WO2023042442A1 - タイヤ用ゴム組成物 - Google Patents

タイヤ用ゴム組成物 Download PDF

Info

Publication number
WO2023042442A1
WO2023042442A1 PCT/JP2022/011626 JP2022011626W WO2023042442A1 WO 2023042442 A1 WO2023042442 A1 WO 2023042442A1 JP 2022011626 W JP2022011626 W JP 2022011626W WO 2023042442 A1 WO2023042442 A1 WO 2023042442A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
mass
tire
rubber composition
parts
Prior art date
Application number
PCT/JP2022/011626
Other languages
English (en)
French (fr)
Inventor
隆太郎 中川
玲 川口
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Publication of WO2023042442A1 publication Critical patent/WO2023042442A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a rubber composition for tires intended mainly for use in the tread portion of winter tires and all-season tires.
  • Tires that are expected to be used on snowy roads are required to have excellent driving performance (snow performance) on snowy roads.
  • excellent running performance on wet roads wet performance
  • aging resistance are also required.
  • the average glass transition temperature of the diene rubber is sufficiently low, a specific copolymer (rubber component) is used as the diene rubber, and the filler is sufficiently It is proposed to achieve both of these performances by using a sufficient amount of silica.
  • the rubber composition for tires of the present invention that achieves the above object is a diene rubber containing 10% by mass or more and less than 40% by mass of a specific modified conjugated diene polymer represented by the following formula (1):
  • R 1 is a hydrocarbyl group having 1 to 20 carbon atoms
  • R 3 is a hydrocarbyloxy group having 1 to 20 carbon atoms, or a modified or unmodified conjugated diene polymer chain
  • R 2 is an alkanediyl group having 1 to 20 carbon atoms
  • Z is a group represented by the following formula (2) or (3).
  • R 4 has an m-valent hydrocarbyl group having 1 to 20 carbon atoms, or at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom, and has active hydrogen. is an m-valent group having 1 to 20 carbon atoms.
  • n is an integer of 1-3 and m is an integer of 2-10.
  • R 5 is a hydrogen atom or a hydrocarbyl group
  • Poly is a modified or unmodified conjugated diene polymer chain.
  • "*" indicates a bond that binds to R4 .
  • the rubber composition for tires of the present invention uses a sufficient amount of the specific modified conjugated diene-based polymer represented by the above formula (1) as a rubber component, and the specific modified conjugated diene-based polymer has an average glass transition of Since it is used in combination with a rubber component having a temperature of -45°C or lower and a sufficient amount of white filler is blended as described above, snow performance, wet performance, and aging resistance are improved, and these performances are improved. It is possible to achieve both in a well-balanced and highly advanced manner.
  • the average glass transition temperature of the rubber component other than the specific modified conjugated diene-based polymer contained in the diene-based rubber is preferably -60°C or lower. Using a rubber component with a sufficiently low average glass transition temperature in this manner is advantageous for improving snow performance.
  • the plasticizer In the rubber composition for tires of the present invention, it is preferable that 25 parts by mass or more of the plasticizer is blended with 100 parts by mass of the diene rubber. By blending a plasticizer in this way, it is possible to ensure good flexibility of the rubber in a low-temperature environment, which is advantageous for improving snow performance.
  • the rubber composition for tires of the present invention preferably contains 10% by mass to 90% by mass of a styrene-butadiene copolymer having a glass transition temperature of -45°C or less in 100% by mass of the diene rubber.
  • a styrene-butadiene copolymer having a glass transition temperature of -45°C or less in 100% by mass of the diene rubber.
  • the rubber composition for tires of the present invention can be used in the tread portion of tires.
  • the tire of the present invention is applied to the cap tread of a tire having an annular tread portion extending in the tire circumferential direction and having a cap tread constituting the tread surface of the tread portion and an undertread disposed on the inner peripheral side of the cap tread.
  • a rubber composition for At this time it is preferable that the rubber composition that constitutes the undertread and the rubber composition that constitutes the cap tread each contain a plasticizer, and the difference in the amount of these plasticizers is 40 parts by mass or less. Migration between the undertread and the cap tread can be suppressed, which is advantageous for improving aging resistance.
  • the tire of the present invention is preferably a pneumatic tire, but may be a non-pneumatic tire.
  • a pneumatic tire can be filled with air, an inert gas such as nitrogen, or other gas.
  • FIG. 1 is a meridional cross-sectional view showing an example of a pneumatic tire using the rubber composition for tires of the present invention.
  • a pneumatic tire using the rubber composition for tires of the present invention includes a tread portion 1, a pair of sidewall portions 2 arranged on both sides of the tread portion 1, and sidewall portions 2. and a pair of bead portions 3 disposed radially inward of the tire.
  • symbol CL indicates the tire equator.
  • FIG. 1 is a meridional sectional view and is not depicted, the tread portion 1, the sidewall portion 2, and the bead portion 3 each extend in the tire circumferential direction and form an annular shape, thereby forming a toroidal pneumatic tire.
  • a basic structure of the shape is constructed. The following explanation using FIG. 1 is basically based on the meridian cross-sectional shape shown in the drawing, but each tire constituent member extends in the tire circumferential direction and forms an annular shape.
  • a carcass layer 4 is mounted between a pair of left and right bead portions 3 .
  • the carcass layer 4 includes a plurality of reinforcing cords extending in the tire radial direction, and is folded back from the vehicle inner side to the outer side around bead cores 5 arranged in the respective bead portions 3 .
  • a bead filler 6 is arranged on the outer periphery of the bead core 5, and the bead filler 6 is wrapped by the main body portion and the folded portion of the carcass layer 4.
  • a plurality of belt layers 7 are embedded in the outer peripheral side of the carcass layer 4 in the tread portion 1 .
  • Each belt layer 7 includes a plurality of reinforcing cords inclined with respect to the tire circumferential direction, and the reinforcing cords are arranged so as to cross each other between the layers.
  • the inclination angle of the reinforcing cords with respect to the tire circumferential direction is set, for example, in the range of 10° to 40°.
  • a belt reinforcing layer 8 (two layers of a full cover 8a covering the entire width of the belt layer 7 and an edge cover 8b covering the edge of the belt layer 7 locally) is provided on the outer peripheral side of the belt layer 7 .
  • the belt reinforcing layer 8 contains organic fiber cords oriented in the tire circumferential direction. In the belt reinforcing layer 8, the angle of the organic fiber cords with respect to the tire circumferential direction is set to 0° to 5°, for example.
  • a tread rubber layer 10 is arranged on the outer peripheral side of the carcass layer 4 in the tread portion 1, a side rubber layer 20 is arranged on the outer peripheral side (outside in the tire width direction) of the carcass layer 4 in the sidewall portion 2, and a side rubber layer 20 is arranged on the bead portion 3.
  • a rim cushion rubber layer 30 is arranged on the outer peripheral side (the outer side in the tire width direction) of the carcass layer 4 .
  • the tread rubber layer 10 has a structure in which two types of rubber layers having different physical properties (a cap tread 11 forming a tread surface of the tread portion 1 and an undertread 12 arranged on the inner peripheral side thereof) are laminated in the tire radial direction. .
  • the rubber composition for tires of the present invention is mainly used for the cap tread 11 of such tires. Therefore, in the tire using the rubber composition for tires of the present invention, if the tread portion 1 (tread rubber layer 10) is composed of the cap tread 11 and the undertread 12, the basic structure of other portions is the same as described above. is not limited to the structure of
  • the rubber component is a diene-based rubber and necessarily contains a specific modified conjugated diene-based polymer represented by the following formula (1).
  • R 1 is a hydrocarbyl group having 1-20 carbon atoms, preferably 2-18 carbon atoms.
  • R 3 is a hydrocarbyloxy group having 1 to 20 carbon atoms, preferably 2 to 18 carbon atoms, or a conjugated diene polymer chain. The conjugated diene-based polymer chain may be modified or unmodified.
  • R 2 is an alkanediyl group having 1 to 20 carbon atoms, preferably 2 to 18 carbon atoms.
  • Z is a group represented by the following formula (2) or formula (3).
  • R 4 is an m-valent hydrocarbyl group having 1 to 20 carbon atoms, preferably 2 to 18 carbon atoms, or has at least one atom selected from the group consisting of nitrogen, oxygen and sulfur atoms. It is an m-valent group having 1 to 20, preferably 2 to 18 carbon atoms and having no active hydrogen.
  • n and m are integers, n is 1-3, preferably 1-2, and m is 2-10, preferably 3-8.
  • a plurality of R 1 , R 2 , R 3 and Z may be the same or different.
  • R5 is a hydrogen atom or a hydrocarbyl group.
  • Poly is a modified or unmodified conjugated diene polymer chain.
  • "*" indicates a bond that binds to R4 .
  • the specific modified conjugated diene-based polymer described above can be produced, for example, using a compound represented by the following formula (4).
  • R 1 and R 2 are each independently a hydrocarbyl group having 1 to 20 carbon atoms.
  • R 1 preferably has 2 to 18 carbon atoms, and R 2 preferably has 2 to 18 carbon atoms.
  • R 3 is an alkanediyl group having 1 to 20 carbon atoms, preferably 2 to 18 carbon atoms.
  • R 4 is an m-valent hydrocarbyl group having 1 to 20 carbon atoms, preferably 2 to 18 carbon atoms, or has at least one atom selected from the group consisting of nitrogen, oxygen and sulfur atoms. It is an m-valent group having 1 to 20, preferably 2 to 18 carbon atoms and having no active hydrogen.
  • R 5 is a hydrogen atom or a hydrocarbyl group and "*" is indicating that it is a bond that binds to R 4 ).
  • n and m are integers, n is 1-3, preferably 1-2, and m is 2-10, preferably 3-8.
  • a plurality of R 1 , R 2 , R 3 and A 2 may be the same or different.
  • the content of the specific modified conjugated diene-based polymer represented by the above formula (1) is 10% by mass or more and less than 40% by mass, preferably 15% by mass or more and 40% by mass when the entire diene rubber is 100% by mass. %, more preferably 20% by mass or more and less than 40% by mass.
  • the content of the specific modified conjugated diene-based polymer represented by the above formula (1) is 10% by mass or more and less than 40% by mass, preferably 15% by mass or more and 40% by mass when the entire diene rubber is 100% by mass. %, more preferably 20% by mass or more and less than 40% by mass.
  • the specific modified conjugated diene polymer used in the present invention preferably has a weight average molecular weight of 900,000 or more, preferably 1,000,000 to 1,400,000, in addition to being represented by the above formula (1). If the weight-average molecular weight is less than 900,000, the abrasion resistance will deteriorate.
  • a weight average molecular weight is a value of polystyrene conversion measured by a gel permeation chromatography (GPC).
  • the specific modified conjugated diene polymer used in the present invention preferably has a glass transition temperature Tg of -40°C to -30°C, more preferably -38°C to -32°C. If the glass transition temperature Tg is less than ⁇ 40° C., the wet performance and dry performance deteriorate. If the glass transition temperature Tg exceeds ⁇ 30° C., the abrasion resistance is lowered.
  • the specific modified conjugated diene polymer used in the present invention preferably has a styrene content of 38.5% to 41.5%, more preferably 39.0% to 41.0%. If the styrene content is 38.5%, the wet performance and dry performance are lowered. If the styrene content exceeds 41.5%, the abrasion resistance is lowered.
  • the specific modified conjugated diene polymer used in the present invention preferably has a vinyl content of 23.5% to 27.5%, more preferably 24.0% to 27.0%.
  • the vinyl content is 23.5%, the wet performance and dry performance deteriorate. If the vinyl content exceeds 27.5%, the abrasion resistance decreases.
  • the rubber component other than the specific modified conjugated diene-based polymer (hereinafter referred to as "other rubber component ) is always used together.
  • the average glass transition temperature of the other rubber components is -45°C or lower, preferably -50°C or lower, more preferably -60°C or lower. Since the other rubber component has a sufficiently low glass transition temperature, the snow performance can be improved. If the glass transition temperature of the other rubber component is higher than -45°C, the snow performance cannot be improved.
  • the average glass transition temperature of the other rubber component is obtained as the average of the respective glass transition temperatures when there are a plurality of types of rubber contained as the other rubber component.
  • the glass transition temperature Tg of each rubber component corresponding to the other rubber component and the blending ratio of each rubber component is the average value of the glass transition temperature Tg calculated as the sum of the products of the
  • those commonly used in rubber compositions for tires can be used as long as the average glass transition temperature satisfies the above conditions.
  • examples include natural rubber, polybutadiene rubber, styrene-butadiene copolymer, acrylonitrile butadiene rubber, and the like. These can be used alone or as any blend. Among these, it is preferable to use a styrene-butadiene copolymer, particularly a styrene-butadiene copolymer having a glass transition temperature of -45°C or lower.
  • the glass transition temperature is preferably ⁇ 45° C. or lower, more preferably ⁇ 48° C. or lower, and even more preferably ⁇ 48° C. or lower. should be -50°C or below.
  • the content of the styrene-butadiene copolymer having a low glass transition temperature is preferably 10% by mass to 90% by mass, more preferably 20% by mass to 80% by mass, when the entire diene rubber is 100% by mass. More preferably, it ranges from 25% by mass to 80% by mass.
  • the glass transition temperature and blending amount of the styrene-butadiene copolymer having a low glass transition temperature can be determined in consideration of the average glass transition temperature conditions of other rubber components.
  • a white filler is always blended with the diene rubber described above.
  • white fillers include silica, calcium carbonate, magnesium carbonate, talc, clay, alumina, aluminum hydroxide, titanium oxide and calcium sulfate. These can be used alone or in combination of two or more. Among these, silica can be preferably used from the viewpoint of improving snow performance.
  • the amount of the white filler compounded is 50 parts by mass or more, preferably 55 to 150 parts by mass, per 100 parts by mass of the diene rubber. Incorporating a sufficient amount of white filler in this way can improve wet performance. If the amount of the white filler to be blended is less than 50 parts by mass, the wet performance will deteriorate.
  • silica When silica is used as the white filler, silica generally used in rubber compositions for tires, such as wet-process silica, dry-process silica, or surface-treated silica, can be used. Silica can be appropriately selected and used from commercially available ones. Silica obtained by a normal production method can also be used. Especially from the viewpoint of improving wet performance, the CTAB adsorption specific surface area of silica is preferably 185 m 2 /g to 215 m 2 /g, more preferably 190 m 2 / g to 210 m 2 /g. Wet performance can be improved by using silica having such a particle size.
  • the rubber composition of the present invention can contain inorganic fillers that are commonly used in rubber compositions for tires.
  • inorganic fillers include carbon black, mica, clay, talc, calcium carbonate, and aluminum hydroxide.
  • carbon black it is particularly preferable to use carbon black together. Dry performance can be improved by using carbon black together.
  • the amount thereof is not particularly limited, but it can be set to, for example, 5 parts by mass to 70 parts by mass with respect to 100 parts by mass of the diene rubber.
  • silica When using silica as a white filler, it is preferable to use a silane coupling agent together.
  • a silane coupling agent By adding a silane coupling agent, the dispersibility of silica in the diene rubber can be improved.
  • the type of silane coupling agent is not particularly limited as long as it can be used in silica-blended rubber compositions. ethoxysilylpropyl) disulfide, 3-trimethoxysilylpropylbenzothiazole tetrasulfide, ⁇ -mercaptopropyltriethoxysilane, 3-octanoylthiopropyltriethoxysilane, and other sulfur-containing silane coupling agents.
  • the amount of the silane coupling agent compounded is preferably less than 10% by mass, more preferably 6% to 9% by mass, relative to the amount of silica compounded. If the compounded amount of the silane coupling agent is 10% by mass or more of the silica compounded amount, the silane coupling agents will condense with each other, and the desired hardness and strength cannot be obtained in the rubber composition.
  • plasticizers include natural oils, synthetic oils, liquid rubbers, plant-derived oils, and the like.
  • the blending amount is 25 parts by mass or more, preferably 27 to 60 parts by mass, per 100 parts by mass of the diene rubber.
  • the rubber composition of the present invention may contain compounding agents other than those mentioned above.
  • Other compounding agents include vulcanizing or cross-linking agents, vulcanization accelerators, anti-aging agents, liquid polymers, thermosetting resins, thermoplastic resins, and various compounding agents generally used in rubber compositions for tires. can be exemplified.
  • the blending amount of these compounding agents can be a conventional general blending amount as long as it does not contradict the object of the present invention.
  • a general rubber kneader such as a Banbury mixer, a kneader, or a roll can be used.
  • the rubber composition for tires of the present invention is mainly used for the cap tread 11 as described above. That is, when used in tires, the undertread 12 is used adjacently.
  • the blending of the rubber composition that constitutes the undertread 12 used in combination is not particularly limited.
  • the difference in the amount of plasticizer blended between these rubber compositions is preferably 40 mass. parts or less, more preferably 0 to 35 parts by mass.
  • Such a small difference in the amount of plasticizer compounded makes it possible to suppress the occurrence of migration between the undertread 12 and the cap tread 11 in the tire, which is advantageous for improving aging resistance. .
  • the difference in amount of plasticizer is defined as the amount of the plasticizer blended with respect to 100 parts by mass of the diene rubber in the rubber composition forming the cap tread 11, and the diene rubber in the rubber composition forming the undertread 12. It is a value calculated as the difference AB, where B is the blending amount of the plasticizer with respect to 100 parts by mass of rubber.
  • Table 1 also shows the average glass transition temperatures of other rubber components except for the modified styrene-butadiene rubber (SBR1), which corresponds to the specific modified conjugated diene-based polymer represented by formula (1) above.
  • SBR1 modified styrene-butadiene rubber
  • Table 1 shows the average glass transition temperatures of other rubber components except for the modified styrene-butadiene rubber (SBR1), which corresponds to the specific modified conjugated diene-based polymer represented by formula (1) above.
  • SBR1 modified styrene-butadiene rubber
  • the undertread used a common rubber compounded as shown in Table 2 below.
  • the difference in the amount of the plasticizer is the amount A of the plasticizer per 100 parts by mass of the rubber component in the rubber composition constituting the cap tread (rubber composition of each example described above) and the rubber composition constituting the undertread ( It is a value calculated as the difference (AB) from the blending amount B of the plasticizer with respect to 100 parts by mass of the rubber component in the rubber composition in Table 2).
  • Each test tire was evaluated for snow performance, wet performance at room temperature, wet performance in a low temperature environment, and aging resistance by the methods shown below.
  • the obtained tire rubber composition was vulcanized at 145° C. for 35 minutes using a mold of a predetermined shape to prepare a vulcanized rubber test piece of each tire rubber composition.
  • the tan ⁇ at 0° C. of each tire rubber composition was determined according to JIS K6253 using a viscoelastic spectrometer (manufactured by Toyo Seiki Seisakusho Co., Ltd.) with an initial strain of 10. %, amplitude ⁇ 2%, frequency 20 Hz, temperature 0°C.
  • the evaluation results are shown as indices with the value of Standard Example 1 being 100. A larger index value means better wet performance (wet grip performance) at room temperature.
  • vulcanization was performed at 145° C. for 35 minutes using a mold of a predetermined shape to prepare a vulcanized rubber test piece of each tire rubber composition. bottom.
  • tan ⁇ at -20 ° C. of each tire rubber composition is measured in accordance with JIS K6253 using a viscoelastic spectrometer (manufactured by Toyo Seiki Seisakusho Co., Ltd.), initial strain. 10%, amplitude ⁇ 2%, frequency 20 Hz, temperature -20°C.
  • the evaluation results are shown as indices with the value of Standard Example 1 being 100. A larger index value means better wet performance (wet grip performance) in a low-temperature environment.
  • Each tire rubber composition obtained was vulcanized at 145°C for 35 minutes using a mold of a predetermined shape to prepare a vulcanized rubber test piece of each tire rubber composition.
  • a No. 3 dumbbell-shaped test piece conforming to JIS K6251 was molded from each vulcanized rubber test piece.
  • Each dumbbell-shaped test piece was divided into two groups, and one of them was heated at 70°C for 96 hours (aging treatment).
  • a dumbbell-shaped test piece before and after aging treatment a tensile test was performed at a temperature of 20° C. and a tensile speed of 500 mm/min to measure a stress-strain curve (SS curve).
  • SS curve stress-strain curve
  • the stress for each strain of 10% was recorded, and the area of the SS curve was obtained.
  • the area change rate (%) was calculated by (area after aging treatment/area before aging treatment ⁇ 100) and used as the anti-aging performance in the tensile test.
  • the obtained results are shown as an index with Standard Example 1 being 100.
  • a larger index value means better aging resistance in a tensile test.
  • ⁇ SBR1 Modified styrene-butadiene rubber corresponding to the specific modified conjugated diene-based polymer represented by the above formula (1), HPR620 manufactured by JSR (weight average molecular weight: 1,270,000, glass transition temperature: -35 ° C.)
  • ⁇ Silane coupling agent NXT SILANE manufactured by Momentive ⁇ Anti-aging agent: VULKANOX 4020 manufactured by LANXESS ⁇ Wax: OZOACE-0015A manufactured by NIPPON SEIRO ⁇ Zinc white: Zinc Oxide manufactured by ZM Silesia ⁇ Stearic acid: PALMAC 1600 manufactured by IOI Acidchem ⁇ Vulcanization accelerator: Noxceller TOT-N manufactured by Ouchi Shinko Kagaku Co., Ltd. ⁇ Sulfur: Sulfax 5 manufactured by Tsurumi Chemical Industry Co., Ltd.
  • ⁇ NR natural rubber
  • BR Butadiene rubber
  • NIPOL BR 1220 manufactured by Nippon Zeon Co., Ltd.
  • glass transition temperature Tg -106 ° C.
  • CB Carbon black, Seast 7HM manufactured by Tokai Carbon Co., Ltd.
  • ⁇ Plasticizer Oil, Diana Process NH-70S manufactured by Idemitsu Kosan Co., Ltd.
  • Anti-aging agent VULKANOX 4020 manufactured by LANXESS ⁇ Wax: OZOACE-0015A manufactured by NIPPON SEIRO ⁇
  • Zinc white Zinc Oxide manufactured by ZM Silesia ⁇
  • Stearic acid PALMAC 1600 manufactured by IOI Acidchem
  • ⁇ Vulcanization accelerator Noxceller TOT-N manufactured by Ouchi Shinko Kagaku Co., Ltd.
  • Sulfur Sulfax 5 manufactured by Tsurumi Chemical Industry Co., Ltd.
  • Examples 1 to 7 improved snow performance, wet performance under normal and low temperature environments, and aging resistance compared to Standard Example 1, and achieved a good balance between these performances.
  • Comparative Example 1 since the content of the specific modified conjugated diene-based polymer (SBR1) was small, wet performance and aging resistance decreased. In Comparative Example 2, the content of the specific modified conjugated diene-based polymer (SBR1) was high, so the snow performance was lowered. In Comparative Example 3, since the average glass transition temperature of the rubber components other than the specific modified conjugated diene polymer (SBR1) was high, the snow performance was lowered. In Comparative Example 4, the snow performance and wet performance deteriorated because the amount of silica blended was small.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

スノー性能、常温および低温環境下におけるウェット性能、耐老化性を改善し、これら性能をバランスよく高度に両立することを可能にしたタイヤ用ゴム組成物を提供する。式(1)で表される特定変性共役ジエン系重合体を10質量%以上40質量%未満含有するジエン系ゴム100質量部に対して、白色充填剤を50質量部以上配合し、ジエン系ゴムに含まれる特定変性共役ジエン系重合体以外のゴム成分の平均ガラス転移温度を-45℃以下に設定する。

Description

タイヤ用ゴム組成物
 本発明は、主として冬用タイヤやオールシーズンタイヤのトレッド部に用いることを意図したタイヤ用ゴム組成物に関する。
 雪上路面で使用されることが想定されたタイヤ(冬用タイヤやオールシーズンタイヤ)においては、雪上路面における走行性能(スノー性能)に優れることが求められる。また、タイヤの基本性能として、湿潤路面における走行性能(ウェット性能)や耐老化性に優れることも求められる。例えば、特許文献1のタイヤは、上記ジエン系ゴムの平均ガラス転移温度を十分に低くし、また、ジエン系ゴムとして、特定の共重合体(ゴム成分)を使用し、且つ、充填剤として十分な量のシリカを用いることで、これら性能を両立することを提案している。
 しかしながら、近年、タイヤに対する要求性能が高くなっており、上述の対策だけでは必ずしも十分であるとは言えなくなっている。例えば、冬用タイヤやオールシーズンタイヤは、冬季に使用されるものであるため、寒冷環境下においても、前述の基本性能(特にウェット性能)を良好に維持することが求められる。従って、タイヤ用ゴム組成物において、スノー性能、常温および低温環境下におけるウェット性能、耐老化性を高度にバランスよく両立するための対策が求められている。
日本国特開2018‐145234号公報
 本発明の目的は、スノー性能、常温および低温環境下におけるウェット性能、耐老化性を改善し、これら性能をバランスよく高度に両立することを可能にしたタイヤ用ゴム組成物を提供することにある。
 上記目的を達成する本発明のタイヤ用ゴム組成物は、下記式(1)で表される特定変性共役ジエン系重合体を10質量%以上40質量%未満含有するジエン系ゴム100質量部に対して、白色充填剤が50質量部以上配合されたタイヤ用ゴム組成物であって、前記ジエン系ゴムに含まれる前記特定変性共役ジエン系重合体以外のゴム成分の平均ガラス転移温度が-45℃以下であることを特徴とする。
Figure JPOXMLDOC01-appb-C000004
 式(1)中、R1は、炭素数1~20のヒドロカルビル基であり、R3は、炭素数1~20のヒドロカルビルオキシ基、または変性若しくは未変性の共役ジエン系重合体鎖であり、R2は、炭素数1~20のアルカンジイル基であり、Zは、下記式(2)または式(3)で表される基である。式(1)中、R4は、炭素数1~20のm価のヒドロカルビル基、または窒素原子、酸素原子および硫黄原子からなる群より選択される少なくとも一種の原子を有し、かつ活性水素を有さない炭素数1~20のm価の基である。式(1)中、nは1~3の整数であり、mは2~10の整数である。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 式(2)および式(3)中、R5は水素原子またはヒドロカルビル基であり、Polyは、変性または未変性の共役ジエン系重合体鎖である。式(2)および式(3)中、「*」はR4に結合する結合手であることを示す。
 本発明のタイヤ用ゴム組成物は、ゴム成分として上記式(1)で表される特定変性共役ジエン系重合体を十分な量使用し、更に、この特定変性共役ジエン系重合体を平均ガラス転移温度が-45℃以下であるゴム成分と併用し、且つ、上記のように十分な量の白色充填剤を配合しているので、スノー性能、ウェット性能、および耐老化性を改善し、これら性能をバランスよく高度に両立することができる。
 本発明のタイヤ用ゴム組成物においては、ジエン系ゴムに含まれる特定変性共役ジエン系重合体以外のゴム成分の平均ガラス転移温度が-60℃以下であることが好ましい。このように平均ガラス転移温度が十分に低いゴム成分を使用することで、スノー性能を向上するには有利になる。
 本発明のタイヤ用ゴム組成物においては、ジエン系ゴム100質量部に対して、可塑剤が25質量部以上配合されることが好ましい。このように可塑剤を配合することで、低温環境下におけるゴムの柔軟性を良好に確保することができ、スノー性能を向上するには有利になる。
 本発明のタイヤ用ゴム組成物においては、ジエン系ゴム100質量%中に、ガラス転移温度が-45℃以下のスチレン‐ブタジエン共重合体を10質量%~90質量%含有することが好ましい。特定変性共役ジエン系重合体以外のゴム成分が上述のようにスチレン‐ブタジエン共重合体を含むことで、白色充填剤(シリカ)の分散が向上し、スノー性能とウェット性能を向上するには有利になる。
 本発明のタイヤ用ゴム組成物はタイヤのトレッド部に使用することができる。特に、タイヤ周方向に延在して環状をなすトレッド部を備え、トレッド部の踏面を構成するキャップトレッドとその内周側に配置されるアンダートレッドとを有するタイヤにおけるキャップトレッドに本発明のタイヤ用ゴム組成物を使用することが好ましい。このとき、アンダートレッドを構成するゴム組成物とキャップトレッドを構成するゴム組成物とがそれぞれ可塑剤を含有し、これらの可塑剤配合量の差が40質量部以下であることが好ましい。アンダートレッドとキャップトレッドとの間のマイグレーションを抑制することができ、耐老化性を向上するには有利になる。
 本発明のタイヤは、空気入りタイヤであることが好ましいが、非空気式タイヤであってもよい。空気入りタイヤの場合は、その内部に空気、窒素等の不活性ガスまたはその他の気体を充填することができる。
図1は、本発明のタイヤ用ゴム組成物を使用する空気入りタイヤの一例を示す子午線断面図である。
 以下、本発明の構成について添付の図面を参照しながら詳細に説明する。
 図1に示すように、本発明のタイヤ用ゴム組成物を使用する空気入りタイヤは、トレッド部1と、このトレッド部1の両側に配置された一対のサイドウォール部2と、サイドウォール部2のタイヤ径方向内側に配置された一対のビード部3とを備えている。図1において、符号CLはタイヤ赤道を示す。図1は子午線断面図であるため描写されないが、トレッド部1、サイドウォール部2、ビード部3は、それぞれタイヤ周方向に延在して環状を成しており、これにより空気入りタイヤのトロイダル状の基本構造が構成される。以下、図1を用いた説明は基本的に図示の子午線断面形状に基づくが、各タイヤ構成部材はいずれもタイヤ周方向に延在して環状を成すものである。
 左右一対のビード部3間にはカーカス層4が装架されている。このカーカス層4は、タイヤ径方向に延びる複数本の補強コードを含み、各ビード部3に配置されたビードコア5の廻りに車両内側から外側に折り返されている。また、ビードコア5の外周上にはビードフィラー6が配置され、このビードフィラー6がカーカス層4の本体部と折り返し部とにより包み込まれている。一方、トレッド部1におけるカーカス層4の外周側には複数層(図1では2層)のベルト層7が埋設されている。各ベルト層7は、タイヤ周方向に対して傾斜する複数本の補強コードを含み、かつ層間で補強コードが互いに交差するように配置されている。これらベルト層7において、補強コードのタイヤ周方向に対する傾斜角度は例えば10°~40°の範囲に設定されている。更に、ベルト層7の外周側にはベルト補強層8(ベルト層7の全幅を覆うフルカバー8aとベルト層7の端部を局所的に覆うエッジカバー8bの2層)が設けられている。ベルト補強層8は、タイヤ周方向に配向する有機繊維コードを含む。ベルト補強層8において、有機繊維コードはタイヤ周方向に対する角度が例えば0°~5°に設定されている。
 トレッド部1におけるカーカス層4の外周側にはトレッドゴム層10が配され、サイドウォール部2におけるカーカス層4の外周側(タイヤ幅方向外側)にはサイドゴム層20が配され、ビード部3におけるカーカス層4の外周側(タイヤ幅方向外側)にはリムクッションゴム層30が配されている。トレッドゴム層10は、物性の異なる2種類のゴム層(トレッド部1の踏面を構成するキャップトレッド11と、その内周側に配置されたアンダートレッド12)をタイヤ径方向に積層した構造を有する。
 本発明のタイヤ用ゴム組成物は、主として、このようなタイヤのキャップトレッド11に用いられるものである。そのため、本発明のタイヤ用ゴム組成物が使用されるタイヤは、トレッド部1(トレッドゴム層10)がキャップトレッド11とアンダートレッド12とで構成されていれば、他の部位の基本構造は上述の構造に限定されるものではない。
 本発明のタイヤ用ゴム組成物において、ゴム成分はジエン系ゴムであり、下記(1)式で表される特定変性共役ジエン系重合体を必ず含む。
Figure JPOXMLDOC01-appb-C000007
 式(1)中、R1は、炭素数が1~20、好ましくは2~18であるヒドロカルビル基である。R3は、炭素数が1~20、好ましくは2~18であるヒドロカルビルオキシ基、または共役ジエン系重合体鎖である。尚、共役ジエン系重合体鎖は、変性または未変性のいずれであってもよい。R2は、炭素数が1~20、好ましくは2~18のアルカンジイル基である。Zは、下記式(2)または式(3)で表される基である。R4は、炭素数が1~20、好ましくは2~18であるm価のヒドロカルビル基であるか、或いは、窒素原子、酸素原子および硫黄原子からなる群より選択される少なくとも一種の原子を有し、且つ活性水素を有さない炭素数が1~20、好ましくは2~18であるm価の基である。式(1)中、n,mはいずれも整数であり、nは1~3、好ましくは1~2であり、mは2~10、好ましくは3~8である。式(1)中、複数のR1、R2、R3、Zは、同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 式(2)および式(3)中、R5は水素原子またはヒドロカルビル基である。Polyは、変性または未変性の共役ジエン系重合体鎖である。式(2)および式(3)中、「*」はR4に結合する結合手であることを示す。
 上述の特定変性共役ジエン系重合体は、例えば、下記式(4)で表される化合物を使用して製造することができる。
Figure JPOXMLDOC01-appb-C000010
 式(4)中、R1およびR2は、それぞれ独立して炭素数1~20のヒドロカルビル基である。R1の炭素数は好ましくは2~18、R2の炭素数は好ましくは2~18である。R3は、炭素数が1~20、好ましくは2~18であるアルカンジイル基である。R4は、炭素数が1~20、好ましくは2~18であるm価のヒドロカルビル基であるか、或いは、窒素原子、酸素原子および硫黄原子からなる群より選択される少なくとも一種の原子を有し、且つ活性水素を有さない炭素数が1~20、好ましくは2~18であるm価の基である。A2は、基「*-C(R5)=N-」または基「*-N=C(R5)-」である(R5は、水素原子またはヒドロカルビル基であり、「*」はR4に結合する結合手であることを示す)。式(4)中、n,mはいずれも整数であり、nは1~3、好ましくは1~2であり、mは2~10、好ましくは3~8である。式(4)において、複数のR1、R2、R3、A2は、同一でも異なっていてもよい。
 上記式(4)の化合物を用いて、上述の式(1)で表される特定変性共役ジエン系重合体を製造する方法の一例を以下に説明する。
 先ず、窒素置換された内容積5Lのオートクレーブ反応器に、シクロヘキサン2,000g、テトラヒドロフラン31.6g、スチレン122gおよび1,3-ブタジエン320gを仕込む。次に、反応器の内容物の温度を10℃に調整した後、重合開始剤としてn-ブチルリチウム4.75mmolを添加して重合を開始する。重合は断熱条件で実施し、最高温度は85℃に達する。重合転化率が99%に達した時点で(重合開始から20分経過後に)、1,3-ブタジエン10gを2分間かけて追加し、その後、上記式(4)の化合物2.12mmolを加えて15分間反応を行う。これにより得られた変性共役ジエン系重合体を含む重合体溶液に、2,6-ジ-tert-ブチル-p-クレゾールを3.96g添加する。最後に、スチームストリッピングにより脱溶媒を行い、110℃に調温された熱ロールで乾燥することにより上述の式(1)で表される特定変性共役ジエン系重合体を得ることができる。
 上述の式(1)で表される特定変性共役ジエン系重合体の含有量は、ジエン系ゴム全体を100質量%としたとき10質量%以上40質量%未満、好ましくは15質量%以上40質量%未満、より好ましくは20質量%以上40質量%未満である。このように特定の量の特定変性共役ジエン系重合体を含有することで、ゴム組成物の破断強度を高めて、耐チッピング性を向上することができる。特定変性共役ジエン系重合体の含有量が10質量%未満であると耐摩耗性が悪化する。特定変性共役ジエン系重合体の含有量が40質量%以上であると氷上性能および雪上性能が悪化する。
 本発明で使用される特定変性共役ジエン系重合体は、上述の式(1)で表されることに加えて、重量平均分子量が90万以上、好ましくは100万~140万であるとよい。重量平均分子量が90万未満であると耐摩耗性が悪化する。重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)によって測定されるポリスチレン換算の値である。
 本発明で使用される特定変性共役ジエン系重合体は、更に、ガラス転移温度Tgが好ましくは-40℃~-30℃、より好ましくは-38℃~-32℃であるとよい。ガラス転移温度Tgが-40℃未満であるとウェット性能、ドライ性能が低下する。ガラス転移温度Tgが-30℃を超えると耐摩耗性が低下する。
 本発明で使用される特定変性共役ジエン系重合体においては、スチレン含有量が好ましくは38.5%~41.5%、より好ましくは39.0%~41.0%であるとよい。スチレン含有量が38.5%であるとウェット性能、ドライ性能が低下する。スチレン含有量が41.5%を超えると耐摩耗性が低下する。
 本発明で使用される特定変性共役ジエン系重合体においては、ビニル含有量が好ましくは23.5%~27.5%、より好ましくは24.0%~27.0%であるとよい。ビニル含有量が23.5%であるとウェット性能、ドライ性能が低下する。ビニル含有量が27.5%を超えると耐摩耗性が低下する。
 本発明のタイヤ用ゴム組成物において、ゴム成分の全量が上述の特定変性共役ジエン系重合体で構成されるのではなく、特定変性共役ジエン系重合体以外のゴム成分(以下「他のゴム成分」という場合がある)が必ず併用される。このとき、他のゴム成分の平均ガラス転移温度は-45℃以下、好ましくは-50℃以下、より好ましくは-60℃以下である。このように他のゴム成分のガラス転移温度が十分に低いことで、スノー性能を向上することができる。他のゴム成分のガラス転移温度が-45℃よりも高温であると、スノー性能を向上することができない。尚、他のゴム成分の平均ガラス転移温度は、他のゴム成分として含有されるゴムが複数種類ある場合、それぞれのガラス転移温度の平均として産出される。具体的には、他のゴム成分に該当する各ゴム成分のガラス転移温度Tgと各ゴム成分の配合割合(他のゴム成分に該当するゴム成分の配合量の合計に対する各ゴム成分の配合量の割合)との積の合計として算出したガラス転移温度Tgの平均値である。
 他のゴム成分としては、平均ガラス転移温度が上述の条件を満たす限り、タイヤ用ゴム組成物において一般的に用いられるものを使用することができる。例えば、天然ゴム、ポリブタジエンゴム、スチレン‐ブタジエン共重合体、アクリロニトリルブタジエンゴム等を例示することができる。これらは、単独または任意のブレンドとして使用することができる。これらの中でも、スチレン‐ブタジエン共重合体、特にガラス転移温度が-45℃以下のスチレン‐ブタジエン共重合体を使用することが好ましい。このようにガラス転移温度が低いスチレン‐ブタジエン共重合体を他のゴム成分として使用することで、後述の白色充填剤(シリカ)の分散を向上できるので、スノー性能およびウェット性能を向上するには有利になる。
 上述のように、他のゴム成分として、ガラス転移温度が低いスチレン‐ブタジエン共重合体を使用する場合、そのガラス転移温度は、好ましくは-45℃以下、より好ましくは-48℃以下、更に好ましくは-50℃以下にするとよい。また、ガラス転移温度が低いスチレン‐ブタジエン共重合体の含有量は、ジエン系ゴム全体を100質量%としたとき好ましくは10質量%~90質量%、より好ましくは20質量%~80質量%、更に好ましくは25質量%~80質量%である。ガラス転移温度が低いスチレン‐ブタジエン共重合体のガラス転移温度や配合量は、他のゴム成分の平均ガラス転移温度の条件を考慮して決定することができる。
 本発明のタイヤ用ゴム組成物は、上述のジエン系ゴムに対して白色充填剤が必ず配合される。白色充填剤としては、例えば、シリカ、炭酸カルシウム、炭酸マグネシウム、タルク、クレー、アルミナ、水酸化アルミニウム、酸化チタン、硫酸カルシウム等が挙げられ。これらは、単独または2種以上を併用して使用することができる。これらの中でも、スノー性能を向上する観点から、シリカを好適に用いることができる。
 白色充填剤の配合量は、ジエン系ゴム100質量部に対して50質量部以上、好ましくは55質量部~150質量部である。このように十分な量の白色充填剤を配合することウェット性能を向上することができる。白色充填剤の配合量が50質量部未満であるとウェット性能が低下する。
 白色充填剤としてシリカを使用する場合、シリカとしては、タイヤ用ゴム組成物に通常使用されるシリカ、例えば湿式法シリカ、乾式法シリカあるいは表面処理シリカなどを使用することができる。シリカは、市販されているものの中から適宜選択して使用することができる。また通常の製造方法により得られたシリカを使用することもできる。特にウェット性能を向上する観点から、シリカのCTAB吸着比表面積は好ましくは185m2/g~215m2/g、より好ましくは190m2/g~210m2/gであるとよい。このような粒子径のシリカを用いることでウェット性能を向上することができる。
 本発明のゴム組成物は、白色充填剤の他に、タイヤ用ゴム組成物に通常使用される無機充填剤を配合することができる。無機充填剤としては、例えば、カーボンブラック、マイカ、クレー、タルク、炭酸カルシウム、水酸化アルミニウム等を例示することができる。これらの中でも、特に、カーボンブラックを併用することが好ましい。カーボンブラックを併用することで、ドライ性能を向上することができる。カーボンブラックを併用する場合、その配合量は特に限定されないが、上述のジエン系ゴム100質量部に対して、例えば5質量部~70質量部に設定することができる。
 白色充填剤としてシリカを使用する場合、シランカップリング剤を併用することが好ましい。シランカップリング剤を配合することにより、ジエン系ゴムに対するシリカの分散性を向上することができる。シランカップリング剤の種類は、シリカ配合のゴム組成物に使用可能なものであれば特に制限されるものではなく、例えば、ビス-(3-トリエトキシシリルプロピル)テトラサルファイド、ビス(3-トリエトキシシリルプロピル)ジサルファイド、3-トリメトキシシリルプロピルベンゾチアゾールテトラサルファイド、γ-メルカプトプロピルトリエトキシシラン、3-オクタノイルチオプロピルトリエトキシシラン等の硫黄含有シランカップリング剤を例示することができる。これらのなかでも、特に、分子中にテトラスルフィド結合を有するものを好適に用いることができる。シランカップリング剤の配合量は、シリカの配合量に対し、好ましくは10質量%未満、より好ましくは6質量%~9質量%にするとよい。シランカップリング剤の配合量がシリカ配合量の10質量%以上であるとシランカップリング剤同士が縮合し、ゴム組成物における所望の硬度や強度を得ることができない。
 本発明のタイヤ用ゴム組成物には、スノー性能を向上する観点から、可塑剤を配合することが好ましい。可塑剤としては、天然オイル、合成オイル、液状ゴム、植物由来オイル等を例示することができる。
 可塑剤を配合する場合、その配合量は、ジエン系ゴム100質量部に対して25質量部以上、好ましくは27質量部~60質量部である。このように十分な量の可塑剤を配合することで、低温環境下におけるゴムの柔軟性を向上することができ、スノー性能を向上するには有利になる。可塑剤の配合量が25質量部未満であるとスノー性能を向上する効果が十分に見込めなくなる。
 本発明のゴム組成物には、上記以外の他の配合剤を添加することができる。他の配合剤としては、加硫または架橋剤、加硫促進剤、老化防止剤、液状ポリマー、熱硬化性樹脂、熱可塑性樹脂など、一般的にタイヤ用ゴム組成物に使用される各種配合剤を例示することができる。これら配合剤の配合量は本発明の目的に反しない限り、従来の一般的な配合量にすることができる。また、混練機としては、通常のゴム用混練機械、例えば、バンバリーミキサー、ニーダー、ロール等を使用することができる。
 本発明のタイヤ用ゴム組成物は、前述のように、主としてキャップトレッド11に用いられるものである。つまり、タイヤに使用される場合は、アンダートレッド12が隣接して使用される。その際、併用されるアンダートレッド12を構成するゴム組成物の配合については特に限定されない。但し、キャップトレッド11を構成するゴム組成物およびアンダートレッド12を構成するゴム組成物の両者に可塑剤が配合される場合、これらゴム組成物間の可塑剤配合量の差は、好ましくは40質量部以下、より好ましくは0質量部~35質量部であるとよい。このように可塑剤配合量の差が小さいことで、タイヤにおいてアンダートレッド12とキャップトレッド11との間でマイグレーションが発生することを抑制することができ、耐老化性を向上するには有利になる。可塑剤配合量の差が40質量部を超えると、マイグレーションを抑制する効果が十分に見込めなくなる。尚、「可塑剤配合量の差」は、キャップトレッド11を構成するゴム組成物におけるジエン系ゴム100質量部に対する可塑剤の配合量をAとし、アンダートレッド12を構成するゴム組成物におけるジエン系ゴム100質量部に対する可塑剤の配合量をBとしたとき、これらの差A-Bとして算出した値である。
 以下、実施例によって本発明を更に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
 表1に示す配合からなる12種類のタイヤ用ゴム組成物(標準例1、比較例1~4、実施例1~7)を調製するにあたり、それぞれ加硫促進剤および硫黄を除く配合成分を秤量し、1.8Lの密閉式バンバリーミキサーで5分間混練し、マスターバッチを放出し室温冷却した。その後、このマスターバッチを1.8Lの密閉式バンバリーミキサーに供し、加硫促進剤及び硫黄を加え2分間混合して、12種類のタイヤ用ゴム組成物を得た。
 尚、表1には、上述の式(1)で表される特定変性共役ジエン系重合体に該当する変性スチレンブタジエンゴム(SBR1)を除く他のゴム成分の平均ガラス転移温度を併記した。また、各例について、アンダートレッドとの可塑剤配合量の差を併記した。
 尚、すべての例においてアンダートレッドは後述の表2に示す配合からなる共通のゴムを使用した。可塑剤配合量の差は、キャップトレッドを構成するゴム組成物(上述の各例のゴム組成物)におけるゴム成分100質量部に対する可塑剤の配合量Aと、アンダートレッドを構成するゴム組成物(表2のゴム組成物)におけるゴム成分100質量部に対する可塑剤の配合量Bとの差(A-B)として算出した値である。
 各試験タイヤについて、下記に示す方法により、スノー性能、常温におけるウェット性能、低温環境下におけるウェット性能、耐老化性の評価を行った。
   スノー性能
 図1に示す基本構造を有し、タイヤサイズが195/65R15である空気入りタイヤ(試験タイヤ)を製造した。このとき、キャップトレッドには、前述の12種類のタイヤ用ゴム組成物(標準例1、比較例1~4、実施例1~7)をそれぞれ使用し、アンダートレッドには、後述の表2に示す配合からなる共通のゴムを使用した。トレッドゴム以外の各部については、すべての試験タイヤで共通とした。これら試験タイヤについて、リムサイズ16×6.5 J5のホイールに組み付けて、空気圧を230kPaとして試験車両に装着し、圧雪路からなるテストコースにおいて、速度40km/hでの走行状態からABS制動を行って車両が停止するまでの制動距離を測定した。評価結果は、測定値の逆数を用いて、標準例1を100とする指数値にて示した。この指数値が大きいほど制動距離が短く、スノー性能が優れていることを意味する。
   常温におけるウェット性能
 得られたタイヤ用ゴム組成物を用いて、所定形状の金型を用いて145℃、35分間加硫し、各タイヤ用ゴム組成物からなる加硫ゴム試験片を作成した。得られた加硫ゴム試験片を使用して各タイヤ用ゴム組成物の0℃におけるtanδを、JIS K6253に準拠して、粘弾性スペクトロメーター(東洋精機製作所社製)を用いて、初期歪み10%、振幅±2%、周波数20Hz、温度0℃の条件で測定した。評価結果は、標準例1の値を100とする指数で示した。この指数値が大きいほど、常温におけるウェット性能(ウェットグリップ性能)に優れることを意味する。
   低温環境下におけるウェット性能
 得られたタイヤ用ゴム組成物を用いて、所定形状の金型を用いて145℃、35分間加硫し、各タイヤ用ゴム組成物からなる加硫ゴム試験片を作成した。得られた加硫ゴム試験片を使用して各タイヤ用ゴム組成物の-20℃におけるtanδを、JIS K6253に準拠して、粘弾性スペクトロメーター(東洋精機製作所社製)を用いて、初期歪み10%、振幅±2%、周波数20Hz、温度-20℃の条件で測定した。評価結果は、標準例1の値を100とする指数で示した。この指数値が大きいほど、低温環境下におけるウェット性能(ウェットグリップ性能)に優れることを意味する。
   耐老化性
 得られたタイヤ用ゴム組成物を用いて、所定形状の金型を用いて145℃、35分間加硫し、各タイヤ用ゴム組成物からなる加硫ゴム試験片を作成した。各加硫ゴム試験片からJIS K6251に準拠した3号ダンベル型試験片を成形した。各ダンベル型試験片を2群に分けその一方を70℃で96時間加熱(老化処理)を行なった。老化処理前後のダンベル型試験片を用いて、温度20℃、引張り速度500mm/分の条件で引張試験を行ない応力‐歪み曲線(S‐Sカーブ)を測定した。それぞれについて歪み10%毎の応力を記録し、S‐Sカーブの面積を求めた。次に(老化処理後の面積/老化処理前の面積×100)により面積の変化率(%)を計算し、引張試験の老化防止性能とした。得られた結果は、標準例1を100とする指数として示した。この指数値が大きいほど引張試験における耐老化性に優れることを意味する。
Figure JPOXMLDOC01-appb-T000011
 表1において使用した原材料の種類を下記に示す。
・SBR1:上述の式(1)で表される特定変性共役ジエン系重合体に該当する変性スチレンブタジエンゴム、JSR社製 HPR620(重量平均分子量:127万、ガラス転移温度:-35℃)
・SBR2:変性スチレンブタジエンゴム、日本ゼオン社製 Nipol NS612(重量平均分子量:270万、ガラス転移温度Tg=-63℃)
・SBR3:未変性のスチレンブタジエンゴム、日本ゼオン社製 Nipol 1723(重量平均分子量:120万、ガラス転移温度Tg=-55℃)
・SBR4:未変性のスチレンブタジエンゴム、日本ゼオン社製 Nipol 1733(重量平均分子量:110万、ガラス転移温度Tg=-36℃)
・NR:天然ゴム、RSS#3(ガラス転移温度Tg=-64℃)
・BR:ブタジエンゴム、日本ゼオン社製 NIPOL BR 1220(ガラス転移温度Tg=-106℃)
・CB:カーボンブラック、東海カーボン社製 シースト 7HM
・シリカ:Solvay社製 ZEOSIL 1165MP
・熱可塑性樹脂:芳香族変性テルペン樹脂、ヤスハラケミカル社製 YSレジン TO‐125(軟化点:125℃)
・可塑剤:オイル、出光興産社製 ダイアナプロセスNH‐70S
・シランカップリング剤:Momentive社製 NXT SILANE
・老化防止剤:LANXESS社製 VULKANOX 4020
・ワックス:NIPPON SEIRO社製 OZOACE‐0015A
・亜鉛華:ZM Silesia社製 Zinc Oxide
・ステアリン酸:IOI Acidchem社製 PALMAC 1600
・加硫促進剤:大内新興化学社製 ノクセラー TOT‐N
・硫黄:鶴見化学工業社製 サルファックス5
Figure JPOXMLDOC01-appb-T000012
 表2において使用した原材料の種類を下記に示す。
・NR:天然ゴム、RSS#3(ガラス転移温度Tg=-64℃)
・BR:ブタジエンゴム、日本ゼオン社製 NIPOL BR 1220(ガラス転移温度Tg=-106℃)
・CB:カーボンブラック、東海カーボン社製 シースト 7HM
・可塑剤:オイル、出光興産社製 ダイアナプロセスNH‐70S
・老化防止剤:LANXESS社製 VULKANOX 4020
・ワックス:NIPPON SEIRO社製 OZOACE‐0015A
・亜鉛華:ZM Silesia社製 Zinc Oxide
・ステアリン酸:IOI Acidchem社製 PALMAC 1600
・加硫促進剤:大内新興化学社製 ノクセラー TOT‐N
・硫黄:鶴見化学工業社製 サルファックス5
 表1から明らかなように、実施例1~7は、標準例1に対して、スノー性能、常温および低温環境下におけるウェット性能、耐老化性を向上し、これら性能をバランスよく両立した。
 一方、比較例1は、特定変性共役ジエン系重合体(SBR1)の含有量が少ないため、ウェット性能および耐老化性が低下した。比較例2は、特定変性共役ジエン系重合体(SBR1)の含有量が多いため、スノー性能が低下した。比較例3は、特定変性共役ジエン系重合体(SBR1)以外のゴム成分の平均ガラス転移温度が高温であるため、スノー性能が低下した。比較例4は、シリカの配合量が少ないため、スノー性能およびウェット性能が低下した。

Claims (6)

  1.  下記式(1)で表される特定変性共役ジエン系重合体を10質量%以上40質量%未満含有するジエン系ゴム100質量部に対して、白色充填剤が50質量部以上配合されたタイヤ用ゴム組成物であって、前記ジエン系ゴムに含まれる前記特定変性共役ジエン系重合体以外のゴム成分の平均ガラス転移温度が-45℃以下であることを特徴とするタイヤ用ゴム組成物。
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、R1は、炭素数1~20のヒドロカルビル基であり、R3は、炭素数1~20のヒドロカルビルオキシ基、または変性若しくは未変性の共役ジエン系重合体鎖であり、R2は、炭素数1~20のアルカンジイル基であり、Zは、下記式(2)または式(3)で表される基である。
     式(1)中、R4は、炭素数1~20のm価のヒドロカルビル基、または窒素原子、酸素原子および硫黄原子からなる群より選択される少なくとも一種の原子を有し、かつ活性水素を有さない炭素数1~20のm価の基である。
     式(1)中、nは1~3の整数であり、mは2~10の整数である。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
     式(2)および式(3)中、R5は水素原子またはヒドロカルビル基であり、Polyは、変性または未変性の共役ジエン系重合体鎖である。
     式(2)および式(3)中、「*」はR4に結合する結合手であることを示す。
  2.  前記ジエン系ゴムに含まれる前記特定変性共役ジエン系重合体以外のゴム成分の平均ガラス転移温度が-60℃以下であることを特徴とする請求項1に記載のタイヤ用ゴム組成物。
  3.  前記ジエン系ゴム100質量部に対して、可塑剤が25質量部以上配合されたことを特徴とする請求項1または2に記載のタイヤ用ゴム組成物。
  4.  前記ジエン系ゴム100質量%中に、ガラス転移温度が-45℃以下のスチレン‐ブタジエン共重合体を10質量%~90質量%含有することを特徴とする請求項1~3のいずれかに記載のタイヤ用ゴム組成物。
  5.  タイヤ周方向に延在して環状をなすトレッド部を備え、前記トレッド部の踏面を構成するキャップトレッドとその内周側に配置されるアンダートレッドとを有するタイヤであって、前記キャップトレッドが請求項1~4のいずれかに記載のタイヤ用ゴム組成物で構成されたことを特徴とするタイヤ。
  6.  前記アンダートレッドを構成するゴム組成物と前記キャップトレッドを構成するゴム組成物とがそれぞれ可塑剤を含有し、これらの可塑剤配合量の差が40質量部以下であることを特徴とする請求項5に記載のタイヤ。
PCT/JP2022/011626 2021-09-14 2022-03-15 タイヤ用ゴム組成物 WO2023042442A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021149334A JP7188521B1 (ja) 2021-09-14 2021-09-14 タイヤ用ゴム組成物
JP2021-149334 2021-09-14

Publications (1)

Publication Number Publication Date
WO2023042442A1 true WO2023042442A1 (ja) 2023-03-23

Family

ID=84441475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011626 WO2023042442A1 (ja) 2021-09-14 2022-03-15 タイヤ用ゴム組成物

Country Status (2)

Country Link
JP (1) JP7188521B1 (ja)
WO (1) WO2023042442A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221943A1 (ja) * 2016-06-24 2017-12-28 Jsr株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体、タイヤ及び化合物
JP2018145234A (ja) * 2017-03-02 2018-09-20 横浜ゴム株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP2019094390A (ja) * 2017-11-20 2019-06-20 Jsr株式会社 変性共役ジエン系重合体の製造方法、重合体組成物、架橋体及びタイヤ
WO2020196899A1 (ja) * 2019-03-27 2020-10-01 Jsr株式会社 水添共役ジエン系重合体、重合体組成物、架橋体及びタイヤ
WO2021085616A1 (ja) * 2019-10-31 2021-05-06 Jsr株式会社 変性共役ジエン系重合体の製造方法、重合体組成物、架橋体及びタイヤ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021120448A (ja) 2019-12-12 2021-08-19 旭化成株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、ゴム組成物、ゴム組成物の製造方法、及びタイヤの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221943A1 (ja) * 2016-06-24 2017-12-28 Jsr株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体、タイヤ及び化合物
JP2018145234A (ja) * 2017-03-02 2018-09-20 横浜ゴム株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP2019094390A (ja) * 2017-11-20 2019-06-20 Jsr株式会社 変性共役ジエン系重合体の製造方法、重合体組成物、架橋体及びタイヤ
WO2020196899A1 (ja) * 2019-03-27 2020-10-01 Jsr株式会社 水添共役ジエン系重合体、重合体組成物、架橋体及びタイヤ
WO2021085616A1 (ja) * 2019-10-31 2021-05-06 Jsr株式会社 変性共役ジエン系重合体の製造方法、重合体組成物、架橋体及びタイヤ

Also Published As

Publication number Publication date
JP7188521B1 (ja) 2022-12-13
JP2023042171A (ja) 2023-03-27

Similar Documents

Publication Publication Date Title
KR101695407B1 (ko) 타이어 트레드용 고무 조성물
WO2011148965A1 (ja) タイヤトレッド用ゴム組成物
US20190390043A1 (en) Rubber Composition for Tire Tread
JP5240410B2 (ja) タイヤトレッド用ゴム組成物
WO2013008927A1 (ja) タイヤ用ゴム組成物
US20090025847A1 (en) Rubber composition and run flat tire using the same
JP7140310B1 (ja) タイヤ
EP2452831B1 (en) Tire with tread containing carboxylated styrene/butadiene rubber
JP7242003B2 (ja) タイヤトレッド用ゴム組成物及びタイヤ
US20090171029A1 (en) Styrene-based polymer, styrene-based copolymer, rubber composition and pneumatic tire
WO2018143272A1 (ja) 空気入りタイヤ
JP2012121936A (ja) タイヤトレッド用ゴム組成物
WO2018135530A1 (ja) タイヤトレッド用ゴム組成物及び空気入りタイヤ
JP5216386B2 (ja) ゴム組成物及びそれを用いたタイヤ
EP3677437B1 (en) Pneumatic tire
JP2021181530A (ja) タイヤ用ゴム組成物
JP2020117580A (ja) タイヤ用ゴム組成物
JP7188521B1 (ja) タイヤ用ゴム組成物
JP2020114707A (ja) 空気入りタイヤ
WO2020110940A1 (ja) タイヤ用ゴム組成物
JP6728622B2 (ja) タイヤ用ゴム組成物
JP7188519B1 (ja) タイヤ用ゴム組成物
JP2020117579A (ja) タイヤ用ゴム組成物
JP6350779B1 (ja) タイヤトレッド用ゴム組成物及び空気入りタイヤ
JP2024055850A (ja) タイヤ用ゴム組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE