WO2017221943A1 - 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体、タイヤ及び化合物 - Google Patents

変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体、タイヤ及び化合物 Download PDF

Info

Publication number
WO2017221943A1
WO2017221943A1 PCT/JP2017/022748 JP2017022748W WO2017221943A1 WO 2017221943 A1 WO2017221943 A1 WO 2017221943A1 JP 2017022748 W JP2017022748 W JP 2017022748W WO 2017221943 A1 WO2017221943 A1 WO 2017221943A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated diene
group
diene polymer
compound
modified conjugated
Prior art date
Application number
PCT/JP2017/022748
Other languages
English (en)
French (fr)
Inventor
和哉 森下
光憲 井上
大輔 吉井
雄介 天野
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to PL17815411T priority Critical patent/PL3476866T3/pl
Priority to EP17815411.8A priority patent/EP3476866B1/en
Priority to SG11201811355XA priority patent/SG11201811355XA/en
Priority to CN201780005925.7A priority patent/CN108473599B/zh
Priority to RU2018145510A priority patent/RU2709338C1/ru
Priority to JP2017544374A priority patent/JP6252716B1/ja
Priority to KR1020187018363A priority patent/KR102018618B1/ko
Priority to BR112018076588A priority patent/BR112018076588A8/pt
Priority to US16/311,460 priority patent/US10894876B2/en
Publication of WO2017221943A1 publication Critical patent/WO2017221943A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0025Compositions of the sidewalls
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/04Oxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/20Incorporating sulfur atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/12Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/50Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkaline earth metals, zinc, cadmium, mercury, copper or silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L19/00Compositions of rubbers not provided for in groups C08L7/00 - C08L17/00
    • C08L19/006Rubber characterised by functional groups, e.g. telechelic diene polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2310/00Masterbatches
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present disclosure relates to a method for producing a modified conjugated diene polymer, a modified conjugated diene polymer, a polymer composition, a crosslinked product, a tire, and a compound.
  • a conjugated diene polymer obtained by polymerization using a conjugated diene compound has good properties such as heat resistance, wear resistance, mechanical strength, and moldability, so that a pneumatic tire, a vibration-proof rubber, Widely used in various industrial products such as hoses.
  • Rubber compositions used for pneumatic tire treads, sidewalls, etc. are rubber compositions containing reinforcing agents such as carbon black and silica together with conjugated diene polymers in order to improve the durability and wear resistance of the product. It is known to blend into. Conventionally, in order to increase the affinity between a conjugated diene polymer and a reinforcing agent, a modified conjugated diene polymer obtained by modifying a conjugated diene polymer with a compound containing silicon or nitrogen has been used. (For example, refer to Patent Documents 1 and 2).
  • Patent Document 1 a metal halide compound is reacted with a modified conjugated diene polymer having a weight average molecular weight of 150,000 to 2,000,000 to which an alkoxysilyl group and an optionally protected primary amino group are bonded.
  • a method for producing a modified conjugated diene polymer for obtaining a rubber composition having good Mooney viscosity and shape stability in a raw rubber state and good processability by pseudo-crosslinking is disclosed. .
  • Patent Document 2 discloses that a conjugated diene monomer is polymerized or copolymerized in a hydrocarbon solvent using an organolithium compound as an initiator, and then the polymerization active terminal is defined as N- (1,3- By reacting with a compound having a methyleneamino group and an alkoxysilyl group, such as dimethylbutylidene) -3-triethoxysilyl-1-propanamine, the polymer has a good interaction with both carbon black and silica. Is disclosed.
  • One object of the present invention is to provide a method for producing a modified conjugated diene polymer that can be obtained by the method described above, and a modified conjugated diene polymer obtained by using the production method.
  • the present disclosure provides the following modified conjugated diene polymer production method, modified conjugated diene polymer, polymer composition, crosslinked product, and tire.
  • a modified conjugated diene polymer which is a reaction product with a compound [M] having at least one of at least any one of the above.
  • a polymer composition comprising the modified conjugated diene polymer obtained by the production method of [1] or the modified conjugated diene polymer of [2], silica, and a crosslinking agent.
  • a crosslinked rubber having excellent silica dispersibility and excellent low heat build-up it is possible to obtain a crosslinked rubber having excellent silica dispersibility and excellent low heat build-up.
  • the modified conjugated diene polymer can be produced by a method including the following polymerization step and modification step.
  • a monomer containing a conjugated diene compound is polymerized to obtain a conjugated diene polymer having an active end.
  • the conjugated diene compound used for the polymerization include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, 1,3-heptadiene, -Phenyl-1,3-butadiene, 3-methyl-1,3-pentadiene, 2-chloro-1,3-butadiene and the like.
  • 1,3-butadiene, isoprene, and 2,3-dimethyl-1,3-butadiene are preferable.
  • the conjugated diene polymer may be a homopolymer of a conjugated diene compound, but is preferably a copolymer of a conjugated diene compound and an aromatic vinyl compound from the viewpoint of increasing rubber strength.
  • the aromatic vinyl compound used in the polymerization include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 4- t-butylstyrene, 5-t-butyl-2-methylstyrene, vinylethylbenzene, divinylbenzene, trivinylbenzene, divinylnaphthalene, t-butoxystyrene, vinylbenzyldimethylamine, (4-vinylbenzyl) dimethylaminoethyl ether, N, N-dimethylaminoeth
  • the conjugated diene polymer is a copolymer of a conjugated diene compound and an aromatic vinyl compound
  • the living property in anionic polymerization is high, and in particular, a monomer composition containing 1,3-butadiene and styrene in the monomer composition. It is preferably a coalescence.
  • the copolymer has a random copolymer portion in which the distribution of the conjugated diene compound and the aromatic vinyl compound is irregular.
  • the copolymer may further have a block portion made of a conjugated diene compound or an aromatic vinyl compound.
  • the proportion of the aromatic vinyl compound used is determined by the low hysteresis loss characteristics and wet skid resistance of the resulting crosslinked polymer. From the viewpoint of improving the balance, the content is preferably 3 to 55% by mass, more preferably 5 to 50% by mass, based on the total amount of the conjugated diene compound and the aromatic vinyl compound used for the polymerization.
  • the content ratio of the structural unit derived from the aromatic vinyl compound in the polymer is a value measured by 1 H-NMR.
  • a conjugated diene compound and an aromatic vinyl compound may be used individually by 1 type, respectively, and may be used in combination of 2 or more type.
  • a compound other than the conjugated diene compound and the aromatic vinyl compound may be used as the monomer.
  • other monomers include acrylonitrile, methyl (meth) acrylate, ethyl (meth) acrylate, and the like.
  • the proportion of other monomers used is preferably 10% by mass or less, and more preferably 5% by mass or less, based on the total amount of monomers used for polymerization.
  • any of solution polymerization method, gas phase polymerization method and bulk polymerization method may be used, but the solution polymerization method is particularly preferable.
  • a polymerization form you may use any of a batch type and a continuous type.
  • the solution polymerization method as an example of a specific polymerization method, a monomer containing a conjugated diene compound is polymerized in an organic solvent in the presence of a polymerization initiator and a randomizer used as necessary. The method of doing is mentioned.
  • an alkali metal compound and an alkaline earth metal compound is used as the polymerization initiator.
  • an alkali metal compound and an alkaline earth metal compound include, for example, methyllithium, ethyllithium, n-propyllithium, n-butyllithium, sec-butyllithium, alkyllithium such as t-butyllithium, 1,4-dilithiobutane, phenyllithium, stilbenelithium, Naphthyl lithium, 1,3-bis (1-lithio-1,3-dimethylpentyl) benzene, 1,3-phenylenebis (3-methyl-1-phenylpentylidene) dilithium, naphthyl sodium, naphthyl potassium, di-n -Butylmagnesium, di-n-hexylmagnesium, ethoxypotassium, calcium stearate and the like. Of these, lithium compounds are preferred.
  • the polymerization reaction may be performed using a mixture of at least one of an alkali metal compound and an alkaline earth metal compound and a compound having a functional group that interacts with silica as an initiator.
  • the polymerization initiation terminal of the conjugated diene polymer can be modified with a functional group that interacts with silica.
  • the “functional group that interacts with silica” means a group having an element that interacts with silica, such as nitrogen, sulfur, phosphorus, and oxygen.
  • Interaction refers to an intermolecular force that forms a covalent bond between molecules or is weaker than a covalent bond (eg, ion-dipole interaction, dipole-dipole interaction, hydrogen bond, van der Waals This means that an electromagnetic force between molecules such as force is formed.
  • a nitrogen-containing compound such as a secondary amine compound
  • the nitrogen-containing compound include, for example, dimethylamine, diethylamine, dipropylamine, dibutylamine, dodecamethyleneimine, N, N′-dimethyl-N′-trimethylsilyl-1,6-diaminohexane, piperidine, pyrrolidine, Hexamethyleneimine, heptamethyleneimine, dicyclohexylamine, N-methylbenzylamine, di- (2-ethylhexyl) amine, diallylamine, morpholine, N- (trimethylsilyl) piperazine, N- (tert-butyldimethylsilyl) piperazine, 1, Examples include 3-ditrimethylsilyl-1,3,5-triazinane.
  • At least one of an alkali metal compound and an alkaline earth metal compound and a compound having a functional group that interacts with silica are mixed in advance, and the mixture is polymerized.
  • Polymerization may be carried out by adding it.
  • at least one of an alkali metal compound and an alkaline earth metal compound and a compound having a functional group that interacts with silica may be added to the polymerization system, and polymerization may be performed by mixing both in the polymerization system. Good. Any of these cases is included in an embodiment in which “a monomer containing a conjugated diene compound is polymerized in the presence of an initiator containing at least one of an alkali metal compound and an alkaline earth metal compound”.
  • the randomizer can be used for the purpose of adjusting the vinyl bond content representing the vinyl bond content in the polymer.
  • randomizers include dimethoxybenzene, tetrahydrofuran, dimethoxyethane, diethylene glycol dibutyl ether, diethylene glycol dimethyl ether, 2,2-di (tetrahydrofuryl) propane, 2- (2-ethoxyethoxy) -2-methylpropane, triethylamine, pyridine N-methylmorpholine, tetramethylethylenediamine and the like. These can be used individually by 1 type or in combination of 2 or more types.
  • the organic solvent used for the polymerization may be an organic solvent inert to the reaction, and for example, aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons and the like can be used.
  • hydrocarbons having 3 to 8 carbon atoms are preferable, and specific examples thereof include, for example, propane, n-butane, isobutane, n-pentane, isopentane, n-hexane, cyclohexane, propene, 1-butene and isobutene.
  • the monomer concentration in the reaction solvent is preferably 5 to 50% by mass, and preferably 10 to 30% by mass from the viewpoint of maintaining a balance between productivity and ease of polymerization control. More preferred.
  • the temperature of the polymerization reaction is preferably ⁇ 20 ° C. to 150 ° C., more preferably 0 to 120 ° C.
  • the polymerization reaction is preferably performed under a pressure sufficient to keep the monomer in a substantially liquid phase. Such a pressure can be obtained by a method such as pressurizing the inside of the reactor with a gas inert to the polymerization reaction.
  • the weight average molecular weight (Mw) in terms of polystyrene by gel permeation chromatography (GPC) of the conjugated diene polymer obtained is preferably 5.0 ⁇ 10 4 to 1.0 ⁇ 10 6 . If Mw is smaller than 5.0 ⁇ 10 4 , the tensile strength, low heat build-up and wear resistance of the crosslinked polymer tend to be lowered, and if larger than 1.0 ⁇ 10 6 , the modified polymer is The processability of the rubber composition obtained by use tends to decrease. More preferably, it is 8.0 ⁇ 10 4 to 8.0 ⁇ 10 5 , and still more preferably 1.0 ⁇ 10 5 to 5.0 ⁇ 10 5 .
  • the vinyl bond content in the butadiene unit is preferably 30 to 70% by mass, more preferably 33 to 68% by mass, and 35 to 65% by mass. Is more preferable. If the vinyl bond content is less than 30 mol%, the grip characteristics tend to be low, and if it exceeds 70 mass%, the wear resistance of the resulting vulcanized rubber tends to decrease.
  • the “vinyl bond content” is a value indicating the content ratio of structural units having 1,2-bonds to all structural units of butadiene in the conjugated diene polymer. 1 H-NMR Is a value measured by.
  • the active terminal of the conjugated diene polymer obtained in the polymerization step is reacted with compound [M].
  • the compound having a total of 2 or more as a denaturant By using it, a modified conjugated diene polymer modified with a group having a large number of branches of the polymer chain and interacting with silica can be obtained by the modification step.
  • examples of the hydrocarbyl group of R 1 include an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms.
  • Etc. A 1 is not particularly limited as long as it has an alkoxysilyl group, but is preferably a group further having a methylene group or a polymethylene group, and has a methylene group or a polymethylene group and an alkoxysilyl group.
  • the number of the specific imino group possessed by the compound [M] may be two or more, and preferably 2 to 6.
  • the plurality of R 1 with compound [M] is, A 1 may be the same or different.
  • R 2 and R 3 are each independently a hydrocarbyl group having 1 to 20 carbon atoms
  • R 4 is an alkanediyl group having 1 to 20 carbon atoms
  • R 5 has an m-valent hydrocarbyl group having 1 to 20 carbon atoms, or at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom.
  • n is an integer of 1 to 3
  • m is an integer of 2 to 10.
  • a plurality of R 2 , R 3 , R 4 , A 2 and n may be the same or different.
  • the hydrocarbyl group of R 2 and R 3 is, for example, an alkyl group having 1 to 20 carbon atoms, an allyl group, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or the like.
  • Examples of the hydrocarbylene group for R 4 include an alkanediyl group having 1 to 20 carbon atoms, a cycloalkylene group having 3 to 20 carbon atoms, and an arylene group having 6 to 20 carbon atoms.
  • R 4 is preferably linear.
  • n is preferably 2 or 3, more preferably 3 in that the effect of improving silica dispersibility is high.
  • the m-valent hydrocarbyl group represented by R 5 includes a chain hydrocarbon having 1 to 20 carbon atoms, an alicyclic hydrocarbon having 3 to 20 carbon atoms, or m hydrogen atoms from an aromatic hydrocarbon having 6 to 20 carbon atoms. And the like from which is removed.
  • a group obtained by removing m hydrogen atoms from the ring portion of the aromatic hydrocarbon (aromatic ring group) is preferable in that the effect of improving the wear resistance of the obtained vulcanized rubber is high.
  • aromatic hydrocarbon examples include a ring structure represented by the following formula (2) and a polycyclic structure (for example, a biphenyl group) formed by connecting two or more of the ring structures.
  • r is an integer of 0 to 5.
  • R 5 is an m-valent group having 1 to 20 carbon atoms having at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom, and having no active hydrogen.
  • examples include an m-valent heterocyclic group, an m-valent group having a tertiary amine structure, and the like.
  • the heterocyclic group is preferably a conjugated system, for example, a single ring or condensed ring such as pyridine, pyrimidine, pyrazine, quinoline, naphthalidine, furan, thiophene, or a structure in which a plurality of such single rings or condensed rings are connected.
  • active hydrogen refers to a hydrogen atom bonded to an atom other than a carbon atom, preferably one having a bond energy lower than the carbon-hydrogen bond of polymethylene.
  • compound [M] examples include compounds represented by the following formulas (M-1) to (M-23).
  • compound [M] may be used individually by 1 type, and may be used in combination of 2 or more type.
  • R 7 in formula (M-11) represents a hydrogen atom or an alkyl group.
  • Compound [M] can be synthesized by appropriately combining organic chemistry methods.
  • a monofunctional amine compound having an alkoxysilyl group and R 4 for example, 3-aminopropyltriethoxysilane, 3-aminopropyl) methyl diethoxy silane, etc.
  • polyfunctional aldehyde compounds with R 5 e.g., terephthalaldehyde, isophthalaldehyde, phthalic dialdehyde, a method of 2,4-pyridinedicarboxylate aldehydes
  • R A polyfunctional amine compound having 5 for example, tris (2-aminoethyl) amine, N, N′-bis (2-aminoethyl) methylamine, etc.
  • the reaction between the conjugated diene polymer having an active terminal and the compound [M] can be performed, for example, as a solution reaction.
  • the use ratio of compound [M] (the total amount when two or more are used) is 0 with respect to 1 mol of metal atoms involved in the polymerization of the polymerization initiator, from the viewpoint of sufficiently allowing the modification reaction to proceed.
  • the amount is preferably 0.01 mol or more, more preferably 0.05 mol or more.
  • the upper limit is preferably less than 2.0 mol and less than 1.5 mol with respect to 1 mol of metal atoms involved in the polymerization of the polymerization initiator in order to avoid excessive addition. Is more preferable.
  • the temperature of the modification reaction is usually the same as the polymerization reaction, preferably ⁇ 20 ° C. to 150 ° C., more preferably 0 to 120 ° C.
  • the reaction time is preferably 1 minute to 5 hours, more preferably 2 minutes to 1 hour.
  • the conjugated diene polymer having an active terminal and the compound [M] other modifiers or coupling agents may be used together with the compound [M].
  • the other modifier or coupling agent is not particularly limited as long as it is a compound that can react with the active terminal of the conjugated diene polymer obtained by the above polymerization, and as a modifier or coupling agent for the conjugated diene polymer. Known compounds can be used. When other modifiers or coupling agents are used, the proportion used is preferably 10 mol% or less, more preferably 5 mol% or less.
  • the weight average molecular weight in terms of polystyrene by GPC has a Mooney viscosity sufficiently high and a modified conjugated diene polymer having good shape stability and excellent workability. From the viewpoint of achieving compatibility with obtaining a rubber composition, it is preferably 1.5 ⁇ 10 5 to 2.0 ⁇ 10 6 . More preferably, it is 1.8 ⁇ 10 5 to 1.5 ⁇ 10 6 , and still more preferably 2.0 ⁇ 10 5 to 1.2 ⁇ 10 6 .
  • the weight average molecular weight of the modified conjugated diene polymer is a value obtained from the maximum peak molecular weight of the GPC curve measured by GPC after the reaction between the conjugated diene polymer having an active terminal and the compound [M].
  • the ratio AT / AL (hereinafter also referred to as “coupling ratio of three or more branches”) of the peak part area AT showing the peak top molecular weight is 40% or more.
  • the coupling rate of three or more branches is more preferably 45% or more, further preferably 50% or more, and particularly preferably 55% or more.
  • the peak top molecular weight of the peak with the smallest molecular weight measured by GPC after the reaction of the conjugated diene polymer having an active end with the compound [M] is preferably 5.0 ⁇ 10 4 to 1.0 ⁇ 10 6. More preferably, the range is 8.0 ⁇ 10 4 to 8.0 ⁇ 10 5 , and still more preferably 1.0 ⁇ 10 5 to 5.0 ⁇ 10 5 .
  • the number of branches of the polymer chain per molecule of the resulting modified conjugated diene polymer is preferably 3 or more from the viewpoint that the Mooney viscosity of the resulting modified conjugated diene polymer is sufficiently high and the cold flow can be improved. More preferably, it is in the range of 3-20.
  • the C ⁇ N group is more reactive than the alkoxysilyl group and reacts preferentially with the active terminal of the conjugated diene polymer, so that the number of residual alkoxysilyl groups increases, and the resulting modified conjugated diene polymer It is conceivable that the interaction with silica was improved, thereby showing an excellent low heat generation property.
  • the modified conjugated diene polymer of the present disclosure is represented by the following formula (3).
  • R 2 is a hydrocarbyl group having 1 to 20 carbon atoms
  • R 6 is a hydrocarbyloxy group having 1 to 20 carbon atoms, or a modified or unmodified conjugated diene polymer chain
  • R 4 is an alkanediyl group having 1 to 20 carbon atoms
  • Z is a group represented by the following formula (4) or formula (5):
  • R 5 is an m-valent having 1 to 20 carbon atoms.
  • a plurality of R 2 , R 4 , R 6 , Z, and n may be the same or different.
  • R 1 is a hydrogen atom or a hydrocarbyl group
  • Poly is a modified or unmodified conjugated diene polymer chain. “*” Is a bond that binds to R 5 . Indicates that it is a hand.
  • the hydrocarbyloxy group for R 6 is preferably an ethoxy group or a methoxy group.
  • the conjugated diene polymer chain of R 6 and the conjugated diene polymer chain Poly in the formulas (4) and (5) correspond to the structure corresponding to the conjugated diene polymer having an active end obtained in the polymerization step. It is. These conjugated diene polymer chains may have functional groups that interact with silica at the ends.
  • the polymer composition of the present disclosure contains the modified conjugated diene polymer, silica, and a crosslinking agent.
  • the content ratio of the modified conjugated diene polymer in the polymer composition is preferably 10% by mass or more, more preferably 20% by mass or more, based on the total amount of the polymer composition. More preferably, it is 25 mass% or more.
  • the upper limit of the modified conjugated diene polymer is preferably 50% by mass or less, more preferably 40% by mass or less.
  • silica examples include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), colloidal silica, precipitated silica, calcium silicate, and aluminum silicate.
  • wet silica is particularly preferable from the viewpoint of the effect of improving fracture characteristics and the effect of achieving both wet grip properties and low rolling resistance.
  • high dispersible type silica from the viewpoint of improving dispersibility in the polymer composition and improving physical properties and processability.
  • a silica can be used individually by 1 type or in combination of 2 or more types.
  • various reinforcing fillers such as carbon black, clay and calcium carbonate may be blended in addition to silica as a filler.
  • silica alone or a combination of carbon black and silica is used.
  • the total amount of silica and carbon black in the polymer composition is preferably 20 to 130 parts by mass, more preferably 25 to 110 parts by mass with respect to 100 parts by mass of the total amount of the polymer components contained in the polymer composition. Part.
  • crosslinking agent examples include sulfur, sulfur halides, organic peroxides, quinonedioximes, organic polyvalent amine compounds, alkylphenol resins having a methylol group, and sulfur is usually used.
  • the amount of sulfur is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the total amount of polymer components contained in the polymer composition.
  • BR butadiene rubber
  • SBR styrene butadiene rubber
  • NR natural rubber
  • IR isoprene rubber
  • styrene isoprene copolymer rubber butadiene isoprene copolymer rubber and the like
  • BR and SBR are more preferable.
  • the content ratio of the other rubber component in the polymer composition is preferably 60% by mass or less, and 50% by mass or less with respect to the total amount of the modified conjugated diene polymer and the other rubber component. More preferably.
  • a process oil generally used for oil-extended elastomer may be blended as an oil for oil-extended.
  • Process oils are formulated into rubber compositions, for example, by adding oil directly during rubber compounding.
  • Preferred process oils include various oils known in the art, such as aromatic oils, paraffinic oils, naphthenic oils, vegetable oils, and oils with a low content of polycyclic aromatic compounds (low PCA oil), for example, mild extract solvate (MES), oil treated with aromatic extract from distillate (TDAE), aromatic special extract from residual oil (SRAE: special ⁇ residual aromatic extract), heavy naphthenic oil and the like.
  • MES mild extract solvate
  • TDAE aromatic extract from distillate
  • SRAE aromatic special extract from residual oil
  • MES MES
  • TDAE TDAE
  • SRAE SRAE
  • the blending amount of the process oil is preferably 10 to 100 parts by mass with respect to 100 parts by mass of the total amount of the polymer components contained in the polymer composition.
  • the polymer composition includes, for example, anti-aging agent, zinc white, stearic acid, softener, sulfur, vulcanization accelerator, silane coupling agent, compatibilizer, vulcanization aid, processing
  • Various additives generally used in tire rubber compositions such as an auxiliary agent and a scorch inhibitor can be blended. These blending ratios can be appropriately selected according to various components within a range not impairing the effects of the present disclosure.
  • the components to be blended as necessary include an open kneader (for example, roll) and a closed kneader (for example, Banbury mixer). It can be applied to various rubber products as a cross-linked body by kneading using a kneader such as the like and cross-linking (vulcanizing) after molding.
  • an open kneader for example, roll
  • a closed kneader for example, Banbury mixer
  • the crosslinked product is used for tires such as tire treads, under treads, carcass, sidewalls, bead portions, etc .; seal materials such as packings, gaskets, weather strips, O-rings; automobiles, ships, aircrafts, Inner and outer skin materials for various vehicles such as railways; Building materials; Anti-vibration rubbers for industrial machines and facilities; Various hoses and hose covers such as diaphragms, rolls, radiator hoses and air hoses; Belts for power transmission Belts such as; linings; dust boots; medical equipment materials; fenders; insulating materials for electric wires; and other industrial products.
  • a modified conjugated diene polymer having a high Mooney viscosity, good shape stability, and good processability when used as a polymer composition is obtained.
  • the physical properties required for tire applications such as low heat buildup and wear resistance can be obtained while maintaining good conditions. Therefore, the polymer composition containing the modified conjugated diene polymer obtained in the present disclosure can be suitably used particularly as a material for tire treads and sidewalls.
  • the tire can be manufactured according to a conventional method.
  • a tread is obtained by mixing a polymer composition with a kneader and forming a sheet into a predetermined position (for example, outside of a carcass in the case of a sidewall) and vulcanizing and molding.
  • a predetermined position for example, outside of a carcass in the case of a sidewall
  • a pneumatic tire is obtained.
  • the peak with the smallest molecular weight is a peak derived from a polymer excluding a polymer whose molecular weight has increased due to a reaction with a modifier or a coupling agent.
  • GPC measurement conditions Column: Two brand names “TSK gel HHR-H” (manufactured by Tosoh Corporation) Column temperature: 40 ° C.
  • Mobile phase Tetrahydrofuran Flow rate: 1.0 ml / min Sample concentration: 10 mg / 20 ml -Weight average molecular weight of the polymer after the modification reaction: It was determined in terms of polystyrene from the retention time corresponding to the peak of the maximum peak of the GPC curve obtained above.
  • -Coupling rate (%) of three or more branches About 2.5 times or more of the peak top molecular weight of the peak having the smallest molecular weight with respect to 100% of the total area derived from the polymer of the GPC curve for the GPC curve obtained above.
  • the area ratio of the peak portion showing the peak top molecular weight was defined as a coupling ratio of three or more branches.
  • Mooney viscosity (ML 1 + 4 , 100 ° C.) Measured according to JIS K6300 using an L rotor under conditions of preheating 1 minute, rotor operating time 4 minutes, and temperature 100 ° C.
  • Cold flow was measured by extruding the polymer through a 1/4 inch orifice at a pressure of 3.5 pounds per square inch and a temperature of 50 ° C. In order to obtain a steady state, the extrusion speed was measured after standing for 10 minutes, and the value was expressed in grams (g / min) per minute. The cold flow value indicates that the smaller the value, the better the shape stability (storage stability).
  • tan ⁇ Measured using a vulcanized rubber as a measurement sample and using a dynamic spectrometer (manufactured by Rheometrics, USA) under conditions of a tensile dynamic strain of 0.7%, an angular velocity of 100 radians per second, and 70 ° C. . Expressed as an index, the larger the value, the smaller the rolling resistance and the better the low heat buildup.
  • DIN abrasion test Measured at 25 ° C. with a load of 10 N according to JIS K6264 using a vulcanized rubber as a measurement sample and using a DIN abrasion tester (manufactured by Toyo Seiki Co., Ltd.).
  • the modifiers (compound (M-1) to compound (M-13)) used in the examples are the above-described formulas (M-1) to (M-13) exemplified above as the compound [M], respectively. Corresponding to each of the compounds.
  • Example 1 Synthesis of modified conjugated diene polymer I and its physical properties Polymerization was carried out in the same manner as the modified conjugated diene polymer i except that 2.12 mmol of the compound (M-1) was added instead of N, N-bis (trimethylsilyl) aminopropylmethyldiethoxysilane.
  • the modified conjugated diene polymer I was obtained by removing the solvent from the solution and isolating the polymer in the same manner as the conjugated diene polymer i.
  • Various physical properties of the modified conjugated diene polymer I obtained are shown in Table 2 below.
  • Example 4 Synthesis and Properties of Modified Conjugated Diene Polymer IV Polymerization was carried out in the same manner as the modified conjugated diene polymer I except that the addition amount of the polymerization initiator was 6.00 mmol and the addition amount of the modifier was 1.43 mmol, and the same as the modified conjugated diene polymer i. Then, the solvent was removed from the solution and the polymer was isolated to obtain a modified conjugated diene polymer IV. Various physical property values and the like of the resulting modified conjugated diene polymer IV are shown in Table 2 below.
  • Example 5 Synthesis of modified conjugated diene polymer V and its physical properties Polymerization was carried out in the same manner as the modified conjugated diene polymer I except that the addition amount of the polymerization initiator was 3.37 mmol and the addition amount of the modifier was 1.10 mmol, and the same as the modified conjugated diene polymer i Then, the solvent was removed from the solution and the polymer was isolated, whereby a modified conjugated diene polymer V was obtained.
  • the various physical property values and the like of the obtained modified conjugated diene polymer V are shown in Table 2 below.
  • Examples 7 to 16 Synthesis of modified conjugated diene polymers VII to XVI and their physical properties
  • the compounds (M-2) to (M-11) shown in Table 2 and Table 3 below were added instead of the compound (M-1), respectively.
  • Polymerization was performed, and the solvent was removed from the solution in the same manner as in the modified conjugated diene polymer i, and the polymer was isolated to obtain modified conjugated diene polymers VII to XVI.
  • Various physical property values and the like of the obtained modified conjugated diene polymers VII to XVI are shown in Tables 2 and 3 below.
  • Example 16 a compound in which “R 7 ” in the above formula (M-11) is a hydrogen atom was used as a modifier.
  • Example 17 Synthesis and Properties of Modified Conjugated Diene Polymer XVII Polymerization was carried out in the same manner as the modified conjugated diene polymer I except that 1.43 mmol of the compound (M-12) was added instead of the compound (M-1), and the modified conjugated diene polymer i and Similarly, the solvent was removed from the solution and the polymer was isolated to obtain a modified conjugated diene polymer XVII.
  • Table 3 Various physical property values and the like of the obtained modified conjugated diene polymer XVII are shown in Table 3 below.
  • Example 18 Synthesis and Properties of Modified Conjugated Diene Polymer XVIII Polymerization was carried out in the same manner as modified conjugated diene polymer I, except that 1.43 mmol of compound (M-13) was added instead of compound (M-1), and the same as modified conjugated diene polymer i. Then, the solvent was removed from the solution and the polymer was isolated to obtain a modified conjugated diene polymer XVIII.
  • the various physical property values and the like of the obtained modified conjugated diene polymer XVIII are shown in Table 3 below.
  • Example 19 Synthesis and Properties of Modified Conjugated Diene Polymer XIX Polymerization was carried out in the same manner as the modified conjugated diene polymer I except that 2.12 mmol of a 1: 1 (molar ratio) mixture of the compound (M-1) and the compound (M-2) was added.
  • the modified conjugated diene polymer XIX was obtained by removing the solvent from the solution and isolating the polymer in the same manner as the polymer i.
  • Various physical properties of the obtained modified conjugated diene polymer XIX are shown in Table 3 below.
  • INI-1 reaction product of n-butyllithium and piperidine (compound represented by the above formula (INI-1)) Modification agent 1; N, N-bis (trimethylsilyl) aminopropylmethyldiethoxysilane Modification agent 2; Compound represented by the above formula (A) Modification agent 3; Tetraglycidyl-1,3-bisaminomethylcyclohexane
  • Butadiene rubber, extender oil, silica, carbon black, silane coupling agent, stearic acid, anti-aging agent and zinc oxide were mixed and kneaded.
  • the blend obtained above was cooled to room temperature, and then sulfur and a vulcanization accelerator were blended and kneaded. This was molded and vulcanized with a vulcanizing press at 160 ° C. for a predetermined time to obtain a crosslinked rubber (vulcanized rubber).
  • the blended Mooney viscosity measurement 70 ° C.
  • the modified conjugated diene polymers obtained in Examples 1 to 19 are all modified conjugated diene polymers having few branches obtained in Comparative Example 1, or unmodified conjugated diene polymers obtained in Comparative Example 5. Compared to the polymer, the Mooney viscosity was high and the cold flow was low. Therefore, the modified conjugated diene polymer obtained in Examples 1 to 19 is more shaped than the modified conjugated diene polymer obtained in Comparative Example 1 and the conjugated diene polymer obtained in Comparative Example 5. It was found to be excellent in stability (storage stability). The Mooney viscosity and cold flow value of the modified conjugated diene polymers obtained in Examples 1 to 19 were substantially the same as the results of Comparative Examples 2, 3, and 4.
  • the processability and rolling resistance of the compounded rubbers obtained in Examples 1 to 19 and the tire physical properties (rolling resistance and wear resistance) of the vulcanized rubber are substantially the same as those of Comparative Example 1. Although the degree of wear resistance, the Examples were superior in wear resistance. Further, compared with Comparative Examples 2 to 4, although the wear resistance was substantially the same, the workability and rolling resistance were superior to those of the Examples. Moreover, compared with Comparative Example 5, the working example, rolling resistance, and wear resistance were superior in Example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerization Catalysts (AREA)
  • Tires In General (AREA)

Abstract

ムーニー粘度が高く、形状安定性が良好であり、かつ優れた加工性及び低発熱性を発現する変性共役ジエン系重合体をできるだけ少ない工程数で得る。アルカリ金属化合物及びアルカリ土類金属化合物の少なくとも一方を含む開始剤の存在下、共役ジエン化合物を含むモノマーを重合して得られる、活性末端を有する共役ジエン系重合体と、基「-C(R)=N-A」及び基「-N=C(R)-A」(ただし、Rは水素原子又はヒドロカルビル基であり、Aはアルコキシシリル基を有する1価の基である。)の少なくともいずれかを合計2個以上有する化合物[M]と、を反応させる方法により変性共役ジエン系重合体を製造する。

Description

変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体、タイヤ及び化合物
 本開示は、変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体、タイヤ及び化合物に関するものである。
 共役ジエン化合物を用いた重合により得られる共役ジエン系重合体は、耐熱性、耐摩耗性、機械的強度、成形加工性等の各種特性が良好であることから、空気入りタイヤや防振ゴム、ホースなどの各種工業製品に広く使用されている。
 空気入りタイヤのトレッド、サイドウォール等に用いられるゴム組成物としては、製品の耐久性や耐摩耗性を向上させるべく、共役ジエン系重合体と共に、カーボンブラックやシリカ等の補強剤をゴム組成物に配合することが知られている。また従来、共役ジエン系重合体と補強剤との親和性を高めるために、共役ジエン系重合体をケイ素や窒素を含有する化合物で変性した変性共役ジエン系重合体を用いることが行われている(例えば特許文献1,2参照)。
 特許文献1には、アルコキシシリル基と保護されていてもよい1級アミノ基が結合された、重量平均分子量が15万~200万の変性共役ジエン系重合体に、金属ハロゲン化合物を反応させて疑似架橋させることにより、生ゴム状態でのムーニー粘度及び形状安定性が良好であって、かつ加工性が良好なゴム組成物を得るための変性共役ジエン系重合体を製造する方法が開示されている。また、特許文献2には、炭化水素溶媒中で、有機リチウム化合物を開始剤として用いて共役ジエン単量体を重合又は共重合させた後、その重合活性末端を、N-(1,3-ジメチルブチリデン)-3-トリエトキシシリル-1-プロパンアミン等といった、メチレンアミノ基及びアルコキシシリル基を有する化合物と反応させることにより、重合体がカーボンブラック及びシリカの双方に対して良好な相互作用を示すようにすることが開示されている。
国際公開第2008/123164号 特許第4111590号公報
 しかしながら、特許文献1の方法では、アルコキシシリル基と保護されていてもよい1級アミノ基が結合された、重量平均分子量が15万~200万の変性共役ジエン系重合体を得た後に、得られた変性共役ジエン系重合体と金属ハロゲン化合物とを反応させて擬似架橋させるための工程がさらに必要となる。そのため、製造に際して工程数が多くなることが懸念される。また、特許文献2の方法によって得られる変性重合体はシリカの分散性の点で劣る。そのため、当該変性重合体を用いて得られる架橋ゴムの低発熱性が十分でなく、更なる改良の余地がある。
 本開示は上記問題点に鑑みなされたものであり、ムーニー粘度が高く、形状安定性が良好であり、かつ優れた加工性及び低発熱性を発現する変性共役ジエン系重合体をできるだけ少ない工程数で得ることができる変性共役ジエン系重合体の製造方法、及び該製造方法を用いて得られる変性共役ジエン系重合体を提供することを一つの目的とする。
 本開示により以下の変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体及びタイヤが提供される。
 [1] アルカリ金属化合物及びアルカリ土類金属化合物の少なくとも一方を含む開始剤の存在下、共役ジエン化合物を含むモノマーを重合して得られる、活性末端を有する共役ジエン系重合体と、基「-C(R)=N-A」及び基「-N=C(R)-A」(ただし、Rは水素原子又はヒドロカルビル基であり、Aはアルコキシシリル基を有する1価の基である。)の少なくともいずれかを合計2個以上有する化合物[M]と、を反応させる、変性共役ジエン系重合体の製造方法。
 [2] 活性末端を有する共役ジエン系重合体と、基「-CR=N-A」及び基「-N=CR-A」(ただし、Rは水素原子又はヒドロカルビル基であり、Aはアルコキシシリル基を有する1価の基である。)の少なくともいずれかを合計2個以上有する化合物[M]との反応生成物である、変性共役ジエン系重合体。
 [3]上記[1]の製造方法により得られる変性共役ジエン系重合体又は上記[2]の変性共役ジエン系重合体と、シリカと、架橋剤とを含む重合体組成物。
 [4]上記[3]の重合体組成物を架橋させてなる架橋体。
 [5]上記[3]の重合体組成物を用いて、少なくともトレッド又はサイドウォールが形成されたタイヤ。
 [6]下記式(1)で表される化合物。
 本開示によれば、ムーニー粘度が高く、形状安定性が良好であり、かつ重合体組成物としたときの加工性が良好な変性共役ジエン系重合体を、擬似架橋せずに得ることができる。よって、良好な特性を示す変性共役ジエン系重合体を、製造工程数の増加を抑えながらできるだけ少ない工程数で得ることができる。また、本開示の変性共役ジエン系重合体によれば、シリカの分散性を良好にでき、低発熱性に優れた架橋ゴムを得ることができる。
 本開示の変性共役ジエン系重合体は、活性末端を有する共役ジエン系重合体と、基「-CR=N-A」及び基「-N=CR-A」(ただし、Rは水素原子又はヒドロカルビル基であり、Aはアルコキシシリル基を有する1価の基である。)の少なくともいずれかを合計2個以上有する化合物[M]と、の反応生成物である。当該変性共役ジエン系重合体は、以下の重合工程及び変性工程を含む方法により製造することができる。以下、本開示の態様に関連する事項について詳細に説明する。
<重合工程>
 本工程は、共役ジエン化合物を含むモノマーを重合して、活性末端を有する共役ジエン系重合体を得る工程である。重合に使用する共役ジエン化合物としては、例えば1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-ヘプタジエン、2-フェニル-1,3-ブタジエン、3-メチル-1,3-ペンタジエン、2-クロロ-1,3-ブタジエン等が挙げられる。これらの中でも、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエンが好ましい。
 共役ジエン系重合体は、共役ジエン化合物の単独重合体であってもよいが、ゴムの強度を高める観点から、共役ジエン化合物と芳香族ビニル化合物との共重合体であることが好ましい。重合に使用する芳香族ビニル化合物としては、例えばスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、α-メチルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン、ビニルエチルベンゼン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレン、t-ブトキシスチレン、ビニルベンジルジメチルアミン、(4-ビニルベンジル)ジメチルアミノエチルエーテル、N,N-ジメチルアミノエチルスチレン、N,N-ジメチルアミノメチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2-t-ブチルスチレン、3-t-ブチルスチレン、4-t-ブチルスチレン、ビニルキシレン、ビニルナフタレン、ビニルピリジン、ジフェニルエチレン、3級アミノ基含有ジフェニルエチレン(例えば、1-(4-N,N-ジメチルアミノフェニル)-1-フェニルエチレンなど)等が挙げられる。芳香族ビニル化合物としては、これらの中でもスチレン、α-メチルスチレンが好ましい。
 共役ジエン系重合体が、共役ジエン化合物と芳香族ビニル化合物との共重合体である場合、アニオン重合におけるリビング性が高い点で、中でも、1,3-ブタジエンとスチレンとをモノマー組成に含む重合体であることが好ましい。上記共重合体は、共役ジエン化合物と芳香族ビニル化合物との分布が不規則なランダム共重合部分を有することが好ましい。上記共重合体は、共役ジエン化合物又は芳香族ビニル化合物からなるブロック部分をさらに有していてもよい。
 共役ジエン系重合体が、共役ジエン化合物と芳香族ビニル化合物との共重合体である場合、芳香族ビニル化合物の使用割合は、得られる架橋重合体の低ヒステリシスロス特性とウェットスキッド抵抗性とのバランスを良好にする観点から、重合に使用する共役ジエン化合物及び芳香族ビニル化合物の合計量に対して、3~55質量%とすることが好ましく、5~50質量%とすることがより好ましい。なお、重合体中における、芳香族ビニル化合物に由来する構造単位の含有割合はH-NMRによって測定した値である。共役ジエン化合物、芳香族ビニル化合物は、それぞれ1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 上記重合に際しては、モノマーとして、共役ジエン化合物及び芳香族ビニル化合物以外の化合物(以下、「他のモノマー」ともいう。)を使用してもよい。他のモノマーとしては、例えばアクリロニトリル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等が挙げられる。他のモノマーの使用割合は、重合に使用するモノマーの全体量に対して、10質量%以下とすることが好ましく、5質量%以下とすることがより好ましい。
 使用する重合法としては、溶液重合法、気相重合法、バルク重合法のいずれを用いてもよいが、溶液重合法が特に好ましい。また、重合形式としては、回分式及び連続式のいずれを用いてもよい。溶液重合法を用いる場合、具体的な重合方法の一例としては、有機溶媒中において、共役ジエン化合物を含む単量体を、重合開始剤、及び必要に応じて用いられるランダマイザーの存在下で重合する方法が挙げられる。
 重合開始剤としては、アルカリ金属化合物及びアルカリ土類金属化合物の少なくともいずれかを用いる。これらの具体例としては、例えばメチルリチウム、エチルリチウム、n-プロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウムなどのアルキルリチウム、1,4-ジリチオブタン、フェニルリチウム、スチルベンリチウム、ナフチルリチウム、1,3-ビス(1-リチオ-1,3-ジメチルペンチル)ベンゼン、1,3-フェニレンビス(3-メチル-1-フェニルペンチリデン)ジリチウム、ナフチルナトリウム、ナフチルカリウム、ジ-n-ブチルマグネシウム、ジ-n-ヘキシルマグネシウム、エトキシカリウム、ステアリン酸カルシウム等が挙げられる。これらの中でもリチウム化合物が好ましい。重合開始剤の合計の使用量は、重合に使用するモノマー100gに対して、0.2~20mmolとすることが好ましい。
 重合反応は、開始剤として、アルカリ金属化合物及びアルカリ土類金属化合物の少なくともいずれかと、シリカと相互作用する官能基を有する化合物との混合物を用いて行ってもよい。当該混合物の存在下で重合を行うことにより、共役ジエン系重合体の重合開始末端を、シリカと相互作用を有する官能基で変性することができる。なお、本明細書において「シリカと相互作用する官能基」とは、窒素、硫黄、リン、酸素などのシリカと相互作用する元素を有する基を意味する。「相互作用」とは、分子間で共有結合を形成するか、又は共有結合よりも弱い分子間力(例えば、イオン-双極子相互作用、双極子-双極子相互作用、水素結合、ファンデルワールス力等といった分子間に働く電磁気学的な力)を形成することを意味する。
 重合開始末端の変性に用いる、シリカと相互作用する官能基を有する化合物としては、中でも、第2級アミン化合物などの窒素含有化合物が好ましい。当該窒素含有化合物の具体例としては、例えばジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ドデカメチレンイミン、N,N’-ジメチル-N’-トリメチルシリル-1,6-ジアミノヘキサン、ピペリジン、ピロリジン、ヘキサメチレンイミン、ヘプタメチレンイミン、ジシクロヘキシルアミン、N-メチルベンジルアミン、ジ-(2-エチルヘキシル)アミン、ジアリルアミン、モルホリン、N-(トリメチルシリル)ピペラジン、N-(tert-ブチルジメチルシリル)ピペラジン、1,3-ジトリメチルシリル-1,3,5-トリアジナン等が挙げられる。
 なお、上記混合物の存在下で重合を行う場合、アルカリ金属化合物及びアルカリ土類金属化合物の少なくともいずれかと、シリカと相互作用する官能基を有する化合物とを予め混合しておき、その混合物を重合系中に添加して重合を行ってもよい。あるいは、重合系中に、アルカリ金属化合物及びアルカリ土類金属化合物の少なくともいずれかと、シリカと相互作用する官能基を有する化合物とを添加し、重合系中で両者を混合して重合を行ってもよい。これらいずれの場合も、「アルカリ金属化合物及びアルカリ土類金属化合物の少なくとも一方を含む開始剤の存在下、共役ジエン化合物を含むモノマーを重合」する態様に含まれる。
 ランダマイザーは、重合体中におけるビニル結合の含有率を表すビニル結合含量の調整等を目的として用いることができる。ランダマイザーの例としては、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、2,2-ジ(テトラヒドロフリル)プロパン、2-(2-エトキシエトキシ)-2-メチルプロパン、トリエチルアミン、ピリジン、N-メチルモルホリン、テトラメチルエチレンジアミン等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて使用できる。
 重合に使用する有機溶媒としては、反応に不活性な有機溶剤であればよく、例えば脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素などを用いることができる。中でも、炭素数3~8の炭化水素が好ましく、その具体例としては、例えばプロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、n-へキサン、シクロへキサン、プロペン、1-ブテン、イソブテン、トランス-2-ブテン、シス-2-ブテン、1-ペンチン、2-ペンチン、1-ヘキセン、2-ヘキセン、ベンゼン、トルエン、キシレン、エチルベンゼン、ヘプタン、シクロペンタン、メチルシクロペンタン、メチルシクロヘキサン、1-ペンテン、2-ペンテン、シクロヘキセン等が挙げられる。なお、有機溶媒としては、1種を単独で又は2種以上を組み合わせて使用することができる。
 溶液重合とする場合、反応溶媒中のモノマー濃度は、生産性と重合コントロールの容易性のバランスを維持する観点から、5~50質量%であることが好ましく、10~30質量%であることがより好ましい。重合反応の温度は、-20℃~150℃であることが好ましく、0~120℃であることがより好ましい。また、重合反応は、単量体を実質的に液相に保つのに十分な圧力の下で行うことが好ましい。このような圧力は、重合反応に対して不活性なガスによって、反応器内を加圧する等の方法によって得ることができる。
 こうした重合反応により、活性末端を有する共役ジエン系重合体を得ることができる。得られる共役ジエン系重合体のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算の重量平均分子量(Mw)は、好ましくは5.0×10~1.0×10である。Mwが5.0×10よりも小さいと、架橋重合体の引張強度、低発熱性及び耐摩耗性が低下しやすい傾向にあり、1.0×10よりも大きいと、変性重合体を用いて得られるゴム組成物の加工性が低下しやすい傾向にある。より好ましくは、8.0×10~8.0×10であり、さらに好ましくは、1.0×10~5.0×10である。
 活性末端を有する共役ジエン系重合体につき、ブタジエン単位におけるビニル結合含量は、30~70質量%であることが好ましく、33~68質量%であることがより好ましく、35~65質量%であることがさらに好ましい。ビニル結合含量が30モル%未満であると、グリップ特性が低くなる傾向があり、70質量%を超えると、得られる加硫ゴムの耐摩耗性が低下する傾向にある。なお、本明細書において「ビニル結合含量」は、共役ジエン系重合体中において、ブタジエンの全構造単位に対する、1,2-結合を有する構造単位の含有割合を示す値であり、H-NMRによって測定した値である。
<変性工程>
 本工程では、上記重合工程で得られた共役ジエン系重合体が有する活性末端と、化合物[M]とを反応させる。基「-CR=N-A」及び基「-N=CR-A」の少なくともいずれか(以下、「特定イミノ基」ともいう。)を合計2個以上有する化合物を変性剤として用いることで、当該変性工程によって重合体鎖の分岐数が多く、かつシリカと相互作用する基で変性された変性共役ジエン系重合体を得ることができる。
 特定イミノ基において、Rのヒドロカルビル基としては、例えば炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数2~20のアルケニル基、炭素数6~20のアリール基等が挙げられる。Aは、アルコキシシリル基を有していればその余の構造は特に限定されないが、メチレン基又はポリメチレン基をさらに有する基であることが好ましく、メチレン基又はポリメチレン基とアルコキシシリル基とを有し、かつメチレン基又はポリメチレン基で、炭素-窒素二重結合を構成する窒素原子又は炭素原子に結合していることがより好ましい。化合物[M]が有する特定イミノ基の数は2個以上であればよく、2~6個が好ましい。なお、化合物[M]が有する複数のR、Aは同一でも異なっていてもよい。
 化合物[M]としては、中でも下記式(1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000005
(式(1)中、R及びRは、それぞれ独立して炭素数1~20のヒドロカルビル基であり、Rは、炭素数1~20のアルカンジイル基であり、Aは、基「*-C(R)=N-」又は基「*-N=C(R)-」(ただし、Rは水素原子又はヒドロカルビル基であり、「*」はRに結合する結合手であることを示す。)である。Rは、炭素数1~20のm価のヒドロカルビル基、又は窒素原子、酸素原子及び硫黄原子からなる群より選択される少なくとも一種の原子を有し、かつ活性水素を有さない炭素数1~20のm価の基である。nは1~3の整数であり、mは2~10の整数である。式中、複数のR、R、R、A、nは、同一でも異なっていてもよい。)
 上記式(1)において、R、Rのヒドロカルビル基は、例えば炭素数1~20のアルキル基、アリル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基等が挙げられる。Rのヒドロカルビレン基としては、例えば炭素数1~20のアルカンジイル基、炭素数3~20のシクロアルキレン基、炭素数6~20のアリーレン基等が挙げられる。Rは、好ましくは直鎖状である。
 Aが有するRについては上記の説明が適用される。nは、シリカ分散性の改善効果が高い点で、2又は3が好ましく、3がより好ましい。
 Rのm価のヒドロカルビル基としては、炭素数1~20の鎖状炭化水素、炭素数3~20の脂環式炭化水素又は炭素数6~20の芳香族炭化水素からm個の水素原子を取り除いた基等が挙げられる。得られる加硫ゴムの耐摩耗性の改善効果が高い点で、好ましくは、芳香族炭化水素の環部分からm個の水素原子を取り除いた基(芳香族環基)である。当該芳香族炭化水素の具体例としては、例えば下記式(2)で表される環構造、当該環構造が2個以上連結してなる多環構造(例えばビフェニル基等)が挙げられる。
Figure JPOXMLDOC01-appb-C000006
(式(2)中、rは0~5の整数である。)
 Rが、窒素原子、酸素原子及び硫黄原子からなる群より選択される少なくとも一種の原子を有し、かつ活性水素を有さない炭素数1~20のm価の基である場合の好ましい具体例としては、m価の複素環基、3級アミン構造を有するm価の基等が挙げられる。複素環基は、共役系であることが好ましく、例えばピリジン、ピリミジン、ピラジン、キノリン、ナフタリジン、フラン、チオフェン等の単環若しくは縮合環、又は当該単環若しくは縮合環が複数個連結してなる構造の環部分からm個の水素原子を取り除いた基等が挙げられる。
 mは2~10の整数である。mは、ゴム組成物の加工性の観点から、2~6が好ましい。なお、本明細書において「活性水素」とは、炭素原子以外の原子に結合した水素原子をいい、好ましくはポリメチレンの炭素-水素結合よりも結合エネルギが低いものを指す。
 化合物[M]の具体例としては、例えば下記式(M-1)~式(M-23)のそれぞれで表される化合物等が挙げられる。なお、化合物[M]は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。なお、式(M-11)中のRは水素原子又はアルキル基を表す。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 化合物[M]は、有機化学の定法を適宜組み合わせることによって合成することができる。例えば、上記式(1)で表される化合物を得る方法の一例としては、(i)アルコキシシリル基及びRを有する単官能アミン化合物(例えば、3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジエトキシシラン等)と、Rを有する多官能アルデヒド化合物(例えば、テレフタルアルデヒド、イソフタルアルデヒド、フタルジアルデヒド、2,4-ピリジンジカルボキシアルデヒド等)とを脱水縮合させる方法、(ii)Rを有する多官能アミン化合物(例えば、トリス(2-アミノエチル)アミン、N,N’-ビス(2-アミノエチル)メチルアミン等)と、アルコキシシリル基及びRを有する単官能型の水酸基含有化合物(例えば、4-(トリエトキシシリル)ブタナール等)とを脱水縮合させる方法、等が挙げられる。これらの合成反応は、好ましくは適当な有機溶媒中、必要に応じて適当な触媒の存在下で行われる。ただし、化合物[M]の合成方法は上記の方法に限定されるものではない。
 活性末端を有する共役ジエン系重合体と化合物[M]との反応は、例えば溶液反応として行うことができる。化合物[M]の使用割合(2種以上使用する場合にはその合計量)は、変性反応を十分に進行させる観点から、重合開始剤が有する重合に関与する金属原子1モルに対して、0.01モル以上とすることが好ましく、0.05モル以上とすることがより好ましい。また、上限値については、過剰な添加を避けるため、重合開始剤が有する重合に関与する金属原子1モルに対して、2.0モル未満とすることが好ましく、1.5モル未満とすることがより好ましい。
 変性反応の温度は、通常、重合反応と同じであり、-20℃~150℃とすることが好ましく、0~120℃とすることがより好ましい。反応温度が低いと、変性後の重合体の粘度が上昇する傾向があり、反応温度が高いと重合活性末端が失活しやすくなる。反応時間は、好ましくは1分~5時間であり、より好ましくは2分~1時間である。
 活性末端を有する共役ジエン系重合体と化合物[M]との反応に際しては、化合物[M]と共にその他の変性剤又はカップリング剤を用いてもよい。その他の変性剤又はカップリング剤としては、上記重合により得られる共役ジエン系重合体の活性末端と反応し得る化合物であれば特に限定されず、共役ジエン系重合体の変性剤又はカップリング剤として公知の化合物を用いることができる。その他の変性剤又はカップリング剤を使用する場合、その使用割合は、10モル%以下とすることが好ましく、5モル%以下とすることがより好ましい。
 反応溶液に含まれる変性共役ジエン系重合体を単離するには、例えばスチームストリッピング等の公知の脱溶媒方法及び熱処理等の乾燥の操作によって行うことができる。本開示の変性共役ジエン系重合体につき、GPCによるポリスチレン換算の重量平均分子量は、ムーニー粘度が十分に高く、形状安定性が良好な変性共役ジエン系重合体を得ることと、加工性に優れたゴム組成物を得ることとを両立させる観点から、好ましくは1.5×10~2.0×10である。より好ましくは1.8×10~1.5×10であり、さらに好ましくは2.0×10~1.2×10である。なお、変性共役ジエン系重合体の重量平均分子量は、活性末端を有する共役ジエン系重合体と化合物[M]との反応後にGPCにより測定されるGPC曲線の最大ピーク分子量から求めた値である。
 活性末端を有する共役ジエン系重合体と化合物[M]との反応後にGPCにより得られるGPC曲線につき、GPC曲線のピーク面積の全体ALに対する、分子量が最も小さいピークのピークトップ分子量の2.5倍以上のピークトップ分子量を示すピーク部分の面積ATの比率AT/AL(以下、「3分岐以上のカップリング率」ともいう。)が、40%以上であることが好ましい。当該割合が40%以上であることにより、ムーニー粘度が十分に高く、かつコールドフロー値が十分に低い変性共役ジエン系重合体が得られ、好ましい。こうした観点から、3分岐以上のカップリング率は、45%以上であることがより好ましく、50%以上であることがさらに好ましく、55%以上であることが特に好ましい。
 活性末端を有する共役ジエン系重合体と化合物[M]との反応後にGPCにより測定される、分子量が最も小さいピークのピークトップ分子量は、好ましくは5.0×10~1.0×10の範囲であり、より好ましくは8.0×10~8.0×10の範囲であり、さらに好ましくは1.0×10~5.0×10の範囲である。
 こうして得られる変性共役ジエン系重合体は、化合物[M]が有する複数の反応点(炭素-窒素二重結合(C=N基)、アルコキシシリル基)に、変性又は未変性の共役ジエン系重合体鎖が結合された分岐構造を有する。得られる変性共役ジエン系重合体1分子当たりの重合体鎖の分岐数は、得られる変性共役ジエン系重合体のムーニー粘度を十分に高く、かつコールドフローを良好にできる観点から、好ましくは3以上であり、より好ましくは3~20の範囲である。なお、C=N基はアルコキシシリル基よりも反応性が高く、共役ジエン系重合体の活性末端と優先的に反応するため、残アルコキシシリル基数が多くなり、得られる変性共役ジエン系重合体とシリカとの相互作用が向上し、これにより優れた低発熱性を示したことが考えられる。
 本開示の変性共役ジエン系重合体は、下記式(3)で表される。
Figure JPOXMLDOC01-appb-C000011
(式(3)中、Rは炭素数1~20のヒドロカルビル基であり、Rは、炭素数1~20のヒドロカルビルオキシ基、又は変性若しくは未変性の共役ジエン系重合体鎖であり、Rは、炭素数1~20のアルカンジイル基であり、Zは、下記式(4)又は式(5)で表される基である。Rは、炭素数1~20のm価のヒドロカルビル基、又は窒素原子、酸素原子及び硫黄原子からなる群より選択される少なくとも一種の原子を有し、かつ活性水素を有さない炭素数1~20のm価の基である。nは1~3の整数であり、mは2~10の整数である。式中、複数のR、R、R、Z、nは、同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000012
(式(4)及び式(5)中、Rは水素原子又はヒドロカルビル基であり、Polyは、変性又は未変性の共役ジエン系重合体鎖である。「*」はRに結合する結合手であることを示す。)
 上記式(3)、式(4)及び式(5)において、R、R、R及びRについては上記式(1)の説明が適用される。Rのヒドロカルビルオキシ基は、エトキシ基又はメトキシ基が好ましい。Rの共役ジエン系重合体鎖、並びに式(4)及び式(5)中の共役ジエン系重合体鎖Polyは、上記重合工程で得られる活性末端を有する共役ジエン系重合体に対応する構造である。これら共役ジエン系重合体鎖は、端部にシリカと相互作用する官能基を有していてもよい。
<重合体組成物>
 本開示の重合体組成物は、上記の変性共役ジエン系重合体、シリカ及び架橋剤を含有する。重合体組成物中における上記変性共役ジエン系重合体の含有割合は、重合体組成物の全体量に対して、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、25質量%以上であることがさらに好ましい。上記変性共役ジエン系重合体の上限値は、好ましくは50質量%以下、より好ましくは40質量%以下である。
 シリカとしては、例えば湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、コロイダルシリカ、沈降シリカ、ケイ酸カルシウム、ケイ酸アルミニウム等が挙げられる。これらのうち、破壊特性の改良効果や、ウェットグリップ性と低転がり抵抗性との両立効果の観点から、湿式シリカが特に好ましい。また、高分散型(High Dispersible Type)のシリカを使用することも、重合体組成物中における分散性を良好にできるとともに物性及び加工性を向上できる観点から好ましい。なお、シリカは、一種を単独で又は二種以上を組み合わせて用いることができる。
 重合体組成物には、フィラーとしてシリカの他に、カーボンブラック、クレー、炭酸カルシウムなどの各種の補強性充填剤が配合されていてもよい。好ましくは、シリカ単独、又はカーボンブラックとシリカとの併用である。重合体組成物中におけるシリカ及びカーボンブラックの合計量は、重合体組成物に含まれる重合体成分の全体量100質量部に対して、好ましくは20~130質量部、より好ましくは25~110質量部である。
 架橋剤としては、硫黄、ハロゲン化硫黄、有機過酸化物、キノンジオキシム類、有機多価アミン化合物、メチロール基を有するアルキルフェノール樹脂等が挙げられ、通常、硫黄が使用される。硫黄の配合量は、重合体組成物に含まれる重合体成分の合計量100質量部に対して、好ましくは0.1~5質量部、より好ましくは0.5~3質量部である。
 本開示の重合体組成物には、上記で得られた変性共役ジエン系重合体に加えて、他のゴム成分が配合されていてもよい。かかるゴム成分の種類は特に限定されないが、ブタジエンゴム(BR、例えばシス-1,4結合90%以上のハイシスBR、シンジオタクチック-1,2-ポリブタジエン(SPB)含有BRなど)、スチレンブタジエンゴム(SBR)、天然ゴム(NR)、イソプレンゴム(IR)、スチレンイソプレン共重合体ゴム、ブタジエンイソプレン共重合体ゴム等が挙げられ、より好ましくはBR、SBRである。重合体組成物中における他のゴム成分の含有割合は、上記変性共役ジエン系重合体と他のゴム成分との合計量に対して、60質量%以下であることが好ましく、50質量%以下であることがより好ましい。
 重合体組成物には、油展のためのオイルとして、エラストマーを油展するために一般的に用いられるプロセスオイルが配合されていてもよい。プロセスオイルは、例えば、ゴム配合中にオイルを直接添加することによってゴム組成物に配合される。好ましいプロセスオイルとしては、当業界で公知の様々なオイルが挙げられ、例えば、芳香族系オイル、パラフィン系オイル、ナフテン系オイル、植物油、並びに、多環式芳香族化合物の含量の低いオイル(低PCAオイル)、例えば軽度抽出溶媒和物(MES:mild extraction solvate)、留出油からの芳香族系抽出物を処理した油(TDAE:treated distillate aromatic extract)、残油からの芳香族系特殊抽出物(SRAE:special residual aromatic extract)、及び重ナフテン系オイルなどが挙げられる。市販のMES、TDAE及びSRAEの例としては、MESとしてShell製のCatenex SNR(留出油を溶媒で脱ワックスした重質パラフィン)、TDAEとしてH&R Wasag AG製のVivatec 500、及びSRAEとしてJapan Energy Corp.製のNC140などが挙げられる。プロセスオイルの配合量は、重合体組成物に含まれる重合体成分の合計量100質量部に対して、好ましくは10~100質量部である。
 重合体組成物には、上記した成分の他に、例えば老化防止剤、亜鉛華、ステアリン酸、軟化剤、硫黄、加硫促進剤、シランカップリング剤、相溶化剤、加硫助剤、加工助剤、スコーチ防止剤など、タイヤ用ゴム組成物において一般に使用される各種添加剤を配合することができる。これらの配合割合は、本開示の効果を損なわない範囲で、各種成分に応じて適宜選択することができる。
 本開示の重合体組成物は、重合体成分、シリカ及び架橋剤の他、必要に応じて配合される成分を、開放式混練機(例えば、ロール)、密閉式混練機(例えば、バンバリーミキサー)等の混練機を用いて混練され、成形加工後に架橋(加硫)することによって、架橋体として各種ゴム製品に適用可能である。具体的には、上記架橋体は、例えばタイヤトレッド、アンダートレッド、カーカス、サイドウォール、ビード部等のタイヤ用途;パッキン、ガスケット、ウェザーストリップ、O-リング等のシール材;自動車、船舶、航空機、鉄道等の各種車両用の内外装表皮材;建築材料;産業機械用や設備用などの防振ゴム類;ダイヤフラム、ロール、ラジエータホース、エアーホース等の各種ホース及びホースカバー類;動力伝達用ベルトなどのベルト類;ライニング;ダストブーツ;医療用機器材料;防舷材;電線用絶縁材料;その他の工業品等の用途に適用できる。
 本開示の変性共役ジエン系重合体の製造方法によれば、ムーニー粘度が高く、形状安定性が良好であり、かつ重合体組成物としたときの加工性が良好な変性共役ジエン系重合体を、低発熱性や耐摩耗性といったタイヤ用途で求められる物性を良好に維持したまま得ることができる。したがって、本開示で得られる変性共役ジエン系重合体を含む重合体組成物は、特にタイヤのトレッド及びサイドウォール用の材料として好適に使用できる。
 タイヤの製造は、常法に従い行うことができる。例えば、重合体組成物を混練機で混合し、シート状にしたものを、常法に従い所定位置(例えば、サイドウォールの場合にはカーカスの外側)に配して加硫成形することにより、トレッドゴム又はサイドウォールゴムとして形成され、空気入りタイヤが得られる。
 以下、実施例に基づいて具体的に説明するが、本開示はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。各種物性値の測定方法を以下に示す。
[重合体の特性評価]
・ビニル含量(%):400MHzのH-NMRによって測定した。
・結合スチレン含量(%):400MHzのH-NMR測定によって測定した。
・変性反応前の重合体の重量平均分子量(変性反応前ピーク分子量):変性剤又はカップリング剤による変性反応後において、以下の測定条件で、ゲルパーミエーションクロマトグラフィー(GPC)(Viscotek TDA302(商品名(Viscotek社製)))を使用して得られたGPC曲線につき、分子量が最も小さいピークの頂点に相当する保持時間からポリスチレン換算で求めた。なお、分子量が最も小さいピークは、変性剤又はカップリング剤との反応によって分子量が増加した重合体を除いた重合体に由来するピークである。
(GPC測定条件)
  カラム:商品名「TSK gel HHR-H」(東ソー社製)2本
  カラム温度:40℃
  移動相:テトラヒドロフラン
  流速:1.0ml/分
  サンプル濃度:10mg/20ml
・変性反応後の重合体の重量平均分子量:上記で得られたGPC曲線の最大ピークの頂点に相当する保持時間からポリスチレン換算で求めた。
・3分岐以上のカップリング率(%):上記で得られたGPC曲線につき、GPC曲線の重合体由来の全面積100%に対する、分子量が最も小さいピークのピークトップ分子量の2.5倍以上のピークトップ分子量を示すピーク部分の面積比を3分岐以上のカップリング率とした。
・ムーニー粘度(ML1+4,100℃):JIS K6300に準拠し、Lローターを使用して、予熱1分、ローター作動時間4分、温度100℃の条件で求めた。
・コールドフロー(C/F):圧力3.5ポンド/平方インチ、温度50℃で重合体を1/4インチオリフィスに通して押し出すことによりコールドフローを測定した。定常状態にするために、10分間放置後、押し出し速度を測定し、値を毎分のグラム数(g/min)で示した。なお、コールドフロー値は、その値が小さいほど、形状安定性(貯蔵安定性)が良好であることを示す。
[重合体組成物(配合ゴム)の特性評価]
 ・配合ムーニー粘度:加硫前の配合ゴムを測定用試料とし、JIS K6300に準拠し、Lローターを使用して、予熱1分、ローター作動時間4分、温度100℃の条件で測定した。指数で表示し、数値が大きいほど加工性が良好である。
[加硫ゴムの特性評価]
 ・70℃tanδ:加硫ゴムを測定用試料とし、動的スペクトロメーター(米国レオメトリックス社製)を使用して、引張動歪0.7%、角速度100ラジアン毎秒、70℃の条件で測定した。指数で表示し、数値が大きいほど転がり抵抗性が小さく、低発熱性が良好である。
 ・DIN摩耗試験:加硫ゴムを測定用試料とし、DIN摩耗試験機(東洋精機社製)を使用して、JIS K6264に準拠し、荷重10Nで25℃にて測定した。指数で表示し、数値が大きいほど耐摩耗性が良好である。
 なお、実施例で使用した変性剤(化合物(M-1)~化合物(M-13))はそれぞれ、化合物[M]として上記で例示した上記式(M-1)~式(M-13)のそれぞれで表される化合物に対応する。
<化合物[M]の合成>
[実施例1A 化合物(M-1)の合成]
 100mLのナスフラスコに、トルエン溶媒80mL、テレフタルアルデヒド4.55g(33.92mmol)、3-アミノプロピルトリエトキシシラン15.02g(67.84mmol)を仕込み、ディーン・スターク装置を用いて120℃で還流を行った。水が出切ってから更に2時間還流を続けた後、フィルター濾過し、トルエン溶媒を減圧留去した。生成物の純度をH-NMRスペクトル分析とGC/MS分析により見積もった上で、変性共役ジエン系重合体の変性剤としてそのまま使用した。
H-NMR(溶媒:CDCl)化学シフトδ:8.26ppm(N=C-Ph、2H)、7.73ppm(ベンゼン環上水素、4H)、3.80ppm(CH-C -O-、12H)、3.61ppm(Si-CH-CH-C -N、4H)、1.83ppm(Si-CH-C -CH-N、4H)、1.20ppm(C -CH-O、18H)、0.67ppm(Si-C -CH-CH-N、4H)
[実施例2A~13A]
 化合物[M]の合成に使用する化合物の種類及び仕込み量を下記表1に示す通りにした以外は実施例1Aと同じ操作を行い、化合物(M-2)~(M-13)をそれぞれ合成した。化合物(M-2)、化合物(M-8)、化合物(M-9)及び化合物(M-10)のH-NMRピークは以下の通りであった。
・化合物(M-2)
 H-NMR(溶媒:CDCl)化学シフトδ:8.67ppm(N=C-Ph、2H)、8.10ppm(ベンゼン環上水素、4H)、3.83ppm(CH-C -O-、8H)、3.71ppm(Si-CH-CH-C -N、4H)、1.70ppm(Si-CH-C -CH-N、4H)、1.21ppm(C -CH-O、12H)、1.02ppm(Si-C -CH-CH-N、4H)、0.14ppm(C -Si、6H)
・化合物(M-8)
 H-NMR(溶媒:CDCl)化学シフトδ:8.89~7.94ppm(ピリジン環上水素、3H)、8.28~7.50ppm(N=C-Ph、2H)、3.83ppm(CH-C -O-、12H)、1.49ppm(Si-CH-CH-C -N、4H)、1.40ppm(Si-CH-C -CH-N、4H)、1.21ppm(C -CH-O、18H)、0.58ppm(Si-C -CH-CH-N、4H)
・化合物(M-9)
 H-NMR(溶媒:CDCl)化学シフトδ:7.50ppm(N=C-Fr、2H)、6.54ppm(フラン環上水素、2H)、3.83ppm(CH-C -O、8H)、1.49ppm(Si-CH-CH-C -N、4H)、1.40ppm(Si-CH-C -CH-N、4H)、1.21ppm(C -CH-O、12H)、0.58ppm(Si-C -CH-CH-N、4H)
・化合物(M-10)
 H-NMR(溶媒:CDCl)化学シフトδ:7.73~7.35ppm(チオフェン環上水素、4H)、7.50ppm(N=C-Th、2H)、3.83ppm(CH-C -O、8H)、1.49ppm(Si-CH-CH-C -N、4H)、1.40ppm(Si-CH-C -CH-N、4H)、1.21ppm(C -CH-O、12H)、0.58ppm(Si-C -CH-CH-N、4H)
Figure JPOXMLDOC01-appb-T000013
<変性共役ジエン系重合体の合成及び評価>
[比較例1 変性共役ジエン系重合体iの合成及びその物性]
 窒素置換された内容積5リットルのオートクレーブ反応器に、シクロヘキサン2,000g、テトラヒドロフラン31.6g、スチレン122g及び1,3-ブタジエン320gを仕込んだ。反応器の内容物の温度を10℃に調整した後、重合開始剤としてn-ブチルリチウム4.75mmolを添加して重合を開始した。重合は断熱条件で実施し、最高温度は85℃に達した。重合転化率が99%に達した時点で(重合開始から20分経過後に)、1,3-ブタジエン10gを2分間かけて追加し、その後、N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン4.08mmolを加えて15分間反応を行った。
 得られた変性共役ジエン系重合体を含む重合体溶液に、2,6-ジ-tert-ブチル-p-クレゾールを3.96g添加した。次いで、スチームストリッピングにより脱溶媒を行い、110℃に調温された熱ロールで乾燥することにより変性共役ジエン系重合体iを得た。得られた変性共役ジエン系重合体iの各種物性値等を下記表3に示す。
[比較例2 変性共役ジエン系重合体iiの合成及びその物性]
 N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシランの代わりに、下記式(A)で表されるオルガノシランを添加したこと以外は、変性共役ジエン系重合体iと同様にして重合を行い、変性共役ジエン系重合体iと同様にして溶液から溶媒を除去して重合体を単離することにより、変性共役ジエン系重合体iiを得た。得られた変性共役ジエン系重合体iiの各種物性値等を下記表3に示す。
Figure JPOXMLDOC01-appb-C000014
[比較例3 変性共役ジエン系重合体iiiの合成及びその物性]
 N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシランの代わりに、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン2.12mmolを添加したこと以外は、変性共役ジエン系重合体iと同様にして重合を行い、変性共役ジエン系重合体iと同様にして溶液から溶媒を除去して重合体を単離することにより、変性共役ジエン系重合体iiiを得た。得られた変性共役ジエン系重合体iiiの各種物性値等を下記表3に示す。
[比較例4 変性共役ジエン系重合体ivの合成及びその物性]
 N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシランの代わりに、四塩化ケイ素2.12mmolを添加したこと以外は、変性共役ジエン系重合体iと同様にして重合を行い、変性共役ジエン系重合体iと同様にして溶液から溶媒を除去して重合体を単離することにより、変性共役ジエン系重合体ivを得た。得られた変性共役ジエン系重合体ivの各種物性値等を下記表3に示す。
[比較例5 共役ジエン系重合体vの合成及びその物性]
 N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシランの代わりに、過剰量のメタノールを添加したこと以外は、変性共役ジエン系重合体iと同様にして重合を行い、変性共役ジエン系重合体iと同様にして溶液から溶媒を除去して重合体を単離することにより、未変性の共役ジエン系重合体vを得た。得られた共役ジエン系重合体vの各種物性値等を表3に示す。
[実施例1 変性共役ジエン系重合体Iの合成及びその物性]
 N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシランの代わりに、化合物(M-1)2.12mmolを添加したこと以外は、変性共役ジエン系重合体iと同様にして重合を行い、変性共役ジエン系重合体iと同様にして溶液から溶媒を除去して重合体を単離することにより、変性共役ジエン系重合体Iを得た。得られた変性共役ジエン系重合体Iの各種物性値等を下記表2に示す。
[実施例2、3 変性共役ジエン系重合体II、IIIの合成及びその物性]
 変性剤の添加量を、それぞれ1.43mmol、1.10mmolとしたこと以外は、変性共役ジエン系重合体Iと同様にして重合を行い、変性共役ジエン系重合体iと同様にして溶液から溶媒を除去して重合体を単離することにより、変性共役ジエン系重合体II、IIIを得た。得られた変性共役ジエン系重合体II、IIIの各種物性値等を下記表2に示す。
[実施例4 変性共役ジエン系重合体IVの合成及びその物性]
 重合開始剤の添加量を6.00mmol、変性剤の添加量を1.43mmolとしたこと以外は、変性共役ジエン系重合体Iと同様にして重合を行い、変性共役ジエン系重合体iと同様にして溶液から溶媒を除去して重合体を単離することにより、変性共役ジエン系重合体IVを得た。得られた変性共役ジエン系重合体IVの各種物性値等を下記表2に示す。
[実施例5 変性共役ジエン系重合体Vの合成及びその物性]
 重合開始剤の添加量を3.37mmol、変性剤の添加量を1.10mmolとしたこと以外は、変性共役ジエン系重合体Iと同様にして重合を行い、変性共役ジエン系重合体iと同様にして溶液から溶媒を除去して重合体を単離することにより、変性共役ジエン系重合体Vを得た。得られた変性共役ジエン系重合体Vの各種物性値等を下記表2に示す。
[実施例6 変性共役ジエン系重合体VIの合成及びその物性]
 窒素置換された内容積5リットルのオートクレーブ反応器に、ピペリジンを、使用する重合開始剤(下記式(INI-1)で表される化合物)の量が4.75mmolとなるようにさらに仕込んだこと以外は、変性共役ジエン系重合体Iと同様にして重合を行い、変性共役ジエン系重合体iと同様にして溶液から溶媒を除去して重合体を単離することにより、変性共役ジエン系重合体VIを得た。得られた変性共役ジエン系重合体VIの各種物性値等を下記表2に示す。
Figure JPOXMLDOC01-appb-C000015
[実施例7~16 変性共役ジエン系重合体VII~XVIの合成及びその物性]
 化合物(M-1)の代わりに、下記表2及び表3に記載の化合物(M-2)~化合物(M-11)をそれぞれ添加したこと以外は、変性共役ジエン系重合体Iと同様にして重合を行い、変性共役ジエン系重合体iと同様にして溶液から溶媒を除去して重合体を単離することにより、変性共役ジエン系重合体VII~XVIを得た。得られた変性共役ジエン系重合体VII~XVIの各種物性値等を下記表2及び表3に示す。実施例16では、変性剤として上記式(M-11)中の「R」が水素原子である化合物を用いた。
[実施例17 変性共役ジエン系重合体XVIIの合成及びその物性]
 化合物(M-1)の代わりに、化合物(M-12)を1.43mmolを添加したこと以外は、変性共役ジエン系重合体Iと同様にして重合を行い、変性共役ジエン系重合体iと同様にして溶液から溶媒を除去して重合体を単離することにより、変性共役ジエン系重合体XVIIを得た。得られた変性共役ジエン系重合体XVIIの各種物性値等を下記表3に示す。
[実施例18 変性共役ジエン系重合体XVIIIの合成及びその物性]
 化合物(M-1)の代わりに、化合物(M-13)を1.43mmol添加したこと以外は、変性共役ジエン系重合体Iと同様にして重合を行い、変性共役ジエン系重合体iと同様にして溶液から溶媒を除去して重合体を単離することにより、変性共役ジエン系重合体XVIIIを得た。得られた変性共役ジエン系重合体XVIIIの各種物性値等を下記表3に示す。
[実施例19 変性共役ジエン系重合体XIXの合成及びその物性]
 化合物(M-1)と化合物(M-2)の1:1(モル比)混合物2.12mmolを添加したこと以外は、変性共役ジエン系重合体Iと同様にして重合を行い、変性共役ジエン系重合体iと同様にして溶液から溶媒を除去して重合体を単離することにより、変性共役ジエン系重合体XIXを得た。得られた変性共役ジエン系重合体XIXの各種物性値等を下記表3に示す。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 表2及び表3中、化合物の略称は以下の通りである。
 INI-1;n-ブチルリチウムとピペリジンとの反応生成物(上記式(INI-1)で表される化合物)
 変性剤1;N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン
 変性剤2;上記式(A)で表される化合物
 変性剤3;テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン
[配合ゴム及び加硫ゴムの製造]
 上記で製造した変性共役ジエン系重合体(比較例5は未変性)を用いて、下記表4に示す配合処方により各成分を配合し、これを混練りすることによって配合ゴムを製造した。混練りは以下の方法で行った。温度制御装置を付属したプラストミル(内容量:250ml)を使用し、まず一段目の混練りとして、充填率72%、回転数60rpmの条件で、変性共役ジエン系重合体(比較例5は未変性)、ブタジエンゴム、伸展油、シリカ、カーボンブラック、シランカップリング剤、ステアリン酸、老化防止剤及び酸化亜鉛を配合して混練りした。次いで、二段目の混練りとして、上記で得た配合物を室温まで冷却後、硫黄及び加硫促進剤を配合し混練りした。これを成型し、160℃で所定時間、加硫プレスにて加硫して、架橋ゴム(加硫ゴム)を得た。
 得られた配合ゴム及び加硫ゴムを用いて、配合ムーニー粘度測定、70℃tanδ測定及びDIN摩耗試験を行うことにより、加工性、転がり抵抗性(低発熱性)及び耐摩耗性を評価した。評価結果を下記表5に示す。なお、配合ムーニー粘度、70℃tanδ及びDIN摩耗試験の測定結果は、比較例5を100とする指数でそれぞれ示した。
Figure JPOXMLDOC01-appb-T000018
 表4中、各成分について、使用した商品名は以下の通りである。
*1:JSR社製 BR01、*2:ジャパンエナジー社製 JOMOプロセスNC-140、*3:ローディア社製 ZEOSIL 1165MP、*4:三菱化学社製 ダイアブラックN339、*5:エボニック社製 Si75、*6:精工化学社製 オゾノン6C、*7:大内新興化学工業社製 ノクセラーD、*8:大内新興化学工業社製 ノクセラーCZ。
Figure JPOXMLDOC01-appb-T000019
 実施例1~19によって得られた変性共役ジエン系重合体はいずれも、比較例1によって得られた分岐の少ない変性共役ジエン系重合体、又は比較例5によって得られた未変性の共役ジエン系重合体と比較して、ムーニー粘度が高く、且つコールドフローが低い値を示した。このことから、実施例1~19によって得られた変性共役ジエン系重合体は、比較例1で得られた変性共役ジエン系重合体及び比較例5で得られた共役ジエン系重合体よりも形状安定性(貯蔵安定性)に優れていることが分かった。また、実施例1~19によって得られた変性共役ジエン系重合体のムーニー粘度及びコールドフロー値は、比較例2,3,4の結果と略同じ程度であった。
 実施例1~19によって得られた配合ゴムの加工性、及び加硫ゴムのタイヤ物性(転がり抵抗性、耐摩耗性)については、比較例1と比較すると、加工性及び転がり抵抗性は略同程度であったが、耐摩耗性は実施例の方が優れていた。また、比較例2~4と比較すると、耐摩耗性については略同程度であったものの、加工性及び転がり抵抗性は実施例のものの方が優れていた。また、比較例5と比較すると、加工性、転がり抵抗性及び耐摩耗性は実施例の方が優れていた。
 以上のことから、変性剤として化合物[M]を用いる本開示の変性共役ジエン系重合体の製造方法によれば、配合ゴムの加工性と、加硫ゴムの低発熱性及び耐摩耗性とを良好に維持しつつ、ムーニー粘度が高く、形状安定性に優れた変性共役ジエン系重合体を製造できることが確認された。

Claims (12)

  1.  アルカリ金属化合物及びアルカリ土類金属化合物の少なくとも一方を含む開始剤の存在下、共役ジエン化合物を含むモノマーを重合して得られる、活性末端を有する共役ジエン系重合体と、基「-C(R)=N-A」及び基「-N=C(R)-A」(ただし、Rは水素原子又はヒドロカルビル基であり、Aはアルコキシシリル基を有する1価の基である。)の少なくともいずれかを合計2個以上有する化合物[M]と、を反応させる、変性共役ジエン系重合体の製造方法。
  2.  前記化合物[M]は、下記式(1)で表される化合物である、請求項1に記載の変性共役ジエン系重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R及びRは、それぞれ独立して炭素数1~20のヒドロカルビル基であり、Rは、炭素数1~20のアルカンジイル基であり、Aは、基「*-C(R)=N-」又は基「*-N=C(R)-」(ただし、Rは水素原子又はヒドロカルビル基であり、「*」はRに結合する結合手であることを示す。)である。Rは、炭素数1~20のm価のヒドロカルビル基、又は窒素原子、酸素原子及び硫黄原子からなる群より選択される少なくとも一種の原子を有し、かつ活性水素を有さない炭素数1~20のm価の基である。nは1~3の整数であり、mは2~10の整数である。式中、複数のR、R、R、A、nは、同一でも異なっていてもよい。)
  3.  前記活性末端を有する共役ジエン系重合体と前記化合物[M]との反応後にゲルパーミエーションクロマトグラフィー(GPC)により測定して得られるGPC曲線につき、分子量が最も小さいピークのピークトップ分子量の2.5倍以上のピークトップ分子量を示すピーク部分の面積が、前記GPC曲線のピーク面積全体に対して40%以上である、請求項1又は2に記載の変性共役ジエン系重合体の製造方法。
  4.  前記活性末端を有する共役ジエン系重合体と前記化合物[M]との反応後にゲルパーミエーションクロマトグラフィー(GPC)により測定される、分子量が最も小さいピークのピークトップ分子量が5.0×10~1.0×10の範囲である、請求項1~3のいずれか一項に記載の変性共役ジエン系重合体の製造方法。
  5.  前記モノマーが芳香族ビニル化合物を更に含む、請求項1~4のいずれか一項に記載の変性共役ジエン系重合体の製造方法。
  6.  前記開始剤として、アルカリ金属化合物及びアルカリ土類金属化合物の少なくともいずれかと、シリカと相互作用する官能基を有する化合物との混合物を用いて前記モノマーを重合する、請求項1~5のいずれか一項に記載の変性共役ジエン系重合体の製造方法。
  7.  活性末端を有する共役ジエン系重合体と、基「-CR=N-A」及び基「-N=CR-A」(ただし、Rは水素原子又はヒドロカルビル基であり、Aはアルコキシシリル基を有する1価の基である。)の少なくともいずれかを合計2個以上有する化合物[M]と、の反応生成物である、変性共役ジエン系重合体。
  8.  下記式(3)で表される変性共役ジエン系重合体。
    Figure JPOXMLDOC01-appb-C000002
    (式(3)中、Rは炭素数1~20のヒドロカルビル基であり、Rは、炭素数1~20のヒドロカルビルオキシ基、又は変性若しくは未変性の共役ジエン系重合体鎖であり、Rは、炭素数1~20のアルカンジイル基であり、Zは、下記式(4)又は式(5)で表される基である。Rは、炭素数1~20のm価のヒドロカルビル基、又は窒素原子、酸素原子及び硫黄原子からなる群より選択される少なくとも一種の原子を有し、かつ活性水素を有さない炭素数1~20のm価の基である。nは1~3の整数であり、mは2~10の整数である。式中、複数のR、R、R、Z、nは、同一でも異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000003
    (式(4)及び式(5)中、Rは水素原子又はヒドロカルビル基であり、Polyは、変性又は未変性の共役ジエン系重合体鎖である。「*」はRに結合する結合手であることを示す。)
  9.  請求項1~6のいずれか一項に記載の製造方法により得られる変性共役ジエン系重合体、又は請求項7若しくは8に記載の変性共役ジエン系重合体と、シリカと、架橋剤とを含む重合体組成物。
  10.  請求項9に記載の重合体組成物を架橋させてなる架橋体。
  11.  請求項9に記載の重合体組成物を用いて、少なくともトレッド又はサイドウォールが形成されたタイヤ。
  12.  下記式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000004
    (式(1)中、R及びRは、それぞれ独立して炭素数1~20のヒドロカルビル基であり、Rは、炭素数1~20のアルカンジイル基であり、Aは、基「*-C(R)=N-」又は基「*-N=C(R)-」(ただし、Rは水素原子又はヒドロカルビル基であり、「*」はRに結合する結合手であることを示す。)である。Rは、炭素数1~20のm価のヒドロカルビル基、又は窒素原子、酸素原子及び硫黄原子からなる群より選択される少なくとも一種の原子を有し、かつ活性水素を有さない炭素数1~20のm価の基である。nは1~3の整数であり、mは2~10の整数である。式中、複数のR、R、R、A、nは、同一でも異なっていてもよい。)
PCT/JP2017/022748 2016-06-24 2017-06-20 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体、タイヤ及び化合物 WO2017221943A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PL17815411T PL3476866T3 (pl) 2016-06-24 2017-06-20 Sposób produkcji modyfikowanego polimeru sprzężonych dienów, modyfikowany polimer sprzężonych dienów, kompozycja polimerowa, usieciowany materiał, opona i związek
EP17815411.8A EP3476866B1 (en) 2016-06-24 2017-06-20 Method for producing modified conjugated diene polymer, modified conjugated diene polymer, polymer composition, crosslinked body, tire and compound
SG11201811355XA SG11201811355XA (en) 2016-06-24 2017-06-20 Method for producing modified conjugated diene-based polymer, modified conjugated diene-based polymer, polymer composition, crosslinked body, tire and compound
CN201780005925.7A CN108473599B (zh) 2016-06-24 2017-06-20 改性共轭二烯系聚合物的制造方法、改性共轭二烯系聚合物、聚合物组合物、交联体、轮胎以及化合物
RU2018145510A RU2709338C1 (ru) 2016-06-24 2017-06-20 Способ получения модифицированного полимера на основе сопряженного диена, модифицированный полимер на основе сопряженного диена, полимерная композиция, сшитое тело, шина и соединение
JP2017544374A JP6252716B1 (ja) 2016-06-24 2017-06-20 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体、タイヤ及び化合物
KR1020187018363A KR102018618B1 (ko) 2016-06-24 2017-06-20 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체, 중합체 조성물, 가교체, 타이어 및 화합물
BR112018076588A BR112018076588A8 (pt) 2016-06-24 2017-06-20 Método para produção de um polímero à base de dieno conjugado modificado, polímero à base de dieno conjugado modificado, composição de polímero, corpo reticulado, e, pneu
US16/311,460 US10894876B2 (en) 2016-06-24 2017-06-20 Method for producing modified conjugated diene-based polymer, modified conjugated diene-based polymer, polymer composition, crosslinked body, tire and compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-125901 2016-06-24
JP2016125901 2016-06-24

Publications (1)

Publication Number Publication Date
WO2017221943A1 true WO2017221943A1 (ja) 2017-12-28

Family

ID=60783432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022748 WO2017221943A1 (ja) 2016-06-24 2017-06-20 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体、タイヤ及び化合物

Country Status (12)

Country Link
US (1) US10894876B2 (ja)
EP (1) EP3476866B1 (ja)
JP (1) JP6252716B1 (ja)
KR (1) KR102018618B1 (ja)
CN (1) CN108473599B (ja)
BR (1) BR112018076588A8 (ja)
HU (1) HUE057974T2 (ja)
PL (1) PL3476866T3 (ja)
RU (1) RU2709338C1 (ja)
SG (1) SG11201811355XA (ja)
TW (1) TWI636997B (ja)
WO (1) WO2017221943A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151126A1 (ja) * 2018-01-31 2019-08-08 Jsr株式会社 組成物、架橋成形体及びタイヤ
WO2020179705A1 (ja) 2019-03-07 2020-09-10 Jsr株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体及びタイヤ
JPWO2020196220A1 (ja) * 2019-03-27 2020-10-01
WO2020196899A1 (ja) 2019-03-27 2020-10-01 Jsr株式会社 水添共役ジエン系重合体、重合体組成物、架橋体及びタイヤ
KR20200137976A (ko) 2019-05-31 2020-12-09 제이에스알 가부시끼가이샤 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체, 중합체 조성물, 가교체 및 타이어
WO2021049377A1 (ja) * 2019-09-10 2021-03-18 Jsr株式会社 重合体組成物、架橋重合体、及びタイヤ
WO2021085616A1 (ja) 2019-10-31 2021-05-06 Jsr株式会社 変性共役ジエン系重合体の製造方法、重合体組成物、架橋体及びタイヤ
EP3878904A1 (en) 2020-02-05 2021-09-15 JSR Corporation Polymer composition, crosslinked polymer, and tire
EP4056613A1 (en) 2021-03-12 2022-09-14 JSR Corporation Block polymer, polymer composition, and adhesive
EP4056612A1 (en) 2021-03-12 2022-09-14 JSR Corporation Block copolymer and adhesive
WO2022196643A1 (ja) 2021-03-15 2022-09-22 株式会社Eneosマテリアル 共役ジエン系重合体及びその製造方法、重合体組成物、架橋体並びにタイヤ
WO2022195977A1 (ja) 2021-03-19 2022-09-22 株式会社ブリヂストン ゴム組成物及びタイヤ
WO2022195978A1 (ja) 2021-03-19 2022-09-22 株式会社ブリヂストン ゴム組成物及びタイヤ
JP7188519B1 (ja) 2021-09-07 2022-12-13 横浜ゴム株式会社 タイヤ用ゴム組成物
JP7188521B1 (ja) 2021-09-14 2022-12-13 横浜ゴム株式会社 タイヤ用ゴム組成物
WO2023074773A1 (ja) 2021-10-29 2023-05-04 株式会社Eneosマテリアル 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体、タイヤ及び化合物
WO2023085309A1 (ja) 2021-11-10 2023-05-19 株式会社Eneosマテリアル 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体及びタイヤ
JP7536383B2 (ja) 2020-10-12 2024-08-20 エルジー・ケム・リミテッド 油展変性共役ジエン系重合体、その製造方法、及びそれを含むゴム組成物

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3788103A4 (en) 2018-05-04 2022-01-12 Bridgestone Americas Tire Operations, LLC RUBBER COMPOSITION FOR TIRE TREAD
PL3847042T3 (pl) * 2018-09-03 2022-02-21 Synthos Spółka Akcyjna Sprzężone dieny funkcjonalizowane grupami aminosililowymi, ich otrzymywanie i ich zastosowanie w wytwarzaniu kauczuków
US11884760B2 (en) 2019-12-12 2024-01-30 Asahi Kasei Kabushiki Kaisha Production method for branched conjugated diene-based polymer, production method for rubber composition, production method for tire, branched conjugated diene-based polymer, and branched conjugated diene-based polymer composition
EP3835325B1 (en) * 2019-12-12 2024-06-12 Asahi Kasei Kabushiki Kaisha Production method for modified conjugated diene-based polymer, modified conjugated diene-based polymer, rubber composition, production method for rubber composition, and production method for tire
TW202126712A (zh) * 2019-12-31 2021-07-16 奇美實業股份有限公司 末端改質的共軛二烯-乙烯基芳香烴共聚物及其製造方法與應用
WO2024117860A1 (ko) * 2022-12-02 2024-06-06 주식회사 엘지화학 변성 공액디엔계 중합체 및 이의 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087814A1 (ja) * 2004-03-15 2005-09-22 Jsr Corporation 共役ジオレフィン(共)重合ゴムおよびその製造方法
JP2006257112A (ja) * 2005-03-15 2006-09-28 Kraton Jsr Elastomers Kk 熱可塑性エラストマー組成物
JP2010209256A (ja) * 2009-03-11 2010-09-24 Jsr Corp ゴム組成物及び空気入りタイヤ
WO2011049180A1 (ja) * 2009-10-21 2011-04-28 Jsr株式会社 変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物
WO2012032895A1 (ja) * 2010-09-08 2012-03-15 Jsr株式会社 ゴム組成物、その製造方法、及びタイヤ
JP2012193277A (ja) * 2011-03-16 2012-10-11 Jsr Corp 変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3681287A (en) * 1971-03-03 1972-08-01 Quaker Oats Co Siliceous materials bound with resin containing organosilane coupling agent
US3737430A (en) * 1971-03-03 1973-06-05 Quaker Oats Co N,n'-bis((tri(substituted))silylalkylene)-1,4-xylene-alpha,alpha'-diimine
JP4111590B2 (ja) 1998-06-04 2008-07-02 株式会社ブリヂストン 重合体の製造方法、得られた重合体、及びそれを用いたゴム組成物
US6586612B2 (en) 2001-11-16 2003-07-01 Crompton Corporation Process for the preparation of secondary and tertiary amino-functional silanes, iminoorganosilanes and/or imidoorganosilanes
US6448425B1 (en) * 2002-02-19 2002-09-10 Crompton Corporation Preparation of N-substituted aminoorganosilanes
EP1479698B1 (en) * 2003-05-22 2008-05-14 JSR Corporation Method for producing modified conjugated diene polymer and rubber composition
EP1860136B1 (en) * 2005-03-18 2013-01-09 JSR Corporation Process for producing modified polymer, modified polymer obtained by the process, and rubber composition thereof
EP2130842B1 (en) 2007-03-23 2013-05-15 JSR Corporation Method for producing modified conjugated diene polymer, modified conjugated diene polymer, and rubber composition
JP5451167B2 (ja) * 2008-04-28 2014-03-26 株式会社ブリヂストン 変性低分子量共役ジエン系重合体
FR2930554B1 (fr) * 2008-04-29 2012-08-17 Michelin Soc Tech Melange elastomerique comprenant majoritairement un elastomere dienique couple par un groupe amino-alcoxysilane, composition de caoutchouc le comprenant et leurs procedes d'obtention.
WO2010104149A1 (ja) * 2009-03-11 2010-09-16 Jsr株式会社 ゴム組成物及び空気入りタイヤ
WO2010125123A1 (en) 2009-04-30 2010-11-04 Dow Corning Corporation Elastomer compositions modified by silanes
US8852816B2 (en) * 2011-03-15 2014-10-07 Ohara Inc. All-solid secondary battery
US9951167B2 (en) * 2012-07-20 2018-04-24 Jsr Corporation Method for producing modified conjugated diene polymer, modified conjugated diene polymer, polymer composition, crosslinked polymer, and tire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087814A1 (ja) * 2004-03-15 2005-09-22 Jsr Corporation 共役ジオレフィン(共)重合ゴムおよびその製造方法
JP2006257112A (ja) * 2005-03-15 2006-09-28 Kraton Jsr Elastomers Kk 熱可塑性エラストマー組成物
JP2010209256A (ja) * 2009-03-11 2010-09-24 Jsr Corp ゴム組成物及び空気入りタイヤ
WO2011049180A1 (ja) * 2009-10-21 2011-04-28 Jsr株式会社 変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物
WO2012032895A1 (ja) * 2010-09-08 2012-03-15 Jsr株式会社 ゴム組成物、その製造方法、及びタイヤ
JP2012193277A (ja) * 2011-03-16 2012-10-11 Jsr Corp 変性共役ジエン系ゴムの製造方法、変性共役ジエン系ゴム、及びゴム組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3476866A4 *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151126A1 (ja) * 2018-01-31 2019-08-08 Jsr株式会社 組成物、架橋成形体及びタイヤ
WO2020179705A1 (ja) 2019-03-07 2020-09-10 Jsr株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体及びタイヤ
US11945937B2 (en) 2019-03-07 2024-04-02 Eneos Materials Corporation Method for producing modified conjugated diene polymer, modified conjugated diene polymer, polymer composition, crosslinked body and tire
KR20210098528A (ko) 2019-03-07 2021-08-10 제이에스알 가부시끼가이샤 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체, 중합체 조성물, 가교체 및 타이어
KR20210146887A (ko) 2019-03-27 2021-12-06 제이에스알 가부시끼가이샤 수소 첨가 공액 디엔계 중합체, 중합체 조성물, 가교체 및 타이어
JPWO2020196220A1 (ja) * 2019-03-27 2020-10-01
WO2020196220A1 (ja) * 2019-03-27 2020-10-01 Jsr株式会社 重合体組成物、架橋重合体、及びタイヤ
WO2020196899A1 (ja) 2019-03-27 2020-10-01 Jsr株式会社 水添共役ジエン系重合体、重合体組成物、架橋体及びタイヤ
JP7458373B2 (ja) 2019-03-27 2024-03-29 株式会社Eneosマテリアル 重合体組成物、架橋重合体、及びタイヤ
KR20200137976A (ko) 2019-05-31 2020-12-09 제이에스알 가부시끼가이샤 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체, 중합체 조성물, 가교체 및 타이어
CN114207009A (zh) * 2019-09-10 2022-03-18 Jsr株式会社 聚合物组合物、交联聚合物及轮胎
WO2021049377A1 (ja) * 2019-09-10 2021-03-18 Jsr株式会社 重合体組成物、架橋重合体、及びタイヤ
KR20220043196A (ko) 2019-10-31 2022-04-05 제이에스알 가부시끼가이샤 변성 공액 디엔계 중합체 및 그의 제조 방법, 중합체 조성물, 가교체 및 타이어
WO2021085616A1 (ja) 2019-10-31 2021-05-06 Jsr株式会社 変性共役ジエン系重合体の製造方法、重合体組成物、架橋体及びタイヤ
EP3878904A1 (en) 2020-02-05 2021-09-15 JSR Corporation Polymer composition, crosslinked polymer, and tire
JP7536383B2 (ja) 2020-10-12 2024-08-20 エルジー・ケム・リミテッド 油展変性共役ジエン系重合体、その製造方法、及びそれを含むゴム組成物
EP4056613A1 (en) 2021-03-12 2022-09-14 JSR Corporation Block polymer, polymer composition, and adhesive
EP4056612A1 (en) 2021-03-12 2022-09-14 JSR Corporation Block copolymer and adhesive
WO2022196643A1 (ja) 2021-03-15 2022-09-22 株式会社Eneosマテリアル 共役ジエン系重合体及びその製造方法、重合体組成物、架橋体並びにタイヤ
KR20230156349A (ko) 2021-03-15 2023-11-14 가부시키가이샤 에네오스 마테리아루 공액 디엔계 중합체 및 그 제조 방법, 중합체 조성물, 가교체 그리고 타이어
WO2022195977A1 (ja) 2021-03-19 2022-09-22 株式会社ブリヂストン ゴム組成物及びタイヤ
WO2022195978A1 (ja) 2021-03-19 2022-09-22 株式会社ブリヂストン ゴム組成物及びタイヤ
JP2023038668A (ja) * 2021-09-07 2023-03-17 横浜ゴム株式会社 タイヤ用ゴム組成物
WO2023037615A1 (ja) * 2021-09-07 2023-03-16 横浜ゴム株式会社 タイヤ用ゴム組成物
JP7188519B1 (ja) 2021-09-07 2022-12-13 横浜ゴム株式会社 タイヤ用ゴム組成物
WO2023042442A1 (ja) * 2021-09-14 2023-03-23 横浜ゴム株式会社 タイヤ用ゴム組成物
JP2023042171A (ja) * 2021-09-14 2023-03-27 横浜ゴム株式会社 タイヤ用ゴム組成物
JP7188521B1 (ja) 2021-09-14 2022-12-13 横浜ゴム株式会社 タイヤ用ゴム組成物
WO2023074773A1 (ja) 2021-10-29 2023-05-04 株式会社Eneosマテリアル 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体、タイヤ及び化合物
KR20240046803A (ko) 2021-10-29 2024-04-09 가부시키가이샤 에네오스 마테리아루 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체, 중합체 조성물, 가교체, 타이어 및 화합물
WO2023085309A1 (ja) 2021-11-10 2023-05-19 株式会社Eneosマテリアル 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体及びタイヤ
KR20240067254A (ko) 2021-11-10 2024-05-16 가부시키가이샤 에네오스 마테리아루 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체, 중합체 조성물, 가교체 및 타이어

Also Published As

Publication number Publication date
PL3476866T3 (pl) 2022-03-28
BR112018076588A2 (pt) 2019-04-16
JP6252716B1 (ja) 2017-12-27
CN108473599A (zh) 2018-08-31
SG11201811355XA (en) 2019-01-30
HUE057974T2 (hu) 2022-06-28
US20190194430A1 (en) 2019-06-27
JPWO2017221943A1 (ja) 2018-07-05
TWI636997B (zh) 2018-10-01
EP3476866A1 (en) 2019-05-01
EP3476866B1 (en) 2022-01-05
RU2709338C1 (ru) 2019-12-17
TW201809025A (zh) 2018-03-16
KR20180087380A (ko) 2018-08-01
US10894876B2 (en) 2021-01-19
KR102018618B1 (ko) 2019-09-05
EP3476866A4 (en) 2020-02-26
CN108473599B (zh) 2020-09-15
BR112018076588A8 (pt) 2023-01-17

Similar Documents

Publication Publication Date Title
JP6252716B1 (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体、タイヤ及び化合物
JP6503064B2 (ja) 水添共役ジエン系ゴム、ゴム組成物、架橋ゴム及びタイヤ
CN113382882B (zh) 氢化共轭二烯系聚合物、聚合物组合物、交联体及轮胎
JP6252705B2 (ja) 水添共役ジエン系重合体の製造方法、水添共役ジエン系重合体、重合体組成物、架橋重合体及びタイヤ
CN114364712B (zh) 改性共轭二烯系聚合物及其制造方法、聚合物组合物、交联体及轮胎
JP6780521B2 (ja) 変性共役ジエン系重合体及びその製造方法、重合体組成物、架橋重合体、並びにタイヤ
JP6885079B2 (ja) 変性共役ジエン系重合体の製造方法、重合体組成物、架橋重合体及びタイヤ
JP2019094390A (ja) 変性共役ジエン系重合体の製造方法、重合体組成物、架橋体及びタイヤ
JP2018119106A (ja) 変性共役ジエン系重合体の製造方法、重合体組成物、架橋重合体及びタイヤ
WO2017086208A1 (ja) 水添共役ジエン系重合体の製造方法、水添共役ジエン系重合体、重合体組成物、架橋重合体及びタイヤ
WO2017026288A1 (ja) 共役ジエン系重合体及びその製造方法、重合体組成物、架橋重合体、並びにタイヤ
JP7346543B2 (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体及びタイヤ
JP6610655B2 (ja) 変性共役ジエン系重合体、変性共役ジエン系重合体の製造方法、重合体組成物、架橋重合体及びタイヤ
KR20200137976A (ko) 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체, 중합체 조성물, 가교체 및 타이어

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017544374

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187018363

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018076588

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017815411

Country of ref document: EP

Effective date: 20190124

ENP Entry into the national phase

Ref document number: 112018076588

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181219