WO2022196643A1 - 共役ジエン系重合体及びその製造方法、重合体組成物、架橋体並びにタイヤ - Google Patents

共役ジエン系重合体及びその製造方法、重合体組成物、架橋体並びにタイヤ Download PDF

Info

Publication number
WO2022196643A1
WO2022196643A1 PCT/JP2022/011366 JP2022011366W WO2022196643A1 WO 2022196643 A1 WO2022196643 A1 WO 2022196643A1 JP 2022011366 W JP2022011366 W JP 2022011366W WO 2022196643 A1 WO2022196643 A1 WO 2022196643A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
conjugated diene
group
based polymer
compound
Prior art date
Application number
PCT/JP2022/011366
Other languages
English (en)
French (fr)
Inventor
龍源 中濱
利充 菊池
寛文 千賀
拓哉 佐野
天斗 福本
裕人 坂上
俊之 早川
Original Assignee
株式会社Eneosマテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Eneosマテリアル filed Critical 株式会社Eneosマテリアル
Priority to CN202280021207.XA priority Critical patent/CN117015559A/zh
Priority to KR1020237031074A priority patent/KR20230156349A/ko
Priority to JP2023507108A priority patent/JPWO2022196643A1/ja
Priority to US18/550,586 priority patent/US20240199767A1/en
Priority to EP22771389.8A priority patent/EP4310110A1/en
Publication of WO2022196643A1 publication Critical patent/WO2022196643A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/02Hydrogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0025Compositions of the sidewalls
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present disclosure relates to a conjugated diene-based polymer, a method for producing the same, a polymer composition, a crosslinked product, and a tire.
  • Conjugated diene-based polymers obtained by polymerization using conjugated diene compounds have excellent properties such as heat resistance, abrasion resistance, mechanical strength, and moldability. Widely used for various industrial products such as hoses.
  • Polymer compositions used in the manufacture of pneumatic tire treads, sidewalls, etc. contain conjugated diene polymers and reinforcing agents such as carbon black and silica in order to improve the durability and wear resistance of the products. It is known to incorporate inorganic fillers.
  • conjugated diene polymer and the reinforcing agent a conjugated diene polymer modified with a compound containing silicon or nitrogen has been used (for example, Patent Documents 1 to 3).
  • the present disclosure has been made in view of the above problems, and is capable of improving the strength and wear resistance of the crosslinked product and the processability of the polymer composition in a well-balanced manner, and has a sufficiently low solution viscosity.
  • One purpose is to provide coalescence.
  • the present disclosure provides the following conjugated diene-based polymer, method for producing the same, polymer composition, crosslinked product, and tire.
  • a structural unit represented by the following formula (1), a structural unit represented by the following formula (2), a structural unit represented by the following formula (3), and a structure represented by the following formula (4) A conjugated diene polymer having a value ⁇ represented by the following formula (i) of 0.65 to 0.97, where p, q, r, and s are the constituent ratios (molar ratios) of the units in the polymer.
  • the conjugated diene-based polymer contains 25 to 75% by mass of a polymer (A1) having a multibranched structure having 4 or more molecular chains, and the polymer (A1) contains nitrogen, oxygen and sulfur.
  • a conjugated diene polymer having a functional group containing at least one element selected from the group consisting of at one or both of the terminal portion and the branch point portion of the polymer (A1). ⁇ (p + (0.5 x r)) / (p + q + (0.5 x r) + s) ...(i)
  • the reaction step includes dividing the molecular chain into 4
  • the conjugated diene-based polymer of the present disclosure it is possible to obtain a crosslinked product having high strength and excellent abrasion resistance.
  • the conjugated diene-based polymer of the present disclosure has sufficiently low solution viscosity and excellent productivity.
  • the conjugated diene-based polymer of the present disclosure includes a structural unit represented by the following formula (1), a structural unit represented by the following formula (2), When p, q, r, and s are the constituent ratios (molar ratios) of the structural unit represented by the following formula (3) and the structural unit represented by the following formula (4) in the polymer, respectively, the following formula
  • the value ⁇ represented by (i) is 0.65 to 0.97.
  • (p + (0.5 x r)) / (p + q + (0.5 x r) + s) ...(i)
  • a conjugated diene-based polymer is an assembly of polymers having structural units derived from a conjugated diene compound, and includes polymers having a multibranched structure (ie, branched polymers).
  • the [A] conjugated diene-based polymer is a polymer (A1) that is a branched polymer having a multi-branched structure having 4 or more molecular chains, and the total amount of [A] the conjugated diene-based polymer ( 100% by mass) contains 25 to 75% by mass.
  • the polymer (A1) contains at least one element selected from the group consisting of nitrogen, oxygen and sulfur (hereinafter also referred to as "specific element"), the terminal portion and the branch point portion of the polymer (A1).
  • Such a [A] conjugated diene-based polymer can be produced by a method including the following polymerization step, reaction step and hydrogenation step.
  • the polymer (A1) may have the specific element at all terminals (that is, free ends), or may have the specific element at some terminals. element.
  • the branch point portion of the branched polymer refers to the branched portion of the molecular chain, in other words, the end opposite to the free end (that is, the fixed end) of each molecular chain.
  • This step is a step of polymerizing a monomer containing a conjugated diene compound to obtain a conjugated diene-based polymer having an active terminal (hereinafter also referred to as "conjugated diene-based polymer (I)").
  • the conjugated diene-based polymer (I) is an assembly of polymers having structural units derived from a conjugated diene compound and having active terminals.
  • Conjugated diene compounds used for polymerization include, for example, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, 1,3-heptadiene, 2 -phenyl-1,3-butadiene, 3-methyl-1,3-pentadiene, 2-chloro-1,3-butadiene and the like.
  • at least one selected from the group consisting of 1,3-butadiene, isoprene and 2,3-dimethyl-1,3-butadiene is preferable, and at least one of 1,3-butadiene and isoprene. more preferred.
  • the conjugated diene-based polymer may be a homopolymer of a conjugated diene compound. It is preferably a copolymer having a structural unit that Examples of aromatic vinyl compounds used for polymerization include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 4- t-butylstyrene, 5-t-butyl-2-methylstyrene, vinylethylbenzene, divinylbenzene, trivinylbenzene, divinylnaphthalene, t-butoxystyrene, vinylbenzyldimethylamine, (4-vinylbenzyl)dimethylaminoethyl ether, N,N-dimethylaminoethylstyrene, N,N-dimethyl
  • the conjugated diene-based polymer When the conjugated diene-based polymer is a copolymer of a conjugated diene compound and an aromatic vinyl compound, it has high living properties in anionic polymerization. It is preferably a copolymer contained in the body composition. This copolymer preferably has a random copolymerized portion in which the distribution of the conjugated diene compound and the aromatic vinyl compound is irregular, in order to improve the dispersibility of the inorganic filler. [A] When the conjugated diene-based polymer is a random copolymer of a conjugated diene compound and an aromatic vinyl compound, it further has a block portion composed of a conjugated diene compound or an aromatic vinyl compound together with the random copolymer portion. may be
  • the conjugated diene-based polymer is a copolymer of a conjugated diene compound and an aromatic vinyl compound
  • the proportion of structural units derived from the aromatic vinyl compound in the [A] conjugated diene-based polymer is [A] It is preferably more than 0% by mass and 45% by mass or less with respect to all structural units constituting the conjugated diene-based polymer.
  • the proportion of the structural unit derived from the aromatic vinyl compound can be increased in terms of the fact that the strength of the crosslinked product can be increased while the solution viscosity of the polymer is sufficiently low, and the cold flow characteristics can be improved. It is more preferably 2% by mass or more, still more preferably 5% by mass or more, based on the total structural units constituting the polymer.
  • the ratio of the structural units derived from the aromatic vinyl compound constitutes [A] the conjugated diene polymer. It is more preferably 40% by mass or less, still more preferably 38% by mass or less, and even more preferably 35% by mass or less with respect to the total structural units.
  • the content ratio of the structural unit derived from the aromatic vinyl compound in the polymer is the value measured by 1 H-NMR.
  • a conjugated diene compound and an aromatic vinyl compound may each be used singly or in combination of two or more.
  • the monomers used in the polymerization reaction for obtaining the conjugated diene-based polymer may contain compounds other than the conjugated diene compound and the aromatic vinyl compound (hereinafter also referred to as "other monomers"). good.
  • Other monomers include, for example, acrylonitrile, methyl (meth)acrylate, and ethyl (meth)acrylate.
  • the proportion of other monomers used is preferably 10% by mass or less, more preferably 5% by mass or less, relative to the total amount of monomers used for polymerization.
  • any of the solution polymerization method, gas phase polymerization method, and bulk polymerization method may be used as the polymerization method to be used.
  • the solution polymerization method is particularly preferred.
  • a polymerization system either a batch system or a continuous system may be used.
  • a monomer containing a conjugated diene compound is added with a polymerization initiator, and a randomizer (vinyl content adjuster) used as necessary. ) and a method of polymerizing in the presence of.
  • a metal compound containing an alkali metal or an alkaline earth metal can be used as the polymerization initiator.
  • compounds containing alkali metals are preferred.
  • Specific examples of metal compounds include alkyllithium such as methyllithium, ethyllithium, n-propyllithium, n-butyllithium, sec-butyllithium and t-butyllithium; 1,4-dilithiobutane, phenyllithium, stilbenelithium, naphthyllithium, 1,3-bis(1-lithio-1,3-dimethylpentyl)benzene, 1,3-phenylenebis(3-methyl-1-phenylpentylidene)dilithium, naphthyl sodium, naphthyl potassium, ethoxy potassium, etc. is mentioned.
  • the polymerization initiator is preferably a lithium compound.
  • the metal compound used as the polymerization initiator may be a metal amide compound containing an alkali metal or an alkaline earth metal.
  • Polymerization for obtaining a conjugated diene-based polymer is carried out in the presence of a metal amide compound so that , an amino group (preferably a secondary amino group or a tertiary amino group) can be introduced.
  • the [A] conjugated diene-based polymer obtained by polymerization in the presence of a metal amide compound is preferable in terms of exhibiting a good balance between the strength and wear resistance of the crosslinked product and the workability of the polymer composition.
  • the metal amide compound is preferably a compound obtained by mixing a lithium compound (eg, alkyllithium, etc.) and a compound having a nitrogen atom (hereinafter also referred to as "starting end modifier").
  • the starting end modifier is preferably a secondary amine compound.
  • secondary amine compounds include dimethylamine, diethylamine, dipropylamine, dibutylamine, dodecamethyleneimine, N,N'-dimethyl-N'-trimethylsilyl-1,6-diaminohexane, piperidine, pyrrolidine, hexa methyleneimine, heptamethyleneimine, dicyclohexylamine, N-methylbenzylamine, di-(2-ethylhexyl)amine, diallylamine, morpholine, N-(trimethylsilyl)piperazine, N-(tert-butyldimethylsilyl)-4-piperazine, 1,3-ditrimethylsilyl-1,3,5-triazinane and the like.
  • the metal amide compound is prepared by pre-mixing the lithium compound and the initiation end modifier, and the prepared metal amide compound is added to the polymerization system for polymerization. may be performed. Alternatively, a lithium compound and an initiation end modifier may be added to the polymerization system, and the two may be mixed in the polymerization system to prepare a metal amide compound for polymerization.
  • the amount of the polymerization initiator used is preferably 0.01 to 20 mmol with respect to 100 g of the monomer used for polymer synthesis. , 0.05 to 15 mmol.
  • the randomizer can be used for purposes such as adjusting the vinyl bond content, which indicates the content of vinyl bonds in the polymer.
  • randomizers include dimethoxybenzene, tetrahydrofuran, dimethoxyethane, diethylene glycol dibutyl ether, diethylene glycol dimethyl ether, 2,2-di(tetrahydrofuryl)propane, 2-(2-ethoxyethoxy)-2-methylpropane, triethylamine, pyridine. , N-methylmorpholine, tetramethylethylenediamine, potassium dodecylbenzenesulfonate and the like. These can be used individually by 1 type or in combination of 2 or more types.
  • the organic solvent used for polymerization may be any organic solvent that is inert to the reaction, such as chain or cyclic aliphatic hydrocarbons, aromatic hydrocarbons, and the like.
  • hydrocarbons having 3 to 8 carbon atoms are preferred, and specific examples include propane, n-butane, isobutane, n-pentane, isopentane, n-hexane, cyclohexane, propene, and 1-butene.
  • an organic solvent it can be used individually by 1 type or in combination of 2 or more types.
  • the monomer concentration in the reaction solvent is preferably 5 to 50% by mass, more preferably 10 to 30% by mass, from the viewpoint of maintaining a balance between productivity and ease of polymerization control. is more preferred.
  • the temperature of the polymerization reaction is preferably -20°C to 150°C, more preferably 0 to 120°C.
  • the polymerization reaction is preferably conducted under sufficient pressure to keep the monomers substantially in the liquid phase. Such a pressure can be obtained by a method such as pressurizing the interior of the reactor with a gas inert to the polymerization reaction.
  • a conjugated diene-based polymer (I) having an active terminal can be obtained by such a polymerization reaction.
  • the vinyl bond content in structural units derived from 1,3-butadiene in the conjugated diene polymer (I) obtained by the above polymerization is preferably 15 to 85 mol %.
  • the vinyl bond content is preferably 18 mol % or more, more preferably 20 mol % or more.
  • the vinyl bond content of the conjugated diene polymer (I) is preferably 78 mol% or less from the viewpoint of the durability and cold flow properties of the crosslinked product obtained using the [A] conjugated diene polymer. , more preferably 65 mol % or less.
  • the "vinyl bond content” refers to the content of structural units having a 1,2-bond relative to all structural units derived from 1,3-butadiene in the conjugated diene polymer before hydrogenation. It is a value indicating a ratio and is a value measured by a 1 H-NMR apparatus.
  • conjugated diene-based polymer (II) is an assembly of polymers having structural units derived from a conjugated diene compound.
  • the [B] coupling agent used in the production of the conjugated diene-based polymer is not particularly limited as long as it is a compound having four or more reaction points with the active terminal of the conjugated diene-based polymer.
  • the [B] coupling agent a compound containing at least one element selected from the group consisting of nitrogen, oxygen, sulfur and silicon can be preferably used.
  • the strength and wear resistance of the crosslinked product and the processability of the polymer composition (more specifically, Mooney viscosity and cold flow) This is preferable in that a crosslinked product in which the and are improved in a better balance can be obtained.
  • the coupling agent include silicon-containing compounds such as tetrachlorosilane (silicon tetrachloride), tetramethoxysilane, and bis(trichlorosilyl)ethane.
  • a polymer obtained by the above polymerization step having as a coupling agent a functional group F containing at least one element (specific element) selected from the group consisting of nitrogen, oxygen and sulfur.
  • a compound having four or more reaction sites with a chain (hereinafter also referred to as "terminal modifier (b1)") can also be used.
  • terminal modifier (b1) it is possible to obtain a polymer having a functional group F at the branch point of the branched polymer.
  • the functional group F include, for example, a primary amino group, a secondary amino group, a tertiary amino group, a protected primary amino group, a protected secondary amino group, an imino group, and a nitrogen-containing heterocyclic group. (for example, a group having a heterocyclic ring such as a pyridine ring and an imide ring), a hydroxyl group, a protected hydroxyl group, a thiol group, a protected thiol group, a hydrocarbyloxysilyl group and the like.
  • the functional group F is preferably a nitrogen-containing functional group (nitrogen-containing group) because it is highly effective in improving wear resistance. It is particularly preferred to have at least one selected from the group consisting of groups.
  • R 1 and R 2 are each independently a hydrocarbyl group having 1 to 20 carbon atoms
  • R 3 is an alkanediyl group having 1 to 20 carbon atoms
  • R 4 has an m-valent hydrocarbon group having 1 to 20 carbon atoms, or at least one element selected from the group consisting of nitrogen, oxygen and sulfur, and It is an m-valent group having 1 to 20 carbon atoms in which no active hydrogen is bonded to the element, n is an integer of 1 to 3, and m is an integer of 2 to 10.
  • R 1 , R 2 , R 3 , A 1 , and n are the same or different, provided that when m is 2 or 3, the total number of multiple n is m+4 or more.
  • R 6 , R 7 , R 10 and R 11 are each independently a hydrocarbyl group having 1 to 20 carbon atoms
  • R 8 and R 9 are each independently a hydrocarbyl group having 1 to 20 carbon atoms.
  • a 2 is a group represented by the following formula (7), a group represented by the following formula (8), a group represented by the following formula (9), or a group represented by the following formula (10 )
  • w and p are each independently an integer of 1 to 3.
  • a 2 is the following formula (9) or the following formula (10), w and p are 3
  • a plurality of R 6 , R 7 , R 10 and R 11 are the same or different.
  • R 12 , R 13 and R 15 are each independently a hydrocarbyl group having 1 to 20 carbon atoms
  • R 14 and R 16 are each independently an alkane having 1 to 20 carbon atoms.
  • a diyl group q is an integer of 1 to 3
  • r is an integer of 0 to 2.
  • a plurality of R 12 to R 15 are each the same group or different groups, and a plurality of q are the same or different numbers, provided that the number obtained by subtracting r from the sum of p, w and q is 6 or more.”
  • *" is a bond with the nitrogen atom in formula (6) indicates.
  • R 19 is an alkanediyl group having 3 to 20 carbon atoms, and the nitrogen atom and silicon atom in the formula form a ring structure of 5 or more members.
  • R 17 and R 18 are Each independently represents a hydrocarbyl group having 1 to 20 carbon atoms, R 20 is an alkanediyl group having 1 to 20 carbon atoms, and s is 1 or 2.
  • R 17 and R 18 are Each is the same or different, provided that the sum of p, w and s is 7 or more.”
  • * indicates a bond with the nitrogen atom in formula (6).
  • R 23 is an alkanediyl group having 1 to 20 carbon atoms
  • R 21 is a hydrocarbylidene group having 1 to 20 carbon atoms
  • R 22 is an alkanediyl group having 1 to 20 carbon atoms.
  • R 26 is a hydrocarbylene group having 1 to 20 carbon atoms
  • R 24 and R 25 are each independently a hydrocarbyl group having 1 to 20 carbon atoms
  • R 24 and R 25 represents a ring structure of 4 to 20 carbon atoms combined with the nitrogen atom to which R 24 and R 25 are bonded
  • R 24 and R 25 are combined and R 24 and R 25 are bonded represents a 5- or more-membered ring structure composed of a nitrogen atom and a nitrogen atom or an oxygen atom different from the nitrogen atom to which R 24 and R 25 are bonded. indicates that it is a bond of
  • the hydrocarbyl groups of R 1 and R 2 are, for example, alkyl groups having 1 to 20 carbon atoms, allyl groups, cycloalkyl groups having 3 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, and the like. mentioned.
  • the alkanediyl group for R 3 preferably has 1 to 10 carbon atoms, more preferably 2 to 10 carbon atoms.
  • R 3 is preferably linear.
  • the explanations for R 1 and R 2 apply.
  • n is preferably 2 or 3, and more preferably 3, in terms of improving silica dispersibility.
  • the m-valent hydrocarbon group for R 4 is a chain hydrocarbon having 1 to 20 carbon atoms, an alicyclic hydrocarbon having 3 to 20 carbon atoms, or an aromatic hydrocarbon having 6 to 20 carbon atoms and m hydrogen atoms. Groups from which atoms have been removed, and the like can be mentioned.
  • Specific examples of the aromatic hydrocarbon include a ring structure represented by the following formula (C1) and a polycyclic structure in which two or more such ring structures are linked (for example, a biphenyl group, etc.). (In formula (C1), r1 is an integer of 0 to 5.)
  • R 4 is an m-valent group having 1 to 20 carbon atoms and having at least one element selected from the group consisting of nitrogen, oxygen and sulfur and having no active hydrogen bound to the element.
  • Specific examples include an m-valent heterocyclic group and an m-valent group having a tertiary amine structure.
  • the heterocyclic group is preferably a conjugated system, for example, a monocyclic or condensed ring such as pyridine, pyrimidine, pyrazine, quinoline, naphthalidine, furan, thiophene, or a structure in which a plurality of such monocyclic or condensed rings are linked. Examples thereof include a group obtained by removing m hydrogen atoms from a ring portion.
  • m is an integer from 2 to 10; m is preferably 2 to 6 from the viewpoint of processability of the polymer composition.
  • Specific examples of the compound represented by the formula (5) include compounds represented by the following formulas (M-1) to (M-4).
  • R 27 in the following formula (M-1) represents a hydrogen atom or an alkyl group, and n1 represents an integer of 1-8.
  • R 8 , R 9 , R 14 , R 16 , R 20 , R 21 , R 22 , R 23 and R 24 are alkanediyl groups, alkenediyl groups and hydrocarbylidene groups having 1 to 20 carbon atoms. 10 is preferred, and 2 to 10 carbon atoms are more preferred.
  • R 19 preferably has 3 to 10 carbon atoms, more preferably 3 to 5 carbon atoms.
  • the ring structure formed by R 19 a nitrogen atom and a silicon atom is preferably a 5- to 7-membered ring, more preferably a 5- or 6-membered ring.
  • the ring structure formed by R 21 , R 22 and two adjacent nitrogen atoms is preferably a 5- to 12-membered ring, more preferably a 5- to 7-membered ring.
  • R 24 and R 25 represent a ring structure having 4 to 20 carbon atoms combined with the nitrogen atom to which R 24 and R 25 are bonded
  • the ring structure preferably has 4 to 9 carbon atoms, more preferably 4 to 6 carbon atoms.
  • R 24 and R 25 are combined with a nitrogen atom to which R 24 and R 25 are attached and a nitrogen or oxygen atom different from the nitrogen atom to which R 24 and R 25 are attached
  • the ring structure is preferably a 5- to 10-membered ring, more preferably a 5- to 7-membered ring.
  • Specific examples of the ring structure having five or more members include piperazine ring structure, morpholine ring structure, and the like.
  • w, p, and q are preferably 2 or 3, and more preferably 3, because they are highly effective in improving silica dispersibility. For the same reason, s is preferably 2.
  • Specific examples of the compound represented by the above formula (6) include compounds in which A 2 in the above formula (6) is a group represented by the above formula (7), such as N, N, N', N '-tetra(3-trimethoxysilylpropyl)ethylenediamine, N,N,N',N'-tetra(3-triethoxysilylpropyl)ethylenediamine, N,N,N'-tris(3-trimethoxysilylpropyl) -N'-methyl-ethylenediamine, N,N,N',N'-tetra(3-trimethoxysilylpropyl)-1,3-propanediamine, N,N,N',N'-tetra(3-tri methoxysilylpropyl)-1,4-butanediamine, bis(3-trimethoxysilylpropyl)-[2-(dimethylamino)ethyl]amine and the like; Examples of compounds in which A 2 in
  • a metal amide compound is used as the polymerization initiator in the polymerization step
  • a compound having none of nitrogen, oxygen and sulfur e.g., the above silicon-containing compound
  • a terminal modifier (b1) may be used.
  • the metal amide compound is not used as the polymerization initiator in the polymerization step
  • the terminal modifier (b1) is used as the [B] coupling agent.
  • a metal amide compound is used as a polymerization initiator in the polymerization step, since the strength and wear resistance of the resulting crosslinked product and the processability of the polymer composition can be improved.
  • the reaction between the conjugated diene-based polymer (I) having an active terminal and the [B] coupling agent is preferably carried out as a solution reaction.
  • the proportion of the coupling agent used (the total amount when two or more types are used) can be appropriately set so that the content of the polymer (A1) falls within the desired range.
  • the proportion of [B] the coupling agent used is the polymerization initiator ( That is, it is preferably 0.01 mol or more, more preferably 0.05 mol or more, per 1 mol of the metal atom involved in the polymerization contained in the metal compound).
  • the ratio of the [B] coupling agent is adjusted to a desired value from the viewpoint of suppressing the deterioration of processability and from the viewpoint of sufficiently reducing the solution viscosity of the polymer to ensure productivity. Therefore, it is preferably 0.7 mol or less, more preferably 0.5 mol or less, per 1 mol of the metal atom involved in the polymerization of the polymerization initiator.
  • the coupling agent [B] one type may be used alone, or two or more types may be used in combination.
  • the reaction temperature in the coupling reaction is generally the same as in the polymerization reaction, preferably -20°C to 150°C, more preferably 0 to 120°C.
  • the reaction time is preferably 1 minute to 5 hours, more preferably 2 minutes to 1 hour.
  • the coupling rate is the ratio of the polymer (A1) before hydrogenation present in the conjugated diene polymer (II), the molecular weight of the conjugated diene polymer (I), [B] It can be set according to the number of functional groups of the coupling agent.
  • the coupling rate is preferably 25% or more, more preferably 30% or more, from the viewpoint of obtaining a crosslinked body having high strength and excellent wear resistance. Further, the coupling rate is preferably 75% or less, more preferably 70% or less, from the viewpoint of obtaining a polymer composition with good processability and from the viewpoint of sufficiently reducing the solution viscosity of the polymer to ensure productivity. preferable.
  • the term "coupling rate” refers to the reaction of a linear conjugated diene-based polymer having an active terminal with a compound capable of reacting with the active terminal, and then the polymer contained in the reaction system. Among them, it refers to the ratio (% by mass) of the coupling polymer having two or more molecular chains. Specifically, the total amount of the polymer (that is, the linear polymer contained in the conjugated diene polymer (I)) used in the reaction with the [B] coupling agent or terminal modifier (c) Of these, [B] means the ratio (% by mass) of a polymer in which two or more linear molecular chains are bonded via a coupling agent or a terminal modifier (c).
  • the coupling rate can be calculated from the peak area ratio of the GPC curve obtained using gel permeation chromatography (GPC).
  • the percentage of coupling polymers having 4 or more molecular chains can also be calculated from the peak area ratio of the GPC curve obtained using gel permeation chromatography (GPC).
  • a conjugated diene polymer (II) can be obtained by the above coupling reaction.
  • the conjugated diene-based polymer (II) contains a linear or branched polymer with three branches or less (that is, the polymer (A2) before hydrogenation) together with the polymer (A1) before hydrogenation. is preferred.
  • This linear or branched polymer with three branches or less is three of the polymers contained in the conjugated diene polymer (I) via [B] a coupling agent or a terminal modifier (c). It is a polymer in which the following linear molecular chains are bonded, or an unreacted polymer that has not reacted with [B] the coupling agent and the terminal modifier (c), or both of them.
  • a polymer having a multi-branched structure having 4 or more molecular chains that is, the polymer (A1) before hydrogenation), and a linear or branched structure having 3 or less
  • the ratio with the polymer is such that the ratios of the polymer (A1) and the polymer (A2) in the conjugated diene polymer [A] are respectively desired ratios, and the amount of the coupling agent [B] used and , can be appropriately set by adjusting the number of functional groups of the [B] coupling agent to be used.
  • isolating the conjugated diene-based polymer contained in the reaction solution it can be carried out, for example, by a known desolvation method such as steam stripping and a drying operation such as heat treatment.
  • the conjugated diene polymer (II) obtained above may be subjected to the next hydrogenation step as it is.
  • a treatment of reacting the polymerization terminal of the linear polymer contained in the conjugated diene polymer (II) with the terminal modifier (c) may be performed before the hydrogenation step.
  • the terminal modifier (c) is a compound that contains at least one element selected from the group consisting of nitrogen, phosphorus, oxygen, sulfur and silicon and that can react with the active terminal of the linear polymer. can be preferably used. In this case, it is possible to obtain a linear or branched polymer with three or less branches having a functional group containing at least one element selected from the group consisting of nitrogen, phosphorus, oxygen, sulfur and silicon.
  • the terminal modifier (c) differs from the [B] coupling agent in that it has 3 or less reaction points with the active terminal of the conjugated diene polymer (I).
  • Preferred specific examples of the terminal modifier (c) include at least one selected from the group consisting of compounds represented by the following formula (11) and compounds represented by the following formula (12).
  • a 11 has at least one element selected from the group consisting of nitrogen, phosphorus , oxygen, sulfur and silicon, does not have active hydrogen, and , phosphorus, oxygen, sulfur, silicon, or a monovalent functional group bonded at a carbon atom contained in a carbonyl group, or a (thio)epoxy group.
  • R 33 and R 34 are each independently is a hydrocarbyl group, R 35 is a hydrocarbylene group, and t is an integer of 0 to 2. However, when t is 2, multiple R 33 in the formula are the same or different.
  • a 12 has at least one element selected from the group consisting of nitrogen, phosphorus, oxygen, sulfur and silicon, does not have active hydrogen, and has nitrogen relative to R 39 , phosphorus, oxygen, sulfur or silicon, or a hydrocarbyl group having 1 to 20 carbon atoms, R 36 and R 37 are each independently a hydrocarbyl group. 38 is a hydrocarbylene group, R 39 is a single bond or a hydrocarbylene group, u is 0 or 1. However, when u is 0, multiple R 37 in the formula are same or different)
  • the hydrocarbyl group is a linear or branched chain having 1 to 20 carbon atoms. It is preferably a linear alkyl group, a cycloalkyl group having 3 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms.
  • the hydrocarbylene groups of R 35 and R 39 are preferably linear or branched alkanediyl groups having 1 to 20 carbon atoms, cycloalkylene groups having 3 to 20 carbon atoms or arylene groups having 6 to 20 carbon atoms.
  • the hydrocarbylene group represented by R 38 is preferably a linear or branched alkanediyl group having 1 to 20 carbon atoms. t is preferably 0 or 1.
  • At least one element selected from the group consisting of nitrogen, phosphorus, oxygen, sulfur and silicon, which A 12 has when it is a group may be protected with, for example, a trisubstituted hydrocarbylsilyl group.
  • active hydrogen refers to a hydrogen atom bonded to an atom other than a carbon atom, preferably having a lower bond energy than the carbon-hydrogen bond of polymethylene.
  • a (thio)epoxy group is meant to include an epoxy group and a thioepoxy group.
  • a 11 may be a group that can be converted into an onium ion by an onium salt forming agent. Having such a group (A 11 ) in the terminal modifier (c) can impart excellent shape retention to the polymer.
  • Specific examples of A 11 include, for example, a nitrogen-containing group in which two hydrogen atoms of a primary amino group are substituted by two protecting groups, and a nitrogen-containing group in which one hydrogen atom of a secondary amino group is substituted by one protecting group.
  • a group having a nitrogen atom is preferable in terms of good affinity with silica, and two hydrogen atoms of a tertiary amino group or a primary amino group are substituted by two protecting groups. It is more preferable that it is a nitrogen-containing group consisting of
  • the protective group is a functional group that converts A 11 and A 12 into a functional group that is inactive with respect to the polymerization active terminal.
  • the onium salt forming agent is a Bronsted acid or a compound that forms a Bronsted acid upon contact with water.
  • terminal modifier (c) examples include compounds represented by the above formula (11) such as N,N-bis(trimethylsilyl)aminopropyltrimethoxysilane and N,N-dimethylaminopropyltriethoxysilane.
  • the compound represented by the formula (12) include 2,2-dimethoxy-1-(3-trimethoxysilylpropyl)-1,2-azasilylidine, 2,2-diethoxy-1-( 3-trimethoxysilylpropyl)-1,2-azacylolysine, 2,2-dimethoxy-1-phenyl-1,2-azacylolysine, 1-trimethylsilyl-2,2-dimethoxy-1-aza-2-silacyclopentane, 2-(2,2-dimethoxy-1,2-azacylolydin-1-yl)-N,N-diethylethan-1-amine, 2-(2,2-dimethoxy-1,2-azacylolysin-1-yl) -N,N-dimethylethan-1-amine, 3-(2,2-dimethoxy-1,2-azacyrollidin-1-yl)-N,N-diethylpropan-1-amine and the like.
  • the terminal modifier (c) one type may be used alone,
  • the reaction between the conjugated diene polymer (II) and the terminal modifier (c) can be carried out, for example, as a solution reaction.
  • This solution reaction may be carried out using either a batch system or a continuous system.
  • the method of adding the terminal modifier (c) is not particularly limited, and examples thereof include a method of collectively adding, a method of dividing and adding, and a method of continuously adding.
  • the amount of the terminal modifier (c) to be used may be appropriately set according to the type of compound used in the reaction.
  • the amount of the terminal modifier (c) to be used is preferably 0.05 mol or more, more preferably 0.1 mol or more, per 1 mol of the metal atom involved in the polymerization reaction of the polymerization initiator.
  • the amount of the terminal modifier (c) is preferably 1.0 mol or less, more preferably 0.8 or less, per 1 mol of the metal atom involved in the polymerization reaction of the polymerization initiator.
  • the reaction temperature for the terminal modification reaction is usually the same as the temperature for the polymerization reaction, preferably -20 to 150°C, more preferably 0 to 120°C, and further preferably 20 to 100°C. preferable. If the modification reaction temperature is low, the viscosity of the polymer solution tends to increase. Further, when the temperature of the modification reaction is high, the polymerization active terminals are likely to be deactivated.
  • the reaction time for terminal modification is preferably 1 minute to 5 hours, more preferably 2 minutes to 1 hour.
  • the conjugated diene-based polymer obtained by the above reaction step or modification step is hydrogenated (hereinafter also referred to as “hydrogenation”). Any method and conditions for the hydrogenation reaction can be used as long as a conjugated diene-based polymer with a desired degree of hydrogenation can be obtained.
  • Examples of these hydrogenation methods include a method using a catalyst containing an organometallic compound of titanium as a main component; a catalyst comprising an organometallic compound of iron, nickel, and cobalt and an organometallic compound such as alkyl aluminum A method of using an organic complex of an organometallic compound such as ruthenium and rhodium; A method of using a catalyst in which a metal such as palladium, platinum, ruthenium, cobalt, and nickel is supported on a carrier such as carbon, silica, and alumina. methods and the like.
  • a homogeneous catalyst consisting of a titanium organometallic compound alone or a titanium organometallic compound and a lithium, magnesium, or aluminum organometallic compound (for example, JP-B-63-4841, JP-B-1- No. 37970), hydrogenation under mild conditions of low pressure and low temperature is industrially preferable, and the hydrogenation selectivity to the double bond of butadiene is high.
  • the hydrogenation of the conjugated diene-based polymer is preferably carried out using a solvent that is inert to the catalyst and in which the conjugated diene-based polymer is soluble.
  • Preferred solvents are chain aliphatic hydrocarbons such as n-pentane, n-hexane and n-octane; cyclic aliphatic hydrocarbons such as cyclohexane and cycloheptane; aromatic hydrocarbons such as benzene and toluene; and ethers such as tetrahydrofuran.
  • the solvent used for hydrogenation may be one of the above compounds, or a mixture containing them as main components.
  • the hydrogenation reaction is generally carried out by keeping a conjugated diene polymer at a predetermined temperature in a hydrogen or inert atmosphere, adding a hydrogenation catalyst with or without stirring, and then introducing hydrogen gas to obtain a predetermined temperature. It is carried out by applying pressure.
  • An inert atmosphere means an atmosphere that does not react with substances involved in the hydrogenation reaction, and examples thereof include atmospheres such as helium, neon, and argon. Air and oxygen are not preferable because they oxidize the catalyst and cause deactivation of the catalyst. In addition, nitrogen is not preferable because it acts as a catalyst poison during the hydrogenation reaction and lowers the hydrogenation activity. In particular, it is most preferable that the inside of the hydrogenation reactor is an atmosphere of hydrogen gas alone.
  • the hydrogenation reaction process can be used as a batch process, a continuous process, or a combination thereof.
  • a titanocene diaryl-based compound When used as a hydrogenation catalyst, it may be added alone to the reaction solution as it is, or may be added as a solution in an inert organic solvent.
  • Various solvents that do not react with substances involved in the hydrogenation reaction can be used as the inert organic solvent used when the catalyst is used as a solution. It is preferably the same solvent as the solvent used for the hydrogenation reaction.
  • the preferred amount of catalyst to be added is 0.02 to 20 millimoles per 100 g of the conjugated diene polymer before hydrogenation.
  • the value ⁇ represented by the above formula (i) is more preferably 0.70 or more in that a crosslinked product having excellent abrasion resistance can be obtained. It is more preferably 0.75 or more, even more preferably 0.80 or more, and particularly preferably 0.85 or more.
  • the value ⁇ represented by the above formula (i) corresponds to the hydrogenation rate of the conjugated diene polymer. For example, when ⁇ is 0.65, the hydrogenation rate of the conjugated diene polymer is 65%. Further, ⁇ is more preferably 0.96 or less, even more preferably 0.93 or less, from the viewpoint of forming a crosslinked structure and improving workability.
  • the hydrogenation rate and ⁇ of the polymer can be adjusted, for example, by adjusting the time for the hydrogenation reaction or by controlling the cumulative supply amount of hydrogen.
  • the degree of hydrogenation used herein is a value measured by a 1 H-NMR apparatus.
  • a preferred method for obtaining a conjugated diene-based polymer is to solution-polymerize a monomer containing 1,3-butadiene in the presence of a polymerization initiator (preferably a metal amide compound), and obtain a polymer solution.
  • a polymerization initiator preferably a metal amide compound
  • a terminal modifier preferably a metal amide compound
  • the [A] conjugated diene polymer is obtained by removing the solvent from the solution obtained above. Isolation of the polymer can be carried out, for example, by known desolvation methods such as steam stripping and drying operations such as heat treatment.
  • the polystyrene-equivalent weight average molecular weight (Mw) measured using gel permeation chromatography (GPC) indicates that the crosslinked product has high strength and excellent abrasion resistance. From the viewpoint of obtaining, it is preferably 1.5 ⁇ 10 5 to 2.0 ⁇ 10 6 .
  • Mw of the conjugated diene-based polymer is more preferably 1.8 ⁇ 10 5 or more, still more preferably 2.0 ⁇ 10 5 or more.
  • Mw is more preferably 1.6 ⁇ 10 6 or less, still more preferably 1.4 ⁇ 10 6 or less.
  • the weight-average molecular weight of the conjugated diene-based polymer referred to here is a value obtained from all peaks of a GPC curve measured by GPC before hydrogenation. Hereinafter, it is also referred to as "total weight average molecular weight”.
  • the molecular weight distribution (weight average molecular weight/number average molecular weight) of the total amount of polymer measured by GPC is 1.1 or more. It is preferably 0 or less. A molecular weight distribution of 1.1 or more is preferable from the viewpoint of excellent processability, and a molecular weight distribution of 4.0 or less is preferable from the viewpoint of sufficiently improving the low hysteresis loss property of the obtained crosslinked product.
  • the molecular weight distribution of the conjugated diene-based polymer is more preferably 1.20 or more, and still more preferably 1.23 or more. Also, the molecular weight distribution is more preferably 3.5 or less, and still more preferably 3.0 or less.
  • the peak top molecular weight of the peak with the lowest molecular weight measured by GPC is preferably 0.8 ⁇ 10 5 to 1.0. It is in the range of ⁇ 10 6 .
  • the 1st peak molecular weight is more preferably 0.9 ⁇ 10 5 or more, still more preferably 1.0 ⁇ 10 5 or more.
  • the 1st peak molecular weight is more preferably 8.0 ⁇ 10 5 or less, still more preferably 5.0 ⁇ 10 5 or less, from the viewpoint of improving workability and viscoelastic properties.
  • the 1st peak molecular weight is a value obtained from a GPC curve measured by GPC before hydrogenation.
  • the [A] conjugated diene-based polymer obtained by the above steps has a multi-branched structure with four or more molecular chains, and is at least one specific element selected from the group consisting of nitrogen, oxygen and sulfur. 25 to 75% by mass of the polymer (A1) having a functional group containing at one or both of the terminal portion and the branch point portion of the polymer (A1).
  • the polymer (A1) has a structure in which four or more molecular chains are bonded to a structure derived from [B] a coupling agent having at least one element selected from the group consisting of nitrogen, oxygen, sulfur and silicon. is preferred.
  • the conjugated diene-based polymer preferably contains a linear or branched polymer (A2) having three or less branches together with the polymer (A1). More specifically, the polymer (A2) is, in the conjugated diene polymer (I) obtained by the above polymerization step, three or less direct It is a hydrogenated product of a polymer in which chain-like molecular chains are bonded, or a hydrogenated product of an unreacted polymer that has not reacted with [B] the coupling agent and the terminal modifier (c), or Both.
  • the polymer (A2) has a functional group containing at least one element selected from the group consisting of nitrogen, phosphorus, oxygen, sulfur and silicon from the viewpoint of obtaining a crosslinked product with higher strength and excellent abrasion resistance. is preferred. Further, the polymer (A2) has a secondary amino group or a tertiary amino group at one terminal portion and a nitrogen , oxygen and sulfur. A linear polymer modified at both ends in this way can be obtained by using a metal amide compound as a polymerization initiator in the above polymerization step and performing the above modification step.
  • the proportion of the polymer (A1) in the [A] conjugated diene-based polymer is 25 to 75% by mass when the amount of the [A] conjugated diene-based polymer is 100% by mass.
  • [A] By setting the ratio of the polymer (A1) to the conjugated diene polymer within the above range, the balance between the strength and wear resistance of the crosslinked product and the processability of the polymer composition is excellent. be able to.
  • due to the decrease in the viscosity of the polymer solution it is possible to smoothly transfer the polymer solution through a pipe or to a container in the polymer production process, and to shorten the hydrogenation time in the hydrogenation process.
  • the ratio of the polymer (A1) to the conjugated diene polymer is preferably 28% by mass or more, more preferably 30% by mass or more, still more preferably 40% by mass or more, and even more preferably 50% by mass or more. Moreover, the ratio of the polymer (A1) to the [A] conjugated diene-based polymer is preferably 73% by mass or less, more preferably 70% by mass or less.
  • the proportion of the polymer (A2) in the [A] conjugated diene-based polymer is preferably 25 to 75% by mass when the amount of the [A] conjugated diene-based polymer is 100% by mass.
  • the ratio of the polymer (A2) to the conjugated diene polymer is preferably 27% by mass or more, more preferably 30% by mass or more. Further, the ratio of the polymer (A2) to the [A] conjugated diene polymer is preferably 72% by mass or less, more preferably 70% by mass or less, still more preferably 60% by mass or less, and even more preferably 50% by mass or less. preferable.
  • the ratio (% by mass) of the polymer (A1) and the polymer (A2) in the [A] conjugated diene polymer separates the components of the waveform of the coupling polymer in the GPC curve obtained using GPC. can be calculated by
  • the polymer composition of the present disclosure may contain various components other than the [A] conjugated diene-based polymer together with the [A] conjugated diene-based polymer.
  • the polymer composition in the present disclosure can contain [D] silica as an inorganic filler.
  • the amount of silica compounded is preferably in the range of 20 to 120 parts by mass, preferably 30 to 100 parts by mass, with respect to 100 parts by mass of the rubber component (including the [A] conjugated diene polymer) contained in the polymer composition. A range of parts by weight is more preferred.
  • the amount of silica compounded is 20 parts by mass or more per 100 parts by mass of the rubber component, the low hysteresis loss property, fracture characteristics, and abrasion resistance of the polymer composition can be sufficiently improved, and , 120 parts by mass or less, the processability of the polymer composition can be sufficiently improved.
  • the [D] silica used in the polymer composition of the present disclosure is not particularly limited, and examples thereof include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), calcium silicate, and aluminum silicate. Among these, wet silica is preferred. These silicas may be used individually by 1 type, and may use 2 or more types together.
  • the BET specific surface area of silica (measured according to ISO 5794/1) is preferably in the range of 40 to 350 m 2 /g, more preferably in the range of 80 to 350 m 2 /g, and more preferably in the range of 120 to 350 m 2 /g. Ranges are particularly preferred.
  • Silica having a BET specific surface area within this range has the advantage of being able to achieve both rubber reinforcing properties and dispersibility in the [A] conjugated diene polymer.
  • the silica contained in the polymer composition of the present disclosure may be a combination of two or more different specific surface areas. Specifically, a first silica having a CTAB specific surface area of 180 m 2 /g or more, a BET specific surface area of 185 m 2 /g or more, and an aggregate size of 45 nm or more, and a CTAB specific surface area of 95 m 2 /g or less, a BET ratio A second silica having a surface area of 100 m 2 /g or less may be used in combination.
  • the polymer composition in the present disclosure includes a first silica having a CTAB specific surface area of 180 m 2 /g or more, a BET specific surface area of 185 m 2 /g or more, and an aggregate size of 45 nm or more, and a CTAB specific surface area of 95 m 2 /g
  • a second silica having a BET specific surface area of 100 m 2 /g or less is included below.
  • the CTAB (cetyltrimethylammonium bromide) specific surface area of the first silica is preferably 190 m 2 /g or more, more preferably 195 m 2 /g or more, still more preferably 197 m 2 /g or more. If the CTAB specific surface area is less than 180 m 2 /g, it tends to be difficult to obtain sufficient improvement in breaking strength and wear resistance.
  • the CTAB specific surface area of the first silica is preferably 350 m 2 /g or less, more preferably 300 m 2 /g or less, still more preferably 250 m 2 /g or less. If the CTAB specific surface area exceeds 350 m 2 /g, the dispersibility is poor and aggregation occurs, which tends to deteriorate the physical properties.
  • the CTAB specific surface area of silica is measured according to ASTM D3765-92.
  • the BET specific surface area of the first silica is preferably 190 m 2 /g or more, more preferably 195 m 2 /g or more, still more preferably 210 m 2 /g or more. If the BET specific surface area is less than 185 m 2 /g, it tends to be difficult to obtain sufficient improvement in breaking strength and wear resistance.
  • the BET specific surface area of the first silica is preferably 350 m 2 /g or less, more preferably 300 m 2 /g or less, still more preferably 260 m 2 /g or less. If the BET specific surface area exceeds 350 m 2 /g, the dispersibility is poor and the particles tend to aggregate, resulting in deterioration of physical properties.
  • the BET specific surface area of silica is measured according to ASTM D3037-81.
  • the aggregate size of the first silica is 45 nm or more, preferably 50 nm or more, more preferably 55 nm or more, still more preferably 60 nm or more.
  • the aggregate size of the first silica is preferably 100 nm or less, more preferably 80 nm or less, even more preferably 70 nm or less, and particularly preferably 67 nm or less. By having such an aggregate size, it is possible to provide excellent fuel efficiency and wear resistance while having good dispersibility (workability).
  • the aggregate size of silica can be measured by the method described in JP-A-2011-140613.
  • the average primary particle size of the first silica is preferably 25 nm or less, more preferably 22 nm or less, even more preferably 17 nm or less, and particularly preferably 14 nm or less. Also, the average primary particle size of the first silica is preferably 3 nm or more, more preferably 5 nm or more, and even more preferably 7 nm or more. Although it has such a small average primary particle size, due to the carbon black-like structure having the above aggregate size, the dispersibility (processability) of silica can be further improved, and fuel efficiency and wear resistance can be improved. can be further improved.
  • the average primary particle size of silica can be obtained by observing silica with a transmission or scanning electron microscope, measuring the particle size of 400 or more primary particles of silica observed in the field of view, and calculating the average. .
  • the CTAB specific surface area of the second silica is preferably 10 m 2 /g or more, more preferably 20 m 2 /g or more, still more preferably 30 m 2 /g or more. If the CTAB specific surface area is less than 10 m 2 /g, the reinforcing properties will be low, and it may become difficult to ensure the mechanical strength and abrasion resistance necessary for the polymer composition for tire production.
  • the CTAB specific surface area of the second silica is preferably 80 m 2 /g or less, more preferably 60 m 2 /g or less, still more preferably 50 m 2 /g or less. If the CTAB specific surface area exceeds 95 m 2 /g, the dispersibility of silica may deteriorate, making it difficult to improve breaking strength and abrasion resistance.
  • the BET specific surface area of the second silica is preferably 10 m 2 /g or more, more preferably 20 m 2 /g or more, still more preferably 30 m 2 /g or more. If the BET specific surface area of the second silica is less than 10 m 2 /g, the reinforcing property will be low, and it may be difficult to ensure the mechanical strength and abrasion resistance necessary for the polymer composition for tire production. .
  • the BET specific surface area of the second silica is preferably 85 m 2 /g or less, more preferably 60 m 2 /g or less, still more preferably 50 m 2 /g or less. If the BET specific surface area exceeds 100 m 2 /g, the dispersibility of silica may deteriorate, making it difficult to improve breaking strength and abrasion resistance.
  • the average primary particle size of the second silica is preferably 20 nm or more, more preferably 25 nm or more, still more preferably 30 nm or more, particularly preferably 35 nm or more, and most preferably 55 nm or more.
  • the average primary particle size of the second silica is preferably 500 nm or less, more preferably 200 nm or less, even more preferably 100 nm or less, and particularly preferably 70 nm or less. By having such an average primary particle size, breaking strength and wear resistance can be improved.
  • the polymer composition of the present disclosure preferably contains [E] carbon black as an inorganic filler, from the viewpoint of the fracture properties and wear resistance of the polymer composition.
  • carbon black include, but are not limited to, GPF, FEF, HAF, ISAF, and SAF grade carbon blacks.
  • the nitrogen adsorption specific surface area (N2SA) of carbon black is not particularly limited. It is preferably from 50 to 200 m 2 /g, more preferably from 70 to 150 m 2 /g, in order to obtain the effect of the present disclosure more sufficiently.
  • Nitrogen adsorption specific surface area is a value obtained by measuring the amount of nitrogen adsorption on the surface of carbon black according to JIS K6217-2:2001 "Part 2: Determination of specific surface area-Nitrogen adsorption method-Single point method”. is.
  • Carbon black may be used individually by 1 type, and may use 2 or more types together.
  • the amount of carbon black to be blended is preferably in the range of 1 to 150 parts by mass, more preferably in the range of 5 to 120 parts by mass, per 100 parts by mass of the conjugated diene polymer [A].
  • the composition of the present disclosure may contain other fillers as inorganic fillers in addition to [D] silica and [E] carbon black described above.
  • Such other fillers include alumina (Al 2 O 3 ) such as ⁇ -alumina and ⁇ -alumina, alumina monohydrate (Al 2 O 3 ⁇ H 2 O) such as boehmite and diaspore, gibbsite and bayerite.
  • aluminum hydroxide [Al(OH) 3 ] aluminum carbonate [Al2 ( CO3 ) 3 ]
  • magnesium hydroxide [Mg(OH) 2 ] magnesium oxide (MgO), magnesium carbonate ( MgCO3 ), talc, etc.
  • the amount of the inorganic filler is 100 parts by mass of the rubber component ([A] including the conjugated diene polymer)
  • the content of the filler is preferably 30 parts by mass or more, more preferably 40 parts by mass or more, and the blending amount of the filler is preferably 150 parts by mass or less, more preferably 130 parts by mass or less. If the amount of the filler in the polymer composition is within the above range, when the polymer composition of the present disclosure is applied to manufacture a tire tread, the tire has low rolling resistance and good performance on wet road surfaces. Braking performance, handling performance on a dry road surface, and wear resistance can be improved while simultaneously achieving a higher degree.
  • composition of the present disclosure may contain only [A] the conjugated diene-based polymer as a rubber component.
  • a rubber component different from the [A] conjugated diene-based polymer (hereinafter also referred to as [F] component) is contained within a range that does not impair the effects of the present disclosure.
  • Component [F] is, for example, one or more dienes selected from natural rubber, isoprene rubber, butadiene rubber, emulsion-polymerized styrene-butadiene rubber, solution-polymerized styrene-butadiene rubber, butyl rubber, halogenated butyl rubber, and ethylene-propylene rubber. system rubber can be used. Among these, it is preferable to contain at least one selected from natural rubber, butadiene rubber and styrene-butadiene rubber.
  • the mode of mixing the [F] component and the [A] conjugated diene polymer is not particularly limited.
  • the component [F] and the conjugated diene polymer [A] may be mixed during kneading using a Banbury mixer, rolls, or the like, which is usually carried out.
  • the [F] component may be added to the [A] conjugated diene polymer in solution after polymerization.
  • the amount of the [F] component is preferably 80% by mass or less with respect to the total amount of the rubber component ([A] conjugated diene polymer and [F] component) contained in the polymer composition, and more Preferably, it is 60% by mass or less.
  • the "rubber component" contained in the polymer composition refers to a polymer capable of obtaining a cured product exhibiting rubber elasticity by thermosetting. The cured product has the property of undergoing a large deformation with a small force at room temperature (for example, a deformation that stretches twice or more when stretched at room temperature), and rapidly recovers substantially to its original shape when the force is removed.
  • liquid rubber can be used as part or all of the other rubber components.
  • Liquid rubbers include liquid polyisoprene (liquid IR), liquid polybutadiene (liquid BR), liquid styrene-butadiene copolymer (liquid SBR) and liquid ethylene-propylene copolymer (liquid EP).
  • liquid SBR having a weight average molecular weight of 1,000 to 100,000, preferably 2,000 to 80,000 can be used.
  • the weight average molecular weight said in this specification means the weight average molecular weight of polystyrene conversion analyzed by a gel permeation chromatograph (GPC).
  • GPC gel permeation chromatograph
  • the polymer composition of the present disclosure may contain [G] a thermoplastic resin.
  • Thermoplastic resins include styrene resins, polyethylene, C5 resins, C9 resins, C5/C9 resins, di- It is preferably at least one selected from the group consisting of cyclopentadiene-based resins, alkylphenol-based resins and terpene-based resins.
  • the thermoplastic resin one type may be used alone, or two or more types may be used in combination.
  • the styrene-based resin is a polymer obtained using a styrene-based monomer. It is preferable that the polymer has 20% by mass or more of Styrenic monomers include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, p-methoxystyrene, p-tert-butylstyrene, p-phenylstyrene, o-chloro Styrene, m-chlorostyrene, p-chlorostyrene and the like can be mentioned.
  • the styrenic monomer is preferably at least one of styrene and ⁇ -methylstyrene.
  • the styrene-based resin may be a homopolymer obtained by polymerizing one type of styrene-based monomer, or may be a copolymer obtained by copolymerizing two or more types of styrene-based monomers. Moreover, the styrene-based resin may be a copolymer obtained by using a styrene-based monomer and another monomer that can be copolymerized with the styrene-based monomer.
  • Other monomers include acrylonitriles such as acrylonitrile and methacrylonitrile, acrylics, unsaturated carboxylic acids such as methacrylic acid; unsaturated carboxylic acid esters such as methyl acrylate and methyl methacrylate; chloroprene, butadiene isoprene. olefins such as 1-butene and 1-pentene; ⁇ , ⁇ -unsaturated carboxylic acids such as maleic anhydride and acid anhydrides thereof;
  • the softening point of the styrene-based resin is preferably 30°C or higher, more preferably 60°C or higher, and even more preferably 80°C or higher. When the softening point is 30° C. or higher, there is a tendency that the effect of improving the crack growth resistance of the crosslinked product is likely to be obtained. Moreover, the softening point of the styrene-based resin is preferably 160° C. or lower, more preferably 130° C. or lower, and even more preferably 100° C. or lower. When the softening point is 160° C. or lower, the dispersibility of the resin is improved, and the crack growth resistance, wear resistance and breaking strength tend to be improved.
  • the softening point of the styrene resin is a value measured using a ring and ball softening point measuring device according to the method specified in JIS K 6220-1: 2015, and the sample is softened and placed on the sample. is the temperature at which the ball descends onto the bottom plate.
  • styrene resin a block polymer (thermoplastic elastomer) having a conjugated diene polymer block as a soft segment and a polystyrene block as a hard segment can also be used.
  • the use of such a block polymer is preferable because the effect of improving crack growth resistance can be further enhanced.
  • part of the carbon-carbon double bonds in the structural units derived from the conjugated diene compound may be hydrogenated.
  • Examples of the conjugated diene compound constituting the conjugated diene-based polymer block include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, and the like. mentioned.
  • the conjugated diene compound one type can be used alone or two or more types can be used in combination. Among these, at least one of 1,3-butadiene and isoprene is preferable as the conjugated diene compound.
  • the content of the conjugated diene unit in the block polymer is preferably 20% by mass or more, more preferably 30% by mass or more. Also, the content of the conjugated diene unit is preferably 80% by mass or less, more preferably 70% by mass or less.
  • the content of the polystyrene block in the block polymer is preferably 20% by mass or more in order to increase the breaking strength. Moreover, the content of the polystyrene block is preferably 80% by mass or less, more preferably 70% by mass or less.
  • the content ratio of each of the polystyrene block, the conjugated diene polymer block and the conjugated diene unit in the block polymer can be calculated from the integration ratio of the 1 H-NMR spectrum.
  • block polymer examples include styrene-butadiene block copolymers, styrene-isoprene block copolymers, epoxidized styrene-butadiene block copolymers, styrene-butadiene block copolymers or styrene-isoprene block copolymers.
  • a block copolymer obtained by hydrogenating a part of the conjugated diene-based polymer block contained in the coalesce may be mentioned.
  • SBS styrene-butadiene-styrene block copolymers
  • SIS styrene-isoprene-styrene block copolymers
  • SBBS styrene-butadiene-butylene-styrene block copolymers
  • hydrogenated products of these copolymers epoxies of styrene-butadiene-styrene block copolymers (SIS), styrene-isoprene-styrene block copolymers (SIS), styrene-butadiene-butylene-styrene block copolymers (SBBS), and styrene-butadiene-styrene block copolymers and hydrogenated products of these copolymers.
  • SBS styrene-butadiene-styrene block copolymers
  • SIS styrene-is
  • SBS or SIS having a conjugated diene polymer block in which the soft segment is not hydrogenated, or an epoxidized product of a styrene-butadiene-styrene block copolymer is preferably used as the block polymer because it is easily crosslinked. be able to.
  • polyethylene examples include low-density polyethylene (LDPE), high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE), and the like.
  • the C5-based resin is a solid polymer (C5-based synthetic petroleum resin) obtained by polymerizing a C5 fraction using a Friedel-Crafts-type catalyst (AlCl3, BF3 , etc.).
  • Specific examples of C5-based resins include isoprene, cyclopentadiene, 1,3-pentadiene, copolymers mainly composed of 1-pentene, etc., copolymers of 2-pentene and dicyclopentadiene, 1,3- Examples include polymers containing pentadiene as a main component.
  • the C9-based resin is a solid polymer (C9-based synthetic petroleum resin) obtained by polymerizing a C9 fraction using a Friedel-Crafts-type catalyst (AlCl3, BF3 , etc.).
  • C9-based resins include copolymers mainly composed of indene, methylindene, vinyltoluene, and the like.
  • C5/C9 resins are solid polymers (C5/C9 synthetic petroleum resins) obtained by polymerizing C5 to C9 fractions using a Friedel-Crafts catalyst (AlCl 3 , BF 3 , etc.).
  • Specific examples of C5/C9 resins include copolymers containing vinyl toluene, indene, etc. as main components.
  • the C5/C9-based resin is preferably a resin containing less C9 or higher components.
  • the C9 or higher component is preferably less than 50% by mass, more preferably 40% by mass or less, in the total amount of the resin.
  • a dicyclopentadiene-based resin is a petroleum resin that uses dicyclopentadiene in the C5 fraction as the main raw material.
  • dicyclopentadiene-based resins include Maruzen Petrochemical Co., Ltd.'s trade name "Marcaret's M” series (M-890A, M-845A, M-990A, etc.).
  • alkylphenol-based resins include alkylphenol-acetylene resins such as p-tert-butylphenol-acetylene resin, low-polymerization-degree alkylphenol-formaldehyde resins, and the like.
  • the terpene resin is a solid resin obtained by blending turpentine oil obtained at the same time as rosin is obtained from pine trees, or a polymer component separated from this, and polymerizing using a Friedel-Crafts type catalyst.
  • ⁇ -pinene resins ⁇ -pinene resins, and the like.
  • commercially available products can be used, for example, product name "YS Resin” series (PX-1250, TR-105, etc.) manufactured by Yasuhara Chemical Co., Ltd., and product name "Picolite” manufactured by Hercules. series (A115, S115, etc.) and the like.
  • a typical example of the terpene-aromatic compound resin is a terpene-phenol resin.
  • This terpene-phenol resin can be obtained by a method of reacting a terpene compound with various phenols using a Friedel-Crafts type catalyst, or by a method of further condensing with formalin.
  • Terpenes used as raw materials are not particularly limited, and monoterpene hydrocarbons such as ⁇ -pinene and limonene are preferred, those containing ⁇ -pinene are more preferred, and ⁇ -pinene is particularly preferred.
  • Terpene-phenolic resins with a low proportion of phenolic components are preferred in the present disclosure.
  • the phrase "the ratio of the phenol component is small” means that the phenol component in the total amount of the resin is less than 50% by mass, preferably 40% by mass or less. If a terpene-aromatic compound resin, particularly a terpene-phenol resin, is used as the [G] thermoplastic resin, the handling performance can be further improved.
  • a commercial product can be used as the terpene-aromatic compound resin.
  • Commercially available products include, for example, the trade names "Tamanol 803L” and “Tamanol 901" (manufactured by Arakawa Chemical Industries, Ltd.), and the trade name "YS Polyster (registered trademark)” series (manufactured by Yasuhara Chemical Co., Ltd.).
  • the blending amount of the thermoplastic resin is preferably 1 part by mass or more with respect to 100 parts by mass of the rubber component contained in the polymer composition.
  • the amount of the thermoplastic resin compounded is more preferably 3 parts by mass or more, more preferably 7 parts by mass or more, per 100 parts by mass of the rubber component.
  • the amount of the thermoplastic resin to be blended is preferably 50 parts by mass or less with respect to 100 parts by mass of the rubber component contained in the polymer composition, from the viewpoint of maintaining various performances of the polymer composition. , more preferably 30 parts by mass or less, and still more preferably 25 parts by mass or less.
  • a thermoplastic resin you may use individually by 1 type, and may use it in combination of 2 or more type.
  • a silane coupling agent can be blended with silica to further enhance the dispersibility of silica.
  • the silane coupling agent used is not particularly limited.
  • sulfur-containing silane coupling agents are preferred, such as bis(3-triethoxysilylpropyl) tetrasulfide, bis(3-triethoxysilylpropyl) disulfide, 3-trimethoxysilylpropylbenzothiazole tetrasulfide, ⁇ -mercapto propyltriethoxysilane, 3-octanoylthiopropyltriethoxysilane, and the like.
  • the blending amount of the silane coupling agent is preferably 1 to 20 parts by mass with respect to 100 parts by mass of silica. If the amount of the silane coupling agent is less than 1 part by mass, the amount may be too small to sufficiently improve the dispersibility of silica. Conversely, if it exceeds 20 parts by mass, workability and elongation at break may deteriorate. More preferably, the amount of the silane coupling agent compounded is 5 to 15 parts by mass with respect to 100 parts by mass of silica.
  • the polymer composition of the present disclosure may contain a crosslinking agent.
  • a cross-linking agent By including a cross-linking agent in the polymer composition of the present disclosure, a cross-linked product with sufficiently improved strength and wear resistance can be obtained.
  • cross-linking agents include sulfur, halogenated sulfur, organic peroxides, quinone dioximes, organic polyvalent amine compounds, alkylphenol resins having methylol groups, etc. Sulfur is usually used.
  • the amount of the cross-linking agent compounded is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass, based on 100 parts by mass of the total rubber component contained in the polymer composition.
  • the polymer composition of the present disclosure may contain a process oil generally used for extending elastomers as an oil for extending the oil (extending oil).
  • the method of adding the process oil is not particularly limited.
  • the process oil may be developed in the conjugated diene polymer solution after polymerization and then de-dissolved to form an oil-extended rubber, or the process oil may be directly added during kneading using a Banbury mixer, rolls, or the like.
  • a process oil may thereby be incorporated into the polymer composition.
  • Preferred process oils include various oils known in the art, such as aromatic oils, paraffinic oils, naphthenic oils, vegetable oils, and oils with low polycyclic aromatic content (low PCA oil), e.g.
  • MES mild extraction solvate
  • TDAE treated distillate aromatic extract
  • SRAE aromatic special extraction from residual oil
  • heavy naphthenic oils heavy naphthenic oils.
  • MES mild extraction solvate
  • TDAE treated distillate aromatic extract
  • SRAE aromatic special extraction from residual oil
  • heavy naphthenic oils heavy naphthenic oils.
  • MES mild extraction solvate
  • TDAE treated distillate aromatic extract
  • SRAE aromatic special extraction from residual oil
  • SRAE special residual aromatic extract
  • heavy naphthenic oils heavy naphthenic oils.
  • Examples of commercially available MES, TDAEs and SRAEs include Catenex SNR (solvent dewaxed heavy paraffin distillate) from Shell as MES, Vivatec 500 from H&R Wasag AG as TDAE, and Japan Energy Corp. as SRAE. NC140 manufactured by .
  • the blending amount of the process oil is preferably 10 to 100 parts by mass with respect to 100 parts by mass of the total amount of the polymer
  • the polymer composition may contain, for example, an anti-aging agent, zinc white, stearic acid, a softening agent, a vulcanization accelerator, a silane coupling agent, a compatibilizer, a vulcanization aid, and a processing aid.
  • an anti-aging agent zinc white, stearic acid, a softening agent, a vulcanization accelerator, a silane coupling agent, a compatibilizer, a vulcanization aid, and a processing aid.
  • anti-scorch agents and the like which are commonly used in polymer compositions for obtaining vulcanized rubber, can be blended. These compounding amounts can be appropriately selected according to various components within a range that does not impair the effects of the present disclosure.
  • components to be blended as necessary are mixed with an open kneader (e.g., rolls), a closed kneader (e.g., Banbury mixer), etc.
  • an open kneader e.g., rolls
  • a closed kneader e.g., Banbury mixer
  • cross-linking vulcanizing
  • the above-mentioned crosslinked products are used for tire applications such as tire treads, undertreads, carcasses, sidewalls, and beads; sealing materials such as packings, gaskets, weather strips, and O-rings; automobiles, ships, aircraft, Interior and exterior skin materials for various vehicles such as railways; building materials; anti-vibration rubbers for industrial machinery and equipment; various hoses and hose covers such as diaphragms, rolls, radiator hoses, and air hoses; belts such as; linings; dust boots; medical equipment materials; fenders; insulating materials for electric wires;
  • conjugated diene-based polymer it is possible to obtain a crosslinked product having good physical properties required for tire applications, such as tensile strength and abrasion resistance. Therefore, [A] a polymer composition containing a conjugated diene polymer can be suitably used as a material for tire treads, sidewalls, or both.
  • Tires can be manufactured according to the usual method.
  • the polymer composition is mixed in a kneader, formed into a sheet, placed at a predetermined position (for example, outside the carcass in the case of a sidewall) according to a conventional method, and vulcanized to form a tread. Or formed as sidewalls to obtain a pneumatic tire.
  • Coupling rate (% by mass): 2 or more from the peak area ratio of the GPC curve obtained using GPC (HLC-8020 (product name (manufactured by Tosoh Corporation)) for the polymer before hydrogenation
  • the ratio of the coupling polymer having a molecular chain was calculated.
  • Hydrogenation rate and ⁇ Calculated from 1 H-NMR spectrum measured with a 100 MHz device using ethylene tetrachloride as a solvent.
  • the hydrogen pressure is maintained at 0.7 MPa or more, and hydrogen is supplied until a predetermined hydrogen integrated value is reached.
  • a solution was obtained.
  • the obtained polymer solution was desolvated by steam stripping and dried with a hot roll adjusted to 130° C. to obtain a hydrogenated conjugated diene polymer A.
  • Table 1 shows the polymerization recipe of the hydrogenated conjugated diene polymer A
  • Table 3 shows various physical properties of the obtained hydrogenated conjugated diene polymer A.
  • Examples 2, 4 to 11, 14 to 17 and Comparative Examples 1 to 3 Synthesis and physical properties of hydrogenated conjugated diene polymers B, D to K, N to Q, R to T]
  • Hydrogenated conjugated diene polymer B was prepared in the same manner as in Example 1 except that the polymerization recipe was changed as shown in Tables 1 and 2, and the hydrogenation rate was changed as shown in Tables 3 and 4. , D ⁇ K, N ⁇ Q, R ⁇ T.
  • no starting end modifier was used.
  • Tables 3 and 4 show various physical properties of the obtained hydrogenated conjugated diene polymers B, D to K, N to Q and R to T.
  • Example 3 Synthesis and physical properties of hydrogenated conjugated diene polymer C
  • 25900 g of cyclohexane, 65 g of tetrahydrofuran, 370 g of styrene, 3,219 g of 1,3-butadiene, and 63 mmol of piperidine were charged into a nitrogen-purged autoclave reactor having an internal volume of 50 liters.
  • a cyclohexane solution containing n-butyllithium (86 mmol) was added to initiate polymerization. Polymerization was carried out under adiabatic conditions.
  • Example 12 and Comparative Example 4 Synthesis and physical properties of hydrogenated conjugated diene polymers L and U] Hydrogenated conjugated diene polymers L and U were obtained in the same manner as in Example 1, except that the polymerization recipe was changed as shown in Table 2. In addition, in Comparative Example 4, no starting end modifier was used. Table 4 shows various physical properties of the obtained hydrogenated conjugated diene polymers L and U.
  • Example 13 Synthesis and physical properties of hydrogenated conjugated diene polymer M] 25900 g of cyclohexane, 65 g of tetrahydrofuran, 0.74 g of potassium dodecylbenzenesulfonate, 740 g of styrene, 2849 g of 1,3-butadiene and 63 mmol of piperidine were charged into a nitrogen-purged autoclave reactor having an internal volume of 50 liters. After adjusting the temperature of the contents of the reactor to 42° C., a cyclohexane solution containing n-butyllithium (43 mmol) was added to initiate polymerization. Polymerization was carried out under adiabatic conditions.
  • a vulcanization accelerator and sulfur were added and kneaded to obtain a polymer composition B.
  • the obtained polymer composition B was molded and vulcanized with a vulcanizing press at 160° C. for a predetermined time to obtain a crosslinked product (vulcanized rubber).
  • solution viscosity, workability, cold flow, tensile strength and wear resistance were evaluated as follows. Tables 6 and 7 show the results.
  • Solution viscosity 29 g of polymer dissolved in 171 g of cyclohexane was used as a measurement sample, and the solution viscosity was measured at a temperature of 60° C. using a Toki Sangyo viscometer TVB-10. Note that the smaller the value of the solution viscosity, the better the fluidity of the polymer solution, the easier it is to transfer in a pipe or to a container, and the more hydrogen is diffused in the polymer solution in the hydrogenation reaction. It can be said that it is excellent from the viewpoint of being able to shorten the hydrogenation time and ensure sufficient productivity. From the obtained solution viscosity values, the solution viscosities were judged from A to D according to the following criteria.
  • A extremely good: less than 1000 mP s B (good): 1000 mP s or more and less than 2000 mP s C (acceptable level): 2000 mP s or more and less than 3000 mP s D (poor): 3000 mP s or more
  • Mooney Viscosity A polymer was used as a measurement sample and measured according to JIS K6300 using an L rotor under the conditions of 1 minute of preheating, 4 minutes of rotor operating time, and a temperature of 100°C. It can be said that the smaller the numerical value, the smaller the Mooney viscosity and the better the workability. Based on the obtained Mooney viscosity values, the Mooney viscosities were evaluated from A to D according to the following criteria. A: Less than 70 B: 70 or more and less than 85 C: 85 or more and less than 100 D: 100 or more
  • Abrasion resistance Using a crosslinked body as a measurement sample, using a Lambourn type abrasion tester (manufactured by Shimada Giken Co., Ltd.), in accordance with JIS K6264-2: 2005, wear at a temperature of 50 ° C. and a slip ratio of 15%. amount was measured. Evaluation is made as an index based on Comparative Example 1, and the smaller the numerical value, the smaller the amount of wear and the better the wear resistance. From the values of the wear amount thus obtained, the wear resistance was judged from A to D according to the following judgment criteria. A: Less than 90 B: Less than 95 90 or more C: Less than 100 95 or more D: 100 or more
  • Comparative Example 1 in which the ends of the polymer chains of the branched polymer were not modified with either the starting end modifier or the terminal modifier (b1), had an abrasion resistance of the crosslinked product.
  • the evaluation was "D”.
  • Comparative Example 2 in which the content of the polymer (A1) in the hydrogenated conjugated diene polymer was as high as 87% by mass, was evaluated as “D” for the solution viscosity.
  • Comparative Example 3 in which the content of the polymer (A1) in the [A] conjugated diene-based polymer is small, was evaluated as "D” for the cold flow properties and the tensile strength and abrasion resistance of the crosslinked product.
  • Comparative Example 4 in which the ends of the polymer chains of the branched polymer were not modified by either the starting end modifier or the terminal modifier (b), the tensile strength and abrasion resistance of the crosslinked product were improved, but the cold The flow property was evaluated as "D". Thus, all of the polymer compositions of Comparative Examples 1 to 4 were inferior to those of Examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

式(1)~式(4)で表される構造単位の重合体中の構成比(モル比)をそれぞれp、q、r、sとしたとき、数式(i)で表される値αが0.65~0.97である共役ジエン系重合体であり、共役ジエン系重合体は、分子鎖を4個以上持つ多分岐構造を有する重合体(A1)を25~75質量%含み、重合体(A1)が、窒素、酸素及び硫黄よりなる群から選択される少なくとも1種の元素を含む官能基を重合体の末端部分及び分岐点部分の一方又は両方に有する共役ジエン系重合体とする。 α=(p+(0.5×r))/(p+q+(0.5×r)+s) …(i)

Description

共役ジエン系重合体及びその製造方法、重合体組成物、架橋体並びにタイヤ 関連出願の相互参照
 本出願は、2021年3月15日に出願された日本特許出願番号2021-41264号に基づくもので、ここにその記載内容を援用する。
 本開示は、共役ジエン系重合体及びその製造方法、重合体組成物、架橋体並びにタイヤに関する。
 共役ジエン化合物を用いた重合により得られる共役ジエン系重合体は、耐熱性、耐摩耗性、機械的強度、成形加工性等の各種特性が良好であることから、空気入りタイヤや防振ゴム、ホース等の各種工業製品に広く使用されている。
 空気入りタイヤのトレッド、サイドウォール等の製造に用いられる重合体組成物としては、製品の耐久性や耐摩耗性を向上させるべく、共役ジエン系重合体と共に、補強剤としてカーボンブラックやシリカ等の無機フィラーを配合させることが知られている。また従来、共役ジエン系重合体と補強剤との親和性を高めるために、ケイ素や窒素を有する化合物で変性された共役ジエン系重合体を用いることが行われている(例えば、特許文献1~3参照)。
 また近年では、アミノ基やアルコキシシリル基等の官能基を片末端又は両末端に有する共役ジエン系重合体の水添物を用いて、高強度かつ耐摩耗性に優れるタイヤ部材を得ることが提案されている(特許文献4参照)。
国際公開第2008/123164号 特開平11-349632号公報 国際公開第2017/221943号 国際公開第2014/133097号
 昨今における環境事情や、省資源・省エネルギーに対する意識の向上等により、ゴム製品の寿命を延ばし使用年数を増加させることや、性能を維持しつつ製品の軽量化や小型化を図ることが望まれている。そこで、従来にも増して高強度であって、かつ耐摩耗性に優れた架橋体(加硫ゴム)を得ることが可能な材料が求められている。
 しかしながら、一般に、耐摩耗性及び強度と加工性とは二律背反の関係にあり、一方を改善しようとすると他方の性能が低下する傾向がある。より高品質のタイヤ等のゴム製品を製造するためには、これらいずれの性能も優れていることが求められる。
 また、重合体の溶液粘度が高い場合、重合体溶液の流動性が低くなる。そのため、重合体溶液の配管での移送や容器への移液をスムーズに実施できなかったり、水素添加反応を行う場合に重合体溶液内での水素拡散性が低く水素添加時間が長くなったりすることが懸念される。このような場合、十分な生産性を確保できないことが考えられる。
 本開示は上記課題に鑑みなされたものであり、架橋体の強度及び耐摩耗性、並びに重合体組成物の加工性をバランス良く改善することができ、かつ溶液粘度が十分に低い共役ジエン系重合体を提供することを一つの目的とする。
 本開示により、以下の共役ジエン系重合体及びその製造方法、重合体組成物、架橋体並びにタイヤが提供される。
 [1] 下記式(1)で表される構造単位、下記式(2)で表される構造単位、下記式(3)で表される構造単位、及び下記式(4)で表される構造単位の重合体中の構成比(モル比)をそれぞれp、q、r、sとしたとき、下記数式(i)で表される値αが0.65~0.97である共役ジエン系重合体であり、前記共役ジエン系重合体は、分子鎖を4個以上持つ多分岐構造を有する重合体(A1)を25~75質量%含み、前記重合体(A1)は、窒素、酸素及び硫黄よりなる群から選択される少なくとも1種の元素を含む官能基を、前記重合体(A1)の末端部分及び分岐点部分の一方又は両方に有する、共役ジエン系重合体。
 α=(p+(0.5×r))/(p+q+(0.5×r)+s)  
                              …(i)
Figure JPOXMLDOC01-appb-C000002
 [2] アルカリ金属又はアルカリ土類金属を有する金属化合物の存在下、共役ジエン化合物を含む単量体を重合して、活性末端を有する共役ジエン系重合体(I)を得る重合工程と、前記共役ジエン系重合体(I)と、前記活性末端と反応し得る官能基を4個以上有する化合物[B]とを反応させて、共役ジエン系重合体(II)を得る反応工程と、前記共役ジエン系重合体(II)が有する共役ジエン化合物に由来する構造単位の水素添加率が65~97%となるように水素添加する水添工程と、を含み、前記反応工程は、分子鎖を4個以上持つ多分岐構造を有する重合体を前記共役ジエン系重合体(II)中に25~75質量%含むように前記共役ジエン系重合体(I)と前記化合物[B]とを反応させる工程であり、前記金属化合物及び前記化合物[B]よりなる群から選択される少なくとも1種が、窒素、酸素及び硫黄よりなる群から選択される少なくとも1種の元素を含む、共役ジエン系重合体の製造方法。
 [3] 上記[1]の共役ジエン系重合体又は上記[2]の製造方法により得られた共役ジエン系重合体と、無機フィラーとを含有する、重合体組成物。
 [4]上記[3]の重合体組成物が架橋されてなる架橋体。
 [5]上記[3]の重合体組成物を用いて、トレッド及びサイドウォールのうち一方又は両方が形成されたタイヤ。
 本開示の共役ジエン系重合体によれば、高強度であって耐摩耗性に優れた架橋体を得ることができる。また、本開示の共役ジエン系重合体は溶液粘度が十分に低く、生産性に優れている。さらに、本開示によれば、高強度であって耐摩耗性に優れた架橋体を得つつ、加工性(特に、ムーニー粘度及びコールドフロー特性)に優れた重合体組成物を得ることができる。
 以下、本開示の実施に関連する事項について詳細に説明する。なお、本明細書において、「~」を用いて記載された数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を表す。
≪[A]共役ジエン系重合体≫
 本開示の共役ジエン系重合体(以下、「[A]共役ジエン系重合体」ともいう)は、下記式(1)で表される構造単位、下記式(2)で表される構造単位、下記式(3)で表される構造単位、及び下記式(4)で表される構造単位の重合体中の構成比(モル比)をそれぞれp、q、r、sとしたとき、下記数式(i)で表される値αが0.65~0.97である。
 α=(p+(0.5×r))/(p+q+(0.5×r)+s) 
                              …(i)
Figure JPOXMLDOC01-appb-C000003
 [A]共役ジエン系重合体は、共役ジエン化合物に由来する構造単位を有する高分子の集合体であり、多分岐構造を有する重合体(すなわち、分岐ポリマー)を含む。具体的には、[A]共役ジエン系重合体は、分子鎖を4個以上持つ多分岐構造を有する分岐ポリマーである重合体(A1)を、[A]共役ジエン系重合体の全体量(100質量%)に対し25~75質量%含む。また、重合体(A1)は、窒素、酸素及び硫黄よりなる群から選択される少なくとも1種の元素(以下、「特定元素」ともいう)を、重合体(A1)の末端部分及び分岐点部分の一方又は両方に有している。こうした[A]共役ジエン系重合体は、以下の重合工程、反応工程及び水添工程を含む方法により製造することができる。なお、重合体(A1)が特定元素を末端部分に有する場合、重合体(A1)は、全ての末端(すなわち自由端)に特定元素を有していてもよいし、一部の末端に特定元素を有していてもよい。分岐ポリマーの分岐点部分とは、分子鎖の枝分かれ部分をいい、換言すれば、各分子鎖における自由端とは反対側の端部(すなわち固定端)である。以下、[A]共役ジエン系重合体の製造方法を説明しながら、[A]共役ジエン系重合体の構成について併せて説明する。
<重合工程>
 本工程は、共役ジエン化合物を含む単量体を重合して、活性末端を有する共役ジエン系重合体(以下、「共役ジエン系重合体(I)」ともいう)を得る工程である。共役ジエン系重合体(I)は、共役ジエン化合物に由来する構造単位を有し、かつ活性末端を有する高分子の集合体である。重合に使用する共役ジエン化合物としては、例えば1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-ヘプタジエン、2-フェニル-1,3-ブタジエン、3-メチル-1,3-ペンタジエン、2-クロロ-1,3-ブタジエン等が挙げられる。これらの中でも、1,3-ブタジエン、イソプレン及び2,3-ジメチル-1,3-ブタジエンよりなる群から選択される少なくとも一種が好ましく、1,3-ブタジエン及びイソプレンの少なくともいずれかであることがより好ましい。
 [A]共役ジエン系重合体は、共役ジエン化合物の単独重合体であってもよいが、より高強度な架橋体を観点から、共役ジエン化合物に由来する構造単位と共に、芳香族ビニル化合物に由来する構造単位を有する共重合体であることが好ましい。重合に使用する芳香族ビニル化合物としては、例えばスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、α-メチルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン、ビニルエチルベンゼン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレン、t-ブトキシスチレン、ビニルベンジルジメチルアミン、(4-ビニルベンジル)ジメチルアミノエチルエーテル、N,N-ジメチルアミノエチルスチレン、N,N-ジメチルアミノメチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2-t-ブチルスチレン、3-t-ブチルスチレン、ビニルキシレン、ビニルナフタレン、ビニルピリジン、ジフェニルエチレン、3級アミノ基含有ジフェニルエチレン(例えば、1-(4-N,N-ジメチルアミノフェニル)-1-フェニルエチレン)等が挙げられる。芳香族ビニル化合物としては、これらの中でもスチレン及びα-メチルスチレンが好ましい。
 [A]共役ジエン系重合体が、共役ジエン化合物と芳香族ビニル化合物との共重合体である場合、アニオン重合におけるリビング性が高い点で、中でも、1,3-ブタジエンとスチレンとを単量体組成に含む共重合体であることが好ましい。この共重合体は、無機フィラーの分散性をより良好にできる点で、共役ジエン化合物と芳香族ビニル化合物との分布が不規則なランダム共重合部分を有することが好ましい。[A]共役ジエン系重合体が、共役ジエン化合物と芳香族ビニル化合物とのランダム共重合体である場合、ランダム共重合部分と共に、共役ジエン化合物又は芳香族ビニル化合物からなるブロック部分を更に有していてもよい。
 [A]共役ジエン系重合体が、共役ジエン化合物と芳香族ビニル化合物との共重合体である場合、[A]共役ジエン系重合体における、芳香族ビニル化合物に由来する構造単位の割合は、[A]共役ジエン系重合体を構成する全構造単位に対し、0質量%を超えて45質量%以下であることが好ましい。上記範囲とすることにより、重合体組成物の加工性を良好にしつつ、より高強度かつ耐摩耗性に優れた架橋体を得ることができる点、及び重合体の溶液粘度を十分に低くできる点で好適である。重合体の溶液粘度を十分に低くしつつ、架橋体の強度を高くできる点、及びコールドフロー特性を良好にできる点で、芳香族ビニル化合物に由来する構造単位の割合は、[A]共役ジエン系重合体を構成する全構造単位に対し、2質量%以上であることがより好ましく、5質量%以上であることが更に好ましい。また、重合体のムーニー粘度を低くできる点、及び架橋体の耐摩耗性の低下を抑制する観点から、芳香族ビニル化合物に由来する構造単位の割合は、[A]共役ジエン系重合体を構成する全構造単位に対し、40質量%以下であることがより好ましく、38質量%以下であることが更に好ましく、35質量%以下であることがより更に好ましい。
 なお、重合体中における、芳香族ビニル化合物に由来する構造単位の含有割合はH-NMRによって測定した値である。共役ジエン化合物、芳香族ビニル化合物は、それぞれ1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 [A]共役ジエン系重合体を得るための重合反応に使用する単量体は、共役ジエン化合物及び芳香族ビニル化合物以外の化合物(以下、「他のモノマー」ともいう。)を含んでいてもよい。他のモノマーとしては、例えばアクリロニトリル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等が挙げられる。他のモノマーの使用割合は、重合に使用する単量体の全量に対して、10質量%以下とすることが好ましく、5質量%以下とすることがより好ましい。
 使用する重合法としては、溶液重合法、気相重合法、バルク重合法のいずれを用いてもよい。これらのうち、溶液重合法が特に好ましい。また、重合形式としては、回分式及び連続式のいずれを用いてもよい。溶液重合法を用いる場合、具体的な重合方法の一例としては、有機溶媒中において、共役ジエン化合物を含む単量体を、重合開始剤、及び必要に応じて用いられるランダマイザー(ビニル含量調整剤)の存在下で重合する方法が挙げられる。
 重合開始剤としては、アルカリ金属又はアルカリ土類金属を有する金属化合物を用いることができる。これらのうち、アルカリ金属を有する化合物が好ましい。金属化合物の具体例としては、メチルリチウム、エチルリチウム、n-プロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム等のアルキルリチウム;1,4-ジリチオブタン、フェニルリチウム、スチルベンリチウム、ナフチルリチウム、1,3-ビス(1-リチオ-1,3-ジメチルペンチル)ベンゼン、1,3-フェニレンビス(3-メチル-1-フェニルペンチリデン)ジリチウム、ナフチルナトリウム、ナフチルカリウム、エトキシカリウム等が挙げられる。これらのうち、重合開始剤はリチウム化合物が好ましい。
 また、重合開始剤として使用する金属化合物は、アルカリ金属又はアルカリ土類金属を有する金属アミド化合物であってもよい。[A]共役ジエン系重合体を得るための重合を、金属アミド化合物の存在下で行うことにより、共役ジエン系重合体の重合開始末端(より具体的には、分岐ポリマーの自由末端部分)に、アミノ基(好ましくは、2級アミノ基又は3級アミノ基)を導入することができる。金属アミド化合物の存在下で重合して得られた[A]共役ジエン系重合体は、架橋体の強度及び耐摩耗性と、重合体組成物の加工性とをバランス良く発現する点で好ましい。
 金属アミド化合物としては、中でも、リチウム化合物(例えば、アルキルリチウム等)と、窒素原子を有する化合物(以下、「開始端変性剤」ともいう)とを混合して得られる化合物であることが好ましい。開始端変性剤は2級アミン化合物が好ましい。2級アミン化合物の具体例としては、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ドデカメチレンイミン、N,N’-ジメチル-N’-トリメチルシリル-1,6-ジアミノヘキサン、ピペリジン、ピロリジン、ヘキサメチレンイミン、ヘプタメチレンイミン、ジシクロヘキシルアミン、N-メチルベンジルアミン、ジ-(2-エチルヘキシル)アミン、ジアリルアミン、モルホリン、N-(トリメチルシリル)ピペラジン、N-(tert-ブチルジメチルシリル)-4-ピペラジン、1,3-ジトリメチルシリル-1,3,5-トリアジナン等が挙げられる。
 なお、金属アミド化合物の存在下で重合を行う場合、リチウム化合物と開始端変性剤とを予め混合することにより金属アミド化合物を調製し、その調製した金属アミド化合物を重合系中に添加して重合を行ってもよい。あるいは、重合系中に、リチウム化合物と開始端変性剤とを添加し、重合系中で両者を混合することにより金属アミド化合物を調製して重合を行ってもよい。上記重合に際し、重合開始剤の使用量(2種以上使用する場合にはその合計量)は、重合体の合成に使用する単量体100gに対して、0.01~20mmolとすることが好ましく、0.05~15mmolとすることがより好ましい。
 ランダマイザーは、重合体中におけるビニル結合の含有率を表すビニル結合含量の調整等を目的として用いることができる。ランダマイザーの例としては、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、2,2-ジ(テトラヒドロフリル)プロパン、2-(2-エトキシエトキシ)-2-メチルプロパン、トリエチルアミン、ピリジン、N-メチルモルホリン、テトラメチルエチレンジアミン、ドデシルベンゼンスルホン酸カリウム等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて使用できる。
 重合に使用する有機溶媒としては、反応に不活性な有機溶剤であればよく、例えば鎖状又は環状の脂肪族炭化水素、芳香族炭化水素等を用いることができる。これらの中でも、炭素数3~8の炭化水素が好ましく、その具体例としては、例えばプロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、n-へキサン、シクロへキサン、プロペン、1-ブテン、イソブテン、トランス-2-ブテン、シス-2-ブテン、1-ヘキセン、2-ヘキセン、ベンゼン、トルエン、キシレン、エチルベンゼン、ヘプタン、シクロペンタン、メチルシクロペンタン、メチルシクロヘキサン、1-ペンテン、2-ペンテン、シクロヘキセン等が挙げられる。なお、有機溶媒としては、1種を単独で又は2種以上を組み合わせて使用することができる。
 溶液重合とする場合、反応溶媒中のモノマー濃度は、生産性と重合コントロールの容易性とのバランスを維持する観点から、5~50質量%であることが好ましく、10~30質量%であることがより好ましい。重合反応の温度は、-20℃~150℃が好ましく、0~120℃がより好ましい。また、重合反応は、単量体を実質的に液相に保つのに十分な圧力の下で行うことが好ましい。このような圧力は、重合反応に対して不活性なガスによって、反応器内を加圧する等の方法によって得ることができる。こうした重合反応により、活性末端を有する共役ジエン系重合体(I)を得ることができる。
 上記重合により得られる共役ジエン系重合体(I)につき、1,3-ブタジエンに由来する構造単位におけるビニル結合含量は、15~85モル%であることが好ましい。ビニル結合含量を15モル%以上とすることで、得られる架橋体において柔軟性が維持され加工性が良好となり、また低スリップ領域での耐摩耗性に優れる傾向がある。さらに、重合体の溶液粘度及びムーニー粘度を十分に低くできる。共役ジエン系重合体(I)のビニル結合含量は、好ましくは18モル%以上であり、より好ましくは20モル%以上である。また、共役ジエン系重合体(I)のビニル結合含量は、[A]共役ジエン系重合体を用いて得られる架橋体の耐久性及びコールドフロー特性の観点から、好ましくは78モル%以下であり、より好ましくは65モル%以下である。なお、本明細書において「ビニル結合含量」は、水素添加前の共役ジエン系重合体が有する、1,3-ブタジエンに由来する全構造単位に対し、1,2-結合を有する構造単位の含有割合を示す値であり、H-NMR装置によって測定される値である。
<反応工程>
 本工程では、上記重合工程により得られた共役ジエン系重合体(I)と、共役ジエン系重合体(I)が有する活性末端と反応し得る官能基を4個以上有する化合物(以下、「[B]カップリング剤」又は「化合物[B]」ともいう)とを反応させて、共役ジエン系重合体(II)を得る工程である。共役ジエン系重合体(II)は、共役ジエン化合物に由来する構造単位を有する高分子の集合体である。
 [A]共役ジエン系重合体の製造に使用する[B]カップリング剤は、共役ジエン系重合体の活性末端との反応点を4個以上有する化合物であればよく、特に限定されない。これらのうち、[B]カップリング剤としては、窒素、酸素、硫黄及びケイ素よりなる群から選択される少なくとも1種の元素を有する化合物を好ましく使用することができる。[B]カップリング剤として、上記特定の元素を有する化合物を用いた場合、架橋体の強度及び耐摩耗性と、重合体組成物の加工性(より具体的には、ムーニー粘度及びコールドフロー)とが更にバランス良く改善された架橋体を得ることができる点で好適である。
 [B]カップリング剤の具体例としては、ケイ素含有化合物として、例えばテトラクロロシラン(四塩化ケイ素)、テトラメトキシシラン、ビス(トリクロロシリル)エタン等が挙げられる。
 また、[B]カップリング剤として、窒素、酸素及び硫黄よりなる群から選択される少なくとも1種の元素(特定元素)を含む官能基Fを有し、かつ上記重合工程により得られた重合体鎖との反応部位を4個以上有する化合物(以下、「末端変性剤(b1)」ともいう)を使用することもできる。末端変性剤(b1)を使用することにより、分岐ポリマーにおける分岐点部分に官能基Fを有する重合体を得ることができる。
 官能基Fの具体例としては、例えば、1級アミノ基、2級アミノ基、3級アミノ基、保護された1級アミノ基、保護された2級アミノ基、イミノ基、窒素含有複素環基(例えば、ピリジン環、イミド環等の複素環を有する基)、水酸基、保護された水酸基、チオール基、保護されたチオール基、ヒドロカルビルオキシシリル基等が挙げられる。官能基Fは、耐摩耗性の改善効果が高い点で、中でも、窒素を含む官能基(窒素含有基)であることが好ましく、1級アミノ基、2級アミノ基、3級アミノ基及びイミノ基よりなる群から選択される少なくとも1種を有することが特に好ましい。
 末端変性剤(b1)としては、下記式(5)で表される化合物及び下記式(6)で表される化合物よりなる群から選択される少なくとも一種の化合物を好ましく用いることができる。
Figure JPOXMLDOC01-appb-C000004
(式(5)中、R及びRは、それぞれ独立して炭素数1~20のヒドロカルビル基であり、Rは、炭素数1~20のアルカンジイル基であり、Aは、基「*-C(R)=N-」又は基「*-N=C(R)-」(ただし、Rは水素原子又はヒドロカルビル基であり、「*」はRに結合する結合手であることを示す。)である。Rは、炭素数1~20のm価の炭化水素基、又は窒素、酸素及び硫黄からなる群より選択される少なくとも一種の元素を有し、かつ当該元素に活性水素が結合していない炭素数1~20のm価の基である。nは1~3の整数であり、mは2~10の整数である。式中、複数のR、R、R、A、nは、同一又は異なる。ただし、mが2又は3の場合、複数存在するnの合計はm+4以上である。)
Figure JPOXMLDOC01-appb-C000005
(式(6)中、R、R、R10及びR11は、それぞれ独立して炭素数1~20のヒドロカルビル基であり、R及びRは、それぞれ独立して炭素数1~20のアルカンジイル基であり、Aは、下記式(7)で表される基、下記式(8)で表される基、下記式(9)で表される基、又は下記式(10)で表される基である。w及びpは、それぞれ独立して1~3の整数である。ただし、Aが下記式(9)又は下記式(10)の場合、w及びpは3である。式中、複数のR、R、R10、R11は、それぞれ同一又は異なる。)
Figure JPOXMLDOC01-appb-C000006
(式(7)中、R12、R13及びR15は、それぞれ独立して炭素数1~20のヒドロカルビル基であり、R14及びR16は、それぞれ独立して炭素数1~20のアルカンジイル基であり、qは1~3の整数であり、rは0~2の整数である。式中、複数のR12~R15は、それぞれ同一の基又は異なる基であり、複数のqはそれぞれ同一又は異なる数である。ただし、p、w及びqの合計からrを引いた数は6以上である。「*」は、式(6)中の窒素原子との結合手であることを示す。)
Figure JPOXMLDOC01-appb-C000007
(式(8)中、R19は炭素数3~20のアルカンジイル基であり、式中の窒素原子とケイ素原子とで5員環以上の環構造を形成する。R17及びR18は、それぞれ独立して炭素数1~20のヒドロカルビル基であり、R20は、炭素数1~20のアルカンジイル基であり、sは1又は2である。式中、複数のR17、R18はそれぞれ同一又は異なる。ただし、p、w及びsの合計は7以上である。「*」は、式(6)中の窒素原子との結合手であることを示す。)
Figure JPOXMLDOC01-appb-C000008
(式(9)中、R23は炭素数1~20のアルカンジイル基である。R21は炭素数1~20のヒドロカルビリデン基であり、R22は炭素数1~20のアルカンジイル基又はアルケンジイル基であり、隣接する2つの窒素原子とともに5員環以上の環構造を形成する。「*」は、式(6)中の窒素原子との結合手であることを示す。)
Figure JPOXMLDOC01-appb-C000009
(式(10)中、R26は炭素数1~20のヒドロカルビレン基であり、R24及びR25は、それぞれ独立して炭素数1~20のヒドロカルビル基であるか、R24及びR25が互いに合わせられR24及びR25が結合する窒素原子と共に構成される炭素数4~20の環構造を表すか、又は、R24及びR25が互いに合わせられR24及びR25が結合する窒素原子と、R24及びR25が結合する窒素原子とは異なる窒素原子若しくは酸素原子と共に構成される5員環以上の環構造を表す。「*」は、式(6)中の窒素原子との結合手であることを示す。)
(上記式(5)で表される化合物)
 上記式(5)において、R、Rのヒドロカルビル基は、例えば炭素数1~20のアルキル基、アリル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基等が挙げられる。Rのアルカンジイル基は、炭素数1~10が好ましく、炭素数2~10がより好ましい。Rは、好ましくは直鎖状である。
 Aが有するRのヒドロカルビル基については、R及びRの説明が適用される。nは、シリカ分散性の改善効果が高い点で、2又は3が好ましく、3がより好ましい。
 Rのm価の炭化水素基としては、炭素数1~20の鎖状炭化水素、炭素数3~20の脂環式炭化水素又は炭素数6~20の芳香族炭化水素からm個の水素原子を取り除いた基等が挙げられる。芳香族炭化水素の具体例としては、例えば下記式(C1)で表される環構造、当該環構造が2個以上連結してなる多環構造(例えばビフェニル基等)が挙げられる。
Figure JPOXMLDOC01-appb-C000010
(式(C1)中、r1は0~5の整数である。)
 Rが、窒素、酸素及び硫黄からなる群より選択される少なくとも一種の元素を有し、かつ当該元素に活性水素が結合していない炭素数1~20のm価の基である場合の好ましい具体例としては、m価の複素環基、3級アミン構造を有するm価の基等が挙げられる。複素環基は共役系であることが好ましく、例えばピリジン、ピリミジン、ピラジン、キノリン、ナフタリジン、フラン、チオフェン等の単環若しくは縮合環、又は当該単環若しくは縮合環が複数個連結してなる構造の環部分からm個の水素原子を取り除いた基等が挙げられる。mは2~10の整数である。mは、重合体組成物の加工性の観点から、2~6が好ましい。
 上記式(5)で表される化合物の具体例としては、例えば下記式(M-1)~式(M-4)のそれぞれで表される化合物等が挙げられる。下記式(M-1)中のR27は、水素原子又はアルキル基を表し、n1は1~8の整数を表す。
Figure JPOXMLDOC01-appb-C000011
(上記式(6)で表される化合物)
 上記式(6)及び式(7)~式(10)において、R、R、R10、R11、R12、R13、R15、R17、R18、R24及びR25の炭素数1~20のヒドロカルビル基としては、例えば炭素数1~20のアルキル基、アリル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基等が挙げられる。R、R、R14、R16、R20、R21、R22、R23及びR24の炭素数1~20のアルカンジイル基、アルケンジイル基、ヒドロカルビリデン基は、炭素数1~10が好ましく、炭素数2~10がより好ましい。R19は、好ましくは炭素数3~10であり、より好ましくは炭素数3~5である。
 上記式(8)において、R19、窒素原子及びケイ素原子により形成される環構造は、好ましくは5~7員環、より好ましくは5又は6員環である。上記式(9)において、R21、R22及び隣接する2つの窒素原子により形成される環構造は、好ましくは5~12員環、より好ましくは5~7員環である。
 上記式(10)において、R24及びR25が、R24及びR25が互いに合わせられR24及びR25が結合する窒素原子と共に構成される炭素数4~20の環構造を表す場合、当該環構造は、好ましくは炭素数4~9であり、より好ましくは炭素数4~6である。R24及びR25が、R24及びR25が互いに合わせられR24及びR25が結合する窒素原子と、R24及びR25が結合する窒素原子とは異なる窒素原子若しくは酸素原子と共に構成される5員環以上の環構造を表す場合、当該環構造は、好ましくは5~10員環、より好ましくは5~7員環である。上記5員環以上の環構造の具体例としては、例えばピペラジン環構造、モルホリン環構造等が挙げられる。
 w、p、qは、シリカ分散性の改善効果が高い点で、2又は3が好ましく、3がより好ましい。同様の理由から、sは2が好ましい。
 上記式(6)で表される化合物の具体例としては、上記式(6)中のAが上記式(7)で表される基である化合物として、例えばN,N,N’,N’-テトラ(3-トリメトキシシリルプロピル)エチレンジアミン、N,N,N’,N’-テトラ(3-トリエトキシシリルプロピル)エチレンジアミン、N,N,N’-トリス(3-トリメトキシシリルプロピル)-N’-メチル-エチレンジアミン、N,N,N’,N’-テトラ(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン、N,N,N’,N’-テトラ(3-トリメトキシシリルプロピル)-1,4-ブタンジアミン、ビス(3-トリメトキシシリルプロピル)-[2-(ジメチルアミノ)エチル]アミン等を;
上記式(6)中のAが上記式(8)で表される基である化合物として、例えばビス(3-トリメトキシシリルプロピル)-[2-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)エチル]アミン、ビス(3-トリエトキシシリルプロピル)-[2-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)エチル]アミン、ビス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]アミン、ビス(3-トリメトキシシリルプロピル)-[2-(2,2-ジメトキシ-1-アザ-2-シラシクロヘキサン)エチル]アミン、ビス(3-トリメトキシシリルプロピル)-[2-(2,2-ジメトキシ-1-アザ-2-シラシクロオクタン)エチル]アミン等を;
上記式(6)中のAが上記式(9)で表される基である化合物として、例えばN,N-ビス(3-トリメトキシシリルプロピル)-3-イミダゾリルプロピルアミン等を;
上記式(6)中のAが上記式(10)で表される基である化合物として、例えばビス(3-トリメトキシシリルプロピル)-(3-ジメチルアミノプロピル)アミン等を、それぞれ挙げることができる。
 上記重合工程において重合開始剤として金属アミド化合物を用いた場合、[B]カップリング剤としては、窒素、酸素及び硫黄のいずれも有さない化合物(例えば、上記のケイ素含有化合物)を使用してもよく、末端変性剤(b1)を使用してもよい。一方、上記重合工程において重合開始剤として金属アミド化合物を用いない場合には、[B]カップリング剤として末端変性剤(b1)を使用する。これらのうち、得られる架橋体の強度及び耐摩耗性と、重合体組成物の加工性との改善効果をより高くできる点で、上記重合工程において重合開始剤として金属アミド化合物を用い、本工程において[B]カップリング剤としてケイ素含有化合物(例えば四塩化ケイ素等)を使用するか、又は上記重合工程において重合開始剤として金属アミド化合物を用い、本工程において[B]カップリング剤として末端変性剤(b1)を使用することが好ましい。
 活性末端を有する共役ジエン系重合体(I)と[B]カップリング剤との反応は、溶液反応として行うことが好ましい。[B]カップリング剤の使用割合(2種以上使用する場合にはその合計量)は、重合体(A1)の含有割合が所望の範囲となるように適宜設定することができる。具体的には、高強度かつ優れた耐摩耗性を示す架橋体を得るとともに、加工性に優れた重合体組成物に得る観点から、[B]カップリング剤の使用割合は、重合開始剤(すなわち金属化合物)が有する重合に関与する金属原子1モルに対して、0.01モル以上とすることが好ましく、0.05モル以上とすることがより好ましい。また、[B]カップリング剤の使用割合は、カップリング率を所望の値に調整し、加工性の低下を抑制する観点及び重合体の溶液粘度を十分に低くして生産性を確保する観点から、重合開始剤が有する重合に関与する金属原子1モルに対して、0.7モル以下とすることが好ましく、0.5モル以下とすることがより好ましい。なお、[B]カップリング剤としては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 カップリング反応における反応温度は、通常、重合反応と同じであり、-20℃~150℃とすることが好ましく、0~120℃とすることがより好ましい。反応温度が低いと、反応後の重合体の粘度が上昇しやすい傾向があり、反応温度が高いと重合活性末端が失活しやすくなる。反応時間は、好ましくは1分~5時間であり、より好ましくは2分~1時間である。
 上記カップリング反応において、カップリング率は、共役ジエン系重合体(II)中に存在させる水添前の重合体(A1)の割合や、共役ジエン系重合体(I)の分子量、[B]カップリング剤の官能基数等に応じて設定することができる。高強度かつ耐摩耗性に優れる架橋体を得る観点から、カップリング率は、25%以上が好ましく、30%以上がより好ましい。また、カップリング率は、加工性が良好な重合体組成物を得る観点及び重合体の溶液粘度を十分に低くして生産性を確保する観点から、75%以下が好ましく、70%以下がより好ましい。
 なお、本明細書において「カップリング率」とは、活性末端を有する直鎖状の共役ジエン系重合体と、活性末端と反応し得る化合物とを反応させた後に反応系に含まれる重合体のうち、分子鎖を2個以上有するカップリングポリマーの割合(質量%)をいう。具体的には、[B]カップリング剤又は末端変性剤(c)との反応に使用した重合体(すなわち、共役ジエン系重合体(I)に含まれる直鎖状の重合体)の全量のうち、[B]カップリング剤又は末端変性剤(c)を介して2個以上の直鎖状の分子鎖が結合した重合体の割合(質量%)を意味する。カップリング率は、ゲルパーミエーションクロマトグラフ(GPC)を使用して得られたGPC曲線のピーク面積比より算出することができる。また同様に、分子鎖を4以上有するカップリングポリマーの割合についても、ゲルパーミエーションクロマトグラフ(GPC)を使用して得られたGPC曲線のピーク面積比より算出することができる。
 上記カップリング反応により共役ジエン系重合体(II)を得ることができる。共役ジエン系重合体(II)は、水添前の重合体(A1)と共に、直鎖状又は3分岐以下の分岐状の重合体(すなわち、水添前の重合体(A2))を含むことが好ましい。この直鎖状又は3分岐以下の分岐状の重合体は、共役ジエン系重合体(I)に含まれる重合体のうち、[B]カップリング剤若しくは末端変性剤(c)を介して3個以下の直鎖状の分子鎖が結合した重合体であるか、[B]カップリング剤及び末端変性剤(c)と反応しなかった未反応ポリマーであるか、又はそれらの両方である。共役ジエン系重合体(II)において、分子鎖を4個以上持つ多分岐構造を有する重合体(すなわち、水添前の重合体(A1))と、直鎖状又は3分岐以下の分岐状の重合体との割合は、[A]共役ジエン系重合体中の重合体(A1)及び重合体(A2)の割合がそれぞれ所望の割合になるように、[B]カップリング剤の使用量や、使用する[B]カップリング剤の官能基数等を調整することにより適宜設定することができる。
 なお、反応溶液に含まれる共役ジエン系重合体を単離する場合には、例えばスチームストリッピング等の公知の脱溶媒方法及び熱処理等の乾燥の操作により行うことができる。
<変性工程>
 上記で得られた共役ジエン系重合体(II)は、そのまま次の水添工程に供してもよい。また、水添工程の前に、共役ジエン系重合体(II)に含まれる直鎖状の重合体の重合終了末端と、末端変性剤(c)とを反応させる処理を行ってもよい。末端変性剤(c)としては、窒素、リン、酸素、硫黄及びケイ素よりなる群から選択される少なくとも1種の元素を有し、かつ直鎖状の重合体が有する活性末端と反応し得る化合物を好ましく用いることができる。この場合、窒素、リン、酸素、硫黄及びケイ素よりなる群から選択される少なくとも1種の元素を含む官能基を有する直鎖状又は3分岐以下の分岐状の重合体を得ることができる。なお、末端変性剤(c)は、共役ジエン系重合体(I)が有する活性末端との反応点が3個以下である点で[B]カップリング剤とは異なる。
 末端変性剤(c)の好ましい具体例としては、下記式(11)で表される化合物及び下記式(12)で表される化合物よりなる群から選択される少なくとも1種を挙げることができる。
Figure JPOXMLDOC01-appb-C000012
(式(11)中、A11は、窒素、リン、酸素、硫黄及びケイ素よりなる群から選択される少なくとも1種の元素を有し、活性水素を有さず、かつR35に対して窒素、リン、酸素、硫黄、ケイ素、若しくはカルボニル基に含まれる炭素原子で結合する1価の官能基であるか、又は(チオ)エポキシ基である。R33及びR34は、それぞれ独立して、ヒドロカルビル基である。R35は、ヒドロカルビレン基である。tは、0~2の整数である。ただし、tが2の場合、式中の複数のR33は、互いに同一又は異なる。tが0又は1の場合、式中の複数のR34は、互いに同一又は異なる。)
Figure JPOXMLDOC01-appb-C000013
(式(12)中、A12は、窒素、リン、酸素、硫黄及びケイ素よりなる群から選択される少なくとも1種の元素を有し、活性水素を有さず、かつR39に対して窒素、リン、酸素、硫黄若しくはケイ素で結合する1価の官能基であるか、又は炭素数1~20のヒドロカルビル基である。R36及びR37は、それぞれ独立して、ヒドロカルビル基である。R38は、ヒドロカルビレン基である。R39は、単結合又はヒドロカルビレン基である。uは0又は1である。ただし、uが0の場合、式中の複数のR37は、互いに同一又は異なる。)
 上記式(11)及び式(12)において、R33、R34、R36、R37、及びヒドロカルビル基である場合のA12について、ヒドロカルビル基は、炭素数1~20の直鎖状若しくは分岐状のアルキル基、炭素数3~20のシクロアルキル基又は炭素数6~20のアリール基であることが好ましい。
 R35及びR39のヒドロカルビレン基は、炭素数1~20の直鎖状若しくは分岐状のアルカンジイル基、炭素数3~20のシクロアルキレン基又は炭素数6~20のアリーレン基が好ましい。R38で表されるヒドロカルビレン基は、炭素数1~20の直鎖状若しくは分岐状のアルカンジイル基が好ましい。
 tは、0又は1が好ましい。
 A11が上記1価の官能基である場合にA11が有する、窒素、リン、酸素、硫黄及びケイ素からなる群より選択される少なくとも1種の元素、並びに、A12が上記1価の官能基である場合にA12が有する、窒素、リン、酸素、硫黄及びケイ素からなる群より選択される少なくとも1種の元素は、例えば3置換のヒドロカルビルシリル基等で保護されていてもよい。なお、本明細書において活性水素とは、炭素原子以外の原子に結合した水素原子をいい、好ましくはポリメチレンの炭素-水素結合よりも結合エネルギーが低いものを指す。(チオ)エポキシ基とは、エポキシ基及びチオエポキシ基を包含する意味である。
 A11は、オニウム塩生成剤によってオニウムイオンになり得る基であってもよい。末端変性剤(c)がこのような基(A11)を有することにより、重合体に対して優れた形状保持性を付与することができる。A11の具体例としては、例えば1級アミノ基の2つの水素原子が2つの保護基によって置換されてなる窒素含有基、2級アミノ基の1つの水素原子が1つの保護基によって置換されてなる窒素含有基、3級アミノ基、イミノ基、ピリジル基、1級ホスフィノ基の2つの水素原子が2つの保護基によって置換されてなるリン含有基、2級ホスフィノ基の1つの水素原子が1つの保護基によって置換されてなるリン含有基、3級ホスフィノ基、エポキシ基、チオエポキシ基、水酸基の水素原子が保護基によって置換されてなる基、チオール基の水素原子が保護基によって置換されてなる硫黄含有基、ヒドロカルビルオキシカルボニル基等が挙げられる。これらの中でも、シリカとの親和性が良好である点で、窒素原子を有する基であることが好ましく、3級アミノ基、又は1級アミノ基の2つの水素原子が2つの保護基によって置換されてなる窒素含有基であることがより好ましい。なお、保護基とは、A11、A12を重合活性末端に対して不活性な官能基に変換しておく官能基である。なお、オニウム塩生成剤は、ブレンステッド酸、又は、水と接触することでブレンステッド酸を生成する化合物である。
 末端変性剤(c)の具体例としては、上記式(11)で表される化合物として、例えば、N,N-ビス(トリメチルシリル)アミノプロピルトリメトキシシラン、N,N-ジメチルアミノプロピルトリエトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン、N,N’,N’-トリス(トリメチルシリル)-N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、3-(4-トリメチルシリル-1-ピペラジノ)プロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン等が挙げられる。
 上記式(12)で表される化合物の具体例としては、例えば、2,2-ジメトキシ-1-(3-トリメトキシシリルプロピル)-1,2-アザシロリジン、2,2-ジエトキシ-1-(3-トリメトキシシリルプロピル)-1,2-アザシロリジン、2,2-ジメトキシ-1-フェニル-1,2-アザシロリジン、1-トリメチルシリル-2,2-ジメトキシ-1-アザ-2-シラシクロペンタン、2-(2,2-ジメトキシ-1,2-アザシロリジン-1-イル)-N,N-ジエチルエタン-1-アミン、2-(2,2-ジメトキシ-1,2-アザシロリジン-1-イル)-N,N-ジメチルエタン-1-アミン、3-(2,2-ジメトキシ-1,2-アザシロリジン-1-イル)-N,N-ジエチルプロパン-1-アミン等が挙げられる。末端変性剤(c)としては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 共役ジエン系重合体(II)と末端変性剤(c)との反応は、例えば溶液反応として行うことができる。この溶液反応は、回分式及び連続式のいずれを用いて行ってもよい。このとき、末端変性剤(c)の添加方法は特に制限されず、一括して添加する方法、分割して添加する方法、連続的に添加する方法等が挙げられる。
 使用する末端変性剤(c)の量は、反応に使用する化合物の種類に応じて適宜設定すればよい。末端変性剤(c)の使用量は、重合開始剤が有する重合反応に関与する金属原子1モルに対して、好ましくは0.05モル以上であり、より好ましくは0.1モル以上である。末端変性剤(c)の使用量を0.1モル当量以上とすることにより、変性反応を十分に進行させることができ、無機フィラーの分散性を好適に改良することができる。また、末端変性剤(c)の量は、重合開始剤が有する重合反応に関与する金属原子1モルに対して、好ましくは1.0モル以下であり、より好ましくは0.8以下である。
 末端変性反応の反応温度は、通常、重合反応の温度と同じであり、-20~150℃であることが好ましく、0~120℃であることがより好ましく、20~100℃であることが更に好ましい。変性反応の温度が低いと、重合体溶液の粘度が上昇する傾向がある。また、変性反応の温度が高いと、重合活性末端が失活しやすくなる。末端変性の際の反応時間は、好ましくは1分~5時間であり、より好ましくは2分~1時間である。
<水添工程>
 本工程では、上記の反応工程又は変性工程により得られた共役ジエン系重合体を水素添加(以下、「水添」ともいう)する。水添反応の方法及び条件は、所望の水添率の共役ジエン系重合体が得られるのであれば、いずれの方法及び条件を用いることも可能である。それらの水添方法の例としては、チタンの有機金属化合物を主成分とする触媒を水添触媒として使用する方法;鉄、ニッケル、コバルトの有機金属化合物とアルキルアルミニウム等の有機金属化合物からなる触媒を使用する方法;ルテニウム、ロジウム等の有機金属化合物の有機錯体を使用する方法;パラジウム、白金、ルテニウム、コバルト、ニッケル等の金属を、カーボン、シリカ、アルミナ等の担体に担持した触媒を使用する方法等が挙げられる。各種の方法の中では、チタンの有機金属化合物単独、又はチタンの有機金属化合物とリチウム、マグネシウム、アルミニウムの有機金属化合物とから成る均一触媒(例えば、特公昭63-4841号公報、特公平1-37970号公報に記載の触媒)を用い、低圧、低温の穏和な条件で水添する方法は工業的に好ましく、またブタジエンの二重結合への水添選択性も高く適している。
 共役ジエン系重合体の水添は、好ましくは、触媒に不活性であって、かつ共役ジエン系重合体が可溶な溶剤を用いて実施される。好ましい溶媒は、n-ペンタン、n-ヘキサン、n-オクタン等の鎖状の脂肪族炭化水素;シクロヘキサン、シクロヘプタン等の環状の脂肪族炭化水素;ベンゼン、トルエン等の芳香族炭化水素;ジエチルエーテル、テトラヒドロフラン等のエーテル類が挙げられる。水添に使用する溶媒は、上記化合物のうちの1種でもよく、それらを主成分とする混合物であってもよい。
 水添反応は、一般には共役ジエン系重合体を水素又は不活性雰囲気下、所定の温度に保持し、撹拌下又は不撹拌下にて水添触媒を添加し、次いで水素ガスを導入して所定圧に加圧することによって実施される。不活性雰囲気とは、水添反応に関与する物質と反応しない雰囲気を意味し、例えばヘリウム、ネオン、アルゴン等の雰囲気が挙げられる。空気や酸素は、触媒を酸化したりして触媒の失活を招くので好ましくない。また、窒素は、水添反応時に触媒毒として作用し、水添活性を低下させるので好ましくない。特に、水添反応器内は水素ガス単独の雰囲気であることが最も好適である。
 水添反応プロセスは、バッチプロセス、連続プロセス、及びそれらの組合せのいずれでも用いることができる。また、水添触媒としてチタノセンジアリール系化合物を用いる場合は、単独でそのまま反応溶液に加えてもよいし、不活性有機溶媒の溶液として加えてもよい。触媒を溶液として用いる場合に使用する不活性有機溶媒は、水添反応に関与する物質と反応しない各種溶媒を用いることができる。好ましくは水添反応に用いる溶媒と同一の溶媒である。また、触媒の好ましい添加量は、水添前の共役ジエン系重合体100g当たり0.02~20ミリモルである。
 [A]共役ジエン系重合体は、下記式(1)で表される構造単位、下記式(2)で表される構造単位、下記式(3)で表される構造単位、及び下記式(4)で表される構造単位の重合体中の構成比(モル比)をそれぞれp、q、r、sとしたとき、下記数式(i)で表される値αが0.65以上0.97以下である。
 α=(p+(0.5×r))/(p+q+(0.5×r)+s)  
                              …(i)
Figure JPOXMLDOC01-appb-C000014
 [A]共役ジエン系重合体において、耐摩耗性により優れた架橋体を得ることができる点で、上記数式(i)で表される値αは0.70以上であることがより好ましく、0.75以上であることが更に好ましく、0.80以上であることがより更に好ましく、0.85以上であることが特に好ましい。なお、上記数式(i)で表される値αは、共役ジエン系重合体の水添率に相当する。例えば、αが0.65の場合、その共役ジエン系重合体の水添率は65%である。また、αは、架橋構造を形成させる観点や、加工性を良好にできる点において、0.96以下であることがより好ましく、0.93以下であることが更に好ましい。なお、重合体の水添率及びαは、例えば水添反応の時間を調整したり、水素の積算供給量を制御したりすること等により調整することができる。本明細書において水添率はH-NMR装置により測定した値である。
 [A]共役ジエン系重合体を得るための好ましい方法は、1,3-ブタジエンを含むモノマーを、重合開始剤(好ましくは金属アミド化合物)の存在下で溶液重合し、得られた重合体溶液に[B]カップリング剤を添加してカップリング反応を行った後、必要に応じて末端変性剤(c)を添加し、次いで水添工程に供することであり、工業的に有用である。この場合、上記で得られた溶液から溶媒を除去することにより[A]共役ジエン系重合体が得られる。重合体を単離するには、例えばスチームストリッピング等の公知の脱溶媒方法及び熱処理等の乾燥の操作によって行うことができる。
 [A]共役ジエン系重合体につき、ゲルパーミエーションクロマトグラフ(GPC)を使用して測定したポリスチレン換算の重量平均分子量(Mw)は、高強度であり、かつ耐摩耗性に優れた架橋体を得る観点から、好ましくは1.5×10~2.0×10である。共役ジエン系重合体のMwは、より好ましくは1.8×10以上であり、更に好ましくは2.0×10以上である。また、Mwは、より好ましくは1.6×10以下、更に好ましくは1.4×10以下である。なお、ここでいう共役ジエン系重合体の重量平均分子量は、水添前にGPCにより測定されるGPC曲線の全ピークから求めた値である。以下では「トータル重量平均分子量」ともいう。
 また、[A]共役ジエン系重合体につき、GPCにより測定される重合体の総量(すなわち、異なる分子量の集合体)の分子量分布(重量平均分子量/数平均分子量)は、1.1以上4.0以下であることが好ましい。分子量分布が1.1以上であると、加工性に優れる点で好ましく、4.0以下であると、得られる架橋体の低ヒステリシスロス性を十分に向上できる点で好ましい。[A]共役ジエン系重合体の分子量分布は、より好ましくは1.20以上、更に好ましくは1.23以上である。また、当該分子量分布は、より好ましくは3.5以下、更に好ましくは3.0以下である。
 [A]共役ジエン系重合体につき、GPCにより測定される、分子量が最も小さいピークのピークトップ分子量(以下、「1stピーク分子量」ともいう)は、好ましくは0.8×10~1.0×10の範囲である。1stピーク分子量が0.8×10以上であると、得られる架橋体の強度及び耐摩耗性の改善効果を十分高くしながら、加工性をより優れたものとすることができ好ましい。1stピーク分子量は、より好ましくは0.9×10以上であり、更に好ましくは1.0×10以上である。また、加工性及び粘弾性特性をより優れたものにする点で、1stピーク分子量は、より好ましくは8.0×10以下であり、更に好ましくは5.0×10以下である。なお、1stピーク分子量は、水添前にGPCにより測定されるGPC曲線から求めた値である。
 以上の工程により得られる[A]共役ジエン系重合体は、分子鎖を4個以上持つ多分岐構造を有し、かつ窒素、酸素及び硫黄よりなる群から選択される少なくとも1種である特定元素を含む官能基を、重合体(A1)の末端部分及び分岐点部分の一方又は両方に有する重合体(A1)を25~75質量%含む。重合体(A1)は、窒素、酸素、硫黄及びケイ素よりなる群から選択される少なくとも1種の元素を有する[B]カップリング剤に由来する構造に分子鎖が4個以上結合した構造を有することが好ましい。
 [A]共役ジエン系重合体は、重合体(A1)と共に、直鎖状又は3分岐以下の分岐状の重合体(A2)を含むことが好ましい。重合体(A2)は、より詳細には、上記重合工程により得られた共役ジエン系重合体(I)のうち[B]カップリング剤若しくは末端変性剤(c)を介して3個以下の直鎖状の分子鎖が結合した重合体の水添物であるか、[B]カップリング剤及び末端変性剤(c)と反応しなかった未反応ポリマーの水添物であるか、又はそれらの両方である。重合体(A2)は、より高強度かつ耐摩耗性に優れる架橋体を得る観点から、窒素、リン、酸素、硫黄及びケイ素よりなる群から選択される少なくとも1種の元素を含む官能基を有することが好ましい。また、重合体(A2)は、より高強度かつ耐摩耗性に優れる架橋体を得る観点から、一方の末端部分に2級アミノ基又は3級アミノ基を有し、他方の末端部分に、窒素、酸素及び硫黄よりなる群から選択される少なくとも1種である特定元素を含む官能基を有する直鎖状の重合体を含むことが好ましい。このように両末端が変性された直鎖状ポリマーは、上記重合工程において重合開始剤として金属アミド化合物を用いるとともに、上記変性工程を行うことにより得ることができる。
 [A]共役ジエン系重合体における重合体(A1)の割合は、[A]共役ジエン系重合体の量を100質量%としたとき、25~75質量%である。[A]共役ジエン系重合体に対する重合体(A1)の割合が上記範囲であることにより、架橋体の強度及び耐摩耗性と、重合体組成物の加工性とのバランスを優れたものとすることができる。また、重合体の溶液粘度の低下により、重合体の製造工程において重合体溶液の配管での移送や容器への移液をスムーズに実施できたり、水添工程において水素添加時間を短縮できたりすることによって十分な生産性を確保できる。[A]共役ジエン系重合体に対する重合体(A1)の割合は、28質量%以上が好ましく、30質量%以上がより好ましく、40質量%以上が更に好ましく、50質量%以上がより更に好ましい。また、[A]共役ジエン系重合体に対する重合体(A1)の割合は、73質量%以下が好ましく、70質量%以下がより好ましい。
 [A]共役ジエン系重合体における重合体(A2)の割合は、[A]共役ジエン系重合体の量を100質量%としたとき、25~75質量%であることが好ましい。[A]共役ジエン系重合体に対する重合体(A2)の割合は、27質量%以上が好ましく、30質量%以上がより好ましい。また、[A]共役ジエン系重合体に対する重合体(A2)の割合は、72質量%以下が好ましく、70質量%以下がより好ましく、60質量%以下が更に好ましく、50質量%以下がより更に好ましい。なお、[A]共役ジエン系重合体における重合体(A1)及び重合体(A2)の割合(質量%)は、GPCを使用して得られたGPC曲線におけるカップリングポリマーの波形を成分分離することで算出することができる。
<重合体組成物>
 本開示の重合体組成物は、[A]共役ジエン系重合体と共に、[A]共役ジエン系重合体以外の各種成分を含有するものとすることができる。
[D]シリカ
 本開示における重合体組成物は、無機フィラーとして[D]シリカを含有することができる。[D]シリカの配合量は、重合体組成物に含まれるゴム成分([A]共役ジエン系重合体を含む)100質量部に対して、20~120質量部の範囲が好ましく、30~100質量部の範囲が更に好ましい。[D]シリカの配合量がゴム成分100質量部に対して20質量部以上であれば、重合体組成物の低ヒステリシスロス性、破壊特性、耐摩耗性を十分に向上させることができ、また、120質量部以下であれば、重合体組成物の加工性を十分に向上させることができる。
  本開示の重合体組成物に用いる[D]シリカとしては、特に制限はなく、例えば、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウム等が挙げられ、これらの中でも、湿式シリカが好ましい。これらシリカは、1種単独で使用してもよいし、2種以上を併用してもよい。また、シリカのBET比表面積(ISO  5794/1に準拠して測定する)は40~350m/gの範囲が好ましく、80~350m/gの範囲が更に好ましく、120~350m/gの範囲が特に好ましい。BET比表面積がこの範囲であるシリカは、ゴム補強性と[A]共役ジエン系重合体中への分散性とを両立できる利点がある。このようなシリカとしては、東ソー・シリカ社製、商品名「ニプシルAQ」(BET比表面積=205m/g)、「ニプシルKQ」、デグッサ社製、商品名「ウルトラジルVN3」(BET比表面積=175m/g)等の市販品を用いることができる。
 本開示における重合体組成物が含有するシリカは、比表面積の異なる2種以上の併用であってもよい。具体的には、CTAB比表面積が180m/g以上、BET比表面積が185m/g以上、アグリゲートサイズが45nm以上である第1シリカと、CTAB比表面積が95m/g以下、BET比表面積が100m/g以下である第2シリカとを併用していてもよい。
 本開示における重合体組成物は、CTAB比表面積が180m/g以上、BET比表面積が185m/g以上、アグリゲートサイズが45nm以上である第1シリカと、CTAB比表面積が95m/g以下、BET比表面積が100m/g以下の第2シリカとを含有する。このような第1シリカと第2シリカとを併用することにより、平均一次粒子径は小さいが比較的アグリゲートサイズの大きい第1シリカをゴム成分中に良好に分散させることが可能となり、シリカの分散性を改善し、優れた破壊強度、耐摩耗性、低燃費性及び加工性を得ることができる。
 第1シリカのCTAB(セチルトリメチルアンモニウムブロミド)比表面積は、好ましくは190m/g以上、より好ましくは195m/g以上、更に好ましくは197m/g以上である。CTAB比表面積が180m/g未満であると、破壊強度、耐摩耗性の充分な向上が得られにくくなる傾向がある。第1シリカのCTAB比表面積は、好ましくは350m/g以下、より好ましくは300m/g以下、更に好ましくは250m/g以下である。CTAB比表面積が350m/gを超えると、分散性に劣り、凝集してしまうため、物性が低下する傾向がある。なお、シリカのCTAB比表面積は、ASTM D3765-92に準拠して測定される。
 第1シリカのBET比表面積は、好ましくは190m/g以上、より好ましくは195m/g以上、更に好ましくは210m/g以上である。BET比表面積が185m/g未満であると、破壊強度、耐摩耗性の充分な向上が得られにくくなる傾向がある。第1シリカのBET比表面積は、好ましくは350m/g以下、より好ましくは300m/g以下、更に好ましくは260m/g以下である。BET比表面積が350m/gを超えると、分散性に劣り、凝集してしまうため、物性が低下する傾向がある。なお、シリカのBET比表面積は、ASTM D3037-81に準じて測定される。
 第1シリカのアグリゲートサイズは、45nm以上、好ましくは50nm以上、より好ましくは55nm以上、更に好ましくは60nm以上である。また、第1シリカのアグリゲートサイズは、好ましくは100nm以下、より好ましくは80nm以下、更に好ましくは70nm以下、特に好ましくは67nm以下である。このようなアグリゲートサイズを有することにより、良好な分散性(加工性)を有しながら、優れた低燃費性、耐摩耗性を与えることができる。なお、シリカのアグリゲートサイズは、特開2011-140613号公報に記載の方法により測定できる。
 第1シリカの平均一次粒子径は、好ましくは25nm以下、より好ましくは22nm以下、更に好ましくは17nm以下、特に好ましくは14nm以下である。また、第1シリカの平均一次粒子径は、好ましくは3nm以上、より好ましくは5nm以上、更に好ましくは7nm以上である。このような小さい平均一次粒子径を有しているものの、上記のアグリゲートサイズを有するカーボンブラックのような構造により、シリカの分散性(加工性)をより改善でき、低燃費性、耐摩耗性を更に改善できる。なお、シリカの平均一次粒子径は、シリカを透過型又は走査型電子顕微鏡により観察し、視野内に観察されたシリカの一次粒子400個以上について粒子径を測定し、その平均により求めることができる。
 第2シリカのCTAB比表面積は、好ましくは10m/g以上、より好ましくは20m/g以上、更に好ましくは30m/g以上である。CTAB比表面積が10m/g未満であると、補強性が低くなり、タイヤ製造用の重合体組成物に必要な力学強度や耐摩耗性を確保することが難しくなるおそれがある。第2シリカのCTAB比表面積は、好ましくは80m/g以下、より好ましくは60m/g以下、更に好ましくは50m/g以下である。CTAB比表面積が95m/gを超えると、シリカの分散性が悪くなり、破壊強度及び耐摩耗性を改善することが難しくなるおそれがある。
 第2シリカのBET比表面積は、好ましくは10m/g以上、より好ましくは20m/g以上、更に好ましくは30m/g以上である。第2シリカのBET比表面積が10m/g未満であると、補強性が低くなり、タイヤ製造用の重合体組成物に必要な力学強度や耐摩耗性を確保することが難しくなる場合がある。第2シリカのBET比表面積は、好ましくは85m/g以下、より好ましくは60m/g以下、更に好ましくは50m/g以下である。BET比表面積が100m/gを超えると、シリカの分散性が悪くなり、破壊強度及び耐摩耗性を改善することが難しくなるおそれがある。
 第2シリカの平均一次粒子径は、好ましくは20nm以上、より好ましくは25nm以上、更に好ましくは30nm以上、特に好ましくは35nm以上、最も好ましくは55nm以上である。また、第2シリカの平均一次粒子径は、好ましくは500nm以下、より好ましくは200nm以下、更に好ましくは100nm以下、特に好ましくは70nm以下である。このような平均一次粒子径を有することにより、破壊強度及び耐摩耗性を改善することが出来る。
[E]カーボンブラック
 本開示の重合体組成物は、重合体組成物の破壊特性、耐摩耗性の観点から、無機フィラーとして[E]カーボンブラックを含むことが好ましい。カーボンブラックとしては、特に限定されるものではなく、例えば、GPF、FEF、HAF、ISAF、SAFグレードのカーボンブラックが挙げられる。カーボンブラックの窒素吸着比表面積(N2SA)は、特に限定されない。本開示の効果をより十分に得られる点で、50~200m/gが好ましく、70~150m/gがより好ましい。窒素吸着比表面積(NSA)は、カーボンブラック表面への窒素吸着量をJIS K6217-2:2001「第2部:比表面積の求め方-窒素吸着法-単点法」にしたがって測定した値である。カーボンブラックは、1種単独で使用してもよいし、2種以上を併用してもよい。また、カーボンブラックの配合量は、[A]共役ジエン系重合体100質量部に対して、1~150質量部の範囲が好ましく、5~120質量部の範囲がより好ましい。
[他の充填剤]
 本開示の組成物は、上述の[D]シリカ、[E]カーボンブラックの他に、無機フィラーとして他の充填剤を含んでもよい。かかる他の充填剤としては、γ-アルミナ、α-アルミナ等のアルミナ(Al)、ベーマイト、ダイアスポア等のアルミナ一水和物(Al・HO)、ギブサイト、バイヤライト等の水酸化アルミニウム[Al(OH)]、炭酸アルミニウム[Al(CO]、水酸化マグネシウム[Mg(OH)]、酸化マグネシウム(MgO)、炭酸マグネシウム(MgCO)、タルク(3MgO・4SiO・HO)、アタパルジャイト(5MgO・8SiO・9HO)、チタン白(TiO)、チタン黒(TiO2n-1)、酸化カルシウム(CaO)、水酸化カルシウム[Ca(OH)]、酸化アルミニウムマグネシウム(MgO・Al)、クレー(Al・2SiO)、カオリン(Al・2SiO・2HO)、パイロフィライト(Al・4SiO・HO)、ベントナイト(Al・4SiO・2HO)、ケイ酸アルミニウム(AlSiO、Al・3SiO・5HO等)、ケイ酸マグネシウム(MgSiO、MgSiO等)、ケイ酸カルシウム(CaSiO等)、ケイ酸アルミニウムカルシウム(Al・CaO・2SiO等)、ケイ酸マグネシウムカルシウム(CaMgSiO)、炭酸カルシウム(CaCO)、酸化ジルコニウム(ZrO)、水酸化ジルコニウム[ZrO(OH)・nHO]、炭酸ジルコニウム[Zr(CO]、各種ゼオライトのように、電荷を補正する水素、アルカリ金属又はアルカリ土類金属を含む結晶性アルミノケイ酸塩等が挙げられる。
 本開示の重合体組成物において、無機フィラー([D]シリカ、[E]カーボンブラック及び他の充填剤)の配合量は、ゴム成分([A]共役ジエン系重合体を含む)100質量部に対して、好ましくは30質量部以上、より好ましくは40質量部以上であり、また、充填剤の配合量は、好ましくは150質量部以下、より好ましくは130質量部以下である。重合体組成物中の充填剤の配合量が上記範囲内であれば、本開示の重合体組成物をタイヤのトレッド製造用に適用した場合に、タイヤの低転がり抵抗性と、湿潤路面での制動性能と、乾燥路面でのハンドリング性能と、耐摩耗性とを更に高度に両立させながら改善することができる。
[F]その他のゴム成分
 本開示の組成物は、ゴム成分として[A]共役ジエン系重合体のみを含有していてもよい。また、[A]共役ジエン系重合体に加えて、本開示の効果を損なわない範囲において、[A]共役ジエン系重合体とは異なるゴム成分(以下、[F]成分ともいう)を含有していてもよい。[F]成分としては、例えば、天然ゴム、イソプレンゴム、ブタジエンゴム、乳化重合スチレン-ブタジエンゴム、溶液重合スチレン-ブタジエンゴム、ブチルゴム、ハロゲン化ブチルゴム及びエチレン-プロピレンゴムから選ばれる1種以上のジエン系ゴムを用いることができる。これらの中でも、天然ゴム、ブタジエンゴム及びスチレン-ブタジエンゴムから選ばれる少なくとも1種を含有することが好ましい。[F]成分と[A]共役ジエン系重合体とを混合する態様は特に限定されない。例えば、通常行われている、バンバリーミキサーやロール等による混練時に[F]成分と[A]共役ジエン系重合体とを混合してもよい。あるいは、重合後の溶液状態の[A]共役ジエン系重合体に対し[F]成分を加えてもよい。
 [F]成分の配合量は、重合体組成物に含まれるゴム成分([A]共役ジエン系重合体及び[F]成分)の合計量に対して、好ましくは80質量%以下であり、より好ましくは60質量%以下である。なお、本明細書において、重合体組成物に含まれる「ゴム成分」とは、熱硬化によりゴム弾性を示す硬化物を得ることが可能な重合体をいう。当該硬化物は、室温において小さな力で大きな変形(例えば、室温で伸ばすと2倍以上に伸びる変形)を起こし、力を取り除くと急速にほぼ元の形状に戻る性質を示す。
 本開示では、ドライグリップ性能、ウェットグリップ性能及び耐ブローアウト性を更に向上させる観点から、その他のゴム成分の一部又は全部として液状ゴムを使用することもできる。
 液状ゴムとしては、液状ポリイソプレン(液状IR)、液状ポリブタジエン(液状BR)、液状スチレン-ブタジエン共重合体(液状SBR)及び液状エチレン-プロピレン共重合体(液状EP)等が挙げられる。例えば液状SBRは、重量平均分子量が1,000~100,000、好ましくは2,000~80,000のものを使用することができる。なお、本明細書で言う重量平均分子量は、ゲルパーミエーションクロマトグラフ(GPC)で分析されるポリスチレン換算の重量平均分子量を意味する。本開示で使用される液状ゴムは、23℃で流動性を有するものを指す。
[G]熱可塑性樹脂
 本開示の重合体組成物は[G]熱可塑性樹脂を含有してもよい。熱可塑性樹脂としては、強度、耐摩耗性及び耐亀裂成長性の各種特性により優れた架橋体を得る観点から、スチレン系樹脂、ポリエチレン、C5系樹脂、C9系樹脂、C5/C9系樹脂、ジシクロペンタジエン系樹脂、アルキルフェノール系樹脂及びテルペン系樹脂よりなる群から選ばれる少なくとも1種であることが好ましい。熱可塑性樹脂としては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 ここで、スチレン系樹脂は、スチレン系単量体を用いて得られる重合体であり、中でも、スチレン系単量体に由来する構造単位を、スチレン系樹脂が有する単量体単位の全量に対して20質量%以上有する重合体であることが好ましい。スチレン系単量体としては、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、p-メトキシスチレン、p-tert-ブチルスチレン、p-フェニルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン等が挙げられる。スチレン系単量体は、これらのうち、スチレン及びα-メチルスチレンの少なくとも一方であることが好ましい。
 スチレン系樹脂は、1種のスチレン系単量体を重合した単独重合体でもよいし、2種以上のスチレン系単量体を共重合した共重合体でもよい。また、スチレン系樹脂は、スチレン系単量体と、スチレン系単量体と共重合し得る他の単量体とを用いて得られる共重合体でもよい。他の単量体としては、アクリロニトリル、メタクリロニトリルなどのアクリロニトリル類、アクリル類、メタクリル酸等の不飽和カルボン酸類;アクリル酸メチル、メタクリル酸メチル等の不飽和カルボン酸エステル類;クロロプレン、ブタジエンイソプレン等のジエン類;1-ブテン、1-ペンテン等のオレフィン類;無水マレイン酸等のα,β-不飽和カルボン酸又はその酸無水物、等が挙げられる。
 スチレン系樹脂の軟化点は、30℃以上が好ましく、60℃以上がより好ましく、80℃以上が更に好ましい。軟化点が30℃以上であると、架橋体において耐亀裂成長性の改善効果が得られやすい傾向がある。また、スチレン系樹脂の軟化点は、160℃以下が好ましく、130℃以下がより好ましく、100℃以下が更に好ましい。軟化点が160℃以下であると、樹脂の分散性が良好となり、耐亀裂成長性、耐摩耗性及び破断強度が改善されやすい傾向がある。なお、本開示においてスチレン系樹脂の軟化点は、JIS K 6220-1:2015に規定される方法に従い、環球式軟化点測定装置を用いて測定した値であり、試料が軟化して試料に載せた球が底板上に降下したときの温度である。
 スチレン系樹脂としては、ソフトセグメントとしての共役ジエン系重合体ブロックと、ハードセグメントとしてのポリスチレン系ブロックとを有するブロックポリマー(熱可塑性エラストマー)を用いることもできる。こうしたブロックポリマーを用いた場合、耐亀裂成長性の改善効果をより高くでき好ましい。なお、上記ブロックポリマーが有する共役ジエン系重合体ブロックは、共役ジエン化合物に由来する構造単位中の炭素-炭素二重結合のうちの一部が水素添加されていてもよい。
 上記共役ジエン系重合体ブロックを構成する共役ジエン化合物としては、例えば1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン等が挙げられる。当該共役ジエン化合物としては、1種を単独で又は2種以上を組み合わせて用いることができる。これらの中でも、共役ジエン化合物としては、1,3-ブタジエン及びイソプレンの少なくともいずれかであることが好ましい。ブロックポリマー中における共役ジエンユニットの含有割合は、20質量%以上であることが好ましく、30質量%以上であることがより好ましい。また、共役ジエンユニットの含有割合は、80質量%以下であることが好ましく、70質量%以下であることがより好ましい。
 上記ブロックポリマーにおけるポリスチレン系ブロックの含有割合は、破断強度をより高くできる点で、20質量%以上であることが好ましい。また、ポリスチレン系ブロックの含有割合は、80質量%以下であることが好ましく、70質量%以下であることがより好ましい。なお、ブロックポリマー中におけるポリスチレン系ブロック、共役ジエン系重合体ブロック及び共役ジエンユニットの各含有割合は、H-NMRスペクトルの積分比により算出することができる。
 上記ブロックポリマーの具体例としては、スチレン-ブタジエンブロック共重合体、スチレン-イソプレンブロック共重合体、スチレン-ブタジエンブロック共重合体のエポキシ化物、スチレン-ブタジエンブロック共重合体又はスチレン-イソプレンブロック共重合体が有する共役ジエン系重合体ブロックの一部を水素添加したブロック共重合体等が挙げられる。より詳細には、スチレン-ブタジエン-スチレンブロックコポリマー(SBS)、スチレン-イソプレン-スチレンブロックコポリマー(SIS)、スチレン-ブタジエン-ブチレン-スチレンブロックコポリマー(SBBS)、及びスチレン-ブタジエン-スチレンブロックコポリマーのエポキシ化物、並びにこれらコポリマーの水添物等が挙げられる。上記ブロックポリマーとしては、架橋されやすい点で、これらの中でも、ソフトセグメントが水素添加されていない共役ジエン系重合体ブロックを有するSBS若しくはSIS、又はスチレン-ブタジエン-スチレンブロックコポリマーのエポキシ化物を好ましく用いることができる。
 ポリエチレンとしては、例えば、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、直鎖状低密度ポリエチレン(LLDPE)等が挙げられる。C5系樹脂は、C5留分をフリーデルクラフツ型触媒(AlClやBF等)を用いて重合して得られる固体重合体(C5系合成石油樹脂)である。C5系樹脂の具体例としては、イソプレン、シクロペンタジエン、1,3-ペンタジエン、1-ペンテン等を主成分とする共重合体、2-ペンテンとジシクロペンタジエンとの共重合体、1,3-ペンタジエンを主成分とする重合体等が挙げられる。
 C9系樹脂は、C9留分をフリーデルクラフツ型触媒(AlClやBF等)を用いて重合して得られる固体重合体(C9系合成石油樹脂)である。C9系樹脂の具体例としては、インデン、メチルインデン、ビニルトルエン等を主成分とする共重合体等が挙げられる。C5/C9系樹脂は、C5~C9留分をフリーデルクラフツ型触媒(AlClやBF等)を用いて重合して得られる固体重合体(C5/C9系合成石油樹脂)である。C5/C9系樹脂の具体例としては、例えばビニルトルエン、インデン等を主成分とする共重合体等が挙げられる。C5/C9系樹脂は、C9以上の成分の少ない樹脂が、ゴム成分との相溶性の観点から好ましい。具体的には、C5/C9系樹脂は、樹脂全量中のC9以上の成分が50質量%未満であることが好ましく、40質量%以下であることがより好ましい。
 ジシクロペンタジエン系樹脂とは、C5留分中のジシクロペンタジエンを主原料として用いた石油樹脂である。ジシクロペンタジエン系樹脂の具体例としては、丸善石油化学(株)の商品名「マルカレッツM」シリーズ(M-890A、M-845A、M-990A等)が挙げられる。アルキルフェノール系樹脂としては、例えば、p-tert-ブチルフェノール-アセチレン樹脂等のアルキルフェノール-アセチレン樹脂、低重合度のアルキルフェノール-ホルムアルデヒド樹脂等が挙げられる。
 テルペン系樹脂は、マツ属の木からロジンを得る際に同時に得られるテレピン油、或いは、これから分離した重合成分を配合し、フリーデルクラフツ型触媒を用いて重合して得られる固体状の樹脂であり、β-ピネン樹脂、α-ピネン樹脂等が挙げられる。該テルペン系樹脂としては、市販品を利用することができ、例えば、ヤスハラケミカル株式会社製の商品名「YSレジン」シリーズ(PX-1250、TR-105等)、ハーキュリーズ社製の商品名「ピコライト」シリーズ(A115、S115等)等が挙げられる。
 テルペン-芳香族化合物系樹脂としては、代表例としてテルペン-フェノール樹脂を挙げることができる。このテルペン-フェノール樹脂は、テルペン類と種々のフェノール類とをフリーデルクラフツ型触媒を用いて反応させる方法や、あるいは更にホルマリンで縮合する方法により得ることができる。原料のテルペン類としては特に制限はなく、α-ピネンやリモネン等のモノテルペン炭化水素が好ましく、α-ピネンを含むものがより好ましく、特にα-ピネンであることが好ましい。本開示においては、フェノール成分の比率の少ないテルペン-フェノール樹脂が好適である。ここで、「フェノール成分の比率が少ない」とは、樹脂全量中のフェノール成分が50質量%未満、好ましくは40質量%以下であることを指すものとする。なお、[G]熱可塑性樹脂としてテルペン-芳香族化合物系樹脂、特にテルペン-フェノール樹脂を用いれば、更にハンドリング性能を向上させることもできる。テルペン-芳香族化合物系樹脂としては市販品を利用することができる。市販品としては、例えば、商品名「タマノル803L」、「タマノル901」(荒川化学工業株式会社製)、商品名「YSポリスター(登録商標)」シリーズ(ヤスハラケミカル株式会社製)等が挙げられる。
 熱可塑性樹脂の配合量は、重合体組成物に含まれるゴム成分100質量部に対して、1質量部以上とすることが好ましい。熱可塑性樹脂を1質量部以上配合することにより、当該重合体組成物を用いて得られる架橋体において、熱可塑性樹脂の添加による耐摩耗性、破断強度及び耐亀裂成長性の改善効果を十分に高くでき好適である。熱可塑性樹脂の配合量は、より好ましくは、ゴム成分100質量部に対して3質量部以上であり、更に好ましくは7質量部以上である。また、熱可塑性樹脂の配合量は、重合体組成物の各種性能が良好に維持されるようにする観点から、重合体組成物に含まれるゴム成分100質量部に対し、好ましくは50質量部以下であり、より好ましくは30質量部以下であり、更に好ましくは25質量部以下である。なお、熱可塑性樹脂としては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
[H]シランカップリング剤
 本開示では、シリカと共にシランカップリング剤を配合してシリカの分散性を更に高めることができる。使用されるシランカップリング剤は特に制限されない。中でも、含硫黄シランカップリング剤が好ましく、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、3-トリメトキシシリルプロピルベンゾチアゾールテトラスルフィド、γ-メルカプトプロピルトリエトキシシラン、3-オクタノイルチオプロピルトリエトキシシラン等が挙げられる。
 シランカップリング剤の配合量は、シリカ100質量に対し1~20質量部が好ましい。シランカップリング剤の配合量が1質量部未満であると、配合量が少な過ぎてシリカの分散性を十分に向上させることができない場合がある。逆に20質量部を超えると加工性及び破断伸びが悪化する場合がある。シランカップリング剤の配合量は、シリカ100質量部に対し5~15質量部であることがより好ましい。
[I]架橋剤
 本開示の重合体組成物は架橋剤を含有していてもよい。本開示の重合体組成物が架橋剤を含有することで、強度及び耐摩耗性が十分に向上された架橋体を得ることができる。架橋剤としては、硫黄、ハロゲン化硫黄、有機過酸化物、キノンジオキシム類、有機多価アミン化合物、メチロール基を有するアルキルフェノール樹脂等が挙げられ、通常、硫黄が使用される。架橋剤の配合量は、重合体組成物に含まれるゴム成分の合計量100質量部に対して、好ましくは0.1~5質量部、より好ましくは0.5~3質量部である。
[J]伸展油
 本開示の重合体組成物には、油展のためのオイル(伸展油)として、エラストマーを油展するために一般的に用いられるプロセスオイルが配合されていてもよい。プロセスオイルの添加方法は特に限定されない。例えば、重合後の共役ジエン系重合体溶液にプロセスオイルを展開してから脱溶することで油展ゴムとして配合してもよいし、バンバリーミキサーやロール等による混錬時にプロセスオイルを直接添加することによってプロセスオイルを重合体組成物に配合してもよい。好ましいプロセスオイルとしては、当業界で公知の様々なオイルが挙げられ、例えば、芳香族系オイル、パラフィン系オイル、ナフテン系オイル、植物油、並びに、多環式芳香族化合物の含量の低いオイル(低PCAオイル)、例えば軽度抽出溶媒和物(MES:mild extraction solvate)、留出油からの芳香族系抽出物を処理した油(TDAE:treated distillate aromatic extract)、残油からの芳香族系特殊抽出物(SRAE:special residual aromatic extract)、及び重ナフテン系オイル等が挙げられる。市販のMES、TDAE及びSRAEの例としては、MESとしてShell製のCatenex SNR(留出油を溶媒で脱ワックスした重質パラフィン)、TDAEとしてH&R Wasag AG製のVivatec 500、及びSRAEとしてJapan Energy Corp.製のNC140等が挙げられる。プロセスオイルの配合量は、重合体組成物に含まれる重合体成分の合計量100質量部に対して、好ましくは10~100質量部である。
 重合体組成物には、上記した成分の他に、例えば老化防止剤、亜鉛華、ステアリン酸、軟化剤、加硫促進剤、シランカップリング剤、相溶化剤、加硫助剤、加工助剤、スコーチ防止剤など、加硫ゴムを得るための重合体組成物において一般に使用される各種添加剤を配合することができる。これらの配合量は、本開示の効果を損なわない範囲で、各種成分に応じて適宜選択することができる。
 本開示の重合体組成物は、重合体成分及び無機フィラーの他、必要に応じて配合される成分を、開放式混練機(例えば、ロール)、密閉式混練機(例えば、バンバリーミキサー)等の混練機を用いて混練し、成形加工後に架橋(加硫)することによって、架橋体として各種ゴム製品に適用可能である。具体的には、上記架橋体は、例えばタイヤトレッド、アンダートレッド、カーカス、サイドウォール、ビード部等のタイヤ用途;パッキン、ガスケット、ウェザーストリップ、O-リング等のシール材;自動車、船舶、航空機、鉄道等の各種車両用の内外装表皮材;建築材料;産業機械用や設備用などの防振ゴム類;ダイヤフラム、ロール、ラジエータホース、エアーホース等の各種ホース及びホースカバー類;動力伝達用ベルトなどのベルト類;ライニング;ダストブーツ;医療用機器材料;防舷材;電線用絶縁材料;その他の工業品等の用途に適用できる。
 [A]共役ジエン系重合体によれば、引張強度及び耐摩耗性といった、タイヤ用途において求められる物性が良好な架橋体を得ることができる。したがって、[A]共役ジエン系重合体を含む重合体組成物は、特にタイヤのトレッド、サイドウォール又はその両方の材料として好適に使用できる。
 タイヤの製造は、常法に従い行うことができる。例えば、重合体組成物を混練機で混合し、シート状にしたものを、常法に従い所定位置(例えば、サイドウォールの場合にはカーカスの外側)に配して加硫成形することにより、トレッド又はサイドウォールとして形成され、空気入りタイヤが得られる。
 以下、実施例に基づいて具体的に説明する。ただし、本開示はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。重合体の各種物性値の測定方法を以下に示す。
[重合体の特性評価]
・ビニル結合含量(モル%):水添前の重合体につき、400MHzのH-NMRによって測定した。
・結合スチレン含量(%):水添前の重合体につき、400MHzのH-NMRによって測定した。
・1stピーク平均分子量:水添前の重合体につき、ゲルパーミエーションクロマトグラフ(GPC、製品名:HLC-8020(製品名(東ソー社製))を使用してポリスチレン換算の分子量に基づくチャートを得て、その得られたGPC曲線において最も保持時間が長いピークの保持時間から求めた。具体的な測定条件は以下のとおりである。
 (測定条件)
  カラム:GMH-HR-H(東ソー社製)2本を直列に連結した。
  検出器:示差屈折計RI-8020(東ソー社製)
  溶離液:テトラヒドロフラン
  カラム温度:40℃
  流速:1.0ml/分
  サンプル濃度:10mg/20ml
・トータル重量平均分子量:水添前の重合体につき、GPC(HLC-8020(製品名(東ソー社製)))を使用して得られたGPC曲線の全ピークからポリスチレン換算で求めた。測定条件は上記と同様である。
・カップリング率(質量%):水添前の重合体につき、GPC(HLC-8020(製品名(東ソー社製)))を使用して得られたGPC曲線のピーク面積比より、2個以上の分子鎖を有するカップリングポリマーの割合を算出した。
・水素添加率及びα:四塩化エチレンを溶媒とし、100MHzの装置で測定したH-NMRスペクトルから算出した。
・重合体(A1)の含有量(質量%):水添前の重合体につき、GPC(HLC-8020(製品名(東ソー社製)))を使用して得られたGPC曲線における4分岐以上のカップリングポリマーの波形を成分分離することで算出した。
<水添共役ジエン系重合体の合成>
[実施例1:水添共役ジエン系重合体Aの合成及び物性]
 窒素置換された内容積50リットルのオートクレーブ反応器に、シクロヘキサン25900g、テトラヒドロフラン65g、スチレン370g、1,3-ブタジエン3219g、ピペリジン63mmolを仕込んだ。反応器内容物の温度を42℃に調整した後、n-ブチルリチウム(86mmol)を含むシクロヘキサン溶液を添加して重合を開始した。重合は断熱条件で実施した。重合転化率が99%に達したことを確認した後、1,3-ブタジエン111gを追加し、更に3分重合させ、重合体を含む反応液を得た。得られた反応液に四塩化ケイ素10mmolを加えて5分間反応させた。
 次いで、反応液を80℃以上にして、系内に水素を導入した後、ジエチルアルミニウムクロリド1.64g、ビス(η5-シクロペンタジエニル)チタニウム(フルフリルオキシ)クロライド3.67g、n-ブチルリチウム1.67gを加え、水素圧1.0MPaを保つようにして水添反応を行った。反応後、水素圧0.7MPa以上を保つようにして、所定の水素積算値となるまで水素を供給して反応させた後、反応液を常温、常圧に戻して反応容器より抜き出し、重合体溶液を得た。得られた重合体溶液に対してスチームストリッピングにより脱溶媒を行い、130℃に調温された熱ロールにより乾燥を行うことで、水添共役ジエン重合体Aを得た。水添共役ジエン系重合体Aの重合処方を表1に示し、得られた水添共役ジエン系重合体Aの各種物性値等を表3に示す。
[実施例2、4~11、14~17及び比較例1~3:水添共役ジエン系重合体B、D~K、N~Q、R~Tの合成及びその物性]
 重合処方を表1、2に記載のとおり変更した点、及び水素添加率を表3、4に記載のとおり変更した点以外は実施例1と同様の方法により、水添共役ジエン系重合体B、D~K、N~Q、R~Tを得た。なお、実施例4及び比較例1では開始端変性剤を使用しなかった。得られた水添共役ジエン系重合体B、D~K、N~Q、R~Tの各種物性値等を表3、4に示す。
[実施例3:水添共役ジエン系重合体Cの合成及び物性]
 窒素置換された内容積50リットルのオートクレーブ反応器に、シクロヘキサン25900g、テトラヒドロフラン65g、スチレン370g、1,3-ブタジエン3219g、ピペリジン63mmolを仕込んだ。反応器内容物の温度を42℃に調整した後、n-ブチルリチウム(86mmol)を含むシクロヘキサン溶液を添加して重合を開始した。重合は断熱条件で実施した。重合転化率が99%に達したことを確認した後、1,3-ブタジエン111gを追加し、更に3分重合させ、重合体を含む反応液を得た。得られた反応液に四塩化ケイ素10mmolを加えて5分間反応させ、さらにN,N-ジメチルアミノプロピルトリエトキシシラン28mmolを加え、15分間反応させた。
 次いで、反応液を80℃以上にして、系内に水素を導入した後、ジエチルアルミニウムクロリド1.64g、ビス(η5-シクロペンタジエニル)チタニウム(フルフリルオキシ)クロライド3.67g、n-ブチルリチウム1.67gを加え、水素圧1.0MPaを保つようにして水添反応を行った。反応後、水素圧0.7MPa以上を保つようにして、所定の水素積算値となるまで水素を供給して反応させた後、反応液を常温、常圧に戻して反応容器より抜き出し、重合体溶液を得た。得られた重合体溶液に対してスチームストリッピングにより脱溶媒を行い、130℃に調温された熱ロールにより乾燥を行うことで水添共役ジエン重合体Cを得た。水添共役ジエン系重合体Cの重合処方を表1に示し、得られた水添共役ジエン系重合体Cの各種物性値等を表3に示す。
[実施例12及び比較例4:水添共役ジエン系重合体L、Uの合成及びその物性]
 重合処方を表2に記載のとおり変更した点以外は実施例1と同様の方法により、水添共役ジエン系重合体L、Uを得た。なお、比較例4では開始端変性剤を使用しなかった。得られた水添共役ジエン系重合体L、Uの各種物性値等を表4に示す。
[実施例13:水添共役ジエン系重合体Mの合成及び物性]
 窒素置換された内容積50リットルのオートクレーブ反応器に、シクロヘキサン25900g、テトラヒドロフラン65g、ドデシルベンゼンスルホン酸カリウム0.74g、スチレン740g、1,3-ブタジエン2849g、ピペリジン63mmolを仕込んだ。反応器内容物の温度を42℃に調整した後、n-ブチルリチウム(43mmol)を含むシクロヘキサン溶液を添加して重合を開始した。重合は断熱条件で実施した。重合転化率が99%に達したことを確認した後、1,3-ブタジエン111gを追加し、更に3分重合させ、重合体を含む反応液を得た。得られた反応液に四塩化ケイ素2.6mmolを加えて5分間反応させ、さらにN,N-ジメチルアミノプロピルトリエトキシシラン24mmolを加え、15分間反応させた。
 次いで、反応液を80℃以上にして、系内に水素を導入した後ジエチルアルミニウムクロリド1.64g、ビス(η5-シクロペンタジエニル)チタニウム(フルフリルオキシ)クロライド3.67g、n-ブチルリチウム1.67gを加え、水素圧1.0MPaを保つようにして水添反応を行った。反応後、水素圧0.7MPa以上を保つようにして、所定の水素積算値となるまで水素を供給して反応させた後、反応液を常温、常圧に戻して反応容器より抜き出し、重合体溶液を得た。得られた重合体溶液に対してスチームストリッピングにより脱溶媒を行い、130℃に調温された熱ロールにより乾燥を行うことで水添共役ジエン重合体Mを得た。水添共役ジエン系重合体Mの重合処方を表2に示し、得られた水添共役ジエン系重合体Mの各種物性値等を表4に示す。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 表1、2中、「-」は、該当する欄の化合物を使用しなかったことを意味する。ビニル含量調整剤、開始端変性剤、末端変性剤及びカップリング剤の略称は以下のとおりである。
V-1:ドデシルベンゼンスルホン酸カリウム
INI-1:N-t-ブチルジメチルシリル-4-ピペラジン
Mod-1:N,N-ジメチルアミノプロピルトリエトキシシラン
Mod-2:下記式(Mod-2)で表される化合物
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
<重合体組成物及び架橋体の製造>
 上記で製造した水添共役ジエン系重合体A~Q、R~Uをそれぞれ用いて、表5に示す配合処方により各成分を配合し、これを混練りすることによって重合体組成物を製造した。混練りは以下の方法で行った。温度制御装置を付属したプラストミル(内容量:250ml)を使用し、まず1段目の混練りとして、充填率72%、回転数60rpmの条件で、水添変性共役ジエン系重合体(A~Q、R~U)、シリカ、カーボンブラック、シランカップリング剤、伸展油、ステアリン酸、酸化亜鉛及び老化防止剤を配合して混練りし、重合体組成物Aとして配合物を得た。次いで、2段目の混練りとして、得られた配合物を室温まで冷却後、加硫促進剤及び硫黄を配合し、混練りして重合体組成物Bを得た。得られた重合体組成物Bを成型し、160℃で所定時間、加硫プレスにて加硫して、架橋体(加硫ゴム)を得た。また、以下のようにして溶液粘度、加工性、コールドフロー、引張強度及び耐摩耗性を評価した。結果を表6、7に示す。
(1)溶液粘度:重合体29gをシクロヘキサン171gに溶解させたものを測定試料とし、東機産業粘度計TVB-10を使用して、温度60℃の条件で溶液粘度を測定した。なお、溶液粘度の値が小さいほど、重合体溶液の流動性が良好であり、配管での移送や容器への移液が容易であることや、水素添加反応におけるポリマー溶液内での水素拡散性が高くなることにより水素添加時間を短縮でき十分な生産性を確保できる観点から優れているといえる。得られた溶液粘度の値から、以下の判断基準にて溶液粘度をA~Dで判定した。
A(極めて良好):1000mP・s未満
B(良好)   :1000mP・s以上2000mP・s未満
C(許容レベル):2000mP・s以上3000mP・s未満
D(不良)   :3000mP・s以上
(2)ムーニー粘度:重合体を測定用試料とし、JIS K6300に準拠し、Lローターを使用して、予熱1分、ローター作動時間4分、温度100℃の条件で測定した。比較例1を基準とした指数として評価し、数値が小さいほど、ムーニー粘度が小さく、加工性が良好であるといえる。得られたムーニー粘度の値から、以下の判断基準にてムーニー粘度をA~Dで判定した。
A:70未満
B:70以上85未満
C:85以上100未満
D:100以上
(3)コールドフロー(C/F):圧力3.5ポンド/平方インチ、温度70℃で重合体を1/4インチオリフィスに通して押し出すことによりコールドフローを測定した。定常状態にするために、10分間放置後、押し出し速度を測定し、値を毎分のグラム数(g/min)で示した。なお、コールドフローの値が小さいほど、形状安定性(貯蔵安定性)が良好であり、加工性に優れているといえる。得られたコールドフローの値から、以下の判断基準にてコールドフローをA~Dで判定した。
A:0.1g/min未満
B:0.2g/min未満0.1g/min以上
C:0.3g/min未満0.2g/min以上
D:0.3g/min以上
(4)引張強度:架橋体を測定用試料として、JISK6251:2010に準拠して引張試験を行った。ここでは、試験サンプルとしてダンベル状3号形を用いて、破断時の応力(TB)及び破断時の伸び(EB)を室温で測定した。TB及びEBの数値が大きいほど破断強度が大きく、材料の機械的強度が高く良好であることを示す。評価はTBの値により行い、比較例1を基準とした指数として評価した。数値が大きいほど、引張強度が大きく、強度が良好であるといえる。得られた引張強度の値から、以下の判断基準にて引張強度をA~Dで判定した。
A:110以上
B:100以上110未満
C:80以上100未満
D:80未満
(5)耐摩耗性:架橋体を測定用試料とし、ランボーン型摩耗試験機(島田技研社製)を用い、JIS K6264-2:2005に準拠し、温度50℃においてスリップ率15%での摩耗量を測定した。比較例1を基準とした指数として評価し、数値が小さいほど、摩耗量が少なく、耐摩耗性が良好である。得られた摩耗量の値から、以下の判断基準にて耐摩耗性をA~Dで判定した。
A:90未満
B:95未満90以上
C:100未満95以上
D:100以上
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
 表6、7に示すように、実施例1~17の重合体組成物によれば、重合体の溶液粘度、ムーニー粘度及びコールドフロー特性、並びに架橋体の引張強度及び耐摩耗性をバランス良く改善できることが分かった。これらのうち、実施例3、5、12、13、17の重合体組成物は、架橋体の引張強度及び耐摩耗性が共に「A」の評価であり、実施例5、12、13の重合体組成物は更に、ムーニー粘度に基づく加工性評価が「B」の評価であり、各種特性のバランスが取れていた。
 これに対し、分岐ポリマーが有する重合体鎖の末端が開始端変性剤及び末端変性剤(b1)のいずれによっても変性されていない比較例1の重合体組成物は、架橋体の耐摩耗性の評価が「D」であった。水添共役ジエン重合体中における重合体(A1)の含有割合が87質量%と多い比較例2は、溶液粘度の評価が「D」であった。また、[A]共役ジエン系重合体における重合体(A1)の含有量が少ない比較例3は、コールドフロー特性、並びに架橋体の引張強度及び耐摩耗性の評価が「D」であった。分岐ポリマーが有する重合体鎖の末端が開始端変性剤及び末端変性剤(b)のいずれによっても変性されていない比較例4は、架橋体の引張強度及び耐摩耗性は改善されたものの、コールドフロー特性が「D」の評価であった。このように、比較例1~4の重合体組成物はいずれも、実施例よりも劣る結果であった。

Claims (13)

  1.  下記式(1)で表される構造単位、下記式(2)で表される構造単位、下記式(3)で表される構造単位、及び下記式(4)で表される構造単位の重合体中の構成比(モル比)をそれぞれp、q、r、sとしたとき、下記数式(i)で表される値αが0.65~0.97である共役ジエン系重合体であり、
     前記共役ジエン系重合体は、分子鎖を4個以上持つ多分岐構造を有する重合体(A1)を25~75質量%含み、
     前記重合体(A1)は、窒素、酸素及び硫黄よりなる群から選択される少なくとも1種の元素を含む官能基を、前記重合体(A1)の末端部分及び分岐点部分の一方又は両方に有する、共役ジエン系重合体。
     α=(p+(0.5×r))/(p+q+(0.5×r)+s)
                               …(i)
    Figure JPOXMLDOC01-appb-C000001
  2.  芳香族ビニル化合物に由来する構造単位を有する、請求項1に記載の共役ジエン系重合体。
  3.  芳香族ビニル化合物に由来する構造単位の割合が、0質量%を超えて45質量%以下である、請求項2に記載の共役ジエン系重合体。
  4.  前記重合体(A1)は、カップリング剤に由来する構造に分子鎖が4個以上結合した構造を有し、
     前記カップリング剤は、窒素、酸素、硫黄及びケイ素よりなる群から選択される少なくとも1種の元素を有する、請求項1~3のいずれか一項に記載の共役ジエン系重合体。
  5.  前記重合体(A1)は、末端部分に2級アミノ基又は3級アミノ基を有する、請求項1~4のいずれか一項に記載の共役ジエン系重合体。
  6.  直鎖状又は3分岐以下の分岐状の重合体(A2)を更に含む、請求項1~5のいずれか一項に記載の共役ジエン系重合体。
  7.  前記重合体(A2)が、一方の末端部分に2級アミノ基又は3級アミノ基を有し、他方の末端部分に、窒素、リン、酸素、硫黄及びケイ素よりなる群から選択される少なくとも1種の元素を含む官能基を有する直鎖状の重合体を含む、請求項6に記載の共役ジエン系重合体。
  8.  アルカリ金属又はアルカリ土類金属を有する金属化合物の存在下、共役ジエン化合物を含む単量体を重合して、活性末端を有する共役ジエン系重合体(I)を得る重合工程と、
     前記共役ジエン系重合体(I)と、前記活性末端と反応し得る官能基を4個以上有する化合物[B]とを反応させて、共役ジエン系重合体(II)を得る反応工程と、
     前記共役ジエン系重合体(II)が有する共役ジエン化合物に由来する構造単位の水素添加率が65~97%となるように水素添加する水添工程と、
    を含み、
     前記反応工程は、分子鎖を4個以上持つ多分岐構造を有する重合体を前記共役ジエン系重合体(II)中に25~75質量%含むように前記共役ジエン系重合体(I)と前記化合物[B]とを反応させる工程であり、
     前記金属化合物及び前記化合物[B]よりなる群から選択される少なくとも1種が、窒素、酸素及び硫黄よりなる群から選択される少なくとも1種の元素を含む、共役ジエン系重合体の製造方法。
  9.  前記金属化合物は、アルカリ金属又はアルカリ土類金属を有する金属アミド化合物である、請求項8に記載の共役ジエン系重合体の製造方法。
  10.  前記共役ジエン系重合体(II)は、直鎖状又は3分岐以下の分岐状の重合体を更に含み、
     前記反応工程の後であって前記水添工程の前に、窒素、リン、酸素、硫黄及びケイ素よりなる群から選択される少なくとも1種の元素を有し、かつ前記活性末端と反応し得る化合物と、前記共役ジエン系重合体(II)中の直鎖状の重合体とを反応させることにより、窒素、リン、酸素、硫黄及びケイ素よりなる群から選択される少なくとも1種の元素を含む官能基を有する直鎖状又は3分岐以下の分岐状の重合体を得る工程を更に含む、請求項8又は9に記載の共役ジエン系重合体の製造方法。
  11.  請求項1~7のいずれか一項に記載の共役ジエン系重合体、又は請求項8~10のいずれか一項に記載の製造方法により得られた共役ジエン系重合体と、無機フィラーとを含有する、重合体組成物。
  12.  請求項11に記載の重合体組成物が架橋されてなる架橋体。
  13.  請求項11に記載の重合体組成物を用いて、トレッド及びサイドウォールのうち一方又は両方が形成されたタイヤ。
PCT/JP2022/011366 2021-03-15 2022-03-14 共役ジエン系重合体及びその製造方法、重合体組成物、架橋体並びにタイヤ WO2022196643A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202280021207.XA CN117015559A (zh) 2021-03-15 2022-03-14 共轭二烯系聚合物及其制造方法、聚合物组合物、交联物以及轮胎
KR1020237031074A KR20230156349A (ko) 2021-03-15 2022-03-14 공액 디엔계 중합체 및 그 제조 방법, 중합체 조성물, 가교체 그리고 타이어
JP2023507108A JPWO2022196643A1 (ja) 2021-03-15 2022-03-14
US18/550,586 US20240199767A1 (en) 2021-03-15 2022-03-14 Conjugated diene polymer and method for producing same, polymer composition, crosslinked product, and tire
EP22771389.8A EP4310110A1 (en) 2021-03-15 2022-03-14 Conjugated diene polymer and method for producing same, polymer composition, crosslinked product, and tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021041264 2021-03-15
JP2021-041264 2021-03-15

Publications (1)

Publication Number Publication Date
WO2022196643A1 true WO2022196643A1 (ja) 2022-09-22

Family

ID=83320385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011366 WO2022196643A1 (ja) 2021-03-15 2022-03-14 共役ジエン系重合体及びその製造方法、重合体組成物、架橋体並びにタイヤ

Country Status (7)

Country Link
US (1) US20240199767A1 (ja)
EP (1) EP4310110A1 (ja)
JP (1) JPWO2022196643A1 (ja)
KR (1) KR20230156349A (ja)
CN (1) CN117015559A (ja)
TW (1) TW202248250A (ja)
WO (1) WO2022196643A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634841B2 (ja) 1983-01-20 1988-02-01 Asahi Chemical Ind
JPS6437970A (en) 1987-07-30 1989-02-08 Jiyoeru Roon Aaru Ski exercise apparatus
JPH08245839A (ja) * 1995-03-08 1996-09-24 Asahi Chem Ind Co Ltd 選択部分水添変性重合体組成物
JP2000053706A (ja) * 1998-08-07 2000-02-22 Jsr Corp 水添共役ジオレフィン系重合体
JP2004513087A (ja) * 2000-09-19 2004-04-30 エフエムシー・コーポレイション 保護アミノ官能化重合開始剤、並びにその製造方法および使用方法
WO2008123164A1 (ja) 2007-03-23 2008-10-16 Jsr Corporation 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及びゴム組成物
WO2010140659A1 (ja) * 2009-06-03 2010-12-09 株式会社クラレ 水添ブロック共重合体の製造方法、該製造方法により得られた水添ブロック共重合体およびその組成物
JP2011140613A (ja) 2009-12-09 2011-07-21 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及び空気入りタイヤ
WO2014126184A1 (ja) * 2013-02-14 2014-08-21 Jsr株式会社 水添共役ジエン重合体の製造方法
WO2014133097A1 (ja) 2013-02-28 2014-09-04 Jsr株式会社 タイヤ用部材、水添共役ジエン系重合体、及び、重合体組成物
WO2017221943A1 (ja) 2016-06-24 2017-12-28 Jsr株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体、タイヤ及び化合物
WO2018164053A1 (ja) * 2017-03-07 2018-09-13 旭化成株式会社 変性共役ジエン系重合体、重合体組成物、及びゴム組成物
WO2018199280A1 (ja) * 2017-04-28 2018-11-01 Jsr株式会社 架橋ゴム及びタイヤ
JP2021041264A (ja) 2020-12-17 2021-03-18 株式会社ホームテイスト ロール状マットレス及びその製作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4111590B2 (ja) 1998-06-04 2008-07-02 株式会社ブリヂストン 重合体の製造方法、得られた重合体、及びそれを用いたゴム組成物

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634841B2 (ja) 1983-01-20 1988-02-01 Asahi Chemical Ind
JPS6437970A (en) 1987-07-30 1989-02-08 Jiyoeru Roon Aaru Ski exercise apparatus
JPH08245839A (ja) * 1995-03-08 1996-09-24 Asahi Chem Ind Co Ltd 選択部分水添変性重合体組成物
JP2000053706A (ja) * 1998-08-07 2000-02-22 Jsr Corp 水添共役ジオレフィン系重合体
JP2004513087A (ja) * 2000-09-19 2004-04-30 エフエムシー・コーポレイション 保護アミノ官能化重合開始剤、並びにその製造方法および使用方法
WO2008123164A1 (ja) 2007-03-23 2008-10-16 Jsr Corporation 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及びゴム組成物
WO2010140659A1 (ja) * 2009-06-03 2010-12-09 株式会社クラレ 水添ブロック共重合体の製造方法、該製造方法により得られた水添ブロック共重合体およびその組成物
JP2011140613A (ja) 2009-12-09 2011-07-21 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及び空気入りタイヤ
WO2014126184A1 (ja) * 2013-02-14 2014-08-21 Jsr株式会社 水添共役ジエン重合体の製造方法
WO2014133097A1 (ja) 2013-02-28 2014-09-04 Jsr株式会社 タイヤ用部材、水添共役ジエン系重合体、及び、重合体組成物
WO2017221943A1 (ja) 2016-06-24 2017-12-28 Jsr株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体、タイヤ及び化合物
WO2018164053A1 (ja) * 2017-03-07 2018-09-13 旭化成株式会社 変性共役ジエン系重合体、重合体組成物、及びゴム組成物
WO2018199280A1 (ja) * 2017-04-28 2018-11-01 Jsr株式会社 架橋ゴム及びタイヤ
JP2021041264A (ja) 2020-12-17 2021-03-18 株式会社ホームテイスト ロール状マットレス及びその製作方法

Also Published As

Publication number Publication date
EP4310110A1 (en) 2024-01-24
TW202248250A (zh) 2022-12-16
US20240199767A1 (en) 2024-06-20
KR20230156349A (ko) 2023-11-14
CN117015559A (zh) 2023-11-07
JPWO2022196643A1 (ja) 2022-09-22

Similar Documents

Publication Publication Date Title
EP1514901B1 (en) Rubber composition for tire and tire made therefrom
WO2018186367A1 (ja) ゴム組成物及びタイヤ
WO2020196899A1 (ja) 水添共役ジエン系重合体、重合体組成物、架橋体及びタイヤ
CN112055729A (zh) 橡胶组合物和充气轮胎
JP7119343B2 (ja) ジエン系共重合体及びゴム組成物
WO2021085616A1 (ja) 変性共役ジエン系重合体の製造方法、重合体組成物、架橋体及びタイヤ
WO2017090421A1 (ja) 水添共役ジエン系重合体の製造方法、水添共役ジエン系重合体、重合体組成物、架橋重合体及びタイヤ
WO2020158678A1 (ja) ゴム組成物、架橋体及びタイヤ
JP4739025B2 (ja) 無機充填剤との親和性に優れた重合体
JP7346543B2 (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体及びタイヤ
JP7194641B2 (ja) 重合体組成物及びその製造方法、並びにタイヤ
WO2022196643A1 (ja) 共役ジエン系重合体及びその製造方法、重合体組成物、架橋体並びにタイヤ
JP7119342B2 (ja) ジエン系共重合体及びゴム組成物
WO2020075829A1 (ja) ゴム組成物、トレッド及びタイヤ
WO2024090556A1 (ja) 重合体組成物及びタイヤ
WO2023074773A1 (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体、タイヤ及び化合物
WO2023085309A1 (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体及びタイヤ
WO2023013639A1 (ja) 変性共役ジエン系重合体及びその製造方法、重合体組成物、架橋体並びにタイヤ
JP2019085453A (ja) ジエン系共重合体及びゴム組成物
WO2022195977A1 (ja) ゴム組成物及びタイヤ
WO2023171627A1 (ja) 重合体組成物及びその製造方法、架橋体、並びにタイヤ
WO2022195978A1 (ja) ゴム組成物及びタイヤ
WO2023171628A1 (ja) 重合体組成物及びその製造方法、架橋体、並びにタイヤ
JP2024062294A (ja) 変性共役ジエン系重合体及びその製造方法、重合体組成物、架橋体並びにタイヤ
WO2022249766A1 (ja) タイヤ用ゴム組成物、トレッドゴム及びタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771389

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023507108

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280021207.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18550586

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022771389

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022771389

Country of ref document: EP

Effective date: 20231016

WWE Wipo information: entry into national phase

Ref document number: 11202306709P

Country of ref document: SG