WO2013031799A1 - 無機酸化物透明分散液と透明複合体形成用樹脂組成物及び透明複合体並びに光学部材 - Google Patents

無機酸化物透明分散液と透明複合体形成用樹脂組成物及び透明複合体並びに光学部材 Download PDF

Info

Publication number
WO2013031799A1
WO2013031799A1 PCT/JP2012/071775 JP2012071775W WO2013031799A1 WO 2013031799 A1 WO2013031799 A1 WO 2013031799A1 JP 2012071775 W JP2012071775 W JP 2012071775W WO 2013031799 A1 WO2013031799 A1 WO 2013031799A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic oxide
transparent
resin
transparent composite
dispersion
Prior art date
Application number
PCT/JP2012/071775
Other languages
English (en)
French (fr)
Inventor
佐藤 洋一
恭行 栗野
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to US14/240,982 priority Critical patent/US20140206801A1/en
Priority to JP2013531344A priority patent/JP6028733B2/ja
Priority to EP20120828155 priority patent/EP2752392A4/en
Priority to CN201280041930.0A priority patent/CN103764567A/zh
Publication of WO2013031799A1 publication Critical patent/WO2013031799A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0536Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3684Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers

Definitions

  • the present invention relates to a transparent inorganic oxide dispersion, a resin composition for forming a transparent composite, a transparent composite, and an optical member, and more particularly, an inorganic oxide is suitably used as a filler material for an organic resin, and the transparent resin Inorganic oxide transparent dispersion capable of improving optical and mechanical properties of the resin while maintaining the properties, and a resin composition for forming a transparent composite comprising the inorganic oxide transparent dispersion and the resin, and
  • the present invention relates to a transparent composite formed using the resin composition for forming a transparent composite, and an optical member provided with the transparent composite.
  • optical members such as lenses, prisms, optical waveguides, and optical films constituting the internal optical system of the optical product, high refractive index, and wavelength dispersion of the refractive index
  • thermal characteristics such as thermal expansibility with respect to changes in environmental temperature, and mechanical characteristics such as mechanical strength with respect to external forces are important.
  • adhesiveness with the base material used as the object which provides an optical film is also important.
  • an organic resin such as an epoxy resin, an acrylic resin, a polyester resin, or a polycarbonate resin is used as the resin used for the optical member.
  • an organic resin such as an epoxy resin, an acrylic resin, a polyester resin, or a polycarbonate resin
  • transparent composites that have been compounded by adding inorganic oxide particles to the organic resins have been proposed.
  • the inorganic oxide particles to be added are appropriately selected according to the optical properties, thermal properties and mechanical properties for which a transparent composite is required. For example, when it is desired to increase the refractive index of the organic resin, zirconia or titania having a high refractive index is selected as the metal oxide.
  • the inorganic oxide particles are dispersed in a solvent to obtain an inorganic oxide dispersion, and this inorganic oxide is dispersed.
  • the product dispersion and the resin are mixed to obtain a transparent composite-forming resin composition.
  • the resin composition for forming a transparent composite is poured into a mold, the solvent is removed by heating or drying under reduced pressure for each mold, and then heating or irradiation with ultraviolet rays is performed.
  • the resin can be cured to obtain a transparent composite having a predetermined shape.
  • this transparent composite-forming resin composition onto a transparent plastic substrate by spin coating or screen printing, the resin composition is heated or dried under reduced pressure for each transparent plastic substrate. After removing the solvent, the resin is cured by heating or irradiating with ultraviolet rays or the like to obtain a predetermined film-like transparent composite.
  • a non-polar low-polarity organic resin having a low polarity is used as the resin.
  • the resin in order to uniformly disperse the inorganic oxide particles in such a low polar organic resin without being unevenly distributed, it is necessary to ensure the interface affinity between the surface of the inorganic oxide particles and the low polar organic resin. Therefore, it is necessary to modify the surface of the inorganic oxide particles so that the surface has the same low polarity as the low polarity organic resin.
  • the surface of the metal oxide particles is treated with a surface modifier having a reactive group, and the surface-modified metal oxide particles are placed in a low polarity solvent such as toluene or methyl ethyl ketone. Dispersed dispersions and curable compositions have been proposed (see Patent Documents 1 to 3, etc.).
  • the dispersions and curable compositions proposed in the conventional Patent Documents 1 to 3 have the following problems.
  • a dispersion or curable composition using a low-polarity solvent such as toluene
  • the low-polarity solvent is likely to erode the plastic substrate. Therefore, conditions for producing a transparent composite, particularly a dispersion or a curable composition, are used.
  • the time that the low polar solvent is in contact with the plastic substrate, the thickness of the transparent composite, the processing conditions such as the heating temperature, etc. the resulting composite may not be sufficiently transparent There was no problem.
  • the surface of the metal oxide particles used in the dispersion or the curable composition is treated with a surface modifier with low polarity, the surface of the surface modified metal oxide particles exhibits low polarity.
  • examples of the highly polar solvent that hardly erodes the plastic substrate include alcohols and ethers. Accordingly, it is very difficult to uniformly disperse the low-polarity surface-modified metal oxide particles in a high-polarity solvent that hardly erodes the plastic substrate.
  • the dispersibility of the surface-modified metal oxide particles in the obtained dispersion or curable composition is poor, and as a result, when this dispersion or curable composition is used, the transparency is high. There was a problem that a complex could not be obtained.
  • the present invention has been made in view of the above circumstances, and by uniformly dispersing inorganic oxide particles in a highly polar solvent, the optical properties and mechanical properties of the resin can be maintained while maintaining the transparency of the resin.
  • An object is to provide an inorganic oxide transparent dispersion, a transparent composite-forming resin composition, a transparent composite, and an optical member that can be improved.
  • the present inventors have added a basic substance to a dispersion containing inorganic oxide particles modified with a surface modifier and a highly polar solvent, It has been found that the dispersibility of the inorganic oxide particles in the highly polar solvent is improved, and the present invention has been completed.
  • the inorganic oxide transparent dispersion of the present invention is a cured resin obtained by dissolving an inorganic oxide particle modified with a surface modifier and having an average dispersed particle diameter of 1 nm to 50 nm and a resin.
  • a highly polar solvent that hardly erodes and a basic substance
  • the highly polar solvent is one or two of alcohols and ethers.
  • the inorganic oxide particles are preferably composed mainly of any one of metal oxide particles and non-metal oxide particles.
  • the resin composition for forming a transparent composite of the present invention is characterized by containing the inorganic oxide transparent dispersion of the present invention and a resin.
  • the transparent composite of the present invention is characterized by being formed using the resin composition for forming a transparent composite of the present invention.
  • the optical member of the present invention is characterized by comprising the transparent composite of the present invention.
  • inorganic oxide particles modified with a surface modifier and having an average dispersed particle diameter of 1 nm or more and 50 nm or less, and a cured resin obtained by dissolving the resin and curing the resin Contains a highly polar solvent that hardly erodes and a basic substance, and further, the highly polar solvent is one or two of alcohols and ethers. Dispersibility of the oxide particles in a highly polar solvent in the presence of a basic substance can be improved. Therefore, the inorganic oxide particles modified with the surface modifier can be well dispersed in the highly polar solvent. As a result, by using the above inorganic oxide transparent dispersion, the production conditions of the transparent composite can be satisfied. However, a transparent composite that is stable and excellent in transparency can be easily obtained.
  • the inorganic oxide transparent dispersion of this embodiment is a cured resin formed by dissolving an inorganic oxide particle modified with a surface modifier and having an average dispersed particle diameter of 1 nm to 50 nm and a resin. Is a dispersion containing a highly polar solvent that hardly erodes and a basic substance.
  • Inorganic oxide particles As inorganic oxide particles used in the present embodiment, it is preferable that any one of metal oxide particles and nonmetal oxide particles is a main component.
  • metal oxide particles metal oxide particles generally used as a filler in a resin are preferably used. Examples of such metal oxide particles include zirconium oxide (ZrO 2 : zirconia) and titanium oxide.
  • TiO 2 titania
  • aluminum oxide Al 2 O 3 : alumina
  • iron oxide Fe 2 O 3 , Fe 3 O 4
  • copper oxide CuO
  • zinc oxide ZnO
  • yttrium oxide Y 2 O 3 : Yttria
  • niobium oxide Nb 2 O 5
  • molybdenum oxide MoO 3 , MoO 2
  • indium oxide In 2 O 3
  • tin oxide SnO 2
  • tantalum oxide Ta 2 O 5 , TaO 2
  • Tungsten oxide WO 3 , WO 2
  • lead oxide PbO
  • bismuth oxide Bi 2 O 3
  • cerium oxide CeO 2 : ceria
  • Antimony oxide Sb 2 O 3 , Sb 2 O 5
  • Antimony oxide Sb 2 O 3 , Sb 2 O 5
  • Antimony oxide Sb 2 O 3 , Sb 2 O 5
  • Antimony oxide Sb 2 O 3 , Sb 2 O 5
  • Antimony oxide Sb 2 O 3 ,
  • non-metal oxide particles for example, silicon oxide (SiO 2 : silica) or boron oxide (B 2 O 3 ) that is generally used as a filler for resins can be used. These metal oxide particles and nonmetal oxide particles may be used alone or in combination of two or more.
  • the obtained transparent composite when a transparent composite is produced using the inorganic oxide transparent dispersion of the present embodiment, the obtained transparent composite can be increased in refractive index. Zirconium (ZrO 2 : zirconia) or titanium oxide (TiO 2 : titania) is preferable.
  • zirconium oxide (ZrO 2 ) particles zirconium oxide particles
  • ZrO 2 ) particles zirconium oxide particles
  • tetragonal zirconia particles are preferred.
  • the reason why the tetragonal zirconia particles are preferable is that when the average dispersed particle size of the fine particles is reduced to 20 nm or less during the fine particle synthesis, the tetragonal zirconia particles are more preferable than the conventionally known monoclinic zirconia particles.
  • the average dispersion particle size of the inorganic oxide particles in the inorganic oxide transparent dispersion is preferably 1 nm or more and 50 nm or less, more preferably 3 nm or more and 30 nm or less, and further preferably 5 nm or more and 20 nm or less. If the average dispersed particle size is less than 1 nm, it is difficult to produce the inorganic oxide particles themselves. On the other hand, if the average dispersed particle size exceeds 50 nm, a transparent composite prepared using this inorganic oxide transparent dispersion is not preferable. This is not preferable because the transparency in the body may deteriorate.
  • the average dispersed particle diameter in this embodiment means that the cumulative volume percentage obtained as a result of measuring the particle diameter of the inorganic oxide particles in this inorganic oxide transparent dispersion by the dynamic light scattering method is 50% by volume.
  • the content (% by mass) of the inorganic oxide particles in the inorganic oxide transparent dispersion is not particularly limited, and may be appropriately selected according to the production process for obtaining the transparent composite. Among these, in order to improve the handleability and improve the production efficiency, the content is preferably 1% by mass or more and 50% by mass or less, more preferably 10% by mass or more and 30% by mass or less.
  • Such a surface modifier is not particularly limited as long as it is a surface modifier having good compatibility with the above-described resin, and examples thereof include a compound represented by the following formula (1).
  • R is a vinyl group, an allyl group, a 3-glycidoxypropyl group, a 2- (3,4-epoxycyclohexyl) ethyl group, a 3-acryloxypropyl group, a 3-methacrylopropyl group, A styryl group, 3-aminopropyl group, N-2 (aminoethyl) 3-aminopropyl group, N-phenyl-3-aminopropyl group, 3-mercaptopropyl group, 3-isocyanatopropyl group, One or more selected from the group of 20 or less alkyl groups and phenyl groups, and R ′ is selected from the group of chlorine, hydroxy groups, alkoxy groups having 1 to 20 carbon atoms and acetoxy groups 1 or 2 or more, and X is 0, or an integer of 1 or more and 4 or less.
  • silane coupling agents examples include silane coupling agents, titanium coupling agents, and modified silicones.
  • silane coupling agents include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltrichlorosilane, and vinyl.
  • modified silicone examples include epoxy-modified silicone, epoxy-polyether-modified silicone, methacryl-modified silicone, phenol-modified silicone, methylstyryl-modified silicone, acrylic-modified silicone, alkoxy-modified silicone, and methylhydrogen silicone.
  • the amount of modification on the surface of the inorganic oxide particles by the surface modifier is not particularly limited as long as the compatibility between the obtained surface-modified inorganic oxide particles and the above resin is good.
  • the modification amount of the surface modifier is an inorganic oxide in order to balance the transparency of the inorganic oxide transparent dispersion and the refractive index of the resin. 5 mass% or more and 100 mass% or less are preferable with respect to the whole quantity of particle
  • the highly polar solvent is preferably an alcohol or an ether that easily dissolves the above-mentioned resin or the resin described later, and is hard to be eroded by a cured resin obtained by curing the resin by heat curing or ultraviolet irradiation.
  • These alcohols and ethers may be used alone or in combination of two of alcohols and ethers.
  • dissolve the resin means that the resin before being cured by heat curing or ultraviolet irradiation can be dissolved.
  • a highly polar solvent that dissolves the resin and hardens the cured resin and does not easily erode is, in other words, “a solubility in the uncured curable resin and a low solubility in the cured resin. It is a highly polar solvent with erodibility.
  • the alcohols are preferably alcohols having 4 or less carbon atoms in the main chain.
  • examples thereof include alcohol, ethylene glycol, propylene glycol, trimethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, tetramethylene glycol, and 2,3-butylene glycol. Of these, isopropyl alcohol is particularly preferable.
  • ethers include ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol and the like, and particularly propylene glycol monomethyl ether. Is preferred.
  • ethers may select and use only 1 type from said various ethers, and may mix and use 2 or more types.
  • 1 type or 2 or more types are selected from the above various alcohols
  • 1 type or 2 or more types are selected from the above various ethers, and these alcohols and ethers are mixed to mix alcohol and ether. It may be used as a solution.
  • the basic substance in the present embodiment includes an alkali metal or alkaline earth metal hydroxide, ammonia, amines, etc., and a substance whose hydrogen ion index (pH) is greater than 7 when dissolved in water. There is no particular limitation as long as it is sufficient.
  • Such basic substances include calcium hydroxide, magnesium hydroxide, manganese hydroxide, iron hydroxide, zinc hydroxide, copper hydroxide, lanthanum hydroxide, aluminum hydroxide, iron hydroxide, ammonia, ammonium hydroxide.
  • Inorganic basic substances such as potassium hydroxide and sodium hydroxide.
  • TETA tetramethylethylenediamine
  • hexamethylenediamine aniline
  • catecholamine phenethylamine
  • the basic substance may be added by appropriately adjusting the amount necessary for improving the dispersibility of the inorganic oxide particles in the highly polar solvent.
  • the content of the basic substance in the inorganic oxide transparent dispersion according to this embodiment is preferably 0.01% by mass or more and 10% by mass or less, more preferably 0.03% with respect to the total amount of the inorganic oxide particles. It is not less than 2% by mass and not more than 2% by mass.
  • the content of the basic substance is less than 0.01% by mass with respect to the total amount of the inorganic oxide particles, the dispersibility of the inorganic oxide particles in the highly polar solvent is not improved, while the content is Even if it exceeds 10% by mass with respect to the total amount of the inorganic oxide particles, there is no significant difference in the dispersion effect of the inorganic oxide particles and it becomes an impurity, which is not preferable.
  • the surface-modified inorganic oxide particles can be favorably dispersed in a highly polar solvent.
  • the details of the mechanism for obtaining such an effect are unknown, but, for example, in the case of inorganic oxide particles whose surface is modified with a silane coupling agent, it is considered as follows.
  • the alkoxy group of the silane coupling agent 2 that has modified the surface of the inorganic oxide particle 1 is hydrolyzed to become a hydroxyl group (OH group).
  • This OH group is either hydrogen bonded or dehydrated.
  • the condensation there will be a portion chemically bonded to the inorganic oxide particles 1 and an unbonded portion (OH group portion).
  • the inorganic oxide transparent dispersion of this embodiment is a cured resin formed by dissolving an inorganic oxide particle modified with a surface modifier and having an average dispersed particle diameter of 1 nm to 50 nm and a resin. Can be easily obtained by uniformly mixing a highly polar solvent that hardly erodes and a basic substance.
  • the inorganic oxide particles powders having a primary particle diameter of 1 nm or more and 10 nm or less may be used, or a dispersion in which these powders are dispersed in a dispersion medium may be used.
  • inorganic oxide particles are prepared. For example, dilute aqueous ammonia is added to a metal salt solution in which a metal salt such as zirconium oxychloride octahydrate or titanium trichloride is dissolved in pure water while stirring to prepare a metal oxide precursor slurry. Next, an aqueous solution of an inorganic salt such as sodium sulfate is added to the slurry with stirring to obtain a mixture. The amount of the inorganic salt added at this time is 20 to 40% by mass with respect to the metal oxide equivalent value of the metal ion in the metal salt solution.
  • a metal salt such as zirconium oxychloride octahydrate or titanium trichloride
  • the mixture is dried in the air at 100 ° C. or higher and 150 ° C. or lower for 24 hours or longer and 36 hours or shorter to obtain a solid.
  • the solid material is pulverized with an automatic mortar or the like and then fired in the air at 300 ° C. or more and 700 ° C. or less for 1 hour or more and 6 hours or less, for example, at 500 ° C. for 3 hours.
  • this fired product is put into pure water and stirred to form a slurry.
  • the added inorganic salt is washed and sufficiently removed, and then dried. Thereby, metal oxide particles which are a kind of inorganic oxide particles are obtained.
  • the basic substance in addition to mixing with the inorganic oxide particles and the highly polar solvent when preparing the above inorganic oxide transparent dispersion, You may add when obtaining.
  • the basic substance since the basic substance is reduced by solid-liquid separation or the like, it is necessary to adjust the amount of the basic substance added to the slurry in consideration of this reduction.
  • the basic substance is 0.5% by mass or more and 10% by mass or less with respect to the metal oxide particles, preferably It is preferable to add 1% by mass or more and 5% by mass or less.
  • the resin composition for forming a transparent composite according to this embodiment is a resin composition containing the inorganic oxide transparent dispersion of this embodiment and a resin.
  • the resin is not particularly limited as long as it is a resin that can be mixed with a highly polar solvent in an uncured state.
  • melamine resin, phenol resin, polyester resin, urethane resin, acrylic resin, vinyl chloride resin, Polypropylene resin, polycarbonate resin, polyethylene terephthalate (PET) resin, epoxy resin, or the like can be used.
  • an acrylic resin is preferable.
  • the content rate of the inorganic oxide particle in this resin composition for transparent composite formation is 10 mass% or more and 60 mass% or less with respect to the total mass of an inorganic oxide particle and resin.
  • This transparent composite-forming resin composition may be appropriately added with commonly used additives such as an organic solvent and a photoinitiator as necessary.
  • the method for producing the resin composition for forming a transparent composite is not particularly limited as long as it is a method capable of uniformly mixing the inorganic oxide particle transparent dispersion of the present embodiment and the resin, and is publicly known. These stirring methods can be used.
  • the transparent composite of this embodiment is a composite transparent to visible light formed using the resin composition for forming a transparent composite of this embodiment.
  • the transmittance of the transparent composite in the visible light region in the wavelength range of 400 nm to 800 nm is preferably 80% or more, more preferably 90% or more when the thickness of the transparent composite is 30 ⁇ m.
  • the transparent composite is prepared by pouring the transparent composite forming resin composition of the present embodiment into a mold having a predetermined shape, and then heating or depending on the type of the resin.
  • a method of curing by applying ultraviolet irradiation or the like can be used.
  • the plastic substrate is not particularly limited as long as it is a plastic substrate, and may be appropriately selected depending on the application.
  • a plastic substrate include acrylic, acrylic containing highly elastic acrylic rubber, acrylic-styrene copolymer, polystyrene, polyethylene, polypropylene, polycarbonate, polyethylene terephthalate (PET), cyanuric acid triallyl ester ( TAC) and epoxy-like sheets and films.
  • these plastic base materials may be used individually by 1 type among said base materials, and are good also as a laminated structure which laminated
  • Examples of the coating method for forming this coating film include a bar coating method, a spin coating method, a dip coating method, a gravure coating method, a spray method, a roller method, and a brush coating method.
  • the optical member of this embodiment includes the above-described transparent composite.
  • the optical member may be an optical member using a transparent plastic substrate, and is not particularly limited.
  • various cameras such as a camera, a film-integrated camera such as a lens-equipped film, a video camera, and an in-vehicle camera.
  • Optical members and prism sheets used in various devices such as optical pickup lenses such as lenses, CDs, CD-ROMs, MOs, CD-Rs, CD-Videos, DVDs, OA devices such as microlens arrays, copying machines, printers, Examples include optical fiber communication devices and LED sealants.
  • the method for mounting the transparent composite of the present embodiment on an optical member is not particularly limited, and may be mounted on the optical member by a known method.
  • the inorganic oxide particles modified with the surface modifier and having an average dispersed particle diameter of 1 nm to 50 nm and the resin are dissolved and the resin is dissolved.
  • the cured resin obtained by curing the resin contains a highly polar solvent that does not easily erode and a basic substance, so even inorganic oxide particles modified with a surface modifier are well dispersed in the highly polar solvent. Can be made.
  • the resin composition for forming a transparent composite of the present embodiment since the resin was contained in the inorganic oxide transparent dispersion containing the surface-modified inorganic oxide particles, the highly polar solvent, and the basic substance, the surface-modified inorganic The oxide particles, the resin, and the cured resin obtained by curing the resin are uniformly mixed with a highly polar solvent that hardly erodes and a basic substance, and thus a transparent composite regardless of manufacturing conditions. Can be formed.
  • the surface-modified inorganic oxide particles are uniformly dispersed in the resin, so that the surface-modified inorganic The characteristics and transparency of the oxide particles can be maintained.
  • the properties of the surface-modified inorganic oxide particles can be imparted to this optical member while maintaining the transparency of the optical member. .
  • Example 1 "Production of zirconia particles" To a zirconium salt aqueous solution in which 2615 g of zirconium oxychloride octahydrate was dissolved in 40 L of pure water, dilute ammonia water in which 344 g of 28% ammonia water was dissolved in 20 L of pure water was added with stirring to prepare a zirconia precursor slurry. Next, an aqueous sodium sulfate solution in which 300 g of sodium sulfate was dissolved in 5 L of pure water was added to this slurry with stirring. The amount of sodium sulfate added at this time was 30% by mass relative to the zirconia-converted value of zirconium ions in the zirconium salt aqueous solution.
  • this mixture was dried in the air at 130 ° C. for 24 hours using a dryer to obtain a solid.
  • the solid was pulverized with an automatic mortar and then baked at 500 ° C. for 1 hour in the air using an electric furnace to obtain a baked product.
  • the fired product was put into pure water and stirred to form a slurry, and then the slurry was washed using a centrifuge, and the added sodium sulfate was sufficiently removed to obtain a solid.
  • this solid substance was dried at 130 degreeC in air
  • the average primary particle diameter of the zirconia particles was measured using a field emission electron microscope JEM-2100F (manufactured by JEOL Ltd.) and found to be 4 nm.
  • the refractive index of zirconia was 2.15
  • the refractive index of isopropyl alcohol was 1.37.
  • the volume dispersed particle diameter (D50) when the cumulative volume percentage of the volume particle size distribution of the zirconia particles was 50% by volume was 6 nm.
  • Example 2 As a basic substance, instead of 0.03 g of 28% ammonia water, 0.1 mol / L potassium hydroxide (KOH) isopropyl alcohol solution (containing about 19.4 mass% water: Kanto Chemical Co., Inc.) Product) A zirconia transparent dispersion of Example 2 was obtained in the same manner as in Example 1 except that 0.04 g was used. When the particle size distribution of zirconia in this zirconia transparent dispersion was measured in the same manner as in Example 1, the volume dispersed particle size (D50) was 7 nm.
  • KOH potassium hydroxide
  • Example 3 A zirconia transparent dispersion of Example 3 was obtained in the same manner as in Example 1 except that propylene glycol monomethyl ether (PGM) was used instead of isopropyl alcohol as the highly polar solvent.
  • PGM propylene glycol monomethyl ether
  • D50 volume dispersed particle size
  • Example 4 "Production of titania particles" To a titanium salt aqueous solution in which 2445 g of titanium trichloride was dissolved in 40 L of pure water, dilute ammonia water in which 55 g of 28% ammonia water was dissolved in 20 L of pure water was added with stirring to prepare a titania precursor slurry. Next, an aqueous sodium nitrate solution in which 300 g of sodium nitrate was dissolved in 5 L of pure water was added to this slurry with stirring. The amount of sodium nitrate added at this time was 30% by mass with respect to titania equivalent of titanium ions in the titanium salt aqueous solution.
  • this mixture was dried in the air at 130 ° C. for 24 hours using a dryer to obtain a solid.
  • the solid was pulverized with an automatic mortar and then baked at 500 ° C. for 1 hour in the air using an electric furnace to obtain a baked product.
  • the fired product was put into pure water and stirred to form a slurry, and then the slurry was washed using a centrifuge, and the added sodium nitrate was sufficiently removed to obtain a solid.
  • this solid substance was dried at 130 degreeC in air
  • the average primary particle diameter of the titania particles was measured using a field emission electron microscope JEM-2100F (manufactured by JEOL Ltd.) and found to be 6 nm.
  • Example 4 Preparation of a transparent titania dispersion A titania transparent dispersion of Example 4 was obtained in the same manner as in Example 1 except that the above surface-modified titania particles were used instead of the surface-modified zirconia particles.
  • the particle size distribution of titania in this titania transparent dispersion was measured in the same manner as in Example 1, the volume dispersed particle size (D50) was 8 nm.
  • Comparative Example 1 7 g of isopropyl alcohol was added to 3 g of the surface-modified zirconia particles obtained according to Example 1 and stirred to obtain a zirconia dispersion liquid of Comparative Example 1 containing no basic substance.
  • the particle size distribution of zirconia in this zirconia dispersion was measured in the same manner as in Example 1, the volume dispersed particle size (D50) was 154 nm, and the dispersibility was poor.
  • Comparative Example 2 A zirconia dispersion of Comparative Example 2 was obtained in the same manner as in Example 1 except that methyl ethyl ketone (MEK) was used instead of isopropyl alcohol.
  • MEK methyl ethyl ketone
  • D50 volume dispersed particle size
  • Comparative Example 3 A zirconia dispersion of Comparative Example 3 was obtained in the same manner as in Example 1 except that 0.04 g of water was used instead of 0.03 g of 28% ammonia water. When the particle size distribution of zirconia in this zirconia dispersion was measured in the same manner as in Example 1, the volume dispersed particle size (D50) was 82 nm, and the dispersibility was poor.
  • Example 5 "Preparation of a resin composition for forming a transparent composite" 5 g of the zirconia transparent dispersion obtained according to Example 1, 5 g of acrylic resin PET-30 (manufactured by Nippon Kayaku Co., Ltd.), and 1- [4- (2-hydroxyethoxy) -phenyl] as a photopolymerization initiator -2-Hydroxy-2-methyl-1-propan-1-one Irgacure 2959 (manufactured by Ciba Specialty Chemicals) was mixed with 0.01 g to obtain a resin composition for forming a transparent composite of Example 5. .
  • Example 6 The transparent composite of Example 6 was prepared in the same manner as in Example 5 except that the zirconia transparent dispersion obtained according to Example 2 was used instead of the zirconia transparent dispersion obtained according to Example 1. A resin composition for body formation was obtained.
  • Example 7 The transparent composite of Example 7 was the same as Example 5 except that the zirconia transparent dispersion obtained according to Example 3 was used instead of the zirconia transparent dispersion obtained according to Example 1. A resin composition for body formation was obtained.
  • Example 8 The transparent composite of Example 8 was prepared in the same manner as in Example 5 except that the transparent dispersion of titania obtained according to Example 4 was used instead of the transparent dispersion of zirconia obtained according to Example 1. A resin composition for body formation was obtained.
  • Comparative Example 4 Complex formation of Comparative Example 4 was performed in the same manner as Example 5 except that the zirconia transparent dispersion obtained according to Comparative Example 1 was used instead of the zirconia transparent dispersion obtained according to Example 1. A resin composition was obtained.
  • Comparative Example 5 Complex formation of Comparative Example 5 was performed in the same manner as in Example 5 except that the zirconia transparent dispersion obtained according to Comparative Example 2 was used instead of the zirconia transparent dispersion obtained according to Example 1. A resin composition was obtained.
  • Comparative Example 6 Complex formation of Comparative Example 6 was performed in the same manner as Example 5 except that the zirconia transparent dispersion obtained according to Comparative Example 3 was used instead of the zirconia transparent dispersion obtained according to Example 1. A resin composition was obtained.
  • Example 9 "Production of transparent composites"
  • the resin composition for forming a transparent composite obtained according to Example 5 was applied onto a polycarbonate substrate by a bar coating method to form a coating film.
  • this coated polycarbonate substrate was dried in an electric furnace at 60 ° C. for 5 minutes, and then irradiated with ultraviolet rays with a high-pressure mercury lamp to cure the resin in the coated film, whereby a 30 ⁇ m thick transparent composite was obtained. Obtained.
  • the total light transmittance of the transparent composite that is, the total of the polycarbonate substrate and the coating film
  • V-570 manufactured by JASCO
  • the measurement results are shown in FIG. According to FIG. 2, the transmittance for light with a wavelength of 400 nm was 91%.
  • Example 10 instead of the transparent composite-forming resin composition obtained according to Example 5, the same procedure as in Example 9 was used except that the transparent composite-forming resin composition obtained according to Example 6 was used. Thus, a transparent composite of Example 10 having a thickness of 30 ⁇ m was obtained. Subsequently, when the light transmittance of this transparent composite was measured according to Example 9, the transmittance for light having a wavelength of 400 nm was 90%.
  • Example 11 Instead of the transparent composite-forming resin composition obtained according to Example 5, the same procedure as in Example 9 was used, except that the transparent composite-forming resin composition obtained according to Example 7 was used. Thus, a transparent composite of Example 11 having a thickness of 30 ⁇ m was obtained. Subsequently, when the light transmittance of this transparent composite was measured according to Example 9, the transmittance for light having a wavelength of 400 nm was 91%.
  • Example 12 Instead of the transparent composite-forming resin composition obtained according to Example 5, the same procedure as in Example 9 was used, except that the transparent composite-forming resin composition obtained according to Example 8 was used. Thus, a transparent composite of Example 12 having a thickness of 30 ⁇ m was obtained. Subsequently, when the light transmittance of this transparent composite was measured according to Example 9, the transmittance for light having a wavelength of 400 nm was 92%.
  • Example 7 instead of the transparent composite-forming resin composition obtained according to Example 5, the same procedure as in Example 9 was used, except that the composite-forming resin composition obtained according to Comparative Example 4 was used. A composite of Comparative Example 7 having a thickness of 30 ⁇ m was obtained. Subsequently, when the light transmittance of this composite was measured according to Example 9, the transmittance for light having a wavelength of 400 nm was as low as 12%. This is considered to be due to the poor dispersibility of the zirconia particles in the highly polar solvent, and hence the zirconia particles aggregated to reduce the transparency of the composite.
  • Example 8 instead of the transparent composite-forming resin composition obtained according to Example 5, the same procedure as in Example 9 was used except that the composite-forming resin composition obtained according to Comparative Example 5 was used. A composite of Comparative Example 8 having a thickness of 30 ⁇ m was obtained. Subsequently, when the light transmittance of this composite was measured according to Example 9, the transmittance for light having a wavelength of 400 nm was as low as 75%. This is considered to be due to the devitrification of the polycarbonate base material because the methyl base ketone (MEK) eroded the polycarbonate base material.
  • MEK methyl base ketone
  • Comparative Example 9 instead of the resin composition for forming a transparent complex obtained according to Example 5, the resin composition for forming a complex obtained according to Comparative Example 6 was used in the same manner as in Example 9. A composite of Comparative Example 9 having a thickness of 30 ⁇ m was obtained. Subsequently, when the light transmittance of this composite was measured according to Example 9, the transmittance for light having a wavelength of 400 nm was as low as 75%.
  • the zirconia dispersion was prepared by using water instead of 28% ammonia water, so that the dispersibility of the zirconia particles in the highly polar solvent was poor, and therefore the dispersibility of the zirconia particles in the obtained composite was low. This is thought to be due to the decline. From the above, it was confirmed that a basic substance was required instead of water in order to satisfactorily disperse the surface-modified zirconia particles having a reduced surface polarity in a highly polar solvent.
  • the present invention provides an inorganic oxide transparent dispersion that enables an inorganic oxide to be suitably used as a filler material for an organic resin, and to improve the optical properties and mechanical properties of the resin while maintaining the transparency of the resin;
  • a resin composition for forming a transparent composite comprising the inorganic oxide transparent dispersion and a resin, a transparent composite formed using the resin composition for forming a transparent composite, and the transparent composite It can be applied to optical members.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Paints Or Removers (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

無機酸化物粒子を高極性溶媒中に均一に分散させることで、樹脂の透明性を維持しつつ樹脂の光学的特性及び機械的特性の向上が可能な無機酸化物透明分散液と透明複合体形成用樹脂組成物及び透明複合体並びに光学部材が提供される。そのような無機酸化物透明分散液は、表面修飾剤により修飾され平均分散粒径が1nm以上かつ50nm以下の無機酸化物粒子と、樹脂を溶解するとともに前記樹脂を硬化してなる硬化樹脂には浸食し難い高極性溶媒と、塩基性物質とを含有し、この高極性溶媒は、アルコール類及びエーテル類のうちいずれか1種または2種である。

Description

無機酸化物透明分散液と透明複合体形成用樹脂組成物及び透明複合体並びに光学部材
 本発明は、無機酸化物透明分散液と透明複合体形成用樹脂組成物及び透明複合体並びに光学部材に関し、特に詳しくは、無機酸化物が有機樹脂のフィラー材として好適に用いられ、樹脂の透明性を維持しつつ樹脂の光学的特性及び機械的特性の向上を可能とする無機酸化物透明分散液と、この無機酸化物透明分散液と樹脂とを含む透明複合体形成用樹脂組成物、及び、この透明複合体形成用樹脂組成物を用いて形成された透明複合体、並びに、この透明複合体を備えた光学部材に関するものである。
本願は、2011年8月31日に、日本に出願された特願2011-188631号に基づき優先権を主張し、その内容をここに援用する。
 一般に、光学製品を所望の設計とするためには、光学製品の内部光学系を構成するレンズ、プリズム、光導波路、光学膜等の光学部材の透明性、高い屈折率、屈折率の波長分散性等の光学的特性が重要である。また、環境温度の変化に対する熱膨張性等の熱的特性、外力に対する機械的強度等の機械的特性が重要である。そして、光学膜等の場合には、光学膜を設ける対象となる基材との密着性も重要である。
 光学部材に用いられる樹脂としては、一般にエポキシ樹脂、アクリル樹脂、ポリエステル樹脂、ポリカーボネート樹脂等の有機樹脂が用いられている。そして、これら有機樹脂の光学的、機械的特性を最適な設計とする目的で、有機樹脂に無機酸化物粒子を添加することで複合化した透明複合体が提案されている。
 添加する無機酸化物粒子は、透明複合体が要求される光学的特性、熱的特性及び機械的特性に合わせて適宜選択される。例えば、有機樹脂の屈折率を高めたい場合には、金属酸化物として屈折率の高いジルコニアやチタニア等が選択される。
 この透明複合体を得る方法としては、透明複合体中に無機酸化物粒子を均一に分散させるために、まず、無機酸化物粒子を溶媒中に分散させて無機酸化物分散液とし、この無機酸化物分散液と樹脂とを混合して透明複合体形成用樹脂組成物とする。
 そして、この透明複合体形成用樹脂組成物を成形型に流し込み、この樹脂組成物を成形型毎、加温または減圧乾燥することにより溶媒を除去し、その後、加熱または紫外線等を照射することにより樹脂を硬化させ、所定形状の透明複合体を得ることができる。
 また、この透明複合体形成用樹脂組成物を、スピンコート法やスクリーン印刷法により透明プラスチック基材の上に塗布し、この樹脂組成物を透明プラスチック基材毎、加温または減圧乾燥することにより溶媒を除去し、その後、加熱または紫外線等を照射することにより樹脂を硬化させ、所定の膜状の透明複合体を得ることができる。
 この透明複合体では、環境中の湿度の変化により樹脂が吸水して寸法安定性が損なわれることを防止するために、樹脂としては、非水系の極性の低い低極性有機樹脂が使用される。
 一方、このような低極性有機樹脂中に無機酸化物粒子を偏在することなく均一に分散させるためには、無機酸化物粒子の表面と低極性有機樹脂との界面親和性を確保する必要があり、そこで、無機酸化物粒子に表面修飾を施して、その表面を低極性有機樹脂と同程度の低極性とする必要がある。
 この透明複合体を光学部材に適用する場合、より透明な複合体を得るためには、この透明複合体中の無機酸化物粒子の分散状態をより単分散状態に近づける必要があり、そのためには、低極性有機樹脂と混合する無機酸化物分散液中の無機酸化物粒子の分散性を向上させる必要が有り、また、この無機酸化物分散液の透明性も高める必要がある。
 このような特性の透明複合体を得るために、反応性基を有する表面修飾剤で金属酸化物粒子の表面を処理し、この表面修飾金属酸化物粒子をトルエンやメチルエチルケトン等の低極性溶媒中に分散させた分散液や硬化性組成物が提案されている(特許文献1~3等参照)。
特開2010-195967号公報 特開2007-217242号公報 特開2004-269644号公報
 ところで、従来の特許文献1~3等で提案されている分散液や硬化性組成物には、次のような問題点があった。
(1)トルエン等の低極性溶媒を用いた分散液や硬化性組成物では、低極性溶媒がプラスチック基材を侵食し易く、したがって、透明複合体を作製する条件、特に分散液や硬化性組成物が塗布されるプラスチック基材の種類、プラスチック基材に低極性溶媒が接触している時間、透明複合体の厚み、加熱温度等の処理条件によっては、得られる複合体の透明性が十分ではないという問題点があった。
(2)分散液や硬化性組成物に用いられる金属酸化物粒子の表面が極性の低い表面修飾剤にて処理されていることから、表面修飾金属酸化物粒子の表面は低極性を呈している。一方、プラスチック基材を侵食し難い高極性溶媒としては、アルコール類、エーテル類等がある。したがって、低極性の表面修飾金属酸化物粒子をプラスチック基材を侵食し難い高極性溶媒中に均一に分散させることは非常に難しく、よって、低極性の表面修飾金属酸化物粒子を高極性溶媒中に分散させた場合、得られた分散液や硬化性組成物中の表面修飾金属酸化物粒子の分散性が悪く、その結果、この分散液や硬化性組成物を用いた場合、透明性の高い複合体を得ることができないという問題点があった。
 本発明は上記事情に鑑みてなされたものであって、無機酸化物粒子を高極性溶媒中に均一に分散させることで、樹脂の透明性を維持しつつ樹脂の光学的特性及び機械的特性の向上が可能な無機酸化物透明分散液と透明複合体形成用樹脂組成物及び透明複合体並びに光学部材を提供することを目的とする。
 本発明者等は、上記課題を解決するために鋭意検討を行った結果、表面修飾剤により修飾された無機酸化物粒子と高極性溶媒とを含む分散液に塩基性物質を添加させることにより、無機酸化物粒子の高極性溶媒に対する分散性が向上することを見出し、本発明を完成するに至った。
 すなわち、本発明の無機酸化物透明分散液は、表面修飾剤により修飾され平均分散粒径が1nm以上かつ50nm以下の無機酸化物粒子と、樹脂を溶解するとともに前記樹脂を硬化してなる硬化樹脂には浸食し難い高極性溶媒と、塩基性物質とを含有してなり、前記高極性溶媒は、アルコール類及びエーテル類のうちいずれか1種または2種であることを特徴とする。
 前記無機酸化物粒子は、金属酸化物粒子、非金属酸化物粒子のうちいずれか1種を主成分とすることが好ましい。
 本発明の透明複合体形成用樹脂組成物は、本発明の無機酸化物透明分散液と樹脂とを含有してなることを特徴とする。
 本発明の透明複合体は、本発明の透明複合体形成用樹脂組成物を用いて形成されたことを特徴とする。
 本発明の光学部材は、本発明の透明複合体を備えてなることを特徴とする。
 本発明の無機酸化物透明分散液によれば、表面修飾剤により修飾され平均分散粒径が1nm以上かつ50nm以下の無機酸化物粒子と、樹脂を溶解するとともに前記樹脂を硬化してなる硬化樹脂には浸食し難い高極性溶媒と、塩基性物質とを含有し、さらに、高極性溶媒をアルコール類及びエーテル類のうちいずれか1種または2種としたので、表面修飾剤により修飾された無機酸化物粒子を、塩基性物質の存在下にて高極性溶媒に対する分散性を向上させることができる。したがって、表面修飾剤により修飾された無機酸化物粒子を高極性溶媒中に良好に分散させることができ、その結果、上記の無機酸化物透明分散液を用いることにより、透明複合体の製造条件によらず、安定しかつ透明性に優れた透明複合体を容易に得ることができる。
本発明の無機酸化物透明分散液中における塩基性物質の作用を示す模式図である。 本発明の実施例9の透明複合体の光透過率の測定結果を示す図である。
 本発明の無機酸化物透明分散液と透明複合体形成用樹脂組成物及び透明複合体並びに光学部材を実施するための形態について説明する。
 なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
[無機酸化物透明分散液]
 本実施形態の無機酸化物透明分散液は、表面修飾剤により修飾され平均分散粒径が1nm以上かつ50nm以下の無機酸化物粒子と、樹脂を溶解するとともに前記樹脂を硬化してなる硬化樹脂には浸食し難い高極性溶媒と、塩基性物質とを含有してなる分散液である。
「無機酸化物粒子」
 本実施形態にて用いられる無機酸化物粒子としては、金属酸化物粒子、非金属酸化物粒子のうちいずれか1種を主成分とすることが好ましい。
 金属酸化物粒子としては、一般的に樹脂にフィラーとして使用される金属酸化物粒子が好適に用いられ、このような金属酸化物粒子としては、例えば、酸化ジルコニウム(ZrO:ジルコニア)、酸化チタン(TiO:チタニア)、酸化アルミニウム(Al:アルミナ)、酸化鉄(Fe、Fe)、酸化銅(CuO)、酸化亜鉛(ZnO)、酸化イットリウム(Y:イットリア)、酸化ニオブ(Nb)、酸化モリブデン(MoO、MoO)、酸化インジウム(In)、酸化スズ(SnO)、酸化タンタル(Ta、TaO)、酸化タングステン(WO、WO)、酸化鉛(PbO)、酸化ビスマス(Bi)、酸化セリウム(CeO:セリア)、酸化アンチモン(Sb、Sb)等を用いることができる。
 非金属酸化物粒子としては、例えば、一般的に樹脂にフィラーとして使用される酸化ケイ素(SiO:シリカ)、あるいは酸化ホウ素(B)等を用いることができる。
 これらの金属酸化物粒子及び非金属酸化物粒子は、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
 これらの無機酸化物粒子の中でも、本実施形態の無機酸化物透明分散液を用いて透明複合体を作製した場合に、得られた透明複合体を高屈折率化させることができる点で、酸化ジルコニウム(ZrO:ジルコニア)または酸化チタン(TiO:チタニア)が好ましい。
 酸化ジルコニウム(ZrO)粒子(ジルコニア粒子)を用いる場合は、単斜晶ジルコニア粒子または正方晶ジルコニア粒子のいずれか一方、あるいは、単斜晶ジルコニア粒子および正方晶ジルコニア粒子が用いられるが、下記の理由により正方晶ジルコニア粒子が好ましい。
 正方晶ジルコニア粒子が好ましい理由は、微粒子合成の際に、微粒子の平均分散粒径が20nm以下のように小さくなると、正方晶ジルコニア粒子の方が、従来知られている単斜晶ジルコニア粒子よりも安定になり、硬度が高く、この正方晶ジルコニア粒子を樹脂中に分散させた樹脂複合体の機械的特性が向上し、さらには、この樹脂複合体においては、単斜晶ジルコニア粒子を添加した場合と比べて、マルテンサイト変態と称される体積膨張により高い靭性を示すからである。
なお、所望の特性を失わない範囲であれば、立方晶ジルコニア粒子が含有されていてもよい。
 この無機酸化物粒子の無機酸化物透明分散液中における平均分散粒径は、1nm以上かつ50nm以下が好ましく、より好ましくは3nm以上かつ30nm以下、さらに好ましくは5nm以上かつ20nm以下である。
 平均分散粒径が1nm未満では、無機酸化物粒子自体の製造が困難となるので好ましくなく、一方、平均分散粒径が50nmを超えると、この無機酸化物透明分散液を用いて作製した透明複合体における透明性が悪化する虞があるので好ましくない。
 なお、本実施形態における平均分散粒径とは、この無機酸化物透明分散液中の無機酸化物粒子の粒子径を動的光散乱法により測定した結果得られた累積体積百分率が50体積%における体積分散粒径(D50)のことである。
 この無機酸化物粒子の無機酸化物透明分散液中における含有率(質量%)は、特に限定されず、透明複合体を得るための製造プロセスに合わせて適宜選択すればよい。中でも、ハンドリング性がよく、かつ生産効率を向上させるためには、1質量%以上かつ50質量%以下が好ましく、より好ましくは10質量%以上かつ30質量%以下である。
 この無機酸化物粒子は、その表面と上記の樹脂との界面親和性を確保する必要から、この無機酸化物粒子の表面を表面修飾剤を用いて修飾することが好ましい。
 このような表面修飾剤としては、上記の樹脂との相溶性がよい表面修飾剤であれば特に限定されず、例えば、下記の式(1)で表される化合物が挙げられる。
    R-Si-R’4-x  ……(1)
 この式(1)中、Rは、ビニル基、アリル基、3-グリシドキシプロピル基、2-(3,4エポキシシクロヘキシル)エチル基、3-アクリロキシプロピル基、3-メタクリロプロピル基、スチリル基、3-アミノプロピル基、N-2(アミノエチル)3-アミノプロピル基、N-フェニル-3-アミノプロピル基、3-メルカプトプロピル基、3-イソシアネートプロピル基、炭素数が1以上かつ20以下のアルキル基、フェニル基の群から選択される1種または2種以上であり、R’は、塩素、ヒドロキシ基、炭素数が1以上かつ20以下のアルコキシ基、アセトキシ基の群から選択される1種または2種以上であり、Xは0、または1以上かつ4以下の整数である。
 このような表面修飾剤としては、シランカップリング剤、チタンカップリング剤、変性シリコーン等が挙げられ、シランカップリング剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリクロロシラン、ビニルトリフェノキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルトリクロロシラン、3-グリシドキシプロピルトリフェノキシシラン、p-スチリルトリメトキシシラン、p-スチリルトリエトキシシラン、p-スチリルトリクロロシラン、p-スチリルトリフェノキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリクロロシラン、3-アクリロキシプロピルトリフェノキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリクロロシラン、3-メタクリロキシプロピルトリフェノキシシラン等が挙げられる。
 また、アリルトリメトキシシラン、アリルトリエトキシシラン、アリルトリクロロシラン、アリルトリフェノキシシラン、ビニルエチルジメトキシシラン、ビニルエチルジエトキシシラン、ビニルエチルジクロロシラン、ビニルエチルジフェノキシシラン、3-グリシドキシプロピルエチルジメトキシシラン、3-グリシドキシプロピルトリエチルジエトキシシラン、3-グリシドキシプロピルエチルジクロロシラン、3-グリシドキシプロピルエチルジフェノキシシラン、p-スチリルエチルジメトキシシラン、p-スチリルエチルジエトキシシラン、p-スチリルトリエチルジクロロシラン、p-スチリルエチルジフェノキシシラン、3-アクリロキシプロピルエチルジメトキシシラン、3-アクリロキシプロピルエチルジエトキシシラン、3-アクリロキシプロピルエチルジクロロシラン、3-アクリロキシプロピルエチルジフェノキシシラン、3-メタクリロキシプロピルエチルジメトキシシラン、3-メタクリロキシプロピルエチルジエトキシシラン、3-メタクリロキシプロピルエチルジクロロシラン、3-メタクリロキシプロピルエチルジフェノキシシラン、アリルエチルジメトキシシラン、アリルエチルジエトキシシラン、アリルエチルジクロロシラン、アリルエチルジフェノキシシラン等が挙げられる。
 さらに、ビニルジエチルメトキシシラン、ビニルジエチルエトキシシラン、ビニルジエチルクロロシラン、ビニルジエチルフェノキシシラン、3-グリシドキシプロピルジエチルメトキシシラン、3-グリシドキシプロピルジエチルエトキシシラン、3-グリシドキシプロピルジエチルクロロシラン、3-グリシドキシプロピルジエチルフェノキシシラン、p-スチリルジエチルメトキシシラン、p-スチリルジエチルエトキシシラン、p-スチリルジエチルクロロシラン、p-スチリルジエチルフェノキシシラン、3-アクリロキシプロピルジエチルメトキシシラン、3-アクリロキシプロピルジエチルエトキシシラン、3-アクリロキシプロピルジエチルクロロシラン、3-アクリロキシプロピルジエチルフェノキシシラン、3-メタクリロキシプロピルジエチルメトキシシラン、3-メタクリロキシプロピルジエチルエトキシシラン、3-メタクリロキシプロピルジエチルクロロシラン、3-メタクリロキシプロピルジエチルフェノキシシラン、アリルジエチルメトキシシラン、アリルジエチルエトキシシラン、アリルジエチルクロロシラン、アリルジエチルフェノキシシラン等が挙げられる。
 変性シリコーンとしては、エポキシ変性シリコーン、エポキシ・ポリエーテル変性シリコーン、メタクリル変性シリコーン、フェノール変性シリコーン、メチルスチリル変性シリコーン、アクリル変性シリコーン、アルコキシ変性シリコーン、メチルハイドロジェンシリコーン等が挙げられる。
 この表面修飾剤による無機酸化物粒子の表面における修飾量は、得られた表面修飾無機酸化物粒子と上記の樹脂との相溶性が良好であればよく、特に限定しないが、特に、上記の樹脂の屈折率を向上させたい場合には、上記の無機酸化物透明分散液の透明性と、上記の樹脂の屈折率とのバランスを図るために、この表面修飾剤の修飾量は、無機酸化物粒子の全量に対して5質量%以上かつ100質量%以下が好ましく、より好ましくは10質量%以上かつ50質量%以下である。
「高極性溶媒」
 この高極性溶媒は、上記の樹脂あるいは後述する樹脂を容易に溶解するとともに、この樹脂を加熱硬化あるいは紫外線照射等により硬化してなる硬化樹脂に対しては浸食し難いアルコール類、エーテル類が好ましく、これらのアルコール類及びエーテル類は、アルコール類及びエーテル類のうちいずれか1種のみを単独で用いてもよく、また、2種を混合して用いてもよい。
 ここで、「樹脂を溶解する」とは、加熱硬化あるいは紫外線照射等により硬化する前の樹脂を溶解できることを意味する。すなわち、「樹脂を溶解するとともに前記樹脂を硬化してなる硬化樹脂には侵食し難い高極性溶媒」を換言すれば、「未硬化の硬化性樹脂に対する溶解性と、硬化後の前記樹脂に対する低い侵食性とを備えた高極性溶媒」となる。
 ここで、アルコール類としては、主鎖の炭素数が4以下のアルコール類が好ましく、例えば、メチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール、sec-ブチルアルコール、イソブチルアルコール、tert-ブチルアルコール、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、テトラメチレングリコール、2,3-ブチレングリコール等が挙げられる。これらの中でも特にイソプロピルアルコールが好ましい。
 エーテル類としては、例えば、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコール等が挙げられ、特にプロピレングリコールモノメチルエーテルが好ましい。
 ここで、アルコール類は、上記の各種のアルコールのうちから1種のみを選択して用いてもよく、2種以上を混合して用いてもよい。
 また、エーテル類は、上記の各種エーテルのうちから1種のみを選択して用いてもよく、2種以上を混合して用いてもよい。
 さらに、上記の各種アルコールのうちから1種または2種以上を選択し、上記の各種エーテルのうちから1種または2種以上を選択して、これらのアルコール及びエーテルを混合してアルコール・エーテル混合溶液として用いてもよい。
「塩基性物質」
 本実施形態における塩基性物質とは、アルカリ金属またはアルカリ土類金属の水酸化物、アンモニア、アミン類等を含み、かつ水に溶解した場合に水素イオン指数(pH)が7より大となる物質であればよく、特に限定されない。
 このような塩基性物質としては、水酸化カルシウム、水酸化マグネシウム、水酸化マンガン、水酸化鉄、水酸化亜鉛、水酸化銅、水酸化ランタン、水酸化アルミニウム、水酸化鉄、アンモニア、水酸化アンモニウム、水酸化カリウム、水酸化ナトリウム等の無機塩基性物質が挙げられる。
 また、メチルアミン、エーテルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、トリエタノールアミン、N,N-ジイソプロピルエチルアミン、ピペリジン、ピペラジン、モルホリン、キヌクリジン、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、ピリジン、4-ジメチルアミノピリジン、エチレンジアミン、テトラメチルエチレンジアミン(TMEDA)、ヘキサメチレンジアミン、アニリン、カテコールアミン、フェネチルアミン等のアミン類、1,8-ビス(ジメチルアミノ)ナフタレン(プロトンスポンジ)、アミノ酸、アマンタジン、スペルミジン、スペルミン等も挙げられる。
 これらの無機塩基性物質、アミン類、その他の塩基性物質は、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
 これらの中でも、取扱いが容易で、不純物として残留し難い点で、アンモニアが好ましい。
 この塩基性物質は、無機酸化物粒子の高極性溶媒への分散性を向上させるために必要な量を適宜調整して添加すればよい。
 この塩基性物質の本実施形態の無機酸化物透明分散液における含有量は、無機酸化物粒子の全体量に対して0.01質量%以上かつ10質量%以下が好ましく、より好ましくは0.03質量%以上かつ2質量%以下である。
 この塩基性物質の含有量が無機酸化物粒子の全体量に対して0.01質量%未満であると、無機酸化物粒子の高極性溶媒への分散性が改良せず、一方、含有量が無機酸化物粒子の全体量に対して10質量%を超えても、無機酸化物粒子の分散効果に顕著な差はなく、しかも不純物となるので、好ましくない。
 本実施形態の無機酸化物透明分散液では、塩基性物質を含有することにより、表面修飾された無機酸化物粒子を高極性溶剤中に良好に分散させることができる。
 このような効果が得られるメカニズムについては、詳細は不明であるが、例えば、シランカップリング剤にて表面修飾した無機酸化物粒子の場合には、次のように考えられる。
 図1(a)に示すように、無機酸化物粒子1の表面を修飾したシランカップリング剤2のアルコキシ基は、加水分解して水酸基(OH基)となり、このOH基は、水素結合または脱水縮合により、無機酸化物粒子1と化学的に結合する部分と、未結合の部分(OH基の部分)とが存在することとなる。
 このような状態の無機酸化物粒子1が分散した分散液に塩基性物質3を少量添加すると、図1(b)に示すように、シランカップリング剤2の未結合部分のOH基にプロトンの脱離が生じて、その部分の極性が高まる(OH→O)。
 このように、無機酸化物粒子1を表面修飾しているシランカップリング剤2を、一部の極性が高まったシランカップリング剤2’とすることで、高極性溶媒との分散性が向上するものと考えられる。
「無機酸化物透明分散液の製造方法」
 本実施形態の無機酸化物透明分散液は、表面修飾剤により修飾され平均分散粒径が1nm以上かつ50nm以下の無機酸化物粒子と、樹脂を溶解するとともに前記樹脂を硬化してなる硬化樹脂には浸食し難い高極性溶媒と、塩基性物質とを、均一に混合することにより、容易に得ることができる。
 無機酸化物粒子は、一次粒子径が1nm以上かつ10nm以下の粉体を用いてもよく、これらの粉体を分散媒中に分散させた分散液を用いてもよい。
 ここで、表面修飾剤により修飾された無機酸化物粒子の製造方法について説明する。
 まず、無機酸化物粒子を作製する。
 例えば、オキシ塩化ジルコニウム8水塩、三塩化チタン等の金属塩を純水に溶解させた金属塩溶液に、希アンモニア水を攪拌しながら加え、金属酸化物前駆体スラリーを調製する。
 次いで、このスラリーに、硫酸ナトリウム等の無機塩の水溶液を攪拌しながら加え、混合物とする。このときの無機塩の添加量は、金属塩溶液中の金属イオンの金属酸化物換算値に対して20~40質量%とする。
 次いで、この混合物を大気中、100℃以上かつ150℃以下にて、24時間以上かつ36時間以下、乾燥させて固形物を得る。
 次いで、この固形物を自動乳鉢等により粉砕した後、大気中、300℃以上かつ700℃以下にて、1時間以上かつ6時間以下、例えば、500℃にて3時間、焼成する。
 次いで、この焼成物を純水中に投入し、攪拌してスラリー状とする。次いで、添加した無機塩を洗浄して十分に除去した後、乾燥させる。これにより、無機酸化物粒子の一種である金属酸化物粒子が得られる。
 次いで、上記で得られた金属酸化物粒子に、水またはアルコール水溶液を加えてスラリー状にし、次いでこのスラリーに上記の表面修飾剤を添加し、適宜混合する。これにより、表面修飾剤により表面が修飾された無機酸化物粒子が得られる。
 この状態では、表面修飾された無機酸化物粒子がスラリー中に分散、またはスラリーの底部に沈降した状態であるから、このスラリーに固液分離等を施すことにより、表面修飾された無機酸化物粒子を固形物の状態で回収する。この固形物を乾燥させることで、表面修飾剤により表面が修飾された無機酸化物粒子を得ることができる。
 なお、塩基性物質は、上記の無機酸化物透明分散液を作製する際に無機酸化物粒子及び高極性溶媒と混合する以外に、上記の表面修飾剤を添加して表面修飾無機酸化物粒子を得る際に添加してもよい。
 この場合、固液分離等により塩基性物質が減少してしまうので、この減少分を考慮してスラリーに添加する塩基性物質の量を調整する必要がある。
 このスラリーに表面修飾剤を添加し混合する表面修飾工程で塩基性物質を添加する場合には、塩基性物質を金属酸化物粒子に対して0.5質量%以上かつ10質量%以下、好ましくは1質量%以上かつ5質量%以下添加するのが好ましい。
[透明複合体形成用樹脂組成物]
 本実施形態の透明複合体形成用樹脂組成物は、本実施形態の無機酸化物透明分散液と樹脂とを含有してなる樹脂組成物である。
 上記の樹脂としては、未硬化の状態で高極性溶媒と混合可能な樹脂であればよく、特に限定されないが、例えば、メラミン樹脂、フェノール樹脂、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、塩化ビニル樹脂、ポリプロピレン樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート(PET)樹脂、エポキシ樹脂等を用いることができる。これらの中でもアクリル樹脂が好ましい。
 この透明複合体形成用樹脂組成物における無機酸化物粒子の含有率は、無機酸化物粒子と樹脂の合計質量に対して10質量%以上かつ60質量%以下であることが好ましい。
 無機酸化物粒子の含有率を上記の範囲内として樹脂と混合させることにより、無機酸化物粒子の有する特性を付与しつつ、後述する複合体を形成する際のハンドリング性がよくなるので、好ましい。
 この透明複合体形成用樹脂組成物は、必要に応じて、有機溶媒、光開始剤等の一般的に用いられる添加剤を適宜添加しても良い。
 この透明複合体形成用樹脂組成物を製造する方法としては、本実施形態の無機酸化物粒子透明分散液と樹脂とを均一に混合させることができる方法であればよく、特に限定されず、公知の撹拌方法を用いることができる。
[透明複合体]
 本実施形態の透明複合体は、本実施形態の透明複合体形成用樹脂組成物を用いて形成された可視光線に対して透明な複合体である。
 この透明複合体の可視光線領域の400nm~800nmの波長帯域における透過率は、この透明複合体の厚みが30μmの場合には、80%以上が好ましく、より好ましくは90%以上である。
 この透明複合体は、例えば、三次元形状のバルク体を作製する場合、本実施形態の透明複合体形成用樹脂組成物を所定の形状の型に流し込み、その後、樹脂の種類に応じて加熱あるいは紫外線照射等を施すことにより硬化させる方法等が挙げられる。
 また、塗膜を作製する場合、プラスチック基材上に本実施形態の透明複合体形成用樹脂組成物を塗布し、その後、必要に応じて加熱による熱硬化あるいは紫外線照射等による光硬化を施す方法等が挙げられる。
 プラスチック基材としては、プラスチック製の基材であれば特に限定されず、用途に応じて適宜選択すればよい。このようなプラスチック基材としては、例えば、アクリル、高弾性のアクリルゴムを含有したアクリル、アクリル-スチレン共重合体、ポリスチレン、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリエチレンテレフタレート(PET)、シアヌル酸トリアリルエステル(TAC)、エポキシ等のシート状のものやフィルム状のものを挙げることができる。また、これらのプラスチック基材は、上記の基材のうち1種を単独で用いてもよく、1種または2種以上を積層した積層構造としてもよい。
 この塗膜を形成する塗工方法としては、例えば、バーコート法、スピンコート法、ディップコート法、グラビアコート法、スプレー法、ローラー法、はけ塗り法等が挙げられる。
[光学部材]
 本実施形態の光学部材は、上記の透明複合体を備えている。
 この光学部材としては、透明なプラスチック基材が用いられる光学部材であればよく、特に限定されないが、例えば、カメラ、レンズ付フィルム等のフィルム一体型カメラ、ビデオカメラ、車載用カメラ等の各種カメラレンズ、CD、CD-ROM、MO、CD-R、CD-Video、DVD等の光ピックアップレンズやマイクロレンズアレイ、複写機、プリンター等のOA機器等の各種機器に用いられる光学部材やプリズムシート、光ファイバー通信装置、LED用封止剤等が挙げられる。
 本実施形態の透明複合体を光学部材に実装する方法としては、特に限定されず、公知の方法で光学部材に実装させればよい。
 以上説明したように、本実施形態の無機酸化物透明分散液によれば、表面修飾剤により修飾され平均分散粒径が1nm以上かつ50nm以下の無機酸化物粒子と、樹脂を溶解するとともに前記樹脂を硬化してなる硬化樹脂には浸食し難い高極性溶媒と、塩基性物質とを含有したので、表面修飾剤により修飾された無機酸化物粒子であっても、高極性溶媒中に良好に分散させることができる。
 本実施形態の透明複合体形成用樹脂組成物によれば、表面修飾無機酸化物粒子と高極性溶媒と塩基性物質とを含有する無機酸化物透明分散液に樹脂を含有したので、表面修飾無機酸化物粒子と、樹脂及び当該樹脂を硬化してなる硬化樹脂には浸食し難い高極性溶媒と、塩基性物質とが均一に混合されたものとなり、よって、製造条件によらず透明な複合体を形成することができる。
 本実施形態の透明複合体によれば、上記の透明複合体形成用樹脂組成物を用いて形成されているので、表面修飾無機酸化物粒子を樹脂中に均一に分散させることで、表面修飾無機酸化物粒子の特性と透明性とを維持することができる。
 本実施形態の光学部材よれば、本実施形態の透明複合体を用いているので、表面修飾無機酸化物粒子の特性を、光学部材の透明性を保ちつつ、この光学部材に付与することができる。
 以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
[実施例1]
「ジルコニア粒子の作製」
 オキシ塩化ジルコニウム8水塩2615gを純水40Lに溶解させたジルコニウム塩水溶液に、28%アンモニア水344gを純水20Lに溶解させた希アンモニア水を攪拌しながら加え、ジルコニア前駆体スラリーを調整した。
 次いで、このスラリーに、硫酸ナトリウム300gを5Lの純水に溶解させた硫酸ナトリウム水溶液を攪拌しながら加えた。このときの硫酸ナトリウムの添加量は、ジルコニウム塩水溶液中のジルコニウムイオンのジルコニア換算値に対して30質量%であった。
 次いで、この混合物を、乾燥機を用いて、大気中、130℃にて24時間、乾燥させ、固形物を得た。次いで、この固形物を自動乳鉢により粉砕した後、電気炉を用いて、大気中、500℃にて1時間焼成し、焼成物を得た。
 次いで、この焼成物を純水中に投入し攪拌してスラリー状とした後、このスラリーの洗浄を遠心分離機を用いて行い、添加した硫酸ナトリウムを十分に除去し、固形物を得た。
その後、この固形物を乾燥機を用いて、大気中、130℃にて24時間、乾燥させ、ジルコニア粒子を作製した。
 このジルコニア粒子の平均一次粒子径を電界放射形電子顕微鏡 JEM-2100F(日本電子社製)を用いて測定したところ、4nmであった。
「ジルコニア粒子の表面修飾」
 上記のジルコニア粒子10gに水10gを加え、撹拌・混合して、ジルコニア透明水分散液を作製した。次いで、このジルコニア透明水分散液に、表面修飾剤として3-アクリロキシプロピルトリメトキシシラン KBM-5103(信越化学(株)社製)を5g加えて混合し、ジルコニア粒子を表面修飾した。次いで、この表面修飾ジルコニア粒子を固液分離により水から分離し、乾燥機を用いて乾燥した。
「ジルコニア透明分散液の作製」
 上記の表面修飾ジルコニア粒子3gに、イソプロピルアルコール7g、塩基性物質として濃度が28%のアンモニア水0.03gを加えて攪拌し、ジルコニア透明分散液を得た。
 次いで、このジルコニア透明分散液中のジルコニアの粒度分布を測定するために、このジルコニア透明分散液中のジルコニア粒子の含有量を1質量%に調整した分散液を作製し、この分散液中のジルコニアの粒度分布を、動的光散乱式粒子径分布測定装置(Malvern社製)を用いて測定した。ここでは、ジルコニアの屈折率を2.15、イソプロピルアルコールの屈折率を1.37とした。その結果、ジルコニア粒子の体積粒度分布の累積体積百分率が50体積%における体積分散粒径(D50)は6nmであった。
[実施例2]
 塩基性物質として、濃度が28%のアンモニア水0.03gの替わりに、0.1mol/Lの水酸化カリウム(KOH)イソプロピルアルコール溶液(約19.4質量%の水を含む:関東化学株式会社製)0.04gを用いた以外は、実施例1と同様にして、実施例2のジルコニア透明分散液を得た。
 このジルコニア透明分散液中のジルコニアの粒度分布を、実施例1と同様にして測定したところ、体積分散粒径(D50)は7nmであった。
[実施例3]
 高極性溶媒として、イソプロピルアルコールの替わりにプロピレングリコールモノメチルエーテル(PGM)を用いた以外は、実施例1と同様にして、実施例3のジルコニア透明分散液を得た。
 このジルコニア透明分散液中のジルコニアの粒度分布を、実施例1と同様にして測定したところ、体積分散粒径(D50)は6nmであった。
[実施例4]
「チタニア粒子の作製」
 三塩化チタン2445gを純水40Lに溶解させたチタン塩水溶液に、28%アンモニア水55gを純水20Lに溶解させた希アンモニア水を攪拌しながら加え、チタニア前駆体スラリーを調整した。
 次いで、このスラリーに、硝酸ナトリウム300gを5Lの純水に溶解させた硝酸ナトリウム水溶液を攪拌しながら加えた。このときの硝酸ナトリウムの添加量は、チタン塩水溶液中のチタンイオンのチタニア換算値に対して30質量%であった。
 次いで、この混合物を、乾燥機を用いて、大気中、130℃にて24時間、乾燥させ、固形物を得た。次いで、この固形物を自動乳鉢により粉砕した後、電気炉を用いて、大気中、500℃にて1時間焼成し、焼成物を得た。
 次いで、この焼成物を純水中に投入し攪拌してスラリー状とした後、このスラリーの洗浄を遠心分離機を用いて行い、添加した硝酸ナトリウムを十分に除去し、固形物を得た。
その後、この固形物を乾燥機を用いて、大気中、130℃にて24時間、乾燥させ、チタニア粒子を作製した。
 このチタニア粒子の平均一次粒子径を電界放射形電子顕微鏡 JEM-2100F(日本電子社製)を用いて測定したところ、6nmであった。
「チタニア粒子の表面修飾」
 上記のチタニア粒子の表面を、実施例1と同様にして、表面修飾剤として3-アクリロキシプロピルトリメトキシシラン KBM-5103(信越化学(株)社製)を用いて表面修飾した。次いで、この表面修飾チタニア粒子を固液分離により水から分離し、乾燥機を用いて乾燥した。
「チタニア透明分散液の作製」
 表面修飾ジルコニア粒子の替わりに上記の表面修飾チタニア粒子を用いた以外は、実施例1と同様にして、実施例4のチタニア透明分散液を得た。
 このチタニア透明分散液中のチタニアの粒度分布を、実施例1と同様にして測定したところ、体積分散粒径(D50)は8nmであった。
[比較例1]
 実施例1に準じて得られた表面修飾ジルコニア粒子3gに、イソプロピルアルコール7gを加えて攪拌し、塩基性物質を含有しない比較例1のジルコニア分散液を得た。
 このジルコニア分散液中のジルコニアの粒度分布を、実施例1と同様にして測定したところ、体積分散粒径(D50)は154nmであり、分散性が悪かった。
[比較例2]
 イソプロピルアルコールの替わりにメチルエチルケトン(MEK)を用いた以外は、実施例1と同様にして、比較例2のジルコニア分散液を得た。
 このジルコニア分散液中のジルコニアの粒度分布を、実施例1と同様にして測定したところ、体積分散粒径(D50)は6nmであった。
[比較例3]
 28%のアンモニア水0.03gの替わりに水0.04gを用いた以外は、実施例1と同様にして、比較例3のジルコニア分散液を得た。
 このジルコニア分散液中のジルコニアの粒度分布を、実施例1と同様にして測定したところ、体積分散粒径(D50)は82nmであり、分散性が悪かった。
[実施例5]
「透明複合体形成用樹脂組成物の作製」
 実施例1に準じて得られたジルコニア透明分散液5gと、アクリル樹脂 PET-30(日本化薬社製)5gと、光重合開始剤として1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン イルガキュア2959(チバ・スペシャルティ・ケミカルズ社製)0.01gとを混合し、実施例5の透明複合体形成用樹脂組成物を得た。
[実施例6]
 実施例1に準じて得られたジルコニア透明分散液の替わりに、実施例2に準じて得られたジルコニア透明分散液を用いた以外は、実施例5と同様にして、実施例6の透明複合体形成用樹脂組成物を得た。
[実施例7]
 実施例1に準じて得られたジルコニア透明分散液の替わりに、実施例3に準じて得られたジルコニア透明分散液を用いた以外は、実施例5と同様にして、実施例7の透明複合体形成用樹脂組成物を得た。
[実施例8]
 実施例1に準じて得られたジルコニア透明分散液の替わりに、実施例4に準じて得られたチタニア透明分散液を用いた以外は、実施例5と同様にして、実施例8の透明複合体形成用樹脂組成物を得た。
[比較例4]
 実施例1に準じて得られたジルコニア透明分散液の替わりに、比較例1に準じて得られたジルコニア分散液を用いた以外は、実施例5と同様にして、比較例4の複合体形成用樹脂組成物を得た。
[比較例5]
 実施例1に準じて得られたジルコニア透明分散液の替わりに、比較例2に準じて得られたジルコニア分散液を用いた以外は、実施例5と同様にして、比較例5の複合体形成用樹脂組成物を得た。
[比較例6]
 実施例1に準じて得られたジルコニア透明分散液の替わりに、比較例3に準じて得られたジルコニア分散液を用いた以外は、実施例5と同様にして、比較例6の複合体形成用樹脂組成物を得た。
[実施例9]
「透明複合体の作製」
 実施例5に準じて得られた透明複合体形成用樹脂組成物を、バーコート法によりポリカーボネート基板上に塗布し、塗膜を形成した。次いで、この塗膜付きポリカーボネート基板を、電気炉にて60℃にて5分間乾燥させた後、高圧水銀ランプにより紫外線を照射して塗膜中の樹脂を硬化させ、厚み30μmの透明複合体を得た。
 次いで、この透明複合体、すなわちポリカーボネート基板と塗膜とを併せた全体の光透過率を分光光度計 V-570(JASCO社製)を用いて測定した。
 この測定結果を図2に示す。
 図2によれば、波長400nmの光に対する透過率は91%であった。
[実施例10]
 実施例5に準じて得られた透明複合体形成用樹脂組成物の替わりに、実施例6に準じて得られた透明複合体形成用樹脂組成物を用いた以外は、実施例9と同様にして、実施例10の厚み30μmの透明複合体を得た。
 次いで、この透明複合体の光透過率を実施例9に準じて測定したところ、波長400nmの光に対する透過率は90%であった。
[実施例11]
 実施例5に準じて得られた透明複合体形成用樹脂組成物の替わりに、実施例7に準じて得られた透明複合体形成用樹脂組成物を用いた以外は、実施例9と同様にして、実施例11の厚み30μmの透明複合体を得た。
 次いで、この透明複合体の光透過率を実施例9に準じて測定したところ、波長400nmの光に対する透過率は91%であった。
[実施例12]
 実施例5に準じて得られた透明複合体形成用樹脂組成物の替わりに、実施例8に準じて得られた透明複合体形成用樹脂組成物を用いた以外は、実施例9と同様にして、実施例12の厚み30μmの透明複合体を得た。
 次いで、この透明複合体の光透過率を実施例9に準じて測定したところ、波長400nmの光に対する透過率は92%であった。
[比較例7]
 実施例5に準じて得られた透明複合体形成用樹脂組成物の替わりに、比較例4に準じて得られた複合体形成用樹脂組成物を用いた以外は、実施例9と同様にして、比較例7の厚み30μmの複合体を得た。
 次いで、この複合体の光透過率を実施例9に準じて測定したところ、波長400nmの光に対する透過率は12%と低いものであった。これは、高極性溶媒中におけるジルコニア粒子の分散性が悪く、したがって、ジルコニア粒子同士が凝集して複合体の透明性を低下させたことによるものと考えられる。
[比較例8]
 実施例5に準じて得られた透明複合体形成用樹脂組成物の替わりに、比較例5に準じて得られた複合体形成用樹脂組成物を用いた以外は、実施例9と同様にして、比較例8の厚み30μmの複合体を得た。
 次いで、この複合体の光透過率を実施例9に準じて測定したところ、波長400nmの光に対する透過率は75%と低いものであった。これは、ポリカーボネート基材をメチルエチルケトン(MEK)が侵食したために、ポリカーボネート基材が失透したことによるものと考えられる。
[比較例9]
 実施例5に準じて得られた透明複合体形成用樹脂組成物の替わりに、比較例6に準じて得られた複合体形成用樹脂組成物を用いた以外は、実施例9と同様にして、比較例9の厚み30μmの複合体を得た。
 次いで、この複合体の光透過率を実施例9に準じて測定したところ、波長400nmの光に対する透過率は75%と低いものであった。
 これは、28%のアンモニア水の替わりに水を用いてジルコニア分散液を作製したために、ジルコニア粒子の高極性溶媒中における分散性が悪く、したがって、得られた複合体におけるジルコニア粒子の分散性が低下していることによるものと考えられる。
 以上により、表面の極性を低下させた表面修飾ジルコニア粒子を高極性溶媒中に良好に分散させるためには、水ではなく塩基性物質が必要であることが確認された。
本発明は、無機酸化物が有機樹脂のフィラー材として好適に用いられ、樹脂の透明性を維持しつつ樹脂の光学的特性及び機械的特性の向上を可能とする無機酸化物透明分散液と、この無機酸化物透明分散液と樹脂とを含む透明複合体形成用樹脂組成物、及び、この透明複合体形成用樹脂組成物を用いて形成された透明複合体、並びに、この透明複合体を備えた光学部材に適用できる。

Claims (7)

  1.  表面修飾剤により修飾され平均分散粒径が1nm以上かつ50nm以下の無機酸化物粒子と、樹脂を溶解するとともに前記樹脂を硬化した硬化樹脂には浸食し難い高極性溶媒と、塩基性物質とを含有し、
     前記高極性溶媒は、アルコール類及びエーテル類のうちいずれか1種または2種であることを特徴とする無機酸化物透明分散液。
  2.  前記無機酸化物粒子は、金属酸化物粒子、非金属酸化物粒子のうちいずれか1種を主成分とすることを特徴とする請求項1記載の無機酸化物透明分散液。
  3.  前記無機酸化物粒子は、金属酸化物粒子であることを特徴とする請求項1記載の無機酸化物透明分散液。
  4.  前記高極性溶媒が、イソプロピルアルコール及びプロピレングリコールモノメチルエーテルのうちいずれか一方または双方であることを特徴とする請求項1記載の無機酸化物透明分散液。
  5.  請求項1から4のいずれか1項記載の無機酸化物透明分散液と樹脂とを含有することを特徴とする透明複合体形成用樹脂組成物。
  6.  請求項5記載の透明複合体形成用樹脂組成物を用いて形成されていることを特徴とする透明複合体。
  7.  請求項6記載の透明複合体を備えていることを特徴とする光学部材。
PCT/JP2012/071775 2011-08-31 2012-08-29 無機酸化物透明分散液と透明複合体形成用樹脂組成物及び透明複合体並びに光学部材 WO2013031799A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/240,982 US20140206801A1 (en) 2011-08-31 2012-08-29 Inorganic oxide transparent dispersion, resin composition used to form transparent composite, transparent composite, and optical member
JP2013531344A JP6028733B2 (ja) 2011-08-31 2012-08-29 無機酸化物透明分散液と透明複合体形成用樹脂組成物及び透明複合体並びに光学部材
EP20120828155 EP2752392A4 (en) 2011-08-31 2012-08-29 TRANSPARENT DISPERSION WITH AN INORGANIC OXIDE AND RESIN COMPOSITION FOR THE FORMATION OF A TRANSPARENT COMPOSITE MATERIAL AND TRANSPARENT COMPOSITE MATERIAL AND OPTICAL ELEMENT
CN201280041930.0A CN103764567A (zh) 2011-08-31 2012-08-29 无机氧化物透明分散液、透明复合体形成用树脂组合物及透明复合体以及光学构件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-188631 2011-08-31
JP2011188631 2011-08-31

Publications (1)

Publication Number Publication Date
WO2013031799A1 true WO2013031799A1 (ja) 2013-03-07

Family

ID=47756280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071775 WO2013031799A1 (ja) 2011-08-31 2012-08-29 無機酸化物透明分散液と透明複合体形成用樹脂組成物及び透明複合体並びに光学部材

Country Status (6)

Country Link
US (1) US20140206801A1 (ja)
EP (1) EP2752392A4 (ja)
JP (1) JP6028733B2 (ja)
CN (1) CN103764567A (ja)
TW (1) TWI532751B (ja)
WO (1) WO2013031799A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013082609A (ja) * 2011-09-30 2013-05-09 Jgc Catalysts & Chemicals Ltd 改質ジルコニア微粒子粉末、改質ジルコニア微粒子分散ゾルおよびその製造方法
JP2014196216A (ja) * 2013-03-29 2014-10-16 日揮触媒化成株式会社 改質金属酸化物微粒子粉末、改質金属酸化物微粒子分散体およびその製造方法
WO2015046487A1 (ja) * 2013-09-30 2015-04-02 住友大阪セメント株式会社 無機粒子分散液、無機粒子含有組成物、塗膜、塗膜付きプラスチック基材、表示装置
JP2016020431A (ja) * 2014-07-14 2016-02-04 住友大阪セメント株式会社 金属酸化物粒子分散液、金属酸化物粒子含有組成物、塗膜、表示装置
JP2017014479A (ja) * 2015-07-03 2017-01-19 住友大阪セメント株式会社 無機粒子含有組成物、塗膜、塗膜付きプラスチック基材、および表示装置
JP2018053098A (ja) * 2016-09-29 2018-04-05 住友大阪セメント株式会社 無機粒子含有組成物、塗膜、塗膜付きプラスチック基材、および表示装置
WO2021106747A1 (ja) * 2019-11-29 2021-06-03 石原産業株式会社 二酸化チタン微粒子の有機溶剤分散体及びその製造方法、並びにその用途

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108239424B (zh) * 2016-12-27 2020-01-31 中国科学院化学研究所 一种透明的硅烷改性的纳米蒙脱土分散液及其制备方法和应用
JP7167445B2 (ja) * 2018-01-25 2022-11-09 富士フイルムビジネスイノベーション株式会社 酸化チタン膜の製造方法
US20220066095A1 (en) * 2019-06-18 2022-03-03 Sumitomo Electric Industries, Ltd. Resin composition, secondary coating material of optical fiber, optical fiber, and method for producing optical fiber
KR102284512B1 (ko) * 2019-11-25 2021-08-02 주식회사 케이씨텍 수분량이 제어된 무기 산화물 분산액 및 이의 제조방법
WO2022038161A1 (en) 2020-08-21 2022-02-24 Basf Se Uv-curable coatings having high refractive index
CN114735749A (zh) * 2022-05-06 2022-07-12 山东国瓷功能材料股份有限公司 表面处理的氧化锆纳米粉体、氧化锆分散液及应用
CN114958068A (zh) * 2022-05-31 2022-08-30 山东国瓷功能材料股份有限公司 聚硅氧烷改性氧化锆粉体的制备方法、涂覆液及光学膜

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269365A (ja) * 1992-03-28 1993-10-19 Catalysts & Chem Ind Co Ltd 無機酸化物コロイド粒子
JPH10310406A (ja) * 1997-03-12 1998-11-24 Catalysts & Chem Ind Co Ltd 有機化合物修飾無機化合物ゾル
JPH11314918A (ja) * 1997-10-16 1999-11-16 Nissan Chem Ind Ltd 無水アンチモン酸亜鉛ゾル及びその製造方法
JP2001278624A (ja) * 2000-03-29 2001-10-10 Kawaken Fine Chem Co Ltd チタニアゾル組成物およびそれらを含有するコーティング液組成物
JP2004269644A (ja) 2003-03-07 2004-09-30 Jsr Corp 硬化性組成物、その硬化物及び積層体
JP2007217242A (ja) 2006-02-17 2007-08-30 Sumitomo Osaka Cement Co Ltd 無機酸化物透明分散液と透明複合体、発光素子封止用組成物及び発光素子並びに透明複合体の製造方法
WO2008114744A1 (ja) * 2007-03-16 2008-09-25 Asahi Glass Company, Limited 中空微粒子、その製造方法、塗料組成物および塗膜が形成された物品
JP2008273801A (ja) * 2007-05-07 2008-11-13 Sumitomo Osaka Cement Co Ltd 表面修飾ジルコニア粒子と表面修飾ジルコニア粒子分散液及び複合体並びに表面修飾ジルコニア粒子の製造方法
JP2010066740A (ja) * 2007-10-15 2010-03-25 Seiko Epson Corp 光学物品および光学物品の製造方法
JP2010195967A (ja) 2009-02-26 2010-09-09 Dic Corp 無機酸化物分散液、その製造方法及び該分散液を用いた複合体
JP2011136857A (ja) * 2009-12-28 2011-07-14 Jgc Catalysts & Chemicals Ltd 疎水性酸化ジルコニウム粒子、その製造方法および該疎水性酸化ジルコニウム粒子含有樹脂組成物ならびに樹脂硬化物膜付基材
WO2011090084A1 (ja) * 2010-01-19 2011-07-28 日産化学工業株式会社 シラン表面処理金属酸化物微粒子およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990023544A (ko) * 1997-08-19 1999-03-25 마쯔모또 에이찌 무기 입자의 수성 분산체와 그의 제조 방법
JP2007171555A (ja) * 2005-12-22 2007-07-05 Sumitomo Osaka Cement Co Ltd ハードコート膜と光学機能膜及び光学レンズ並びに光学部品
JP5167582B2 (ja) * 2005-10-28 2013-03-21 住友大阪セメント株式会社 ジルコニア透明分散液及び透明複合体並びに透明複合体の製造方法
WO2007049573A1 (ja) * 2005-10-28 2007-05-03 Sumitomo Osaka Cement Co., Ltd. 無機酸化物透明分散液と無機酸化物粒子含有樹脂組成物、発光素子封止用組成物及び発光素子、ハードコート膜と光学機能膜及び光学部品、並びに無機酸化物粒子含有樹脂組成物の製造方法
JP5121169B2 (ja) * 2006-06-14 2013-01-16 株式会社日本触媒 無機含有粒子の有機溶媒分散体及びその分散体に用いられる無機含有粒子
JP5332101B2 (ja) * 2006-12-01 2013-11-06 住友大阪セメント株式会社 無機酸化物透明分散液と透明複合体、発光素子封止用組成物および発光素子並びに透明複合体の製造方法
KR20100080788A (ko) * 2007-09-07 2010-07-12 쓰리엠 이노베이티브 프로퍼티즈 컴파니 표면 개질된 고굴절률 나노입자를 포함하는 자기-조립 반사방지 코팅
CN101579672A (zh) * 2008-05-16 2009-11-18 3M创新有限公司 用于提高亲水性/透射率的二氧化硅涂层
CN102061111B (zh) * 2010-10-27 2013-12-25 中山市旌旗纳米材料科技有限公司 自清洁陶瓷化纳米玻璃减反射涂料制造方法及其减反射膜制造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269365A (ja) * 1992-03-28 1993-10-19 Catalysts & Chem Ind Co Ltd 無機酸化物コロイド粒子
JPH10310406A (ja) * 1997-03-12 1998-11-24 Catalysts & Chem Ind Co Ltd 有機化合物修飾無機化合物ゾル
JPH11314918A (ja) * 1997-10-16 1999-11-16 Nissan Chem Ind Ltd 無水アンチモン酸亜鉛ゾル及びその製造方法
JP2001278624A (ja) * 2000-03-29 2001-10-10 Kawaken Fine Chem Co Ltd チタニアゾル組成物およびそれらを含有するコーティング液組成物
JP2004269644A (ja) 2003-03-07 2004-09-30 Jsr Corp 硬化性組成物、その硬化物及び積層体
JP2007217242A (ja) 2006-02-17 2007-08-30 Sumitomo Osaka Cement Co Ltd 無機酸化物透明分散液と透明複合体、発光素子封止用組成物及び発光素子並びに透明複合体の製造方法
WO2008114744A1 (ja) * 2007-03-16 2008-09-25 Asahi Glass Company, Limited 中空微粒子、その製造方法、塗料組成物および塗膜が形成された物品
JP2008273801A (ja) * 2007-05-07 2008-11-13 Sumitomo Osaka Cement Co Ltd 表面修飾ジルコニア粒子と表面修飾ジルコニア粒子分散液及び複合体並びに表面修飾ジルコニア粒子の製造方法
JP2010066740A (ja) * 2007-10-15 2010-03-25 Seiko Epson Corp 光学物品および光学物品の製造方法
JP2010195967A (ja) 2009-02-26 2010-09-09 Dic Corp 無機酸化物分散液、その製造方法及び該分散液を用いた複合体
JP2011136857A (ja) * 2009-12-28 2011-07-14 Jgc Catalysts & Chemicals Ltd 疎水性酸化ジルコニウム粒子、その製造方法および該疎水性酸化ジルコニウム粒子含有樹脂組成物ならびに樹脂硬化物膜付基材
WO2011090084A1 (ja) * 2010-01-19 2011-07-28 日産化学工業株式会社 シラン表面処理金属酸化物微粒子およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2752392A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013082609A (ja) * 2011-09-30 2013-05-09 Jgc Catalysts & Chemicals Ltd 改質ジルコニア微粒子粉末、改質ジルコニア微粒子分散ゾルおよびその製造方法
JP2014196216A (ja) * 2013-03-29 2014-10-16 日揮触媒化成株式会社 改質金属酸化物微粒子粉末、改質金属酸化物微粒子分散体およびその製造方法
WO2015046487A1 (ja) * 2013-09-30 2015-04-02 住友大阪セメント株式会社 無機粒子分散液、無機粒子含有組成物、塗膜、塗膜付きプラスチック基材、表示装置
JP2015091985A (ja) * 2013-09-30 2015-05-14 住友大阪セメント株式会社 無機粒子分散液、無機粒子含有組成物、塗膜、塗膜付きプラスチック基材、表示装置
JP5846322B2 (ja) * 2013-09-30 2016-01-20 住友大阪セメント株式会社 無機粒子分散液、無機粒子含有組成物、塗膜、塗膜付きプラスチック基材、表示装置
JP2016020431A (ja) * 2014-07-14 2016-02-04 住友大阪セメント株式会社 金属酸化物粒子分散液、金属酸化物粒子含有組成物、塗膜、表示装置
JP2017014479A (ja) * 2015-07-03 2017-01-19 住友大阪セメント株式会社 無機粒子含有組成物、塗膜、塗膜付きプラスチック基材、および表示装置
JP2018053098A (ja) * 2016-09-29 2018-04-05 住友大阪セメント株式会社 無機粒子含有組成物、塗膜、塗膜付きプラスチック基材、および表示装置
WO2021106747A1 (ja) * 2019-11-29 2021-06-03 石原産業株式会社 二酸化チタン微粒子の有機溶剤分散体及びその製造方法、並びにその用途
JP6963202B1 (ja) * 2019-11-29 2021-11-05 石原産業株式会社 二酸化チタン微粒子の有機溶剤分散体及びその製造方法、並びにその用途

Also Published As

Publication number Publication date
EP2752392A1 (en) 2014-07-09
EP2752392A4 (en) 2015-04-29
US20140206801A1 (en) 2014-07-24
TW201315746A (zh) 2013-04-16
JP6028733B2 (ja) 2016-11-16
CN103764567A (zh) 2014-04-30
TWI532751B (zh) 2016-05-11
JPWO2013031799A1 (ja) 2015-03-23

Similar Documents

Publication Publication Date Title
JP6028733B2 (ja) 無機酸化物透明分散液と透明複合体形成用樹脂組成物及び透明複合体並びに光学部材
TWI428282B (zh) 金屬氧化物複合溶膠,塗佈組成物及光學構件
TWI433816B (zh) 改性金屬氧化物複合溶膠,塗覆組成物及光學構件
TWI680152B (zh) 表面改質金屬氧化物粒子分散液及其製造方法、表面改質金屬氧化物粒子-矽酮樹脂複合組成物、表面改質金屬氧化物粒子-矽酮樹脂複合物、光學構件以及發光裝置
US8883312B2 (en) Manufacturing method of surface treated zinc oxide particles, surface treated zinc oxide particles, dispersion liquid and dispersion solid thereof, and base material coated with zinc oxide particles
KR101290081B1 (ko) 산화지르코늄-산화주석 복합체 졸, 코팅 조성물 및광학부재
TWI609935B (zh) 無機粒子分散液、含無機粒子之組成物、塗膜、附塗膜之塑膠基材、顯示裝置
WO2006001487A1 (ja) スズ修飾ルチル型酸化チタン微粒子
JP2007270097A (ja) 高屈折率樹脂組成物
JP2008266043A (ja) 透明酸化チタンゾルおよびその製造法
JP2016088960A (ja) 熱線遮蔽粒子、熱線遮蔽粒子分散液、熱線遮蔽粒子分散体、熱線遮蔽粒子分散体合わせ透明基材、赤外線吸収透明基材、熱線遮蔽粒子の製造方法
JP2007270099A (ja) 半導体発光素子封止用組成物
JP5713668B2 (ja) ハードコート層膜形成用塗料組成物
JP5082814B2 (ja) 無機酸化物含有透明複合体及びその製造方法
EP3141533A1 (en) Glass article
JPWO2005088352A1 (ja) プラスチックレンズの製造方法
JP6253484B2 (ja) 塗料組成物、ハードコート層およびハードコート層付き光学基材ならびにこれらの製造方法
JP2011213506A (ja) 無機酸化物分散液とその製造方法及び透明混合液並びに透明複合体、光学部材
JP4510489B2 (ja) コーティング組成物の製造方法
JP4925935B2 (ja) 複合ルチル微粒子と複合ルチル微粒子分散液及び高屈折率材料、高屈折率部材、並びに複合ルチル微粒子の製造方法
JP2010006647A (ja) 高屈折率透明粒子及びそれを用いた透明複合体
JP2015017012A (ja) 油性分散液並びに薄膜及びその製造方法
TW202344480A (zh) 改性金屬氧化物膠體粒子,及其製造方法
TW201927941A (zh) 硬質塗層膜用組成物、硬質塗層膜與基材
TW201915118A (zh) 硬質塗層膜用組成物與硬質塗層膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828155

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531344

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012828155

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14240982

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE