WO2011049180A1 - 変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物 - Google Patents

変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物 Download PDF

Info

Publication number
WO2011049180A1
WO2011049180A1 PCT/JP2010/068621 JP2010068621W WO2011049180A1 WO 2011049180 A1 WO2011049180 A1 WO 2011049180A1 JP 2010068621 W JP2010068621 W JP 2010068621W WO 2011049180 A1 WO2011049180 A1 WO 2011049180A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated diene
group
modified conjugated
diene rubber
compound
Prior art date
Application number
PCT/JP2010/068621
Other languages
English (en)
French (fr)
Inventor
了司 田中
柴田 昌宏
孝博 中村
研二 長谷川
但木 稔弘
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2011537309A priority Critical patent/JP5692084B2/ja
Priority to BR112012009465-3A priority patent/BR112012009465B1/pt
Priority to US13/503,205 priority patent/US8809440B2/en
Priority to CN201080047500.0A priority patent/CN102574932B/zh
Priority to RU2012120707/05A priority patent/RU2531824C2/ru
Priority to KR1020127010223A priority patent/KR101745032B1/ko
Priority to EP10825029.1A priority patent/EP2492286B1/en
Publication of WO2011049180A1 publication Critical patent/WO2011049180A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof

Definitions

  • the present invention relates to a method for producing a modified conjugated diene rubber, a modified conjugated diene rubber, and a rubber composition. More specifically, a modified conjugated diene rubber that is capable of producing a modified conjugated diene rubber excellent in shape retention, tensile strength, abrasion resistance, wet skid resistance, and low hysteresis loss characteristics. Rubber production method, modified conjugated diene rubber obtained by such production method, rubber composition containing the modified conjugated diene rubber, and crosslinking obtained by crosslinking (for example, vulcanizing) the rubber composition The present invention relates to a rubber composition (vulcanized rubber composition).
  • conjugated diene rubber for example, styrene-butadiene copolymer
  • emulsion polymerization method As a rubber for automobile tires, a conjugated diene rubber (for example, styrene-butadiene copolymer) obtained by an emulsion polymerization method is known.
  • various conjugated diene rubbers capable of realizing excellent fuel efficiency have been proposed in the hope of improving the fuel efficiency of automobiles.
  • a conjugated diolefin or a (co) polymer rubber of a conjugated diolefin and an aromatic vinyl compound (2) a primary amino group bonded to a (co) polymer chain, an alkoxysilyl group, and (3) a bifunctional or higher functional monomer is copolymerized in the (co) polymer chain, and / or a bifunctional or higher functional coupling agent is used at least in the (co) polymer chain.
  • Patent Document 1 A conjugated diolefin (co) polymer rubber characterized in that it is partially coupled has been proposed (Patent Document 1).
  • a modified diene polymer rubber obtained from Step 2 in which a modified polymer rubber is obtained by reacting the active polymer with a compound represented by a specific formula has been proposed (Patent Document 2).
  • a polymer having an active site of an organometallic in the molecule A primary modification reaction in which a hydrocarbyloxysilane compound is allowed to react with the active site, and then a secondary modification reaction in which a hydrocarbyloxysilane compound is further reacted via a condensation reaction between hydrocarbyloxysilyl groups.
  • Patent Document 3 A primary modification reaction in which a hydrocarbyloxysilane compound is allowed to react with the active site, and then a secondary modification reaction in which a hydrocarbyloxysilane compound is further reacted via a condensation reaction between hydrocarbyloxysilyl groups.
  • an object of the present invention is to provide a method for producing a modified conjugated diene rubber that can be used as a raw material for a crosslinked rubber that can be used for applications such as automobile tires and can improve fuel efficiency of automobiles and the like. To do.
  • the present inventor has found that, in addition to the conjugated diene polymer having an alkali metal active terminal, by using two specific alkoxysilane compounds and an onium generator, As a result, it has been found that a modified conjugated diene rubber can be produced which is imparted with physical properties such as excellent hysteresis loss characteristics, and as a result can provide excellent fuel efficiency when used in automobile tires, etc. completed. That is, the present invention provides the following [1] to [10].
  • a conjugated diene compound or a conjugated diene polymer having an alkali metal or alkaline earth metal active terminal obtained by polymerizing a conjugated diene compound and an aromatic vinyl compound, and two or more alkoxy
  • a group that can be an onium of the first alkoxysilane compound is a nitrogen-containing group in which two hydrogen atoms of a primary amine are substituted by two protecting groups, and one hydrogen atom of a secondary amine is 1
  • the onium generator is a halogenated silicon compound, a halogenated tin compound, an aluminum halide compound, a titanium halide compound, a halogenated zirconium compound, a halogenated germanium compound, a gallium halide compound, a zinc halide compound, or sulfuric acid.
  • the group that can be an onium of the second alkoxysilane compound is a primary amino group, a secondary amino group, a tertiary amino group, an imino group, a pyridyl group, a primary phosphino group, a secondary phosphino group, 3
  • the modified conjugated diene rubber is the modified conjugated diene polymer, the second alkoxysilane compound, and a hydrolysis condensate of the modified conjugated diene polymer and the second alkoxysilane compound.
  • [7] A modified conjugated diene rubber obtained by the method for producing a modified conjugated diene rubber according to any one of [1] to [6].
  • a rubber composition comprising the modified conjugated diene rubber according to [7], silica and / or carbon black, and a crosslinking agent.
  • a crosslinked rubber composition obtained by crosslinking the rubber composition according to [8].
  • a tire comprising the crosslinked rubber composition according to [9].
  • a modified conjugated diene rubber capable of producing a crosslinked rubber composition excellent in low hysteresis loss characteristics can be obtained.
  • a modified conjugated diene rubber that can obtain a modified conjugated diene rubber excellent in shape retention and can produce a crosslinked rubber excellent in tensile strength, wear resistance, and wet skid resistance.
  • the crosslinked rubber composition produced using the modified conjugated diene rubber can be used for applications such as automobile tires, and can improve fuel efficiency of automobiles.
  • the method for producing the modified conjugated diene rubber of the present invention comprises: (a) a conjugated diene having an active end of an alkali metal or alkaline earth metal obtained by polymerizing a conjugated diene compound or a conjugated diene compound and an aromatic vinyl compound. The above polymer is reacted with an alkoxysilyl group having two or more alkoxy groups and a first alkoxysilane compound having at least one group capable of becoming an onium by an onium generator in the molecule to form the onium.
  • a step of obtaining a modified conjugated diene polymer having a group to be obtained and an alkoxysilyl group (b) the modified conjugated diene polymer obtained in step (a), an onium generator, an alkoxysilyl group and an onium generator.
  • a second alkoxysilane compound having at least one group capable of becoming an onium in the molecule And that step, is intended to include.
  • Step (a) includes a conjugated diene compound, or a conjugated diene polymer having an alkali metal or alkaline earth metal active terminal obtained by polymerizing a conjugated diene compound and an aromatic vinyl compound, and two or more alkoxy compounds.
  • a modified conjugate having an alkoxysilyl group and an alkoxysilyl group by reacting an alkoxysilyl group having a group and a first alkoxysilane compound having at least one group capable of becoming an onium in the molecule by an onium generator. This is a step of obtaining a diene polymer.
  • conjugated diene polymer having an alkali metal or alkaline earth metal active terminal examples include an anionic polymer obtained by polymerizing a conjugated diene compound alone or copolymerizing a conjugated diene compound and an aromatic vinyl compound. be able to.
  • the method for producing the conjugated diene polymer is not particularly limited except that anionic polymerization is performed with an alkali metal or an alkaline earth metal (hereinafter sometimes referred to as “polymerization initiator”) as described above.
  • polymerization initiator any of solution polymerization method, gas phase polymerization method, and bulk polymerization method can be used, but it is particularly preferable to use the solution polymerization method.
  • any of a batch type and a continuous type may be sufficient as the superposition
  • the active site metal present in the molecule of the conjugated diene polymer is an alkali metal or an alkaline earth metal, preferably lithium, sodium, potassium, magnesium, or barium, and particularly lithium. preferable.
  • alkali metals or alkaline earth metals all have the same action from the viewpoint that it is possible to obtain a conjugated diene polymer having a metal active terminal capable of reacting with the first alkoxysilane compound. Even those that are not described in the examples described below can be used in the present invention. Furthermore, it is also effective to mix a functional group-containing monomer and activate the functional group in the polymer with an alkali metal initiator. For example, it is also effective to lithiate the functional group portion of a copolymer containing an isobutylene unit, a paramethylstyrene unit, and a parahalogenated methylstyrene unit to form an active site.
  • conjugated diene monomer examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, 1,3-heptadiene, 2, 3-dimethylbutadiene, 2-phenyl-1,3-butadiene, 3-methyl-1,3-pentadiene, 2-chloro-1,3-butadiene and the like can be preferably used. These may be used alone or in combination of two or more. Among these compounds, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene and the like can be used particularly preferably.
  • conjugated diene monomers have the same function from the viewpoint that it is possible to obtain a conjugated diene polymer having a metal active terminal capable of reacting with the first alkoxysilane compound. Even those which are not described in the examples described later can be used in the present invention.
  • aromatic vinyl compound examples include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 4-tert-butyl.
  • Styrene 5-t-butyl-2-methylstyrene, vinylethylbenzene, divinylbenzene, trivinylbenzene, divinylnaphthalene, tert-butoxystyrene, vinylbenzyldimethylamine, (4-vinylbenzyl) dimethylaminoethyl ether, N, N -Dimethylaminoethylstyrene, N, N-dimethylaminomethylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethylstyrene, 2-t-butylstyrene, 3-t-butylstyrene, 4-t-butylstyrene Vinyl xylene, Sulfonyl naphthalene, vinyl toluene, vinyl pyridine, diphenylethylene, tertiary amino group-containing diphenylethylene, and the
  • the monomer concentration in the solvent is preferably 5 to 50% by mass, more preferably 10 to 30% by mass from the viewpoint of maintaining a balance between productivity and ease of polymerization control. %.
  • the content of the aromatic vinyl compound in the charged monomer mixture is determined by the low hysteresis loss characteristics and wet skid resistance of the resulting crosslinked rubber composition. From the viewpoint of maintaining balance, the content is preferably 3 to 55% by mass, more preferably 5 to 50% by mass.
  • alkali metal and alkaline earth metal initiators include alkyl lithium, alkylene dilithium, lithium alkylene imide, lithium dialkyl amide, phenyl lithium, stilbene lithium, lithium naphthalene, sodium naphthalene, potassium naphthalene, n-butyl.
  • organic lithium compound those having a hydrocarbon group having 1 to 20 carbon atoms are preferable.
  • lithium amide compound for example, lithium hexamethylene imide, lithium pyrrolidide, lithium piperide, lithium heptamethylene imide, lithium dodecamethylene imide, lithium morpholide, lithium dimethyl amide, lithium diethyl amide, lithium dibutyl amide, lithium Dipropylamide, lithium diisopropylamide, lithium diheptylamide, lithium dihexylamide, lithium dioctylamide, lithium di-2-ethylhexylamide, lithium didecylamide, lithium-N-methylpiperazide, lithium ethylpropylamide, lithium ethylbutyramide, lithium Ethylbenzylamide, lithium methylphenethylamide, 3- [N, N-bis (trimethylsilyl)]-1-pro Tritium, 3- [N, N-bis (trimethylsilyl)]-2-methyl-1-propyllithium, 3- [N, N-bis (trimethylsilyl)]-2-methyl
  • cyclic lithium amides such as lithium hexamethylene imide, lithium pyrrolidide, lithium piperidide, lithium heptamethylene imide, and lithium dodecamethylene imide are included in terms of the interaction effect on carbon black and silica and the ability to initiate polymerization.
  • Particularly preferred are lithium hexamethylene imide, lithium pyrrolidide, and lithium piperidide.
  • lithium amide compounds are generally prepared in advance from a secondary amine and a lithium compound for polymerization, but can also be prepared in a polymerization system (in-situ).
  • the amount of the polymerization initiator used is preferably selected in the range of 0.2 to 20 mmol per 100 g of monomer.
  • a specific method for producing a conjugated diene polymer by anionic polymerization using the lithium compound as a polymerization initiator is, for example, an organic solvent inert to the reaction, such as aliphatic, alicyclic or aromatic.
  • An organic solvent inert to the reaction such as aliphatic, alicyclic or aromatic.
  • a method in which a diene monomer or a diene monomer and an aromatic vinyl compound are anionically polymerized in a hydrocarbon solvent such as a hydrocarbon compound in the presence of a randomizer used as desired, with the lithium compound as a polymerization initiator. can be mentioned. By such a method, the target conjugated diene polymer can be obtained.
  • the hydrocarbon solvent preferably has 3 to 8 carbon atoms.
  • the randomizer used as desired is a control of the microstructure of the conjugated diene polymer, for example, a vinyl bond (1,2 bond) in the butadiene portion in the butadiene-styrene copolymer, a vinyl bond (1 in the isoprene polymer). , 2 bonds and 3,4 bonds), or control of the composition distribution of monomer units in conjugated diene polymers, such as randomization of butadiene units and styrene units in butadiene-styrene copolymers. It is a compound.
  • the randomizer is not particularly limited, and an arbitrary one can be appropriately selected from known compounds generally used as a conventional randomizer.
  • a potassium compound may be added together with the polymerization initiator.
  • potassium compounds added together with the polymerization initiator include potassium isopropoxide, potassium tert-butoxide, potassium tert-amyloxide, potassium n-heptaoxide, potassium benzyloxide, and potassium alkoxide represented by potassium phenoxide.
  • Potassium phenoxide potassium salts such as isovaleric acid, caprylic acid, lauric acid, palmitic acid, stearic acid, oleic acid, linolenic acid, benzoic acid, phthalic acid, 2-ethylhexanoic acid; dodecylbenzenesulfonic acid, tetradecylbenzene Potassium salts of organic sulfonic acids such as sulfonic acid, hexadecylbenzenesulfonic acid, octadecylbenzenesulfonic acid; diethyl phosphite, diisopropyl phosphite, diphenyl phosphite, dibutyl phosphite, Such as dilauryl, potassium salts of organic phosphorous acid partial esters are used.
  • potassium compounds are preferably added in an amount of 0.005 to 0.5 mol per gram atomic equivalent of alkali metal or alkaline earth metal as a polymerization initiator. If it is less than 0.005 mol, the addition effect of the potassium compound (reactivity improvement of the polymerization initiator, randomization of the aromatic vinyl compound or single chain / long chain addition) may not appear, while 0.5 mol When exceeding, polymerization activity will fall, productivity will fall significantly, and the modification
  • the temperature in this polymerization reaction is preferably ⁇ 20 to 150 ° C., more preferably 0 to 120 ° C.
  • the polymerization reaction can be carried out under generated pressure, but it is usually preferred to operate at a pressure sufficient to keep the monomer in a substantially liquid phase. That is, the pressure depends on the particular material being polymerized, the polymerization medium used and the polymerization temperature, but higher pressures can be used if desired compared to the generated pressure, and such pressure is inert with respect to the polymerization reaction. It is obtained by an appropriate method such as pressurizing the reactor with a simple gas.
  • the glass transition temperature (Tg) obtained by differential thermal analysis of the obtained polymer or copolymer is preferably ⁇ 90 ° C. to 0 ° C. It is difficult to obtain a polymer having a glass transition temperature of less than ⁇ 90 ° C., and when it exceeds 0 ° C., the viscosity becomes too high in the room temperature region, which may make handling difficult.
  • alkoxysilyl group in the first alkoxysilane compound those having two or more alkoxy groups are used from the viewpoint of reactivity with a conjugated diene polymer having an alkali metal or alkaline earth metal active terminal.
  • Preferred examples of the alkoxy group include an alkoxy group having an alkyl group having 1 to 20 carbon atoms or an aryl group. When two or more alkoxy groups are present, they may be the same as or different from each other.
  • the group capable of becoming onium in the first alkoxysilane compound is a protecting group protected from the alkali metal or alkaline earth metal active terminal of the conjugated diene polymer, and by the action of the onium generating agent after deprotection.
  • One hydrogen atom of a phosphorus-containing group, tertiary phosphino group, and thiol in which one hydrogen atom is replaced by one protecting group A sulfur-containing group or the like to be substituted by protecting groups.
  • This 1st alkoxysilane compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a nitrogen-containing group in which two hydrogen atoms of a primary amine are substituted by two protecting groups a nitrogen-containing group in which one hydrogen atom of a secondary amine is substituted by one protecting group, or a tertiary amino group
  • the compound having an alkoxysilyl group include N, N-bis (trimethylsilyl) aminopropylmethyldimethoxysilane, N, N-bis (trimethylsilyl) aminopropyltrimethoxysilane, and N, N-bis (trimethylsilyl) amino.
  • Propyltriethoxysilane N, N-bis (trimethylsilyl) aminopropylmethyldiethoxysilane, N, N-bis (trimethylsilyl) aminoethyltrimethoxysilane, N, N-bis (trimethylsilyl) aminoethyltriethoxysilane, N, N-bis (trimethylsilyl) aminoethyl Tildimethoxysilane, N, N-bis (trimethylsilyl) aminoethylmethyldiethoxysilane, N, N-bis (triethylsilyl) aminopropylmethyldimethoxysilane, N, N-bis (triethylsilyl) aminopropyltrimethoxysilane, N , N-bis (triethylsilyl) aminopropyltrimethoxysilane, N , N-bis (triethylsilyl) aminopropyltriethoxysilane, N, N-bis (tri
  • Examples of the compound having an imino group or pyridyl group and an alkoxysilyl group include N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine, N- (1,3-methyl Ethylidene) -3- (triethoxysilyl) -1-propanamine, N-ethylidene-3- (triethoxysilyl) -1-propanamine, N- (1-methylpropylidene) -3- (triethoxysilyl) -1-propanamine, N- (4-N, N-dimethylaminobenzylidene) -3- (triethoxysilyl) -1-propanamine, N- (cyclohexylidene) -3- (triethoxysilyl) -1 -Propanamine and trimethoxysilyl compounds corresponding to these triethoxysilyl compounds, methyldiethoxysilyl compounds,
  • an alkali metal or alkaline earth metal active terminal site and two or more alkoxy groups present By reacting a conjugated diene polymer having an alkali metal or alkaline earth metal active terminal and the first alkoxysilane compound, an alkali metal or alkaline earth metal active terminal site and two or more alkoxy groups present.
  • a modified conjugated diene polymer having a group capable of becoming onium and the remaining alkoxysilyl group can be obtained by bonding one of the sites.
  • the first alkoxysilane compound described above is capable of reacting with a conjugated diene polymer having a metal active end made of an alkali metal or an alkaline earth metal, and serves as a reinforcing agent when a rubber composition is formed.
  • Such a first alkoxysilane compound is introduced into an alkali metal or alkaline earth metal active terminal of a conjugated diene polymer, for example, a solution reaction (even in a solution containing unreacted monomers used during polymerization). Good).
  • a solution reaction even in a solution containing unreacted monomers used during polymerization.
  • Good There is no restriction
  • the amount of the first alkoxysilane compound used in the modification reaction is preferably 0.1 molar equivalent or more, more preferably 0.3 mol, based on the active site of the conjugated diene polymer obtained by anionic polymerization. More than molar equivalent. If it is less than 0.1 molar equivalent, the progress of the modification reaction is not sufficient, the dispersibility of the reinforcing agent is not sufficiently improved, and when it is a crosslinked rubber composition, tensile strength, abrasion resistance, wet skid resistance, and May have poor low hysteresis loss characteristics.
  • the method for adding the first alkoxysilane compound which is a modifier, is not particularly limited, and examples thereof include a method of adding all at once, a method of adding in divided portions, a method of adding continuously, and the like. A method of adding all at once is preferable.
  • the first alkoxysilane compound includes a conjugated diene monomer exemplified in paragraph 0011 of the present specification, an aromatic vinyl compound exemplified in paragraph 0012, a hydrocarbon solvent exemplified in paragraph 0019, a randomizer exemplified in paragraph 0020, You may add with the solution which uses etc. as a solvent.
  • the temperature of the modification reaction the polymerization temperature of the conjugated diene polymer can be used as it is.
  • a preferred range is 0 to 120 ° C. More preferably, it is 20 to 100 ° C. If the temperature is low, the viscosity of the polymer tends to increase, and if the temperature is high, the polymerization active terminal tends to be deactivated. Therefore, a temperature outside the above numerical range is not preferable.
  • the reaction time in the primary modification reaction is preferably 1 minute to 5 hours, more preferably 2 minutes to 1 hour.
  • a coupling agent can be added in combination with the first alkoxysilane compound.
  • Specific examples of the coupling agent are as follows. This coupling agent is added at the stage of modifying the conjugated diene polymer with the first alkoxysilane compound.
  • a coupling agent used in combination with the first alkoxysilane compound and reacting with the polymerization active terminal (a) an isocyanate compound and / or an isothiocyanate compound, (b) an amide compound and / or an imide compound, (C) pyridyl-substituted ketone compound and / or pyridyl-substituted vinyl compound, (d) silicon compound, (e) ester compound, (f) ketone compound, (g) tin compound, (h) epoxy compound, (i) phosphoric acid Examples thereof include at least one compound selected from the group consisting of ester compounds, (j) acid anhydride group-containing compounds, (k) aryl vinyl group-containing compounds, and (l) halogenated carbon group-containing compounds.
  • the isocyanate compound or isothiocyanate compound as component (a) includes 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane diisocyanate, polymeric type diphenylmethane.
  • Preferred examples include diisocyanate (C-MDI), isophorone diisocyanate, hexamethylene diisocyanate, 1,3,5-benzenetriisocyanate, phenyl-1,4-diisothiocyanate, and the like.
  • amide compounds such as tetramethyloxamide
  • imide compounds such as succinimide, N-methylsuccinimide, maleimide, N-methylmaleimide, phthalimide, and N-methylphthalimide.
  • Preferred examples of the pyridyl-substituted ketone compound or pyridyl-substituted vinyl compound as component (c) include dibenzoylpyridine, diacetylpyridine, divinylpyridine and the like.
  • Examples of the silicon compound as component (d) include dibutyldichlorosilicon, methyltrichlorosilicon, methyldichlorosilicon, tetrachlorosilicon, triethoxymethylsilane, triphenoxymethylsilane, trimethoxysilane, methyltriethoxysilane, 4,5- Preferred examples include epoxy heptylmethyldimethoxysilane, bis (triethoxysilylpropyl) tetrasulfide, and the like.
  • E As an ester compound which is a component, diethyl adipate, diethyl malonate, diethyl phthalate, diethyl glutarate, diethyl maleate, etc.
  • ketone compound as component (f) examples include N, N, N ′, N′-tetramethyl-4,4′-diaminobenzophenone, N, N, N ′, N′-tetraethyl (4,4 '-Diamino) -benzophenone, N, N-dimethyl-1-aminobenzoquinone, N, N, N', N'-tetramethyl-1,3-diaminobenzoquinone, N, N-dimethyl-1-aminoanthraquinone, N , N, N ′, N′-tetramethyl-1,4-diaminoanthraquinone and the like can be mentioned as preferred examples.
  • the component tin compounds include tetrachlorotin, tetrabromotin, trichlorobutyltin, trichloromethyltin, trichlorooctyltin, dibromodimethyltin, dichlorodimethyltin, dichlorodibutyltin, dichlorodioctyltin, 1,2- Bis (trichlorostannyl) ethane, 1,2-bis (methyldichlorostannyl) ethane, 1,4-bis (trichlorostannyl) butane, 1,4-bis (methyldichlorostannyl) butane, ethyltin tristearate
  • Preferred examples include rate, butyltin trisoctanoate, butyltin tristearate, butyltin trislaurate, dibutyltin bisoctanoate, dibutyltin bisstearate, dibutyltin bislaurate and the
  • Examples of the epoxy compound (h) include polyglycidyl ethers of polyhydric alcohols such as ethylene glycol diglycidyl ether and glycerin triglycidyl ether, and polycyclic aromatic compounds having two or more phenyl groups such as diglycidylated bisphenol A.
  • Polyepoxy compounds such as glycidyl ether, 1,4-diglycidylbenzene, 1,3,5-triglycidylbenzene, polyepoxidized liquid polybutadiene, 4,4′-diglycidyl-diphenylmethylamine, 4,4′-diglycidyl- Epoxy group-containing tertiary amine such as dibenzylmethylamine, diglycidyl aniline, diglycidyl orthotoluidine, tetraglycidyl metaxylenediamine, tetraglycidylaminodiphenylmethane, tetraglycidyl-p-pheny
  • Glycidylamino compounds such as diamine, diglycidylaminomethylcyclohexane, tetraglycidyl-1,3-bisaminomethylcyclohexane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane,
  • Examples of the phosphoric acid ester compound as component (i) include polyhalogenated phosphorus compounds such as trichlorophosphine and tribromophosphine, and phosphorous acid such as trisnonylphenyl phosphite, trimethyl phosphite, and triethyl phosphite.
  • Preferable examples include ester compounds, trimethyl phosphate, triethyl phosphate and the like.
  • Preferable examples of the acid anhydride group-containing compound as component (j) include pyromellitic anhydride and styrene-maleic anhydride copolymer.
  • Preferred examples of the aryl vinyl group-containing compound (k) include divinyl benzene, diisopropenyl benzene, and divinyl benzene oligomer.
  • Preferred examples of the halogenated carbon group-containing compound (l) include trichloropropane, tribromopropane, and tetrachlorobutane. These compounds used in combination with the first alkoxysilane compound and reacted with the polymerization active terminal can be used singly or in combination of two or more.
  • the amount of the coupling agent used is 1 mol or less, preferably 0.1 as the amount of the substituent capable of coupling in the coupling agent per gram atomic equivalent of the alkali metal or alkaline earth metal of the polymerization initiator. An amount of ⁇ 0.5 mol. When the amount exceeds 1 mol, the reaction rate of the first alkoxysilane compound is lowered, and an excellent low hysteresis loss characteristic or the like may not be obtained when a crosslinked rubber composition is obtained.
  • Step (b) In the step (b), the modified conjugated diene polymer obtained in the step (a), an onium generator, an alkoxysilyl group, and an onium generator can be used to form an onium in the molecule.
  • any of the following three embodiments can be employed.
  • (B-1) A modified conjugated diene polymer obtained in step (a), and a second alkoxysilane compound having at least one group capable of becoming onium by an alkoxysilyl group and an onium generator in the molecule.
  • alkoxysilyl group in the second alkoxysilane compound examples include those similar to the alkoxysilyl group in the first alkoxysilane compound.
  • the number of alkoxysilyl groups in the second alkoxysilane compound is 1 or more, and preferably 2 or 3, more preferably 3, from the viewpoint of reaction efficiency.
  • groups that can be onium in the second alkoxysilane compound include primary amino groups, secondary amino groups, tertiary amino groups, imino groups, pyridyl groups, primary phosphino groups, secondary phosphino groups, and tertiary phosphino groups. And thiol groups.
  • This 2nd alkoxysilane compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Such mixing of the second alkoxysilane compound and other components can be performed, for example, in the form of a solution.
  • a batch type mixer and you may carry out by a continuous type using apparatuses, such as a multistage continuous type mixer and an in-line mixer.
  • This mixing reaction is preferably carried out after completion of the polymerization reaction and before performing various operations necessary for solvent removal, water treatment, heat treatment, polymer isolation, and the like.
  • the amount of the second alkoxysilane compound used in this mixing is preferably 0.2 molar equivalents or more, more preferably 0.3 mol, based on the active site of the conjugated diene polymer obtained by anionic polymerization. More than molar equivalent. If it is less than 0.2 molar equivalent, the incorporation of the second alkoxysilane compound accompanying the onium formation is not sufficient, and the dispersibility of the reinforcing agent is not sufficiently improved. The wear resistance, wet skid resistance, and low hysteresis loss characteristics may be inferior.
  • the second alkoxysilane compound can also be used as the first alkoxysilane compound.
  • the addition method of the second alkoxysilane compound as a modifier is not particularly limited, and examples thereof include a method of adding all at once, a method of adding in divided portions, a method of adding continuously, and the like. A method of adding all at once is preferable.
  • the second alkoxysilane compound may be added in a solution using a hydrocarbon solvent exemplified in paragraph 0019 of the specification, a randomizer exemplified in paragraph 0020 of the specification, or the like as a solvent.
  • the polymerization temperature of the conjugated diene polymer can be used as it is. .
  • a preferred range is 0 to 120 ° C. More preferably, it is 20 to 100 ° C.
  • the mixing time is preferably 1 minute to 5 hours, more preferably 2 minutes to 1 hour.
  • Examples of the onium generator include halogenated metals such as silicon halide compounds, tin halide compounds, aluminum halide compounds, titanium halide compounds, zirconium halide compounds, halogenated germanium compounds, gallium halide compounds, and zinc halide compounds.
  • halogenated metals such as silicon halide compounds, tin halide compounds, aluminum halide compounds, titanium halide compounds, zirconium halide compounds, halogenated germanium compounds, gallium halide compounds, and zinc halide compounds.
  • Inorganic acid esters such as sulfuric acid ester, phosphoric acid ester, carbonic acid ester and nitric acid ester, hydrofluoric acid, hydrochloric acid, odoric acid, iodine acid, sulfuric acid, nitric acid, carbonic acid, phosphoric acid and other inorganic acids, potassium fluoride, tetrafluoride
  • inorganic acid salts such as methylammonium and tetra-n-butylammonium fluoride
  • organic acids such as carboxylic acid and sulfonic acid.
  • silicon halide compounds silicon halide compounds, tin halide compounds, halogenated aluminum compounds, halogenated titanium compounds, halogenated zirconium compounds, halogenated germanium compounds, and gallium halide compounds More preferred are zinc halide compounds, sulfuric acid esters, phosphoric acid esters, carboxylic acids, and sulfonic acids.
  • onium generator compounds include silicon tetrachloride, tin tetrachloride, trimethylsilyl chloride, dimethyldichlorosilane, methyltrichlorosilane, methyldichlorosilane, diethylaluminum chloride, ethylaluminum sesquichloride, ethylaluminum dichloride, zinc chloride, tetrachloride.
  • the onium generator and other components can be performed, for example, in a solution.
  • a solution for example, in a solution.
  • the amount of the onium generator used is preferably 0.5 molar equivalents or more, more preferably 1.0 molar equivalents or more, based on the active site of the conjugated diene polymer obtained by anionic polymerization.
  • the method for adding the onium generating agent is not particularly limited, and examples thereof include a method of adding all at once, a method of adding in divided portions, a method of adding continuously, and the like, but a method of adding all at once is preferable.
  • the onium generator may be added in a solution using a hydrocarbon solvent exemplified in paragraph 0019 of the specification, a randomizer exemplified in paragraph 0020 of the specification, or the like as a solvent.
  • the temperature at which the onium-forming agent and other components (for example, a mixture of the modified conjugated diene polymer obtained in step (a) and the second alkoxysilane compound) are mixed is the temperature of the conjugated diene polymer.
  • the polymerization temperature can be used as it is. Specifically, 0 to 120 ° C. is a preferable range. More preferably, it is 20 to 100 ° C. When the temperature is low, the viscosity of the polymer tends to increase, and when the temperature is high, the polymerization active terminal is likely to be deteriorated.
  • the mixing time is preferably 1 minute to 5 hours, more preferably 2 minutes to 1 hour.
  • a known solvent removal for example, steam stripping etc.
  • the modified conjugated diene polymer can be recovered.
  • step (i) a method in which water is directly added and mixed in the polymer solution after step (b); ii) After step (b), a method in which water is dissolved in an organic solvent that is soluble in both water and an organic solvent such as alcohol, and the mixture is added to the polymer solution, and (iii) step ( A method of mixing the polymer solution and / or polymer and water at the same time as the solvent removal in the subsequent steam stripping step of b) is preferred.
  • step (iii) the steam stripping after step (b)
  • the method of mixing the polymer solution and / or polymer and water simultaneously with the solvent removal in the step is particularly preferable from the viewpoint of efficient onium structure formation.
  • the temperature during the reaction is preferably 30 to 150 ° C., more preferably 80 to 120 ° C.
  • the modified conjugated diene polymer used in this step may be used in the state of the polymer solution without removing the polymer solution obtained when preparing the modified conjugated diene polymer, The conjugated diene polymer obtained by removing the solvent from the polymer solution by steam stripping or the like and drying it may be dissolved again in a solvent such as cyclohexane.
  • the modified conjugated diene rubber of this embodiment is a modified conjugated diene rubber obtained by the method for producing a modified conjugated diene rubber described above. Such a modified conjugated diene rubber has a high Mooney viscosity, excellent shape stability, and good processability.
  • the Mooney viscosity (ML1 + 4, 100 ° C.) of the modified conjugated diene rubber of this embodiment is preferably 30 to 150, and more preferably 40 to 120. When the Mooney viscosity (ML1 + 4, 100 ° C.) is less than 30, the shape stability tends to decrease.
  • the Mooney viscosity (ML1 + 4, 100 ° C.) exceeds 150, workability is deteriorated and it may be difficult to knead with the compounding agent. If the Mooney viscosity is too high, it is usually extended with an extender oil within this range.
  • the extender oil aroma oil, naphthenic oil, paraffin oil, and aroma substitute oil of 3 mass% or less of PCA by the method of IP346 are preferably used.
  • the amount of the extender oil used is arbitrary, but is usually 10 to 50 parts by mass with respect to 100 parts by mass of the modified conjugated diene rubber. When used, it is generally used in an amount of 20 to 37.5 parts by mass.
  • T-DAE Teated Distillate Aromatic Extract
  • T-RAE Teated Residual Aromatic Extract
  • MES Middle Extract Solvate
  • RAE Meex Extrate Solate
  • RAE Rex
  • Rubber composition One embodiment of the rubber composition of the present invention contains the aforementioned modified conjugated diene polymer as a rubber component. The details will be described below.
  • Rubber component The modified conjugated diene rubber contained in the rubber composition of the present embodiment contains the aforementioned modified conjugated diene polymer.
  • the content of the modified conjugated diene polymer in the modified conjugated diene rubber is preferably 20% by mass or more, more preferably 30% by mass or more, and particularly preferably 40% by mass or more. When the content ratio is 20% by mass or more, the cross-linked rubber composition can have better mechanical properties such as tensile strength and tensile elongation, crack growth resistance, and wear resistance.
  • the modified conjugated diene rubber may contain one type of modified conjugated diene polymer or two or more types of modified conjugated diene polymers.
  • other rubber components may be contained.
  • Other rubber components include natural rubber, synthetic isoprene rubber, butadiene rubber, modified butadiene rubber, styrene-butadiene rubber, modified styrene-butadiene rubber, ethylene- ⁇ -olefin copolymer rubber, and ethylene- ⁇ -olefin-diene copolymer.
  • Rubber acrylonitrile-butadiene copolymer rubber, chloroprene rubber, halogenated butyl rubber, styrene-isoprene copolymer rubber, butadiene-isoprene copolymer rubber, random styrene-butadiene-isoprene copolymer rubber, styrene-acrylonitrile-butadiene copolymer rubber, Examples thereof include acrylonitrile-butadiene copolymer rubber, polystyrene-polybutadiene-polystyrene block copolymer, and mixtures thereof. Other rubbers that can be used as tire rubber compositions are known. Even when a rubber component is contained, it is possible to produce a crosslinked rubber having excellent low hysteresis loss characteristics.
  • the rubber composition of this embodiment further contains carbon black and / or silica.
  • carbon black include furnace black, acetylene black, thermal such as SRF, GPF, FEF, HAF, ISAF, SAF, ISAF-HS, ISAF-LS, IISAF-HS, HAF-HS, HAF-LS. Examples thereof include black, channel black, graphite, and carbon black of various grades such as graphite fiber and fullerene.
  • Carbon black having an iodine adsorption amount (IA) of 60 mg / g or more and a dibutyl phthalate oil absorption amount (DBP) of 80 ml / 100 g or more is preferable.
  • IA iodine adsorption amount
  • DBP dibutyl phthalate oil absorption amount
  • silica examples include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), colloidal silica, precipitated silica, calcium silicate, aluminum silicate and the like.
  • wet silica is most preferable because it has the most remarkable effect of improving the fracture resistance, wet grip properties, and low rolling resistance.
  • high dispersible type silica in view of physical properties and workability because the dispersibility to rubber is improved.
  • Silica can be used alone or in combination of two or more.
  • the rubber composition of the present embodiment contains 20 to 130 parts by mass of carbon black and / or silica with respect to 100 parts by mass of the rubber component (the total of the modified conjugated diene rubber and other rubber components). From the viewpoint of reinforcing properties and the effect of improving various physical properties thereby, it is more preferable to contain 25 to 110 parts by mass. If the content ratio of carbon black and / or silica is small, the effect of improving the fracture resistance and the like tends to be insufficient, and if the content ratio of carbon black and / or silica is large, the processability of the rubber composition is increased. Therefore, the content ratio is preferably within the numerical range.
  • the carbon-silica dual phase filler is a so-called silica-coated carbon black in which silica is chemically bonded to the surface of carbon black, and is sold by Cabot Corporation under the trade names CRX2000, CRX2002, and CRX2006.
  • the compounding amount of the carbon-silica dual phase filler is preferably 1 to 100 parts by mass, more preferably 5 to 95 parts by mass with respect to 100 parts by mass of the total rubber component.
  • silica is contained as a reinforcing agent in the rubber composition of the present embodiment, it is preferable to blend a silane coupling agent in order to further improve the reinforcing effect.
  • the silane coupling agent include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, and bis (2-triethoxy).
  • Ethoxysilylethyl) tetrasulfide bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercapto Ethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthio Rubamoyl tetrasulfide, 2-triethoxysilylethyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropylbenzothiazolyl tetra
  • Examples of commercially available products include “NXT Silane”, “NXT Z Silane”, “NXT-Low-V Silane”, “NXT Ultra Low-V Silane”, manufactured by Momentive Performance Materials, Inc.
  • the product name “VP Si363”, the product name “11-MERCAPTOUNDECTYLTRIMETHOXYSILANE” manufactured by gelst, and the like can be mentioned.
  • Silane compounds are preferred.
  • silane coupling agents can be used individually or in combination of 2 or more types.
  • the blending amount of the silane coupling agent varies depending on the type of the silane coupling agent, but is preferably 1 to 20 parts by mass, more preferably 3 to 15 parts by mass with respect to 100 parts by mass of silica. .
  • the amount is less than 1 part by mass, the effect as a coupling agent tends to be hardly exhibited.
  • the rubber component tends to be easily gelled.
  • Suitable compatibilizers are organic compounds selected from epoxy group-containing compounds, carboxylic acid compounds, carboxylic ester compounds, ketone compounds, ether compounds, aldehyde compounds, hydroxyl group-containing compounds and amino group-containing compounds, or alkoxysilanes.
  • Specific examples of the organic compound that is a silicone compound selected from a compound, a siloxane compound, and an aminosilane compound and are compatibilizers include the following compounds.
  • Epoxy group-containing compounds butyl glycidyl ether, diglycidyl ether, propylene oxide, neopentyl glycol siglycidyl ether, epoxy resin, epoxidized soybean oil, epoxidized fatty acid ester and the like.
  • Carboxylic acid compounds adipic acid, octylic acid, methacrylic acid and the like.
  • Carboxylic acid ester compound acrylic acid ester, diethylene acrylate, ethyl methacrylate, orthoacetic acid ester, ethyl acetoacetate, butyl acetate, isopropyl acetate, dimethyl carbonate, p-hydroxyphenylacetic acid, polyester plasticizer, stearic acid plasticizer Such.
  • Ketone compounds methylcyclohexanone, acetylacetone, etc.
  • Ether compounds isopropyl ether, dibutyl ether and the like.
  • Aldehyde compounds undecylenaldehyde, decylaldehyde, vanillin, 3,4-dimethoxybenzaldehyde, cuminaldehyde and the like.
  • Amino group-containing compounds isopropylamine, diisopropylamine, triethylamine, 3-ethoxypropylamine, 2-ethylhexylamine, isopropanolamine, N-ethylethylenediamine, ethyleneimine, hexamethylenediamine, 3-lauryloxypropylamine, aminophenol, aniline 3-isopropoxyaniline, phenylenediamine, aminopyridine, N-methyldiethanolamine, N-methylethanolamine, 3-amino-1-propanol, ethylamine hydrochloride, n-butylamine hydrochloride, and the like.
  • Hydroxyl group-containing compounds isopropyl alcohol, butanol, octanol, octanediol, ethylene glycol, methylcyclohexanol, 2-mercaptoethanol, 3-methyl-3-methoxy-1-butanol, 3-methyl-1,5-pentanediol, 1 -Octadecanol, diethylene glycol, butylene glycol, dibutylene glycol, triethylene glycol, etc.
  • an epoxy group-containing compound, an amino group-containing compound, and a hydroxyl group-containing compound are preferable.
  • Specific examples of the compatibilizer silicone compound include the following compounds.
  • Alkoxysilane compounds trimethylmethoxysilane, trimethylethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, methyltriphenoxysilane, tetraethoxysilane, methyldiethoxysilane, vinyltrimethoxysilane and the like.
  • Siloxane compounds dimethylsiloxane oligomer, silicone oil, amino-modified silicone oil, epoxy-modified silicone oil, carboxyl-modified silicone oil, polyether-modified silicone oil, alkyl-modified silicone oil, higher fatty acid ester-modified silicone oil, higher alkoxy-modified silicone oil, higher-grade Fatty acid-containing silicone oil etc.
  • Aminosilane compounds hexamethyldisilazane, nonamethyltrisilazane, anilitrimethylsilane, bis (dimethylamino) dimethylsilane, bis (diethylamino) dimethylsilane, triethylaminosilane and the like. Of these, a silazane compound and bis (dimethylamino) dimethylsilane are preferred.
  • various chemicals and additives usually used in the rubber industry can be added as desired within a range that does not impair the object of the present invention.
  • various chemicals and additives that can be added to the rubber composition of the present embodiment include a crosslinking agent (for example, a vulcanizing agent), a vulcanizing aid, a processing aid, a vulcanization accelerator, a process oil, Examples thereof include an anti-aging agent, an anti-scorch agent, zinc white, and stearic acid.
  • the vulcanizing agent examples include sulfur, sulfur halides, organic peroxides, quinone dioximes, organic polyvalent amine compounds, and alkylphenol resins having a methylol group.
  • sulfur is usually used.
  • the amount used is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass, with respect to 100 parts by mass of the modified conjugated diene rubber (raw rubber; rubber component).
  • stearic acid is generally used.
  • the amount of the vulcanization aid and processing aid used is usually 0.5 to 5 parts by mass with respect to 100 parts by mass of the modified conjugated diene rubber.
  • the vulcanization accelerator is not particularly limited, and examples thereof include sulfenamide-based, guanidine-based, thiuram-based, thiourea-based, thiazole-based, dithiocarbamic acid-based, and xanthogenic acid-based compounds, preferably 2-mercaptobenzothiazole.
  • the amount of the vulcanization accelerator used is usually 0.1 to 5 parts by mass, preferably 0.4 to 4 parts by mass with respect to 100 parts by mass of the modified conjugated diene rubber.
  • the rubber composition of the present invention can be produced by kneading using a kneader such as an open kneader including a roll and a closed kneader including a Banbury mixer. Further, it can be applied to various rubber products by crosslinking (vulcanizing) after molding.
  • the crosslinked rubber composition (rubber composition after crosslinking) of the present embodiment is, for example, a tire application such as a tire tread, an under tread, a carcass, a sidewall, a bead portion; an anti-vibration rubber, a fender, a belt, a hose, It is suitable for other industrial products.
  • the crosslinked rubber composition of the present embodiment is particularly suitably used as a tire tread rubber.
  • each physical property of a modified conjugated diene polymer (obtained in step (a)), a modified conjugated diene rubber (obtained in step (b)), a rubber composition, a crosslinked rubber composition, etc. Is as follows.
  • the polystyrene-converted weight average molecular weight of the conjugated diene polymer before modification by gel permeation chromatography (GPC) balances the shape stability of the modified conjugated diene rubber and the workability when producing the rubber composition. From the standpoint of maintenance, it is preferably 1 to 1.5 million, more preferably 50,000 to 1,000,000, particularly preferably 100,000 to 800,000.
  • the glass transition temperature of the modified conjugated diene rubber is preferably 0 ° C.
  • the Mooney viscosity (ML1 + 4, 100 ° C.) of the modified conjugated diene rubber is preferably 30 to 150 from the viewpoint of maintaining the balance between the shape stability of the modified conjugated diene rubber and the workability in producing the rubber composition. More preferably, it is 40 to 120.
  • the cold flow value (mg / min) of the modified conjugated diene rubber is preferably 1.5 or less, more preferably 1.0 or less, particularly preferably 0.5, from the viewpoint of the shape stability of the modified conjugated diene rubber. It is as follows.
  • the Mooney viscosity (ML1 + 4, 100 ° C.) of the rubber composition is preferably from 20 to 150, more preferably from 30 to 130, particularly preferably from 40 to 110, from the viewpoint of workability when producing a tire.
  • the index of the tensile strength (JIS K 6301, 300% modulus) of the crosslinked rubber is preferably 100 or more, more preferably 103 or more.
  • the index of the crosslinked rubber is preferably 125 or more, more preferably 130 or more.
  • the index of tan ⁇ at 70 ° C. of the crosslinked rubber is preferably 130 or more, more preferably 135 or more.
  • the index of wear resistance (JIS K 6264, load 10 N, 25 ° C.) of the crosslinked rubber is preferably 105 or more, more preferably 107 or more, and particularly preferably 109 or more.
  • Example 1 Synthesis of modified conjugated diene rubber A and evaluation thereof
  • An autoclave reactor with an internal volume of 5 liters purged with nitrogen was charged with 2,750 g of cyclohexane, 50.0 g of tetrahydrofuran, 125 g of styrene, and 365 g of 1,3-butadiene.
  • a cyclohexane solution containing n-butyllithium 5.80 mmol
  • Table 1 shows the polymerization prescription of the modified conjugated diene rubber A
  • Table 2 shows the properties of the resulting modified conjugated diene rubber A. Further, using the modified conjugated diene rubber A, the rubber composition prepared by the formulation shown in Table 3 was vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Example 2 [Synthesis of modified conjugated diene rubber B and its evaluation]
  • N N-bis (triethylsilyl) aminopropylmethyldimethoxysilane
  • N, N ′, N′-tris (trimethylsilyl) -N- (2-aminoethyl) -3-aminopropyltriethoxy was used.
  • Modified conjugated diene rubber B was obtained in the same manner as in Example 1 except that the amount of silicon tetrachloride added to silane was changed from 3.93 mmol to 5.17 mmol.
  • Table 1 shows the polymerization formulation of the modified conjugated diene rubber B
  • Table 2 shows the properties of the resulting modified conjugated diene rubber B.
  • the rubber composition prepared by the formulation shown in Table 3 was vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Example 3 [Synthesis of modified conjugated diene rubber C and its evaluation] An autoclave reactor with an internal volume of 5 liters purged with nitrogen was charged with 2,750 g of cyclohexane, 10.3 g of tetrahydrofuran, 50 g of styrene, and 440 g of 1,3-butadiene. After adjusting the temperature of the reactor contents to 10 ° C., a cyclohexane solution containing n-butyllithium (5.80 mmol) was added to initiate polymerization. The polymerization was carried out under adiabatic conditions and the maximum temperature reached 90 ° C.
  • Table 1 shows the polymerization formulation of the modified conjugated diene rubber C
  • Table 2 shows the properties of the resulting modified conjugated diene rubber C. Further, using the modified conjugated diene rubber C, a rubber composition prepared according to the formulation shown in Table 3 was vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Example 4 [Synthesis of modified conjugated diene rubber D and its evaluation]
  • N- [3- (trimethoxysilyl) -propyl] instead of N, N ′, N′-tris (trimethylsilyl) -N- (2-aminoethyl) -3-aminopropyltriethoxysilane
  • a modified conjugated diene rubber D was obtained in the same manner as in Example 2, except that it was changed to -N, N'-diethyl-N'-trimethylsilyl-ethane-1,2-diamine.
  • Table 1 shows the polymerization prescription of the modified conjugated diene rubber D
  • Table 2 shows the properties of the resulting modified conjugated diene rubber D.
  • the rubber composition prepared by the formulation shown in Table 3 was vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Example 5 Synthesis of modified conjugated diene rubber E and evaluation thereof]
  • Example 2 instead of N, N ′, N′-tris (trimethylsilyl) -N- (2-aminoethyl) -3-aminopropyltriethoxysilane, 3- (4-trimethylsilyl-1-piperazino) propyltri
  • a modified conjugated diene rubber E was obtained in the same manner as in Example 2 except that ethoxysilane was used.
  • Table 1 shows the polymerization prescription of the modified conjugated diene rubber E
  • Table 2 shows the properties of the resulting modified conjugated diene rubber E.
  • the rubber composition prepared by the formulation shown in Table 3 was vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Example 6 [Synthesis of modified conjugated diene rubber F and its evaluation]
  • Example 1 instead of N, N-bis (triethylsilyl) aminopropylmethyldimethoxysilane (4.96 mmol), bis [3- (triethoxysilyl) propyl] trimethylsilylamine (2.48 mmol) was replaced with silicon tetrachloride.
  • a modified conjugated diene rubber F was obtained in the same manner as in Example 1 except that the amount of was changed from 3.93 mmol to 3.31 mmol.
  • Table 1 shows the polymerization formulation of the modified conjugated diene rubber F
  • Table 2 shows the properties of the resulting modified conjugated diene rubber F.
  • the rubber composition prepared by the formulation shown in Table 3 was vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Example 7 [Synthesis of modified conjugated diene rubber G and its evaluation] A modified conjugated diene rubber G was prepared in the same manner as in Example 1, except that 3-diethylaminopropyltriethoxysilane was used instead of N, N-bis (triethylsilyl) aminopropylmethyldimethoxysilane. Obtained.
  • Table 1 shows the polymerization formulation of the modified conjugated diene rubber G
  • Table 2 shows the properties of the resulting modified conjugated diene rubber G.
  • a rubber composition prepared according to the formulation shown in Table 3 was vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Example 8 Synthesis of modified conjugated diene rubber H and its evaluation
  • the modified conjugated diene rubber H in the same manner as in Example 1 except that S-trimethylsilylmercaptopropyltriethoxysilane was used instead of N, N-bis (triethylsilyl) aminopropylmethyldimethoxysilane in Example 1.
  • Table 1 shows the polymerization formulation of the modified conjugated diene rubber H
  • Table 2 shows the properties of the resulting modified conjugated diene rubber H.
  • the rubber composition prepared by the formulation shown in Table 3 was vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Example 9 [Synthesis of modified conjugated diene rubber I and evaluation thereof] A modified conjugated diene rubber in the same manner as in Example 1 except that 3-diphenylphosphinopropyltrimethoxysilane was used instead of N, N-bis (triethylsilyl) aminopropylmethyldimethoxysilane in Example 1. I was obtained. Table 1 shows the polymerization formulation of the modified conjugated diene rubber I, and Table 2 shows the properties of the resulting modified conjugated diene rubber I. Further, using the modified conjugated diene rubber I, the rubber composition prepared by the formulation shown in Table 3 was vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Example 10 Synthesis of modified conjugated diene rubber J and evaluation thereof
  • a modified conjugated diene rubber J was obtained in the same manner as in Example 1, except that mercaptopropyltriethoxysilane was used instead of 3-aminopropyltriethoxysilane in Example 1.
  • Table 1 shows the polymerization prescription of the modified conjugated diene rubber J
  • Table 2 shows the properties of the resulting modified conjugated diene rubber J.
  • a rubber composition prepared according to the formulation shown in Table 3 was vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Example 11 Synthesis of modified conjugated diene rubber K and its evaluation
  • 2,750 g of cyclohexane, 3.25 g of 2,2-di (tetrahydrofuryl) propane, 125 g of styrene, 365 g of 1,3-butadiene and piperidine (4.70 mmol) were added.
  • a cyclohexane solution containing was charged.
  • a cyclohexane solution containing n-butyllithium 5.80 mmol
  • Table 1 shows the polymerization formulation of the modified conjugated diene rubber K
  • Table 2 shows the properties of the resulting modified conjugated diene rubber K. Further, using the modified conjugated diene rubber K, the rubber composition prepared by the formulation shown in Table 3 was vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Example 12 [Synthesis of modified conjugated diene rubber L and its evaluation]
  • Example 11 is the same as Example 11 except that 3-aminopropyltriethoxysilane (9.92 mmol) was used instead of N-2- (aminoethyl) -3-aminopropyltrimethoxysilane (4.96 mmol).
  • a modified conjugated diene rubber L was obtained in the same manner.
  • Table 1 shows the polymerization formulation of the modified conjugated diene rubber L
  • Table 2 shows the properties of the resulting modified conjugated diene rubber L.
  • the rubber composition prepared by the formulation shown in Table 3 was vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Example 13 [Synthesis of modified conjugated diene rubber M and its evaluation]
  • N-2- (aminoethyl) -3-aminopropyltrimethoxysilane was replaced with 3-aminopropyltriethoxysilane, and silicon tetrachloride (6.34 mmol) was replaced with diethylaluminum chloride (20.
  • a modified conjugated diene rubber M was obtained in the same manner as in Example 11 except that it was changed to 4 mmol).
  • Table 1 shows the polymerization formulation of the modified conjugated diene rubber M
  • Table 2 shows the properties of the resulting modified conjugated diene rubber M.
  • a rubber composition prepared according to the formulation shown in Table 3 was vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Example 14 Synthesis of modified conjugated diene rubber N and its evaluation
  • a modified conjugated diene rubber N was obtained in the same manner as in Example 13, except that titanium tetrachloride (5.10 mmol) was used instead of diethylaluminum chloride (20.4 mmol).
  • Table 1 shows the polymerization formulation of the modified conjugated diene rubber N
  • Table 2 shows the properties of the resulting modified conjugated diene rubber N.
  • a rubber composition prepared by the formulation shown in Table 3 was vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Example 15 Synthesis of modified conjugated diene rubber O and evaluation thereof
  • a modified conjugated diene rubber O was obtained in the same manner as in Example 13, except that in Example 13, isopropyl acid phosphate (13.61 mmol) was used instead of diethylaluminum chloride (20.4 mmol).
  • Table 1 shows the polymerization formulation of the modified conjugated diene rubber O
  • Table 2 shows the properties of the resulting modified conjugated diene rubber O.
  • a rubber composition prepared according to the formulation shown in Table 3 was vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Example 16 Synthesis of modified conjugated diene rubber P and its evaluation
  • An autoclave reactor with an internal volume of 5 liters purged with nitrogen was charged with 2,750 g of cyclohexane, 100.0 g of tetrahydrofuran, 180 g of styrene, and 310 g of 1,3-butadiene.
  • a cyclohexane solution containing n-butyllithium (4.60 mmol) was added to initiate polymerization. The polymerization was carried out under adiabatic conditions and the maximum temperature reached 85 ° C.
  • a cyclohexane solution containing 3-aminopropyltriethoxysilane (3.93 mmol) is added and mixed for 5 minutes, and then a cyclohexane solution containing silicon tetrachloride (3.12 mmol) is further added for 5 minutes. Mixing was performed. Next, 2.0 g of 2,6-di-tert-butyl-p-cresol was added to the resulting polymer solution, and then 187.5 g of naphthenic oil (trademark of Sankyo Oil Chemical Co., Ltd .; SNH46) was added. In addition, mixing was performed for 5 minutes.
  • naphthenic oil trademark of Sankyo Oil Chemical Co., Ltd .; SNH46
  • Table 1 shows the polymerization formulation of the modified conjugated diene rubber P
  • Table 2 shows the properties of the resulting modified conjugated diene rubber P.
  • the rubber composition prepared by the formulation shown in Table 3 was vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Example 17 [Synthesis of modified conjugated diene rubber Q and its evaluation] A modified conjugated diene rubber Q was obtained in the same manner as in Example 3, except that silicon tetrachloride was added first and 3-aminopropyltriethoxysilane was added later.
  • Table 1 shows the polymerization formulation of the modified conjugated diene rubber Q
  • Table 2 shows the properties of the resulting modified conjugated diene rubber Q.
  • a rubber composition prepared according to the formulation shown in Table 3 was vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Example 18 [Synthesis of modified conjugated diene rubber R and its evaluation] A modified conjugated diene rubber R was obtained in the same manner as in Example 3 except that 3-aminopropyltriethoxysilane and silicon tetrachloride were added simultaneously in Example 3.
  • Table 1 shows the polymerization formulation of the modified conjugated diene rubber R
  • Table 2 shows the properties of the resulting modified conjugated diene rubber R.
  • the rubber composition prepared by the formulation shown in Table 3 was vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Comparative Example 2 [Synthesis of modified conjugated diene rubber T and its evaluation] A modified conjugated diene rubber T was obtained in the same manner as in Comparative Example 1 except that the amount of silicon tetrachloride added in Comparative Example 1 was changed from (3.93 mmol) to (2.69 mmol).
  • Table 1 shows the polymerization formulation of the modified conjugated diene rubber T
  • Table 2 shows the properties of the resulting modified conjugated diene rubber T.
  • the rubber composition prepared by the formulation shown in Table 3 was vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Example 5 Synthesis of modified conjugated diene rubber W and its evaluation
  • N N-bis (triethylsilyl) aminopropylmethyldimethoxysilane was replaced by tetraethoxysilane and the addition amount of silicon tetrachloride was changed from 3.93 mmol to 2.69 mmol
  • a modified conjugated diene rubber W was obtained in the same manner.
  • Table 1 shows the polymerization formulation of the modified conjugated diene rubber W
  • Table 2 shows the properties of the resulting modified conjugated diene rubber W.
  • a rubber composition prepared by the formulation shown in Table 3 was vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Comparative Example 6 [Synthesis and Evaluation of Modified Conjugated Diene Rubber X] A modified conjugated diene rubber X was obtained in the same manner as in Comparative Example 5 except that instead of silicon tetrachloride, stannous 2-ethylhexylate was used in Comparative Example 5.
  • Table 1 shows the polymerization formulation of the modified conjugated diene rubber X
  • Table 2 shows the properties of the resulting modified conjugated diene rubber X.
  • the rubber composition prepared by the formulation shown in Table 3 was vulcanized, and physical properties were evaluated. The results are shown in Table 4.
  • Table 1 shows the polymerization formulation of the conjugated diene rubber Y
  • Table 2 shows the properties of the obtained conjugated diene rubber Y.
  • the rubber composition prepared by the compounding prescription shown in Table 3 was vulcanized using the conjugated diene rubber Y, and physical properties were evaluated. The results are shown in Table 4.
  • tan ⁇ Measured using a vulcanized rubber as a measurement sample and using a dynamic spectrometer (manufactured by Rheometrics, USA) under conditions of tensile dynamic strain of 0.14%, angular velocity of 100 radians per second, and 0 ° C. did. Expressed as an index, the larger the value, the greater the wet skid resistance.
  • the modified conjugated diene rubber U of Comparative Example 3 which does not use an onium generator has a very large cold flow value and has a problem in rubber shape retention.
  • the composition of the present invention using the modified conjugated diene rubber of the present invention balances wet skid resistance and low hysteresis loss characteristics without impairing tensile strength and wear resistance. It can be seen that is significantly improved. From the physical property evaluation results of the modified conjugated diene rubbers S to V of Comparative Examples 1 to 4, all of the steps (a) to (b) of the present invention are important for improving the balance between wet skid resistance and low hysteresis loss characteristics. Can be confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 タイヤトレッド等の用途に用いられ、低燃費性能を高めることができる架橋ゴムの原料として用いうる共役ジエン系ゴムの製造方法を提供する。 (a)共役ジエン系化合物と芳香族ビニル化合物を重合して得られるアルカリ金属もしくはアルカリ土類金属活性末端を有する共役ジエン系重合体と、2つ以上のアルコキシ基を有するアルコキシシリル基及びオニウム生成剤によってオニウムになり得る基を分子中に少なくとも1つ以上有する第一のアルコキシシラン化合物を反応させて、オニウムになり得る基及びアルコキシシリル基を有する変性共役ジエン系重合体を得る工程と、(b)得られた変性共役ジエン系重合体と、オニウム生成剤と、アルコキシシリル基及びオニウム生成剤によってオニウムになり得る基を分子中に少なくとも1つ以上有する第二のアルコキシシラン化合物を混合する工程と、を含む共役ジエン系ゴムの製造方法。

Description

変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物
 本発明は、変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物に関する。更に詳しくは、形状保持性に優れた変性共役ジエン系ゴム、引張強度、耐摩耗性、ウェットスキッド抵抗性、及び、低ヒステリシスロス特性に優れた架橋ゴムを製造することが可能な変性共役ジエン系ゴムの製造方法、このような製造方法によって得られた変性共役ジエン系ゴム、該変性共役ジエン系ゴムを含むゴム組成物、及び、該ゴム組成物を架橋(例えば、加硫)させてなる架橋ゴム組成物(加硫ゴム組成物)に関する。
 自動車タイヤ用ゴムとして、乳化重合法によって得られる共役ジエン系ゴム(例えば、スチレン-ブタジエン共重合体)が知られている。近年、自動車の低燃費性能の向上が期待される中で、優れた低燃費性能を実現しうる種々の共役ジエン系ゴムが提案されている。
 一例として、(1)共役ジオレフィンあるいは共役ジオレフィンと芳香族ビニル化合物の(共)重合ゴムであって、(2)(共)重合体鎖に結合した第1級アミノ基とアルコキシシリル基とを有し、かつ(3)(共)重合体鎖中に2官能性以上のモノマーが共重合されているか、および/または、2官能性以上のカップリング剤で(共)重合体鎖の少なくとも一部がカップリングされている、ことを特徴とする共役ジオレフィン(共)重合ゴムが提案されている(特許文献1)。
 他の例として、アルカリ金属触媒の存在下、炭化水素溶媒中で、共役ジエンモノマー、又は、共役ジエンモノマーと芳香族ビニルモノマーとを重合させ、アルカリ金属末端を有する活性重合体を得る工程1と、該活性重合体と、特定の式で表される化合物とを反応させて、変性重合体ゴムを得る工程2から得られる、変性ジエン系重合体ゴムが提案されている(特許文献2)。
 また、シリカ及びカーボンブラックとの相互作用を高め、破壊特性、耐摩耗性、低発熱性を向上させることができる変性重合体を製造する方法として、有機金属の活性部位を分子中に有する重合体の該活性部位にヒドロカルビルオキシシラン化合物を反応させる第一次変性反応を行い、その後さらにヒドロカルビルオキシシリル基同士の縮合反応を経由して、ヒドロカルビルオキシシラン化合物を反応させる第二次変性反応を行う方法が提案されている(特許文献3)。
特開2004-18795号公報 特開2005-290355号公報 WO 03/048216 A1
 前述のとおり、自動車の優れた低燃費性能を実現しうる種々の共役ジエン系ゴムが提案されている。しかし、ガソリンの価格高騰等の経済事情、二酸化炭素の排出を初めとする環境事情下において、自動車のさらなる低燃費化が期待されている。そこで、本発明は、自動車タイヤ等の用途に用いることができ、自動車等の低燃費性能を高めることができる架橋ゴムの原料として用いうる変性共役ジエン系ゴムの製造方法を提供することを目的とする。
 本発明者は、上記課題を解決するために鋭意検討した結果、アルカリ金属活性末端を有する共役ジエン系重合体に加えて、特定の2種のアルコキシシラン化合物及びオニウム生成剤を用いることによって、低ヒステリシスロス特性に優れるなどの物性が付与され、その結果、自動車タイヤ等に用いた場合に優れた低燃費性能を与えることが可能な変性共役ジエン系ゴムを製造しうることを見出し、本発明を完成した。
 すなわち、本発明は、以下の[1]~[10]を提供するものである。
[1](a)共役ジエン系化合物、又は共役ジエン系化合物と芳香族ビニル化合物を重合して得られるアルカリ金属もしくはアルカリ土類金属活性末端を有する共役ジエン系重合体と、2つ以上のアルコキシ基を有するアルコキシシリル基及びオニウム生成剤によってオニウムになり得る基を分子中に少なくとも1つ以上有する第一のアルコキシシラン化合物を反応させて、前記オニウムになり得る基及びアルコキシシリル基を有する変性共役ジエン系重合体を得る工程と、(b)工程(a)で得られた変性共役ジエン系重合体と、オニウム生成剤と、アルコキシシリル基及びオニウム生成剤によってオニウムになり得る基を分子中に少なくとも1つ以上有する第二のアルコキシシラン化合物を混合する工程と、を含む変性共役ジエン系ゴムの製造方法。
[2]前記第一のアルコキシシラン化合物のオニウムになり得る基が、1級アミンの2つの水素原子が2つの保護基によって置換されてなる窒素含有基、2級アミンの1つの水素原子が1つの保護基によって置換されてなる窒素含有基、3級アミノ基、イミノ基、ピリジル基、1級ホスフィンの2つの水素原子が2つの保護基によって置換されてなるリン含有基、2級ホスフィンの1つの水素原子が1つの保護基によって置換されてなるリン含有基、3級ホスフィノ基、及び、チオールの1つの水素原子が1つの保護基によって置換されてなる硫黄含有基、からなる群より選ばれる1種以上である前記[1]に記載の変性共役ジエン系ゴムの製造方法。
[3]前記オニウム生成剤が、ハロゲン化ケイ素化合物、ハロゲン化スズ化合物、ハロゲン化アルミニウム化合物、ハロゲン化チタン化合物、ハロゲン化ジルコニウム化合物、ハロゲン化ゲルマニウム化合物、ハロゲン化ガリウム化合物、ハロゲン化亜鉛化合物、硫酸エステル、リン酸エステル、カルボン酸、及び、スルホン酸、からなる群より選ばれる1種以上である前記[1]又は[2]に記載の変性共役ジエン系ゴムの製造方法。
[4]前記第二のアルコキシシラン化合物のオニウムになり得る基が、1級アミノ基、2級アミノ基、3級アミノ基、イミノ基、ピリジル基、1級ホスフィノ基、2級ホスフィノ基、3級ホスフィノ基、及び、チオール基、からなる群より選ばれる1種以上である前記[1]~[3]のいずれかに記載の変性共役ジエン系ゴムの製造方法。
[5](c)工程(b)で得られた混合物と水を接触させる工程、を含む前記[1]~[4]のいずれかに記載の変性共役ジエン系ゴムの製造方法。
[6]前記変性共役ジエン系ゴムが、前記変性共役ジエン系重合体、前記第二のアルコキシシラン化合物、及び、前記変性共役ジエン系重合体と第二のアルコキシシラン化合物との加水分解縮合物、の3種の物質を含み、かつ、これら3種の物質によって形成されたオニウム構造を有する、前記[1]~[5]のいずれかに記載の変性共役ジエン系ゴムの製造方法。
[7]前記[1]~[6]のいずれかに記載の変性共役ジエン系ゴムの製造方法によって得られた変性共役ジエン系ゴム。
[8]前記[7]に記載の変性共役ジエン系ゴムと、シリカ及び/又はカーボンブラックと、架橋剤を含む、ゴム組成物。
[9]前記[8]に記載のゴム組成物を架橋させてなる架橋ゴム組成物。
[10]前記[9]に記載の架橋ゴム組成物からなるタイヤ。
 本発明の製造方法によれば、低ヒステリシスロス特性に優れた架橋ゴム組成物を製造することが可能な変性共役ジエン系ゴムを得ることができる。同時に、形状保持性に優れた変性共役ジエン系ゴムを得ることができ、引張強度、耐摩耗性及びウェットスキッド抵抗性に優れた架橋ゴムを製造することが可能な変性共役ジエン系ゴムを得ることができる。
 該変性共役ジエン系ゴムを用いて製造される架橋ゴム組成物は、自動車タイヤ等の用途に用いることができ、自動車等の低燃費性能を高めることができる。
 本発明の変性共役ジエン系ゴムの製造方法は、(a)共役ジエン系化合物、又は共役ジエン系化合物と芳香族ビニル化合物を重合して得られるアルカリ金属もしくはアルカリ土類金属活性末端を有する共役ジエン系重合体と、2つ以上のアルコキシ基を有するアルコキシシリル基及びオニウム生成剤によってオニウムになり得る基を分子中に少なくとも1つ以上有する第一のアルコキシシラン化合物を反応させて、前記オニウムになり得る基及びアルコキシシリル基を有する変性共役ジエン系重合体を得る工程と、(b)工程(a)で得られた変性共役ジエン系重合体と、オニウム生成剤と、アルコキシシリル基及びオニウム生成剤によってオニウムになり得る基を分子中に少なくとも1つ以上有する第二のアルコキシシラン化合物を混合する工程と、を含むものである。
[1]変性共役ジエン系ゴムの製造方法:
[工程(a)]
工程(a)は、共役ジエン系化合物、又は共役ジエン系化合物と芳香族ビニル化合物を重合して得られるアルカリ金属もしくはアルカリ土類金属活性末端を有する共役ジエン系重合体と、2つ以上のアルコキシ基を有するアルコキシシリル基及びオニウム生成剤によってオニウムになり得る基を分子中に少なくとも1つ以上有する第一のアルコキシシラン化合物を反応させて、前記オニウムになり得る基及びアルコキシシリル基を有する変性共役ジエン系重合体を得る工程である。
 アルカリ金属もしくはアルカリ土類金属活性末端を有する共役ジエン系重合体としては、共役ジエン系化合物を単独で重合、または、共役ジエン系化合物と芳香族ビニル化合物を共重合させてなるアニオン重合体を挙げることができる。
 共役ジエン系重合体の製造方法については、上記したようにアルカリ金属もしくはアルカリ土類金属(以下、「重合開始剤」ということがある。)によってアニオン重合させること以外については特に制限はない。例えば、重合法については、溶液重合法、気相重合法、バルク重合法のいずれも用いることができるが、特に、溶液重合法を用いることが好ましい。また、重合形式は、回分式及び連続式のいずれであってもよい。また、共役ジエン系重合体の分子中に存在する活性部位の金属は、アルカリ金属もしくはアルカリ土類金属であり、リチウム、ナトリウム、カリウム、マグネシウム、バリウムであることが好ましく、特にリチウムであることが好ましい。これらのアルカリ金属もしくはアルカリ土類金属は、第一のアルコキシシラン化合物と反応可能な金属活性末端を有する共役ジエン系重合体を得ることが可能であると言う観点から、いずれも同様の作用を有するものであり、後述の実施例に記載されていないものであっても、本発明において使用することが可能である。
 更には、官能基含有モノマーを混在させ、ポリマー中の官能基をアルカリ金属系開始剤によって活性化することも有効である。例えば、イソブチレン単位、パラメチルスチレン単位及びパラハロゲン化メチルスチレン単位を含む共重合体の官能基部分をリチオ化して活性部位とすることも有効である。
 上記共役ジエン系モノマーとしては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-ヘプタジエン、2,3-ジメチルブタジエン、2-フェニル-1,3-ブタジエン、3-メチル-1,3-ペンタジエン、2-クロロ-1,3-ブタジエン等を好適に用いることができる。これらは単独で用いてもよく、二種以上組み合わせて用いてもよい。これらの化合物の中で、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン等を特に好適に用いることができる。これらの共役ジエン系モノマーは、第一のアルコキシシラン化合物と反応可能な金属活性末端を有する共役ジエン系重合体を得ることが可能であると言う観点から、いずれも同様の作用を有するものであり、後述の実施例に記載されていないものであっても、本発明において使用することが可能である。
 芳香族ビニル化合物としては、例えば、スチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、α-メチルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、4-tert-ブチルスチレン、5-t-ブチル-2-メチルスチレン、ビニルエチルベンゼン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレン、tert-ブトキシスチレン、ビニルベンジルジメチルアミン、(4-ビニルベンジル)ジメチルアミノエチルエーテル、N,N-ジメチルアミノエチルスチレン、N,N-ジメチルアミノメチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2-t-ブチルスチレン、3-t-ブチルスチレン、4-t-ブチルスチレン、ビニルキシレン、ビニルナフタレン、ビニルトルエン、ビニルピリジン、ジフェニルエチレン、3級アミノ基含有ジフェニルエチレン、等を好適に用いることができる。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの化合物の中で、スチレンが特に好ましい。これらの芳香族ビニル化合物は、第一のアルコキシシラン化合物と反応可能な金属活性末端を有する共役ジエン系重合体を得ることが可能であると言う観点から、いずれも同様の作用を有するものであり、後述の実施例に記載されていないものであっても、本発明において使用することが可能である。
 更に、共役ジエン系モノマーと芳香族ビニル化合物とを用いて共重合を行う場合、それぞれ1,3-ブタジエンとスチレンとを使用することが好ましい。これらのモノマーは、入手が容易であるとともに、アニオン重合におけるリビング性が高いという点において優れている。また、溶液重合法を用いた場合には、溶媒中のモノマー濃度は、生産性と重合コントロールの容易性のバランスを維持する観点から、好ましくは5~50質量%、より好ましくは10~30質量%である。なお、共役ジエン系モノマーと芳香族ビニル化合物を用いて共重合を行う場合、仕込みモノマー混合物中の芳香族ビニル化合物の含量は、得られる架橋ゴム組成物の低ヒステリシスロス特性とウェットスキッド抵抗性のバランスを維持する観点から、3~55質量%であることが好ましく、5~50質量%であることが更に好ましい。
 アルカリ金属及びアルカリ土類金属系開始剤として用いられる化合物としては、アルキルリチウム、アルキレンジリチウム、リチウムアルキレンイミド、リチウムジアルキルアミド、フェニルリチウム、スチルベンリチウム、リチウムナフタレン、ナトリウムナフタレン、カリウムナフタレン、n-ブチルマグネシウム、n-ヘキシルマグネシウム、エトキシカルシウム、ステアリン酸カルシウム、t-ブトキシストロンチウム、エトキシバリウム、イソプロポキシバリウム、エチルメルカプトバリウム、t-ブトキシバリウム、フェノキシバリウム、ジエチルアミノバリウム、ステアリン酸バリウム、ケチルバリウム、ナトリウムビフェニル、カリウム-テトラヒドロフラン錯体、カリウムジエトキシエタン錯体、α-メチルスチレンテトラマーのナトリウム塩等を挙げることができ、アルキルリチウム等の有機リチウム化合物、及びリチウムアルキレンイミド等のリチウムアミド化合物を好適例として挙げることができる。前者の有機リチウム化合物を用いる場合には、重合開始末端に炭化水素基を有し、かつ他方の末端が重合活性部位である共役ジエン系重合体が得られる。また、後者のリチウムアミド化合物を用いる場合には、重合開始末端に窒素含有基を有し、他方の末端が重合活性部位である共役ジエン系重合体が得られる。これらのアルカリ金属及びアルカリ土類金属系開始剤は、第一のアルコキシシラン化合物と反応可能な金属活性末端を有する共役ジエン系重合体を得ることが可能であると言う観点から、いずれも同様の作用を有するものであり、後述の実施例に記載されていないものであっても、本発明において使用することが可能である。
 上記有機リチウム化合物としては、炭素数1~20の炭化水素基を有するものが好ましく、例えば、メチルリチウム、エチルリチウム、n-プロピルリチウム、iso-プロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-オクチルリチウム、n-デシルリチウム、フェニルリチウム、2-ナフチルリチウム、2-ブチル-フェニルリチウム、4-フェニル-ブチルリチウム、シクロヘキシルリチウム、ジイソプロペニルベンゼンとブチルリチウムとの反応生成物、t-ブチルリチウム、n-ヘキシルリチウム、ベンジルリチウム、フェニルリチウム、スチルベンリチウム、1,4-ジリチオブタン、1,3,5-トリリチオベンゼン、n-ブチルリチウムと1,3-ブタジエンおよびジビニルベンゼンの反応物、n-ブチルリチウムとポリアセチレン化合物の反応物、4-シクロペンチルリチウム、1,2-ジリチオメタン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン等を挙げることができる。これらの中で、n-ブチルリチウム及びsec-ブチルリチウムが好ましい。
 一方、リチウムアミド化合物としては、例えば、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピぺリジド、リチウムヘプタメチレンイミド、リチウムドデカメチレンイミド、リチウムモルホリド、リチウムジメチルアミド、リチウムジエチルアミド、リチウムジブチルアミド、リチウムジプロピルアミド、リチウムジイソプロピルアミド、リチウムジヘプチルアミド、リチウムジヘキシルアミド、リチウムジオクチルアミド、リチウムジ-2-エチルヘキシルアミド、リチウムジデシルアミド、リチウム-N-メチルピペラジド、リチウムエチルプロピルアミド、リチウムエチルブチルアミド、リチウムエチルベンジルアミド、リチウムメチルフェネチルアミド、3-[N,N-ビス(トリメチルシリル)]-1-プロピルリチウム、3-[N,N-ビス(トリメチルシリル)]-2-メチル-1-プロピルリチウム、3-[N,N-ビス(トリメチルシリル)]-2,2-ジメチル-1-プロピルリチウム、4-[N,N-ビス(トリメチルシリル)]-1-ブチルリチウム、5-[N,N-ビス(トリメチルシリル)]-1-ペンチルリチウム、8-[N,N-ビス(トリメチルシリル)]-1-オクチルリチウム、3-(2,2,5,5,-テトラメチル-2,5-ジシラ-1-アザシクロペンタン)-1-プロピルリチウム、2-メチル-3-(2,2,5,5,-テトラメチル-2,5-ジシラ-1-アザシクロペンタン)-1-プロピルリチウム、2,2-ジメチル-3-(2,2,5,5,-テトラメチル-2,5-ジシラ-1-アザシクロペンタン)-1-プロピルリチウム、4-(2,2,5,5,-テトラメチル-2,5-ジシラ-1-アザシクロペンタン)-1-ブチルリチウム、6-(2,2,5,5,-テトラメチル-2,5-ジシラ-1-アザシクロペンタン)-1-ヘキシルリチウム、等を挙げることができる。これらの中で、カーボンブラックやシリカに対する相互作用効果及び重合開始能の点から、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピぺリジド、リチウムへプタメチレンイミド、リチウムドデカメチレンイミドなどの環状リチウムアミドが好ましく、特にリチウムヘキサメチレンイミド及びリチウムピロリジド、リチウムピペリジドが好適である。
 これらのリチウムアミド化合物は、一般に、二級アミンとリチウム化合物とから、予め調製したものを重合に使用することが多いが、重合系中(in-situ)で調製することもできる。また、この重合開始剤の使用量は、好ましくはモノマー100gあたり、0.2~20ミリモルの範囲で選定される。
 前記リチウム化合物を重合開始剤として用い、アニオン重合によって共役ジエン系重合体を製造する際の具体的な方法としては、例えば、反応に不活性な有機溶剤、例えば脂肪族、脂環族もしくは芳香族炭化水素化合物等の炭化水素溶媒中において、ジエン系モノマー又はジエン系モノマーと芳香族ビニル化合物を、前記リチウム化合物を重合開始剤として、所望により用いられるランダマイザーの存在下に、アニオン重合させる方法を挙げることができる。このような方法によって、目的の共役ジエン系重合体を得ることができる。
 前記炭化水素溶媒としては、炭素数3~8のものが好ましく、例えば、プロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、n-へキサン、シクロへキサン、プロペン、1-ブテン、イソブテン、トランス-2-ブテン、シス-2-ブテン、1-ペンチン、2-ペンチン、1-ヘキセン、2-ヘキセン、ベンゼン、トルエン、キシレン、エチルベンゼン、ヘプタン、シクロペンタン、メチルシクロペンタン、メチルシクロヘキサン、1-ペンテン、2-ペンテン、シクロヘキセン等を挙げることができる。これらは単独で用いてもよく、二種以上を混合して用いてもよい。
 また、所望により用いられるランダマイザーとは、共役ジエン系重合体のミクロ構造の制御、例えばブタジエン-スチレン共重合体におけるブタジエン部分のビニル結合(1,2結合)、イソプレン重合体におけるビニル結合(1,2結合及び3,4結合)の増加など、あるいは共役ジエン系重合体におけるモノマー単位の組成分布の制御、例えばブタジエン-スチレン共重合体におけるブタジエン単位とスチレン単位とのランダム化などの作用を有する化合物のことである。このランダマイザーとしては、特に制限はなく、従来ランダマイザーとして一般に使用されている公知の化合物の中から任意のものを適宜選択して用いることができる。具体的には、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、2,2-ジ(テトラヒドロフリル)プロパン、2-(2-エトキシエトキシ)-2-メチルプロパン、トリエチルアミン、ピリジン、N-メチルモルホリン、N,N,N’,N’-テトラメチルエチレンジアミン、1,2-ジピペリジノエタン、エチレングリコールジブチルエーテル、エチレングリコールジメチルエーテル、ジエチルエーテル、ジオキサン、トリメチルアミン、キヌクリジン、カリウム-t-アミラート、カリウム-t-ブチラート、トリフェニルホスフィン、テトラヒドロピラン、ジブチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジエチルエーテル、ジフェニルエーテル、アニソール、トリプロピルアミン、トリブチルアミン、N,N-ジエチルアニリン、キノリンなどのエーテル類及び三級アミン類などを挙げることができる。これらのランダマイザーは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 上記した重合開始剤の反応性を向上させようとする場合、あるいは重合体中に導入される芳香族ビニル化合物をランダムに配列するか又は芳香族ビニル化合物の単連鎖・長連鎖を付与させようとする場合に、重合開始剤とともにカリウム化合物を添加してもよい。重合開始剤とともに添加されるカリウム化合物としては、例えば、カリウムイソプロポキシド、カリウム-t-ブトキシド、カリウム-t-アミロキシド、カリウム-n-ヘプタオキシド、カリウムベンジルオキシド、カリウムフェノキシドに代表されるカリウムアルコキシド、カリウムフェノキシド;イソバレリアン酸、カプリル酸、ラウリル酸、パルミチン酸、ステアリン酸、オレイン酸、リノレイン酸、安息香酸、フタル酸、2-エチルヘキサン酸などのカリウム塩;ドデシルベンゼンスルホン酸、テトラデシルベンゼンスルホン酸、ヘキサデシルベンゼンスルホン酸、オクタデシルベンゼンスルホン酸などの有機スルホン酸のカリウム塩;亜リン酸ジエチル、亜リン酸ジイソプロピル、亜リン酸ジフェニル、亜リン酸ジブチル、亜リン酸ジラウリルなどの、有機亜リン酸部分エステルのカリウム塩などが用いられる。
 これらのカリウム化合物は、重合開始剤のアルカリ金属もしくはアルカリ土類金属1グラム原子当量あたり、0.005~0.5モルの量で添加することが好ましい。0.005モル未満では、カリウム化合物の添加効果(重合開始剤の反応性向上、芳香族ビニル化合物のランダム化又は単連鎖・長連鎖付与)が現れないことがあり、一方、0.5モルを超えると、重合活性が低下し、生産性を大幅に低下させることになるとともに、第一のアルコキシシラン化合物との変性反応における変性効率が低下することがある。
 この重合反応における温度は、-20~150℃であることが好ましく、0~120℃であることが更に好ましい。重合反応は、発生圧力下で行うことができるが、通常はモノマーを実質的に液相に保つに十分な圧力で操作することが好ましい。すなわち、圧力は重合される個々の物質や、用いる重合媒体及び重合温度にもよるが、所望ならば発生圧力に比べてより高い圧力を用いることができ、このような圧力は重合反応に関して不活性なガスで反応器を加圧する等の適当な方法で得られる。
 この重合においては、重合開始剤、溶媒、モノマーなどの、重合に関与する全ての原材料は、水、酸素、二酸化炭素、プロトン性化合物等の反応阻害物質を除去したものを用いることが望ましい。なお、エラストマーとして重合体を得る場合は、得られる重合体又は共重合体の、示差熱分析法により求めたガラス転移温度(Tg)が-90℃~0℃であることが好ましい。ガラス転移温度が-90℃未満の重合体を得るのは困難であり、また0℃を超える場合には室温領域で粘度が高くなりすぎ、取り扱いが困難となる場合がある。
 第一のアルコキシシラン化合物におけるアルコキシシリル基としては、アルカリ金属もしくはアルカリ土類金属活性末端を有する共役ジエン系重合体との反応性の観点から、2つ以上のアルコキシ基を有するものが用いられる。アルコキシ基としては、炭素数1~20のアルキル基またはアリール基を有するアルコキシ基を好適に挙げることができる。アルコキシ基が2つ以上存在する場合は、互いに同一であっても異なっていてもよい。
 第一のアルコキシシラン化合物におけるオニウムになり得る基としては、共役ジエン系重合体のアルカリ金属もしくはアルカリ土類金属活性末端から保護される保護基であると共に、脱保護の後にオニウム生成剤の作用によってオニウムになりうる基が分子中に少なくとも1つ以上あればよく、例えば、1級アミンの2つの水素原子が2つの保護基によって置換されてなる窒素含有基、2級アミンの1つの水素原子が1つの保護基によって置換されてなる窒素含有基、3級アミノ基、イミノ基、ピリジル基、1級ホスフィンの2つの水素原子が2つの保護基によって置換されてなるリン含有基、2級ホスフィンの1つの水素原子が1つの保護基によって置換されてなるリン含有基、3級ホスフィノ基、及び、チオールの1つの水素原子が1つの保護基によって置換されてなる硫黄含有基等が挙げられる。この第一のアルコキシシラン化合物は、一種を単独で用いてよく、二種以上を組み合わせて用いてもよい。
 1級アミンの2つの水素原子が2つの保護基によって置換されてなる窒素含有基、2級アミンの1つの水素原子が1つの保護基によって置換されてなる窒素含有基、または3級アミノ基と、アルコキシシリル基とを有する化合物としては、例えば、N,N-ビス(トリメチルシリル)アミノプロピルメチルジメトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルトリメトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルトリエトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン、N,N-ビス(トリメチルシリル)アミノエチルトリメトキシシラン、N,N-ビス(トリメチルシリル)アミノエチルトリエトキシシラン、N,N-ビス(トリメチルシリル)アミノエチルメチルジメトキシシラン、N,N-ビス(トリメチルシリル)アミノエチルメチルジエトキシシラン、N,N-ビス(トリエチルシリル)アミノプロピルメチルジメトキシシラン、N,N-ビス(トリエチルシリル)アミノプロピルトリメトキシシラン、N,N-ビス(トリエチルシリル)アミノプロピルトリエトキシシラン、N,N-ビス(トリエチルシリル)アミノプロピルメチルジエトキシシラン、N,N-ビス(トリエチルシリル)アミノエチルトリメトキシシラン、N,N-ビス(トリエチルシリル)アミノエチルトリエトキシシラン、N,N-ビス(トリエチルシリル)アミノエチルメチルジメトキシシラン、N,N-ビス(トリエチルシリル)アミノエチルメチルジエトキシシラン、N,N’,N’-トリス(トリメチルシリル)-N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、N,N’,N’-トリス(トリメチルシリル)-N-(2-アミノエチル)-3-アミノプロピルメチルジエトキシシラン、N,N’,N’-トリス(トリメチルシリル)-N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N,N’,N’-トリス(トリメチルシリル)-N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、1-(3-トリエトキシシリルプロピル)-2,2,5,5-テトラメチル-1-アザ-2,5-ジシラシクロペンタン、1-(3-トリメトキシシリルプロピル)-2,2,5,5-テトラメチル-1-アザ-2,5-ジシラシクロペンタン、1-(3-メチルジエトキシシリルプロピル)-2,2,5,5-テトラメチル-1-アザ-2,5-ジシラシクロペンタン、1-(3-メチルジメトキシシリルプロピル)-2,2,5,5-テトラメチル-1-アザ-2,5-ジシラシクロペンタン、1-トリメチルシリル-2,2-ジメトキシ-1-アザ-2-シラシクロペンタン、N-〔3-(トリメトキシシリル)-プロピル〕-N,N’-ジエチル-N’-トリメチルシリル-エタン-1,2-ジアミン、N-〔3-(トリエトキシシリル)-プロピル〕-N,N’-ジエチル-N’-トリメチルシリル-エタン-1,2-ジアミン、N-[3-(メチルジメトキシシリル)-プロピル]-N,N’-ジエチル-N’-トリメチルシリル-エタン-1,2-ジアミン、N-[3-(メチルジメトキシシリル)-プロピル]-N,N’-ジエチル-N’-トリメチルシリル-p-フェニレンジアミン、N-〔3-(トリエトキシシリル)-プロピル〕-N,N’-ジエチル-N’-トリメチルシリル-p-フェニレンジアミン、3-〔3-(トリメチルシリルエチルアミノ)-1-ピロリジニル〕-プロピル-メチルジエトキシシラン、3-〔3-(トリメチルシリルプロピルアミノ)-1-ピロリジニル〕-プロピル-トリエトキシシラン、N-〔3-(ジエトキシメチルシリル)-プロピル〕-N-エチル-N’-(2-エトキシエチル)-N’-トリメチルシリル-エタン-1,2-ジアミン、N-〔3-(トリプロポキシシリル)-プロピル〕-N-プロピル-N’-(2-エトキシエチル)-N’-トリエチルシリル-p-フェニレンジアミン、N-〔2-(ジエトキシメチルシリル)-1-メチルエチル〕-N-エチル-N’-(2-ジエチルアミノ-エチル)N’-トリエチルシリル-エタン-1,2-ジアミン、N-〔3-(トリエトキシシリル)-プロピル〕-N-エチル-N’-(2-ジエチルアミノエチル)-N’-トリエチルシリル-エタン-1,2-ジアミン、3-(4-トリメチルシリル-1-ピペラジノ)プロピルメチルジメトキシシラン、3-(4-トリメチルシリル-1-ピペラジノ)プロピルトリエトキシシラン、3-(4-トリメチルシリル-1-ピペラジノ)プロピルトリブトキシシラン、3-(4-トリメチルシリル-1-ピペラジノ)プロピルメチルジエトキシシラン、3-(4-トリメチルシリル-1-ピペラジノ)プロピルトリメトキシシラン、3-(3-トリメチルシリル-1-イミダゾリジニル)プロピルエチルジエトキシシラン、3-(3-トリメチルシリル-1-イミダゾリジニル)プロピルトリエトキシシラン、3-(3-トリメチルシリル-1-ヘキサヒドロピリミジニル)プロピルメチルジメトキシシラン、3-(3-トリメチルシリル-1-ヘキサヒドロピリミジニル)プロピルトリエトキシシラン、4-(4-トリメチルシリル-1-ピペラジニル)ブチルトリエトキシシラン、N-[2-(トリメトキシシリル)-エチル]-N,N’,N’-トリメチルエタン-1,2-ジアミン、N-[2-(ジメトキシメチルシリル)-エチル]-N-エチル-N’,N’-ジメチルエタン-1,2-ジアミン、N-[3-(トリメトキシシリル)-プロピル]-N,N’,N’-トリメチルプロパン-1,3-ジアミン、N-[3-(ジメトキシメチルシリル)-プロピル]-N-エチル-N’,N’-ジメチルプロパン-1,3-ジアミン、N-[3-(トリエトキシシリル)-プロピル]-N,N’,N’-トリエチル-2-メチルプロパン-1,3-ジアミン、N-[3-(ジメトキシメチルシリル)-プロピル]-2,N,N’,N’-テトラメチルプロパン-1,3-ジアミン、N-(2-ジメチルアミノエチル)-N’-[2-(トリメトキシシリル)-エチル]-N,N’-ジメチルエタン-1,2-ジアミン、N-[2-(ジエトキシプロピルシリル)-エチル]-N’-(3-エトキシプロピル)-N,N’-ジメチルエタン-1,2-ジアミン、N-[2-(トリメトキシシリル)-エチル]-N’-メトキシメチル-N,N’-ジメチルエタン-1,2-ジアミン、N-[2-(トリメトキシシリル)-エチル]-N,N’-ジメチル-N’-(2-トリメチルシリルエチル)-エタン-1,2-ジアミン、N-[2-(トリエトキシシリル)-エチル]-N,N’-ジエチル-N’-(2-ジブチルメトキシシリルエチル)-エタン-1,2-ジアミン、1-[3-(トリエトキシシリル)-プロピル]-4-メチルピペラジン、1-[3-(ジエトキシエチルシリル)-プロピル]-4-メチルピペラジン、1-[3-(トリメトキシシリル)-プロピル]-4-メチルピペラジン、1-[3-(ジエトキシメチルシリル)-プロピル]-4-メチルピペラジン、1-[3-(ジメトキシメチルシリル)-プロピル]-4-メチルピペラジン、1-[3-(トリメトキシシリル)-プロピル]-3-メチルイミダゾリジン、1-[3-(ジエトキシエチルシリル)-プロピル]-3-エチルイミダゾリジン、1-[3-(トリエトキシシリル)-プロピル]-3-メチルヘキサヒドロピリミジン、1-[3-(ジメトキシメチルシリル)-プロピル]-3-メチルヘキサヒドロピリミジン、3-[3-(トリブトキシシリル)-プロピル]-1-メチル-1,2,3,4-テトラヒドロピリミジン、3-[3-(ジメトキシメチルシリル)-プロピル]-1-エチル-1,2,3,4-テトラヒドロピリミジン、1-(2-エトキシエチル)-3-[3-(トリメトキシシリル)-プロピル]-イミダゾリジン、2-{3-[3-(トリメトキシシリル)-プロピル]-テトラヒドロピリミジン-1-イル}-エチルジメチルアミン、2-(トリメトキシシリル)-1,3-ジメチルイミダゾリジン、2-(ジエトキシエチルシリル)-1,3-ジエチルイミダゾリジン、2-(トリエトキシシリル)―1,4-ジエチルピペラジン、2-(ジメトキシメチルシリル)―1,4-ジメチルピペラジン、5-(トリエトキシシリル)―1,3-ジプロピルヘキサヒドロピリミジン、5-(ジエトキシエチルシリル)―1,3-ジエチルヘキサヒドロピリミジン、2-[3-(2-ジメチルアミノエチル)-2-(エチルジメトキシシリル)―イミダゾリジン-1-イル]-エチル-ジメチルアミン、5-(トリメトキシシリル)-1,3-ビス-(2-メトキシエチル)-ヘキサヒドロピリミジン、5-(エチルジメトキシシリル)-1,3-ビス-トリメチルシリルヘキサヒドロピリミジン、2-(3-ジエトキシエチルシリル-プロピル)-1,3-ジエチルイミダゾリジン、2-(3-トリエトキシシリル-プロピル)―1,4-ジエチルピペラジン、2-(3-ジメトキシメチルシリル-プロピル)―1,4-ジメチルピペラジン、5-(3-トリエトキシシリル-プロピル)―1,3-ジプロピルヘキサヒドロピリミジン、5-(3-ジエトキシエチルシリル-プロピル)―1,3-ジエチルヘキサヒドロピリミジン、2-[3-(2-ジメチルアミノエチル)-2-(3-エチルジメトキシシリル-プロピル)―イミダゾリジン-1-イル]-エチル-ジメチルアミン、5-(3-トリメトキシシリル-プロピル)-1,3-ビス-(2-メトキシエチル)-ヘキサヒドロピリミジン、5-(3-エチルジメトキシシリル-プロピル)-1,3-ビス-(2-トリメチルシリルエチル)-ヘキサヒドロピリミジン、3-ジメチルアミノプロピルトリメトキシシラン、3-ジエチルアミノプロピルトリメトキシシラン、3-ジメチルアミノプロピルトリエトキシシラン、3-ジエチルアミノプロピルトリエトキシシラン、3-エチルメチルアミノプロピルトリメトキシシラン、3-エチルメチルアミノプロピルトリエトキシシラン、3-ジメチルアミノプロピルメチルジメトキシシラン、3-ジエチルアミノプロピルメチルジメトキシシラン、3-ジメチルアミノプロピルエチルジメトキシシラン、3-ジエチルアミノプロピルエチルジメトキシシラン、3-ジメチルアミノプロピルジメチルメトキシシラン、3-ジメチルアミノプロピルジエチルメトキシシラン、3-ジエチルアミノプロピルジメチルメトキシシラン、3-ジエチルアミノプロピルジエチルメトキシシラン、3-エチルメチルアミノプロピルメチルジメトキシシラン、3-メチル-3-エチルアミノプロピルエチルジメトキシシラン、3-ジメチルアミノプロピルメチルジエトキシシラン、3-ジエチルアミノプロピルメチルジエトキシシラン、3-ジメチルアミノプロピルエチルジエトキシシラン、3-ジエチルアミノプロピルエチルジエトキシシラン、3-ジメチルアミノプロピルジメチルエトキシシラン、3-ジメチルアミノプロピルジエチルエトキシシラン、3-ジエチルアミノプロピルジメチルエトキシシラン、3-ジエチルアミノプロピルジエチルエトキシシラン、3-エチルメチルアミノプロピルメチルジエトキシシラン、3-エチルメチルアミノプロピルエチルジエトキシシラン、3-ジ(メトキシメチル)アミノプロピルトリメトキシシラン、3-ジ(メトキシエチル)アミノプロピルトリメトキシシラン、3-ジ(メトキシメチル)アミノプロピルトリエトキシシラン、3-ジ(メトキシエチル)アミノプロピルトリエトキシシラン、3-ジ(エトキシエチル)アミノプロピルトリメトキシシラン、3-ジ(エトキシメチル)アミノプロピルトリメトキシシラン、3-ジ(エトキシエチル)アミノプロピルトリエトキシシラン、3-ジ(エトキシメチル)アミノプロピルトリエトキシシラン、3-ジ(トリメチルシリル)アミノプロピルトリメトキシシラン、3-ジ(トリメチルシリル)アミノプロピルトリエトキシシラン、3-ジ(t-ブチルジメチルシリル)アミノプロピルトリメトキシシラン、3-ジ(t-ブチルジメチルシリル)アミノプロピルトリエトキシシラン、3-ジ(トリメチルシリル)アミノプロピルメチルジメトキシシラン、3-ジ
(トリメチルシリル)アミノプロピルメチルジエトキシシラン、3-ジ(t-ブチルジメチルシリル)アミノプロピルメチルジメトキシシラン、3-ジ(t-ブチルジメチルシリル)アミノプロピルメチルジエトキシシラン、3-ジ(トリメチルシリル)アミノプロピルジメチルメトキシシラン、3-ジ(トリメチルシリル)アミノプロピルジメチルエトキシシラン、3-ジ(t-ブチルジメチルシリル)アミノプロピルジメチルメトキシシラン、3-ジ(t-ブチルジメチルシリル)アミノプロピルジメチルエトキシシラン、3-モルホリノプロピルトリメトキシシラン、3-モルホリノプロピルトリエトキシシラン、3-モルホリノプロピルメチルジメトキシシラン、3-モルホリノプロピルエチルジメトキシシラン、3-モルホリノプロピルメチルジエトキシシラン、3-モルホリノプロピルエチルジエトキシシラン、3-ピペリジノプロピルトリメトキシシラン、3-ピペリジノプロピルトリエトキシシラン、3-ピペリジノプロピルメチルジメトキシシラン、3-ピペリジノプロピルエチルジメトキシシラン、3-ピペリジノプロピルメチルジエトキシシラン、3-ピペリジノプロピルエチルジエトキシシラン、ビス[3-(トリエトキシシリル)プロピル]トリメチルシリルアミン、ビス[3-(トリメトキシシリル)プロピル]トリメチルシリルアミン等を挙げることができる。なお、好ましくは、N,N-ビス(トリエチルシリル)アミノプロピルメチルジメトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルメチルジメトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルトリエトキシシラン、1-(3-トリエトキシシリルプロピル)-2,2,5,5-テトラメチル-1-アザ-2,5-ジシラシクロペンタン、N,N’,N’-トリス(トリメチルシリル)-N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、1-トリメチルシリル-2,2-ジメトキシ-1-アザ-2-シラシクロペンタン、N-〔3-(トリメトキシシリル)-プロピル〕-N,N’-ジエチル-N’-トリメチルシリル-エタン-1,2-ジアミン、N-〔3-(トリエトキシシリル)-プロピル〕-N,N’-ジエチル-N’-トリメチルシリル-エタン-1,2-ジアミン、3-(4-トリメチルシリル-1-ピペラジノ)プロピルトリエトキシシラン、N-[2-(トリメトキシシリル)-エチル]-N,N’,N’-トリメチルエタン-1,2-ジアミン、1-[3-(トリエトキシシリル)-プロピル]-4-メチルピペラジン、2-(トリメトキシシリル)-1,3-ジメチルイミダゾリジン、2-(3-トリメトキシシリル-プロピル)-1,3-ジメチルイミダゾリジン、3-ジメチルアミノプロピルトリメトキシシラン、3-ジエチルアミノプロピルトリメトキシシラン、3-ジメチルアミノプロピルトリエトキシシラン、3-ジエチルアミノプロピルトリエトキシシラン、ビス[3-(トリエトキシシリル)プロピル]トリメチルシリルアミン、ビス[3-(トリメトキシシリル)プロピル]トリメチルシリルアミンである。
 イミノ基またはピリジル基と、アルコキシシリル基とを有する化合物としては、N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(1,3-メチルエチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-エチリデン-3-(トリエトキシシリル)-1-プロパンアミン、N-(1-メチルプロピリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(4-N,N-ジメチルアミノベンジリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(シクロヘキシリデン)-3-(トリエトキシシリル)-1-プロパンアミン及びこれらのトリエトキシシリル化合物に対応するトリメトキシシリル化合物、メチルジエトキシシリル化合物、エチルジメトキシシリル化合物、N-(3-トリメトキシシリルプロピル)-4,5-ジヒドロイミダゾール、N-(3-トリエトキシシリルプロピル)-4,5-ジヒドロイミダゾール、N-(3-トリメトキシシリルプロピル)-4,5-イミダゾール、N-(3-トリエトキシシリルプロピル)-4,5-イミダゾール、3-ヘキサメチレンイミノプロピルトリメトキシシラン、3-ヘキサメチレンイミノプロピルトリエトキシシラン、3-ヘキサメチレンイミノプロピルメチルジメトキシシラン、3-ヘキサメチレンイミノプロピルエチルジメトキシシラン、3-ヘキサメチレンイミノプロピルメチルジエトキシシラン、3-ヘキサメチレンイミノプロピルエチルジエトキシシラン等を挙げることができる。なお、好ましくは、N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(1-メチルプロピリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(3-トリメトキシシリルプロピル)-4,5-ジヒドロイミダゾール、N-(3-トリエトキシシリルプロピル)-4,5-ジヒドロイミダゾール、N-(3-トリメトキシシリルプロピル)-4,5-イミダゾール、N-(3-トリエトキシシリルプロピル)-4,5-イミダゾール、である。
 1級ホスフィンの2つの水素原子が2つの保護基によって置換されてなるリン含有基、2級ホスフィンの1つの水素原子が1つの保護基によって置換されてなるリン含有基、3級ホスフィノ基、またはチオールの1つの水素原子が1つの保護基によって置換されてなる硫黄含有基と、アルコキシシリル基とを有する化合物としては、P,P-ビス(トリメチルシリル)ホスフィノプロピルメチルジメトキシシラン、P,P-ビス(トリメチルシリル)ホスフィノプロピルトリメトキシシラン、P,P-ビス(トリメチルシリル)ホスフィノプロピルトリエトキシシラン、P,P-ビス(トリメチルシリル)ホスフィノプロピルメチルジエトキシシラン、P,P-ビス(トリメチルシリル)ホスフィノエチルトリメトキシシラン、P,P-ビス(トリメチルシリル)ホスフィノエチルトリエトキシシラン、P,P-ビス(トリメチルシリル)ホスフィノエチルメチルジメトキシシラン、P,P-ビス(トリメチルシリル)ホスフィノエチルメチルジエトキシシラン、3-ジメチルフォスフィノプロピルトリメトキシシラン、3-ジエチルフォスフィノプロピルトリメトキシシラン、3-ジメチルフォスフィノプロピルトリエトキシシラン、3-ジエチルフォスフィノプロピルトリエトキシシラン、3-エチルメチルフォスフィノプロピルトリメトキシシラン、3-エチルメチルフォスフィノプロピルトリエトキシシラン、3-ジメチルフォスフィノプロピルメチルジメトキシシラン、3-ジエチルフォスフィノプロピルメチルジメトキシシラン、3-ジメチルフォスフィノプロピルエチルジメトキシシラン、3-ジエチルフォスフィノプロピルエチルジメトキシシラン、3-ジメチルフォスフィノプロピルジメチルメトキシシラン、3-ジメチルフォスフィノプロピルジエチルメトキシシラン、3-ジエチルフォスフィノプロピルジメチルメトキシシラン、3-ジエチルフォスフィノプロピルジエチルメトキシシラン、3-エチルメチルフォスフィノプロピルメチルジメトキシシラン、3-エチルメチルフォスフィノプロピルエチルジメトキシシラン、3-ジメチルフォスフィノプロピルメチルジエトキシシラン、3-ジエチルフォスフィノプロピルメチルジエトキシシラン、3-ジメチルフォスフィノプロピルエチルジエトキシシラン、3-ジエチルフォスフィノプロピルエチルジエトキシシラン、3-ジメチルフォスフィノプロピルジメチルエトキシシラン、3-ジメチルフォスフィノプロピルジエチルエトキシシラン、3-ジエチルフォスフィノプロピルジメチルエトキシシラン、3-ジエチルフォスフィノプロピルジエチルエトキシシラン、3-エチルメチルフォスフィノプロピルメチルジエトキシシラン、3-エチルメチルフォスフィノプロピルエチルジエトキシシラン、3-ジフェニルフォスフィノプロピルトリメトキシシラン、3-ジフェニルフォスフィノプロピルトリエトキシシラン、3-ジフェニルフォスフィノプロピルメリルジメトキシシラン、3-ジフェニルフォスフィノプロピルメリルジエトキシシラン、S-トリメチルシリルメルカプトプロピルメチルジメトキシシラン、S-トリメチルシリルメルカプトプロピルトリメトキシシラン、S-トリメチルシリルメルカプトプロピルトリエトキシシラン、S-トリメチルシリルメルカプトプロピルメチルジエトキシシラン、S-トリメチルシリルメルカプトエチルトリメトキシシラン、S-トリメチルシリルメルカプトエチルトリエトキシシラン、S-トリメチルシリルメルカプトエチルメチルジメトキシシラン、S-トリメチルシリルメルカプトエチルメチルジエトキシシラン、等を挙げることができる。なお、好ましくは、3-ジフェニルフォスフィノプロピルトリメトキシシラン、3-ジフェニルフォスフィノプロピルトリエトキシシラン、-トリメチルシリルメルカプトプロピルメチルジメトキシシラン、S-トリメチルシリルメルカプトプロピルトリメトキシシラン、S-トリメチルシリルメルカプトプロピルトリエトキシシラン、S-トリメチルシリルメルカプトプロピルメチルジエトキシシラン、である。
 アルカリ金属もしくはアルカリ土類金属活性末端を有する共役ジエン系重合体と、第一のアルコキシシラン化合物を反応させることによって、アルカリ金属もしくはアルカリ土類金属活性末端の部位と2つ以上存在するアルコキシ基の中の1つの部位が結合して、オニウムになり得る基及び残余のアルコキシシリル基を有する変性共役ジエン系重合体を得ることができる。また、上記した第一のアルコキシシラン化合物は、アルカリ金属もしくはアルカリ土類金属からなる金属活性末端を有する共役ジエン系重合体と反応可能であり、ゴム組成物とした際に補強剤となるカーボンブラック及び/又はシリカと反応又は相互作用し、架橋ゴム組成物とした際に優れた低ヒステリシスロス特性を与えると言う観点から、いずれも同様の作用を有するものであり、後述の実施例に記載されていないものであっても、本発明において使用することが可能である。
 このような第一のアルコキシシラン化合物を、共役ジエン系重合体のアルカリ金属もしくはアルカリ土類金属活性末端に導入させる変性反応は、例えば、溶液反応(重合時に使用した未反応モノマーを含んだ溶液でもよい)で行うことができる。変性反応の形式については特に制限はなく、バッチ式反応器を用いて行ってもよく、多段連続式反応器やインラインミキサなどの装置を用いて連続式で行ってもよい。また、この変性反応は、重合反応終了後、脱溶媒処理、水処理、熱処理、重合体単離に必要な諸操作などを行う前に実施することが好ましい。
 この変性反応における第一のアルコキシシラン化合物の使用量は、アニオン重合により得られた共役ジエン系重合体の活性部位に対し、0.1モル当量以上加えることが好ましく、更に好ましくは、0.3モル当量以上である。0.1モル当量未満では、変性反応の進行が十分でなく、補強剤の分散性が充分に改良されず、架橋ゴム組成物とした際に引張強度、耐摩耗性、ウェットスキッド抵抗性及び、低ヒステリシスロス特性に劣ることがある。
 なお、変性剤である第一のアルコキシシラン化合物の添加方法は、特に制限されず、一括して添加する方法、分割して添加する方法、あるいは、連続的に添加する方法などが挙げられるが、一括して添加する方法が好ましい。また、第一のアルコキシシラン化合物は本明細書の段落0011に例示した共役ジエン系モノマー、段落0012に例示した芳香族ビニル化合物、段落0019に例示した炭化水素溶媒、段落0020に例示したランダマイザー、等を溶媒とする溶液で添加しても良い。
 変性反応の温度は、共役ジエン系重合体の重合温度をそのまま用いることができる。具体的には0~120℃が好ましい範囲として挙げられる。更に好ましくは、20~100℃である。温度が低くなると重合体の粘度が上昇する傾向があり、温度が高くなると重合活性末端が失活し易くなるので、上記数値範囲外の温度は好ましくない。また、一次変性反応における反応時間は、好ましくは1分~5時間、更に好ましくは2分~1時間である。
 共役ジエン系重合体を製造する際には、第一のアルコキシシラン化合物と併用してカップリング剤を添加することも可能である。カップリング剤の具体例は、以下のとおりである。なお、このカップリング剤は、上記した第一のアルコキシシラン化合物によって共役ジエン系重合体を変性する段階で添加される。
 すなわち、第一のアルコキシシラン化合物と併用して、重合活性末端に反応させるカップリング剤としては、(a)イソシアナート化合物及び/又はイソチオシアナート化合物、(b)アミド化合物及び/又はイミド化合物、(c)ピリジル置換ケトン化合物及び/又はピリジル置換ビニル化合物、(d)ケイ素化合物、(e)エステル化合物、(f)ケトン化合物、(g)スズ化合物、(h)エポキシ化合物、(i)リン酸エステル化合物、(j)酸無水物基含有化合物、(k)アリールビニル基含有化合物、並びに(l)ハロゲン化炭素基含有化合物からなる群より選ばれる少なくとも一種の化合物が挙げられる。
 これらの化合物のうち、(a)成分であるイソシアナート化合物又はイソチオシアナート化合物としては、2,4-トリレンジイソシアナート、2,6-トリレンジイソシアナート、ジフェニルメタンジイソシアナート、ポリメリックタイプのジフェニルメタンジイソシアナート(C-MDI)、イソホロンジイソシアナート、ヘキサメチレンジイソシアナート、1,3,5-ベンゼントリイソシアナート、フェニル-1,4-ジイソチオシアナート等を好適例として挙げることができる。
 (b)成分であるアミド化合物又はイミド化合物としては、コハク酸アミド、フタル酸アミド、N,N,N’,N’-テトラメチルフタル酸アミド、オキサミド、N,N,N’,N’-テトラメチルオキサミドなどのアミド化合物、コハク酸イミド、N-メチルコハクイミド、マレイミド、N-メチルマレイミド、フタルイミド、N-メチルフタルイミドなどのイミド化合物等を好適例として挙げることができる。
 (c)成分であるピリジル置換ケトン化合物又はピリジル置換ビニル化合物としては、ジベンゾイルピリジン、ジアセチルピリジン、ジビニルピリジン等を好適例として挙げることができる。
 (d)成分であるケイ素化合物としては、ジブチルジクロロケイ素、メチルトリクロロケイ素、メチルジクロロケイ素、テトラクロロケイ素、トリエトキシメチルシラン、トリフェノキシメチルシラン、トリメトキシシラン、メチルトリエトキシシラン、4,5-エポキシヘプチルメチルジメトキシシラン、ビス(トリエトキシシリルプロピル)テトラサルファイド等を好適例として挙げることができる。
 (e)成分であるエステル化合物としては、アジピン酸ジエチル、マロン酸ジエチル、フタル酸ジエチル、グルタル酸ジエチル、マレイン酸ジエチル等を好適例として挙げることができる。
 (f)成分であるケトン化合物の具体例としては、N,N,N’,N’-テトラメチル-4,4’-ジアミノベンゾフェノン、N,N,N’,N’-テトラエチル(4,4’-ジアミノ)-ベンゾフェノン、N,N-ジメチル-1-アミノベンゾキノン、N,N,N’,N’-テトラメチル-1,3-ジアミノベンゾキノン、N,N-ジメチル-1-アミノアントラキノン、N,N,N’,N’-テトラメチル-1,4-ジアミノアントラキノン等を好適例として挙げることができる。
 (g)成分であるスズ化合物としては、テトラクロロスズ、テトラブロムスズ、トリクロロブチルスズ、トリクロロメチルスズ、トリクロロオクチルスズ、ジブロムジメチルスズ、ジクロロジメチルスズ、ジクロロジブチルスズ、ジクロロジオクチルスズ、1,2-ビス(トリクロロスタニル)エタン、1,2-ビス(メチルジクロロスタニル)エタン、1,4-ビス(トリクロロスタニル)ブタン、1,4-ビス(メチルジクロロスタニル)ブタン、エチルスズトリステアレート、ブチルスズトリスオクタノエート、ブチルスズトリスステアレート、ブチルスズトリスラウレート、ジブチルスズビスオクタノエート、ジブチルスズビスステアレート、ジブチルスズビスラウレート等を好適例として挙げることができる。
 (h)成分であるエポキシ化合物としては、エチレングリコールジグリシジルエーテル、グリセリントリグリシジルエーテルなどの多価アルコールのポリグリシジルエーテル、ジグリシジル化ビスフェノールAなどの2個以上のフェニル基を有する芳香族化合物のポリグリシジルエーテル、1,4-ジグリシジルベンゼン、1,3,5-トリグリシジルベンゼン、ポリエポキシ化液状ポリブタジエンなどのポリエポキシ化合物、4,4’-ジグリシジル-ジフェニルメチルアミン、4,4’-ジグリシジル-ジベンジルメチルアミンなどのエポキシ基含有3級アミン、ジグリシジルアニリン、ジグリシジルオルソトルイジン、テトラグリシジルメタキシレンジアミン、テトラグリシジルアミノジフェニルメタン、テトラグリシジル-p-フェニレンジアミン、ジグリシジルアミノメチルシクロヘキサン、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン等のグリシジルアミノ化合物、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルトリブトキシシラン、エポキシ変性シリコーン、エポキシ化大豆油、エポキシ化亜麻仁油などのエポキシ基と他の官能基を有する化合物等を好適例として挙げることができる。
 (i)成分であるリン酸エステル化合物としては、トリクロルフォスフィン、トリブロモフォスフィンなどのポリハロゲン化リン化合物など、さらに、トリスノニルフェニルホスファイト、トリメチルホスファイト、トリエチルホスファイトなどの亜リン酸エステル化合物、トリメチルフォスフェイト、トリエチルフォスフェイト等を好適例として挙げることができる。
 (j)成分である酸無水物基含有化合物としては、無水ピロメリット酸、スチレン-無水マレイン酸共重合体等を好適例として挙げることができる。
 (k)成分であるアリールビニル基含有化合物としては、ジビニルベンゼン、ジイソプロペニルベンゼン、ジビニルベンゼンオリゴマー等を好適例として挙げることができる。
 (l)成分であるハロゲン化炭素基含有化合物としては、トリクロロプロパン、トリブロモプロパン、テトラクロロブタン等を好適例として挙げることができる。
 第一のアルコキシシラン化合物と併用して、重合活性末端に反応させるこれらの化合物は、一種単独で使用することも、あるいは二種以上を組み合わせて用いることもできる。
 上記カップリング剤の使用量は、重合開始剤のアルカリ金属もしくはアルカリ土類金属1グラム原子当量あたり、カップリング剤中のカップリング可能な置換基の量として1モル以下、好ましくは、0.1~0.5モルの量である。1モルを超えると、第一のアルコキシシラン化合物の反応率が低下し、架橋ゴム組成物とした際に優れた低ヒステリシスロス特性等が得られないことがある。
[工程(b)]
 工程(b)は、工程(a)で得られた変性共役ジエン系重合体と、オニウム生成剤と、アルコキシシリル基及びオニウム生成剤によってオニウムになり得る基を分子中に少なくとも1つ以上有する第二のアルコキシシラン化合物を混合する工程である。
 工程(b)としては、以下の3つの実施形態のいずれかを採用することができる。
[第一の実施形態]
 (b-1)工程(a)で得られた変性共役ジエン系重合体と、アルコキシシリル基及びオニウム生成剤によってオニウムになり得る基を分子中に少なくとも1つ以上有する第二のアルコキシシラン化合物を混合する工程と、(b-2)前記工程(b-1)で得られた混合物と、オニウム生成剤を混合する工程と、を含むもの
[第二の実施形態]
 (b-3)工程(a)で得られた変性共役ジエン系重合体と、オニウム生成剤を混合する工程と、(b-4)前記工程(b-3)で得られた混合物と、アルコキシシリル基及びオニウム生成剤によってオニウムになり得る基を分子中に少なくとも1つ以上有する第二のアルコキシシラン化合物を混合する工程と、を含むもの
[第三の実施形態]
 (b-5)工程(a)で得られた変性共役ジエン系重合体と、オニウム生成剤と、アルコキシシリル基及びオニウム生成剤によってオニウムになり得る基を分子中に少なくとも1つ以上有する第二のアルコキシシラン化合物を、同時に混合する工程、からなるもの
 工程(b)で用いられる各成分について説明する。
 第二のアルコキシシラン化合物におけるアルコキシシリル基としては、第一のアルコキシシラン化合物におけるアルコキシシリル基と同様のものが挙げられる。
 第二のアルコキシシラン化合物におけるアルコキシシリル基の数は、1つ以上であり、反応の効率性の観点から、好ましくは2つまたは3つ、より好ましくは3つである。
 第二のアルコキシシラン化合物におけるオニウムになり得る基としては、1級アミノ基、2級アミノ基、3級アミノ基、イミノ基、ピリジル基、1級ホスフィノ基、2級ホスフィノ基、3級ホスフィノ基、チオール基等が挙げられる。この第二のアルコキシシラン化合物は、一種を単独で用いてよく、二種以上を組み合わせて用いてもよい。
 1級アミノ基、2級アミノ基、3級アミノ基、イミノ基、ピリジル基、1級ホスフィノ基、2級ホスフィノ基、3級ホスフィノ基、またはチオール基と、アルコキシシリル基とを有する化合物としては、前記工程(a)で例示された第一のアルコキシシラン化合物に加え、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-メルカプトメチルトリメトキシシラン、3-メルカプトメチルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、アミノフェニルトリメトキシシラン、アミノフェニルトリエトキシシラン、3-(N-メチルアミノ)プロピルトリメトキシシラン、3-(N-メチルアミノ)プロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、2-(6-アミノヘキシル)アミノプロピルトリメトキシシラン、特開2006-249069号公報に例示されているメルカプトシラン化合物、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルトリブトキシシラン、エポキシ変性シリコーン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルメチルジエトキシシラン等を挙げることができる。
 このような第二のアルコキシシラン化合物と他の成分(例えば、工程(a)で得られた変性共役ジエン系重合体)の混合は、例えば、溶液の形態で行うことができる。混合の形式については特に制限はなく、バッチ式混合器を用いて行ってもよく、多段連続式混合器やインラインミキサなどの装置を用いて連続式で行ってもよい。また、この混合反応は、重合反応終了後、脱溶媒処理、水処理、熱処理、重合体単離に必要な諸操作などを行う前に実施することが好ましい。
 この混合における第二のアルコキシシラン化合物の使用量は、アニオン重合により得られた共役ジエン系重合体の活性部位に対し、0.2モル当量以上であることが好ましく、更に好ましくは、0.3モル当量以上である。0.2モル当量未満では、オニウム化に伴う第二のアルコキシシラン化合物の取込が十分でなく、補強剤の分散性が充分に改良されず、架橋ゴム組成物とした際に引張強度、耐摩耗性、ウェットスキッド抵抗性及び、低ヒステリシスロス特性に劣ることがある。また、第二のアルコキシシラン化合物は、第一のアルコキシシラン化合物と兼用することもできる。この場合、アニオン重合により得られた共役ジエン系重合体の活性部位に対し、1.2モル当量以上の第一のアルコキシシラン化合物を用いればよい。
なお、変性剤である第二のアルコキシシラン化合物の添加方法は、特に制限されず、一括して添加する方法、分割して添加する方法、あるいは、連続的に添加する方法などが挙げられるが、一括して添加する方法が好ましい。また、第二のアルコキシシラン化合物は、明細書の段落0019に例示した炭化水素溶媒、明細書の段落0020に例示したランダマイザー等を溶媒とする溶液で添加しても良い。
 第二のアルコキシシラン化合物と他の成分(例えば、工程(a)で得られた変性共役ジエン系重合体)を混合するときの温度は、共役ジエン系重合体の重合温度をそのまま用いることができる。具体的には0~120℃が好ましい範囲として挙げられる。更に好ましくは、20~100℃である。温度が低くなると重合体の粘度が上昇する傾向があり、温度が高くなると重合活性末端が変質し易くなるので、前記数値範囲外の温度は好ましくない。また、混合時間は、好ましくは1分~5時間、更に好ましくは2分~1時間である。
 オニウム生成剤としては、ハロゲン化ケイ素化合物、ハロゲン化スズ化合物、ハロゲン化アルミニウム化合物、ハロゲン化チタン化合物、ハロゲン化ジルコニウム化合物、ハロゲン化ゲルマニウム化合物、ハロゲン化ガリウム化合物、ハロゲン化亜鉛化合物等のハロゲン化金属、硫酸エステル、リン酸エステル、炭酸エステル、硝酸エステル等の無機酸のエステル、弗酸、塩酸、臭酸、沃酸、硫酸、硝酸、炭酸、燐酸等の無機酸、フッ化カリウム、フッ化テトラメチルアンモニウム、フッ化テトラ-n-ブチルアンモニウム等の無機酸塩、カルボン酸、スルホン酸等の有機酸等が挙げられる。化合物の入手し易さ、および、取り扱いのし易さから、ハロゲン化ケイ素化合物、ハロゲン化スズ化合物、ハロゲン化アルミニウム化合物、ハロゲン化チタン化合物、ハロゲン化ジルコニウム化合物、ハロゲン化ゲルマニウム化合物、ハロゲン化ガリウム化合物、ハロゲン化亜鉛化合物、硫酸エステル、リン酸エステル、カルボン酸、及び、スルホン酸がより好ましい。
 オニウム生成剤の化合物の例としては、四塩化ケイ素、四塩化スズ、トリメチルシリルクロライド、ジメチルジクロロシラン、メチルトリクロロシラン、メチルジクロロシラン、ジエチルアルミニウムクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライド、塩化亜鉛、四塩化チタン、チタノセンジクロライド、四塩化ジルコニウム、ジルコノセンジクロライド、四塩化ゲルマニウム、三塩化ガリウム、硫酸ジエチル、硫酸ジメチル、ラウレス硫酸マグネシウム、リン酸トリメチル、リン酸トリエチル、リン酸トリブチル、リン酸2-エチルヘキシル、リン酸トリフェニル、リン酸トリクレシル、炭酸ジメチル、炭酸ジエチル、炭酸エチレン、炭酸プロピレン、ニトロセルロース、ニトログリセリン、ニトログリコール、蟻酸、酢酸、シュウ酸、マレイン酸、クエン酸、リンゴ酸、フマル酸、マロン酸、アクリル酸、クロトン酸、コハク酸、グルタル酸、イタコン酸、酒石酸、セバチン酸、テレフタル酸、イソフタル酸、β-メルカプトプロピオン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、弗酸、塩酸、臭酸、沃酸、硫酸、硝酸、炭酸、燐酸、フッ化カリウム、フッ化テトラメチルアンモニウム、フッ化テトラ-n-ブチルアンモニウム等が挙げられる。
 これらのオニウム生成剤は、オニウムになり得る基をオニウム化させることが可能であると言う観点から、いずれも同様の作用を有するものであり、後述の実施例に記載されていないものであっても、本発明において使用することが可能である。
 オニウム生成剤と他の成分(例えば、工程(a)で得られた変性共役ジエン系重合体と、第二のアルコキシシラン化合物との混合物)の混合は、例えば、溶液で行うことができる。混合の形式については特に制限はなく、バッチ式混合器を用いて行ってもよく、多段連続式混合器やインラインミキサなどの装置を用いて連続式で行ってもよい。
 オニウム生成剤の使用量は、アニオン重合により得られた共役ジエン系重合体の活性部位に対し、0.5モル当量以上であることが好ましく、更に好ましくは、1.0モル当量以上である。0.5モル当量未満では、オニウム化が十分に進行せず、ゴムの形状保持性に劣ることがある。
 オニウム生成剤の添加方法は、特に制限されず、一括して添加する方法、分割して添加する方法、あるいは、連続的に添加する方法などが挙げられるが、一括して添加する方法が好ましい。また、オニウム生成剤は、明細書の段落0019に例示した炭化水素溶媒、明細書の段落0020に例示したランダマイザー等を溶媒とする溶液で添加しても良い。
 オニウム生成剤と他の成分(例えば、工程(a)で得られた変性共役ジエン系重合体と、第二のアルコキシシラン化合物との混合物)を混合するときの温度は、共役ジエン系重合体の重合温度をそのまま用いることができる。具体的には0~120℃が好ましい範囲である。更に好ましくは、20~100℃である。温度が低くなると重合体の粘度が上昇する傾向があり、温度が高くなると重合活性末端が変質し易くなるので、前記の数値範囲外の温度は好ましくない。また、混合時間は、好ましくは1分~5時間、更に好ましくは2分~1時間である。
 なお、本発明の変性共役ジエン系ゴムの製造方法においては、オニウム生成剤を加えた後、共役ジエン系重合体の製造における公知の脱溶媒(例えば、スチームストリッピング等)及び乾燥の操作により、変性共役ジエン系重合体を回収することができる。
 オニウム生成剤と水を接触させ、オニウム構造を形成させる方法としては、特に制限はなく、例えば、(i)工程(b)の後に重合体溶液中に水を直接添加して混合する方法、(ii)工程(b)の後に、アルコール等の水及び有機溶剤の両方に溶解可能な有機溶剤に水を溶解させてなるものを重合体溶液中に添加して混合する方法、(iii)工程(b)の後のスチームストリッピングの工程で脱溶媒と同時に、重合体溶液及び/又は重合体と、水を混合する方法、が好ましく、中でも、(iii)工程(b)の後のスチームストリッピングの工程で脱溶媒と同時に、重合体溶液及び/又は重合体と、水を混合する方法が、効率的なオニウム構造形成の観点から特に好ましい。
 また、反応時の温度は、30~150℃であることが好ましく、80~120℃であることが更に好ましい。
 この工程で使用される変性共役ジエン系重合体は、変性共役ジエン系重合体を調製する際に得られた重合体溶液を、脱溶媒しないまま、重合体溶液の状態で用いてもよいし、上記重合体溶液を、スチームストリッピング等により脱溶媒を行い、更に乾燥して得られた共役ジエン系重合体を、シクロヘキサン等の溶媒に再度溶解させて用いてもよい。
[2]変性共役ジエン系ゴム:
 本実施形態の変性共役ジエン系ゴムは、これまでに説明した変性共役ジエン系ゴムの製造方法によって得られた変性共役ジエン系ゴムである。このような変性共役ジエン系ゴムは、ムーニー粘度が高く、形状安定性に優れ、加工性が良好なものである。本実施形態の変性共役ジエン系ゴムのムーニー粘度(ML1+4,100℃)は、30~150であることが好ましく、40~120であることが更に好ましい。ムーニー粘度(ML1+4,100℃)が30未満であると、形状安定性が低下する傾向にある。一方、ムーニー粘度(ML1+4,100℃)が150を超えるものであると、作業性が悪くなり、配合剤とともに混練りすることが困難になることがある。なお、ムーニー粘度が高過ぎる場合は、通常伸展油で油展してこの範囲とする。伸展油としては、アロマ油、ナフテン油、パラフィン油、さらに、IP346の方法によるPCA3質量%以下のアロマ代替油が好ましく用いられる。伸展油の使用量は任意であるが、通常は、変性共役ジエン系ゴム100質量部に対し、10~50質量部である。使用する場合、一般的には20~37.5質量部の配合量で用いられることが多い。また、オイルの製造工程による分類においては、T-DAE(Treated Distillate Aromatic Extract)油、T-RAE(Treated Residual Aromatic Extract)油、MES(Mild Extract Solvate)油、RAE(Residual Aromatic Extract)油などが好適に使用できる。
[3]ゴム組成物:
 本発明のゴム組成物の一実施形態は、ゴム成分として前述の変性共役ジエン系重合体を含むものである。以下、その詳細について説明する。
[3-1]ゴム成分:
 本実施形態のゴム組成物に含有されている変性共役ジエン系ゴムは、前述の変性共役ジエン系重合体を含むものである。変性共役ジエン系ゴム中の変性共役ジエン系重合体の含有割合は、20質量%以上であることが好ましく、30質量%以上であることが更に好ましく、40質量%以上であることが特に好ましい。該含有割合を20質量%以上とすれば、架橋ゴム組成物の引張強さ、引張伸び等の機械的特性、耐亀裂成長性、及び耐摩耗性をより良好なものとすることができる。
 また、変性共役ジエン系ゴムには、一種類の変性共役ジエン系重合体が含有されていても、二種類以上の変性共役ジエン系重合体が含有されていてもよい。また、変性共役ジエン系重合体以外にも、他のゴム成分が含有されていてもよい。他のゴム成分としては、天然ゴム、合成イソプレンゴム、ブタジエンゴム、変性ブタジエンゴム、スチレン-ブタジエンゴム、変性スチレン-ブタジエンゴム、エチレン-α-オレフィン共重合ゴム、エチレン-α-オレフィン-ジエン共重合ゴム、アクリロニトリル-ブタジエン共重合ゴム、クロロプレンゴム、ハロゲン化ブチルゴム、スチレン-イソプレン共重合ゴム、ブタジエン-イソプレン共重合体ゴム、ランダムスチレン-ブタジエン-イソプレン共重合ゴム、スチレン-アクリロニトリル-ブタジエン共重合ゴム、アクリロニトリル-ブタジエン共重合ゴム、及び、ポリスチレン-ポリブタジエン-ポリスチレンブロック共重合体、並びにこれらの混合物等を挙げることができ、タイヤ用ゴム組成物として公知に使用可能な他のゴム成分が含有されていても、低ヒステリシスロス特性に優れた架橋ゴムを製造することが可能である。
[3-2]その他の成分(カーボンブラック、シリカ):
 本実施形態のゴム組成物は、カーボンブラック及び/又はシリカを更に含有するものであることが好ましい。カーボンブラックの具体例としては、SRF、GPF、FEF、HAF、ISAF、SAF、ISAF-HS、ISAF-LS、IISAF-HS、HAF-HS、HAF-LSに代表されるファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイト、さらに、グラファイト繊維、フラーレン等の各グレードのカーボンブラックを挙げることができる。また、ヨウ素吸着量(IA)が60mg/g以上であり、ジブチルフタレート吸油量(DBP)が80ml/100g以上のカーボンブラックが好ましい。カーボンブラックを用いることにより、架橋ゴム組成物のグリップ性能、及び耐破壊特性の改良効果は大きくなる。なお、耐摩耗性に優れるHAF、ISAF、SAFが特に好ましい。カーボンブラックは、単独で又は二種以上を組み合わせて用いることができる。
 シリカの具体例としては、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、コロイダルシリカ、沈降シリカ、ケイ酸カルシウム、ケイ酸アルミニウム等を挙げることができる。これらのうち、耐破壊特性の改良効果、ウェットグリップ性、及び低転がり抵抗性の両立効果が最も顕著である湿式シリカが好ましい。また、高分散型(High Dispersible Type)のシリカを使用することも、ゴムへの分散性を良好にし、物性、加工性の面で好ましい。シリカは、単独で又は二種以上を組み合わせて用いることができる。
 本実施形態のゴム組成物は、ゴム成分(変性共役ジエン系ゴム及び他のゴム成分の合計)100質量部に対して、カーボンブラック及び/又はシリカを20~130質量部含有するものであることが好ましく、補強性とそれによる諸物性の改良効果の観点から、25~110質量部含有するものであることが更に好ましい。なお、カーボンブラック及び/又はシリカの含有割合が少ないと、耐破壊特性等の向上効果が不十分となる傾向にあり、カーボンブラック及び/又はシリカの含有割合が多いと、ゴム組成物の加工性が低下する傾向にあるため、該含有割合は前記数値範囲内であることが好ましい。また、本発明の共重合ゴムにカーボン-シリカ デュアル・フェイズ・フィラー(Dual Phase Filler)を配合することにより、カーボンブラックとシリカを併用したときと同様の優れた利点を得ることができる。カーボン-シリカ デュアル・フェイズ・フィラーは、カーボンブラックの表面に、シリカを化学結合させた、いわゆるシリカ・コーティング・カーボンブラックであり、キャボット社から商品名CRX2000、CRX2002、CRX2006として販売されている。カーボン-シリカ デュアル・フェイズ・フィラーの配合量は、ゴム成分の合計100質量部に対して、好ましくは1~100質量部、より好ましくは5~95質量部である。
 本実施形態のゴム組成物に、補強剤としてシリカを含有させる場合、補強効果を更に向上させるために、シランカップリッグ剤を配合することが好ましい。このシランカップリング剤としては、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾリルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、3-メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾリルテトラスルフィド、特開2006-249069号公報に例示されているメルカプトシラン化合物などを挙げることができる。
 市販品としては、例えば、モメンティブ パーフォーマンス マテリアルズ社製の商品名「NXT シラン」、「NXT Z シラン」、「NXT-Low-V シラン」、「NXT Ultra Low-V シラン」、デグザ社製の商品名「VP Si363」、gelest社製の商品名「11-MERCAPTOUNDECYLTRIMETHOXYSILANE」などを挙げることができる。
 これらのうち、補強性の改善効果等の点から、ビス(3-トリエトキシシリルプロピル)ポリスルフィド、3-トリメトキシシリルプロピルベンゾチアジルテトラスルフィド、特開2006-249069号公報に例示されているメルカプトシラン化合物が好適である。なお、これらのシランカップリング剤は、単独で又は二種以上組み合わせて用いることができる。シランカップリング剤の配合量は、シランカップリング剤の種類等により異なるが、シリカ100質量部に対して、1~20質量部とすることが好ましく、3~15質量部とすることが更に好ましい。1質量部未満であると、カップリング剤としての効果が十分に発揮され難くなる傾向にある。一方、20質量部を超えると、ゴム成分がゲル化し易くなる傾向にある。
 本発明のゴム組成物の各種配合剤は、特に限定されないが、混練り時の加工性改良、あるいはウェットスキッド抵抗性、低ヒステリシスロス特性、耐摩耗性のバランスをさらに向上させる目的で、相溶化剤を混練り時に添加することもできる。好ましい相溶化剤は、エポキシ基含有化合物、カルボン酸化合物、カルボン酸エステル化合物、ケトン化合物、エーテル化合物、アルデヒド化合物、水酸基含有化合物およびアミノ基含有化合物から選択される有機化合物であるか、またはアルコキシシラン化合物、シロキサン化合物およびアミノシラン化合物から選択されるシリコーン化合物であり、相溶化剤の有機化合物の具体例として、下記の化合物が挙げられる。
エポキシ基含有化合物:ブチルグリシジルエーテル、ジグリシジルエーテル、酸化プロピレン、ネオペンチルグリコールシグリシジルエーテル、エポキシ樹脂、エポキシ化大豆油、エポキシ化脂肪酸エステルなど。
カルボン酸化合物:アジピン酸、オクチル酸、メタクリル酸など。
カルボン酸エステル化合物:アクリル酸エステル、アクリル酸ジエチレン、メタクリル酸エチル、オルト酢酸エステル、アセト酢酸エチル、酢酸ブチル、酢酸イソプロピル、ジメチルカーボネート、p-ヒドロキシフェニル酢酸、ポリエステル系可塑剤、ステアリン酸系可塑剤など。
ケトン化合物:メチルシクロヘキサノン、アセチルアセトンなど。
エーテル化合物:イソプロピルエーテル、ジブチルエーテルなど。
アルデヒド化合物:ウンデシレンアルデヒド、デシルアルデヒド、バニリン、3,4-ジメトキシベンズアルデヒド、クミンアルデヒドなど。
アミノ基含有化合物:イソプロピルアミン、ジイソプロピルアミン、トリエチルアミン、3-エトキシプロピルアミン、2-エチルヘキシルアミン、イソプロパノールアミン、N-エチルエチレンジアミン、エチレンイミン、ヘキサメチレンジアミン、3-ラウリルオキシプロピルアミン、アミノフェノール、アニリン、3-イソプロポキシアニリン、フェニレンジアミン、アミノピリジン、N-メチルジエタノールアミン、N-メチルエタノールアミン、3-アミノ-1-プロパノール、塩酸エチルアミン、塩酸-n-ブチルアミンなど。水酸基含有化合物:イソプロピルアルコール、ブタノール、オクタノール、オクタンジオール、エチレングリコール、メチルシクロヘキサノール、2-メルカプトエタノール、3-メチル-3-メトキシ-1-ブタノール、3-メチル-1,5-ペンタンジオール、1-オクタデカノール、ジエチレングリコール、ブチレングリコール、ジブチレングリコール、トリエチレングリコールなど。
 なかでも、エポキシ基含有化合物、アミノ基含有化合物、水酸基含有化合物が好ましい。
 相溶化剤のシリコーン化合物の具体例としては、下記の化合物が挙げられる。
アルコキシシラン化合物:トリメチルメトキシシラン、トリメチルエトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、メチルトリフェノキシシラン、テトラエトキシシラン、メチルジエトキシシラン、ビニルトリメトキシシランなど。
シロキサン化合物:ジメチルシロキサンオリゴマー、シリコーンオイル、アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルボキシル変性シリコーンオイル、ポリエーテル変性シリコーンオイル、アルキル変性シリコーンオイル、高級脂肪酸エステル変性シリコーンオイル、高級アルコキシ変性シリコーンオイル、高級脂肪酸含有シリコーンオイルなど。
アミノシラン化合物:ヘキサメチルジシラザン、ノナメチルトリシラザン、アニリトリメチルシラン、ビス(ジメチルアミノ)ジメチルシラン、ビス(ジエチルアミノ)ジメチルシラン、トリエチルアミノシランなど。なかでもシラザン化合物、ビス(ジメチルアミノ)ジメチルシランが好ましい。
 本実施形態のゴム組成物には、本発明の目的が損なわれない範囲で、所望により、ゴム工業界で通常用いられている各種の薬品や添加剤等を加えることができる。本実施形態のゴム組成物に加えることのできる各種薬品や添加剤等としては、例えば、架橋剤(例えば、加硫剤)、加硫助剤、加工助剤、加硫促進剤、プロセス油、老化防止剤、スコーチ防止剤、亜鉛華、ステアリン酸等を挙げることができる。
 加硫剤としては、硫黄、ハロゲン化硫黄、有機過酸化物、キノンジオキシム類、有機多価アミン化合物、メチロール基を有するアルキルフェノール樹脂などが挙げられる。
 上記加硫剤の中でも、通常は硫黄が使用される。その使用量は、変性共役ジエン系ゴム(原料ゴム;ゴム成分)100質量部に対して、0.1~5質量部であることが好ましく、0.5~3質量部であることが更に好ましい。加硫助剤及び加工助剤としては、一般的にステアリン酸が用いられる。加硫助剤及び加工助剤の使用量は、変性共役ジエン系ゴム100質量部に対して、通常、0.5~5質量部である。
 また、加硫促進剤は、特に限定されないが、スルフェンアミド系、グアニジン系、チウラム系、チオウレア系、チアゾール系、ジチオカルバミン酸系、キサントゲン酸系の化合物が挙げられ、好ましくは2-メルカプトベンゾチアゾール、ジベンゾチアジルジサルファイド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド、ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビスグアニジンなどを挙げることができる。加硫促進剤の使用量は、変性共役ジエン系ゴム100質量部に対して、通常、0.1~5質量部であり、0.4~4質量部であることが好ましい。
 本発明のゴム組成物は、ロールをはじめとする開放式混練機、バンバリーミキサーをはじめとする密閉式混練機等の混練機を使用し、混練することによって製造することができる。また、成形加工後に架橋(加硫)することによって、各種ゴム製品に適用可能である。本実施形態の架橋ゴム組成物(架橋後のゴム組成物)は、例えば、タイヤトレッド、アンダートレッド、カーカス、サイドウォール、ビード部等のタイヤ用途;防振ゴム、防舷材、ベルト、ホース、その他の工業品等の用途に好適である。本実施形態の架橋ゴム組成物は、特に、タイヤトレッド用ゴムとして好適に使用される。
 本発明において、変性共役ジエン系重合体(工程(a)で得られるもの)、変性共役ジエン系ゴム(工程(b)で得られるもの)、ゴム組成物、架橋ゴム組成物の各々の物性等は、以下のとおりである。
 変性前の共役ジエン系重合体の、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算の重量平均分子量は、変性共役ジエン系ゴムの形状安定性とゴム組成物を製造する際の作業性のバランスを維持する観点から、好ましくは1~150万、より好ましくは5万~100万、特に好ましくは10万~80万である。
 変性共役ジエン系ゴムのガラス転移温度は、得られる架橋ゴム組成物の低ヒステリシスロス特性とウェットスキッド抵抗性のバランスを維持する観点から、好ましくは0℃以下、より好ましくは-5℃以下、特に好ましくは-10℃以下である。
 変性共役ジエン系ゴムのムーニー粘度(ML1+4,100℃)は、変性共役ジエン系ゴムの形状安定性とゴム組成物を製造する際の作業性のバランスを維持する観点から、好ましくは30~150、より好ましくは40~120である。
 変性共役ジエン系ゴムのコールドフロー値(mg/分)は、変性共役ジエン系ゴムの形状安定性の観点から、好ましくは1.5以下、より好ましくは1.0以下、特に好ましくは0.5以下である。
 ゴム組成物のムーニー粘度(ML1+4,100℃)は、タイヤを作成する際の作業性の観点から、好ましくは20~150、より好ましくは30~130、特に好ましくは40~110である。
 架橋ゴムの引張強度(JIS K 6301、300%モジュラス)の指数は、好ましくは100以上、より好ましくは103以上である。
 架橋ゴムの0℃でのtanδの指数は、好ましくは125以上、より好ましくは130以上である。
 架橋ゴムの70℃でのtanδの指数は、好ましくは130以上、より好ましくは135以上である。
 架橋ゴムの耐摩耗性の指数(JIS K 6264、荷重10N、25℃)は、好ましくは105以上、より好ましくは107以上、特に好ましくは109以上である。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。また、各種物性値の測定方法を以下に示す。
[結合スチレン含量(%)]:500MHzのH-NMRによって求めた。
[ビニル含量(%)]:500MHzのH-NMRによって求めた。
[ガラス転移温度(℃)]:ASTM D3418に準拠して測定した。
[変性前分子量]:ゲルパーミエーションクロマトグラフィー(GPC)(HLC-8120GPC(商品名(東ソー社製)))を使用して得られたGPC曲線の最大ピークの頂点に相当する保持時間から、ポリスチレン換算で求めた。
(GPCの条件)
  カラム;商品名「GMHHXL」(東ソー社製)2本
  カラム温度;40℃
  移動相;テトラヒドロフラン
  流速;1.0ml/分
  サンプル濃度;10mg/20ml
[ムーニー粘度(ML1+4,100℃)]:JIS K6300に準拠し、Lローターを使用して、予熱1分、ローター作動時間4分、温度100℃の条件で求めた。
[コールドフロー値]:共重合体を温度50℃に保持し、圧力24.1kPaの条件で、6.35mmのオリフィスから押し出した。押し出された時点から10分後(押し出し速度が一定になった後)に、90分間、共重合体の30分毎の押し出し量(mg)を測定し、その平均値をコールドフロー値(mg/分)とした。数値が大きいほど、ゴムの形状安定性が悪く、取扱いが困難となる。
実施例1〔変性共役ジエン系ゴムAの合成、およびその評価〕
 窒素置換された内容積5リットルのオートクレーブ反応器に、シクロヘキサン2,750g、テトラヒドロフラン50.0g、スチレン125g、1,3-ブタジエン365gを仕込んだ。反応器内容物の温度を10℃に調整した後、n-ブチルリチウム(5.80mmol)を含むシクロヘキサン溶液を添加して重合を開始した。重合は断熱条件で実施し、最高温度は85℃に達した。
 重合転化率が99%に達した時点で、ブタジエン10gを追加し、さらに5分重合させた後、変性前分子量測定用に10gのポリマー溶液をサンプリングし、N,N-ビス(トリエチルシリル)アミノプロピルメチルジメトキシシラン(4.96mmol)を含むシクロヘキサン溶液を加えて15分間反応を行った。反応後の重合体溶液に、3-アミノプロピルトリエトキシシラン(4.96mmol)を含むシクロヘキサン溶液を加えて5分間混合後、更に四塩化ケイ素(3.93mmol)を含むシクロヘキサン溶液を加えて5分間混合を行った。次に、得られたポリマー溶液に2,6-ジ-tert-ブチル-p-クレゾール2.0gを添加した。次いで、水酸化ナトリウムでpH=9に調整した熱水を用いてスチームストリッピングを行うことにより脱溶媒を行い、110℃に調温された熱ロールによりゴムを乾燥し、変性共役ジエン系ゴムAを得た。
 変性共役ジエン系ゴムAの重合処方を表1に、得られた変性共役ジエン系ゴムAの性質を表2に示す。また、変性共役ジエン系ゴムAを用いて、表3に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例2〔変性共役ジエン系ゴムBの合成、およびその評価〕
 実施例1で、N,N-ビス(トリエチルシリル)アミノプロピルメチルジメトキシシランの代わりにN,N’,N’-トリス(トリメチルシリル)-N-(2-アミノエチル)-3-アミノプロピルトリエトキシシランに、四塩化ケイ素の添加量を3.93mmolから5.17mmolに変更した以外は実施例1と同様の方法で、変性共役ジエン系ゴムBを得た。
 変性共役ジエン系ゴムBの重合処方を表1に、得られた変性共役ジエン系ゴムBの性質を表2に示す。また、変性共役ジエン系ゴムBを用いて、表3に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例3〔変性共役ジエン系ゴムCの合成、およびその評価〕
 窒素置換された内容積5リットルのオートクレーブ反応器に、シクロヘキサン2,750g、テトラヒドロフラン10.3g、スチレン50g、1,3-ブタジエン440gを仕込んだ。反応器内容物の温度を10℃に調整した後、n-ブチルリチウム(5.80mmol)を含むシクロヘキサン溶液を添加して重合を開始した。重合は断熱条件で実施し、最高温度は90℃に達した。
 重合転化率が99%に達した時点で、ブタジエン10gを追加し、さらに5分重合させた後、変性前分子量測定用に10gのポリマー溶液をサンプリングし、1-(3-トリエトキシシリルプロピル)-2,2,5,5-テトラメチル-1-アザ-2,5-ジシラシクロペンタン(2.48mmol)を含むシクロヘキサン溶液を加えて15分間反応を行った。反応後の重合体溶液に、3-アミノプロピルトリエトキシシラン(2.48mmol)を含むシクロヘキサン溶液を加えて5分間混合後、更に四塩化ケイ素(2.69mmol)を含むシクロヘキサン溶液を加えて5分間混合を行った。次に、得られたポリマー溶液に2,6-ジ-tert-ブチル-p-クレゾール2.0gを添加した。次いで、硫酸でpH=5に調整した熱水を用いてスチームストリッピングを行うことにより脱溶媒を行い、110℃に調温された熱ロールによりゴムを乾燥し、変性共役ジエン系ゴムCを得た。
 変性共役ジエン系ゴムCの重合処方を表1に、得られた変性共役ジエン系ゴムCの性質を表2に示す。また、変性共役ジエン系ゴムCを用いて、表3に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例4〔変性共役ジエン系ゴムDの合成、およびその評価〕
 実施例2で、N,N’,N’-トリス(トリメチルシリル)-N-(2-アミノエチル)-3-アミノプロピルトリエトキシシランの代わりにN-〔3-(トリメトキシシリル)-プロピル〕-N,N’-ジエチル-N’-トリメチルシリル-エタン-1,2-ジアミンに変更した以外は実施例2と同様の方法で、変性共役ジエン系ゴムDを得た。
 変性共役ジエン系ゴムDの重合処方を表1に、得られた変性共役ジエン系ゴムDの性質を表2に示す。また、変性共役ジエン系ゴムDを用いて、表3に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例5〔変性共役ジエン系ゴムEの合成、およびその評価〕
 実施例2で、N,N’,N’-トリス(トリメチルシリル)-N-(2-アミノエチル)-3-アミノプロピルトリエトキシシランの代わりに3-(4-トリメチルシリル-1-ピペラジノ)プロピルトリエトキシシランに変更した以外は実施例2と同様の方法で、変性共役ジエン系ゴムEを得た。
 変性共役ジエン系ゴムEの重合処方を表1に、得られた変性共役ジエン系ゴムEの性質を表2に示す。また、変性共役ジエン系ゴムEを用いて、表3に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例6〔変性共役ジエン系ゴムFの合成、およびその評価〕
 実施例1で、N,N-ビス(トリエチルシリル)アミノプロピルメチルジメトキシシラン(4.96mmol)の代わりにビス[3-(トリエトキシシリル)プロピル]トリメチルシリルアミン(2.48mmol)に、四塩化ケイ素の添加量を3.93mmolから3.31mmolに変更した以外は実施例1と同様の方法で、変性共役ジエン系ゴムFを得た。
 変性共役ジエン系ゴムFの重合処方を表1に、得られた変性共役ジエン系ゴムFの性質を表2に示す。また、変性共役ジエン系ゴムFを用いて、表3に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例7〔変性共役ジエン系ゴムGの合成、およびその評価〕
 実施例1で、N,N-ビス(トリエチルシリル)アミノプロピルメチルジメトキシシランの代わりに3-ジエチルアミノプロピルトリエトキシシランに変更した以外は実施例1と同様の方法で、変性共役ジエン系ゴムGを得た。
 変性共役ジエン系ゴムGの重合処方を表1に、得られた変性共役ジエン系ゴムGの性質を表2に示す。また、変性共役ジエン系ゴムGを用いて、表3に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例8〔変性共役ジエン系ゴムHの合成、およびその評価〕
 実施例1で、N,N-ビス(トリエチルシリル)アミノプロピルメチルジメトキシシランの代わりにS-トリメチルシリルメルカプトプロピルトリエトキシシランに変更した以外は実施例1と同様の方法で、変性共役ジエン系ゴムHを得た。
 変性共役ジエン系ゴムHの重合処方を表1に、得られた変性共役ジエン系ゴムHの性質を表2に示す。また、変性共役ジエン系ゴムHを用いて、表3に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例9〔変性共役ジエン系ゴムIの合成、およびその評価〕
 実施例1で、N,N-ビス(トリエチルシリル)アミノプロピルメチルジメトキシシランの代わりに3-ジフェニルフォスフィノプロピルトリメトキシシランに変更した以外は実施例1と同様の方法で、変性共役ジエン系ゴムIを得た。
 変性共役ジエン系ゴムIの重合処方を表1に、得られた変性共役ジエン系ゴムIの性質を表2に示す。また、変性共役ジエン系ゴムIを用いて、表3に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例10〔変性共役ジエン系ゴムJの合成、およびその評価〕
 実施例1で、3-アミノプロピルトリエトキシシランの代わりにメルカプトプロピルトリエトキシシランに変更した以外は実施例1と同様の方法で、変性共役ジエン系ゴムJを得た。
 変性共役ジエン系ゴムJの重合処方を表1に、得られた変性共役ジエン系ゴムJの性質を表2に示す。また、変性共役ジエン系ゴムJを用いて、表3に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例11〔変性共役ジエン系ゴムKの合成、およびその評価〕
 窒素置換された内容積5リットルのオートクレーブ反応器に、シクロヘキサン2,750g、2,2-ジ(テトラヒドロフリル)プロパン3.25g、スチレン125g、1,3-ブタジエン365g、ピペリジン(4.70mmol)を含むシクロヘキサン溶液を仕込んだ。反応器内容物の温度を10℃に調整した後、n-ブチルリチウム(5.80mmol)を含むシクロヘキサン溶液を添加して重合を開始した。重合は断熱条件で実施し、最高温度は85℃に達した。
 重合転化率が99%に達した時点で、ブタジエン10gを追加し、さらに5分重合させた後、変性前分子量測定用に10gのポリマー溶液をサンプリングし、N,N-ビス(トリエチルシリル)アミノプロピルメチルジメトキシシラン(4.96mmol)を含むシクロヘキサン溶液を加えて15分間反応を行った。反応後の重合体溶液に、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(4.96mmol)を含むシクロヘキサン溶液を加えて5分間混合後、更に四塩化ケイ素(6.34mmol)を含むシクロヘキサン溶液を加えて5分間混合を行った。次に、得られたポリマー溶液に2,6-ジ-tert-ブチル-p-クレゾール4.0gを添加した。次いで、水酸化ナトリウムでpH=10に調整した熱水を用いてスチームストリッピングを行うことにより脱溶媒を行い、110℃に調温された熱ロールによりゴムを乾燥し、変性共役ジエン系ゴムKを得た。
 変性共役ジエン系ゴムKの重合処方を表1に、得られた変性共役ジエン系ゴムKの性質を表2に示す。また、変性共役ジエン系ゴムKを用いて、表3に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例12〔変性共役ジエン系ゴムLの合成、およびその評価〕
 実施例11で、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(4.96mmol)の代わりに3-アミノプロピルトリエトキシシラン(9.92mmol)に変更した以外は実施例11と同様の方法で、変性共役ジエン系ゴムLを得た。
 変性共役ジエン系ゴムLの重合処方を表1に、得られた変性共役ジエン系ゴムLの性質を表2に示す。また、変性共役ジエン系ゴムLを用いて、表3に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例13〔変性共役ジエン系ゴムMの合成、およびその評価〕
 実施例11で、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシランの代わりに3-アミノプロピルトリエトキシシランに、四塩化ケイ素(6.34mmol)の代わりにジエチルアルミニウムクロリド(20.4mmol)に変更した以外は実施例11と同様の方法で、変性共役ジエン系ゴムMを得た。
 変性共役ジエン系ゴムMの重合処方を表1に、得られた変性共役ジエン系ゴムMの性質を表2に示す。また、変性共役ジエン系ゴムMを用いて、表3に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例14〔変性共役ジエン系ゴムNの合成、およびその評価〕
 実施例13で、ジエチルアルミニウムクロリド(20.4mmol)の代わりに四塩化チタン(5.10mmol)に変更した以外は実施例13と同様の方法で、変性共役ジエン系ゴムNを得た。
 変性共役ジエン系ゴムNの重合処方を表1に、得られた変性共役ジエン系ゴムNの性質を表2に示す。また、変性共役ジエン系ゴムNを用いて、表3に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例15〔変性共役ジエン系ゴムOの合成、およびその評価〕
 実施例13で、ジエチルアルミニウムクロリド(20.4mmol)の代わりにイソプロピルアシッドホスフェート(13.61mmol)に変更した以外は実施例13と同様の方法で、変性共役ジエン系ゴムOを得た。
 変性共役ジエン系ゴムOの重合処方を表1に、得られた変性共役ジエン系ゴムOの性質を表2に示す。また、変性共役ジエン系ゴムOを用いて、表3に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例16〔変性共役ジエン系ゴムPの合成、およびその評価〕
 窒素置換された内容積5リットルのオートクレーブ反応器に、シクロヘキサン2,750g、テトラヒドロフラン100.0g、スチレン180g、1,3-ブタジエン310gを仕込んだ。反応器内容物の温度を20℃に調整した後、n-ブチルリチウム(4.60mmol)を含むシクロヘキサン溶液を添加して重合を開始した。重合は断熱条件で実施し、最高温度は85℃に達した。
 重合転化率が99%に達した時点で、ブタジエン10gを追加し、さらに5分重合させた後、変性前分子量測定用に10gのポリマー溶液をサンプリングし、N,N-ビス(トリエチルシリル)アミノプロピルメチルジメトキシシラン(3.93mmol)を含むシクロヘキサン溶液を加えて15分間反応を行った。反応後の重合体溶液に、3-アミノプロピルトリエトキシシラン(3.93mmol)を含むシクロヘキサン溶液を加えて5分間混合後、更に四塩化ケイ素(3.12mmol)を含むシクロヘキサン溶液を加えて5分間混合を行った。次に、得られたポリマー溶液に2,6-ジ-tert-ブチル-p-クレゾール2.0gを添加した後、ナフテン系オイル(三共油化工業(株)製 商標;SNH46)187.5gを加えて5分間混合を行った。次いで、水酸化ナトリウムでpH=9に調整した熱水を用いてスチームストリッピングを行うことにより脱溶媒を行い、110℃に調温された熱ロールによりゴムを乾燥し、変性共役ジエン系ゴムPを得た。
 変性共役ジエン系ゴムPの重合処方を表1に、得られた変性共役ジエン系ゴムPの性質を表2に示す。また、変性共役ジエン系ゴムPを用いて、表3に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例17〔変性共役ジエン系ゴムQの合成、およびその評価〕
 実施例3で、四塩化ケイ素を先に、3-アミノプロピルトリエトキシシランを後に添加する以外は実施例3と同様の方法で、変性共役ジエン系ゴムQを得た。
 変性共役ジエン系ゴムQの重合処方を表1に、得られた変性共役ジエン系ゴムQの性質を表2に示す。また、変性共役ジエン系ゴムQを用いて、表3に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
実施例18〔変性共役ジエン系ゴムRの合成、およびその評価〕
 実施例3で、3-アミノプロピルトリエトキシシランと四塩化ケイ素を同時に添加する以外は実施例3と同様の方法で、変性共役ジエン系ゴムRを得た。
 変性共役ジエン系ゴムRの重合処方を表1に、得られた変性共役ジエン系ゴムRの性質を表2に示す。また、変性共役ジエン系ゴムRを用いて、表3に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
比較例1〔変性共役ジエン系ゴムSの合成、およびその評価〕
 実施例1で、3-アミノプロピルトリエトキシシランを添加しない以外は実施例1と同様の方法で、変性共役ジエン系ゴムSを得た。
 変性共役ジエン系ゴムSの重合処方を表1に、得られた変性共役ジエン系ゴムSの性質を表2に示す。また、変性共役ジエン系ゴムSを用いて、表3に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
比較例2〔変性共役ジエン系ゴムTの合成、およびその評価〕
 比較例1で、四塩化ケイ素の添加量を(3.93mmol)から(2.69mmol)に変更した以外は比較例1と同様の方法で、変性共役ジエン系ゴムTを得た。
 変性共役ジエン系ゴムTの重合処方を表1に、得られた変性共役ジエン系ゴムTの性質を表2に示す。また、変性共役ジエン系ゴムTを用いて、表3に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
比較例3〔変性共役ジエン系ゴムUの合成、およびその評価〕
 実施例1で、四塩化ケイ素を添加しない以外は実施例1と同様の方法で、変性共役ジエン系ゴムUを得た。
 変性共役ジエン系ゴムUの重合処方を表1に、得られた変性共役ジエン系ゴムUの性質を表2に示す。また、変性共役ジエン系ゴムUを用いて、表3に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
比較例4〔変性共役ジエン系ゴムVの合成、およびその評価〕
 実施例16で、3-アミノプロピルトリエトキシシランを添加しない以外は実施例16と同様の方法で、変性共役ジエン系ゴムVを得た。
 変性共役ジエン系ゴムVの重合処方を表1に、得られた変性共役ジエン系ゴムVの性質を表2に示す。また、変性共役ジエン系ゴムVを用いて、表3に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
比較例5〔変性共役ジエン系ゴムWの合成、およびその評価〕
 実施例1で、N,N-ビス(トリエチルシリル)アミノプロピルメチルジメトキシシランの代わりにテトラエトキシシランに、四塩化ケイ素の添加量を3.93mmolから2.69mmolに変更した以外は実施例1と同様の方法で、変性共役ジエン系ゴムWを得た。
 変性共役ジエン系ゴムWの重合処方を表1に、得られた変性共役ジエン系ゴムWの性質を表2に示す。また、変性共役ジエン系ゴムWを用いて、表3に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
比較例6〔変性共役ジエン系ゴムXの合成、およびその評価〕
 比較例5で、四塩化ケイ素の代わりに2-エチルヘキシル酸第一錫に変更した以外は比較例5と同様の方法で、変性共役ジエン系ゴムXを得た。
 変性共役ジエン系ゴムXの重合処方を表1に、得られた変性共役ジエン系ゴムXの性質を表2に示す。また、変性共役ジエン系ゴムXを用いて、表3に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
比較例7〔共役ジエン系ゴムYの合成、およびその評価〕
 窒素置換された内容積5リットルのオートクレーブ反応器に、シクロヘキサン2,750g、テトラヒドロフラン50.0g、スチレン125g、1,3-ブタジエン365gを仕込んだ。反応器内容物の温度を10℃に調整した後、n-ブチルリチウム(5.80mmol)を含むシクロヘキサン溶液を添加して重合を開始した。重合は断熱条件で実施し、最高温度は85℃に達した。
 重合転化率が99%に達した時点で、ブタジエン10gを追加し、さらに5分重合させた後、四塩化ケイ素(1.04mmol)を含むシクロヘキサン溶液を加えて15分間反応を行った。次に、得られたポリマー溶液に2,6-ジ-tert-ブチル-p-クレゾール2.0gを添加した。次いで、水酸化ナトリウムでpH=9に調整した熱水を用いてスチームストリッピングを行うことにより脱溶媒を行い、110℃に調温された熱ロールによりゴムを乾燥し、共役ジエン系ゴムYを得た。
 共役ジエン系ゴムYの重合処方を表1に、得られた共役ジエン系ゴムYの性質を表2に示す。また、共役ジエン系ゴムYを用いて、表3に示す配合処方により調製したゴム組成物を加硫して、物性評価を行った。その結果を表4に示す。
[ゴム組成物の混練り方法、及び特性評価]:
 温度制御装置を付属したプラストミル(内容量250cc)を使用し、一段目の混練として、充填率72%、回転数60rpmの条件で、本発明の変性共役ジエン系ゴム、ブタジエンゴム、天然ゴム、伸展油、カーボンブラック、シリカ、シランカップリング剤、ステアリン酸、老化防止剤、亜鉛華を混練した。ついで、二段目の混練として、上記で得た配合物を室温まで冷却後、硫黄、加硫促進剤を混練した。これを成型し、160℃で所定時間、加硫プレスにて加硫し、以下のタイヤ性能を表す特性評価を実施した。
(i)ムーニー粘度:加硫前のゴム組成物を測定用試料とし、JIS K6300に準拠し、Lローターを使用して、予熱1分、ローター作動時間4分、温度100℃の条件で測定した。
(ii)引張強度:JISK6301に従って300%モジュラスを測定した。指数で表示し、数値が大きいほど、引張強度が大きく、良好である。
(iii)0℃tanδ:加硫ゴムを測定用試料とし、動的スペクトロメーター(米国レオメトリックス社製)を使用し、引張動歪0.14%、角速度100ラジアン毎秒、0℃の条件で測定した。指数で表示し、数値が大きいほどウェットスキッド抵抗性が大きく良好である。
(iv)70℃tanδ:加硫ゴムを測定用試料とし、動的スペクトロメーター(米国レオメトリックス社製)を使用し、引張動歪0.7%、角速度100ラジアン毎秒、70℃の条件で測定した。指数で表示し、数値が大きいほど低ヒステリシスロス特性が小さく良好である。
(v)耐摩耗性:加硫ゴムを測定用試料とし、DIN摩耗試験機(東洋精機社製)を使用し、JIS K 6264に準拠し、荷重10Nで25℃にて測定した。指数で表示し、数値が大きいほど耐摩耗性が良好である。
 表2から明らかなように、オニウム生成剤を使用していない比較例3の変性共役ジエン系ゴムUはコールドフロー値が極めて大きく、ゴムの形状保持性に問題があることが確認できる。
 また、表4から明らかなように、本発明の変性共役ジエン系ゴムを使用した本発明の組成物は、引張強度や耐摩耗性を損なうことなく、ウェットスキッド抵抗性と低ヒステリシスロス特性のバランスが著しく改良されていることが分かる。
 比較例1~4の変性共役ジエン系ゴムS~Vの物性評価結果から、本発明の工程(a)~(b)の全てがウェットスキッド抵抗性と低ヒステリシスロス特性のバランス改良に重要であることが確認できる。
 比較例5の変性共役ジエン系ゴムWの物性評価結果から、工程(a)においてオニウムになり得る基を有するアルコキシシラン化合物で変性させることが引張強度、耐摩耗性、ウェットスキッド抵抗性と低ヒステリシスロス特性のバランス改良に重要であることが、確認できる。
 比較例6の変性共役ジエン系ゴムXの物性評価結果から、オニウム生成剤の使用が引張強度、耐摩耗性、ウェットスキッド抵抗性と低ヒステリシスロス特性のバランス改良に重要であり、一般的なアルコキシシラン化合物の縮合触媒では十分な性能発現に繋がらないことが確認できる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

Claims (10)

  1. (a)共役ジエン系化合物、又は共役ジエン系化合物と芳香族ビニル化合物を重合して得られるアルカリ金属もしくはアルカリ土類金属活性末端を有する共役ジエン系重合体と、2つ以上のアルコキシ基を有するアルコキシシリル基及びオニウム生成剤によってオニウムになり得る基を分子中に少なくとも1つ以上有する第一のアルコキシシラン化合物を反応させて、前記オニウムになり得る基及びアルコキシシリル基を有する変性共役ジエン系重合体を得る工程と、
    (b)工程(a)で得られた変性共役ジエン系重合体と、オニウム生成剤と、アルコキシシリル基及びオニウム生成剤によってオニウムになり得る基を分子中に少なくとも1つ以上有する第二のアルコキシシラン化合物を混合する工程と、
    を含む変性共役ジエン系ゴムの製造方法。
  2.  前記第一のアルコキシシラン化合物のオニウムになり得る基が、1級アミンの2つの水素原子が2つの保護基によって置換されてなる窒素含有基、2級アミンの1つの水素原子が1つの保護基によって置換されてなる窒素含有基、3級アミノ基、イミノ基、ピリジル基、1級ホスフィンの2つの水素原子が2つの保護基によって置換されてなるリン含有基、2級ホスフィンの1つの水素原子が1つの保護基によって置換されてなるリン含有基、3級ホスフィノ基、及び、チオールの1つの水素原子が1つの保護基によって置換されてなる硫黄含有基、からなる群より選ばれる1種以上である請求項1に記載の変性共役ジエン系ゴムの製造方法。
  3.  前記オニウム生成剤が、ハロゲン化ケイ素化合物、ハロゲン化スズ化合物、ハロゲン化アルミニウム化合物、ハロゲン化チタン化合物、ハロゲン化ジルコニウム化合物、ハロゲン化ゲルマニウム化合物、ハロゲン化ガリウム化合物、ハロゲン化亜鉛化合物、硫酸エステル、リン酸エステル、カルボン酸、及び、スルホン酸、からなる群より選ばれる1種以上である請求項1又は2に記載の変性共役ジエン系ゴムの製造方法。
  4.  前記第二のアルコキシシラン化合物のオニウムになり得る基が、1級アミノ基、2級アミノ基、3級アミノ基、イミノ基、ピリジル基、1級ホスフィノ基、2級ホスフィノ基、3級ホスフィノ基、及び、チオール基、からなる群より選ばれる1種以上である請求項1~3のいずれか1項に記載の変性共役ジエン系ゴムの製造方法。
  5. (c)工程(b)で得られた混合物と水を接触させる工程、
    を含む請求項1~4のいずれか1項に記載の変性共役ジエン系ゴムの製造方法。
  6.  前記変性共役ジエン系ゴムが、前記変性共役ジエン系重合体、前記第二のアルコキシシラン化合物、及び、前記変性共役ジエン系重合体と第二のアルコキシシラン化合物との加水分解縮合物、の3種の物質を含み、かつ、これら3種の物質によって形成されたオニウム構造を有する、請求項1~5のいずれか1項に記載の変性共役ジエン系ゴムの製造方法。
  7.  請求項1~6のいずれか1項に記載の変性共役ジエン系ゴムの製造方法によって得られた変性共役ジエン系ゴム。
  8.  請求項7に記載の変性共役ジエン系ゴムと、シリカ及び/又はカーボンブラックと、架橋剤を含む、ゴム組成物。
  9.  請求項8に記載のゴム組成物を架橋させてなる架橋ゴム組成物。
  10.  請求項9に記載の架橋ゴム組成物からなるタイヤ。
     
PCT/JP2010/068621 2009-10-21 2010-10-21 変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物 WO2011049180A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2011537309A JP5692084B2 (ja) 2009-10-21 2010-10-21 変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物
BR112012009465-3A BR112012009465B1 (pt) 2009-10-21 2010-10-21 método de produção de borracha de dieno conjugado modificado, borracha de dieno conjugado modificado e composição de borracha
US13/503,205 US8809440B2 (en) 2009-10-21 2010-10-21 Method of producing modified conjugated diene rubber, modified conjugated diene rubber, and rubber composition
CN201080047500.0A CN102574932B (zh) 2009-10-21 2010-10-21 改性共轭二烯系橡胶的制造方法、改性共轭二烯系橡胶及橡胶组合物
RU2012120707/05A RU2531824C2 (ru) 2009-10-21 2010-10-21 Способ получения модифицированного сопряженного диенового каучука, модифицированный сопряженный диеновый каучук и каучуковая композиция
KR1020127010223A KR101745032B1 (ko) 2009-10-21 2010-10-21 변성 공액 디엔계 고무의 제조 방법, 변성 공액 디엔계 고무, 및 고무 조성물
EP10825029.1A EP2492286B1 (en) 2009-10-21 2010-10-21 Method for producing modified conjugated diene rubber, modified conjugated diene rubber, and rubber composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009242041 2009-10-21
JP2009-242041 2009-10-21

Publications (1)

Publication Number Publication Date
WO2011049180A1 true WO2011049180A1 (ja) 2011-04-28

Family

ID=43900403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068621 WO2011049180A1 (ja) 2009-10-21 2010-10-21 変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物

Country Status (10)

Country Link
US (1) US8809440B2 (ja)
EP (1) EP2492286B1 (ja)
JP (1) JP5692084B2 (ja)
KR (1) KR101745032B1 (ja)
CN (1) CN102574932B (ja)
BR (1) BR112012009465B1 (ja)
HU (1) HUE035042T2 (ja)
RU (1) RU2531824C2 (ja)
TW (1) TWI491619B (ja)
WO (1) WO2011049180A1 (ja)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155326A1 (ja) * 2010-06-08 2011-12-15 Jsr株式会社 変性共役ジエン系ゴム、その製造方法、及びゴム組成物
WO2012073880A1 (ja) * 2010-12-01 2012-06-07 Jsr株式会社 変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物
JP2012201863A (ja) * 2011-03-28 2012-10-22 Japan Elastomer Co Ltd 変性共役ジエン系重合体組成物及びその製造方法
WO2012147565A1 (ja) * 2011-04-26 2012-11-01 Jsr株式会社 変性共役ジエン系ゴム、その製造方法、及びゴム組成物
WO2013031852A1 (ja) * 2011-08-31 2013-03-07 Jsr株式会社 変性共役ジエン系重合体の製造方法
WO2013031850A1 (ja) * 2011-08-31 2013-03-07 Jsr株式会社 変性共役ジエン系重合体の製造方法
JP2013082842A (ja) * 2011-10-12 2013-05-09 Asahi Kasei Chemicals Corp 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、変性共役ジエン系重合体組成物、及びタイヤ
JP2013082843A (ja) * 2011-10-12 2013-05-09 Asahi Kasei Chemicals Corp 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物、及びタイヤ
JP2013082840A (ja) * 2011-10-12 2013-05-09 Asahi Kasei Chemicals Corp 変性共役ジエン系重合体組成物、トレッド用組成物、サイドウォール用組成物及びタイヤ
JP2013087219A (ja) * 2011-10-19 2013-05-13 Asahi Kasei Chemicals Corp サイドウォール用ゴム組成物
JP5196070B2 (ja) * 2010-03-31 2013-05-15 Jsr株式会社 変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物
EP2602262A1 (en) * 2011-12-07 2013-06-12 Shin-Etsu Chemical Co., Ltd. Organosilicon compound and method for preparing same, compounding agent for rubber, and rubber composition.
WO2013083749A1 (en) * 2011-12-08 2013-06-13 Dow Corning Corporation Hydrolysable silanes and elastomer compositions containing them
WO2013083742A1 (en) * 2011-12-08 2013-06-13 Dow Corning Corporation Hydrolysable silanes
WO2013105502A1 (ja) * 2012-01-10 2013-07-18 株式会社ブリヂストン タイヤ用ゴム組成物、タイヤ用加硫ゴム組成物及びそれらを用いたタイヤ
KR20140028133A (ko) * 2011-08-26 2014-03-07 아사히 가세이 케미칼즈 가부시키가이샤 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체, 변성 공액 디엔계 중합체 조성물, 고무 조성물, 및 타이어
EP2716702A1 (en) * 2011-05-25 2014-04-09 Bridgestone Corporation Method for producing rubber composition
JP2014108922A (ja) * 2012-11-30 2014-06-12 Daiso Co Ltd 有機珪素化合物の混合物およびゴム組成物
CN104011093A (zh) * 2011-12-23 2014-08-27 Jsr株式会社 改性共轭二烯系聚合物及其制造方法
JP2015504929A (ja) * 2011-12-08 2015-02-16 ダウ コーニング コーポレーションDow Corning Corporation シランによる充填剤の処理
JP2015131955A (ja) * 2013-12-13 2015-07-23 旭化成ケミカルズ株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物
JP2015214619A (ja) * 2014-05-08 2015-12-03 旭化成ケミカルズ株式会社 ゴム組成物
US20160009903A1 (en) * 2013-02-28 2016-01-14 Jsr Corporation Modified conjugated diene polymer and method for producing same, polymer composition, crosslinked polymer, and tire
EP2876115A4 (en) * 2012-07-20 2016-05-25 Jsr Corp PROCESS FOR PRODUCING MODIFIED CONJUGATED DIENE POLYMER, MODIFIED CONJUGATED DIENE POLYMER, POLYMER COMPOSITION, CROSSLINKED POLYMER, AND TIRE
JP2017149992A (ja) * 2016-02-23 2017-08-31 横浜ゴム株式会社 芳香族ビニル−ジエン共重合体、及び、ゴム組成物
JP6252716B1 (ja) * 2016-06-24 2017-12-27 Jsr株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体、タイヤ及び化合物
JP2018522994A (ja) * 2015-12-24 2018-08-16 エルジー・ケム・リミテッド 高分子化合物、これを用いた変性共役ジエン系重合体の製造方法及び変性共役ジエン系重合体
JP2018526520A (ja) * 2015-09-10 2018-09-13 株式会社ブリヂストン 官能化ポリマーの調製方法
JP2020073684A (ja) * 2013-12-12 2020-05-14 ファイアストン ポリマーズ エルエルシー 官能化ポリマーを含むポリマー組成物の製造方法
JP2022521399A (ja) * 2019-09-30 2022-04-07 エルジー・ケム・リミテッド 変性共役ジエン系重合体、その製造方法、およびそれを含むゴム組成物

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105362A1 (ja) * 2010-02-26 2011-09-01 日本ゼオン株式会社 共役ジエン系ゴム、ゴム組成物、ゴム架橋物、およびタイヤ、ならびに共役ジエン系ゴムの製造方法
EP2799482B1 (en) * 2011-02-23 2017-03-29 Bridgestone Corporation Rubber composition and tire produced using same, and process of producing rubber composition
GB201121130D0 (en) * 2011-12-08 2012-01-18 Dow Corning Polymeric materials modified by silanes
GB201121133D0 (en) 2011-12-08 2012-01-18 Dow Corning Hydrolysable silanes
JP2013163749A (ja) * 2012-02-10 2013-08-22 Sumitomo Chemical Co Ltd 共役ジエン系重合体の製造方法、共役ジエン系重合体、及び共役ジエン系重合体組成物
KR101656144B1 (ko) * 2013-09-30 2016-09-08 주식회사 엘지화학 개질 공액 디엔계 중합체, 그 제조방법 및 이를 포함하는 고무 조성물
KR101800496B1 (ko) * 2014-06-16 2017-11-22 주식회사 엘지화학 변성 공액 디엔계 중합체, 이를 포함하는 변성 고무 조성물 및 변성 공액 디엔계 중합체의 제조방법
KR101775761B1 (ko) * 2014-07-30 2017-09-19 주식회사 엘지화학 변성 공액 디엔계 중합체, 이를 포함하는 변성 고무 조성물 및 변성 공액 디엔계 중합체의 제조방법
KR101724795B1 (ko) * 2014-07-30 2017-04-07 주식회사 엘지화학 변성 공액 디엔계 중합체, 이를 포함하는 변성 고무 조성물 및 변성 공액 디엔계 중합체의 제조방법
US9090730B1 (en) * 2014-08-19 2015-07-28 The Goodyear Tire & Rubber Company Rubber composition and pneumatic tire
US9109073B1 (en) * 2014-08-19 2015-08-18 The Goodyear Tire & Rubber Company Bifunctionalized polymer
KR101759402B1 (ko) * 2014-12-11 2017-07-19 주식회사 엘지화학 변성 공역디엔계 중합체, 이의 제조방법, 및 이를 포함하는 고무 조성물
KR101653574B1 (ko) * 2014-12-11 2016-09-08 주식회사 엘지화학 변성 공역디엔계 중합체, 이를 포함하는 변성 고무 조성물 및 변성 공역디엔계 중합체의 제조방법
EP3263605B1 (en) * 2015-02-26 2019-11-13 Zeon Corporation Method for preparing modified conjugated diene rubber
JP6843860B2 (ja) * 2015-12-08 2021-03-17 エボニック オペレーションズ ゲーエムベーハー ヒドロキシル化ポリオレフィンの製造方法
TWI733893B (zh) * 2016-09-02 2021-07-21 日商可樂麗股份有限公司 橡膠組成物
KR101865798B1 (ko) 2017-01-03 2018-06-11 주식회사 엘지화학 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2019035443A1 (ja) * 2017-08-18 2019-02-21 Jsr株式会社 ゴム組成物の製造方法
CN109627359B (zh) * 2017-10-06 2021-11-19 台橡股份有限公司 含硅及磷的改质橡胶及其组合物与制造方法
US11993620B2 (en) * 2018-09-03 2024-05-28 Synthos S.A. Aminosilyl-functionalized conjugated dienes, their preparation and their use in the production of rubbers
WO2020116389A1 (ja) * 2018-12-03 2020-06-11 Jsr株式会社 重合体組成物、架橋体及びタイヤ
CN113454282B (zh) * 2019-02-27 2024-02-13 株式会社可乐丽 增强纤维及其制造方法、以及使用了其的成形体
BR112022007329A2 (pt) * 2020-01-20 2022-08-02 Lg Chemical Ltd Polímero à base de dieno conjugado modificado, método para a preparação do mesmo e composição de borracha incluindo o mesmo
BR112022014875A2 (pt) * 2020-08-05 2023-02-28 Lg Chemical Ltd Polímero conjugado modificado com base em dieno e composição de borracha incluindo o mesmo

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003048216A1 (fr) 2001-12-03 2003-06-12 Bridgestone Corporation Procede de production de polymere modifie, polymere modifie obtenu par ce procede et composition de caoutchouc
JP2004018795A (ja) 2002-06-20 2004-01-22 Jsr Corp 共役ジオレフィン(共)重合ゴム、該(共)重合ゴムの製造方法、ゴム組成物およびタイヤ
JP2004051757A (ja) * 2002-07-19 2004-02-19 Jsr Corp 共役ジオレフィン(共)重合ゴムおよびその製造方法
JP2005290355A (ja) 2004-03-11 2005-10-20 Sumitomo Chemical Co Ltd 変性ジエン系重合体ゴム及びその製造方法
JP2006249069A (ja) 2005-01-20 2006-09-21 Degussa Ag メルカプトシラン
WO2009113546A1 (ja) * 2008-03-10 2009-09-17 株式会社ブリヂストン 変性共役ジエン(共)重合体の製造方法、変性共役ジエン(共)重合体、並びにそれを用いたゴム組成物及びタイヤ
WO2010061802A1 (ja) * 2008-11-25 2010-06-03 Jsr株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、ゴム組成物、及びタイヤ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127422A (en) * 1996-05-06 2000-10-03 Eli Lilly And Company Anti-viral method
AU2001265999A1 (en) * 2000-05-22 2001-12-03 Michelin Recherche Et Technique S.A. Composition for tyre running tread and method for preparing same
US7342070B2 (en) 2001-09-27 2008-03-11 Jsr Corporation Conjugated diolefin (co)polymer rubber, process for producing (co)polymer rubber, rubber composition, composite, and tire
JP4117250B2 (ja) * 2001-11-27 2008-07-16 株式会社ブリヂストン 共役ジエン系重合体、その製法及びそれを用いたゴム組成物
CN101880415B (zh) * 2002-07-09 2013-05-22 莫门蒂夫性能材料股份有限公司 具有改进硬度的二氧化硅-橡胶混合物
FR2854404B1 (fr) * 2003-04-29 2005-07-01 Michelin Soc Tech Procede d'obtention d'un elastomere greffe a groupes fonctionnels le long de la chaine et compositions de caoutchouc
KR101202067B1 (ko) * 2004-09-14 2012-11-15 제이에스알 가부시끼가이샤 공액 디올레핀 (공)중합 고무의 제조 방법, 공액 디올레핀(공)중합 고무, 고무 조성물 및 타이어
JP5576020B2 (ja) * 2005-09-22 2014-08-20 旭化成ケミカルズ株式会社 共役ジエン系重合体およびその製造方法
BRPI0616875B1 (pt) * 2005-10-05 2018-01-09 Jsr Corporation Processo para produzir polímero de dieno conjugado modificado, polímero de dieno conjugado modificado obtido pelo processo, e composição de borracha contendo o mesmo
ATE536378T1 (de) * 2006-07-24 2011-12-15 Asahi Kasei Chemicals Corp Modifiziertes konjugiertes dienepolymer und dessen herstellung
US20080103261A1 (en) * 2006-10-25 2008-05-01 Bridgestone Corporation Process for producing modified conjugated diene based polymer, modified conjugated diene based polymer produced by the process, rubber composition, and tire
ZA200904420B (en) * 2006-12-27 2010-08-25 Jsr Corp Method for producing modified conjugated diene polymer, modified conjugated diene polymer, and rubber composition
US7807747B2 (en) * 2007-06-22 2010-10-05 Sumitomo Chemical Company, Limited Conjugated diene polymer, method for producing conjugated diene polymer, and conjugated diene polymer composition
EP2166886B1 (de) * 2007-07-02 2012-03-28 Bühler Barth AG Verfahren zur oberflächen-pasteurisation und -sterilisation von lebensmittelstücken
CA2794701C (en) * 2010-03-31 2017-04-25 Jsr Corporation Process for production of modified conjugated diene rubber, modified conjugated diene rubber, and rubber composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003048216A1 (fr) 2001-12-03 2003-06-12 Bridgestone Corporation Procede de production de polymere modifie, polymere modifie obtenu par ce procede et composition de caoutchouc
JP2004018795A (ja) 2002-06-20 2004-01-22 Jsr Corp 共役ジオレフィン(共)重合ゴム、該(共)重合ゴムの製造方法、ゴム組成物およびタイヤ
JP2004051757A (ja) * 2002-07-19 2004-02-19 Jsr Corp 共役ジオレフィン(共)重合ゴムおよびその製造方法
JP2005290355A (ja) 2004-03-11 2005-10-20 Sumitomo Chemical Co Ltd 変性ジエン系重合体ゴム及びその製造方法
JP2006249069A (ja) 2005-01-20 2006-09-21 Degussa Ag メルカプトシラン
WO2009113546A1 (ja) * 2008-03-10 2009-09-17 株式会社ブリヂストン 変性共役ジエン(共)重合体の製造方法、変性共役ジエン(共)重合体、並びにそれを用いたゴム組成物及びタイヤ
WO2010061802A1 (ja) * 2008-11-25 2010-06-03 Jsr株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、ゴム組成物、及びタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2492286A4

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5196070B2 (ja) * 2010-03-31 2013-05-15 Jsr株式会社 変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物
WO2011155326A1 (ja) * 2010-06-08 2011-12-15 Jsr株式会社 変性共役ジエン系ゴム、その製造方法、及びゴム組成物
US20130085228A1 (en) * 2010-06-08 2013-04-04 Jsr Corporation Modified conjugated diene rubber, method for producing same, and rubber composition
US9212276B2 (en) 2010-06-08 2015-12-15 Jsr Corporation Modified conjugated diene rubber, method for producing same, and rubber composition
WO2012073880A1 (ja) * 2010-12-01 2012-06-07 Jsr株式会社 変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物
JPWO2012073880A1 (ja) * 2010-12-01 2014-05-19 Jsr株式会社 変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物
US8980987B2 (en) 2010-12-01 2015-03-17 Jsr Corporation Method for producing modified conjugated diene rubber, modified conjugated diene rubber, and rubber composition
JP6003651B2 (ja) * 2010-12-01 2016-10-05 Jsr株式会社 変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物
JP2012201863A (ja) * 2011-03-28 2012-10-22 Japan Elastomer Co Ltd 変性共役ジエン系重合体組成物及びその製造方法
WO2012147565A1 (ja) * 2011-04-26 2012-11-01 Jsr株式会社 変性共役ジエン系ゴム、その製造方法、及びゴム組成物
US9434792B2 (en) 2011-04-26 2016-09-06 Jsr Corporation Modified conjugated diene rubber, method for producing same, and rubber composition
EP2716702A4 (en) * 2011-05-25 2014-12-31 Bridgestone Corp METHOD FOR PRODUCING A RUBBER COMPOSITION
EP2716702A1 (en) * 2011-05-25 2014-04-09 Bridgestone Corporation Method for producing rubber composition
KR101600722B1 (ko) * 2011-08-26 2016-03-07 아사히 가세이 케미칼즈 가부시키가이샤 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체, 변성 공액 디엔계 중합체 조성물, 고무 조성물, 및 타이어
KR20140028133A (ko) * 2011-08-26 2014-03-07 아사히 가세이 케미칼즈 가부시키가이샤 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체, 변성 공액 디엔계 중합체 조성물, 고무 조성물, 및 타이어
US9527932B2 (en) * 2011-08-31 2016-12-27 Jsr Corporation Method for producing denatured conjugated diene polymer
KR20140056163A (ko) * 2011-08-31 2014-05-09 제이에스알 가부시끼가이샤 변성 공액 디엔계 중합체의 제조 방법
KR101866836B1 (ko) * 2011-08-31 2018-06-12 제이에스알 가부시끼가이샤 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체, 중합체 조성물, 가교 중합체, 및 타이어
JPWO2013031852A1 (ja) * 2011-08-31 2015-03-23 Jsr株式会社 変性共役ジエン系重合体の製造方法
CN103534281A (zh) * 2011-08-31 2014-01-22 Jsr株式会社 改性共轭二烯系聚合物的制造方法
CN103534280A (zh) * 2011-08-31 2014-01-22 Jsr株式会社 改性共轭二烯系聚合物的制造方法
JPWO2013031850A1 (ja) * 2011-08-31 2015-03-23 Jsr株式会社 変性共役ジエン系重合体の製造方法
KR101881375B1 (ko) * 2011-08-31 2018-07-24 제이에스알 가부시끼가이샤 변성 공액 디엔계 중합체의 제조 방법
KR20140052985A (ko) * 2011-08-31 2014-05-07 제이에스알 가부시끼가이샤 변성 공액 디엔계 중합체의 제조 방법
WO2013031850A1 (ja) * 2011-08-31 2013-03-07 Jsr株式会社 変性共役ジエン系重合体の製造方法
WO2013031852A1 (ja) * 2011-08-31 2013-03-07 Jsr株式会社 変性共役ジエン系重合体の製造方法
US9090754B2 (en) 2011-08-31 2015-07-28 Jsr Corporation Method for producing denatured conjugated diene polymer
CN103534281B (zh) * 2011-08-31 2015-12-23 Jsr株式会社 改性共轭二烯系聚合物的制造方法
US20140221563A1 (en) * 2011-08-31 2014-08-07 Jsr Corporation Method for producing denatured conjugated diene polymer
US20140309363A1 (en) * 2011-08-31 2014-10-16 Jsr Corporation Method for producing denatured conjugated diene polymer
JP2013082840A (ja) * 2011-10-12 2013-05-09 Asahi Kasei Chemicals Corp 変性共役ジエン系重合体組成物、トレッド用組成物、サイドウォール用組成物及びタイヤ
JP2013082843A (ja) * 2011-10-12 2013-05-09 Asahi Kasei Chemicals Corp 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物、及びタイヤ
JP2013082842A (ja) * 2011-10-12 2013-05-09 Asahi Kasei Chemicals Corp 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、変性共役ジエン系重合体組成物、及びタイヤ
JP2013087219A (ja) * 2011-10-19 2013-05-13 Asahi Kasei Chemicals Corp サイドウォール用ゴム組成物
JP2013119529A (ja) * 2011-12-07 2013-06-17 Shin-Etsu Chemical Co Ltd 有機ケイ素化合物及びその製造方法、ゴム用配合剤並びにゴム組成物
EP2602262A1 (en) * 2011-12-07 2013-06-12 Shin-Etsu Chemical Co., Ltd. Organosilicon compound and method for preparing same, compounding agent for rubber, and rubber composition.
KR101979960B1 (ko) * 2011-12-07 2019-05-17 신에쓰 가가꾸 고교 가부시끼가이샤 유기 규소 화합물 및 그의 제조 방법, 고무용 배합제 및 고무 조성물
KR20130064023A (ko) * 2011-12-07 2013-06-17 신에쓰 가가꾸 고교 가부시끼가이샤 유기 규소 화합물 및 그의 제조 방법, 고무용 배합제 및 고무 조성물
JP2015502949A (ja) * 2011-12-08 2015-01-29 ダウ コーニング コーポレーションDow Corning Corporation 加水分解性シラン
CN103974960A (zh) * 2011-12-08 2014-08-06 道康宁公司 可水解硅烷
WO2013083749A1 (en) * 2011-12-08 2013-06-13 Dow Corning Corporation Hydrolysable silanes and elastomer compositions containing them
JP2015504929A (ja) * 2011-12-08 2015-02-16 ダウ コーニング コーポレーションDow Corning Corporation シランによる充填剤の処理
WO2013083742A1 (en) * 2011-12-08 2013-06-13 Dow Corning Corporation Hydrolysable silanes
JP2015502357A (ja) * 2011-12-08 2015-01-22 ダウ コーニング コーポレーションDow Corning Corporation 加水分解性シラン及びそれらを含有するエラストマー組成物
US20140350277A1 (en) * 2011-12-08 2014-11-27 Dow Corning Corporation Hydrolysable Silanes
CN103974960B (zh) * 2011-12-08 2017-03-08 道康宁公司 可水解硅烷
US9440997B2 (en) * 2011-12-08 2016-09-13 Dow Corning Corporation Hydrolysable silanes
CN104011093A (zh) * 2011-12-23 2014-08-27 Jsr株式会社 改性共轭二烯系聚合物及其制造方法
JPWO2013094629A1 (ja) * 2011-12-23 2015-04-27 Jsr株式会社 変性共役ジエン系重合体及びその製造方法
US9447208B2 (en) 2012-01-10 2016-09-20 Bridgestone Corporation Rubber composition for tire, vulcanized rubber composition for tire, and tires using same
JP2013142108A (ja) * 2012-01-10 2013-07-22 Bridgestone Corp タイヤ用ゴム組成物、タイヤ用加硫ゴム組成物及びそれらを用いたタイヤ
WO2013105502A1 (ja) * 2012-01-10 2013-07-18 株式会社ブリヂストン タイヤ用ゴム組成物、タイヤ用加硫ゴム組成物及びそれらを用いたタイヤ
US9951167B2 (en) 2012-07-20 2018-04-24 Jsr Corporation Method for producing modified conjugated diene polymer, modified conjugated diene polymer, polymer composition, crosslinked polymer, and tire
EP2876115A4 (en) * 2012-07-20 2016-05-25 Jsr Corp PROCESS FOR PRODUCING MODIFIED CONJUGATED DIENE POLYMER, MODIFIED CONJUGATED DIENE POLYMER, POLYMER COMPOSITION, CROSSLINKED POLYMER, AND TIRE
JP2014108922A (ja) * 2012-11-30 2014-06-12 Daiso Co Ltd 有機珪素化合物の混合物およびゴム組成物
US20160009903A1 (en) * 2013-02-28 2016-01-14 Jsr Corporation Modified conjugated diene polymer and method for producing same, polymer composition, crosslinked polymer, and tire
JP2020073684A (ja) * 2013-12-12 2020-05-14 ファイアストン ポリマーズ エルエルシー 官能化ポリマーを含むポリマー組成物の製造方法
JP2015131955A (ja) * 2013-12-13 2015-07-23 旭化成ケミカルズ株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物
JP2015214619A (ja) * 2014-05-08 2015-12-03 旭化成ケミカルズ株式会社 ゴム組成物
JP2018526520A (ja) * 2015-09-10 2018-09-13 株式会社ブリヂストン 官能化ポリマーの調製方法
JP2018522994A (ja) * 2015-12-24 2018-08-16 エルジー・ケム・リミテッド 高分子化合物、これを用いた変性共役ジエン系重合体の製造方法及び変性共役ジエン系重合体
US10829627B2 (en) 2015-12-24 2020-11-10 Lg Chem, Ltd. Polymer compound, method for preparing modified and conjugated diene-based polymer using the same, and modified and conjugated diene-based polymer
JP2017149992A (ja) * 2016-02-23 2017-08-31 横浜ゴム株式会社 芳香族ビニル−ジエン共重合体、及び、ゴム組成物
US11008445B2 (en) 2016-02-23 2021-05-18 The Yokohama Rubber Co., Ltd. Aromatic vinyl-diene copolymer, method for producing aromatic vinyl-diene copolymer, and rubber composition
WO2017221943A1 (ja) * 2016-06-24 2017-12-28 Jsr株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体、タイヤ及び化合物
JP6252716B1 (ja) * 2016-06-24 2017-12-27 Jsr株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体、タイヤ及び化合物
CN108473599A (zh) * 2016-06-24 2018-08-31 Jsr株式会社 改性共轭二烯系聚合物的制造方法、改性共轭二烯系聚合物、聚合物组合物、交联体、轮胎以及化合物
JP2022521399A (ja) * 2019-09-30 2022-04-07 エルジー・ケム・リミテッド 変性共役ジエン系重合体、その製造方法、およびそれを含むゴム組成物

Also Published As

Publication number Publication date
HUE035042T2 (en) 2018-05-02
RU2531824C2 (ru) 2014-10-27
CN102574932B (zh) 2014-11-12
TW201127853A (en) 2011-08-16
EP2492286A1 (en) 2012-08-29
JP5692084B2 (ja) 2015-04-01
US20120270997A1 (en) 2012-10-25
BR112012009465B1 (pt) 2019-11-05
RU2012120707A (ru) 2013-11-27
BR112012009465A2 (pt) 2016-04-26
KR101745032B1 (ko) 2017-06-08
TWI491619B (zh) 2015-07-11
KR20120098644A (ko) 2012-09-05
US8809440B2 (en) 2014-08-19
JPWO2011049180A1 (ja) 2013-03-14
EP2492286A4 (en) 2016-08-10
EP2492286B1 (en) 2017-04-05
CN102574932A (zh) 2012-07-11

Similar Documents

Publication Publication Date Title
JP5692084B2 (ja) 変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物
JP5761185B2 (ja) 変性共役ジエン系ゴム、その製造方法、及びゴム組成物
JP5835232B2 (ja) 変性共役ジエン系ゴム、その製造方法、及びゴム組成物
JP5196070B2 (ja) 変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物
US8980987B2 (en) Method for producing modified conjugated diene rubber, modified conjugated diene rubber, and rubber composition
JP5871011B2 (ja) 変性共役ジエン系重合体及びその製造方法
WO2013031850A1 (ja) 変性共役ジエン系重合体の製造方法
JP5630344B2 (ja) 変性共役ジエン系ゴムの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080047500.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10825029

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011537309

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127010223

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1201001836

Country of ref document: TH

REEP Request for entry into the european phase

Ref document number: 2010825029

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010825029

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012120707

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13503205

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012009465

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012009465

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120420