WO2018164053A1 - 変性共役ジエン系重合体、重合体組成物、及びゴム組成物 - Google Patents
変性共役ジエン系重合体、重合体組成物、及びゴム組成物 Download PDFInfo
- Publication number
- WO2018164053A1 WO2018164053A1 PCT/JP2018/008330 JP2018008330W WO2018164053A1 WO 2018164053 A1 WO2018164053 A1 WO 2018164053A1 JP 2018008330 W JP2018008330 W JP 2018008330W WO 2018164053 A1 WO2018164053 A1 WO 2018164053A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conjugated diene
- diene polymer
- modified conjugated
- polymer
- mass
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F36/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F236/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F236/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F236/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F236/10—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/22—Incorporating nitrogen atoms into the molecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/25—Incorporating silicon atoms into the molecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/30—Introducing nitrogen atoms or nitrogen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/42—Introducing metal atoms or metal-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L15/00—Compositions of rubber derivatives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L21/00—Compositions of unspecified rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2800/00—Copolymer characterised by the proportions of the comonomers expressed
- C08F2800/20—Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2810/00—Chemical modification of a polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/86—Optimisation of rolling resistance, e.g. weight reduction
Definitions
- the present invention relates to a modified conjugated diene polymer, a polymer composition, and a rubber composition.
- a material containing a rubber-like polymer and a reinforcing filler such as carbon black and silica there is a material containing a rubber-like polymer and a reinforcing filler such as carbon black and silica.
- a rubber material containing silica when used, it is possible to improve the balance between low hysteresis loss and wet skid resistance.
- a functional group having affinity or reactivity with silica into the molecular end of a rubber-like polymer having high mobility, the dispersibility of silica in the rubber material is improved, Attempts have been made to reduce the hysteresis loss by reducing the mobility of the molecular ends of the rubber-like polymer by bonding the silica particles and the rubber-like polymer.
- Patent Documents 1 and 2 propose polymers in which a functional group is formed by reacting a cyclic azasilacyclo compound with a polymer active terminal.
- Patent Document 3 proposes a diene rubber obtained by coupling a polymer active terminal and a polyfunctional silane compound.
- the conjugated diene rubber material containing silica has a hydrophilic surface with respect to carbon black having a hydrophobic surface. Compared to black, it has the disadvantage that the dispersibility of silica is poor. Therefore, in the conjugated diene rubber material containing silica, it is necessary to separately contain a silane coupling agent or the like in order to impart a bond between the silica and the rubber material and improve dispersibility.
- a conjugated diene rubber material having a functional group highly reactive with silica introduced at the molecular terminal proceeds with the silica particles during the kneading process, but increases the torque when the reaction proceeds slowly.
- a modified conjugated diene-based polymer that can be easily processed, particularly a mixer composition is kneaded with a filler, and a rubber composition with good dispersibility of the filler can be obtained in a short time.
- the purpose is to provide.
- the present inventors have introduced a modified conjugated diene system in which a functional group having affinity or reactivity with a filler is introduced into a molecule of a conjugated diene polymer.
- the polymer has a weight average molecular weight and a molecular weight distribution in a specific range, and in a molecular weight curve by GPC (gel permeation chromatography), the modification rate of a component having a molecular weight that is 1 ⁇ 2 of the peak top molecular weight is denatured.
- a modified conjugated diene polymer that has a predetermined value or more compared to the overall modification rate of the conjugated diene polymer and has a nitrogen content within a specific range can solve the above-described problems of the prior art. As a result, the present invention has been completed. That is, the present invention is as follows.
- the weight average molecular weight is 20 ⁇ 10 4 or more and 300 ⁇ 10 4 or less
- the modification ratio with respect to the total amount of the conjugated diene polymer is 50% by mass or more
- a modified conjugated diene polymer, wherein the content of nitrogen contained in the modified conjugated diene polymer is 3 mass ppm or more and 70 mass ppm or less.
- the nitrogen and silicon contents contained in the modified conjugated diene polymer are each 3 ppm by mass or more, The modified conjugated diene polymer according to any one of [1] to [4], wherein a molar ratio of nitrogen to silicon is 1.1 or more and less than 10.
- the nitrogen and silicon contents contained in the modified conjugated diene polymer are each 3 ppm by mass or more, The modified conjugated diene polymer according to any one of [1] to [4], wherein a molar ratio of nitrogen to silicon is 0.1 or more and less than 0.9.
- the glass transition temperature of the modified conjugated diene polymer is ⁇ 20 ° C. or higher and 0 ° C. or lower.
- the glass transition temperature of the modified conjugated diene polymer is ⁇ 50 ° C. or higher and lower than ⁇ 20 ° C.
- the modified conjugated diene polymer has a glass transition temperature of ⁇ 70 ° C. or higher and lower than ⁇ 50 ° C.
- a rubber composition comprising:
- a modified conjugated diene-based polymer can be provided.
- the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
- the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
- the present invention can be implemented with appropriate modifications within the scope of the gist thereof.
- the modified conjugated diene polymer of this embodiment is The weight average molecular weight is 20 ⁇ 10 4 or more and 300 ⁇ 10 4 or less, The molecular weight distribution Mw / Mn is 1.6 or more and 4.0 or less, A modified conjugated diene polymer having a modification rate of 50% by mass or more based on the total amount of the conjugated diene polymer, The denaturation rate of the component having a molecular weight that is 1 ⁇ 2 of the molecular weight of the peak top in the gel permeation chromatography (GPC) curve, or the molecular weight of the peak top that is the minimum when there are multiple peak tops, It is 1/2 or more of the modification rate relative to the total amount of the conjugated diene polymer, The content of nitrogen contained in the modified conjugated diene polymer is 3 ppm or more and 70 ppm or less.
- the modification rate relative to the total amount of the conjugated diene polymer is 50% by mass or more, preferably 60% by mass or more, and more preferably 70% by mass or more.
- the modification rate represents the content of the polymer component having a specific functional group having affinity or binding reactivity to the filler in the polymer molecule with respect to the total amount of the conjugated diene polymer in mass%.
- the polymer component having a specific functional group having affinity or binding reactivity to the filler in the polymer molecule is preferably a polymer having a functional group containing a nitrogen atom, a silicon atom, or an oxygen atom. More preferably, it is a modified conjugated diene polymer having the functional group at the end of the polymer.
- the modification rate can be measured by chromatography capable of separating the contained modified component and non-modified component.
- the denaturation rate is calculated by calculating the difference between the chromatogram measured with the polystyrene gel column and the chromatogram measured with the silica column of the sample solution containing the measurement sample and the low molecular weight internal standard polystyrene. It can be calculated by measuring the amount of adsorption on the surface.
- the modification rate can be measured by the method described in Examples described later.
- the modification rate of the modified conjugated diene polymer of the present embodiment relative to the total amount of the conjugated diene polymer can be controlled within the above numerical range by controlling the amount of the modifier added to the polymer and the polymerization temperature. Specifically, the modification rate increases by increasing the addition amount of the modifier and / or lowering the polymerization temperature.
- Modification rate of low molecular weight components The inventor of the present invention has found that the modification rate differs for each molecular weight region depending on the polymer by measuring the modification rate in each molecular weight region in the molecular weight curve by GPC. Further, the modification rate of a component having a molecular weight that is 1/2 the molecular weight of the peak top of the GPC curve (hereinafter sometimes referred to as a low molecular weight component) is 1 / of the modification rate of the entire modified conjugated diene polymer.
- the modified conjugated diene polymer that is 2 or more has a specific performance as compared with a modified conjugated diene polymer in which the modification rate of the low molecular weight component is lower than 1/2 of the modification rate of the whole modified conjugated diene polymer. I found it excellent.
- the modified conjugated diene polymer of the present embodiment has a peak top molecular weight of one peak in the GPC curve, and the peak top molecular weight having the smallest molecular weight in the presence of a plurality of peak tops.
- the modification rate of a component having a molecular weight of 1/2 (low molecular weight component) (hereinafter sometimes referred to as “1/2 modification rate”) is 1/2 of the modification rate relative to the total amount of the conjugated diene polymer. That's it. Preferably it is 0.55 or more, More preferably, it is 0.57 or more.
- a modified conjugated diene-based polymer having good processability in particular a kneading with a filler
- a rubber composition with good dispersibility of the filler can be obtained in a shorter time than before. Coalescence can be obtained.
- the degree of modification differs for each molecular weight region depending on the polymer, the following is an example of how torque is transmitted when the polymer and filler are kneaded. The present invention has been completed by finding the mechanism.
- the Mooney viscosity, the microstructure, the modifier used, the kneading conditions, etc. of the polymer were the same.
- a polymer having a high modification rate relative to the total amount of the conjugated diene polymer (modification rate of 50% or more) is higher in torque when kneaded with a filler than a polymer having a low modification rate.
- the maximum value that the torque reaches is also high, the time taken to reach the maximum value of the torque is almost the same even if the overall modification rate changes.
- the modification rate of the entire polymer affects both the maximum value of torque and the rate of increase in torque, so that even if the modification rate as a whole increases or decreases, the time until the maximum value of torque is reached. It seems that there is not much influence on the length.
- the modification rate of the low molecular weight component that is, the 1/2 modification rate
- the rate of increase in torque is slow, and the rate of increase in torque becomes faster as the 1/2 modification rate is higher than the modification rate relative to the total amount of the conjugated diene polymer.
- the rate of torque increase is also affected by the modification rate with respect to the total amount of the conjugated diene polymer.
- the "1 / modification rate with respect to the total amount of the conjugated diene polymer” is “1 / The higher the “2 modification rate”, the faster the torque increase speed. That is, the effect of the “1 ⁇ 2 modification rate” relative to the “modification rate relative to the total amount of the conjugated diene polymer” on the torque increase rate is independent of the “modification rate relative to the total amount of the conjugated diene polymer”. It is constant.
- the maximum value of the torque is determined depending on the modification rate of the whole modified conjugated diene polymer, it does not change depending on the 1/2 modification rate, that is, it does not depend on the 1/2 modification rate, and the 1/2 modification rate. The higher the is, the shorter the time until the maximum value of torque is reached. For this reason, the time to reach the maximum value of the torque is controlled by the height of the 1/2 modification rate relative to the modification rate relative to the total amount of the conjugated diene polymer, regardless of the modification rate relative to the total amount of the conjugated diene polymer. can do.
- the torque of the mixer is improved when kneading with the workability, particularly with the filler. It often takes, and the dispersibility of the filler becomes better in a shorter time than before. As a result, it is possible to minimize the heat deterioration that occurs in the polymer during kneading, and it is possible to reduce the heat stabilizer to be blended because the heat deterioration is difficult.
- the modification rate of the low molecular weight component is at least 1/2 of the modification rate relative to the total amount of the conjugated diene polymer
- the modified conjugated diene polymer of this embodiment is a vulcanized composition
- the degree of freedom in designing the composition to obtain a rubber composition with excellent fuel economy for tires is increased.
- processing problems such as difficulty in kneading with a filler or the like may occur.
- a technique for improving the processability of the modified conjugated diene polymer even if a modified conjugated diene polymer having a higher degree of branching and / or a higher molecular weight is used, there is a problem in the kneading process or the like.
- production is prevented and it becomes easy to adjust the composition more suitable for a tire as a result.
- the modification rate of the molecular weight component that is 1 ⁇ 2 of the molecular weight of the peak top in the GPC curve, that is, the modification rate of the low molecular weight component is It is assumed that the denaturation rate is 1 ⁇ 2 or more of the total amount of coalescence.
- the modified conjugated diene polymer of the present embodiment can be obtained by a polymerization method in which the growth reaction is stopped or chain transfer is extremely small. Therefore, ultra-high purity of monomers and solvents to be introduced into the polymerization reactor, low-temperature polymerization, and 99 It can be achieved with a monomer conversion of less than% by weight.
- the modified conjugated diene polymer of the present embodiment can also be obtained by kneading a modified conjugated diene polymer having a high molecular weight and a modified conjugated diene polymer having a low molecular weight.
- the modification rate for each molecular weight component can be measured by chromatography capable of separating a functional group-containing modified component and a non-modified component.
- chromatography capable of separating a functional group-containing modified component and a non-modified component.
- a column for gel permeation chromatography using a polar substance such as silica adsorbing a specific functional group as a packing material is used, and the internal standard of the non-adsorbing component is used for comparison. A method is mentioned.
- the denaturation rate for each molecular weight component is obtained by measuring the molecular weight component of a chromatogram measured with a polystyrene gel column and a chromatogram measured with a silica column of a sample solution containing a measurement sample and a low molecular weight internal standard polystyrene. It can be obtained by measuring the amount of adsorption to the silica column from the difference for each.
- the modification rate can be measured by the method described in Examples described later.
- the modification rate of the component having a molecular weight which is 1 ⁇ 2 of the molecular weight of the peak top in the GPC curve is introduced into the reactor. It is effective to adopt a method of increasing the purity of the monomer and the solvent and reducing the amount of terminals deactivated during the polymerization.
- the content of nitrogen contained in the modified conjugated diene polymer is 3 ppm or more and 70 ppm or less, preferably 6 ppm or more and 60 ppm or less, more preferably 10 ppm or more and 50 ppm or less. It is.
- the nitrogen content is 3 ppm or more, when a vulcanized product is obtained, the balance between low hysteresis loss and wet skid resistance is excellent.
- the nitrogen content is 70 ppm or less, it is possible to suppress a decrease in rigidity due to excessive dispersion of silica when a compound is formed.
- the nitrogen content tends to be 3 ppm or more.
- the ratio of nitrogen contained in the modifier is too high, when the amount of nitrogen-containing modifier added is too much with respect to the polymer chain, or when nitrogen is bonded to both the polymerization start terminal and the polymerization end terminal, etc.
- the nitrogen content tends to exceed 70 ppm. Therefore, the nitrogen content in the modified conjugated diene polymer can be adjusted by appropriately adjusting the ratio of nitrogen contained in the modifier, the amount of the nitrogen-containing modifier added, and the amount of modifier attached to the polymerization terminal. Can be controlled to 70 ppm or less.
- the modified conjugated diene polymer of the present embodiment has a weight average molecular weight of 20 ⁇ 10 4 or more and 300 ⁇ 10 4 or less, preferably 30 ⁇ 10 4 or more and 270 ⁇ 10 4 or less, more preferably 40 ⁇ 10 4 or more and 250 ⁇ 10 4 or less.
- the weight average molecular weight is 20 ⁇ 10 4 or more and 300 ⁇ 10 4 or less, the balance between the low hysteresis loss property and the wet skid resistance and the wear resistance when used as a vulcanized product are excellent.
- the weight average molecular weight of the modified conjugated diene polymer can be controlled within the above numerical range by adjusting the amount of the polymerization initiator relative to the monomer. Specifically, the weight average molecular weight can be lowered by increasing the amount of the polymerization initiator relative to the monomer.
- the weight average molecular weight of the modified conjugated diene polymer can be measured by the method described in Examples described later.
- the molecular weight distribution Mw / Mn represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 1.6 or more and 4.0 or less.
- a modified conjugated diene polymer having a molecular weight distribution in this range tends to be more excellent in processability when a vulcanized product is used than a polymer having a similar molecular weight and modification rate.
- they are 1.8 or more and 3.0 or less, More preferably, they are 1.9 or more and 2.5 or less.
- Such a modified conjugated diene polymer having a molecular weight distribution can be preferably obtained by continuous polymerization.
- the molecular weight distribution is preferably a monomodal shape in the molecular weight curve by GPC, or a trapezoidal or continuous peak shape in the case of multiple peaks.
- the continuous peak type means a shape in which the lowest height between the peaks is 50% or more of the peak heights on both sides.
- a modified conjugated diene polymer having such a molecular weight distribution tends to be more excellent in processability when a vulcanized product is obtained.
- the modified conjugated diene polymer of the present embodiment is 0.3% by mass of a modified conjugated diene polymer having a molecular weight of 2,000,000 to 5,000,000 (hereinafter also referred to as “specific high molecular weight component”). It is preferable that the content is 20% by mass or less. Thereby, when it is set as a vulcanizate, it exists in the tendency which is excellent by the balance of low hysteresis loss property and wet skid resistance, and abrasion resistance.
- the content of the specific high molecular weight component is more preferably 1.0% by mass or more and 18% by mass or less, and further preferably 2.0% by mass or more and 15% by mass or less.
- the amount used as a polymerization initiator of an organic monolithium compound described later may be adjusted, In the polymerization step described later, it is preferable to select a method having a residence time distribution, that is, a method of widening the time distribution of the growth reaction, regardless of whether the polymerization method is continuous or batch.
- a tank reactor with a stirrer is used, a method of using this as a backmix reactor of a type in which this is vigorously mixed with a stirrer, preferably a method of using as a fully mixed reactor, A method of recirculating a part using a reactor, a method of providing an inlet in the middle of the polymerization vessel in addition to or near the monomer inlet as a polymerization initiator feed site, and a tank type and a tube type reactor The method used in combination is mentioned. According to these methods, the residence time distribution can be increased, and a polymer component having a long residence time can be used as a high molecular weight component.
- a polymerization initiator feed method is continuously or intermittently from the start of polymerization to the middle of polymerization, continuously at the start of polymerization and / or during the polymerization. Or the method of feeding intermittently is mentioned.
- the polymer polymerized from the polymerization start point when the polymerization initiator is fed first becomes a high molecular weight component, and a difference in molecular weight occurs between the polymer polymerized later. More specifically, if the amount of the polymerization initiator corresponding to the target molecular weight is continuously fed to the monomer, for example, at a conversion rate of 0 to 95% by mass, an expanded molecular weight distribution can be obtained.
- the activity ratio of the living end of the conjugated diene polymer before the modification step tends to be high, and the coupling rate after coupling, that is, the modified conjugated diene polymer having a high modification rate. Tends to be obtained.
- a method of using a tank reactor with a stirrer as a backmix reactor in which vigorous mixing is performed with a stirrer is more preferable.
- the “molecular weight” is a standard polystyrene equivalent molecular weight obtained by GPC (gel permeation chromatography). A number average molecular weight, a weight average molecular weight, and molecular weight distribution can be measured by the method as described in the Example mentioned later.
- a modified conjugated diene polymer having a shrinkage factor (g ′) measured using 3D-GPC of 0.86 or more and 1.0 or less is preferred.
- the shrinkage factor (g ′) serves as an index of the branched structure of the modified conjugated diene copolymer, and the modified conjugated diene polymer having a shrinkage factor (g ′) of 0.86 or more and 1.0 or less is a modified diene-based polymer.
- the contraction factor (g ′) is more preferably from 0.88 to 0.99, and even more preferably from 0.90 to 0.98.
- a modifier having 3 or less reaction points with the living active terminal is added to the total number of moles of the polymerization initiator.
- a method of obtaining a modified conjugated diene copolymer having 3 branches or less by adding at a mole number of 1/3 or more is effective.
- a preferable example is one having a shrinkage factor (g ′) measured using 3D-GPC of 0.30 or more and less than 0.86.
- a modified conjugated diene-based polymer has a rubber composition with a filler added with a significantly reduced viscosity, and has extremely excellent processability.
- the shrinkage factor (g ′) serves as an index of the branched structure of the modified conjugated diene copolymer, and the modified conjugated diene polymer having a shrinkage factor (g ′) of 0.30 or more and less than 0.86 is a modified diene-based polymer.
- a modified conjugated diene copolymer having a shrinkage factor (g ′) within the above range for example, a modifier having 4 or more reaction points with the living active terminal is added to the total number of moles of the polymerization initiator.
- a method of obtaining a modified conjugated diene copolymer having four or more branches by adding it in a mole number of 1/4 or less is effective.
- the modified conjugated diene polymer of the present embodiment preferably has a shrinkage factor (g ′) measured using 3D-GPC of 0.30 or more and 0.70 or less.
- a modified conjugated diene polymer has a lower viscosity of the composition to which the filler has been added, and the processability is further improved.
- the shrinkage factor (g ′) serves as an index of the branched structure of the modified conjugated diene copolymer, and as a modified conjugated diene polymer having a shrinkage factor (g ′) of 0.30 or more and 0.70 or less,
- the diene polymer is a modified conjugated diene polymer in which the number of branches in one molecule is 5 or more.
- a modifier having 5 or more reaction points with the living active terminal is added to the total number of moles of the polymerization initiator.
- a method of obtaining a modified conjugated diene copolymer having 5 or more branches by adding at a mole number of 1/5 or less is effective.
- the shrinkage factor (g ′) measured by GPC-light scattering measurement with a viscosity detector is This is an index of the number of branches of the modified conjugated diene polymer.
- the number of branches of the modified conjugated diene polymer for example, the number of branches of the star polymer (also referred to as “number of arms of the star polymer”)
- the number of branches of the star polymer increases. There is a tendency.
- the contraction factor (g ′) decreases as the branch of the modified conjugated diene polymer increases. It can be used as an index of degree. Contractile factor (g ′) is measured using 3D-GPC measurements.
- the range of M is input from 1000 to 20000000, and a graph of the relationship between standard intrinsic viscosity [ ⁇ ] 0 and molecular weight M is created.
- the intrinsic viscosity [ ⁇ ] at each molecular weight M of the sample obtained by 3D-GPC measurement is expressed as the relation of the intrinsic viscosity [ ⁇ ] to the standard intrinsic viscosity [ ⁇ ] 0 [ ⁇ ] / [ ⁇ ] 0 is calculated with each molecular weight M, and the average value is defined as a contraction factor (g ′). More specifically, it can be measured by the method described in Examples described later.
- the modified conjugated diene polymer of the present embodiment is preferably a modified conjugated diene system in which a modifier residue having an affinity or reactivity functional group is bound to the filler at the polymerization initiation terminal and / or termination terminal. It is a polymer. That is, the modified conjugated diene polymer of the present embodiment comprises a modifier residue having a functional group and a conjugated diene polymer chain.
- the modifier residue in the modified conjugated diene polymer of the present embodiment is a constituent unit of the modified conjugated diene polymer bonded to the conjugated diene polymer chain.
- the conjugated diene polymer described later It is a structural unit derived from a modifying agent, which is produced by reacting the modifying agent with a modifying agent.
- the modifier residue has a specific functional group having affinity or binding reactivity with the filler.
- the modified conjugated diene polymer of the present embodiment is a modified conjugated diene polymer in which a functional group is bonded to the polymerization initiation terminal
- the modified conjugated diene polymer includes a polymerization initiator having a functional group. It can obtain by performing a polymerization reaction using.
- the specific functional group having affinity or binding reactivity with the filler preferably includes a functional group containing a nitrogen atom or a silicon atom. More preferably, the ratio of the number of moles of nitrogen atoms to the number of moles of silicon atoms in the modified conjugated diene polymer, that is, the mole ratio of N / Si is preferably 0.1 to 10.0, more preferably 0.2 to 7.0.
- N / Si is in the above range, the affinity with the silica-based filler is particularly good, the hysteresis loss of the rubber composition using the silica-based filler is small, and the rubber composition for a fuel-efficient tire is good. Performance.
- the functional group containing a silicon atom examples include, but are not limited to, a methoxysilyl group, an ethoxysilyl group, and a propoxysilyl group.
- a functional group containing a nitrogen atom although not limited to the following, a secondary amino group, a tertiary amino group, etc. are mentioned, for example.
- the modified conjugated diene polymer of the present embodiment is preferably a modified conjugated diene polymer having a functional group containing a nitrogen atom in the polymer molecule.
- the functional group containing a nitrogen atom is particularly preferably one in which the nitrogen atom contains at least a —NH— type secondary amine.
- the hysteresis loss of the rubber composition using silica-based filler and carbon black as the filler is low, and good performance as a fuel-efficient tire composition is exhibited.
- the modifier residue has a silicon atom, it is preferable that at least one of the silicon atoms constitutes an alkoxysilyl group or silanol group having 1 to 20 carbon atoms. This tends to improve the dispersibility of the filler and improve the fuel efficiency.
- the ends of a plurality of conjugated diene polymer chains may be bonded to one silicon atom.
- the terminal of the conjugated diene polymer chain and an alkoxy group or a hydroxyl group may be bonded to one silicon atom, and as a result, the one silicon atom may constitute an alkoxysilyl group or a silanol group.
- the conjugated diene polymer before modification of the modified conjugated diene polymer of the present embodiment is obtained by polymerizing at least a conjugated diene compound, and if necessary, both the conjugated diene compound and the vinyl-substituted aromatic compound are used together. Obtained by polymerization.
- the conjugated diene compound is not particularly limited as long as it is a polymerizable monomer, but is preferably a conjugated diene compound containing 4 to 12 carbon atoms per molecule, more preferably a conjugated diene containing 4 to 8 carbon atoms. A compound.
- conjugated diene compounds include, but are not limited to, for example, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 3-methyl-1 , 3-pentadiene, 1,3-hexadiene, 1,3-heptadiene.
- 1,3-butadiene and isoprene are preferable from the viewpoint of industrial availability. These may be used alone or in combination of two or more.
- the vinyl-substituted aromatic compound is not particularly limited as long as it is a monomer copolymerizable with a conjugated diene compound, but a monovinyl aromatic compound is preferable.
- Examples of the monovinyl aromatic compound include, but are not limited to, styrene, p-methylstyrene, ⁇ -methylstyrene, vinylethylbenzene, vinylxylene, vinylnaphthalene, and diphenylethylene.
- styrene is preferable from the viewpoint of industrial availability. These may be used alone or in combination of two or more.
- the modified conjugated diene polymer of the present embodiment is a butadiene-styrene random copolymer (SBR)
- the amount of bonded styrene is preferably 5% by mass to 50% by mass, and the amount of vinyl bond is 10 mol% to 75 mol%. preferable. If it is this range, SBR which can be adapted to all uses besides a tire is industrially obtained.
- the amount of bonded styrene is 25% by mass to 45% by mass and the amount of vinyl bond is 18 mol% to 30 mol%, a rubber composition having a small hysteresis loss and excellent wear resistance can be obtained.
- the rubber composition blended with natural rubber has a low hysteresis loss and excellent strength.
- a rubber composition is obtained.
- the amount of bound styrene is mass% of styrene in all monomer components, and the amount of vinyl bonds is mol% of vinyl bond components in the butadiene component.
- the glass transition temperature of the modified conjugated diene polymer of the present embodiment is the temperature at which the molecular chain of the modified conjugated diene polymer starts to rotate, and greatly affects fuel economy and wet grip properties. .
- Tg is the temperature at which the molecular chain of the modified conjugated diene polymer starts to rotate
- Tg is the temperature at which the molecular chain of the modified conjugated diene polymer starts to rotate
- Tg is the temperature at which the molecular chain of the modified conjugated diene polymer starts to rotate, and greatly affects fuel economy and wet grip properties. .
- Tg is the temperature at which the molecular chain of the modified conjugated diene polymer starts to rotate
- Tg is the temperature at which the molecular chain of the modified conjugated diene polymer starts to rotate
- Tg is the temperature at which the molecular chain of the modified conjugated diene polymer starts to rotate
- Tg is the temperature at which the molecular chain of the modified conjugated dien
- the modified conjugated diene polymer of the present embodiment has a Tg of ⁇ 50 ° C. or more and less than ⁇ 20 ° C. as another preferable embodiment. As a result, the balance between fuel efficiency and wet grip is extremely excellent. This modified conjugated diene polymer is extremely useful for summer tires and all-season tires.
- the modified conjugated diene-based polymer of the present embodiment has a Tg of ⁇ 70 ° C. or higher and lower than ⁇ 50 ° C. as another preferable embodiment.
- This modified conjugated diene polymer is extremely useful for winter tires. In addition, it is used for blending various tire treads in order to improve wear resistance.
- the Tg of the modified conjugated diene polymer can be controlled within the desired range described above by adjusting the styrene content and / or the 1,2-vinyl bond content. Specifically, Tg can be increased by increasing the styrene content and the 1,2-vinyl bond content.
- the Tg of the modified conjugated diene polymer can be measured according to ISO 22768: 2006.
- the modified conjugated diene polymer of the present embodiment is a butadiene-styrene random copolymer (SBR)
- SBR butadiene-styrene random copolymer
- the modified conjugated diene may be obtained by a method using ozonolysis known as Tanaka et al. (Polymer, 22, 1721 (1981)).
- the amount of isolated styrene is 40% by mass or more based on the total amount of styrene bonded, and the chain styrene structure having 8 or more styrene chains is 5% by mass. % Or less is preferable.
- a rubber composition for a fuel-saving tire with excellent performance in which the obtained vulcanized rubber has particularly small hysteresis loss, is obtained.
- the modified conjugated diene polymer of the present embodiment is obtained by subjecting the modified conjugated diene polymer or the conjugated diene polymer before modification to hydrogenation in an inert solvent. Also good. Thereby, all or a part of the double bond can be converted into a saturated hydrocarbon. In such a case, the heat resistance and weather resistance are improved, the product can be prevented from being deteriorated when processed at a high temperature, and the exercise performance as rubber tends to be improved. As a result, it exhibits even better performance in various applications such as automobile applications.
- the hydrogenation rate of the unsaturated double bond based on the conjugated diene compound can be arbitrarily selected according to the purpose and is not particularly limited.
- the hydrogenation rate of the conjugated diene part in the conjugated diene polymer is preferably 3.0 mol% or more and 70 mol% or less, and preferably 5.0 mol% or more and 65 mol% or less. More preferably, it is 10 mol% or more and 60 mol% or less. In particular, heat resistance and exercise performance tend to be improved by selectively hydrogenating vinyl groups.
- the hydrogenation rate can be determined by a nuclear magnetic resonance apparatus (NMR).
- the modified conjugated diene polymer of the present embodiment may be an oil-extended polymer to which an extending oil is added.
- the modified conjugated diene polymer of this embodiment has a Mooney viscosity measured at 100 ° C. It is preferably 20 or more and 100 or less, and more preferably 30 or more and 80 or less.
- the Mooney viscosity can be measured by the method described in Examples described later.
- the modified conjugated diene polymer of the present embodiment has a nitrogen content of 3 mass ppm to 70 mass ppm, preferably 6 mass ppm to 60 mass ppm, more preferably 10 mass ppm or more. It is 50 mass ppm or less.
- the content of nitrogen is 3 mass ppm or more, when a vulcanized product is obtained, the balance between low hysteresis loss and wet skid resistance is excellent.
- the nitrogen content is 70 mass ppm or less, it is possible to suppress a decrease in rigidity due to excessive dispersion of silica when a compound is formed.
- the nitrogen and silicon contents are each preferably 3 mass ppm or more, more preferably 7 mass ppm or more from the viewpoint of improving fuel economy. More preferably, it is 10 mass ppm or more. It is considered that the modified conjugated diene copolymer of the present embodiment is physically adsorbed by nitrogen when kneaded with a filler and chemically bonded by silicon. In the modified conjugated diene copolymer of this embodiment, the molar ratio of nitrogen and silicon contained is important, and the molar ratio of nitrogen to silicon (N / Si) is 1.1 or more and less than 10.
- silica can be dispersed in a short time during kneading, more preferably 1.3 or more and 7 or less, and further preferably 1.5 or more and 5 or less.
- the reason why the N / Si molar ratio is preferably in the above range is that the physical ratio of nitrogen to silicon is equal to or greater than equimolar because physical adsorption by nitrogen has a higher reaction rate than chemical bonding by silicon. It is estimated that it is preferable.
- the modified conjugated diene copolymer of the present embodiment may be one in which the molar ratio of nitrogen to silicon (N / Si) is 0.1 or more and less than 0.9.
- the molar ratio of nitrogen to silicon is 0.1 or more and less than 0.9.
- the silicon content is preferably 7 ppm by mass or more.
- the molar ratio of nitrogen to silicon in the modified conjugated diene copolymer of the present embodiment can be controlled by a modifier used for the modification reaction of the conjugated diene copolymer.
- a modifier used for the modification reaction of the conjugated diene copolymer For example, it is possible to increase the molar ratio of nitrogen to silicon in the modified conjugated diene copolymer by increasing the molar ratio of nitrogen to silicon in the modifier.
- the modified conjugated diene polymer of the present embodiment is preferably represented by the following general formula (I).
- D 1 represents a diene polymer chain
- R 1 to R 3 each independently represents a single bond or an alkylene group having 1 to 20 carbon atoms
- R 4 and R 7 each represents Independently represents an alkyl group having 1 to 20 carbon atoms
- R 5 , R 8 and R 9 each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
- R 6 and R 10 are Each independently represents an alkylene group having 1 to 20 carbon atoms
- R 11 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
- m and x represent an integer of 1 to 3, x ⁇ m, p represents 1 or 2, y represents an integer of 1 to 3, y ⁇ (p + 1), z is 1 Or represents the integer of 2.
- R 1 to R 11 , m, p, x, y, and z are each independent.
- i represents an integer of 0 to 6
- j represents an integer of 0 to 6
- k represents an integer of 0 to 6
- (i + j + k) represents an integer of 1 to 10
- ((x ⁇ i) + (Y ⁇ j) + (z ⁇ k)) is an integer of 1 to 30.
- A has a hydrocarbon group having 1 to 20 carbon atoms, or at least one atom selected from the group consisting of an oxygen atom, a nitrogen atom, a silicon atom, a sulfur atom, and a phosphorus atom, and has active hydrogen. Represents an organic group that does not. However, when (i + j + k) is 1, A may be absent. As a result, the modified conjugated diene polymer tends to be more excellent in balance between low hysteresis loss and wet skid resistance and wear resistance when formed into a vulcanized product.
- A represents any one of the following general formulas (II) to (V).
- B 1 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms
- a represents an integer of 1 to 10
- B 1 is independently selected when a plurality of B 1 are present. ing.
- B 2 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms
- B 3 represents an alkyl group having 1 to 20 carbon atoms
- a represents an integer of 1 to 10
- B 2 and B 3 are each independent when a plurality of B 2 and B 3 are present.
- B 4 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, a represents an integer of 1 to 10, and each B 4 is independently selected when a plurality of B 4 are present. Yes.
- B 5 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms
- a represents an integer of 1 to 10
- each independently Yes when it is set as a vulcanizate, it exists in the tendency for it to be excellent by the balance of low hysteresis loss property and wet skid resistance, and abrasion resistance. Moreover, it tends to be easily available for practical use.
- the production method of the modified conjugated diene polymer of the present embodiment is preferably a polymerization step of polymerizing at least a conjugated diene compound using an organic monolithium compound as a polymerization initiator to obtain a conjugated diene polymer;
- a conjugated diene compound is polymerized using an organic monolithium compound as a polymerization initiator to obtain a conjugated diene polymer.
- the modified conjugated diene polymer of this embodiment has a molecular weight component that is 1 ⁇ 2 of the molecular weight of the peak top in the GPC curve, that is, the modification rate of the low molecular weight component is 1 of the modification rate relative to the total amount of the conjugated diene polymer. / 2 or more.
- the modification rate of the low molecular weight component is 1 of the modification rate relative to the total amount of the conjugated diene polymer. / 2 or more.
- the total amount of impurities in the monomer components used is preferably 30 ppm or less, and the content concentration (mass) of impurities such as allenes, acetylenes, primary and secondary amines is 20 ppm or less for allenes. It is preferably 10 ppm or less, acetylenes are preferably 20 ppm or less, more preferably 10 ppm or less, and the primary and secondary amines have a total nitrogen content of 4 ppm or less. It is preferably 2 ppm or less.
- Examples of allenes include, but are not limited to, propadiene and 1,2-butadiene.
- Examples of acetylenes include, but are not limited to, ethyl acetylene and vinyl acetylene.
- Examples of primary and secondary amines include, but are not limited to, methylamine and dimethylamine.
- Ultra-high purity of the monomer and solvent can be achieved by sufficiently purifying all of the monomer and solvent used for the polymerization.
- 1,3-butadiene containing a polymerization inhibitor is washed with low oxygen water having an oxygen concentration of less than 2 mg / L as washing water, and then 1,3-butadiene is washed. The method of removing the polymerization inhibitor in butadiene is mentioned.
- styrene which is a monomer
- phenylacetylenes and the like that may adversely affect anionic polymerization.
- a method of removing phenylacetylenes for example, a method of performing a hydrogenation reaction using a palladium-supported alumina catalyst can be mentioned.
- purifying normal hexane which is a polymerization solvent
- it is important to remove moisture that may adversely affect anionic polymerization examples include a method using ⁇ -alumina, synthetic zeolite and the like.
- the synthetic zeolite preferably has a large pore diameter, more preferably has a pore diameter of 0.35 nm or more, and further preferably 0.42 nm or more.
- the polymerization temperature is preferably as low as possible from the standpoint of stopping the growth reaction or chain transfer, but from the viewpoint of productivity, the polymerization temperature is preferably a temperature at which the living anion polymerization sufficiently proceeds, specifically It is preferably 0 ° C. or higher, and preferably 80 ° C. or lower. More preferably, it is 50 degreeC or more and 75 degrees C or less. Moreover, it is preferable to make the conversion rate of the whole monomer react with a modifier
- the monomer remains in the polymerization vessel, a modifier is added, and the growing polymer chain is allowed to react with the modifier while the monomer is not consumed.
- the formation of coalescence and the occurrence of other side reactions can be suppressed. More preferably, the conversion is less than 98% by mass.
- the conjugated diene polymer may be a random copolymer or a block copolymer. In order to make the conjugated diene polymer into a rubbery polymer, it is preferable to use 40% by mass or more, and 55% by mass or more of the conjugated diene compound based on the whole monomer of the conjugated diene polymer. More preferred.
- the random copolymer is not limited to the following, but for example, a random copolymer comprising two or more conjugated diene compounds such as a butadiene-isoprene random copolymer, a butadiene-styrene random copolymer, and an isoprene-styrene.
- a random copolymer comprising a conjugated diene of a butadiene-isoprene-styrene random copolymer and a vinyl-substituted aromatic compound.
- the composition distribution of each monomer in the copolymer chain is not particularly limited. For example, a completely random copolymer close to a statistical random composition, a taper (gradient) random in which the composition is distributed in a tapered shape. A copolymer is mentioned.
- the bonding mode of the conjugated diene that is, the composition of 1,4-bonds, 1,2-bonds, etc. may be uniform or distributed.
- the block copolymer is not limited to the following, but for example, a 2 type block copolymer (diblock) consisting of 2 blocks, a 3 type block copolymer (triblock) consisting of 3 blocks, 4 4 type block copolymer (tetrablock) which consists of a piece is mentioned.
- the polymer constituting one block may be a polymer composed of one type of monomer or a copolymer composed of two or more types of monomers.
- a polymer block composed of 1,3-butadiene is represented by “B”
- a copolymer of 1,3-butadiene and isoprene is represented by “B / I”
- a copolymer of 1,3-butadiene and styrene is not limited to the following, but for example, a 2 type block copolymer (diblock) consisting of 2 blocks, a 3 type block copolymer (triblock) consisting of 3 blocks, 4 4 type block copolymer (
- the polymerization initiator it is preferable to use at least an organic monolithium compound.
- organic monolithium compounds include, but are not limited to, low molecular compounds and solubilized oligomeric organic monolithium compounds.
- examples of the organic monolithium compound include a compound having a carbon-lithium bond, a compound having a nitrogen-lithium bond, and a compound having a tin-lithium bond in the bonding mode between the organic group and the lithium.
- the amount of the organic monolithium compound used as a polymerization initiator can be appropriately determined depending on the molecular weight of the target conjugated diene polymer or modified conjugated diene polymer.
- the amount of the monomer such as a conjugated diene compound used relative to the amount of the polymerization initiator is related to the degree of polymerization, that is, it tends to be related to the number average molecular weight and / or the weight average molecular weight. Therefore, in order to increase the molecular weight of the conjugated diene polymer, it is preferable to adjust in the direction of decreasing the polymerization initiator, and in order to decrease the molecular weight, it is preferable to adjust in the direction of increasing the amount of polymerization initiator.
- the organic monolithium compound is preferably an alkyllithium compound having a substituted amino group or a dialkylaminolithium.
- a conjugated diene polymer having a nitrogen atom composed of an amino group at the polymerization initiation terminal is obtained.
- the substituted amino group is an amino group having no active hydrogen or having a structure in which active hydrogen is protected.
- the alkyllithium compound having a substituted amino group not having active hydrogen is not limited to the following, but examples thereof include 3-dimethylaminopropyllithium, 3-diethylaminopropyllithium, 4- (methylpropylamino) butyllithium, 4 -Hexamethyleneiminobutyllithium.
- the alkyllithium compound having a substituted amino group having a structure in which active hydrogen is protected is not limited to the following, and examples thereof include 3-bistrimethylsilylaminopropyllithium and 4-trimethylsilylmethylaminobutyllithium.
- dialkylamino lithium examples include, but are not limited to, lithium dimethylamide, lithium diethylamide, lithium dipropylamide, lithium dibutylamide, lithium di-n-hexylamide, lithium diheptylamide, lithium diisopropylamide, lithium dioctylamide Lithium-di-2-ethylhexylamide, lithium didecylamide, lithium ethylpropylamide, lithium ethylbutyramide, lithium ethylbenzylamide, lithium methylphenethylamide, lithium hexamethyleneimide, lithium pyrrolidide, lithium piperidide, Lithium heptamethyleneimide, lithium morpholide, 1-lithioazacyclooctane, 6-lithio-1,3,3-trimethyl-6-azabicycl [3.2.1] octane, and 1-lithio-1,2,3,6-tetrahydropyridine.
- organic monolithium compounds having a substituted amino group are obtained by reacting a small amount of a polymerizable monomer, for example, a monomer such as 1,3-butadiene, isoprene, or styrene, solubilized oligomeric organic monolithium. It can also be used as a compound.
- the organic monolithium compound is preferably an alkyllithium compound. In this case, a conjugated diene polymer having an alkyl group at the polymerization initiation terminal is obtained.
- alkyl lithium compound examples include, but are not limited to, n-butyl lithium, sec-butyl lithium, tert-butyl lithium, n-hexyl lithium, benzyl lithium, phenyl lithium, and stilbene lithium.
- alkyllithium compound n-butyllithium and sec-butyllithium are preferable from the viewpoints of industrial availability and ease of control of the polymerization reaction.
- These organic monolithium compounds may be used alone or in combination of two or more.
- the organic monolithium compound may be used in combination with other organometallic compounds.
- organometallic compounds include, but are not limited to, alkaline earth metal compounds, alkali metal compounds other than lithium, and other organometallic compounds.
- alkaline earth metal compound include, but are not limited to, organic magnesium compounds, organic calcium compounds, and organic strontium compounds. Also included are alkaline earth metal alkoxides, sulfonates, carbonates and amide compounds.
- Examples of the organic magnesium compound include dibutyl magnesium and ethyl butyl magnesium.
- organometallic compounds include organoaluminum compounds.
- the polymerization reaction mode in the polymerization step is not limited to the following, and examples thereof include a batch type (also referred to as “batch type”) and a continuous polymerization reaction mode.
- a batch type also referred to as “batch type”
- a continuous polymerization reaction mode one or two or more connected reactors can be used.
- the continuous reactor for example, a tank type with a stirrer or a tube type is used.
- a monomer, an inert solvent, and a polymerization initiator are continuously fed to the reactor to obtain a polymer solution containing the polymer in the reactor. The solution is drained.
- a tank type equipped with a stirrer is used as the batch reactor.
- the monomer, inert solvent, and polymerization initiator are fed and, if necessary, the monomer is added continuously or intermittently during the polymerization and contains the polymer in the reactor.
- a polymer solution is obtained, and after completion of the polymerization, the polymer solution is discharged.
- the polymer in order to obtain a conjugated diene polymer having a high proportion of active ends, the polymer is continuously discharged and subjected to the next reaction in a short time. It is preferable to carry out the polymerization step in a continuous manner.
- the inert solvent include hydrocarbon solvents such as saturated hydrocarbons and aromatic hydrocarbons.
- the hydrocarbon solvent include, but are not limited to, aliphatic hydrocarbons such as butane, pentane, hexane, and heptane; alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclopentane, and methylcyclohexane; Examples include hydrocarbons composed of aromatic hydrocarbons such as benzene, toluene, xylene and mixtures thereof.
- a conjugated diene polymer having a high concentration of active terminals tends to be obtained, and modification with a high modification rate
- a conjugated diene polymer is preferred because it tends to be obtained.
- a polar compound may be added.
- the aromatic vinyl compound and the conjugated diene compound can be copolymerized at random, and the polar compound tends to be used as a vinylating agent for controlling the microstructure of the conjugated diene part.
- the polymerization reaction tends to be effective.
- polar compounds include, but are not limited to, tetrahydrofuran, diethyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol dibutyl ether, dimethoxybenzene, 2,2-bis (2-oxolanyl).
- Ethers such as propane; Tertiary amine compounds such as tetramethylethylenediamine, dipiperidinoethane, trimethylamine, triethylamine, pyridine, quinuclidine; potassium-tert-amylate, potassium-tert-butyrate, sodium-tert-butyrate, Alkali metal alkoxide compounds such as sodium amylate; and phosphine compounds such as triphenylphosphine It is. These polar compounds may be used alone or in combination of two or more.
- the usage-amount of a polar compound is not specifically limited, although it can select according to the objective etc., it is preferable that they are 0.01 mol or more and 100 mol or less with respect to 1 mol of polymerization initiators.
- An appropriate amount of such a polar compound (vinylating agent) can be used as a regulator of the microstructure of the polymer conjugated diene moiety depending on the desired vinyl bond amount.
- Many polar compounds simultaneously have an effective randomizing effect in the copolymerization of conjugated diene compounds and aromatic vinyl compounds, and tend to be used to adjust the distribution of aromatic vinyl compounds and adjust the amount of styrene block It is in.
- the total amount of styrene and a part of 1,3-butadiene may be used together.
- a method in which a polymerization reaction is started and the remaining 1,3-butadiene is intermittently added during the copolymerization reaction may be used.
- the conjugated diene-based polymer before the reaction step described later obtained in the polymerization step preferably has a Mooney viscosity measured at 110 ° C. of 10 or more and 90 or less, more preferably 15 or more and 85 or less, and still more preferably. Is 20 or more and 60 or less.
- Mooney viscosity measured at 110 ° C. of 10 or more and 90 or less, more preferably 15 or more and 85 or less, and still more preferably. Is 20 or more and 60 or less.
- the modified conjugated diene polymer of this embodiment tends to be excellent in workability and wear resistance.
- the amount of bound conjugated diene in the modified conjugated diene polymer of the present embodiment is not particularly limited, but is preferably 40% by mass or more and 100% by mass or less, and more preferably 55% by mass or more and 80% by mass or less. preferable.
- the amount of bonded aromatic vinyl in the modified conjugated diene polymer of the present embodiment is not particularly limited, but is preferably 0% by mass to 60% by mass, and more preferably 20% by mass to 45% by mass. It is more preferable.
- the amount of bound conjugated diene and amount of bound aromatic vinyl is within the above ranges, the balance between low hysteresis loss and wet skid resistance, fracture characteristics, and wear resistance are more excellent when vulcanized. There is a tendency.
- the amount of bonded aromatic vinyl can be measured by ultraviolet absorption of a phenyl group, and the amount of bonded conjugated diene can also be obtained from this. Specifically, it can measure according to the method as described in the Example mentioned later.
- the vinyl bond amount in the conjugated diene bond unit is not particularly limited, but is preferably 10 mol% or more and 75 mol% or less, and 20 mol% or more and 65 mol% or less. It is more preferable that When the vinyl bond amount is in the above range, when a vulcanized product is used, the balance between low hysteresis loss and wet skid resistance, wear resistance and fracture strength tend to be more excellent.
- the branched modified diene polymer is a copolymer of butadiene and styrene, it is determined by the method of Hampton (RR Hampton, Analytical Chemistry, 21, 923 (1949)) in the butadiene bond unit.
- the vinyl bond amount (1,2-bond amount) can be determined. Specifically, it can measure by the method as described in the Example mentioned later.
- the amount of each bond in the modified conjugated diene polymer of the present embodiment is in the numerical range described above, and the glass transition temperature of the modified conjugated diene polymer is ⁇ 50.
- the temperature is in the range of not lower than -20 ° C. and lower than ⁇ 20 ° C., a further excellent vulcanizate tends to be obtained due to the balance between low hysteresis loss and wet skid resistance.
- the glass transition temperature according to ISO 22768: 2006, a DSC curve is recorded while raising the temperature in a predetermined temperature range, and the peak top (Inflection point) of the DSC differential curve is set as the glass transition temperature. Specifically, it can measure by the method as described in the Example mentioned later.
- the number of blocks in which 30 or more aromatic vinyl units are linked may be small or not. preferable. More specifically, when the copolymer is a butadiene-styrene copolymer, the Kolthoff method (method described in IM KOLTHOFF, et al., J. Polym. Sci. 1, 429 (1946)). In the known method for analyzing the amount of polystyrene insoluble in methanol, the block in which 30 or more aromatic vinyl units are linked is preferably 5.0 relative to the total amount of the copolymer. It is not more than mass%, more preferably not more than 3.0 mass%.
- Modification process In the modification step, it has a conjugated diene polymer obtained by the method as described above, a linking group that reacts with the active terminal of the conjugated diene polymer, and has an affinity or binding reactivity for the filler. A modifying agent having a predetermined functional group is reacted. Moreover, it is preferable to implement a modification
- a linear terminal-modified diene polymer is obtained, and when a polyfunctional compound having a linking group of three or more is used, a branched modification is obtained.
- a diene polymer is obtained.
- a monofunctional or polyfunctional compound containing at least one element of nitrogen, silicon, tin, phosphorus, oxygen, sulfur, and halogen is preferably used.
- an onium structure can be introduced into the modified conjugated diene polymer by adding a terminal modifier containing an onium generator and reacting it.
- a modifier containing a plurality of functional groups containing these elements in the molecule or a modifier containing a functional group containing a plurality of these elements can also be used.
- the modifier those having a functional group with little or no active hydrogen such as a hydroxyl group, a carboxyl group, a primary and secondary amino group are preferable. Active hydrogen tends to deactivate the active terminal of the conjugated diene polymer.
- nitrogen-containing compounds include, but are not limited to, isocyanate compounds, isothiocyanate compounds, isocyanuric acid derivatives, nitrogen group-containing carbonyl compounds, nitrogen group-containing vinyl compounds, and nitrogen group-containing epoxy compounds. It is done.
- the silicon-containing compound include, but are not limited to, a halogenated silicon compound, an epoxidized silicon compound, a vinylated silicon compound, an alkoxysilicon compound, and an alkoxysilicon compound containing a nitrogen-containing group.
- the tin-containing compound include, but are not limited to, a tin halide compound and an organotin carboxylate compound.
- Examples of phosphorus-containing compounds include, but are not limited to, phosphite compounds and phosphino compounds.
- Examples of the oxygen-containing compound include, but are not limited to, an epoxy compound, an ether compound, and an ester compound.
- Examples of sulfur-containing compounds include, but are not limited to, mercapto group derivatives, thiocarbonyl compounds, and isothiocyanates.
- Examples of the halogen-containing compound include, but are not limited to, the above-mentioned silicon halide compounds and tin halide compounds.
- a protected amine compound capable of forming a primary or secondary amine (producing ammonium), a protected phosphine compound capable of forming hydrophosphine (generating phosphonium), a hydroxyl group, and a thiol are formed.
- a terminal modifier having functional groups in the molecule for binding the onium generator and the modified conjugated diene polymer examples include carbonyl groups (ketones, esters, etc.), unsaturated groups such as vinyl groups, epoxy groups, halogenated silicon groups, and alkoxysilicon groups.
- the modifier preferably has a nitrogen-containing functional group, and the nitrogen-containing functional group is preferably an amine compound having no active hydrogen.
- the nitrogen-containing functional group is preferably an amine compound having no active hydrogen.
- a tertiary amine compound the above active hydrogen as a protecting group.
- examples thereof include substituted protected amine compounds and imine compounds represented by the general formula —N ⁇ C.
- Examples of the isocyanate compound of the nitrogen-containing compound that is a modifier include, but are not limited to, for example, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane diisocyanate, polymeric Examples thereof include diphenylmethane diisocyanate (C-MDI), phenyl isocyanate, isophorone diisocyanate, hexamethylene diisocyanate, butyl isocyanate, 1,3,5-benzenetriisocyanate and the like.
- C-MDI diphenylmethane diisocyanate
- phenyl isocyanate phenyl isocyanate
- isophorone diisocyanate hexamethylene diisocyanate
- butyl isocyanate 1,3,5-benzenetriisocyanate and the like.
- Examples of the isocyanuric acid derivative include, but are not limited to, 1,3,5-tris (3-trimethoxysilylpropyl) isocyanurate, 1,3,5-tris (3-triethoxysilylpropyl), for example.
- Isocyanurate, 1,3,5-tri (oxiran-2-yl) -1,3,5-triazinan-2,4,6-trione, 1,3,5-tris (isocyanatomethyl) -1 examples include 3,5-triazinan-2,4,6-trione, 1,3,5-trivinyl-1,3,5-triazinan-2,4,6-trione, and the like.
- nitrogen group-containing carbonyl compound examples include, but are not limited to, for example, 1,3-dimethyl-2-imidazolidinone, 1-methyl-3-ethyl-2-imidazolidinone, 1-methyl- 3- (2-methoxyethyl) -2-imidazolidinone, N-methyl-2-pyrrolidone, N-methyl-2-piperidone, N-methyl-2-quinolone, 4,4′-bis (diethylamino) benzophenone, 4,4'-bis (dimethylamino) benzophenone, methyl-2-pyridyl ketone, methyl-4-pyridyl ketone, propyl-2-pyridyl ketone, di-4-pyridyl ketone, 2-benzoylpyridine, N, N, N ', N'-tetramethylurea, N, N-dimethyl-N', N'-diphenylurea, methyl N, N-diethylcarbamate
- nitrogen group-containing vinyl compound examples include, but are not limited to, N, N-dimethylacrylamide, N, N-dimethylmethacrylamide, N-methylmaleimide, N-methylphthalimide, N, N-bis. Trimethylsilylacrylamide, morpholinoacrylamide, 3- (2-dimethylaminoethyl) styrene, (dimethylamino) dimethyl-4-vinylphenylsilane, 4,4'-vinylidenebis (N, N-dimethylaniline), 4,4'- Examples thereof include vinylidene bis (N, N-diethylaniline), 1,1-bis (4-morpholinophenyl) ethylene, 1-phenyl-1- (4-N, N-dimethylaminophenyl) ethylene and the like.
- nitrogen group-containing epoxy compound examples include, but are not limited to, an epoxy group-containing hydrocarbon compound bonded to an amino group, and may further have an epoxy group bonded to an ether group.
- R is a divalent or higher valent hydrocarbon group, or a polar group having oxygen such as ether, epoxy or ketone, a polar group having sulfur such as thioether or thioketone, a tertiary amino group, or an imino.
- the divalent or higher valent hydrocarbon group is a hydrocarbon group that may be saturated or unsaturated, linear, branched, or cyclic, and includes an alkylene group, an alkenylene group, a phenylene group, and the like. Preferably, it is a hydrocarbon group having 1 to 20 carbon atoms.
- R 1 and R 4 are hydrocarbon groups having 1 to 10 carbon atoms, and R 1 and R 4 may be the same or different from each other.
- R 2 and R 5 are hydrogen or a hydrocarbon group having 1 to 10 carbon atoms, and R 2 and R 5 may be the same as or different from each other.
- R 3 is a hydrocarbon group having 1 to 10 carbon atoms or a structure of the following formula (2).
- R 1 , R 2 and R 3 may have a cyclic structure bonded to each other. Further, when R 3 is a hydrocarbon group, it may be a cyclic structure bonded to R. In the case of the above cyclic structure, N and R bonded to R 3 may be directly bonded.
- n is an integer of 1 or more
- m is 0 or an integer of 1 or more.
- R 1, R 2 is R 1, R 2 the same definition in the formula (1), R 1, R 2 may be the being the same or different.
- the nitrogen group-containing epoxy compound used as the modifier is preferably one having an epoxy group-containing hydrocarbon group, more preferably one having a glycidyl group-containing hydrocarbon group.
- the epoxy group-containing hydrocarbon group bonded to an amino group or an ether group include a glycidylamino group, a diglycidylamino group, and a glycididoxy group.
- a more preferable molecular structure is an epoxy group-containing compound having a glycidylamino group or a diglycidylamino group and a glycididoxy group, and examples thereof include compounds represented by the following general formula (3).
- R is defined in the same manner as R in the formula (1), and R 6 is a hydrocarbon group having 1 to 10 carbon atoms or a structure of the following formula (4).
- R 6 is a hydrocarbon group, it may be bonded to R to form a cyclic structure, and in that case, N and R bonded to R 6 may be directly bonded to each other.
- n is an integer of 1 or more
- m is 0 or an integer of 1 or more.
- the nitrogen group-containing epoxy compound used as the modifier is most preferably a compound having at least one diglycidylamino group and at least one glycidoxy group in the molecule.
- the nitrogen group-containing epoxy compound used as the modifier is not limited to the following, but examples include N, N-diglycidyl-4-glycidoxyaniline, 1-N, N-diglycidylaminomethyl-4-glycidoxy- Cyclohexane, 4- (4-glycidoxyphenyl)-(N, N-diglycidyl) aniline, 4- (4-glycidoxyphenoxy)-(N, N-diglycidyl) aniline, 4- (4-glycidoxy) Benzyl)-(N, N-diglycidyl) aniline, 4- (N, N′-diglycidyl-2-piperazinyl) -glycidoxybenzene, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N , N, N
- silicon halide compound that is a modifier examples include, but are not limited to, dibutyldichlorosilane, methyltrichlorosilane, dimethyldichlorosilane, methyldichlorosilane, trimethylchlorosilane, tetrachlorosilane, and tris (trimethylsiloxy).
- Chlorosilane tris (dimethylamino) chlorosilane, hexachlorodisilane, bis (trichlorosilyl) methane, 1,2-bis (trichlorosilyl) ethane, 1,2-bis (methyldichlorosilyl) ethane, 1,4-bis (trichlorosilyl) ) Butane, 1,4 bis (methyldichlorosilyl) butane, and the like.
- Examples of the epoxidized silicon compound as a modifier include, but are not limited to, for example, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyl Examples include diethoxysilane and epoxy-modified silicone.
- alkoxysilicon compound that is a modifier examples include, but are not limited to, tetramethoxysilane, tetraethoxysilane, triphenoxymethylsilane, methoxy-substituted polyorganosiloxane, and the like.
- alkoxysilicon compound containing a nitrogen-containing group as a modifier examples include, but are not limited to, for example, 3-dimethylaminopropyltrimethoxysilane, 3-dimethylaminopropylmethyldimethoxysilane, 3-diethylaminopropyltrimethylsilane.
- a compound having an unsaturated bond and a protected amine in the molecule is not limited to the following, but for example, 4 , 4'-vinylidenebis [N, N-bis (trimethylsilyl) aniline], 4,4'-vinylidenebis [N, N-bis (triethylsilyl) aniline], 4,4'-vinylidenebis [N, N- Bis (t-butyldimethylsilyl) aniline], 4,4′-vinylidenebis [N-methyl-N- (trimethylsilyl) aniline], 4,4′-vinylidenebis [N-ethyl-N- (trimethylsilyl) aniline] 4,4′-vinylidenebis [N-methyl-N- (triethylsilyl) aniline], 4,4′-vinylidenebis [N-methyl-N- (triethylsilyl) aniline], 4,4′-vinylidenebis [N-methyl-N- (
- a compound having alkoxysilane and protected amine in the molecule is not limited to the following, but for example, N, N-bis (trimethylsilyl) aminopropyltrimethoxysilane, N, N-bis (trimethylsilyl) aminopropylmethyldimethoxysilane, N, N-bis (trimethylsilyl) aminopropyltriethoxysilane, N, N-bis (trimethylsilyl) aminopropyl Methyldiethoxysilane, N, N-bis (trimethylsilyl) aminoethyltrimethoxysilane, N, N-bis (trimethylsilyl) aminoethylmethyldiethoxysilane, N, N-bis (triethylsilyl) aminopropylmethyldiethoxysilane, 3- (4-Trimethyl) Silyl-1-piperazino) propyltriethoxysilane
- tin halide compounds that are modifiers include, but are not limited to, tetrachlorotin, tetrabromotin, trichlorobutyltin, trichlorooctyltin, dibromodimethyltin, dichlorodibutyltin, chlorotributyltin, chlorotrioctyl Tin, chlorotriphenyltin, 1,2-bis (trichlorostannyl) ethane, 1,2-bis (methyldichlorostannyl) ethane, 1,4-bis (trichlorostannyl) butane, 1,4bis (methyl) And dichlorostannyl) butane.
- organotin carboxylate compound that is a modifier examples include, but are not limited to, for example, ethyltin tristearate, butyltin trioctanoate, butyltin tristearate, butyltin trilaurate, dibutyltin bisoctanoate. Eate.
- phosphite compound that is a modifier examples include, but are not limited to, trimethyl phosphite, tributyl phosphite, triphenoxide phosphite and the like.
- phosphino compound that is a modifier examples include, but are not limited to, for example, P, P-bis (trimethylsilyl) phosphinopropyltrimethoxysilane, P, P-bis (triethylsilyl) phosphinopropylmethyl Protected phosphino compounds such as ethoxysilane, 3-dimethylphosphinopropyltrimethoxysilane, 3-diphenylphosphinopropyltrimethoxysilane and the like.
- oxygen-containing compound as a modifier examples include, but are not limited to, for example, polyglycidyl ethers such as ethylene glycol diglycidyl ether and glycerin triglycidyl ether, 1,4-diglycidylbenzene, 1,3,3 Examples include 5-triglycidylbenzene, polyepoxidized liquid polybutadiene, epoxidized soybean oil, epoxidized linseed oil, and other polyepoxy compounds, dimethyl adipate, diethyl adipate, dimethyl terephthalate, diethyl terephthalate, and the like. These produce hydroxyl groups at the polymer ends.
- sulfur-containing compound that is a modifier examples include, but are not limited to, a protected thiol compound such as S-trimethylsilylthiopropyltrimethoxysilane, S-triethylsilylthiopropylmethyldiethylsilane, S- Methylthiopropyltrimethoxysilane, S-ethylthiopropylmethyldiethoxysilane, ethyl N, N-diethyldithiocarbamate, phenylisothiocyanate, phenyl-1,4-diisothiocyanate, hexamethylenediisothiocyanate, Examples thereof include butyl isothiocyanate.
- a protected thiol compound such as S-trimethylsilylthiopropyltrimethoxysilane, S-triethylsilylthiopropylmethyldiethylsilane, S- Methylthiopropyltri
- the modifier preferably has a silicon-containing functional group, and the silicon-containing functional group preferably has an alkoxysilyl group or a silanol group.
- the alkoxysilyl group possessed by the modifier reacts with, for example, the active terminal of the conjugated diene polymer to dissociate alkoxylithium, thereby bonding the terminal of the conjugated diene polymer chain to the silicon of the modifier residue. Tend to form.
- a value obtained by subtracting the number of SiORs reduced by the reaction from the total number of SiORs in one molecule of the modifier is the number of alkoxysilyl groups in the modifier residue.
- the azasilacycle group possessed by the modifier forms a> N—Li bond and a bond between the conjugated diene polymer terminal and the modifier residue silicon.
- > N—Li bonds tend to easily become> NH and LiOH due to water or the like at the time of finishing.
- unreacted remaining alkoxysilyl groups tend to easily become silanols (Si—OH groups) due to water during finishing.
- the modification step when using a modifier having three alkoxy groups for one silicon atom, that is, when reacting the active terminal of 3 moles of conjugated diene polymer with 1 mole of trialkoxysilane groups, Although the reaction with up to 2 mol of the conjugated diene polymer occurs, 1 mol of the alkoxy group tends to remain unreacted. This is confirmed by the fact that 1 mol of the conjugated diene polymer remains as an unreacted polymer without reacting. In addition, by making many alkoxy groups react, there exists a tendency which can suppress that a polymer viscosity changes greatly resulting from causing a condensation reaction at the time of finishing and storage. Preferably, a modifier having one alkoxysilyl group per silicon atom is used.
- the reaction temperature in the modification step is preferably the same as the polymerization temperature of the conjugated diene polymer, and a temperature at which heating is not performed after the polymerization is particularly preferable. It is more preferably 0 ° C. or higher and 120 ° C. or lower, and further preferably 50 ° C. or higher and 100 ° C. or lower.
- the reaction time in the denaturation step is preferably 10 seconds or longer, more preferably 30 seconds or longer.
- any mixing method such as mechanical stirring or stirring with a static mixer may be applied.
- the modification step is also preferably continuous.
- the reactor in the denaturation step for example, a tank type with a stirrer or a tube type is used.
- the modifier may be continuously supplied to the reactor after being diluted with an inert solvent.
- the reaction process may be carried out by transferring the modifier to another polymerization reactor, or by introducing the modifier into the polymerization reactor.
- R 12 to R 14 each independently represents a single bond or an alkylene group having 1 to 20 carbon atoms
- R 15 to R 18 and R 20 each independently represent 1 to carbon atoms
- 20 represents an alkyl group
- R 19 and R 22 each independently represents an alkylene group having 1 to 20 carbon atoms
- R 21 represents an alkyl group having 1 to 20 carbon atoms or a trialkylsilyl group
- m represents an integer of 1 to 3
- p represents 1 or 2.
- A has a single bond, a hydrocarbon group having 1 to 20 carbon atoms, or at least one atom selected from the group consisting of an oxygen atom, a nitrogen atom, a silicon atom, a sulfur atom, and a phosphorus atom; It represents an organic group that does not have.
- the hydrocarbon group represented by A includes saturated, unsaturated, aliphatic, and aromatic hydrocarbon groups.
- the organic group having no active hydrogen is an organic group that inactivates the active terminal of the conjugated diene polymer.
- A As the organic group, there is no functional group having an active hydrogen such as a hydroxyl group (—OH), a secondary amino group (> NH), a primary amino group (—NH 2 ), or a sulfhydryl group (—SH). It is a group.
- a hydroxyl group —OH
- a secondary amino group > NH
- a primary amino group —NH 2
- a sulfhydryl group —SH
- A may be absent.
- A preferably represents any one of the following general formulas (II) to (V).
- B 1 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms
- a represents an integer of 1 to 10
- B 1 is independently selected when a plurality of B 1 are present. ing.
- B 2 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms
- B 3 represents an alkyl group having 1 to 20 carbon atoms
- a represents an integer of 1 to 10
- B 2 and B 3 are each independent when a plurality of B 2 and B 3 are present.
- B 4 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, a represents an integer of 1 to 10, and each B 4 is independently selected when a plurality of B 4 are present. Yes.
- B 5 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms
- a represents an integer of 1 to 10
- each independently Yes when a plurality of B 5 are present, each independently Yes.
- Examples of the modifier of formula (VI) wherein (i + j + k) is 1 to 2 include those overlapping with the above-described modifiers, and are not limited to the following, for example, 3-dimethoxymethylsilylpropyl Dimethylamine (monofunctional), 3-trimethoxysilylpropyldimethylamine (bifunctional), bis (3-trimethoxysilylpropyl) methylamine (tetrafunctional), bis (3-dimethoxymethylsilylpropyl) methylamine (bifunctional) ), (3-trimethoxysilylpropyl)-[3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] ethylamine (tetrafunctional), [3- (2,2-dimethoxy-1 -Aza-2-silacyclopentane) propyl]-(3-trimethoxysilylpropyl) methylamine (tetrafunctional), bis [3- ( , 2-Dime
- (i + j + k) is 3 or more
- the modifier in the case where A is represented by the formula (II) in the formula (VI) is not limited to the following, for example, Tris (3-trimethoxysilylpropyl) amine, bis (3-trimethoxysilylpropyl)-[3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] amine, bis [3- ( 2,2-dimethoxy-1-aza-2-silacyclopentane) propyl]-(3-trimethoxysilylpropyl) amine, tris [3- (2,2-dimethoxy-1-aza-2-silacyclopentane) Propyl] amine, tris (3-ethoxysilylpropyl) amine, bis (3-triethoxysilylpropyl)-[3- (2,2-diethoxy-1-aza-2- Lacyclopentane) prop
- the modifying agent when A is represented by the formula (III) is not limited to the following.
- the modifying agent when A is represented by the formula (IV) is not limited to the following, but examples include tetrakis [3- (2,2-dimethoxy-1-aza-2). -Silacyclopentane) propyl] silane, tris [3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl]-(3-trimethoxysilylpropyl) silane, tris [3- (2, 2-dimethoxy-1-aza-2-silacyclopentane) propyl]-[3- (1-methoxy-2-trimethylsilyl-1-sila-2-azacyclopentane) propyl] silane, bis (3-trimethoxysilyl Propyl) -bis [3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] silane, (3-trimethoxysilyl)-[3- (1-methoxy -2-Trifluoride,
- the modifying agent when A is represented by the formula (V) is not limited to the following.
- the modifying agent in the case where A represents an organic group having an oxygen atom and no active hydrogen is not limited to the following, but for example, (3-tri Methoxysilylpropyl)-[3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] ether (tetrafunctional), 3,4,5-tris (3-trimethoxysilylpropyl) -cyclohexyl -[3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] ether (octafunctional).
- the modifier when A represents an organic group having a phosphorus atom and no active hydrogen, the modifier is not limited to the following, but for example, (3-trimethoxy Silylpropyl) phosphate, bis (3-trimethoxysilylpropyl)-[3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] phosphate, bis [3- (2,2-dimethoxy- 1-aza-2-silacyclopentane) propyl]-(3-trimethoxysilylpropyl) phosphate, tris [3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] phosphate .
- A preferably represents the formula (II) or the formula (III), and k represents 0.
- Such modifiers are not limited to the following, but include, for example, bis (3-trimethoxysilylpropyl)-[3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] Amine, tris (3-trimethoxysilylpropyl) amine, tris (3-triethoxysilylpropyl) amine, tris (3-trimethoxysilylpropyl)-[3- (2,2-dimethoxy-1-aza-2- Silacyclopentane) propyl] -1,3-propanediamine, tetrakis [3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] -1,3-propanediamine, tetrakis (3-tri Methoxysilylpropyl) -1,3-propanediamine, tetrakis (3-tri Methoxysilylpropyl) -1,3-propanediamine,
- Such modifiers are not limited to the following, but include, for example, tetrakis [3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] -1,3-propanediamine, tetrakis (3-trimethoxysilylpropyl) -1,3-propanediamine, tetrakis (3-trimethoxysilylpropyl) -1,3-bisaminomethylcyclohexane, N 1- (3- (bis (3- (trimethoxysilyl) ) propyl) amino) propyl) -N 1 - methyl -N 3 - (3- (methyl (3- (trimethoxysilyl) propyl) amino) propyl) -N 3 - (3- (trimethoxysilyl) propyl) - 1,3-propanediamine may be mentioned.
- the amount of the compound represented by the formula (VI) as the modifier can be adjusted so that the number of moles of the polymerization initiator to the number of moles of the modifier is reacted in a desired stoichiometric ratio. As a result, a desired degree of branching is achieved.
- the specific number of moles of the polymerization initiator is preferably 1.0 times mole or more, more preferably 2.0 times mole or more with respect to the mole number of the modifier.
- the number of functional groups ((m ⁇ 1) ⁇ i + p ⁇ j + k) of the modifying agent is preferably an integer of 1 to 10, and more preferably an integer of 2 to 10.
- the modified conjugated diene polymer of the present embodiment may be a conjugated diene portion hydrogenated.
- the method for hydrogenating the conjugated diene moiety is not particularly limited, and a known method can be used.
- a suitable hydrogenation method includes a method of hydrogenating by blowing gaseous hydrogen into the polymer solution in the presence of a catalyst.
- a catalyst for example, a heterogeneous catalyst such as a catalyst in which a noble metal is supported on a porous inorganic substance; a catalyst in which a salt such as nickel or cobalt is solubilized and reacted with organic aluminum or the like, or a metallocene such as titanocene is used. Examples thereof include homogeneous catalysts such as catalysts. Among these, titanocene catalysts are preferable from the viewpoint of selecting mild hydrogenation conditions.
- the hydrogenation of the aromatic group can be performed by using a noble metal supported catalyst.
- the hydrogenation catalyst is not limited to the following, but, for example, (1) a supported heterogeneous hydrogenation in which a metal such as Ni, Pt, Pd, or Ru is supported on carbon, silica, alumina, diatomaceous earth, or the like.
- a catalyst (2) a so-called Ziegler-type hydrogenation catalyst using an organic acid salt such as Ni, Co, Fe, Cr or a transition metal salt such as acetylacetone salt and a reducing agent such as organic aluminum, (3) Ti, Ru, Examples include so-called organometallic complexes such as organometallic compounds such as Rh and Zr.
- hydrogenation catalysts for example, JP-B-42-8704, JP-B-43-6636, JP-B-63-4841, JP-B-1-37970, JP-B-1-53851, Examples also include known hydrogenation catalysts described in Japanese Patent Publication No. 2-9041 and Japanese Patent Application Laid-Open No. 8-109219.
- a preferable hydrogenation catalyst includes a reaction mixture of a titanocene compound and a reducing organometallic compound.
- a deactivator, a neutralizing agent, and the like may be added to the modified conjugated diene polymer solution as necessary after the modification process.
- the quenching agent include, but are not limited to, water; alcohols such as methanol, ethanol, and isopropanol.
- the neutralizing agent include, but are not limited to, for example, carboxylic acids such as stearic acid, oleic acid, and versatic acid (a mixture of carboxylic acids having 9 to 11 carbon atoms, mainly 10 and having many branches). Acid; An aqueous solution of an inorganic acid, carbon dioxide gas.
- the modified conjugated diene polymer of the present embodiment preferably includes a rubber stabilizer from the viewpoint of preventing gel formation after polymerization and improving the stability during processing.
- a rubber stabilizer known ones can be used, and are not limited to the following.
- BHT 2,6-di-tert-butyl-4-hydroxytoluene
- n-octadecyl- Examples thereof include antioxidants such as 3- (4′-hydroxy-3 ′, 5′-di-tert-butylphenol) propinate and 2-methyl-4,6-bis [(octylthio) methyl] phenol.
- an extending oil can be added to the modified conjugated diene copolymer as necessary.
- the method of adding the extender oil to the modified conjugated diene polymer is not limited to the following method, but the extender oil is added to the polymer solution and mixed to obtain an oil-extended copolymer solution.
- the extending oil include aroma oil, naphthenic oil, paraffin oil, and the like. Among these, from the viewpoint of environmental safety, oil bleed prevention and wet grip characteristics, an aromatic substitute oil having a polycyclic aromatic (PCA) component of 3% by mass or less by the IP346 method is preferable.
- aroma substitute oil examples include TDAE (Treated Distillate Aromatic Extracts) and MES (Mil Extraction Solvate) such as RDAE (Karateschuk Kunststoffe 52 (12) 799 (1999)), RA (e.
- TDAE Teated Distillate Aromatic Extracts
- MES Mel Extraction Solvate
- RDAE Rasterschuk Kunststoffe 52 (12) 799 (1999)
- RA e.
- the addition amount of extending oil is not specifically limited, 10 mass parts or more and 60 mass parts or less are preferable with respect to 100 mass parts of modified conjugated diene polymers, and 20 mass parts or more and 37.5 mass parts or less are more preferable.
- the modified conjugated diene polymer of the present embodiment from the polymer solution, a known method can be used.
- the method for example, after separating the solvent by steam stripping or the like, the polymer is filtered and further dehydrated and dried to obtain the polymer, concentrated in a flushing tank, further vented extruder, etc. And a method of directly devolatilizing with a drum dryer or the like.
- the polymer composition of the present embodiment contains 10% by mass or more of the modified conjugated diene polymer of the present embodiment.
- the polymer composition of the present embodiment may contain a polymer other than the modified conjugated diene polymer of the present embodiment.
- examples of the polymer other than the modified conjugated diene polymer of the present embodiment include a rubbery polymer having a structure other than the structure of the modified conjugated diene polymer of the present embodiment (hereinafter referred to as “other rubbery polymer”). Or a resinous polymer.
- other rubbery polymers include, but are not limited to, for example, conjugated diene polymers or hydrogenated products thereof, random copolymers of conjugated diene compounds and vinyl aromatic compounds, or hydrogenated products thereof.
- a block copolymer of a conjugated diene compound and a vinyl aromatic compound or a hydrogenated product thereof, a non-diene polymer, and a natural rubber is not limited to the followings.
- butadiene rubber or a hydrogenated product thereof isoprene rubber or a hydrogenated product thereof
- styrene-butadiene rubber or a hydrogenated product thereof styrene-
- examples thereof include butadiene block copolymers or hydrogenated products thereof, styrenic elastomers such as styrene-isoprene block copolymers or hydrogenated products thereof, acrylonitrile-butadiene rubber or hydrogenated products thereof.
- non-diene polymer examples include, but are not limited to, olefins such as ethylene-propylene rubber, ethylene-propylene-diene rubber, ethylene-butene-diene rubber, ethylene-butene rubber, ethylene-hexene rubber, and ethylene-octene rubber.
- olefins such as ethylene-propylene rubber, ethylene-propylene-diene rubber, ethylene-butene-diene rubber, ethylene-butene rubber, ethylene-hexene rubber, and ethylene-octene rubber.
- Elastomer butyl rubber, brominated butyl rubber, acrylic rubber, fluoro rubber, silicone rubber, chlorinated polyethylene rubber, epichlorohydrin rubber, ⁇ , ⁇ -unsaturated nitrile-acrylate ester-conjugated diene copolymer rubber, urethane rubber, polysulfide rubber
- the natural rubber include, but are not limited to, the following:
- a solution of the modified conjugated diene polymer and a polymer other than the modified conjugated diene polymer of the present embodiment a solution of the modified conjugated diene polymer and Various methods such as a method of mixing a solution of another polymer and a method of mechanically mixing a modified conjugated diene polymer and another polymer can be mentioned.
- the other polymer described above may be a modified rubber provided with a functional group having polarity such as a hydroxyl group or an amino group. When used for tires, butadiene rubber, isoprene rubber, styrene-butadiene rubber, natural rubber, and butyl rubber are preferably used.
- the weight average molecular weight thereof is preferably 2,000 or more and 2,000,000 or less from the viewpoint of balance between performance and processing characteristics. More preferably, it is 5,000 or more and 1,500,000 or less.
- a low molecular weight rubbery polymer, so-called liquid rubber, can also be used.
- These other rubbery polymers may be used alone or in combination of two or more.
- the polymer composition of the present embodiment is a composition containing the modified conjugated diene polymer of the present embodiment and another rubbery polymer, the modification of the present embodiment with respect to other rubbery polymers.
- the content ratio (mass ratio) of the conjugated diene polymer is preferably 10/90 or more and 100/0 or less, (20/80 or more and 90/10 or less) as (modified conjugated diene polymer / other rubbery polymer). Is more preferable, and 50/50 or more and 80/20 or less is more preferable.
- the composition preferably contains the modified conjugated diene polymer of the present embodiment in an amount of 10 parts by mass or more and 100 parts by mass or less, more preferably 20 parts by mass with respect to the total amount of the composition (100 parts by mass). Part to 90 parts by mass, and more preferably 50 parts to 80 parts by mass.
- the content ratio of (modified conjugated diene polymer / other rubbery polymer) is within the above range, when a vulcanized product is used, the balance between low hysteresis loss and wet skid resistance is excellent, and wear resistance Satisfaction and fracture strength are also satisfied.
- the modified conjugated diene polymer of the present embodiment is suitably used as a vulcanizate.
- the vulcanizate include tires, hoses, shoe soles, vibration-insulating rubbers, automobile parts, and vibration-insulating rubbers, and also include resin-reinforced rubbers such as impact-resistant polystyrene and ABS resin.
- the modified conjugated diene polymer is suitably used for a tread rubber composition for tires.
- the vulcanized product may be, for example, a modified conjugated diene polymer of the present embodiment, if necessary, an inorganic filler such as a silica-based inorganic filler or carbon black, or a modified conjugated diene polymer of the present embodiment.
- the rubber composition of this embodiment includes 100 parts by mass of a rubber-like polymer containing 10% by mass or more of the modified conjugated diene copolymer of this embodiment and 5 to 150 parts by mass of a filler. Moreover, it is preferable that the said filler contains a silica type inorganic filler.
- the rubber composition of the present embodiment tends to be superior in processability when a vulcanized product is obtained by dispersing a silica-based inorganic filler. When the vulcanized product is used, the rubber composition has low hysteresis loss and wet skid. It tends to be more excellent in balance with resistance, fracture strength and wear resistance.
- a silica-based inorganic filler is included.
- the filler include, but are not limited to, silica-based inorganic filler, carbon black, metal oxide, and metal hydroxide. Among these, silica-based inorganic fillers are preferable. These may be used alone or in combination of two or more.
- the content of the filler in the rubber composition of the present embodiment is 5.0 parts by mass or more and 150 parts by mass or less with respect to 100 parts by mass of the rubber-like polymer including the modified conjugated diene polymer of the present embodiment. Yes, it is preferably 10 parts by mass or more and 120 parts by mass or less, and more preferably 20 parts by mass or more and 100 parts by mass or less.
- the content of the filler is 5.0 parts by mass or more from the viewpoint of the effect of adding the filler, and the filler is sufficiently dispersed, and the workability and mechanical strength of the rubber composition are practically sufficient. From the viewpoint of, it is 150 parts by mass or less.
- the silica-based inorganic filler is not particularly limited, but may be a known, solid particles preferably comprise SiO 2 or Si 3 Al as a constituent unit, the main structural units of SiO 2 or Si 3 Al Solid particles contained as a component are more preferable.
- the main component refers to a component contained in the silica-based inorganic filler in an amount of 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more.
- examples of the silica-based inorganic filler include, but are not limited to, inorganic inorganic substances such as silica, clay, talc, mica, diatomaceous earth, wollastonite, montmorillonite, zeolite, and glass fiber.
- the mixture of the silica type inorganic filler which hydrophobized the surface and the inorganic filler other than a silica type inorganic filler and a silica type is also mentioned.
- silica and glass fiber are preferable, and silica is more preferable from the viewpoints of strength and wear resistance.
- Examples of silica include dry silica, wet silica, and synthetic silicate silica.
- wet silica is preferable from the viewpoint of excellent balance between fracture property improvement effect and wet skid resistance.
- the nitrogen adsorption specific surface area determined by the BET adsorption method of the silica-based inorganic filler is 100 m 2 / g or more and 300 m 2 / preferably g or less, and more preferably less 170m 2 / g or more 250 meters 2 / g.
- a silica-based inorganic filler having a relatively small specific surface area for example, a specific surface area of 200 m 2 / g or less
- a silica-based filler having a relatively large specific surface area for example, 200 m 2 / g or more. Inorganic fillers
- the modified conjugated diene-based polymer improves the dispersibility of silica, There is an effect in improving the wearability, and there is a tendency that good fracture characteristics and low hysteresis loss can be well balanced.
- the content of the silica-based inorganic filler in the rubber composition is 5.0 parts by mass or more and 150 parts by mass, and 20 parts by mass or more with respect to 100 parts by mass of the rubber-like polymer including the modified conjugated diene polymer. The amount is preferably 100 parts by mass or less.
- the content of the silica-based inorganic filler is 5.0 parts by mass or more from the viewpoint of the effect of adding the inorganic filler, sufficiently disperse the inorganic filler, and improve the workability and mechanical strength of the rubber composition. From the viewpoint of making it practically sufficient, it is 150 parts by mass or less.
- the carbon black is not limited to the following, and examples thereof include carbon blacks of each class such as SRF, FEF, HAF, ISAF, and SAF. Among these, carbon black having a nitrogen adsorption specific surface area of 50 m 2 / g or more and a dibutyl phthalate (DBP) oil absorption of 80 mL / 100 g or less is preferable.
- the content of carbon black is preferably 0.5 parts by mass or more and 100 parts by mass or less, and 3.0 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the rubber-like polymer including the modified conjugated diene polymer. More preferably, it is more preferably 5.0 parts by mass or more and 50 parts by mass or less.
- the content of carbon black is preferably 0.5 parts by mass or more from the viewpoint of expressing the performance required for applications such as dry grip performance and conductivity, and from the viewpoint of dispersibility, 100 parts by mass. The following is preferable.
- the metal oxide refers to solid particles having the chemical formula MxOy (M represents a metal atom, and x and y each independently represents an integer of 1 to 6) as a main component of a structural unit.
- MxOy M represents a metal atom, and x and y each independently represents an integer of 1 to 6
- Examples of the metal oxide include, but are not limited to, alumina, titanium oxide, magnesium oxide, and zinc oxide.
- the metal hydroxide include, but are not limited to, aluminum hydroxide, magnesium hydroxide, and zirconium hydroxide.
- the rubber composition of this embodiment may contain a silane coupling agent.
- the silane coupling agent has a function to close the interaction between the rubber-like polymer and the inorganic filler, and has an affinity or binding group for each of the rubber-like polymer and the silica-based inorganic filler.
- the compound which has and has a sulfur bond part and an alkoxy silyl group or a silanol group part in 1 molecule is preferable.
- Examples of such compounds include bis- [3- (triethoxysilyl) -propyl] -tetrasulfide, bis- [3- (triethoxysilyl) -propyl] -disulfide, bis- [2- (triethoxy Silyl) -ethyl] -tetrasulfide.
- the content of the silane coupling agent is preferably 0.1 parts by mass or more and 30 parts by mass or less, more preferably 0.5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the inorganic filler described above. 0 to 15 parts by mass is more preferable. When the content of the silane coupling agent is in the above range, the addition effect of the silane coupling agent tends to be more remarkable.
- the rubber composition of the present embodiment may contain a rubber softener from the viewpoint of improving processability.
- a rubber softener mineral oil or a liquid or low molecular weight synthetic softener is suitable.
- Mineral oil-based rubber softeners called process oils or extender oils that are used to soften, increase volume and improve processability of rubbers are mixtures of aromatic, naphthenic and paraffin chains.
- a paraffin chain having 50% by mass or more of carbon atoms in the total carbon is called a paraffin type, and a naphthene ring carbon number of 30% by mass to 45% by mass of the total carbon is naphthenic or aromatic carbon. What occupies more than 30% by mass in the total carbon is called aromatic.
- the rubber softener to be used is one having an appropriate aromatic compound content and a copolymer. Is preferred because it tends to be familiar.
- the content of the rubber softener is preferably 0 parts by mass or more and 100 parts by mass or less, and more preferably 10 parts by mass or more and 90 parts by mass or less with respect to 100 parts by mass of the rubber-like polymer containing the modified conjugated diene polymer. Preferably, 30 parts by mass or more and 90 parts by mass or less are more preferable.
- the content of the softening agent for rubber is 100 parts by mass or less with respect to 100 parts by mass of the rubbery polymer, bleeding out is suppressed and stickiness on the surface of the rubber composition tends to be suppressed.
- silica inorganic fillers for the method of mixing the modified conjugated diene polymer and other rubbery polymers, silica inorganic fillers, carbon black and other fillers, silane coupling agents, rubber softeners, etc.
- silica inorganic fillers for example, an open roll, a Banbury mixer, a kneader, a single screw extruder, a twin screw extruder, a melt kneading method using a general mixer such as a multi-screw extruder, A method of removing the solvent by heating after dissolution and mixing can be mentioned.
- melt kneading method using a roll, a Banbury mixer, a kneader, and an extruder is preferable from the viewpoints of productivity and good kneading properties.
- any of a method of kneading the rubber-like polymer with other fillers, silane coupling agents, and additives at a time, and a method of mixing in multiple times can be applied.
- the rubber composition of the present embodiment may be a vulcanized composition that has been vulcanized with a vulcanizing agent.
- a vulcanizing agent include, but are not limited to, radical generators such as organic peroxides and azo compounds, oxime compounds, nitroso compounds, polyamine compounds, sulfur, and sulfur compounds.
- Sulfur compounds include sulfur monochloride, sulfur dichloride, disulfide compounds, polymeric polysulfur compounds, and the like.
- the content of the vulcanizing agent is preferably 0.01 parts by mass or more and 20 parts by mass or less, and more preferably 0.1 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the rubber-like polymer.
- the vulcanization temperature is preferably 120 ° C. or higher and 200 ° C. or lower, more preferably 140 ° C. or higher and 180 ° C. or lower.
- a vulcanization accelerator may be used as necessary.
- the vulcanization accelerator conventionally known materials can be used, and are not limited to the following materials. For example, sulfenamide, guanidine, thiuram, aldehyde-amine, aldehyde-ammonia, thiazole Thiourea and dithiocarbamate vulcanization accelerators.
- cure adjuvant although not limited to the following, For example, zinc white and a stearic acid are mentioned.
- the content of the vulcanization accelerator is preferably 0.01 parts by mass or more and 20 parts by mass or less, and more preferably 0.1 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the rubber component.
- other softening agents and fillers other than those described above, heat stabilizers, antistatic agents, weathering stabilizers, anti-aging agents, colorants, lubricants, as long as the purpose of the present embodiment is not impaired.
- Various additives such as these may be used.
- known softeners can be used.
- fillers examples include calcium carbonate, magnesium carbonate, aluminum sulfate, and barium sulfate.
- heat stabilizer antistatic agent, weather stabilizer, anti-aging agent, colorant, and lubricant, known materials can be used.
- the rubber composition of this embodiment is suitably used as a rubber composition for tires.
- the rubber composition of the present embodiment is not limited to the following.
- various tires such as fuel-saving tires, all-season tires, high-performance tires, studless tires: tires such as treads, carcass, sidewalls, and bead portions It can be used for each part.
- the rubber composition for tires containing the modified conjugated diene polymer of the present embodiment is excellent in balance between low hysteresis loss and wet skid resistance and wear resistance when used as a vulcanized product. Therefore, it is more suitably used as a fuel-saving tire and a tread for a high-performance tire.
- 1,3-butadiene used for the polymerization of the modified conjugated diene polymer was purified by the following steps.
- (Washing process) The operation was performed under conditions of a circulating water amount of 1 m 3 / hr and a renewal (make-up) water amount of 0.1 m 3 / hr.
- 1,3-butadiene and washing water are mixed using a static mixer (static mixer N60 series manufactured by Noritake Co., Ltd.), then transferred to a decanter, and 1,3-butadiene is mixed in the decanter.
- the phase and the aqueous phase were separated.
- the operation was performed under conditions of a liquid temperature of 30 ° C.
- the residence time of the 1,3-butadiene phase in the decanter was 30 minutes.
- the aqueous phase separated by the decanter is introduced into a de-1,3-butadiene tank, mixed with steam and heated to 89 ° C., and at the same time, the total pressure is 0.01 MPaG, and 1,3-butadiene is removed from the aqueous phase. separated.
- a 10% sodium hydroxide aqueous solution is mixed with 1,3-butadiene after the above (oxygen removal step using an oxygen scavenger) at a circulation flow rate of 1 m 3 / hr using a packed tower with a pole ring.
- Liquid-liquid extraction was performed and the mixture was further transferred to another decanter, and the 1,3-butadiene phase and the aqueous phase were separated by the other decanter.
- the residence time of the 1,3-butadiene phase in the other decanter was 60 minutes.
- the operation was performed under conditions of a liquid temperature of 30 ° C. and a decanter pressure of 1.0 MPaG.
- Styrene used for the polymerization of the modified conjugated diene polymer was purified by the following steps. ⁇ -alumina formed into a cylindrical shape of 3 mm ⁇ ⁇ 3 mm was impregnated with an aqueous solution of palladium chloride having a concentration of 0.6%, and dried at 100 ° C. for one day and night. Subsequently, the dried product was subjected to reduction treatment at a temperature of 400 ° C. for 16 hours under a hydrogen stream to obtain a hydrogenation catalyst having a composition of Pd (0.3%) / ⁇ -Al 2 O 3 . Purified styrene was obtained by charging 2000 g of the obtained catalyst into a tubular reactor and circulating for 8 hours while maintaining the temperature of the catalyst at 80 ° C.
- Normal hexane used for polymerization of the modified conjugated diene polymer was purified by the following steps. Purified normal hexane was obtained by charging 2000 g of molecular sieve 13-X (Union Showa) into a tubular reactor and circulating it at room temperature for 24 hours.
- Chromatogram was measured using a product name “HLC8020” manufactured by the company, and based on a calibration curve obtained using standard polystyrene, weight average molecular weight (Mw 1 ), number average molecular weight (Mn 1 ), molecular weight distribution (Mw 1 / Mn 1 ), the peak top molecular weight (Mp 1 ) of the modified conjugated diene polymer, and the ratio of the modified conjugated diene polymer having a molecular weight of 2 million to 5 million were determined.
- the eluent was THF (tetrahydrofuran).
- the molecular weight corresponding to the maximum value of the peak was calculated and used as the peak top molecular weight. Further, the ratio of the molecular weight of 2 million to 5 million was determined as the ratio of the mass of the molecular weight of 2 million to 5 million with respect to the total mass of the polymer.
- Glass transition temperature (Tg)> Using a modified conjugated diene-based polymer as a sample, in accordance with ISO 22768: 2006, a differential scanning calorimeter “DSC3200S” manufactured by Mac Science Co. was used. The DSC curve was recorded while the temperature was raised at, and the peak top of the DSC differential curve was taken as the glass transition temperature. Tg is a value obtained by measuring a sample before addition of oil.
- Modification rate relative to the total amount of the conjugated diene polymer was measured by applying the property of adsorbing the modified basic polymer component to a GPC column using a modified conjugated diene polymer as a measurement sample and a silica gel as a filler.
- the amount of adsorption to the silica column is measured from the difference between the chromatogram measured with the polystyrene column and the chromatogram measured with the silica column of the measurement sample solution containing the measurement sample and the low molecular weight internal standard polystyrene.
- the modification rate was determined. Specifically, it is as shown below.
- sample solution for measurement 10 mg of the measurement sample and 5 mg of standard polystyrene were dissolved in 20 mL of THF (tetrahydrofuran) to obtain a measurement sample solution.
- GPC measurement conditions using a polystyrene column Using the product name “HLC-8320GPC” manufactured by Tosoh Corporation, THF was used as an eluent, 10 ⁇ L of a sample solution for measurement was injected into the apparatus, under conditions of a column oven temperature of 40 ° C. and a THF flow rate of 0.35 mL / min. A chromatogram was obtained using an RI detector.
- Tosoh product names “TSKgel SuperMultiporeHZ-H” were connected, and the Tosoh product name “TSKguardcolumn SuperMP (HZ) -H” was connected as a guard column.
- GPC measurement conditions using a silica column Using the product name “HLC-8320GPC” manufactured by Tosoh Corporation, using THF as an eluent, 50 ⁇ L of a sample solution for measurement was injected into the apparatus, under conditions of a column oven temperature of 40 ° C. and a THF flow rate of 0.5 mL / min. A chromatogram was obtained using an RI detector.
- the column uses the product names “Zorbax PSM-1000S”, “PSM-300S”, “PSM-60S” and uses the product name “DIOL 4.6 ⁇ 12.5 mm 5 micron” as the guard column in the front stage. Connected and used.
- the height in the molecular weight obtained by dividing the peak top molecular weight (Mp 2 ) by 2 in the chart measured according to the measurement of (physical property 6) using a silica column was defined as L2.
- the modification rate of the low molecular weight component was calculated by L1 / L2.
- the column used was a guard column: trade name “TSKguardcolumn HHR-H” manufactured by Tosoh Corporation and a column: trade name “TSKgel G6000HHR”, “TSKgel G5000HHR”, “TSKgel G4000HHR” manufactured by Tosoh Corporation.
- a GPC-light scattering measurement device with a viscosity detector (trade name “Viscotek TDAmax” manufactured by Malvern) with an oven temperature of 40 ° C. and a THF flow rate of 1.0 mL / min was used. 10 mg of the sample for measurement was dissolved in 20 mL of THF to prepare a sample solution for measurement, and 200 ⁇ L of the sample solution for measurement was injected into the GPC measurement device and measured.
- Example 1 Modified Conjugated Diene Polymer (Sample 1)
- the internal volume is 10L
- the ratio (L / D) of the internal height (L) to the diameter (D) is 4.0, it has an inlet at the bottom and an outlet at the top.
- a tank-type pressure vessel having a jacket was used as a polymerization reactor. Water was removed in advance, and mixing was performed under the conditions of 1,3-butadiene 18.1 g / min, styrene 9.9 g / min, and n-hexane 150.1 g / min.
- Allenes contained in this mixture were 10 ppm
- acetylenes were 12 ppm
- amines were 1 ppm.
- the total impurity was 23 ppm.
- n-butyllithium for residual impurity inactivation treatment was added and mixed at 0.104 mmol / min, and then at the bottom of the reactive group. Continuously fed.
- polymerization in which 2,2-bis (2-oxolanyl) propane as a polar substance is vigorously mixed with a stirrer at a rate of 0.0216 g / min and n-butyllithium as a polymerization initiator at a rate of 0.252 mmol / min. The reaction was continuously fed to the bottom of the reactor.
- the temperature was controlled so that the temperature of the polymerization solution at the reactor top outlet was 75 ° C.
- a small amount of the polymer solution before adding the coupling agent is withdrawn from the top outlet of the reactor, and after adding an antioxidant (BHT) to 0.2 g per 100 g of the polymer, the solvent is added. Removal and various molecular weights were measured. Other physical properties are also shown in Table 1.
- bis (3-trimethoxysilylpropyl)-[3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] as a modifier is added to the polymer solution flowing out from the outlet of the reactor.
- Amine (abbreviated as “A” in the table) was continuously added at a rate of 0.043 mmol / min, and the polymer solution to which the modifier was added was mixed through a static mixer to undergo a modification reaction.
- Antioxidant (BHT) was continuously added to the modified polymer solution at a rate of 0.25 g per 100 g of polymer at a rate of 0.055 g / min (n-hexane solution) to complete the coupling reaction.
- an oil (JOMO process NC140 manufactured by JX Nippon Oil & Energy Corporation) was continuously added to 100 g of the polymer so as to be 37.5 g, and mixed with a static mixer. The solvent was removed by steam stripping to obtain a modified conjugated diene polymer (Sample 1).
- Table 1 shows the physical properties of Sample 1.
- Example 2 Modified Conjugated Diene Polymer (Sample 2)
- the modifier was changed to tris (3-trimethoxysilylpropyl) amine (abbreviated as “B” in the table).
- Other conditions were the same as in Example 1 to obtain a modified conjugated diene polymer (Sample 2).
- Table 1 shows the physical properties of Sample 2.
- Example 3 Modified Conjugated Diene Polymer (Sample 3)
- the modifier is N, N, N′-tris (3-trimethoxysilylpropyl) -N ′-[3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] -1,3-
- propanediamine abbreviated as “C” in the table
- the amount of polymerization initiator n-butyllithium added was 0.317 mmol / min and the amount of polar substance added was 0.027 g / min. The amount added was 0.041 mmol / min.
- Other conditions were the same as in Example 1 to obtain a modified conjugated diene polymer (Sample 3).
- Table 1 shows the physical properties of Sample 3.
- Example 4 Modified Conjugated Diene Polymer (Sample 4)
- the modifier is N, N, N ′, N′-tetrakis [3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] -1,3-propanediamine (“D” in the table)
- D in the table
- the modifier was added in an amount of 0.033 mmol / min.
- Other conditions were the same as in Example 1 to obtain a modified conjugated diene polymer (Sample 4).
- Table 1 shows the physical properties of Sample 4.
- Example 5 Modified Conjugated Diene Polymer (Sample 5)
- the addition amount of n-butyllithium as a polymerization initiator is 0.15 mmol / min
- the addition amount of a polar substance is 0.0131 g / min
- the modifier is N- (3-trimethoxysilylpropyl) -2,2- Instead of dimethoxy-1-aza-2-silacyclopentane (abbreviated as “E” in the table)
- the amount of modifier added was 0.037 mmol / min.
- Other conditions were the same as in Example 1 to obtain a modified conjugated diene polymer (Sample 5).
- Table 1 shows the physical properties of Sample 5.
- Example 6 Modified conjugated diene polymer (Sample 6)
- the addition amount of the polymerization initiator n-butyllithium was 0.08 mmol / min, the polar substance addition amount was 0.0076 g / min, and the modifier was N-3-trimethoxysilylpropyltriazole (in the table, “F The amount of the modifying agent added was 0.041 mmol / min.
- Other conditions were the same as in Example 1 to obtain a modified conjugated diene polymer (Sample 6).
- Table 1 shows the physical properties of Sample 6.
- Example 7 Modified conjugated diene polymer (Sample 7)
- the addition amounts of butadiene and styrene were 23 g / min and 5 g / min, respectively, and the addition amount of polar substances was 0.0155 g / min.
- Other conditions were the same as in Example 1 to obtain a modified conjugated diene polymer (Sample 7).
- Table 1 shows the physical properties of Sample 7.
- Example 8 Modified conjugated diene polymer (Sample 8)
- the addition amounts of butadiene and styrene were 16 g / min and 12 g / min, respectively, and the addition amount of polar substances was 0.024 g / min.
- Other conditions were the same as in Example 4 to obtain a modified conjugated diene polymer (Sample 8).
- Table 1 shows the physical properties of Sample 8.
- Example 9 Modified Conjugated Diene Polymer (Sample 9)
- N, N-dimethyl-phenyldimethoxysilylpropylamine (abbreviated as “G” in the table) as a modifier was continuously added at a rate of 0.03 mmol / min.
- Other conditions were the same as in Example 6 to obtain a modified conjugated diene polymer (Sample 9).
- Table 1 shows the physical properties of Sample 9.
- Example 10 Modified Conjugated Diene Polymer (Sample 10)
- the addition amount of the modifier was 0.028 mmol / min.
- Other conditions were the same as in Example 1 to obtain a modified conjugated diene polymer (Sample 10).
- Table 1 shows the physical properties of Sample 10.
- Sample 11 was obtained by kneading sample 4 and sample 9 at a mass ratio of 2: 1. Table 2 shows the physical properties of Sample 11.
- a closed kneader (with an internal volume of 0.3 L) equipped with a temperature control device, as the first stage kneading, under the conditions of a filling rate of 65% and a rotor rotational speed of 30 to 50 rpm, raw rubber (samples 1 to 17), A filler (silica 1, silica 2, carbon black), a silane coupling agent, process oil, zinc white, and stearic acid were kneaded.
- the temperature of the closed mixer was controlled, and each rubber composition (compound) was obtained at a discharge temperature of 155 to 160 ° C.
- the rubber compositions of Examples 14 to 26 were good in that the torque increase during kneading was quicker and the torque increase time was shorter than the rubber compositions of Comparative Examples 5 to 8. It was confirmed that it showed excellent workability. Moreover, when it was set as the vulcanizate, it was confirmed that it was excellent in the balance of wet grip property and low fuel consumption, and excellent in abrasion resistance. Furthermore, it was also confirmed that the vulcanized product has sufficient fracture strength and rigidity for practical use. The rubber composition of Comparative Example 8 was excellent in processability and fuel efficiency, but was inferior in breaking strength and rigidity.
- the modified conjugated diene polymer according to the present invention has industrial applicability in fields such as tire treads, automobile interior / exterior products, anti-vibration rubber, belts, footwear, foams, and various industrial products.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
また、タイヤを軽量化するため、タイヤのトレッド部の厚みを減らす必要があり、さらに耐摩耗性の高い材料も求められている。
一方で、タイヤトレッド用に用いられる材料は、安全性の観点から、ウェットスキッド抵抗性に優れること、及び実用上十分な破壊特性を有していることが要求されている。
例えば、シリカを含むゴム材料を用いると、低ヒステリシスロス性及びウェットスキッド抵抗性とのバランス向上を図ることができる。
また、運動性の高いゴム状重合体の分子末端部に、シリカとの親和性又は反応性を有する官能基を導入することによって、ゴム材料中におけるシリカの分散性を改良して、さらには、シリカ粒子とゴム状重合体との結合によりゴム状重合体分子末端部の運動性を低減して、ヒステリシスロスを低減化する試みがなされている。
また、特許文献3には、重合体活性末端と多官能性シラン化合物をカップリング反応させたジエン系ゴムが提案されている。
一方において、分子末端にシリカとの反応性の高い官能基を導入した共役ジエン系ゴム材料は、混練工程中にシリカ粒子との反応が進行するが、反応の進行が遅い場合にはトルク上昇に時間がかかるため混練りが不十分になったり、又は、混練り後にシートに加工する際に肌荒れが生じたりシート切れが生じやすくなったりし、加工性が悪化する傾向にあるという問題を有している。
さらに、このような共役ジエン系ゴム材料を加硫物としたとき、特にシリカ等の無機充填剤を含む加硫物としたときには、低ヒステリシスロス性とウェットスキッド抵抗性とのバランス、及び耐摩耗性に関しては改良の余地がある、という問題を有している。
すなわち、本発明は以下のとおりである。
重量平均分子量が、20×104以上300×104以下であり、
分子量分布Mw/Mnが1.6以上4.0以下である、変性共役ジエン系重合体であって、
共役ジエン系重合体の総量に対する変性率が50質量%以上であり、
ゲルパーミエーションクロマトグラフィー(GPC)曲線におけるピークトップ、又は前記ピークトップが複数存在する場合には分子量が最小であるピークトップの分子量の1/2である分子量の成分の変性率が、
前記共役ジエン系重合体の総量に対する変性率の1/2以上であり、
当該変性共役ジエン系重合体に含まれる窒素の含有量が、3質量ppm以上70質量ppm以下である、変性共役ジエン系重合体。
〔2〕
3D-GPCによる収縮因子(g’)が、0.86以上1.0以下である、前記〔1〕に記載の変性共役ジエン系重合体。
〔3〕
3D-GPCによる収縮因子(g’)が、0.30以上0.86未満である、前記〔1〕に記載の変性共役ジエン系重合体。
〔4〕
3D-GPCによる収縮因子(g’)が、0.30以上0.70以下である、前記〔3〕に記載の変性共役ジエン系重合体。
〔5〕
前記変性共役ジエン系重合体に含まれる窒素とケイ素の含有量がそれぞれ3質量ppm以上であり、
ケイ素に対する窒素のモル比が1.1以上10未満である、前記〔1〕乃至〔4〕のいずれか一に記載の変性共役ジエン系重合体。
〔6〕
前記変性共役ジエン系重合体に含まれる窒素とケイ素の含有量がそれぞれ3質量ppm以上であり、
ケイ素に対する窒素のモル比が0.1以上0.9未満である、前記〔1〕乃至〔4〕のいずれか一に記載の変性共役ジエン系重合体。
〔7〕
前記変性共役ジエン系重合体のガラス転移温度が-20℃以上0℃以下である、
前記〔1〕乃至〔6〕のいずれか一に記載の変性共役ジエン系重合体。
〔8〕
前記変性共役ジエン系重合体のガラス転移温度が-50℃以上-20℃未満である、
前記〔1〕乃至〔6〕のいずれか一に記載の変性共役ジエン系重合体。
〔9〕
前記変性共役ジエン系重合体のガラス転移温度が-70℃以上-50℃未満である、
前記〔1〕乃至〔6〕のいずれか一に記載の変性共役ジエン系重合体。
〔10〕
前記〔1〕乃至〔9〕のいずれか一に記載の変性共役ジエン共重合体を10質量%以上含有する重合体組成物。
〔11〕
前記〔1〕乃至〔9〕のいずれか一に記載の変性共役ジエン共重合体を10質量%以上含むゴム状重合体100質量部と、
充填剤5~150質量部と、
を、含むゴム組成物。
本実施形態の変性共役ジエン系重合体は、
重量平均分子量が、20×104以上300×104以下であり、
分子量分布Mw/Mnが1.6以上4.0以下であり、
共役ジエン系重合体の総量に対する変性率が50質量%以上である変性共役ジエン系重合体であり、
ゲルパーミエーションクロマトグラフィー(GPC)曲線におけるピークトップ、又は前記ピークトップが複数存在する場合には分子量が最小であるピークトップの分子量の1/2である分子量の成分の変性率が、
前記共役ジエン系重合体の総量に対する変性率の1/2以上であり、
当該変性共役ジエン系重合体に含まれる窒素の含有量が、3ppm以上70ppm以下である。
本実施形態の変性共役ジエン系重合体は、共役ジエン系重合体の総量に対する変性率が50質量%以上であり、好ましくは60質量%以上であり、より好ましくは70質量%以上である。
変性率が50質量%以上であることにより、加硫物としたときに、低ヒステリシスロス性とウェットスキッド抵抗性とのバランスにより優れる。
変性率は、充填剤に親和性又は結合反応性を有する特定官能基を重合体分子中に有する重合体成分の、共役ジエン系重合体の総量に対する含有率を質量%で表したものである。
充填剤に親和性又は結合反応性を有する特定官能基を重合体分子中に有する重合体成分としては、好ましくは窒素原子、珪素原子、酸素原子を含む官能基を有する重合体が挙げられる。より好ましくは、当該官能基を重合体の末端に有する変性共役ジエン系重合体である。例えば、重合開始末端に窒素原子を有する官能基が結合している重合体及び/又は終了末端に窒素原子、珪素原子、酸素原子を含む官能基により変性されている変性共役ジエン系重合体が挙げられる。
変性率は、含有の変性成分と非変性成分とを分離できるクロマトグラフィーによって測定することができる。このクロマトグラフィーを用いた方法としては、特定官能基を吸着するシリカ等の極性物質を充填剤としたゲル浸透クロマトグラフィー用のカラムを使用し、非吸着成分の内部標準を比較に用いて定量する方法が挙げられる。より具体的には、変性率は、測定試料及び低分子量内部標準ポリスチレンを含む試料溶液を、ポリスチレン系ゲルカラムで測定したクロマトグラムとシリカ系カラムで測定したクロマトグラムとの差分を算出し、シリカカラムへの吸着量を測定することにより、算出することができる。
変性率は、後述する実施例に記載する方法により測定することができる。
本実施形態の変性共役ジエン系重合体の、共役ジエン系重合体の総量に対する変性率は、ポリマーに対する変性剤の添加量、及び重合温度を制御することより上記数値範囲に制御することができる。具体的には、変性剤の添加量を増大する、及び/又は重合温度を低下させることにより、変性率が増大する。
本発明者は、GPCによる分子量曲線における、それぞれの分子量領域での変性率を測定することにより、重合体によっては分子量領域毎に変性率が異なっていることを見出した。
また、GPC曲線のピークトップの分子量の1/2である分子量の成分(以下、低分子量成分と記載する場合がある。)の変性率が、変性共役ジエン系重合体全体の変性率の1/2以上である変性共役ジエン系重合体は、低分子量成分の変性率が、変性共役ジエン系重合体全体の変性率の1/2よりも低い変性共役ジエン系重合体に比べ、特定の性能において優れていることを見出した。
これにより、加工性が良好な、特に充填剤と混練りする際にミキサーのトルクがよくかかり、従来よりも短時間で充填剤の分散性が良好なゴム組成物が得られる変性共役ジエン系重合体を得ることができる。
上述のように、本発明者が重合体によっては分子量領域毎に変性率が異なっていることを見出したことに加え、重合体と充填剤と混練り時におけるトルクの伝わり方として以下のようなメカニズムを見出したことにより、本発明が完成した。
すなわち、まず、変性共役ジエン系重合体の共役ジエン系重合体の総量に対する変性率に着目すると、重合体のムーニー粘度、ミクロ構造、使用された変性剤、混練り条件等が、同一であった場合には、共役ジエン系重合体の総量に対する変性率が高い(変性率50%以上)重合体は、変性率が低い重合体と比較して、充填剤と混練りする際にトルクの上がる速度は速いが、一方において、トルクが到達する最大値も高いため、全体としての変性率が変わっても、トルクの最大値に到達するまでにかかる時間はほぼ同じである。つまり、重合体全体としての変性率は、トルクの最大値と、トルクの上昇速度の双方に影響する結果、全体としての変性率が増減しても、トルクの最大値に到達するまでの時間の長短にはあまり影響しないと考えられる。
一方において、前記低分子量成分の変性率、すなわち前記1/2変性率に着目した場合、前記1/2変性率が、共役ジエン系重合体の総量に対する変性率に対して低いほど、重合体を充填剤と混練りする際にトルクの上昇速度は遅くなり、1/2変性率が、共役ジエン系重合体の総量に対する変性率に対して高いほどトルクの上昇速度は速くなる。
上述したように、トルクの上昇速度には、共役ジエン系重合体の総量に対する変性率も影響するが、「共役ジエン系重合体の総量に対する変性率」が高い場合も、低い場合も「1/2変性率」が高い方がトルク上昇速度は速くなる。すなわち、「共役ジエン系重合体の総量に対する変性率」に対する「1/2変性率」の高さの、トルク上昇速度への影響は、「共役ジエン系重合体の総量に対する変性率」によらず一定である。
他方、トルクの最大値は変性共役ジエン系重合体全体の変性率に依存して決まるため、1/2変性率によっては変わらず、すなわち1/2変性率に依存せず、1/2変性率が高いほど、トルクの最大値に到達するまでの時間が短くなる。このため、共役ジエン系重合体の総量に対する変性率によらず、共役ジエン系重合体の総量に対する変性率に対する1/2変性率の高さによって、トルクの最大値に到達するまでの時間を制御することができる。
具体的には、1/2変性率を共役ジエン系重合体の総量に対する変性率の1/2以上の高さにすることで、加工性、特に充填剤と混練りする際にミキサーのトルクがよくかかり、従来よりも短時間で充填剤の分散性が良好になる。その結果として、混練時に重合体に生じる熱劣化を最小限に抑えることができ、また、熱劣化し難いことで、配合する熱安定剤を削減できるという効果が得られる。
また、低分子量成分の変性率が、共役ジエン系重合体の総量に対する変性率の1/2以上とすることにより、本実施形態の変性共役ジエン系重合体を加硫組成物としたときに、低ヒステリシスロス性とウェットスキッド抵抗性とのバランスと、破壊特性及び耐摩耗性とに優れ、特にタイヤ用として省燃費性に優れるゴム組成物を得るための組成物の設計の自由度が高くなる。
タイヤ用のゴム組成物を製造する場合に、省燃費性能の向上を図るためには、より分岐度の高い、及び/又は高分子量の変性共役ジエン系重合体を用いることが有効であるが、一方において、充填剤等との混練が難しくなるといった加工上の問題が生じるおそれがある。しかしながら、変性共役ジエン系重合体の加工性を高める技術を採用することで、より分岐度の高い、及び/又は高分子量の変性共役ジエン系重合体を用いても、混練工程等での問題の発生を防止し、結果として、タイヤにより適した組成物を調整しやすくなる。
かかる観点から、本実施形態の変性共役ジエン系重合体においては、GPC曲線におけるピークトップの分子量の1/2である分子量の成分の変性率、すなわち低分子量成分の変性率が、共役ジエン系重合体の総量に対する変性率の1/2以上であるものとする。
本実施形態の変性共役ジエン系重合体は、成長反応の停止又は連鎖移動が極めて少ない重合方法で得ることができ、そのため重合反応器に導入するモノマー及び溶媒の超高純度化、低温重合及び99質量%未満のモノマー転化率で達成することができる。
また、本実施形態の変性共役ジエン系重合体は、高分子量である変性共役ジエン系重合体と低分子量である変性共役ジエン系重合体とを混練りすることによっても得ることができる。
分子量成分毎の変性率は、官能基含有の変性成分と非変性成分を分離できるクロマトグラフィーによって測定することができる。このクロマトグラフィーを用いた方法としては、特定官能基を吸着するシリカ等の極性物質を充填剤としたゲル浸透クロマトグラフィー用のカラムを使用し、非吸着成分の内部標準を比較に用いて定量する方法が挙げられる。より具体的には、分子量成分毎の変性率は、測定用試料及び低分子量内部標準ポリスチレンを含む試料溶液を、ポリスチレン系ゲルカラムで測定したクロマトグラムとシリカ系カラムで測定したクロマトグラムとの分子量成分毎の差分から、シリカカラムへの吸着量を測定することにより得られる。また、変性率は、後述する実施例に記載の方法により測定することができる。
GPC曲線におけるピークトップの分子量の1/2である分子量の成分の変性率が、共役ジエン系重合体の総量に対する変性率の1/2以上であるものとするためには、反応器に導入するモノマー及び溶媒の純度を高めて、重合中に失活する末端の量を低減する方法を採用することが有効である。
本実施形態の変性共役ジエン系重合体は、当該変性共役ジエン系重合体に含まれる窒素の含有量が3ppm以上70ppm以下であり、好ましくは6ppm以上60ppm以下であり、より好ましくは10ppm以上50ppm以下である。
窒素含有量が3ppm以上であることにより、加硫物としたときに、低ヒステリシスロス性とウェットスキッド抵抗性とのバランスにより優れる。
窒素含有量が70ppm以下であることにより、配合物にした際にシリカが分散しすぎることによる剛性の低下が抑制できる。
変性剤として窒素を含有する化合物を採用することで、窒素の含有量を3ppm以上にできる傾向がある。他方、変性剤に含まれる窒素の比率が高すぎる場合、窒素含有変性剤の添加量が重合体鎖に対して多すぎる場合、又は重合開始末端と重合終了末端の両方に窒素を結合させる場合等には、窒素の含有量70ppm超になり易い傾向にある。このため、変性剤に含まれる窒素の比率、窒素含有変性剤の添加量、及び重合末端への変性剤の結合量を適切に調整することにより、変性共役ジエン系重合体中の窒素の含有量を70ppm以下に制御することができる。
本実施形態の変性共役ジエン系重合体は、重量平均分子量が、20×104以上300×104以下であり、好ましくは30×104以上270×104以下であり、より好ましくは、40×104以上250×104以下である。
重量平均分子量が20×104以上300×104以下であることにより、加硫物としたときの低ヒステリシスロス性とウェットスキッド抵抗性とのバランス及び耐摩耗性に優れる。
また、重量平均分子量が300×104以下であることにより、加硫物とする際の充填剤の分散性に優れ、優れた破壊特性が得られる。
変性共役ジエン系重合体の重量平均分子量は、モノマーに対する重合開始剤の量を調整することより上記数値範囲に制御することができる。具体的には、モノマーに対する重合開始剤の量を増大させることにより、重量平均分子量を低下させることができる。
変性共役ジエン系重合体の重量平均分子量は、後述する実施例に記載の方法により測定することができる。
本実施形態の変性共役ジエン系重合体は、数平均分子量(Mn)に対する重量平均分子量(Mw)の比で表される分子量分布Mw/Mnが1.6以上4.0以下である。この範囲の分子量分布である変性共役ジエン系重合体は、同程度の分子量及び変性率の重合体と比較して加硫物とする際の加工性により優れる傾向にある。好ましくは1.8以上3.0以下であり、より好ましくは1.9以上2.5以下である。
このような分子量分布の変性共役ジエン系重合体は、好ましくは連続重合で得ることができる。
分子量分布は、GPCによる分子量曲線が一山(モノモーダル)の形状、又は複数ピークの場合は台形もしくは連峰型の形状であることが好ましい。連峰型としては、ピークとピークの間の最下部の高さが両側のピーク高さの50%以上である形を意味する。このような分子量分布を有する変性共役ジエン系重合体は、加硫物とする際の加工性により優れる傾向にある。
前記特定の高分子量成分の含有量は、より好ましくは1.0質量%以上18質量%以下、さらに好ましくは2.0質量%以上15質量%以下である。
前記特定の高分子量成分の含有量がこのような範囲にある変性共役ジエン系重合体を得るためには、例えば、後述する有機モノリチウム化合物の重合開始剤としての使用量を調整すればよく、後述する重合工程において、連続式、回分式のいずれの重合様式においても、滞留時間分布を有する方法、すなわち、成長反応の時間分布を広げる方法を選択することが好ましい。
連続式における具体的な方法としては、攪拌機付槽型反応器を用い、これを攪拌機で激しく混合する形式のバックミックス反応器として用いる方法、好ましくは完全混合型反応器として用いる方法や、管型反応器を用い、一部をリサーキュレーションする方法、重合開始剤のフィード場所として単量体入口又はその付近の他に重合器途中に入り口を設ける方法や、槽型と管型の反応器を組み合わせて用いる方法が挙げられる。
これらの方法によれば、滞留時間分布を大きくすることができ、滞留時間の長い重合体成分を高分子量成分とすることができる。
また、回分式における具体的な方法としては、例えば、重合開始剤のフィード方法を、重合開始時から重合途中の間で連続的若しくは断続的に、重合開始時、及び/又は重合途中で連続的若しくは断続的にフィードする方法が挙げられる。
この方法によると、最初に重合開始剤をフィードした重合開始時点から重合した重合体が高分子量成分となり、後で重合を開始した重合体との間で分子量の差が生じる。より具体的には、単量体に対し、目標分子量に相当する重合開始剤の量を、例えば転化率0質量%~95質量%までの間、連続的にフィードすれば、拡大した分子量分布を有する重合体とすることができる傾向にある。
上述した方法を用いることにより、変性工程前の共役ジエン系重合体のリビング末端の活性比率が高くなる傾向にあり、カップリング後のカップリング率、すなわち、変性率が高い変性共役ジエン系重合体が得られる傾向にある。これらの方法の中で、さらに好ましくは、攪拌機付槽型反応器を用い、攪拌機で激しく混合する形式のバックミックス反応器として用いる方法である。
数平均分子量、重量平均分子量、分子量分布は、後述する実施例に記載の方法により測定することができる。
本実施形態の変性共役ジエン系重合体においては、3D-GPCを用いて測定される収縮因子(g’)が0.86以上1.0以下である変性共役ジエン系重合体が、好ましい形態として挙げられる。
本実施形態の変性共役ジエン系重合体の収縮因子(g’)が前記範囲であることにより、高温における強度が優れる傾向にある。
収縮因子(g’)は、変性共役ジエン系共重合体の分岐構造の指標となり、収縮因子(g’)が0.86以上1.0以下である変性共役ジエン系重合体は、変性ジエン系重合体の1分子における分岐の数が3分岐以下の変性共役ジエン系重合体である。かかる場合、収縮因子(g’)は、0.88以上0.99以下がより好ましく、0.90以上0.98以下がさらに好ましい。
収縮因子(g’)が、前記範囲の変性共役ジエン系共重合体を得るためには、例えば、リビング活性末端との反応点を3つ以下有する変性剤を、重合開始剤の総モル数に対して、3分の1以上のモル数で添加して、3分岐以下の変性共役ジエン系共重合体を得る方法が有効である。
このような変性共役ジエン系重合体は、充填剤を加えたゴム組成物の粘度が大幅に低くなり、加工性が極めて優れたものとなる。
収縮因子(g’)は、変性共役ジエン系共重合体の分岐構造の指標となり、収縮因子(g’)が0.30以上0.86未満である変性共役ジエン系重合体は、変性ジエン系重合体の1分子における分岐の数が4分岐以上の変性共役ジエン系重合体である。
収縮因子(g’)が、前記範囲の変性共役ジエン系共重合体を得るためには、例えば、リビング活性末端との反応点を4つ以上有する変性剤を、重合開始剤の総モル数に対して、4分の1以下のモル数で添加して、4分岐以上の変性共役ジエン系共重合体を得る方法が有効である。
このような変性共役ジエン系重合体は、充填剤を加えた組成物の粘度がより低くなり、加工性がさらに優れたものとなる。
収縮因子(g’)は、該変性共役ジエン系共重合体の分岐構造の指標となり、収縮因子(g’)が0.30以上0.70以下である変性共役ジエン系重合体としては、変性ジエン系重合体の1分子における分岐の数が5分岐以上の変性共役ジエン系重合体である。
収縮因子(g’)が、前記範囲の変性共役ジエン系共重合体を得るためには、例えば、リビング活性末端との反応点を5つ以上有する変性剤を、重合開始剤の総モル数に対して、5分の1以下のモル数で添加して、5分岐以上の変性共役ジエン系共重合体を得る方法が有効である。
分子量が等しい変性共役ジエン系重合体を比較する場合には、変性共役ジエン系重合体の分岐が多いほど収縮因子(g’)が小さくなるため、この場合の収縮因子(g’)は、分岐度の指標として用いることができる。
収縮因子(g’)は、3D-GPC測定を用いて測定される。
固有粘度と分子量との関係式([η]=KMα([η]:固有粘度、M:分子量)における定数(K、α)を、logK=-3.883、α=0.771として、分子量Mの範囲を1000~20000000まで入力し、標準固有粘度[η]0と分子量Mとの関係のグラフを作成する。
この標準固有粘度[η]0に対して、3D-GPC測定で得られたサンプルの各分子量Mでの固有粘度[η]を標準固有粘度[η]0に対する固有粘度[η]の関係として[η]/[η]0を各分子量Mで算出し、その平均値を収縮因子(g’)とする。
より具体的には、後述する実施例に記載の方法により測定することができる。
本実施形態の変性共役ジエン系重合体は、好ましくは重合開始末端及び/又は終了末端に、充填剤に親和性又は反応性の官能基を有する変成剤残基が結合している変性共役ジエン系重合体である。
すなわち、本実施形態の変性共役ジエン系重合体は、官能基を有する変性剤残基及び共役ジエン系重合体鎖から成るものである。
本実施形態の変性共役ジエン系重合体における変性剤残基は、共役ジエン系重合体鎖に結合されている、変性共役ジエン系重合体の構成単位であり、例えば、後述する共役ジエン系重合体と変性剤とを反応させることによって生じる、変性剤由来の構造単位である。
変性剤残基は、充填剤に親和性又は結合反応性を有する特定官能基を有する。
本実施形態の変性共役ジエン系重合体が、重合開始末端に官能基が結合している変性共役ジエン系重合体である場合、当該変性共役ジエン系重合体は、官能基を有する重合開始剤を用いて重合反応を行うことにより得ることができる。
前記充填剤に親和性又は結合反応性を有する特定官能基としては、好ましくは、窒素原子、ケイ素原子を含む官能基が挙げられる。
より好ましくは、変性共役ジエン系重合体中の窒素原子のモル数のケイ素原子のモル数に対する比、すなわちN/Siのモル比が0.1~10.0であることが好ましく、より好ましくは0.2~7.0である。
N/Siが前記範囲であると、特にシリカ系充填剤との親和性が良好であり、シリカ系充填剤を用いたゴム組成物のヒステリシスロスが小さく、低燃費タイヤ用のゴム組成物として良好な性能を発揮する。
ケイ素原子を含む官能基としては、以下に限定されるものではないが、例えば、メトキシシリル基、エトキシシリル基、プロポキシシリル基等が挙げられる。
また、窒素原子を含む官能基としては、以下に限定されるものではないが、例えば、二級アミノ基、三級アミノ基等が挙げられる。
また、本実施形態の変性共役ジエン系重合体は、窒素原子を含む官能基を重合体分子中に有する変性共役ジエン系重合体であることが好ましい。かかる場合、窒素原子を含む官能基としては、特に窒素原子が少なくとも-NH-型の2級アミンを含むものであることが好ましい。その場合、充填剤としてシリカ系充填剤及びカーボンブラックを用いたゴム組成物のヒステリシスロスが低く、低燃費タイヤ用組成物として良好な性能を発揮する。
変性剤残基がケイ素原子を有する場合、ケイ素原子の少なくとも1個が、炭素数1~20のアルコキシシリル基又はシラノール基を構成することが好ましい。これによって、充填剤の分散性が改良されて省燃費性が向上する傾向にある。
本実施形態の変性共役ジエン系重合体は、複数の共役ジエン系重合体鎖の末端が、1個のケイ素原子と結合していてもよい。また、共役ジエン系重合体鎖の末端とアルコキシ基又は水酸基とが、一つのケイ素原子に結合し、その結果として、その1つのケイ素原子がアルコキシシリル基又はシラノール基を構成していてもよい。
本実施形態の変性共役ジエン系重合体の変性前の共役ジエン系重合体は、少なくとも共役ジエン化合物を重合して得られ、必要に応じて共役ジエン化合物とビニル置換芳香族化合物との両方を共重合して得られる。
共役ジエン化合物としては、重合可能な単量体であれば特に限定されないが、1分子当り4~12の炭素原子を含む共役ジエン化合物が好ましく、より好ましくは4~8の炭素原子を含む共役ジエン化合物である。このような共役ジエン化合物としては、以下のものに限定されないが、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、3-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、1,3-ヘプタジエンが挙げられる。これらの中でも、工業的入手の容易さの観点から、1,3-ブタジエン、イソプレンが好ましい。これらは1種のみを単独で用いてもよく、2種以上を併用してもよい。
ビニル置換芳香族化合物としては、共役ジエン化合物と共重合可能な単量体であれば特に限定されないが、モノビニル芳香族化合物が好ましい。モノビニル芳香族化合物としては、以下のものに限定されないが、例えば、スチレン、p-メチルスチレン、α-メチルスチレン、ビニルエチルベンゼン、ビニルキシレン、ビニルナフタレン、ジフェニルエチレンが挙げられる。これらの中でも、工業的入手の容易さの観点から、スチレンが好ましい。これらは1種のみを単独で用いてもよいし、2種以上を併用してもよい。
本実施形態の変性共役ジエン系重合体が、ブタジエン-スチレンランダム共重合体(SBR)である場合、結合スチレン量は5質量%~50質量%が好ましく、ビニル結合量は10mоl%~75mоl%が好ましい。この範囲であれば、タイヤ用の他、あらゆる用途に適合しうるSBRが工業的に得られる。
特に、結合スチレン量が25質量%~45質量%であり、ビニル結合量が18mоl%~30mоl%である場合、ヒステリシスロスが小さく、耐摩耗性に優れたゴム組成物が得られる。
また、結合スチレン量が18質量%~28質量であり、ビニル結合量が45mоl%~65mоl%である場合、天然ゴムと配合したゴム組成物において、ヒステリシスロスが小さく、強度が優れる省燃費タイヤ用ゴム組成物が得られる。
なお、結合スチレン量は、全単量体成分中のスチレンの質量%であり、ビニル結合量は、ブタジエン成分中のビニル結合成分のmоl%である。
本実施形態の変性共役ジエン系重合体のガラス転移温度、すなわちTgは、変性共役ジエン系重合体の分子鎖が回転運動を開始する温度であり、省燃費性とウェットグリップ性とに大きく影響する。
Tgが低い場合には省燃費性が良好になり、Tgが高い場合にはウェットグリップ性が向上する。
本実施形態の変性共役ジエン系重合体は、Tgが-20℃以上0℃以下であるものが好ましい形態として挙げられる。これにより、ウェットグリップ性、剛性が極めて良好なものとなる。この変性共役ジエン系重合体はハイパフォーマンス用タイヤ、及びウルトラハイパフォーマンス用タイヤに極めて有用である。
この変性共役ジエン系重合体はウインター用タイヤに極めて有用である。
また、耐摩耗性を改良するために各種タイヤトレッドの配合に用いられる。
変性共役ジエン系重合体のTgは、スチレン含有量及び/又は1,2-ビニル結合量を調整することにより、上述した所望の範囲に制御することができる。具体的には、スチレン含有量と1,2-ビニル結合量が増大することにより、Tgを高めることができる。
変性共役ジエン系重合体のTgは、ISO 22768:2006に準拠して測定することができる。
本実施形態の変性共役ジエン系重合体が、ブタジエン-スチレンランダム共重合体(SBR)である場合、スチレン単位が単独で存在する割合が多いことが好ましく、スチレンの長い連鎖は少ないものが好ましい。
具体的には、変性共役ジエン系重合体がブタジエン-スチレン共重合体の場合、田中らの方法(Polymer,22,1721(1981))として知られているオゾン分解による方法で、前記変性共役ジエン系重合体を分解し、GPCによりスチレン連鎖分布を分析した場合、全結合スチレン量に対し、単離スチレン量が40質量%以上であり、スチレンの連鎖が8個以上の連鎖スチレン構造が5質量%以下であることが好ましい。この場合、得られる加硫ゴムが特にヒステリシスロスが小さい優れた性能の省燃費タイヤ用のゴム組成物が得られる。
本実施形態の変性共役ジエン系重合体は、当該変性共役ジエン系重合体を、又は、変性前の共役ジエン系重合体を、不活性溶剤中でさらに水素化する処理を施したものであってもよい。これにより二重結合の全部又は一部を飽和炭化水素に変換することができる。かかる場合、耐熱性、耐候性が向上し、高温で加工する場合の製品の劣化を防止することができ、ゴムとしての運動性能が向上する傾向にある。また、その結果、自動車用途等種々の用途で一層優れた性能を発揮する。
共役ジエン化合物に基づく不飽和二重結合の水素化率は、目的に応じて任意に選択でき、特に限定されない。加硫物として用いる場合には、共役ジエン部の二重結合が部分的に残存していることが好ましい。かかる観点から、共役ジエン系重合体中の共役ジエン部の水添率は、3.0モル%以上70モル%以下であることが好ましく、5.0モル%以上65モル%以下であることがより好ましく、10モル%以上60モル%以下であることがさらに好ましい。特に、ビニル基を選択的に水素化することで、耐熱性及び運動性能が向上する傾向にある。水素化率は、核磁気共鳴装置(NMR)により求めることができる。
本実施形態の変性共役ジエン系重合体は、伸展油を加えた油展重合体としてもよい。
また、ゴム加硫物とする際の加工性と加硫物としたときの耐摩耗性との観点から、本実施形態の変性共役ジエン系重合体は、100℃で測定されるムーニー粘度が、20以上100以下であることが好ましく、30以上80以下であることがより好ましい。ムーニー粘度は、後述する実施例に記載の方法により測定することができる。
本実施形態の変性共役ジエン系重合体は、窒素の含有量が、3質量ppm以上70質量ppm以下であり、好ましくは6質量ppm以上60質量ppm以下であり、より好ましくは、10質量ppm以上50質量ppm以下である。
窒素の含有量が3質量ppm以上であることにより、加硫物としたときに、低ヒステリシスロス性とウェットスキッド抵抗性とのバランスにより優れる。
窒素含有量が70質量ppm以下であることにより、配合物にした際にシリカが分散しすぎることによる剛性の低下が抑制できる。
本実施形態の変性共役ジエン系共重合体は、窒素及びケイ素の含有量が、省燃費性向上の観点から、それぞれ3質量ppm以上であることが好ましく、7質量ppm以上であることがより好ましく、10質量ppm以上であることがさらに好ましい。
本実施形態の変性共役ジエン系共重合体は、フィラーとの混練時に窒素により物理吸着し、ケイ素により化学結合すると考えられる。
本実施形態の変性共役ジエン系共重合体では、含有される窒素とケイ素とのモル比が重要であり、ケイ素に対する窒素のモル比(N/Si)が、1.1以上10未満であることが、混練時にシリカを短時間で分散できる観点から好ましく、1.3以上7以下であることがより好ましく、1.5以上5以下であることがさらに好ましい。N/Siのモル比が、前記範囲であることが好ましい理由については、窒素による物理吸着の方がケイ素による化学結合よりも反応速度が速いため、ケイ素に対する窒素のモル比が等モル以上であることが好ましいと推定される。
ケイ素に対する窒素のモル比が0.1以上0.9未満であれば好ましい理由については現時点では明確ではないが、窒素による物理吸着がケイ素による化学結合よりも結合が強固であるため、ケイ素に対する窒素のモル比が等モル未満であることが好ましいと推定される。この場合は、ケイ素の含有量は7質量ppm以上が好ましい。
例えば、変性剤中のケイ素に対する窒素のモル比を高めることにより、変性共役ジエン系共重合体のケイ素に対する窒素のモル比を高めることが可能である。
本実施形態の変性共役ジエン系重合体は、好ましくは、下記一般式(I)で表される。
m及びxは、1~3の整数を表し、x≦mであり、pは、1又は2を表し、yは1~3の整数を表し、y≦(p+1)であり、zは、1又は2の整数を表す。
複数存在する場合のD1、R1~R11、m、p、x、y、及びzは、各々独立している。
iは、0~6の整数を表し、jは0~6の整数を表し、kは0~6の整数を表し、(i+j+k)は1~10の整数であり、((x×i)+(y×j)+(z×k))は、1~30の整数である。
Aは、炭素数1~20の炭化水素基、又は、酸素原子、窒素原子、珪素原子、硫黄原子、リン原子からなる群より選ばれる少なくとも1種の原子を有し、かつ、活性水素を有しない有機基を表す。ただし、(i+j+k)が1の場合は、Aは無いものとしてよい。これによって、変性された共役ジエン系重合体は、加硫物としたときに、低ヒステリシスロス性とウェットスキッド抵抗性とのバランス及び耐摩耗性により優れる傾向にある。
本実施形態の変性共役ジエン系重合体の製造方法は、好ましくは、有機モノリチウム化合物を重合開始剤として用い、少なくとも共役ジエン化合物を重合し、共役ジエン系重合体を得る重合工程と、該共役ジエン系重合体と、該共役ジエン系重合体の活性末端と反応する結合基を有し、さらに充填剤に親和性又は結合反応性を有する特定官能基を有する変性剤とを反応させる変性工程と、を有する。
本実施形態の変性ジエン系重合体の製造方法において、好ましくは、重合工程は、有機モノリチウム化合物を重合開始剤として、少なくとも共役ジエン化合物を重合し、共役ジエン系重合体を得る。
重合工程は、リビングアニオン重合反応の成長反応による重合を行うことが好ましく、これにより、活性末端を有する共役ジエン系重合体を得ることができ、後述する変性工程において高変性率の変性ジエン系重合体を得ることができる傾向にある。
かかる変性共役ジエン系重合体を得るためには、成長反応の停止又は連鎖移動が極めて少ない重合方法により共役ジエン系重合体を得ることが有効である。
そのため重合反応器に導入するモノマー及び溶媒の超高純度化は従来以上の水準が必要である。
従って、用いる単量体成分中、不純物総計は30ppm以下であることが好ましく、アレン類、アセチレン類、1級及び2級アミン等の不純物の含有量濃度(質量)は、アレン類が20ppm以下であることが好ましく、10ppm以下であることがより好ましく、アセチレン類は20ppm以下であることが好ましく、10ppm以下であることがより好ましく、1級及び2級アミンは合計窒素含有量として4ppm以下であることが好ましく、2ppm以下であることがより好ましい。
アレン類としては、以下に限定されるものではないが、例えば、プロパジエン、1,2-ブタジエンが挙げられる。アセチレン類としては、以下に限定されるものではないが、例えば、エチルアセチレン、ビニルアセチレンが挙げられる。1級及び2級アミンとしては、以下に限定されるものではないが、例えば、メチルアミン、ジメチルアミンが挙げられる。
モノマーであるブタジエンの精製においては、重合禁止剤を除去することはもちろん、アニオン重合に悪影響を与えるおそれがあるジメチルアミン、N-メチル-γ-アミノ酪酸等を除去することが重要である。これらを除去する方法としては、例えば、重合禁止剤を含有する1,3-ブタジエンを、酸素濃度が2mg/L未満である低酸素水を洗浄水として用いて水洗し、その後、1,3-ブタジエン中の重合禁止剤を除去する方法が挙げられる。
モノマーであるスチレンの精製においては、アニオン重合に悪影響を与えるおそれがある、フェニルアセチレン類等を除去することが重要である。フェニルアセチレン類を除去する方法として、例えば、パラジウム担持アルミナ触媒を用いた水添反応を実施する方法が挙げられる。
重合溶媒であるノルマルヘキサンの精製においては、アニオン重合に悪影響を与えるおそれがある水分を除去することが重要である。これを除去する方法としては、例えば、γ-アルミナ、合成ゼオライト等を用いる方法が挙げられる。これらの中でも合成ゼオライトを用いる方法が好ましく、合成ゼオライトとしては細孔径が大きいものが好ましく、細孔径が0.35nm以上ものがより好ましく、0.42nm以上のものがさらに好ましい。
成長反応の停止又は連鎖移動を抑制する観点からは重合温度は低いほど好ましいが、生産性の観点からは、重合温度はリビングアニオン重合が十分に進行する温度であることが好ましく、具体的には0℃以上であることが好ましく、80℃以下であることが好ましい。より好ましくは、50℃以上75℃以下である。また、単量体全体の転化率は99質量%未満で変性剤と反応させることが好ましい。重合器内に単量体が残っている段階で変性剤を添加し、単量体を消費しきっていないうちに成長中の重合体鎖と変性剤を反応させることにより、終了末端が変性されない重合体が生成したり、その他の副反応が起こったりすることを抑制できる。より好ましくは転化率が98質量%未満である。
ランダム共重合体としては、以下ものに限定されないが、例えば、ブタジエン-イソプレンランダム共重合体等の2種以上の共役ジエン化合物からなるランダム共重合体、ブタジエン-スチレンランダム共重合体、イソプレン-スチレンランダム共重合体、ブタジエン-イソプレン-スチレンランダム共重合体の共役ジエンとビニル置換芳香族化合物からなるランダム共重合体が挙げられる。
共重合体鎖中の各単量体の組成分布としては、特に限定されず、例えば、統計的ランダムな組成に近い完全ランダム共重合体、組成がテーパー状に分布しているテーパー(勾配)ランダム共重合体が挙げられる。共役ジエンの結合様式、すなわち1,4-結合や1,2-結合等の組成は、均一であってもよいし、分布があってもよい。
ブロック共重合体としては、以下のものに限定されないが、例えば、ブロックが2個からなる2型ブロック共重合体(ジブロック)、3個からなる3型ブロック共重合体(トリブロック)、4個からなる4型ブロック共重合体(テトラブロック)が挙げられる。1つのブロックを構成する重合体としては、1つの種類の単量体からなる重合体であっても、2種以上の単量体からなる共重合体であってもよい。例えば、1,3-ブタジエンからなる重合体ブロックを「B」で表し、1,3-ブタジエンとイソプレンの共重合体を「B/I」で表し、1,3-ブタジエンとスチレンの共重合体を「B/S」で表し、スチレンからなる重合体ブロックを「S」で表すと、B-B/I2型ブロック共重合体、B-B/S2型ブロック共重合体、S-B2型ブロック共重合体、B-B/S-S3型ブロック共重合体、S-B-S3型ブロック共重合体、S-B-S-B4型ブロック共重合体等で表される。
上記式において、各ブロックの境界は必ずしも明瞭に区別される必要はない。また、1つの重合体ブロックが2種類の単量体A及びBからなる共重合体である場合、ブロック中のA及びBは均一に分布していても、又はテーパー状に分布していてもよい。
重合開始剤としては、少なくとも有機モノリチウム化合物を用いることが好ましい。
有機モノリチウム化合物としては、以下のものに限定されないが、例えば、低分子化合物、可溶化したオリゴマーの有機モノリチウム化合物が挙げられる。また、有機モノリチウム化合物としては、その有機基とそのリチウムの結合様式において、例えば、炭素-リチウム結合を有する化合物、窒素-リチウム結合を有する化合物、錫-リチウム結合を有する化合物が挙げられる。
有機モノリチウム化合物の重合開始剤としての使用量は、目標とする共役ジエン系重合体又は変性共役ジエン系重合体の分子量によって適宜決定することができる。重合開始剤の使用量に対する共役ジエン化合物等の単量体の使用量が重合度に関係し、すなわち、数平均分子量及び/又は重量平均分子量に関係する傾向にある。したがって、共役ジエン系重合体の分子量を増大させるためには、重合開始剤を減らす方向に調整することが好ましく、分子量を低下させるためには、重合開始剤量を増やす方向に調整することが好ましい。
有機モノリチウム化合物は、好ましくは、置換アミノ基を有するアルキルリチウム化合物又はジアルキルアミノリチウムである。この場合、重合開始末端にアミノ基からなる窒素原子を有する共役ジエン系重合体が得られる。
置換アミノ基とは、活性水素を有しない、又は、活性水素を保護した構造の、アミノ基である。活性水素を有しない置換アミノ基を有するアルキルリチウム化合物としては、以下のものに限定されないが、例えば、3-ジメチルアミノプロピルリチウム、3-ジエチルアミノプロピルリチウム、4-(メチルプロピルアミノ)ブチルリチウム、4-ヘキサメチレンイミノブチルリチウムが挙げられる。活性水素を保護した構造の置換アミノ基を有するアルキルリチウム化合物としては、以下のものに限定されないが、例えば、3-ビストリメチルシリルアミノプロピルリチウム、4-トリメチルシリルメチルアミノブチルリチウムが挙げられる。
ジアルキルアミノリチウムとしては、以下のものに限定されないが、例えば、リチウムジメチルアミド、リチウムジエチルアミド、リチウムジプロピルアミド、リチウムジブチルアミド、リチウムジ-n-ヘキシルアミド、リチウムジへプチルアミド、リチウムジイソプロピルアミド、リチウムジオクチルアミド、リチウム-ジ-2-エチルへキシルアミド、リチウムジデシルアミド、リチウムエチルプロピルアミド、リチウムエチルブチルアミド、リチウムエチルベンジルアミド、リチウムメチルフェネチルアミド、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピペリジド、リチウムヘプタメチレンイミド、リチウムモルホリド、1-リチオアザシクロオクタン、6-リチオ-1,3,3-トリメチル-6-アザビシクロ[3.2.1]オクタン、1-リチオ-1,2,3,6-テトラヒドロピリジンが挙げられる。
これらの置換アミノ基を有する有機モノリチウム化合物は、重合可能な単量体、例えば、1,3-ブタジエン、イソプレン、スチレン等の単量体を少量反応させて、可溶化したオリゴマーの有機モノリチウム化合物として用いることもできる。
有機モノリチウム化合物は、好ましくは、アルキルリチウム化合物である。この場合、重合開始末端にアルキル基を有する共役ジエン系重合体が得られる。
アルキルリチウム化合物としては、以下のものに限定されないが、例えば、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、n-ヘキシルリチウム、ベンジルリチウム、フェニルリチウム、スチルベンリチウムが挙げられる。アルキルリチウム化合物としては、工業的入手の容易さ及び重合反応のコントロールの容易さの観点から、n-ブチルリチウム、sec-ブチルリチウムが好ましい。
これらの有機モノリチウム化合物は、1種のみを単独で用いてもよいし、2種以上を併用してもよい。
その有機金属化合物としては、以下に限定されるものではないが、例えば、アルカリ土類金属化合物、リチウム以外のアルカリ金属化合物、その他の有機金属化合物が挙げられる。
アルカリ土類金属化合物としては、以下のものに限定されないが、例えば、有機マグネシウム化合物、有機カルシウム化合物、有機ストロンチウム化合物が挙げられる。また、アルカリ土類金属のアルコキサイド、スルフォネート、カーボネート、アミドの化合物も挙げられる。有機マグネシウム化合物としては、例えば、ジブチルマグネシウム、エチルブチルマグネシウムが挙げられる。その他の有機金属化合物としては、例えば、有機アルミニウム化合物が挙げられる。
連続式においては、1個又は2個以上の連結された反応器を用いることができる。
連続式の反応器は、例えば、撹拌機付きの槽型、管型のものが用いられる。連続式においては、好ましくは、連続的に単量体、不活性溶媒、及び重合開始剤が反応器にフィードされ、反応器内で重合体を含む重合体溶液が得られ、連続的に重合体溶液が排出される。
回分式の反応器は、例えば、攪拌機付の槽型のものが用いられる。回分式においては、好ましくは、単量体、不活性溶媒、及び重合開始剤がフィードされ、必要により単量体が重合中に連続的又は断続的に追加され、反応器内で重合体を含む重合体溶液が得られ、重合終了後に重合体溶液が排出される。
本実施形態の変性共役ジエン系重合体の製造工程において、高い割合で活性末端を有する共役ジエン系重合体を得るには、重合体を連続的に排出し、短時間で次の反応に供することが可能な連続式により重合工程を行うことが好ましい。
不活性溶媒としては、例えば、飽和炭化水素、芳香族炭化水素等の炭化水素系溶媒が挙げられる。
炭化水素系溶媒としては、以下のものに限定されないが、例えば、ブタン、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン、メチルシクロヘキサン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素及びそれらの混合物からなる炭化水素が挙げられる。
重合反応に供する前に、不純物であるアレン類、及びアセチレン類を有機金属化合物で処理することで、高濃度の活性末端を有する共役ジエン系重合体が得られる傾向にあり、高い変性率の変性共役ジエン系重合体が得られる傾向にあるため好ましい。
極性化合物としては、以下のものに限定されないが、例えば、テトラヒドロフラン、ジエチルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、ジメトキシベンゼン、2,2-ビス(2-オキソラニル)プロパン等のエーテル類;テトラメチルエチレンジアミン、ジピペリジノエタン、トリメチルアミン、トリエチルアミン、ピリジン、キヌクリジン等の第3級アミン化合物;カリウム-tert-アミラート、カリウム-tert-ブチラート、ナトリウム-tert-ブチラート、ナトリウムアミラート等のアルカリ金属アルコキシド化合物;トリフェニルホスフィン等のホスフィン化合物等が挙げられる。
これらの極性化合物は、1種のみを単独で用いてもよいし、2種以上を併用してもよい。
極性化合物の使用量は、特に限定されず、目的等に応じて選択することができるが、重合開始剤1モルに対して、0.01モル以上100モル以下であることが好ましい。
このような極性化合物(ビニル化剤)は重合体共役ジエン部分のミクロ構造の調節剤として、所望のビニル結合量に応じて、適量用いることができる。
多くの極性化合物は、同時に共役ジエン化合物と芳香族ビニル化合物との共重合において有効なランダム化効果を有し、芳香族ビニル化合物の分布の調整やスチレンブロック量の調整剤として用いることができる傾向にある。共役ジエン化合物と芳香族ビニル化合物とをランダム化する方法としては、例えば、特開昭59-140211号公報に記載されているような、スチレンの全量と1,3-ブタジエンの一部とで共重合反応を開始させ、共重合反応の途中に残りの1,3-ブタジエンを断続的に添加する方法を用いてもよい。
ムーニー粘度が前記範囲であると、本実施形態の変性共役ジエン系重合体は加工性及び耐摩耗性が優れる傾向にある。
また、本実施形態の変性共役ジエン系重合体中の結合芳香族ビニル量は、特に限定されないが、0質量%以上60質量%以下であることが好ましく、20質量%以上45質量%以下であることがより好ましい。
結合共役ジエン量及び結合芳香族ビニル量が前記範囲であると、加硫物としたときに、低ヒステリシスロス性とウェットスキッド抵抗性とのバランスと、破壊特性及び耐摩耗性と、がより優れる傾向にある。
ここで、結合芳香族ビニル量は、フェニル基の紫外吸光によって測定でき、ここから結合共役ジエン量も求めることができる。具体的には、後述する実施例に記載の方法に準じて測定することができる。
ビニル結合量が前記範囲であると、加硫物としたときに、低ヒステリシスロス性とウェットスキッド抵抗性のバランスと、耐摩耗性及び破壊強度がより優れる傾向にある。ここで、分岐変性ジエン系重合体がブタジエンとスチレンの共重合体である場合には、ハンプトンの方法(R.R.Hampton,Analytical Chemistry,21,923(1949))により、ブタジエン結合単位中のビニル結合量(1,2-結合量)を求めることができる。具体的には、後述する実施例に記載の方法により測定することができる。
変性工程においては、上述のような方法で得た共役ジエン系重合体と、当該共役ジエン系重合体の活性末端と反応する結合基を有し、さらに充填剤に親和性又は結合反応性を有する所定の官能基を有する変性剤とを反応させる。
また、重合工程の後、ただちに変性工程を実施することが好ましい。その場合、変性率が高い変性共役ジエン系重合体が得られる傾向にある。
変性剤として、結合基が単官能又は2官能の化合物を用いると、直鎖状の末端変性ジエン系重合体が得られ、結合基が3官能以上の多官能化合物を用いると、分岐状の変性ジエン系重合体が得られる。
変性剤としては、好ましくは、窒素、ケイ素、スズ、リン、酸素、硫黄、ハロゲンのうち、少なくとも1種の元素を含む単官能又は多官能の化合物が用いられる。また、オニウム生成剤を含む末端変性剤を加えて反応させることにより、前記変性共役ジエン系重合体にオニウム構造を導入することができる。また、これらの元素を含む官能基を分子中に複数含有する変性剤、又はこれらの元素を複数含む官能基を含有する変性剤を用いることもできる。
変性剤としては、水酸基、カルボキシル基、1級及び2級アミノ基等の、活性水素は少ないか、無い官能基を有するものが好ましい。活性水素は、共役ジエン系重合体の活性末端を失活させる傾向にある。
窒素含有化合物としては、以下に限定するものではないが、例えば、イソシアナート化合物、イソチオシアナート化合物、イソシアヌル酸誘導体、窒素基含有カルボニル化合物、窒素基含有ビニル化合物、窒素基含有エポキシ化合物等が挙げられる。
ケイ素含有化合物としては、以下に限定されるものではないが、例えば、ハロゲン化ケイ素化合物、エポキシ化ケイ素化合物、ビニル化ケイ素化合物、アルコキシケイ素化合物、窒素含有基を含むアルコキシケイ素化合物等が挙げられる。
スズ含有化合物としては、以下に限定されるものではないが、例えば、ハロゲン化スズ化合物、有機スズカルボキシレート化合物等が挙げられる。
リン含有化合物としては、以下に限定されるものではないが、例えば、亜リン酸エステル化合物、ホスフィノ化合物等が挙げられる。
酸素含有化合物としては、以下に限定されるものではないが、例えば、エポキシ化合物、エーテル化合物、エステル化合物等が挙げられる。
硫黄含有化合物としては、以下に限定されるものではないが、例えば、メルカプト基誘導体、チオカルボニル化合物、イソチオシアナート等が挙げられる。
ハロゲン含有化合物としては、以下に限定されるものではないが、上記のハロゲン化ケイ素化合物、ハロゲン化スズ化合物等が挙げられる。
オニウム生成剤としては、1級又は2級のアミンを形成しうる保護化アミン化合物(アンモニウムを生成する)、ヒドロホスフィンを形成しうる保護化ホスフィン化合物(ホスフォニウムを生成する)、水酸基、チオールを形成しうる化合物(オキソニウム、スルホニウムを生成する)等が挙げられ、オニウム生成剤と上記変性共役ジエン系重合体を結合するための官能基をそれぞれ分子中に有する末端変性剤を用いることが好ましい。前記変性共役ジエン系重合体を結合するための官能基としては、カルボニル基(ケトン、エステル等)、ビニル基等の不飽和基、エポキシ基、ハロゲン化ケイ素基、アルコキシケイ素基等が挙げられる。
変性剤である窒素含有化合物のイソシアナート化合物としては、以下に限定されるものではないが、例えば、2,4-トリレンジイソシアナート、2,6-トリレンジイソシアナート、ジフェニルメタンジイソシアナート、ポリメリックタイプのジフェニルメタンジイソシアナート(C-MDI)、フェニルイソシアナート、イソホロンジイソシアナート、ヘキサメチレンジイソシアナート、ブチルイソシアナート、1,3,5-ベンゼントリイソシアナート等が挙げられる。
イソシアヌル酸誘導体としては、以下に限定されるものではないが、例えば、1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、1,3,5-トリス(3-トリエトキシシリルプロピル)イソシアヌレート、1,3,5-トリ(オキシラン-2-イル)-1,3,5-トリアジナン-2,4,6-トリオン、1,3,5-トリス(イソシアナトメチル)-1,3,5-トリアジナン-2,4,6-トリオン、1,3,5-トリビニル-1,3,5-トリアジナン-2,4,6-トリオン等が挙げられる。
窒素基含有カルボニル化合物としては、以下に限定されるものではないが、例えば、1,3-ジメチル-2-イミダゾリジノン、1-メチル-3-エチル-2-イミダゾリジノン、1-メチル-3-(2-メトキシエチル)-2-イミダゾリジノン、N-メチル-2-ピロリドン、N-メチル-2-ピペリドン、N-メチル-2-キノロン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、メチル-2-ピリジルケトン、メチル-4-ピリジルケトン、プロピル-2-ピリジルケトン、ジ-4-ピリジルケトン、2-ベンゾイルピリジン、N,N,N’,N’-テトラメチル尿素、N,N-ジメチル-N’,N’-ジフェニル尿素、N,N-ジエチルカルバミン酸メチル、N,N-ジエチルアセトアミド、N,N-ジメチル-N’,N’-ジメチルアミノアセトアミド、N,N-ジメチルピコリン酸アミド、N,N-ジメチルイソニコチン酸アミド等が挙げられる。
窒素基含有ビニル化合物としては、以下に限定されるものではないが、例えば、N,N-ジメチルアクリルアミド、N,N-ジメチルメタクリルアミド、N-メチルマレイミド、N-メチルフタルイミド、N,N-ビストリメチルシリルアクリルアミド、モルホリノアクリルアミド、3-(2-ジメチルアミノエチル)スチレン、(ジメチルアミノ)ジメチル-4-ビニルフェニルシラン、4,4’-ビニリデンビス(N,N-ジメチルアニリン)、4,4’-ビニリデンビス(N,N-ジエチルアニリン)、1,1-ビス(4-モルホリノフェニル)エチレン、1-フェニル-1-(4-N,N-ジメチルアミノフェニル)エチレン等が挙げられる。
窒素基含有エポキシ化合物としては、以下に限定されるものではないが、例えば、アミノ基に結合したエポキシ基含有炭化水素化合物があり、さらにエーテル基に結合したエポキシ基を有してもよい。例えば、一般式(1)で表わされる。
2価以上の炭化水素基は、飽和又は不飽和の直鎖状、分岐状、環状であってもよい炭化水素基であり、アルキレン基、アルケニレン基、フェニレン基等を含む。好ましくは、炭素数が1~20の炭化水素基である。例えば、メチレン、エチレン、ブチレン、シクロヘキシレン、1,3-ビス(メチレン)-シクロヘキサン、1,3-ビス(エチレン)-シクロヘキサン、o-、m-、p-フェニレン、m-、p-キシレン、ビス(フェニレン)-メタン等が挙げられる。
前記式(1)中、R1、R4は、炭素数1~10の炭化水素基であり、R1、R4は互いに同一でも異なっていてもよい。
R2、R5は、水素又は炭素数1~10の炭化水素基であり、R2、R5は互いに同一でも異なっていてもよい。
R3は炭素数1~10の炭化水素基、又は下記式(2)の構造である。
R1、R2、R3は、互いに結合した環状構造であってもよい。
また、R3が炭化水素基の場合、Rと互いに結合した環状構造であってもよい。前記の環状構造の場合、R3に結合しているNとRとが直接結合している形態であってもよい。
前記式(1)上記中、nは1以上の整数であって、mは0又は1以上の整数である。
アミノ基又はエーテル基に結合したエポキシ基含有炭化水素基としては、例えば、グリシジルアミノ基、ジグリシジルアミノ基又はグリシジドキシ基が挙げられる。さらに好ましい分子構造は、グリシジルアミノ基又はジグリシジルアミノ基、及びグリシジドキシ基をそれぞれ有するエポキシ基含有化合物であり、下記一般式(3)で表わされる化合物が挙げられる。
R6が炭化水素基の場合、Rと互いに結合して環状構造であってもよく、その場合は、R6に結合しているNとRとが直接結合している形態であってもよい。
式(3)中、nは1以上の整数であって、mは0又は1以上の整数である。
変性剤として用いる窒素基含有エポキシ化合物としては、以下のものに限定されないが、例えば、N,N-ジグリシジル-4-グリシドキシアニリン、1-N,N-ジグリシジルアミノメチル-4-グリシドキシ-シクロヘキサン、4-(4-グリシドキシフェニル)-(N,N-ジグリシジル)アニリン、4-(4-グリシドキシフェノキシ)-(N,N-ジグリシジル)アニリン、4-(4-グリシドキシベンジル)-(N,N-ジグリシジル)アニリン、4-(N,N’-ジグリシジル-2-ピペラジニル)-グリシドキシベンゼン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、4,4-メチレン-ビス(N,N-ジグリシジルアニリン)、1,4-ビス(N,N-ジグリシジルアミノ)シクロヘキサン、N,N,N’,N’-テトラグリシジル-p-フェニレンジアミン、4,4’-ビス(ジグリシジルアミノ)ベンゾフェノン、4-(4-グリシジルピペラジニル)-(N,N-ジグリシジル)アニリン、2-〔2-(N,N-ジグリシジルアミノ)エチル〕-1-グリシジルピロリジン、N,N-ジグリシジルアニリン、4,4’-ジグリシジル-ジベンジルメチルアミン、N,N-ジグリシジルアニリン、N,N-ジグリシジルオルソトルイジン、N,N-ジグリシジルアミノメチルシクロヘキサン等が挙げられる。これらのうち特に好ましいものとしては、N,N-ジグリシジル-4-グリシドキシアニリン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサンが挙げられる。
2,2-ジメトキシ-1-(4-トリメトキシシリルブチル)-1-アザ-2-シラシクロヘキサン、2,2-ジメトキシ-1-(3-ジメトキシメチルシリルプロピル)-1-アザ-2-シラシクロペンタン、2,2-ジメトキシ-1-フェニル-1-アザ-2-シラシクロペンタン、2,2-ジエトキシ-1-ブチル-1-アザ-2-シラシクロペンタン、2,2-ジメトキシ-1-メチル-1-アザ-2-シラシクロペンタン、2,2-ジメトキシ-8-(4-メチルピペラジニル)メチル-1,6-ジオキサ-2-シラシクロオクタン、2,2-ジメトキシ-8-(N,N-ジエチルアミノ)メチル-1,6-ジオキサ-2-シラシクロオクタン等が挙げられる。
変性剤が有するアルコキシシリル基は、例えば、共役ジエン系重合体が有する活性末端と反応して、アルコキシリチウムが解離し、共役ジエン系重合体鎖の末端と変性剤残基のケイ素との結合を形成する傾向にある。変性剤1分子が有するSiORの総数から、反応により減じたSiOR数を差し引いた値が、変性剤残基が有するアルコキシシリル基の数となる。また、変性剤が有するアザシラサイクル基は、>N-Li結合及び共役ジエン系重合体末端と変性剤残基のケイ素との結合を形成する。なお、>N-Li結合は、仕上げ時の水等により容易に>NH及びLiOHとなる傾向にある。また、変性剤において、未反応で残存したアルコキシシリル基は仕上げ時の水等により容易にシラノール(Si-OH基)となる傾向にある。
変性工程において、1個のケイ素原子に対し3個のアルコキシ基を有する変性剤を用いる場合、すなわちトリアルコキシシラン基1モルに対し、3モルの共役ジエン系重合体の活性末端を反応させる場合、2モルまでの共役ジエン系重合体との反応は起こるが、1モルのアルコキシ基は未反応で残存する傾向にある。これは、1モルの共役ジエン系重合体が、反応せずに未反応の重合体として残存することから確かめられる。なお、アルコキシシ基は多く反応させることにより、仕上げ時、貯蔵時に縮合反応を起こすことに起因して重合体粘度が大きく変わることを抑制できる傾向にある。好ましくは、1つの珪素原子当たり1個のアルコキシシリル基を有する変性剤を用いることが好ましい。
変性工程における反応時間は、好ましくは10秒以上、より好ましくは30秒以上である。
変性工程における混合は、機械的な攪拌、スタティックミキサーによる攪拌等のいずれの混合方法を適用してもよい。重合工程が連続式である場合は、変性工程も連続式であることが好ましい。変性工程における反応器は、例えば、撹拌機付きの槽型、管型のものが用いられる。変性剤は、不活性溶媒により希釈して反応器に連続的に供給してもよい。重合工程が回分式の場合は、重合反応器に変性剤を投入する方法でも、別の反応器に移送して反応工程を行ってもよい。
mは、1~3の整数を表し、pは、1又は2を表す。
複数存在する場合のR12~R22、m、及びpは、各々独立している。
iは、0~6の整数を表し、jは0~6の整数を表し、kは0~6の整数を表し、(i+j+k)は1~10の整数を表す。
Aは、単結合、炭素数1~20の炭化水素基、又は、酸素原子、窒素原子、珪素原子、硫黄原子、リン原子からなる群より選ばれる少なくとも1種の原子を有し、活性水素を有しない有機基を表す。
Aが表す炭化水素基としては、飽和、不飽和、脂肪族、及び芳香族の炭化水素基を含む。活性水素を有しない有機基は、共役ジエン系重合体が有する活性末端を不活性化させる有機基である。その有機基としては、水酸基(-OH)、第2級アミノ基(>NH)、第1級アミノ基(-NH2)、スルフヒドリル基(-SH)の活性水素を有する官能基がない、有機基である。なお、(i+j+k)が1の場合は、Aは無いものとしてよい。
前記式(VI)において、Aは下記一般式(II)~(V)のいずれかを表すものであることが好ましい。
トリス(3-トリメトキシシリルプロピル)-[3-(1-メトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-プロパンジアミン、ビス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-[3-(1-メトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-プロパンジアミン、ビス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリメトキシシリルプロピル)-[3-(1-メトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-プロパンジアミン、トリス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-[3-(1-メトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-プロパンジアミン、テトラキス(3-トリエトキシシリルプロピル)-1,3-プロパンジアミン、
トリス(3-トリエトキシシリルプロピル)-[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、ビス(3-トリエトキシシリルプロピル)-ビス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、トリス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリエトキシシリルプロピル)-1,3-プロパンジアミン、テトラキス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、トリス(3-トリエトキシシリルプロピル)-[3-(1-エトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-プロパンジアミン、ビス(3-トリエトキシシリルプロピル)-[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-[3-(1-エトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-プロパンジアミン、ビス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリエトキシシリルプロピル)-[3-(1-エトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-プロパンジアミン、トリス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-[3-(1-エトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-ビスアミノメチルシクロヘキサン、トリス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、ビス(3-トリメトキシシリルプロピル)-ビス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、トリス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリメトキシシリルプロピル)-1,3-ビスアミノメチルシクロヘキサン、テトラキス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、トリス(3-トリメトキシシリルプロピル)-[3-(1-メトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、ビス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-[3-(1-メトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、ビス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリメトキシシリルプロピル)-[3-(1-メトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、トリス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-[3-(1-メトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、テトラキス(3-トリエトキシシリルプロピル)-1,3-プロパンジアミン、
トリス(3-トリエトキシシリルプロピル)-[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、ビス(3-トリエトキシシリルプロピル)-ビス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、トリス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリエトキシシリルプロピル)-1,3-プロパンジアミン、テトラキス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、トリス(3-トリエトキシシリルプロピル)-[3-(1-エトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、ビス(3-トリエトキシシリルプロピル)-[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-[3-(1-エトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、ビス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリエトキシシリルプロピル)-[3-(1-エトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、トリス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-[3-(1-エトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、テトラキス(3-トリメトキシシリルプロピル)-1,6-ヘキサメチレンジアミン、ペンタキス(3-トリメトキシシリルプロピル)-ジエチレントリアミンが挙げられる。
このような変性剤としては、以下のものに限定されないが、例えば、テトラキス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-ビスアミノメチルシクロヘキサン、N1-(3-(ビス(3-(トリメトキシシリル)プロピル)アミノ)プロピル)-N1-メチル-N3-(3-(メチル(3-(トリメトキシシリル)プロピル)アミノ)プロピル)-N3-(3-(トリメトキシシリル)プロピル)-1,3-プロパンジアミンが挙げられる。
本実施形態の変性共役ジエン系重合体は、共役ジエン部を水素化したものであってもよい。共役ジエン部を水素化する方法は、特に限定されず、公知の方法が利用できる。
好適な水素化の方法としては、触媒の存在下、重合体溶液に気体状水素を吹き込む方法で水素化する方法が挙げられる。
触媒としては、例えば、貴金属を多孔質無機物質に担持させた触媒等の不均一系触媒;ニッケル、コバルト等の塩を可溶化し有機アルミニウム等と反応させた触媒、チタノセン等のメタロセンを用いた触媒等の均一系触媒が挙げられる。これら中でも、マイルドな水素化条件を選択できる観点から、チタノセン触媒が好ましい。また、芳香族基の水素化は、貴金属の担持触媒を用いることによって行うことができる。
失活剤としては、以下のものに限定されないが、例えば、水;メタノール、エタノール、イソプロパノール等のアルコール等が挙げられる。
中和剤としては、以下のものに限定されないが、例えば、ステアリン酸、オレイン酸、バーサチック酸(炭素数9~11個で、10個を中心とする、分岐の多いカルボン酸混合物)等のカルボン酸;無機酸の水溶液、炭酸ガスが挙げられる。
ゴム用安定剤としては、公知のものを用いることができ、以下に限定されるものではないが、例えば、2,6-ジ-tert-ブチル-4-ヒドロキシトルエン(BHT)、n-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェノール)プロピネート、2-メチル-4,6-ビス[(オクチルチオ)メチル]フェノール等の酸化防止剤が挙げられる。
伸展油を変性共役ジエン系重合体に添加する方法としては、以下の方法に限定されないが、伸展油を該重合体溶液に加え、混合して、油展共重合体溶液としたものを脱溶媒する方法が好ましい。
伸展油としては、例えば、アロマ油、ナフテン油、パラフィン油等が挙げられる。これらの中でも、環境安全上の観点、並びにオイルブリード防止及びウェットグリップ特性の観点から、IP346法による多環芳香族(PCA)成分が3質量%以下であるアロマ代替油が好ましい。
アロマ代替油としては、Kautschuk Gummi Kunststoffe52(12)799(1999)に示されるTDAE(Treated Distillate Aromatic Extracts)、MES(Mild Extraction Solvate)等の他、RAE(Residual Aromatic Extracts)が挙げられる。
伸展油の添加量は、特に限定されないが、変性共役ジエン系重合体100質量部に対し、10質量部以上60質量部以下が好ましく、20質量部以上37.5質量部以下がより好ましい。
本実施形態の重合体組成物は、本実施形態の変性共役ジエン系重合体を10質量%以上含む。
本実施形態の重合体組成物は、本実施形態の変性共役ジエン系重合体以外の重合体を含んでもよい。
当該本実施形態の変性共役ジエン系重合体以外の重合体としては、本実施形態の変性共役ジエン系重合体の構造以外の構造を有するゴム状重合体(以下、「他のゴム状重合体」という。)、又は樹脂状重合体が挙げられる。
他のゴム状重合体としては、以下のものに限定されないが、例えば、共役ジエン系重合体又はその水素添加物、共役ジエン系化合物とビニル芳香族化合物とのランダム共重合体又はその水素添加物、共役ジエン系化合物とビニル芳香族化合物とのブロック共重合体又はその水素添加物、非ジエン系重合体、天然ゴムが挙げられる。具体的な他のゴム状重合体としては、以下のものに限定されないが、例えば、ブタジエンゴム又はその水素添加物、イソプレンゴム又はその水素添加物、スチレン-ブタジエンゴム又はその水素添加物、スチレン-ブタジエンブロック共重合体又はその水素添加物、スチレン-イソプレンブロック共重合体又はその水素添加物等のスチレン系エラストマー、アクリロニトリル-ブタジエンゴム又はその水素添加物が挙げられる。
前記非ジエン系重合体としては、以下のものに限定されないが、例えば、エチレン-プロピレンゴム、エチレン-プロピレン-ジエンゴム、エチレン-ブテン-ジエンゴム、エチレン-ブテンゴム、エチレン-ヘキセンゴム、エチレン-オクテンゴム等のオレフィン系エラストマー、ブチルゴム、臭素化ブチルゴム、アクリルゴム、フッ素ゴム、シリコーンゴム、塩素化ポリエチレンゴム、エピクロルヒドリンゴム、α、β-不飽和ニトリル-アクリル酸エステル-共役ジエン共重合ゴム、ウレタンゴム、多硫化ゴムが挙げられる。
前記天然ゴムとしては、以下のものに限定されないが、例えば、スモークドシートであるRSS3~5号、SMR、エポキシ化天然ゴムが挙げられる。
上述した他の重合体は、水酸基、アミノ基等の極性を有する官能基を付与した変性ゴムであってもよい。タイヤ用に用いる場合、ブタジエンゴム、イソプレンゴム、スチレン-ブタジエンゴム、天然ゴム、ブチルゴムが好ましく用いられる。
他の重合体が前記「他のゴム状重合体」である場合、その重量平均分子量は、性能と加工特性のバランスの観点から、2,000以上2,000,000以下であることが好ましく、5,000以上1,500,000以下であることがより好ましい。また、低分子量のゴム状重合体、いわゆる液状ゴムを用いることもできる。これらの他のゴム状重合体は、1種単独で用いてもよいし、2種以上を併用してもよい。
(変性共役ジエン系重合体/他のゴム状重合体)の含有比率が上記範囲であると、加硫物としたときに、低ヒステリシスロス性とウェットスキッド抵抗性とのバランスが優れ、耐摩耗性及び破壊強度も満足する。
本実施形態のゴム組成物は、本実施形態の変性共役ジエン共重合体10質量%以上を含むゴム状重合体100質量部と、充填剤5~150質量部とを含む。
また、当該充填剤は、シリカ系無機充填剤を含むことが好ましい。
本実施形態のゴム組成物は、シリカ系無機充填剤を分散させることで、加硫物とする際の加工性により優れる傾向にあり、加硫物としたときに、低ヒステリシスロス性とウェットスキッド抵抗性とのバランスと、破壊強度及び耐摩耗性と、により優れる傾向にある。
本実施形態のゴム組成物が、タイヤ、防振ゴム等の自動車部品、靴等の加硫ゴム用途に用いられる場合にも、シリカ系無機充填剤を含むことが好ましい。
充填剤としては、以下のものに限定されないが、例えば、シリカ系無機充填剤、カーボンブラック、金属酸化物、金属水酸化物が挙げられる。これらの中でも、シリカ系無機充填剤が好ましい。これらは1種単独で用いてもよいし、2種以上を併用してもよい。
充填剤の含有量は、充填剤の添加効果が発現する観点から5.0質量部以上であり、充填剤を十分に分散させ、ゴム組成物の加工性及び機械強度を実用的に十分なものとする観点から、150質量部以下である。
シリカ系無機充填剤としては、以下のものに限定されないが、例えば、シリカ、クレイ、タルク、マイカ、珪藻土、ウォラストナイト、モンモリロナイト、ゼオライト、ガラス繊維等の無機繊維状物質が挙げられる。また、表面を疎水化したシリカ系無機充填剤、シリカ系無機充填剤とシリカ系以外の無機充填剤との混合物も挙げられる。これらの中でも、強度及び耐摩耗性等の観点から、シリカ及びガラス繊維が好ましく、シリカがより好ましい。シリカとしては、例えば、乾式シリカ、湿式シリカ、合成ケイ酸塩シリカが挙げられる。これらのシリカの中でも、破壊特性の改良効果及びウェットスキッド抵抗性のバランスに優れる観点から、湿式シリカが好ましい。
本実施形態のゴム組成物において、実用上良好な耐摩耗性及び破壊特性を得る観点から、シリカ系無機充填剤のBET吸着法で求められる窒素吸着比表面積は、100m2/g以上300m2/g以下であることが好ましく、170m2/g以上250m2/g以下であることがより好ましい。また必要に応じて、比較的比表面積が小さい(例えば、比表面積が200m2/g以下の)シリカ系無機充填剤と、比較的比表面積の大きい(例えば、200m2/g以上の)シリカ系無機充填剤)と、を組み合わせて用いることができる。
本実施形態において、特に比較的比表面積の大きい(例えば、200m2/g以上の)シリカ系無機充填剤を用いる場合に、変性共役ジエン系重合体は、シリカの分散性を改善し、特に耐摩耗性の向上に効果があり、良好な破壊特性と低ヒステリシスロス性とを高度にバランスさせることができる傾向にある。
ゴム組成物中のシリカ系無機充填剤の含有量は、変性共役ジエン系重合体を含むゴム状重合体100質量部に対して、5.0質量部以上150質量部であり、20質量部以上100質量部以下であることが好ましい。シリカ系無機充填剤の含有量は、無機充填剤の添加効果が発現する観点から、5.0質量部以上であり、無機充填剤を十分に分散させ、ゴム組成物の加工性及び機械強度を実用的に十分なものとする観点から、150質量部以下である。
カーボンブラックの含有量は、変性共役ジエン系重合体を含むゴム状重合体100質量部に対して、0.5質量部以上100質量部以下が好ましく、3.0質量部以上100質量部以下がより好ましく、5.0質量部以上50質量部以下がさらに好ましい。カーボンブラックの含有量は、ドライグリップ性能、導電性等のタイヤ等の用途に求められる性能を発現する観点から、0.5質量部以上とすることが好ましく、分散性の観点から、100質量部以下とすることが好ましい。
金属水酸化物としては、以下のものに限定されないが、例えば、水酸化アルミニウム、水酸化マグネシウム、水酸化ジルコニウムが挙げられる。
シランカップリング剤は、ゴム状重合体と無機充填剤との相互作用を緊密にする機能を有しており、ゴム状重合体及びシリカ系無機充填剤のそれぞれに対する親和性又は結合性の基を有しており、硫黄結合部分とアルコキシシリル基又はシラノール基部分とを一分子中に有する化合物が好ましい。このような化合物としては、例えば、ビス-[3-(トリエトキシシリル)-プロピル]-テトラスルフィド、ビス-[3-(トリエトキシシリル)-プロピル]-ジスルフィド、ビス-[2-(トリエトキシシリル)-エチル]-テトラスルフィドが挙げられる。
シランカップリング剤の含有量は、上述した無機充填剤100質量部に対して、0.1質量部以上30質量部以下が好ましく、0.5質量部以上20質量部以下がより好ましく、1.0質量部以上15質量部以下がさらに好ましい。シランカップリング剤の含有量が上記範囲であると、シランカップリング剤の添加効果を一層顕著なものにできる傾向にある。
ゴム用軟化剤としては、鉱物油、又は、液状若しくは低分子量の合成軟化剤が好適である。ゴムの軟化、増容、及び加工性の向上を図るために使用されているプロセスオイル又はエクステンダーオイルと呼ばれる鉱物油系ゴム用軟化剤は、芳香族環、ナフテン環、及びパラフィン鎖の混合物であり、パラフィン鎖の炭素数が全炭素中50質量%以上を占めるものがパラフィン系と呼ばれ、ナフテン環炭素数が全炭素中30質量%以上45質量%以下を占めるものがナフテン系、芳香族炭素数が全炭素中30質量%を超えて占めるものが芳香族系と呼ばれている。
本実施形態の変性共役ジエン系重合体が共役ジエン化合物とビニル芳香族化合物との共重合体である場合、用いるゴム用軟化剤としては、適度な芳香族化合物含量を有するものが共重合体との馴染みがよい傾向にあるため好ましい。
ゴム用軟化剤の含有量は、変性共役ジエン系重合体を含有するゴム状重合体100質量部に対して、0質量部以上100質量部以下が好ましく、10質量部以上90質量部以下がより好ましく、30質量部以上90質量部以下がさらに好ましい。ゴム用軟化剤の含有量がゴム状重合体100質量部に対して100質量部以下であることで、ブリードアウトを抑制し、ゴム組成物表面のベタツキを抑制する傾向にある。
これらのうち、ロール、バンバリーミキサー、ニーダー、押出機を用いた溶融混練法が、生産性、良混練性の観点から好ましい。また、ゴム状重合体とその他の充填剤、シランカップリング剤、及び添加剤とを一度に混練する方法、複数の回数に分けて混合する方法のいずれも適用可能である。
硫黄化合物には、一塩化硫黄、二塩化硫黄、ジスルフィド化合物、高分子多硫化合物等が含まれる。加硫剤の含有量は、ゴム状重合体100質量部に対して、0.01質量部以上20質量部以下が好ましく、0.1質量部以上15質量部以下がより好ましい。加硫方法としては、従来公知の方法を適用でき、加硫温度は、120℃以上200℃以下が好ましく、より好ましくは140℃以上180℃以下である。
加硫に際しては、必要に応じて加硫促進剤を用いてもよい。加硫促進剤としては、従来公知の材料を用いることができ、以下のものに限定されないが、例えば、スルフェンアミド系、グアニジン系、チウラム系、アルデヒド-アミン系、アルデヒド-アンモニア系、チアゾール系、チオ尿素系、ジチオカルバメート系の加硫促進剤が挙げられる。また、加硫助剤としては、以下のものに限定されないが、例えば、亜鉛華、ステアリン酸が挙げられる。加硫促進剤の含有量は、ゴム成分100質量部に対して、0.01質量部以上20質量部以下が好ましく、0.1質量部以上15質量部以下がより好ましい。
ゴム組成物には、本実施形態の目的を損なわない範囲内で、上述した以外のその他の軟化剤及び充填剤、耐熱安定剤、帯電防止剤、耐候安定剤、老化防止剤、着色剤、滑剤等の各種添加剤を用いてもよい。その他の軟化剤としては、公知の軟化剤を用いることができる。その他の充填剤としては、例えば、炭酸カルシウム、炭酸マグネシウム、硫酸アルミニウム、硫酸バリウムが挙げられる。上記の耐熱安定剤、帯電防止剤、耐候安定剤、老化防止剤、着色剤、潤滑剤としては、それぞれ公知の材料を用いることができる。
本実施形態のゴム組成物は、タイヤ用のゴム組成物として好適に用いられる。
本実施形態のゴム組成物は、以下のものに限定されないが、例えば、省燃費タイヤ、オールシーズンタイヤ、高性能タイヤ、スタッドレスタイヤ等の各種タイヤ:トレッド、カーカス、サイドウォール、ビード部等のタイヤ各部位への利用が可能である。特に、本実施形態の変性共役ジエン系重合体を含有するタイヤ用のゴム組成物は、加硫物としたときに低ヒステリシスロス性とウェットスキッド抵抗性とのバランス及び耐摩耗性に優れているので、省燃費タイヤ、高性能タイヤのトレッド用として、より好適に用いられる。
各種の物性は下記に示す方法により測定した。
変性共役ジエン系重合体の重合に用いる1,3-ブタジエンを、下記工程により精製した。
(水洗工程)
循環水量1m3/hr、更新(メイクアップ)水量0.1m3/hrの条件で運転した。
1,3-ブタジエンと洗浄水とは、スタティックミキサー((株)ノリタケ カンパニーリミテッド社製のスタティックミキサーN60シリーズ)を使用して混合し、その後、デカンターに移送し、当該デカンターで1,3-ブタジエン相と水相とを分離した。
なお、液温度30℃、デカンター圧力1.0MPaGの条件で運転した。
デカンターでの1,3-ブタジエン相の滞留時間は30分間であった。
前記デカンターで分離した水相を、脱1,3-ブタジエン槽へ導入し、スチームと混合して89℃に加熱し、同時に、全圧を0.01MPaGとして、1,3-ブタジエンを水相から分離した。
続いて、脱酸素剤として、ダイクリーンF-504(栗田工業製)の10%水溶液を使用し、循環流速:1m3/hrで、前記(水洗工程)後の1,3-ブタジエンと前記脱酸素剤の水溶液とをスタティックミキサーを使用して混合し、液液抽出を行った。その後、デカンターに移動し、当該デカンターで、1,3-ブタジエン相と水相とを分離した。
デカンターでの1,3-ブタジエン相の滞留時間は30分間であった。なお、液温度30℃、デカンター圧力1.0MPaGの条件で運転した。
さらに続いて、10%苛性ソーダ水溶液を、循環流速:1m3/hrで、ポールリング入り充填塔を使用して、前記(脱酸素剤による酸素除去工程)後の1,3-ブタジエンと混合し、液液抽出を行い、さらに他のデカンターに移送し、当該他のデカンターで、1,3-ブタジエン相と水相とを分離した。
当該他のデカンターでの1,3-ブタジエン相の滞留時間は60分間であった。なお、重合禁止剤除去工程においては、液温度30℃、デカンター圧力1.0MPaGの条件で運転した。
前記他のデカンターで分離した1,3-ブタジエン相に、混合ヘキサンを加えて、1,3-ブタジエン濃度:50質量%として、脱水塔へ供給した。
脱水塔においてトップ(塔頂)から、留出した1,3-ブタジエンと水の共沸混合物を冷却、凝縮させた後、デカンターに移送し、当該デカンターで1,3-ブタジエン相と水相とを分離した。
水相は除去し、1,3-ブタジエン相は、脱水塔の塔入り口に戻し、連続的に脱水塔工程を行った。
脱水塔のボトム(塔底)から脱水された1,3-ブタジエンとへキサンとの混合液を取り出した。
前記1,3-ブタジエンとヘキサンとの混合液を、活性アルミナ入り500Lのデシカントドライヤー((株)日立製作所製 竪型円筒槽)を通過させ、1,3-ブタジエン中の微量の残余不純物を吸着除去し、精製した1,3-ブタジエンを得た。
変性共役ジエン系重合体の重合に用いるスチレンを、下記工程により精製した。
3mmΦ×3mmの円柱型に成形したγ-アルミナを、濃度0.6%の塩化パラジウム水溶液に含浸させ、100°Cで1昼夜乾燥させた。次いで、その乾燥物を水素気流下で400°Cの温度で16時間還元処理して組成がPd(0.3%)/γ-Al2O3の水素添加触媒を得た。得られた触媒2000gを管型反応器に充填し、この触媒の温度を80℃に保ちながら、8時間循環させることにより、精製したスチレンを得た。
変性共役ジエン系重合体の重合に用いるノルマルヘキサンを、下記工程により精製した。
モレキュラーシーブ13-X(ユニオン昭和)2000gを管型反応器に充填し、室温で24時間循環させることにより、精製したノルマルヘキサンを得た。
原料中の不純物として、アレン類、アセチレン類、アミン類の定量分析を行った。
アレン類及びアセチレン類は、ガスクロマトグラフィー法により定性・定量した。
なお、カラムはRt-Alumina BOND/MAPD(島津製作所)を用いた。
また、アミン類は、ホウ酸を用いて抽出し、滴定法により定量し、不純物の総計(ppm)を算出した。
変性共役ジエン系重合体を試料として、試料100mgを、クロロホルムで100mLにメスアップし、溶解して測定サンプルとした。
スチレンのフェニル基による紫外線吸収波長(254nm付近)の吸収量により、試料である変性共役ジエン系重合体100質量%に対しての結合スチレン量(質量%)を測定した(島津製作所社製の分光光度計「UV-2450」)。
変性共役ジエン系重合体を試料として、試料50mgを、10mLの二硫化炭素に溶解して測定サンプルとした。
溶液セルを用いて、赤外線スペクトルを600~1000cm-1の範囲で測定して、所定の波数における吸光度によりハンプトンの方法(R.R.Hampton,Analytical Chemistry 21,923(1949)に記載の方法)の計算式に従い、ブタジエン部分のミクロ構造、すなわち、1,2-ビニル結合量(mol%)を求めた(日本分光社製のフーリエ変換赤外分光光度計「FT-IR230」)。
変性共役ジエン系重合体を試料として、ポリスチレン系ゲルを充填剤としたカラムを3本連結したGPC測定装置(東ソー社製の商品名「HLC-8320GPC」)を使用して、RI検出器(東ソー社製の商品名「HLC8020」)を用いてクロマトグラムを測定し、標準ポリスチレンを使用して得られる検量線に基づいて、重量平均分子量(Mw1)、数平均分子量(Mn1)、分子量分布(Mw1/Mn1)、変性共役ジエン系重合体のピークトップ分子量(Mp1)、及び分子量200万以上500万以下の変性共役ジエン系重合体の割合を求めた。
溶離液はTHF(テトラヒドロフラン)を使用した。
カラムは、東ソー社製の商品名「TSKgel SuperMultiporeHZ-H」を3本接続し、その前段にガードカラムとして東ソー社製の商品名「TSKguardcolumn SuperMP(HZ)-H」を接続して使用した。
測定用の試料10mgを20mLのTHFに溶解して測定溶液とし、測定溶液10μLをGPC測定装置に注入して、オーブン温度40℃、THF流量0.35mL/分の条件で測定した。
前記ピークトップ分子量(Mp1)は、以下のようにして求めた。
測定して得られるGPC曲線において、最も高分子量の成分として検出されるピークを選択した。その選択したピークについて、そのピークの極大値に相当する分子量を算出し、ピークトップ分子量とした。
また、上記の分子量200万以上500万以下の割合は、重合体の総質量に対する分子量200万以上500万以下の質量の割合として求めた。
変性共役ジエン系重合体を試料として、ムーニー粘度計(上島製作所社製の商品名「VR1132」)を用い、JIS K6300に準拠し、L形ローターを用いてムーニー粘度を測定した。
測定温度は、100℃とした。
まず、試料を1分間試験温度で予熱した後、ローターを2rpmで回転させ、4分後のトルクを測定してムーニー粘度(ML(1+4))とした。
変性共役ジエン系重合体を試料として、ISO 22768:2006に準拠して、マックサイエンス社製の示差走査熱量計「DSC3200S」を用い、ヘリウム50mL/分の流通下、-100℃から20℃/分で昇温しながらDSC曲線を記録し、DSC微分曲線のピークトップ(Inflection point)をガラス転移温度とした。なお、Tgはオイル添加前の試料を測定した値である。
変性共役ジエン系重合体を測定用試料として、シリカ系ゲルを充填剤としたGPCカラムに、変性した塩基性重合体成分が吸着する特性を応用することにより、クロマトグラムを測定した。
前記測定用試料及び低分子量内部標準ポリスチレンを含む測定用試料溶液を、ポリスチレン系カラムで測定したクロマトグラムと、シリカ系カラムで測定したクロマトグラムと、の差分よりシリカ系カラムへの吸着量を測定し、変性率を求めた。
具体的には、以下に示すとおりである。
測定用試料溶液の調製:
前記測定用試料10mg及び標準ポリスチレン5mgを20mLのTHF(テトラヒドロフラン)に溶解させて、測定用試料溶液とした。
ポリスチレン系カラムを用いたGPC測定条件:
東ソー社製の商品名「HLC-8320GPC」を使用して、THFを溶離液として用い、測定用試料溶液10μLを装置に注入し、カラムオーブン温度40℃、THF流量0.35mL/分の条件で、RI検出器を用いてクロマトグラムを得た。カラムは、東ソー社製の商品名「TSKgel SuperMultiporeHZ-H」を3本接続し、その前段にガードカラムとして東ソー社製の商品名「TSKguardcolumn SuperMP(HZ)-H」を接続して使用した。
シリカ系カラムを用いたGPC測定条件:
東ソー社製の商品名「HLC-8320GPC」を使用して、THFを溶離液として用い、測定用試料溶液50μLを装置に注入し、カラムオーブン温度40℃、THF流量0.5mL/分の条件で、RI検出器を用いてクロマトグラムを得た。カラムは、商品名「Zorbax PSM-1000S」、「PSM-300S」、「PSM-60S」を接続して使用し、その前段にガードカラムとして商品名「DIOL 4.6×12.5mm 5micron」を接続して使用した。
変性率の計算方法:
ポリスチレン系カラムを用いたクロマトグラムのピーク面積の全体を100として、試料のピーク面積をP1、標準ポリスチレンのピーク面積をP2、シリカ系カラムを用いたクロマトグラムのピーク面積の全体を100として、試料のピーク面積をP3、標準ポリスチレンのピーク面積をP4として、下記式より変性率(質量%)を求めた。
変性率(質量%)=[1-(P2×P3)/(P1×P4)]×100
(上記式において、P1+P2=P3+P4=100とする。)
前記(物性3)の測定に従い、標準ポリスチレンを使用して得られる検量線に基づいて、重量平均分子量(Mw2)と数平均分子量(Mn2)と分子量分布(Mw2/Mn2)と、変性共役ジエン系重合体のピークトップ分子量(Mp2)を測定した。
但し、前記ピークトップ分子量(Mp2)は、ピークトップが複数存在する場合には分子量が最小であるピークトップの分子量であるものとし、このピークトップ分子量(Mp2)を2で除すことにより得られた分子量におけるチャートの高さをL1とした。
シリカカラムを用いて(物性6)の測定に従って測定されたチャートの、ピークトップ分子量(Mp2)を2で除すことにより得られた分子量における高さをL2とした。
低分子量成分の変性率は、L1/L2により算出した。
低分子量成分の変性度を、前記(物性7)低分子量成分の変性率(FL)を、前記(物性6)共役ジエン系重合体の総量に対する変性率(FT)で除すことにより算出した。
低分子量成分の変性度=(FL/FT)×100
変性共役ジエン系重合体を試料として、ポリスチレン系ゲルを充填剤としたカラムを3本連結した粘度検出器付きのGPC-光散乱測定装置を使用して、クロマトグラムを測定し、溶液粘度及び光散乱法に基づいて分子量を求めた。
溶離液はテトラヒドロフランとトリエチルアミンとの混合溶液(THF in TEA:トリエチルアミン5mLをテトラヒドロフラン1Lに混合させ調整した。)を使用した。
カラムは、ガードカラム:東ソー社製の商品名「TSKguardcolumn HHR-H」と、カラム:東ソー社製の商品名「TSKgel G6000HHR」、「TSKgel G5000HHR」、「TSKgel G4000HHR」とを接続して使用した。
オーブン温度40℃、THF流量1.0mL/分の条件で粘度検出器付きのGPC-光散乱測定装置(マルバーン社製の商品名「Viscotek TDAmax」)を用いた。
測定用の試料10mgを20mLのTHFに溶解して測定用試料溶液とし、測定用試料溶液200μLをGPC測定装置に注入して測定した。
得られた測定用試料溶液の固有粘度と分子量を、固有粘度と分子量の関係式([η]=KMα([η]:固有粘度、M:分子量)における定数(K、α)を、logK=-3.883、α=0.771として、分子量Mの範囲を1000~20000000まで入力して作成した標準固有粘度[η]0と分子量Mとの関係に対して、各分子量Mでの固有粘度[η]を標準固有粘度[η]0に対する固有粘度[η]の関係として[η]/[η]0を各分子量Mで算出し、その平均値を収縮因子(g’)とした。
なお、g’はMが100万以上200万以下において平均した値である。
ICP質量分析装置(アジレント・テクノロジー社製Agilent7700s)を用いて、変性共役ジエン系重合体中の、ケイ素含有量の測定を行った。
微量全窒素分析装置(三菱化学アナリテック製TN-2100H)を用いて、変性共役ジエン系重合体中の、窒素含有量の測定を行った。
内容積が10Lで、内部の高さ(L)と直径(D)との比(L/D)が4.0であり、底部に入口、頂部に出口を有し、攪拌機及び温度制御用のジャケットを有する槽型圧力容器を重合反応器とした。
予め水分除去した、1,3-ブタジエンを18.1g/分、スチレンを9.9g/分、n-ヘキサンを150.1g/分の条件で混合した。この混合物に含まれるアレン類は10ppmであり、アセチレン類は12ppmであり、アミン類は1ppmであった。不純物総計は23ppmであった。
この混合溶液を反応基の入口に供給する配管の途中に設けたスタティックミキサーにおいて、残存不純物不活性処理用のn-ブチルリチウムを0.104mmol/分で添加、混合した後、反応基の底部に連続的に供給した。更に、極性物質として2,2-ビス(2-オキソラニル)プロパンを0.0216g/分の速度で、重合開始剤としてn-ブチルリチウムを0.252mmol/分の速度で、攪拌機で激しく混合する重合反応器の底部へ供給し、連続的に重合反応を継続させた。反応器頂部出口における重合溶液の温度が75℃となるように温度を制御した。重合が十分に安定したところで、反応器頂部出口より、カップリング剤添加前の重合体溶液を少量抜出し、酸化防止剤(BHT)を重合体100gあたり0.2gとなるように添加した後に溶媒を除去し、各種の分子量を測定した。その他の物性も併せて表1に示す。
次に、反応器の出口より流出した重合体溶液に、変性剤としてビス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]アミン(表中、「A」と略す。)を0.043mmol/分の速度で連続的に添加し、変性剤を添加された重合体溶液はスタティックミキサーを通ることで混合され変性反応した。
変性反応した重合体溶液に、酸化防止剤(BHT)を重合体100gあたり0.2gとなるように0.055g/分(n-ヘキサン溶液)で連続的に添加し、カップリング反応を終了した。酸化防止剤と同時に、重合体100gに対してオイル(JX日鉱日石エネルギー社製 JOMOプロセスNC140)が37.5gとなるように連続的に添加し、スタティックミキサーで混合した。スチームストリッピングにより溶媒を除去して、変性共役ジエン系重合体(試料1)を得た。試料1の物性を表1に示す。
変性剤をトリス(3-トリメトキシシリルプロピル)アミン(表中、「B」と略す。)に替えた。その他の条件は(実施例1)と同様にして、変性共役ジエン系重合体(試料2)を得た。試料2の物性を表1に示す。
変性剤をN,N,N’-トリス(3-トリメトキシシリルプロピル)-N’-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン(表中、「C」と略す。)に替え、重合開始剤であるn-ブチルリチウムの添加量を0.317mmol/分にし、極性物質添加量を0.027g/分にし、変性剤添加量を0.041mmol/分にした。その他の条件は、(実施例1)と同様にして、変性共役ジエン系重合体(試料3)を得た。試料3の物性を表1に示す。
変性剤をN,N,N’,N’-テトラキス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン(表中、「D」と略す。)に替え、変性剤の添加量を0.033mmol/分とした。その他の条件は、(実施例1)と同様にして、変性共役ジエン系重合体(試料4)を得た。試料4の物性を表1に示す。
重合開始剤であるn-ブチルリチウムの添加量を0.15mmol/分とし、極性物質添加量を0.0131g/分にし、変性剤をN-(3-トリメトキシシリルプロピル)-2,2-ジメトキシ-1-アザ-2-シラシクロペンタン(表中、「E」と略す。)に替え、変性剤の添加量を0.037mmol/分とした。その他の条件は、(実施例1)と同様にして、変性共役ジエン系重合体(試料5)を得た。試料5の物性を表1に示す。
重合開始剤であるn-ブチルリチウムの添加量を0.08mmol/分とし、極性物質添加量を0.0076g/分にし、変性剤をN-3-トリメトキシシリルプロピルトリアゾール(表中、「F」と略す。)に替え、変性剤の添加量を0.041mmol/分とした。その他の条件は、(実施例1)と同様にして、変性共役ジエン系重合体(試料6)を得た。試料6の物性を表1に示す。
ブタジエン及びスチレンの添加量をそれぞれ23g/分、及び5g/分、極性物質添加量を0.0155g/分とした。その他の条件は、(実施例1)と同様にして、変性共役ジエン系重合体(試料7)を得た。試料7の物性を表1に示す。
ブタジエン及びスチレンの添加量をそれぞれ16g/分、及び12g/分、極性物質添加量を0.024g/分とした。その他の条件は、(実施例4)と同様にして、変性共役ジエン系重合体(試料8)を得た。試料8の物性を表1に示す。
変性剤としてN,N-ジメチル-フェニルジメトキシシリルプロピルアミン(表中、「G」と略す。)を、0.03mmol/分の速度で連続的に添加した。その他の条件は、(実施例6)と同様にして、変性共役ジエン系重合体(試料9)を得た。試料9の物性を表1に示す。
変性剤の添加量を0.028mmol/分とした。その他の条件は、(実施例1)と同様にして、変性共役ジエン系重合体(試料10)を得た。試料10の物性を表1に示す。
試料4と試料9とを質量比2:1で混練りすることにより、試料11を得た。試料11の物性を表2に示す。
1,3-ブタジエンの精製において、水洗工程でのデカンターでの1,3-ブタジエン相の滞留時間を10分間に調整した。また、重合禁止剤除去工程でのデカンターでの1,3-ブタジエン相の滞留時間は20分間に調整した。
また、スチレンの精製において、Pd(0.3%)/γ-Al2O3の水素添加触媒を得た。得られた触媒2000gを管型反応器に充填し、この触媒の温度を80℃に保ちながら、4時間循環精製したスチレンを使用した。ノルマルヘキサンの精製においては、(実施例1)と同様の精製を実施した。
1,3-ブタジエン、スチレン、n-ヘキサンの混合物に含まれるアレン類は25ppmであり、アセチレン類は20ppmであり、アミン類は9ppmであった。不純物総計は54ppmであった。これを用いた以外は、(実施例1)と同様にして、変性共役ジエン系重合体(試料12)を得た。試料12の物性を表2に示す。
変性剤の添加量を0.020mmol/分とした。その他の条件は、(実施例1)と同様にして、変性共役ジエン系重合体(試料13)を得た。試料13の物性を表2に示す。
変性剤としてN,N-ジメチル-フェニルジメトキシシリルプロピルアミン(表中、「G」と略す。)を、0.03mmol/分の速度で連続的に添加した。その他の条件は、(比較例1)と同様にして、変性共役ジエン系重合体(試料14)を得た。試料14の物性を表2に示す。
内容積10リットルの攪拌機及びジャケットを付けた温度制御が可能なオートクレーブを反応器として使用し、(実施例1)と同様に精製した1,3-ブタジエン518g、スチレン282g、ノルマルヘキサン5600g、極性物質0.53gを反応器に入れ、反応器の内温を55℃に保持した後、重合開始剤としてn-ブチルリチウム8.75mmolを反応器に供給した。
反応開始後、重合による発熱で反応器内の温度が83℃に達した。
反応器の温度が低下し始めた後、1分経過した時、重合反応終了とした。
重合反応終了後に反応器内の温度が83℃の時に、溶液相中に3-(4-メチルピペラジン-1-イル)プロピルトリエトキシシラン4.375mmolを添加し、5分間撹拌して変性反応を実施し、変性反応した重合体溶液に、酸化防止剤(BHT)を重合体100gあたり0.2g添加し、変性共役ジエン系重合体(試料15)を得た。オイルは添加しなかった。試料15の物性を表1に示す。なお、g’は、分子量が100万以上200万以下の範囲の成分が少なすぎたため、算出することができなかった。
(比較例1)により得られた変性共役ジエン系重合体と、(比較例4)により得られた変性共役ジエン系重合体とを、質量比で、(比較例1):(比較例4)=2:1で混合することにより、試料16を得た。試料16の物性を表2に示す。
(比較例2)により得られた変性共役ジエン系重合体と、(比較例4)により得られた変性共役ジエン系重合体とを質量比で、(比較例2):(比較例4)=2:1で混合することにより、試料17を得た。試料17の物性を表2に示す。
表1に示す(試料1~17)を原料ゴムとして、以下に示す配合に従い、それぞれの原料ゴムを含有するゴム組成物を得た。
変性共役ジエン系重合体(試料1~17):100質量部(オイル抜き)
シリカ1(エボニック デグサ社製の商品名「Ultrasil 7000GR」窒素吸着比表面積170m2/g):50.0質量部
シリカ2(ローディア社製の商品名「Zeosil Premium 200MP」窒素吸着比表面積220m2/g):25.0質量部
カーボンブラック(東海カーボン社製の商品名「シーストKH(N339)」):5.0質量部
シランカップリング剤(エボニック デグサ社製の商品名「Si75」、ビス(トリエトキシシリルプロピル)ジスルフィド):6.0質量部
S-RAEオイル(JX日鉱日石エネルギー社製の商品名「プロセスNC140」):37.5質量部
亜鉛華:2.5質量部
ステアリン酸:1.0質量部
老化防止剤(N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン):2.0質量部
硫黄:2.2質量部
加硫促進剤1(N-シクロヘキシル-2-ベンゾチアジルスルフィンアミド):1.7質量部
加硫促進剤2(ジフェニルグアニジン):2.0質量部
合計:239.4質量部
上述した材料を次の方法により混練してゴム組成物を得た。
温度制御装置を備える密閉混練機(内容量0.3L)を使用し、第一段の混練として、充填率65%、ローター回転数30~50rpmの条件で、原料ゴム(試料1~17)、充填剤(シリカ1、シリカ2、カーボンブラック)、シランカップリング剤、プロセスオイル、亜鉛華、ステアリン酸を混練した。
このとき、密閉混合機の温度を制御し、排出温度は155~160℃で各ゴム組成物(配合物)を得た。
第一段の混練り時、密閉混練機の混練開始後、トルクが上昇開始してから一定値になるまでにかかる時間を測定した。
各々の測定値は、比較例5の結果を100として指数化した。
指数が小さい方が、上昇時間が短く、成型性が良好であることを示す。
次に、第二段の混練りとして、上記で得た配合物を室温まで冷却後、老化防止剤を加え、シリカの分散を向上させるため再度混練した。この場合も、混合機の温度制御により、配合物の排出温度を155~160℃に調整した。冷却後、第三段の混練りとして、70℃に設定したオープンロールにて、硫黄、加硫促進剤1、2を加えて混練した。その後、成型し、160℃で20分間、加硫プレスにて加硫した。加硫前のゴム組成物、及び加硫後のゴム組成物を評価した。具体的には、下記の方法により評価した。評価結果を表3及び表4に示す。
第二段の混練り後、ゴム組成物を試料として、ムーニー粘度計(上島製作所社製の商品名「VR1132」)を用い、JIS K6300に準拠し、L形ローターを用いてムーニー粘度を測定した。
測定温度は、110℃とした。
まず、試料を1分間試験温度で予熱した後、ローターを2rpmで回転させ、4分後のトルクを測定してムーニー粘度(ML(1+4))とした。
加硫後のゴム組成物について、レオメトリックス・サイエンティフィック社製の粘弾性試験機「ARES」を使用し、ねじりモードで粘弾性パラメータを測定した。各々の測定値は、比較例5のゴム組成物に対する結果を100として指数化した。
0℃において周波数10Hz、ひずみ1%で測定したtanδをウェットグリップ性の指標とした。値が大きいほどウェットグリップ性が良好であることを示す。また、50℃において周波数10Hz、ひずみ3%で測定したtanδの逆数を省燃費性の指標とした。値が大きいほど省燃費性が良好であることを示す。
加硫後のゴム組成物について、JIS K6251の引張試験法に準拠し、引張破断強度、引張破断伸び、及びM100(100%延伸時の弾性率)を測定し、比較例5の結果を100として指数化した。
加硫後のゴム組成物について、アクロン摩耗試験機(安田精機製作所社製)を使用し、JIS K6264-2に準拠して、荷重44.4N、1000回転の摩耗量を測定し、比較例5の結果を100として指数化した。指数が大きいほど耐摩耗性が良好であることを示す。
また、加硫物としたときに、ウェットグリップ性と低燃費性のバランスに優れ、耐摩耗性にも優れることが確認された。
さらに、加硫物としたときに実用十分な破壊強度及び剛性を有していることも確認された。
比較例8のゴム組成物は、加工性及び低燃費性は優れていたが、破壊強度及び剛性に劣っていた。
Claims (11)
- 重量平均分子量が、20×104以上300×104以下であり、
分子量分布Mw/Mnが1.6以上4.0以下である、変性共役ジエン系重合体であって、
共役ジエン系重合体の総量に対する変性率が50質量%以上であり、
ゲルパーミエーションクロマトグラフィー(GPC)曲線におけるピークトップ、又は前記ピークトップが複数存在する場合には分子量が最小であるピークトップの分子量の1/2である分子量の成分の変性率が、
前記共役ジエン系重合体の総量に対する変性率の1/2以上であり、
当該変性共役ジエン系重合体に含まれる窒素の含有量が、3質量ppm以上70質量ppm以下である、
変性共役ジエン系重合体。 - 3D-GPCによる収縮因子(g’)が、0.86以上1.0以下である、請求項1に記載の変性共役ジエン系重合体。
- 3D-GPCによる収縮因子(g’)が、0.30以上0.86未満である、請求項1に記載の変性共役ジエン系重合体。
- 3D-GPCによる収縮因子(g’)が、0.30以上0.70以下である、請求項3に記載の変性共役ジエン系重合体。
- 前記変性共役ジエン系重合体に含まれる窒素とケイ素の含有量がそれぞれ3質量ppm以上であり、
ケイ素に対する窒素のモル比が1.1以上10未満である、
請求項1乃至4のいずれか一項に記載の変性共役ジエン系重合体。 - 前記変性共役ジエン系重合体に含まれる窒素とケイ素の含有量がそれぞれ3質量ppm以上であり、
ケイ素に対する窒素のモル比が0.1以上0.9未満である、
請求項1乃至4のいずれか一項に記載の変性共役ジエン系重合体。 - 前記変性共役ジエン系重合体のガラス転移温度が-20℃以上0℃以下である、
請求項1乃至6のいずれか一項に記載の変性共役ジエン系重合体。 - 前記変性共役ジエン系重合体のガラス転移温度が-50℃以上-20℃未満である、請求項1乃至6のいずれか一項に記載の変性共役ジエン系重合体。
- 前記変性共役ジエン系重合体のガラス転移温度が-70℃以上-50℃未満である、請求項1乃至6のいずれか一項に記載の変性共役ジエン系重合体。
- 請求項1乃至9のいずれか一項に記載の変性共役ジエン共重合体を10質量%以上含有する重合体組成物。
- 請求項1乃至9のいずれか一項に記載の変性共役ジエン共重合体を10質量%以上含むゴム状重合体100質量部と、
充填剤5~150質量部と、
を、含むゴム組成物。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217016127A KR20210066021A (ko) | 2017-03-07 | 2018-03-05 | 변성 공액 디엔계 중합체, 중합체 조성물 및 고무 조성물 |
EP18764543.7A EP3594251A4 (en) | 2017-03-07 | 2018-03-05 | MODIFIED CONJUGATED DIENE POLYMER, POLYMER COMPOSITION AND RUBBER COMPOSITION |
CN201880013914.8A CN110325556B (zh) | 2017-03-07 | 2018-03-05 | 改性共轭二烯系聚合物、聚合物组合物以及橡胶组合物 |
JP2019504572A JP7263231B2 (ja) | 2017-03-07 | 2018-03-05 | 変性共役ジエン系重合体、重合体組成物、及びゴム組成物 |
KR1020197022047A KR102259598B1 (ko) | 2017-03-07 | 2018-03-05 | 변성 공액 디엔계 중합체, 중합체 조성물 및 고무 조성물 |
US16/491,306 US11292862B2 (en) | 2017-03-07 | 2018-03-05 | Modified conjugated diene-based polymer, polymer composition, and rubber composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017043229 | 2017-03-07 | ||
JP2017-043229 | 2017-03-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018164053A1 true WO2018164053A1 (ja) | 2018-09-13 |
Family
ID=63448173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/008330 WO2018164053A1 (ja) | 2017-03-07 | 2018-03-05 | 変性共役ジエン系重合体、重合体組成物、及びゴム組成物 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11292862B2 (ja) |
EP (1) | EP3594251A4 (ja) |
JP (2) | JP7263231B2 (ja) |
KR (2) | KR102259598B1 (ja) |
CN (1) | CN110325556B (ja) |
TW (1) | TW201837063A (ja) |
WO (1) | WO2018164053A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020037676A (ja) * | 2018-08-30 | 2020-03-12 | 旭化成株式会社 | 変性共役ジエン系重合体組成物 |
WO2020070961A1 (ja) * | 2018-10-03 | 2020-04-09 | 旭化成株式会社 | 共役ジエン系重合体、分岐化剤、共役ジエン系重合体の製造方法、伸展共役ジエン系重合体、ゴム組成物、及びタイヤ |
WO2020196899A1 (ja) * | 2019-03-27 | 2020-10-01 | Jsr株式会社 | 水添共役ジエン系重合体、重合体組成物、架橋体及びタイヤ |
JPWO2021044921A1 (ja) * | 2019-09-05 | 2021-03-11 | ||
WO2022080235A1 (ja) * | 2020-10-15 | 2022-04-21 | Zsエラストマー株式会社 | 共役ジエン系重合体、ゴム組成物、ゴム架橋物、およびタイヤ |
WO2022080236A1 (ja) * | 2020-10-15 | 2022-04-21 | Zsエラストマー株式会社 | 共役ジエン系重合体、ゴム組成物、ゴム架橋物、およびタイヤ |
RU2779290C1 (ru) * | 2018-10-03 | 2022-09-05 | Асахи Касеи Кабусики Кайся | Полимер на основе сопряженного диена, агент ветвления, способ производства полимера на основе сопряженного диена, наполненный полимер на основе сопряженного диена, резиновая композиция и шина |
WO2022196643A1 (ja) * | 2021-03-15 | 2022-09-22 | 株式会社Eneosマテリアル | 共役ジエン系重合体及びその製造方法、重合体組成物、架橋体並びにタイヤ |
EP3705502B1 (en) | 2018-07-11 | 2023-05-17 | Lg Chem, Ltd. | Modified conjugated diene-based polymer and rubber composition comprising same |
WO2024043311A1 (ja) * | 2022-08-24 | 2024-02-29 | 旭化成株式会社 | ゴム改質用マスターバッチ、及び分岐共役ジエン系重合体組成物 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021205932A1 (ja) * | 2020-04-07 | 2021-10-14 | ||
JP7547659B2 (ja) | 2022-08-24 | 2024-09-09 | 旭化成株式会社 | ゴム改質用マスターバッチ、及び低分岐共役ジエン系重合体組成物 |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS428704B1 (ja) | 1963-12-26 | 1967-04-20 | ||
JPS436636B1 (ja) | 1963-04-25 | 1968-03-12 | ||
JPS59140211A (ja) | 1983-02-01 | 1984-08-11 | Nippon Erasutomaa Kk | スチレン−ブタジエン共重合体の製造方法 |
JPS634841A (ja) | 1986-06-25 | 1988-01-09 | Hitachi Ltd | プラズマ処理装置 |
JPS6437970A (en) | 1987-07-30 | 1989-02-08 | Jiyoeru Roon Aaru | Ski exercise apparatus |
JPS6453851A (en) | 1987-08-25 | 1989-03-01 | Hitachi Ltd | Printing system |
JPH029041A (ja) | 1988-06-28 | 1990-01-12 | Sony Corp | 回転ドラムのアース装置 |
JPH08109219A (ja) | 1994-10-11 | 1996-04-30 | Asahi Chem Ind Co Ltd | 水添重合体 |
WO2007114203A1 (ja) | 2006-03-31 | 2007-10-11 | Zeon Corporation | 共役ジエン系ゴム、その製造方法、タイヤ用ゴム組成物、及びタイヤ |
WO2008013090A1 (fr) * | 2006-07-24 | 2008-01-31 | Asahi Kasei Chemicals Corporation | Polymère de diène conjugué modifié et procédé de production de celui-ci |
JP2008527150A (ja) | 2005-01-14 | 2008-07-24 | 株式会社ブリヂストン | 官能化ポリマー及びそれから得た改良タイヤ |
WO2011129425A1 (ja) | 2010-04-16 | 2011-10-20 | 旭化成ケミカルズ株式会社 | 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物 |
JP2016079217A (ja) * | 2014-10-10 | 2016-05-16 | 旭化成ケミカルズ株式会社 | 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物 |
WO2016131914A1 (en) * | 2015-02-18 | 2016-08-25 | Trinseo Europe Gmbh | A polymer blend for a tire |
WO2016199779A1 (ja) * | 2015-06-12 | 2016-12-15 | 旭化成株式会社 | 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ |
JP2017043229A (ja) | 2015-08-27 | 2017-03-02 | トヨタ紡織株式会社 | 乗物用シートのアームレストおよび乗物用シート |
JP2017203120A (ja) * | 2016-05-12 | 2017-11-16 | 旭化成株式会社 | 変性ジエン系重合体の製造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100351276C (zh) | 1999-09-27 | 2007-11-28 | 旭化成株式会社 | 二烯类橡胶状聚合物的制造方法 |
JP4863566B2 (ja) * | 2001-03-26 | 2012-01-25 | 旭化成ケミカルズ株式会社 | 変性共役ジエン系重合体の製造方法 |
JP4895521B2 (ja) * | 2005-03-29 | 2012-03-14 | 旭化成ケミカルズ株式会社 | 変性共役ジエン系重合体の製造法 |
US8633281B2 (en) | 2006-09-15 | 2014-01-21 | Sumitomo Chemical Company, Limited | Conjugated diene polymer, process for producing conjugated diene polymer, conjugated diene polymer composition and process for producing conjugated diene polymer composition |
ES2568892T3 (es) | 2008-10-14 | 2016-05-05 | Asahi Kasei Chemicals Corporation | Polímero a base de dieno conjugado modificado, procedimiento para producirlo, composición de polímero a base de dieno conjugado modificado y neumático para vehículos |
JP6101459B2 (ja) | 2012-09-13 | 2017-03-22 | 日本エラストマー株式会社 | 変性共役ジエン系重合体、変性共役ジエン系重合体組成物及びその製造方法 |
JP2015218284A (ja) * | 2014-05-19 | 2015-12-07 | 旭化成ケミカルズ株式会社 | 重合体の製造方法 |
US10766972B2 (en) | 2015-02-19 | 2020-09-08 | Asahi Kasei Kabushiki Kaisha | Modified conjugated diene-based polymer and method for producing the same, and modified conjugated diene-based polymer composition |
US10519254B2 (en) | 2015-02-19 | 2019-12-31 | Asahi Kasei Kabushiki Kaisha | Modified conjugated diene-based polymer and production method therefor, rubber composition and tire |
JP2017002189A (ja) * | 2015-06-10 | 2017-01-05 | 旭化成株式会社 | 変性ジエン系重合体組成物、サイドウォール用ゴム組成物、及びタイヤ |
EP3617237B1 (en) | 2017-04-28 | 2021-08-25 | Asahi Kasei Kabushiki Kaisha | Modified conjugated diene polymer, polymer composition, and rubber composition |
-
2018
- 2018-03-05 US US16/491,306 patent/US11292862B2/en active Active
- 2018-03-05 WO PCT/JP2018/008330 patent/WO2018164053A1/ja unknown
- 2018-03-05 EP EP18764543.7A patent/EP3594251A4/en active Pending
- 2018-03-05 KR KR1020197022047A patent/KR102259598B1/ko active IP Right Grant
- 2018-03-05 CN CN201880013914.8A patent/CN110325556B/zh active Active
- 2018-03-05 KR KR1020217016127A patent/KR20210066021A/ko not_active Application Discontinuation
- 2018-03-05 JP JP2019504572A patent/JP7263231B2/ja active Active
- 2018-03-07 TW TW107107628A patent/TW201837063A/zh unknown
-
2021
- 2021-09-21 JP JP2021153636A patent/JP7335928B2/ja active Active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS436636B1 (ja) | 1963-04-25 | 1968-03-12 | ||
JPS428704B1 (ja) | 1963-12-26 | 1967-04-20 | ||
JPS59140211A (ja) | 1983-02-01 | 1984-08-11 | Nippon Erasutomaa Kk | スチレン−ブタジエン共重合体の製造方法 |
JPS634841A (ja) | 1986-06-25 | 1988-01-09 | Hitachi Ltd | プラズマ処理装置 |
JPS6437970A (en) | 1987-07-30 | 1989-02-08 | Jiyoeru Roon Aaru | Ski exercise apparatus |
JPS6453851A (en) | 1987-08-25 | 1989-03-01 | Hitachi Ltd | Printing system |
JPH029041A (ja) | 1988-06-28 | 1990-01-12 | Sony Corp | 回転ドラムのアース装置 |
JPH08109219A (ja) | 1994-10-11 | 1996-04-30 | Asahi Chem Ind Co Ltd | 水添重合体 |
JP2008527150A (ja) | 2005-01-14 | 2008-07-24 | 株式会社ブリヂストン | 官能化ポリマー及びそれから得た改良タイヤ |
WO2007114203A1 (ja) | 2006-03-31 | 2007-10-11 | Zeon Corporation | 共役ジエン系ゴム、その製造方法、タイヤ用ゴム組成物、及びタイヤ |
WO2008013090A1 (fr) * | 2006-07-24 | 2008-01-31 | Asahi Kasei Chemicals Corporation | Polymère de diène conjugué modifié et procédé de production de celui-ci |
WO2011129425A1 (ja) | 2010-04-16 | 2011-10-20 | 旭化成ケミカルズ株式会社 | 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物 |
JP2016079217A (ja) * | 2014-10-10 | 2016-05-16 | 旭化成ケミカルズ株式会社 | 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物 |
WO2016131914A1 (en) * | 2015-02-18 | 2016-08-25 | Trinseo Europe Gmbh | A polymer blend for a tire |
WO2016199779A1 (ja) * | 2015-06-12 | 2016-12-15 | 旭化成株式会社 | 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ |
JP2017043229A (ja) | 2015-08-27 | 2017-03-02 | トヨタ紡織株式会社 | 乗物用シートのアームレストおよび乗物用シート |
JP2017203120A (ja) * | 2016-05-12 | 2017-11-16 | 旭化成株式会社 | 変性ジエン系重合体の製造方法 |
Non-Patent Citations (4)
Title |
---|
I. M. KOLTHOFF ET AL., J. POLYM. SCI., vol. 1, 1946, pages 429 |
KAUTSCHUK GUMMI KUNSTSTOFFE, vol. 52, no. 12, 1999, pages 799 |
R. R. HAMPTON, ANALYTICAL CHEMISTRY, vol. 21, 1949, pages 923 |
TANAKA ET AL., POLYMER, vol. 22, 1981, pages 1721 |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3705502B1 (en) | 2018-07-11 | 2023-05-17 | Lg Chem, Ltd. | Modified conjugated diene-based polymer and rubber composition comprising same |
JP2020037676A (ja) * | 2018-08-30 | 2020-03-12 | 旭化成株式会社 | 変性共役ジエン系重合体組成物 |
JP7312638B2 (ja) | 2018-08-30 | 2023-07-21 | 旭化成株式会社 | 変性共役ジエン系重合体組成物の製造方法 |
KR102356180B1 (ko) | 2018-10-03 | 2022-02-08 | 아사히 가세이 가부시키가이샤 | 공액 디엔계 중합체, 분지화제, 공액 디엔계 중합체의 제조 방법, 신전 공액 디엔계 중합체, 고무 조성물 및 타이어 |
US11339240B2 (en) | 2018-10-03 | 2022-05-24 | Asahi Kasei Kabushiki Kaisha | Conjugated diene-based polymer, branching agent, production method for conjugated diene-based polymer, extended conjugated diene-based polymer, rubber composition, and tire |
JPWO2020070961A1 (ja) * | 2018-10-03 | 2021-02-15 | 旭化成株式会社 | 共役ジエン系重合体、分岐化剤、共役ジエン系重合体の製造方法、伸展共役ジエン系重合体、ゴム組成物、及びタイヤ |
WO2020070961A1 (ja) * | 2018-10-03 | 2020-04-09 | 旭化成株式会社 | 共役ジエン系重合体、分岐化剤、共役ジエン系重合体の製造方法、伸展共役ジエン系重合体、ゴム組成物、及びタイヤ |
KR102485758B1 (ko) | 2018-10-03 | 2023-01-09 | 아사히 가세이 가부시키가이샤 | 공액 디엔계 중합체, 분지화제, 공액 디엔계 중합체의 제조 방법, 신전 공액 디엔계 중합체, 고무 조성물 및 타이어 |
KR20200128094A (ko) * | 2018-10-03 | 2020-11-11 | 아사히 가세이 가부시키가이샤 | 공액 디엔계 중합체, 분지화제, 공액 디엔계 중합체의 제조 방법, 신전 공액 디엔계 중합체, 고무 조성물 및 타이어 |
KR20220003150A (ko) * | 2018-10-03 | 2022-01-07 | 아사히 가세이 가부시키가이샤 | 공액 디엔계 중합체, 분지화제, 공액 디엔계 중합체의 제조 방법, 신전 공액 디엔계 중합체, 고무 조성물 및 타이어 |
RU2779290C1 (ru) * | 2018-10-03 | 2022-09-05 | Асахи Касеи Кабусики Кайся | Полимер на основе сопряженного диена, агент ветвления, способ производства полимера на основе сопряженного диена, наполненный полимер на основе сопряженного диена, резиновая композиция и шина |
CN113382882A (zh) * | 2019-03-27 | 2021-09-10 | Jsr株式会社 | 氢化共轭二烯系聚合物、聚合物组合物、交联体及轮胎 |
JPWO2020196899A1 (ja) * | 2019-03-27 | 2020-10-01 | ||
CN113382882B (zh) * | 2019-03-27 | 2023-04-14 | 株式会社引能仕材料 | 氢化共轭二烯系聚合物、聚合物组合物、交联体及轮胎 |
WO2020196899A1 (ja) * | 2019-03-27 | 2020-10-01 | Jsr株式会社 | 水添共役ジエン系重合体、重合体組成物、架橋体及びタイヤ |
WO2021044921A1 (ja) * | 2019-09-05 | 2021-03-11 | 旭化成株式会社 | 共役ジエン系重合体、共役ジエン系重合体の製造方法、共役ジエン系重合体組成物、及びゴム組成物。 |
JPWO2021044921A1 (ja) * | 2019-09-05 | 2021-03-11 | ||
JP7315686B2 (ja) | 2019-09-05 | 2023-07-26 | 旭化成株式会社 | 共役ジエン系重合体、共役ジエン系重合体の製造方法、共役ジエン系重合体組成物、及びゴム組成物。 |
WO2022080236A1 (ja) * | 2020-10-15 | 2022-04-21 | Zsエラストマー株式会社 | 共役ジエン系重合体、ゴム組成物、ゴム架橋物、およびタイヤ |
WO2022080235A1 (ja) * | 2020-10-15 | 2022-04-21 | Zsエラストマー株式会社 | 共役ジエン系重合体、ゴム組成物、ゴム架橋物、およびタイヤ |
WO2022196643A1 (ja) * | 2021-03-15 | 2022-09-22 | 株式会社Eneosマテリアル | 共役ジエン系重合体及びその製造方法、重合体組成物、架橋体並びにタイヤ |
WO2024043311A1 (ja) * | 2022-08-24 | 2024-02-29 | 旭化成株式会社 | ゴム改質用マスターバッチ、及び分岐共役ジエン系重合体組成物 |
Also Published As
Publication number | Publication date |
---|---|
KR20210066021A (ko) | 2021-06-04 |
CN110325556A (zh) | 2019-10-11 |
CN110325556B (zh) | 2022-05-13 |
KR20190095481A (ko) | 2019-08-14 |
US11292862B2 (en) | 2022-04-05 |
JP7335928B2 (ja) | 2023-08-30 |
JP2022000519A (ja) | 2022-01-04 |
EP3594251A4 (en) | 2020-06-03 |
JP7263231B2 (ja) | 2023-04-24 |
JPWO2018164053A1 (ja) | 2019-11-21 |
US20200031975A1 (en) | 2020-01-30 |
TW201837063A (zh) | 2018-10-16 |
KR102259598B1 (ko) | 2021-06-02 |
EP3594251A1 (en) | 2020-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7335928B2 (ja) | 変性共役ジエン系重合体、重合体組成物、及びゴム組成物 | |
JP2019002028A (ja) | 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ | |
WO2016199779A1 (ja) | 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ | |
JP7398901B2 (ja) | 変性共役ジエン系重合体組成物、ゴム組成物、及びゴム組成物の製造方法 | |
JP7315409B2 (ja) | ゴム組成物 | |
KR102165495B1 (ko) | 변성 공액 디엔계 중합체 혼합물의 제조 방법 | |
JP7405521B2 (ja) | 変性共役ジエン系重合体、変性共役ジエン系重合体組成物、及びゴム組成物 | |
JP2018123225A (ja) | ヒステリシスロスが改良されたゴム組成物、加硫物、及びゴム組成物の製造方法 | |
KR102201044B1 (ko) | 변성 공액 디엔계 중합체, 중합체 조성물 및 고무 조성물 | |
KR20220041162A (ko) | 공액 디엔계 중합체, 공액 디엔계 중합체의 제조 방법, 공액 디엔계 중합체 조성물, 및 고무 조성물 | |
JP7312638B2 (ja) | 変性共役ジエン系重合体組成物の製造方法 | |
JP7385394B2 (ja) | 変性共役ジエン系重合体組成物、ゴム組成物、ゴム組成物の製造方法、及びタイヤ | |
JP7344709B2 (ja) | 変性共役ジエン系重合体組成物、ゴム組成物及びゴム組成物の製造方法 | |
CN110872405B (zh) | 改性共轭二烯系聚合物组合物、橡胶组合物、橡胶组合物的制造方法以及轮胎 | |
JP2019131723A (ja) | 変性共役ジエン系重合体組成物及び製造方法、並びにタイヤ | |
JP7390819B2 (ja) | 変性共役ジエン系重合体組成物、変性共役ジエン系重合体組成物の製造方法、及びタイヤ | |
CN110872406B (zh) | 改性共轭二烯系聚合物组合物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18764543 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197022047 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019504572 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018764543 Country of ref document: EP Effective date: 20191007 |