15gを得た。この微粉末をレーザー回折粒度分布測定装置を用いて平均粒子径を測定したところ、8μmであった。この微粉末10gをガラスビーカーに投入し、メチルエチルケトン40gを加えて1時間スターラーで撹拌したところ、微粉末はメチルエチルケトンに分散し、透明なゾルとなった。
 比較例1
 特許文献2における酸化タングステン-酸化第二スズ-二酸化珪素複合体のコロイド粒子で被覆されることによって形成された粒子径4.5乃至60nmの変性された酸化第二スズ-酸化ジルコニウム複合体コロイド粒子を水素型陽イオン交換樹脂(アンバーライトIR-120B)を充填したカラムに通し、酸性の変性酸化ジルコニウム-酸化第二スズ複合コロイド粒子の水性ゾル1220gを得た。得られたゾルはpH2.9、全金属酸化物濃度は3.9質量%であった。得られたゾルにジイソブチルアミンを0.2g添加し、酸性の変性酸化ジルコニウム-酸化第二スズ複合コロイド粒子の表面にジイソブチルアミンを結合させた。このときのゾルのpHは4.2であった。次いで得られたゾルを限外濾過装置を用いて全金属酸化物濃度20質量%まで濃縮した。濃縮後のゾルの比重は1.116、pHは2.8であった。この濃縮された水性ゾルを実施例1と同様にメタノール置換を行った。得られたメタノールゾルは、比重0.950、粘度8.1mPa・s、pH3.8(ゾルと同質量の水で希釈)、全金属酸化物濃度20質量%、水分1.4%であった。得られたメタノールゾルにメチルトリメトキシシラン(信越シリコーン製 商品名:LS-530)を4.8g添加し、還留加熱を5時間行うことでシリル化を行い、メチルジメトキシシリル基を変性酸化ジルコニウム-酸化第二スズ複合コロイド粒子の表面に結合させた。次いでエバポレータを用いて80Torrでメチルエチルケトンを添加しながらメタノールを留去することによりメタノールのメチルエチルケトンへの置換を試みたが、徐々に粘度が高くなり、透明性は維持したままゲル化し、メチルエチルケトンゾルを得ることができなかった。
 比較例2
 酸性の変性酸化ジルコニウム-酸化第二スズ複合コロイド粒子の水性ゾルに対してジイソブチルアミンを添加しないこと以外は実施例1と同様にしてメタノール置換を行ったが、メタノールに置換する途中でゾルがゲル化し、メチルエチルケトンゾルを得ることができなかった。
 比較例3
 ジイソブチルアミンが結合した変性酸化ジルコニウム-酸化第二スズ複合コロイド粒子のメタノールゾルに対してメチルトリメトキシシランを添加しないこと以外は実施例1と同様に行ったが、メチルエチルケトンに置換する途中でゾルがゲル化し、メチルエチルケトンゾルを得ることができなかった。
 比較例4
 ジイソブチルアミンを添加しないこと以外は実施例1と同様に調製した変性酸化ジルコニウム-酸化第二スズコロイド粒子の水性ゾルをエバポレータを用いてメタノールを添加しながら600Torrで水を留去することにより、メタノールに置換を行ったが、外観は白濁し、変性酸化ジルコニウム-酸化第二スズコロイド粒子は凝集したため、メタノールゾルを得ることができなかった。

Claims (19)

  1.  金属の酸化物コロイド粒子を核として、その外表面を複合酸化物コロイド粒子で被覆してなる変性金属酸化物コロイド粒子であって、5乃至60nmの一次粒子径を有するTi、Fe、Zr、Sn、Ta、Nb、Y、Mo、W、Pb、In、Bi及びSrからなる群から選ばれる少なくとも1種の金属の酸化物コロイド粒子(A)を核とし且つその外表面を、二酸化珪素/酸化第二スズの質量比が0.1乃至5.0であり且つ0.001乃至0.08のM/(SnO2+SiO2)(但しMはアミン化合物を表す)のモル比でアミン化合物が結合し1乃至4nmの一次粒子径を有するところの二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B)で被覆してなる変性金属酸化物コロイド粒子(C)であって、且つ金属の酸化物コロイド粒子(A)に対する複合酸化物コロイド粒子(B)の質量比(B)/(A)が0.05乃至0.50であり、そして該コロイド粒子(C)の粒子表面にその表面積1nm2あたり1乃至4個のシリル基が結合してなることを特徴とするシラン処理変性金属酸化物コロイド粒子。
  2.  前記シリル基が下記の一般式(I)
     -Si(R1a(X)3-a     (I)
    (但し、R1は炭素原子数1乃至12の置換若しくは無置換のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至12の置換若しくは無置換のアルケニル基、炭素原子数6乃至12の置換若しくは無置換のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メタクリロキシアルキル基、メルカプト基、アミノ基若しくはシアノ基を表し、Xは水酸基又は炭素原子数1乃至4のアルコキシ基を表す。aは0乃至3の整数を表す。)で表される請求項1に記載のシラン処理変性金属酸化物コロイド粒子。
  3.  前記アミン化合物が第一アミン、第二アミン及び第三アミンからなる群より選ばれる少なくとも1種の化合物である請求項1に記載のシラン処理変性金属酸化物コロイド粒子。
  4.  請求項1乃至3のいずれか一項に記載のシラン処理変性金属酸化物コロイド粒子の親水性有機溶媒分散ゾル。
  5.  前記親水性有機溶媒がメチルアルコール、エチルアルコール、イソプロピルアルコール、ジメチルホルムアミド、エチルセロソルブ、ブチルセロソルブ、エチレングリコール及びプロピレングリコールモノメチルエーテルからなる群から選ばれる少なくとも1種である請求項4に記載のシラン処理変性金属酸化物コロイド粒子の親水性有機溶媒分散ゾル。
  6.  請求項1乃至3のいずれか一項に記載のシラン処理変性金属酸化物コロイド粒子を含む0.05乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾル。
  7.  前記疎水性有機溶媒が1-ペンタノール、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ヘキサン、酢酸エチル、酢酸ブチル、メタクリル酸メチル、ジイソプロピルエーテル、及びトルエンからなる群より選ばれる少なくとも1種である請求項6に記載の疎水性有機溶媒分散ゾル。
  8.  下記の(a)、(b)、(c)、(d)、(e)及び(f)工程を含む請求項4に記載のシラン処理変性金属酸化物コロイド粒子の親水性有機溶媒分散ゾルの製造方法:
    (a)工程:スズ酸アルカリと珪酸アルカリとを二酸化珪素/酸化第二スズの質量比が0.1乃至5となる量で含有する水溶液を調製し、次いでその水溶液中に存在する陽イオンを除去して1乃至4nmの一次粒子径を有する二酸化珪素-酸化第二スズ複合体コロイド粒子の水性ゾルを調製し、更に該水性ゾルにM/(SnO2+SiO2)(但しMはアミン化合物を表す)のモル比が0.1乃至1.0となる量のアミン化合物を添加することにより、二酸化珪素/酸化第二スズの質量比が0.1乃至5.0であり且つ0.1乃至1.0のM/(SnO2+SiO2)(但しMはアミン化合物を表す)のモル比で存在するアミン化合物で安定化された1乃至4nmの一次粒子径を有する二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)の水性ゾルを得る工程、
    (b)工程:5乃至60nmの一次粒子径を有するTi、Fe、Zr、Sn、Ta、Nb、Y、Mo、W、Pb、In、Bi及びSrからなる群から選ばれる少なくとも1種の金属の酸化物コロイド粒子(A)の水性ゾルと前記(a)工程で得られた水性ゾルとを、前記金属の酸化物コロイド粒子(A)に対する前記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)の質量比(B’)/(A)が0.05乃至0.50となる量で混合することにより、前記金属の酸化物コロイド粒子(A)が前記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)により被覆されてなる変性金属酸化物コロイド粒子(C’)の水性ゾルを得る工程、
    (c)工程:前記(b)工程で得られた変性金属酸化物コロイド粒子(C’)の水性ゾルを陽イオン交換し、(a)工程で添加したアミン化合物を除去する工程、
    (d)工程:前記(c)工程で得られた水性ゾルに、前記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)に対するアミン化合物のモル比M/(SnO2+SiO2)(但しMはアミン化合物を表す)が0.001乃至0.08となる量のアミン化合物を添加することにより、前記酸化物コロイド粒子(A)を核とし且つその外表面を、二酸化珪素/酸化第二スズの質量比が0.1乃至5.0であり且つ0.001乃至0.08のM/(SnO2+SiO2)のモル比(但しMはアミン化合物)でアミン化合物が結合した1乃至4nmの一次粒子径を有する二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B)で被覆してなる変性金属酸化物コロイド粒子(C)であって、且つ前記金属の酸化物のコロイド粒子(A)に対する前記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B)の質量比(B)/(A)が0.05乃至0.50である変性金属酸化物コロイド粒子(C)の水性ゾルを得る工程、
    (e)工程:前記(d)工程で得られた水性ゾルの分散媒を親水性有機溶媒に置換する工程、及び、
    (f)工程:前記(e)工程で得られた親水性有機溶媒分散ゾルに下記の一般式(II)
     Si(R1a(X)4-a    (II)
    (但し、R1は炭素原子数1乃至12の置換若しくは無置換のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至12の置換若しくは無置換のアルケニル基、炭素原子数6乃至12の置換若しくは無置換のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メタクリロキシアルキル基、メルカプト基、アミノ基若しくはシアノ基を表し、Xは水酸基又は炭素数1乃至4のアルコキシ基を表す。aは0乃至3の整数を表す。)で表される有機珪素化合物及びその加水分解物、並びに下記の一般式(III)
     (R1 3Si)2NH       (III)
    (但し、R1は炭素原子数1乃至12の置換若しくは無置換のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至12の置換若しくは無置換のアルケニル基、炭素原子数6乃至12の置換若しくは無置換のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メタクリロキシアルキル基、メルカプト基、アミノ基若しくはシアノ基を表す。)
    で表される有機珪素化合物からなる群から選択される少なくとも1種の化合物を前記変性金属酸化物コロイド粒子(C)に対する有機珪素化合物の質量比が0.01乃至0.50となるように添加して、一般式(I)
     -Si(R1a(X)3-a     (I)
    (但し、R1は炭素原子数1乃至12の置換若しくは無置換のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至12の置換若しくは無置換のアルケニル基、炭素原子数6乃至12の置換若しくは無置換のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メタクリロキシアルキル基、メルカプト基、アミノ基若しくはシアノ基を表し、Xは水酸基又は炭素数1乃至4のアルコキシ基を表す。aは0乃至3の整数を表す。)で表されるシリル基を前記変性金属酸化物コロイド粒子(C)の表面に結合させる工程。
  9.  前記アミン化合物として第一アミン、第二アミン及び第三アミンからなる群より選ばれる少なくとも1種の化合物を用いる請求項8に記載のシラン処理変性金属酸化物コロイド粒子の親水性有機溶媒分散ゾルの製造方法。
  10.  前記親水性有機溶媒としてメチルアルコール、エチルアルコール、イソプロピルアルコール、ジメチルホルムアミド、エチルセロソルブ、ブチルセロソルブ、エチレングリコール、及びプロピレングリコールモノメチルエーテルからなる群から選ばれる少なくとも1種を用いる請求項8又は9に記載のシラン処理変性金属酸化物コロイド粒子の親水性有機溶媒分散ゾルの製造方法。
  11. 下記の(a)、(b)、(c)、(d)、(e)、(f)及び(g)工程を含む請求項6又は7に記載のシラン処理変性金属酸化物コロイド粒子を含む0.05乃至12質量%の水溶解度を有する疎水性有機溶媒分散ゾルの製造方法:
    (a)工程:スズ酸アルカリと珪酸アルカリとを二酸化珪素/酸化第二スズの質量比が0.1乃至5となる量で含有する水溶液を調製し、次いでその水溶液中に存在する陽イオンを除去して1乃至4nmの一次粒子径を有する二酸化珪素-酸化第二スズ複合体コロイド粒子の水性ゾルを調製し、更に該水性ゾルにM/(SnO2+SiO2)(但しMはアミン化合物を表す)のモル比が0.1乃至1.0となる量のアミン化合物を添加することにより、二酸化珪素/酸化第二スズの質量比が0.1乃至5.0であり且つ0.1乃至1.0のM/(SnO2+SiO2)(但しMはアミン化合物を表す)のモル比で存在するアミン化合物で安定化された1乃至4nmの一次粒子径を有する二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)の水性ゾルを得る工程、
    (b)工程:5乃至60nmの一次粒子径を有するTi、Fe、Zr、Sn、Ta、Nb、Y、Mo、W、Pb、In、Bi及びSrからなる群から選ばれる少なくとも1種の金属の酸化物コロイド粒子(A)の水性ゾルと前記(a)工程で得られた水性ゾルとを、前記金属の酸化物コロイド粒子(A)に対する前記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)の質量比(B’)/(A)が0.05乃至0.50となる量で混合することにより、前記金属の酸化物コロイド粒子(A)が前記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)により被覆されてなる変性金属酸化物コロイド粒子(C’)の水性ゾルを得る工程、
    (c)工程:前記(b)工程で得られた変性金属酸化物コロイド粒子(C’)の水性ゾルを陽イオン交換し、(a)工程で添加したアミン化合物を除去する工程、
    (d)工程:前記(c)工程で得られた水性ゾルに、前記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B’)に対するアミン化合物のモル比としてM/(SnO2+SiO2)(但しMはアミン化合物を表す)が0.001乃至0.08となる量のアミン化合物を添加することにより、前記酸化物コロイド粒子(A)を核とし且つその外表面を、二酸化珪素/酸化第二スズの質量比が0.1乃至5.0であり且つ0.001乃至0.08のM/(SnO2+SiO2)のモル比(但しMはアミン化合物)でアミン化合物が結合した1乃至4nmの一次粒子径を有する二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B)で被覆してなるコロイド(C)であって、且つ前記金属の酸化物のコロイド粒子(A)に対する前記二酸化珪素-酸化第二スズ複合酸化物コロイド粒子(B)の質量比(B)/(A)が0.05乃至0.50である変性金属酸化物コロイド粒子(C)の水性ゾルを得る工程、
    (e)工程:前記(d)工程で得られた水性ゾルの分散媒を親水性有機溶媒に置換する工程、
    (f)工程:前記(e)工程で得られた親水性有機溶媒分散ゾルに下記の一般式(II)
     Si(R1a(X)4-a    (II)
    (但し、R1は炭素原子数1乃至12の置換若しくは無置換のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至12の置換若しくは無置換のアルケニル基、炭素原子数6乃至12の置換若しくは無置換のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メタクリロキシアルキル基、メルカプト基、アミノ基若しくはシアノ基を表し、Xは水酸基又は炭素数1乃至4のアルコキシ基を表す。aは0乃至3の整数を表す。)で表される有機珪素化合物及びその加水分解物、並びに下記の一般式(III)
     (R1 3Si)2NH       (III)
    (但し、R1は炭素原子数1乃至12の置換若しくは無置換のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至12の置換若しくは無置換のアルケニル基、炭素原子数6乃至12の置換若しくは無置換のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メタクリロキシアルキル基、メルカプト基、アミノ基若しくはシアノ基を表す。)
    で表される有機珪素化合物からなる群から選択される少なくとも1種の化合物を前記変性金属酸化物コロイド粒子(C)に対する有機珪素化合物の質量比が0.01乃至0.50となるように添加して、一般式(I)
     -Si(R1a(X)3-a     (I)
    (但し、R1は炭素原子数1乃至12の置換若しくは無置換のアルキル基若しくはハロゲン化アルキル基、炭素原子数2乃至12の置換若しくは無置換のアルケニル基、炭素原子数6乃至12の置換若しくは無置換のアリール基若しくはハロゲン化アリール基を表すか、又はエポキシ基、アクリロイル基、メタクリロイル基、メタクリロキシアルキル基、メルカプト基、アミノ基若しくはシアノ基を表し、Xは水酸基又は炭素数1乃至4のアルコキシ基を表す。aは0乃至3の整数を表す。)で表されるシリル基を前記変性金属酸化物コロイド粒子(C)の表面に結合させる工程、及び、
    (g)工程:前記(f)工程で得られた親水性溶媒分散ゾルの分散媒を0.05乃至12質量%の水溶解度を有する疎水性有機溶媒に置換する工程。
  12.  前記アミン化合物として第一アミン、第二アミン及び第三アミンからなる群より選ばれる少なくとも1種を用いる請求項10に記載の疎水性有機溶媒分散ゾルの製造方法。
  13.  前記親水性有機溶媒としてメチルアルコール、エチルアルコール、イソプロピルアルコール、ジメチルホルムアミド、エチルセロソルブ、ブチルセロソルブ、エチレングリコール、及びプロピレングリコールモノメチルエーテルからなる群から選ばれる少なくとも1種を用い、前記0.05乃至12質量%の水溶解度を有する疎水性有機溶媒としてメチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ヘキサン、酢酸エチル、酢酸ブチル、メタクリル酸メチル、ジイソプロピルエーテル、及びトルエンからなる少なくも1種を用いる請求項11又は12に記載の疎水性有機溶媒分散ゾルの製造方法。
  14.  請求項1乃至3のいずれか一項に記載のシラン処理変性金属酸化物コロイド粒子と重合性有機化合物とを含む重合性有機化合物の組成物。
  15.  前記重合性有機化合物がカチオン重合性樹脂である請求項14に記載の重合性有機化合物の組成物。
  16.  前記重合性有機化合物が重合性液状エポキシ樹脂である請求項14に記載の重合性有機化合物の組成物。
  17.  前記重合性有機化合物が分子内に1個以上のエポキシシクロヘキシル基を有する重合性エポキシ樹脂である請求項14に記載の重合性有機化合物の組成物。
  18.  前記重合性有機化合物がアクリルモノマー及びアクリルオリゴマーの両方又はいずれか一方である請求項14に記載の重合性有機化合物の組成物。
  19.  請求項1乃至3のいずれか一項に記載のシラン処理変性金属酸化物コロイド粒子により構成される平均粒子径0.1乃至100μmの微粉末。
PCT/JP2011/050893 2010-01-19 2011-01-19 シラン表面処理金属酸化物微粒子およびその製造方法 WO2011090084A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/520,907 US9150421B2 (en) 2010-01-19 2011-01-19 Silane surface-treated metal oxide fine particles and production method for same
JP2011550933A JP5704345B2 (ja) 2010-01-19 2011-01-19 シラン表面処理金属酸化物微粒子およびその製造方法
KR1020127021637A KR101712886B1 (ko) 2010-01-19 2011-01-19 실란 표면 처리 금속 산화물 미립자 및 이의 제조 방법
CN201180012682.2A CN102781821B (zh) 2010-01-19 2011-01-19 硅烷表面处理金属氧化物微粒和其制造方法
EP11734690.8A EP2527293B1 (en) 2010-01-19 2011-01-19 Silane surface-treated metal oxide fine particles and production method for same.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010008903 2010-01-19
JP2010-008903 2010-01-19

Publications (1)

Publication Number Publication Date
WO2011090084A1 true WO2011090084A1 (ja) 2011-07-28

Family

ID=44306884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050893 WO2011090084A1 (ja) 2010-01-19 2011-01-19 シラン表面処理金属酸化物微粒子およびその製造方法

Country Status (8)

Country Link
US (1) US9150421B2 (ja)
EP (1) EP2527293B1 (ja)
JP (1) JP5704345B2 (ja)
KR (1) KR101712886B1 (ja)
CN (1) CN102781821B (ja)
HU (1) HUE035111T2 (ja)
TW (1) TWI516307B (ja)
WO (1) WO2011090084A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031799A1 (ja) * 2011-08-31 2013-03-07 住友大阪セメント株式会社 無機酸化物透明分散液と透明複合体形成用樹脂組成物及び透明複合体並びに光学部材
WO2013168788A1 (ja) 2012-05-11 2013-11-14 日産化学工業株式会社 膜形成用組成物
JP2014196216A (ja) * 2013-03-29 2014-10-16 日揮触媒化成株式会社 改質金属酸化物微粒子粉末、改質金属酸化物微粒子分散体およびその製造方法
JP2014196215A (ja) * 2013-03-29 2014-10-16 日揮触媒化成株式会社 改質金属酸化物微粒子粉末およびその製造方法
WO2015115377A1 (ja) 2014-01-30 2015-08-06 日産化学工業株式会社 コーティング組成物及び光学部材
JP2016108189A (ja) * 2014-12-08 2016-06-20 多木化学株式会社 被覆酸化チタンゾル
JPWO2016021688A1 (ja) * 2014-08-07 2017-05-25 日産化学工業株式会社 シラン処理フォルステライト微粒子及びその製造方法、並びにシラン処理フォルステライト微粒子の有機溶媒分散液及びその製造方法
WO2017170275A1 (ja) * 2016-03-31 2017-10-05 日産化学工業株式会社 両親媒性の有機シラン化合物が結合した無機酸化物微粒子、その有機溶媒分散液及び被膜形成用組成物
WO2019117086A1 (ja) * 2017-12-11 2019-06-20 日産化学株式会社 窒素含有環を含むシラン化合物で被覆された無機酸化物粒子、及びコーティング組成物
WO2020066851A1 (ja) * 2018-09-27 2020-04-02 日産化学株式会社 無機酸化物粒子を含むアクリル系コーティング組成物
WO2022224770A1 (ja) * 2021-04-23 2022-10-27 日産化学株式会社 耐候性が向上した変性金属酸化物コロイド粒子及びそのゾル並びにそれらの製造方法
KR20240023215A (ko) 2021-10-18 2024-02-20 닛산 가가쿠 가부시키가이샤 휘발성 알데히드의 발생을 저감한 금속산화물입자함유 조성물

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI607969B (zh) * 2014-09-12 2017-12-11 台灣積體電路製造股份有限公司 二氧化鈰粉體的製造方法及二氧化鈰粉體
CA2936403C (en) 2015-07-23 2024-02-27 Dow Global Technologies Llc Aqueous dispersion of hydrophobically modified pigment particles
EP3438053A4 (en) * 2016-03-31 2020-01-15 Nissan Chemical Industries, Ltd. FILM-FORMING COMPOSITION AND PROCESS FOR PRODUCING THE SAME
JP6802111B2 (ja) * 2017-06-02 2020-12-16 信越化学工業株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
AU2018274907A1 (en) * 2017-12-19 2019-07-04 Dow Global Technologies Llc Hydrophobic pigment modification
AU2019202080B2 (en) * 2018-04-05 2023-11-09 Rohm And Haas Company Hydrophobic pigment modification
CN109433174B (zh) * 2018-10-16 2021-11-12 上海申得欧有限公司 硅酸盐包覆二氧化钛光触媒粉体及其制备方法
US20220010176A1 (en) * 2018-11-21 2022-01-13 Nissan Chemical Corporation Reactive silicone composition and cured product thereof
WO2022009889A1 (ja) * 2020-07-07 2022-01-13 日産化学株式会社 炭化水素に分散した無機酸化物ゾル及びその製造方法
TW202231583A (zh) * 2020-12-18 2022-08-16 日商東京應化工業股份有限公司 硬化性液狀組成物、粒子狀填料,及化合物
CN113999550B (zh) * 2021-02-25 2022-07-26 杭州安誉科技有限公司 一种高透光率试样管的制备工艺
CN113930129B (zh) * 2021-11-04 2022-11-15 武汉理工大学 一种纳米涂层、换热器以及涂敷方法
CN115449255A (zh) * 2022-10-20 2022-12-09 浦诺菲新材料有限公司 改性二氧化硅纳米颗粒及制备方法,超疏水聚氨酯涂层涂布液,超疏水性的汽车漆面保护膜

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040119B1 (ja) 1970-03-23 1975-12-22
JP2000281344A (ja) 1999-03-30 2000-10-10 Nissan Chem Ind Ltd 変性された酸化第二スズ−酸化ジルコニウム複合ゾル及びその製造法
JP2000281973A (ja) 1999-03-30 2000-10-10 Hoya Corp コーティング組成物
JP2002363442A (ja) * 2001-06-08 2002-12-18 Catalysts & Chem Ind Co Ltd アンチモン酸化物被覆酸化チタン含有複合酸化物粒子および該粒子分散ゾル、該微粒子含有透明被膜形成用塗布液、透明被膜付基材。
JP2005200294A (ja) 2003-12-19 2005-07-28 Nissan Chem Ind Ltd 有機溶媒分散無機酸化物ゾルの製造方法
WO2007018176A1 (ja) * 2005-08-09 2007-02-15 Nissan Chemical Industries, Ltd. 酸化ジルコニウム-酸化スズ複合体ゾル、コーティング組成物及び光学部材
WO2008007708A1 (fr) * 2006-07-14 2008-01-17 Nissan Chemical Industries, Ltd. Procédé de fabrication d'un sol de composite oxyde de zirconium-oxyde d'étain modifié
WO2009044878A1 (ja) * 2007-10-03 2009-04-09 Nissan Chemical Industries, Ltd. 変性金属酸化物複合ゾル、コーティング組成物及び光学部材
WO2010008050A1 (ja) * 2008-07-17 2010-01-21 日産化学工業株式会社 無水アンチモン酸亜鉛コロイド粒子の疎水性有機溶媒分散ゾル及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3712561B2 (ja) * 1999-03-30 2005-11-02 Hoya株式会社 硬化被膜を有する光学部材
US7476695B2 (en) * 2004-03-16 2009-01-13 Nissan Chemical Industries, Ltd. Modified stannic oxide-zirconium oxide complex sol and method for preparing same
TWI428282B (zh) 2007-10-03 2014-03-01 Nissan Chemical Ind Ltd 金屬氧化物複合溶膠,塗佈組成物及光學構件
CN103717535B (zh) * 2011-06-03 2016-02-10 日产化学工业株式会社 含有二氧化硅-二氧化锡复合氧化物被覆二氧化钛的金属氧化物粒子

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040119B1 (ja) 1970-03-23 1975-12-22
JP2000281344A (ja) 1999-03-30 2000-10-10 Nissan Chem Ind Ltd 変性された酸化第二スズ−酸化ジルコニウム複合ゾル及びその製造法
JP2000281973A (ja) 1999-03-30 2000-10-10 Hoya Corp コーティング組成物
JP2002363442A (ja) * 2001-06-08 2002-12-18 Catalysts & Chem Ind Co Ltd アンチモン酸化物被覆酸化チタン含有複合酸化物粒子および該粒子分散ゾル、該微粒子含有透明被膜形成用塗布液、透明被膜付基材。
JP2005200294A (ja) 2003-12-19 2005-07-28 Nissan Chem Ind Ltd 有機溶媒分散無機酸化物ゾルの製造方法
WO2007018176A1 (ja) * 2005-08-09 2007-02-15 Nissan Chemical Industries, Ltd. 酸化ジルコニウム-酸化スズ複合体ゾル、コーティング組成物及び光学部材
WO2008007708A1 (fr) * 2006-07-14 2008-01-17 Nissan Chemical Industries, Ltd. Procédé de fabrication d'un sol de composite oxyde de zirconium-oxyde d'étain modifié
WO2009044878A1 (ja) * 2007-10-03 2009-04-09 Nissan Chemical Industries, Ltd. 変性金属酸化物複合ゾル、コーティング組成物及び光学部材
WO2010008050A1 (ja) * 2008-07-17 2010-01-21 日産化学工業株式会社 無水アンチモン酸亜鉛コロイド粒子の疎水性有機溶媒分散ゾル及びその製造方法

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013031799A1 (ja) * 2011-08-31 2015-03-23 住友大阪セメント株式会社 無機酸化物透明分散液と透明複合体形成用樹脂組成物及び透明複合体並びに光学部材
WO2013031799A1 (ja) * 2011-08-31 2013-03-07 住友大阪セメント株式会社 無機酸化物透明分散液と透明複合体形成用樹脂組成物及び透明複合体並びに光学部材
US20140206801A1 (en) * 2011-08-31 2014-07-24 Sumitomo Osaka Cement Co., Ltd. Inorganic oxide transparent dispersion, resin composition used to form transparent composite, transparent composite, and optical member
JPWO2013168788A1 (ja) * 2012-05-11 2016-01-07 日産化学工業株式会社 膜形成用組成物
CN104272145A (zh) * 2012-05-11 2015-01-07 日产化学工业株式会社 膜形成用组合物
KR20150013266A (ko) * 2012-05-11 2015-02-04 닛산 가가쿠 고교 가부시키 가이샤 막 형성용 조성물
WO2013168788A1 (ja) 2012-05-11 2013-11-14 日産化学工業株式会社 膜形成用組成物
US9618654B2 (en) 2012-05-11 2017-04-11 Nissan Chemical Industries, Ltd. Film-forming composition
KR102076591B1 (ko) 2012-05-11 2020-02-13 닛산 가가쿠 가부시키가이샤 막 형성용 조성물
JP2014196215A (ja) * 2013-03-29 2014-10-16 日揮触媒化成株式会社 改質金属酸化物微粒子粉末およびその製造方法
JP2014196216A (ja) * 2013-03-29 2014-10-16 日揮触媒化成株式会社 改質金属酸化物微粒子粉末、改質金属酸化物微粒子分散体およびその製造方法
WO2015115377A1 (ja) 2014-01-30 2015-08-06 日産化学工業株式会社 コーティング組成物及び光学部材
JPWO2016021688A1 (ja) * 2014-08-07 2017-05-25 日産化学工業株式会社 シラン処理フォルステライト微粒子及びその製造方法、並びにシラン処理フォルステライト微粒子の有機溶媒分散液及びその製造方法
JP2016108189A (ja) * 2014-12-08 2016-06-20 多木化学株式会社 被覆酸化チタンゾル
JPWO2017170275A1 (ja) * 2016-03-31 2019-02-07 日産化学株式会社 両親媒性の有機シラン化合物が結合した無機酸化物微粒子、その有機溶媒分散液及び被膜形成用組成物
JP2022046616A (ja) * 2016-03-31 2022-03-23 日産化学株式会社 両親媒性の有機シラン化合物が結合した無機酸化物微粒子、その有機溶媒分散液及び被膜形成用組成物
WO2017170275A1 (ja) * 2016-03-31 2017-10-05 日産化学工業株式会社 両親媒性の有機シラン化合物が結合した無機酸化物微粒子、その有機溶媒分散液及び被膜形成用組成物
JP7345722B2 (ja) 2016-03-31 2023-09-19 日産化学株式会社 両親媒性の有機シラン化合物が結合した無機酸化物微粒子、その有機溶媒分散液及び被膜形成用組成物
US10669426B2 (en) 2016-03-31 2020-06-02 Nissan Chemical Industries, Ltd. Inorganic oxide microparticles having amphiphilic organic silane compound bonded thereto, organic solvent dispersion thereof, and composition for film formation
JP7301537B2 (ja) 2016-03-31 2023-07-03 日産化学株式会社 両親媒性の有機シラン化合物が結合した無機酸化物微粒子、その有機溶媒分散液及び被膜形成用組成物
WO2019117086A1 (ja) * 2017-12-11 2019-06-20 日産化学株式会社 窒素含有環を含むシラン化合物で被覆された無機酸化物粒子、及びコーティング組成物
JP7212320B2 (ja) 2017-12-11 2023-01-25 日産化学株式会社 窒素含有環を含むシラン化合物で被覆された無機酸化物粒子、及びコーティング組成物
JPWO2019117086A1 (ja) * 2017-12-11 2021-01-14 日産化学株式会社 窒素含有環を含むシラン化合物で被覆された無機酸化物粒子、及びコーティング組成物
US11920057B2 (en) 2017-12-11 2024-03-05 Nissan Chemical Corporation Inorganic oxide particles coated with silane compound having nitrogen-containing ring and coating composition
JPWO2020066851A1 (ja) * 2018-09-27 2021-09-02 日産化学株式会社 無機酸化物粒子を含むアクリル系コーティング組成物
WO2020066851A1 (ja) * 2018-09-27 2020-04-02 日産化学株式会社 無機酸化物粒子を含むアクリル系コーティング組成物
JP7365008B2 (ja) 2018-09-27 2023-10-19 日産化学株式会社 無機酸化物粒子を含むアクリル系コーティング組成物
WO2022224770A1 (ja) * 2021-04-23 2022-10-27 日産化学株式会社 耐候性が向上した変性金属酸化物コロイド粒子及びそのゾル並びにそれらの製造方法
KR20240023215A (ko) 2021-10-18 2024-02-20 닛산 가가쿠 가부시키가이샤 휘발성 알데히드의 발생을 저감한 금속산화물입자함유 조성물

Also Published As

Publication number Publication date
CN102781821B (zh) 2015-01-07
KR20120127461A (ko) 2012-11-21
EP2527293A1 (en) 2012-11-28
JPWO2011090084A1 (ja) 2013-05-23
US20120316266A1 (en) 2012-12-13
EP2527293B1 (en) 2017-10-25
HUE035111T2 (en) 2018-05-02
US9150421B2 (en) 2015-10-06
EP2527293A4 (en) 2015-12-16
TW201138943A (en) 2011-11-16
TWI516307B (zh) 2016-01-11
KR101712886B1 (ko) 2017-03-08
JP5704345B2 (ja) 2015-04-22
CN102781821A (zh) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5704345B2 (ja) シラン表面処理金属酸化物微粒子およびその製造方法
JP5182533B2 (ja) 金属酸化物複合ゾル、コーティング組成物及び光学部材
JP5182532B2 (ja) 変性金属酸化物複合ゾル、コーティング組成物及び光学部材
US8697757B2 (en) Hydrophobic organic solvent-dispersed sol of anhydrous zinc antimonate colloidal particles and method for producing the same
KR101290081B1 (ko) 산화지르코늄-산화주석 복합체 졸, 코팅 조성물 및광학부재
EP3725855B1 (en) Coating composition containing silane compound containing nitrogen-containing ring
WO2010013660A1 (ja) 導電性コーティング組成物
JP4288432B2 (ja) コーティング組成物及び光学部材
JP2012031353A (ja) コーティング組成物及び光学部材
JP2013056780A (ja) 変性酸化第二セリウムコロイド粒子及びその製造方法
US6093749A (en) Anhydrous zinc antimonate sol and method for producing the same
JPWO2012161191A1 (ja) 表面変性された熱線遮蔽性微粒子の製造方法及びその方法により得られる熱線遮蔽性微粒子分散液
US20130143035A1 (en) Hydrophobic-organic-solvent dispersion of surface-modified colloidal particles of anhydrous zinc antimonate, coating composition containing the same, and coated member
JP4605375B2 (ja) 無水アンチモン酸亜鉛ゾル及びその製造方法
JP2005008515A (ja) 金属酸化物粒子及びその製造方法
JP5712846B2 (ja) シラン処理変性金属酸化物のジカルボン酸無水物分散ゾル及びその製造方法並びにそれを含むエポキシ硬化剤並びにエポキシ樹脂硬化体
WO2023100947A1 (ja) 変性金属酸化物コロイド粒子、およびその製造方法
JP2013252981A (ja) 導電性酸化スズゾルの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180012682.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734690

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011550933

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127021637

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011734690

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011734690

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13520907

Country of ref document: US