WO2024043311A1 - ゴム改質用マスターバッチ、及び分岐共役ジエン系重合体組成物 - Google Patents

ゴム改質用マスターバッチ、及び分岐共役ジエン系重合体組成物 Download PDF

Info

Publication number
WO2024043311A1
WO2024043311A1 PCT/JP2023/030525 JP2023030525W WO2024043311A1 WO 2024043311 A1 WO2024043311 A1 WO 2024043311A1 JP 2023030525 W JP2023030525 W JP 2023030525W WO 2024043311 A1 WO2024043311 A1 WO 2024043311A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
conjugated diene
diene polymer
mass
branched conjugated
Prior art date
Application number
PCT/JP2023/030525
Other languages
English (en)
French (fr)
Inventor
孝昭 松田
真一 元房
亮介 小澤
敦志 馬場
淳禎 樽谷
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2023575630A priority Critical patent/JPWO2024043311A1/ja
Publication of WO2024043311A1 publication Critical patent/WO2024043311A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene

Definitions

  • the present invention relates to a masterbatch for rubber modification and a rubber composition containing cellulose nanofibers.
  • reinforcing fillers such as carbon black and silica have been generally added to rubber compositions in order to improve their properties such as elastic modulus, hardness, mechanical strength, and abrasion resistance. It is being said.
  • Patent Document 1 It is known that by blending cellulose nanofibers as a filler into a rubber composition, the rubber composition can be reinforced and its hardness and tensile modulus can be improved (for example, Patent Document 1, Patent Document 2).
  • cellulose nanofibers are attracting attention as a reinforcing filler to replace carbon black and silica because they can function as a reinforcing filler for rubber and provide high-strength, lightweight, and thin rubber molded products. .
  • Patent Document 3 describes a masterbatch composition of a styrene-butadiene copolymer and cellulose nanofibers for the purpose of providing a rubber composition for tires that can improve tensile properties and fuel efficiency.
  • Patent Document 1 discloses a rubber composition of high molecular weight styrene-butadiene rubber and short cellulose fibers for the purpose of providing a rubber composition for tires that can improve the balance between dry grip performance and abrasion resistance of tires. things are listed.
  • JP 2017-2148 Publication JP2021-191841A JP2020-41076A
  • the present invention solves the above problems and provides a rubber composition in which cellulose nanofibers are well dispersed in the rubber, has excellent processability, and has excellent tensile modulus and mechanical properties after curing.
  • the present invention aims to provide a masterbatch for rubber modification containing cellulose nanofibers, and a rubber composition using the masterbatch.
  • the present invention includes the following items.
  • the contraction factor (g') determined by GPC-light scattering measurement using gel permeation chromatography (GPC) with a viscosity detector is 0.72 or more
  • the relationship between the aromatic vinyl monomer content (ST) and the coupling polymer ratio (CS) determined by gel permeation chromatography (GPC) is expressed by the following formula: -0.8ST+40 ⁇ CS ⁇ -1.5ST+115
  • the filling The relationship between the peak top molecular weight Mp1 of the non-coupling polymer determined by gel permeation chromatography (GPC) and the peak top molecular weight Mp2 of the coupling polymer determined by gel permeation chromatography (GPC) is expressed by the following formula: 1.5 ⁇ (Mp2/Mp1) ⁇ 4.5
  • a branched conjugated diene polymer composition comprising: [Item 2] The branched conjugated diene
  • the contraction factor (g') determined by GPC-light scattering measurement using gel permeation chromatography (GPC) with a viscosity detector is 0.72 or more
  • the relationship between the aromatic vinyl monomer content (ST) and the coupling polymer ratio (CS) determined by gel permeation chromatography (GPC) is expressed by the following formula: -0.8ST+40 ⁇ CS ⁇ -1.5ST+115
  • the filling The relationship between the peak top molecular weight Mp1 of the non-coupling polymer determined by gel permeation chromatography (GPC) and the peak top molecular weight Mp2 of the coupling polymer determined by gel permeation chromatography (GPC) is expressed by the following formula: 1.5 ⁇ (Mp2/Mp1) ⁇ 4.5 100 parts by mass of a first rubber component containing 50% by mass or more of a branched conjugated diene polymer that satisfies 15 parts by mass or more and 100 parts by mass or less of cellulose nanofibers, masterbatches for rubber modification
  • the surfactant is a nonionic surfactant.
  • the nonionic surfactant is a compound having a hydrophilic group selected from the group consisting of a hydroxyl group, a carboxy group, a sulfonic acid group, and an amino group, and a hydrocarbon group. Master Badge.
  • the nonionic surfactant has the following general formula (1): R-(OCH 2 CH 2 ) m -OH (1) [In the formula, R represents a monovalent aliphatic group having 6 to 30 carbon atoms, and m is a natural number smaller than the number of carbon atoms in R. ] and the following general formula (2): R 1 OCH 2 -(CHOH) 4 -CH 2 OR 2 (2) [wherein R 1 and R 2 each independently represent a hydrogen atom, an aliphatic group having 1 to 30 carbon atoms, -COR 3 ⁇ wherein R 3 represents an aliphatic group having 1 to 30 carbon atoms].
  • [Item 16] The masterbatch for rubber modification according to item 14 or 15, wherein the ratio of number average molecular weight (Mn) to weight average molecular weight (Mw) (Mw/Mn) of the liquid rubber is 1.5 to 5.
  • the liquid rubber contains one or more selected from the group consisting of diene rubber, silicone rubber, urethane rubber, polysulfide rubber, and hydrogenated products thereof. Masterbatch for quality.
  • the liquid rubber contains a modified liquid rubber modified with an unsaturated carboxylic acid and/or a derivative thereof.
  • [Item 24] The branched conjugated diene polymer composition according to any one of items 20 to 23, comprising a modified liquid rubber modified with an unsaturated carboxylic acid and/or a derivative thereof.
  • [Item 25] The branched conjugated diene polymer composition according to item 24, comprising 1 part by mass or more and 25 parts by mass or less of the modified liquid rubber based on a total of 100 parts by mass of the first rubber component and the second rubber component. .
  • [Item 26] A cured product of a branched conjugated diene polymer, which is a cured product of the branched conjugated diene polymer composition according to any one of items 20 to 25.
  • the contraction factor (g') determined by GPC-light scattering measurement using gel permeation chromatography (GPC) with a viscosity detector is 0.72 or more
  • the relationship between the aromatic vinyl monomer content (ST) and the coupling polymer ratio (CS) determined by gel permeation chromatography (GPC) is expressed by the following formula: -0.8ST+40 ⁇ CS ⁇ -1.5ST+115
  • the filling The relationship between the peak top molecular weight Mp1 of the non-coupling polymer determined by gel permeation chromatography (GPC) and the peak top molecular weight Mp2 of the coupling polymer determined by gel permeation chromatography (GPC) is expressed by the following formula: 1.5 ⁇ (Mp2/Mp1) ⁇ 4.5 100 parts by mass of a rubber component containing 50% by mass or more of a branched conjugated diene polymer that satisfies 1 part by mass or more and 15 parts by mass or less of cellulose nanofibers, A branched conjugated die
  • [Item 32] The branched conjugated diene polymer composition according to any one of items 27 to 31, wherein the cellulose nanofiber does not have an ionic group.
  • [Item 33] The branched conjugated diene polymer composition according to any one of items 27 to 32, wherein the branched conjugated diene polymer composition further contains a surfactant.
  • the surfactant is a nonionic surfactant.
  • the nonionic surfactant has the following general formula (1): R-(OCH 2 CH 2 )m-OH (1) [In the formula, R represents a monovalent aliphatic group having 6 to 30 carbon atoms, and m is a natural number smaller than the number of carbon atoms in R.
  • R 1 and R 2 each independently represent a hydrogen atom, an aliphatic group having 1 to 30 carbon atoms, -COR 3 ⁇ wherein R 3 represents an aliphatic group having 1 to 30 carbon atoms].
  • or -(CH 2 CH 2 O) y -R 4 ⁇ wherein R 4 represents a hydrogen atom or an aliphatic group having 1 to 30 carbon atoms, and y is an integer of 1 to 30.
  • represents.
  • a compound represented by The branched conjugated diene polymer composition according to item 34 or 35 which is one or more selected from the group consisting of: [Item 37] The branched conjugated diene polymer composition according to any one of items 33 to 36, wherein the branched conjugated diene polymer composition further contains a liquid rubber. [Item 38] The branched conjugated diene polymer composition according to item 37, wherein the liquid rubber has a number average molecular weight of 1,000 to 80,000.
  • the branched conjugated diene polymer composition according to any one of items 27 to 42 which contains 10 parts by mass or more and 80 parts by mass or less of a reinforcing filler based on 100 parts by mass of the rubber component.
  • a cured branched conjugated diene polymer which is a cured product of the branched conjugated diene polymer composition according to any one of items 27 to 43.
  • a method for producing a branched conjugated diene polymer composition comprising: preparing a cellulose nanofiber composition comprising cellulose nanofibers and a surfactant; a step of preparing a rubber modification masterbatch by mixing the cellulose nanofiber composition and a first rubber component containing a branched conjugated diene polymer; and a step of preparing a rubber modification masterbatch and a second rubber. a step of preparing a branched conjugated diene polymer composition by mixing the components; including methods.
  • a method for producing a branched conjugated diene polymer composition comprising: preparing a cellulose nanofiber composition containing cellulose nanofibers, liquid rubber, and a surfactant; a step of preparing a rubber modification masterbatch by mixing the cellulose nanofiber composition and a first rubber component containing a branched conjugated diene polymer; and a step of preparing a rubber modification masterbatch and a second rubber. a step of preparing a branched conjugated diene polymer composition by mixing the components; including methods.
  • the cellulose nanofiber composition is a powder.
  • the rubber and cellulose nanofibers are well dispersed in the rubber to provide a rubber composition having excellent processability and excellent tensile modulus and mechanical properties after curing.
  • a masterbatch for rubber modification containing nanofibers and a rubber composition using the same can be provided.
  • this embodiment a mode for carrying out the present invention (hereinafter referred to as "this embodiment") will be described in detail. Note that the following embodiment is an illustration for explaining the present invention, and the present invention is not limited to the following embodiment. The present invention can be implemented with appropriate modifications within the scope of its gist.
  • One aspect of the present invention provides a masterbatch for rubber modification that includes a branched conjugated diene polymer and cellulose nanofibers.
  • One aspect of the present invention also provides a branched conjugated diene polymer composition (also referred to as a rubber composition in this disclosure) that includes a branched conjugated diene polymer and cellulose nanofibers.
  • the rubber modification masterbatch includes 100 parts by mass of a rubber component (also referred to as a first rubber component in the present disclosure) containing 50% by mass or more of a branched conjugated diene polymer, and 15 parts by mass of cellulose nanofibers. parts or more and 100 parts or less by mass.
  • a rubber component also referred to as a first rubber component in the present disclosure
  • the branched conjugated diene polymer composition is a mixture, more specifically a kneaded product, containing the rubber-modifying masterbatch of the present embodiment and a second rubber component.
  • the branched conjugated diene polymer is The contraction factor (g') determined by GPC-light scattering measurement using gel permeation chromatography (GPC) with a viscosity detector is 0.72 or more,
  • the relationship between the aromatic vinyl monomer content (ST) and the coupling polymer ratio (CS) determined by gel permeation chromatography (GPC) is expressed by the following formula: -0.8ST+40 ⁇ CS ⁇ -1.5ST+115
  • the filling The relationship between the peak top molecular weight Mp1 of the non-coupling polymer determined by gel permeation chromatography (GPC) and the peak top molecular weight Mp2 of the coupling polymer determined by gel permeation chromatography (GPC) is expressed by the following formula: 1.5 ⁇ (Mp2/Mp1) ⁇ 4.5 It is a conjugated diene polymer that satisfies the following.
  • a coupling polymer is a polymer in which conjugated diene polymer chains are bonded via coupling residues.
  • the branched conjugated diene polymer composition includes a rubber component (in one embodiment, the total of the first rubber component and the second rubber component) containing 50% by mass or more of the branched conjugated diene polymer. and 1 part by mass or more and 15 parts by mass or less of cellulose nanofibers.
  • the branched conjugated diene polymer composition contains 5% by mass or more of a branched conjugated diene polymer, 100 parts by mass of a rubber component containing natural rubber, and 1 part by mass or more and 15 parts by mass or less of cellulose nanofibers. .
  • the rubber composition of the present embodiment particularly in the branched conjugated diene polymer composition obtained by kneading the rubber-modifying masterbatch and the second rubber component, cellulose nanofibers are present in the rubber composition. By dispersing it well, the reinforcing effect is well expressed.
  • the cured product of the rubber composition of this embodiment has excellent tensile modulus and mechanical properties due to the contribution of the branched conjugated diene polymer. That is, by curing the rubber composition of this embodiment, a cured product with high strength, high elastic modulus, and high wear resistance can be obtained.
  • the second rubber component that is combined with the rubber-modifying masterbatch in the production of the rubber composition may be the same or a different material as the first rubber component in the rubber-modifying masterbatch.
  • Natural cellulose and regenerated cellulose can be used as raw materials for cellulose nanofibers.
  • Natural cellulose includes wood pulp obtained from wood species (hardwood or softwood), non-wood pulp obtained from non-wood species (cotton, bamboo, hemp, bagasse, kenaf, cotton linters, sisal, straw, etc.), and animal (e.g. Cellulose aggregates produced by algae or microorganisms (eg, acetic acid bacteria), etc. can be used.
  • regenerated cellulose regenerated cellulose fibers (viscose, cupra, tencel, etc.), cellulose derivative fibers, regenerated cellulose or cellulose derivative ultrafine threads obtained by electrospinning, etc. can be used.
  • Cellulose nanofibers are produced by treating cellulose raw materials such as pulp with hot water of 100°C or higher to hydrolyze hemicellulose and make it weak. ) refers to fine cellulose fibers that have been mechanically defibrated using a crushing method such as In one embodiment, the cellulose nanofiber has a number average fiber diameter of 1 nm or more and 1000 nm or less. Cellulose nanofibers may be chemically modified as described below, but from the viewpoint of reinforcing effect as a filler, those that are not chemically modified are preferred.
  • cellulose nanofibers that have been defibrated by chemical oxidation treatment using 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) phosphate ester, etc., can be introduced into cellulose nanofibers.
  • Heat resistance tends to decrease due to ionic groups (for example, carboxy groups), and the fiber diameter after defibration tends to decrease.
  • ionic groups for example, carboxy groups
  • cellulose nanofibers that undergo only mechanical defibration that is, are not subjected to chemical defibration treatment such as oxidation
  • cellulose nanofibers do not have ionic groups.
  • cellulose nanofibers do not have ionic groups means that the amount of ionic groups measured by conductivity titration is 0.1 mmol/g or less.
  • a slurry can be prepared by dispersing cellulose fibers in a liquid medium. Dispersion of cellulose fibers in the slurry may be performed using a high-pressure homogenizer, microfluidizer, ball mill, disk mill, mixer (e.g., homomixer), etc., and for example, the product of the defibration described above may be used in the slurry preparation step of the present disclosure. It may also be obtained as a product.
  • the liquid medium in the slurry may further include water and, optionally, a liquid medium other than water (eg, an organic solvent), alone or in combination of two or more.
  • organic solvents include commonly used water-miscible organic solvents, such as: alcohols with a boiling point of 50°C to 170°C (such as methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, s -butanol, t-butanol, etc.); ethers (e.g. propylene glycol monomethyl ether, 1,2-dimethoxyethane, diisopropyl ether, tetrahydrofuran, 1,4-dioxane, etc.); carboxylic acids (e.g.
  • the liquid medium in the slurry is substantially only water.
  • Cellulose raw materials contain alkali-soluble components and sulfuric acid-insoluble components (lignin, etc.), so even if the alkali-soluble components and sulfuric acid-insoluble components are reduced through a purification process such as delignification through cooking and a bleaching process. good.
  • purification processes such as delignification by cooking and bleaching processes break the molecular chains of cellulose and change the weight average molecular weight and number average molecular weight. It is desirable that the weight average molecular weight and the ratio of the weight average molecular weight to the number average molecular weight of the cellulose nanofibers be controlled within appropriate ranges.
  • purification processes such as delignification through cooking and bleaching processes reduce the molecular weight of cellulose molecules, so these processes can lower the molecular weight of cellulose nanofibers and alter the quality of the cellulose raw material, causing it to become alkali-prone.
  • the proportion of dissolved components will increase. Since alkali-soluble components have poor heat resistance, the refining and bleaching processes of cellulose raw materials must be controlled so that the amount of alkali-soluble components contained in cellulose raw materials is within a certain range. desirable.
  • the number average fiber diameter of the cellulose nanofibers is 1 to 1000 nm, and preferably 2 to 1000 nm from the viewpoint of obtaining good physical property improvement effects by cellulose nanofibers.
  • the number average fiber diameter of the cellulose nanofibers is more preferably 4 nm or more, or 5 nm or more, or 10 nm or more, or 15 nm or more, or 20 nm or more, and more preferably 500 nm or less, or 450 nm or less, or 400 nm or less, or 350 nm. or below, or below 300 nm, or below 250 nm.
  • the fiber length (L)/fiber diameter (D) ratio of cellulose nanofibers is preferably 30 or more, from the viewpoint of improving the mechanical properties of a rubber composition containing cellulose nanofibers with a small amount of cellulose nanofibers. or 50 or more, or 80 or more, or 100 or more, or 120 or more, or 150 or more.
  • the upper limit is not particularly limited, but from the viewpoint of ease of handling, it is preferably 5000 or less.
  • the fiber length, fiber diameter, and L/D ratio of cellulose nanofibers are determined by preparing an aqueous dispersion of cellulose nanofibers using a high-shear homogenizer (for example, Nippon Seiki Co., Ltd., product name "Excel Auto Homogenizer ED-"). 7), processing conditions: rotation speed 15,000 rpm x 5 minutes, the water dispersion was diluted with pure water to 0.1 to 0.5% by mass, cast on mica, and air-dried. It is determined by using a sample as a measurement sample and measuring it with a scanning electron microscope (SEM) or an atomic force microscope (AFM).
  • SEM scanning electron microscope
  • AFM atomic force microscope
  • the length (L) and diameter (D) of 100 cellulose nanofibers were randomly selected in an observation field whose magnification was adjusted so that at least 100 cellulose nanofibers could be observed. is measured and the ratio (L/D) is calculated.
  • the number average value of the fiber length (L), the number average value of the fiber diameter (D), and the number average value of the ratio (L/D) are calculated.
  • the fiber length, fiber diameter, and L/D ratio of cellulose nanofibers in the rubber composition can be confirmed by using these as measurement samples and measuring by the above-mentioned measurement method.
  • the fiber length, fiber diameter, and L/D ratio of cellulose nanofibers contained in a masterbatch for rubber modification, a rubber composition, etc. may be determined by adjusting the fiber length, fiber diameter, and L/D ratio of the cellulose nanofibers contained in a masterbatch for rubber modification, a rubber composition, etc.
  • the solvent was replaced with pure water to prepare an aqueous dispersion, and the cellulose nanofiber concentration was adjusted to 0.1 to 0.5% by mass. This can be confirmed by diluting the sample with pure water, casting it on mica, and air-drying it as a measurement sample using the measurement method described above. At this time, the measurement is performed using 100 or more randomly selected cellulose nanofibers.
  • the crystallinity of cellulose nanofibers is preferably 55% or more. When the degree of crystallinity is within this range, the mechanical properties (strength, dimensional stability) of cellulose itself are high, so when cellulose nanofibers are dispersed in rubber, the strength and dimensional stability of the rubber composition tend to be high. be.
  • the lower limit of the crystallinity is more preferably 60%, even more preferably 70%, and most preferably 80%.
  • the upper limit of the degree of crystallinity of cellulose nanofibers is not particularly limited and is preferably higher, but from the viewpoint of production, the preferable upper limit is 99%.
  • Alkali-soluble polysaccharides such as hemicellulose and acid-insoluble components such as lignin exist between microfibrils of plant-derived cellulose nanofibers and between microfibril bundles.
  • Hemicellulose is a polysaccharide composed of sugars such as mannan and xylan, which forms hydrogen bonds with cellulose and plays a role in connecting microfibrils.
  • lignin is a compound having an aromatic ring, and is known to be covalently bonded to hemicellulose in plant cell walls. If there is a large amount of residual impurities such as lignin in cellulose nanofibers, discoloration may occur due to heat during processing. It is desirable that the crystallinity of the nanofibers be within the above range.
  • Crystallinity (%) h1 /h0 ⁇ 100
  • the crystalline forms of cellulose are known as type I, type II, type III, and type IV, among which types I and II are particularly widely used, while types III and IV cannot be obtained on a laboratory scale.
  • the cellulose nanofibers of the present disclosure have relatively high structural flexibility, and by dispersing the cellulose nanofibers in rubber, they have a lower coefficient of linear expansion and better strength and elongation during tensile and bending deformation.
  • Cellulose nanofibers containing cellulose type I crystals or cellulose type II crystals are preferable, and cellulose nanofibers containing cellulose type I crystals and having a crystallinity of 55% or more are more preferable because a molded article can be obtained. .
  • the degree of polymerization of the cellulose nanofibers is preferably 100 or more, more preferably 150 or more, more preferably 200 or more, more preferably 300 or more, more preferably 400 or more, more preferably 450 or more, and preferably 3500 or more. Below, it is more preferably 3,300 or less, more preferably 3,200 or less, more preferably 3,100 or less, and even more preferably 3,000 or less.
  • the degree of polymerization of cellulose nanofibers be within the above range. From the viewpoint of processability, it is preferable that the degree of polymerization is not too high, and from the viewpoint of developing mechanical properties, it is desirable that the degree of polymerization is not too low.
  • the degree of polymerization of cellulose nanofibers means the average degree of polymerization measured according to the reduced specific viscosity method using a copper ethylenediamine solution described in confirmation test (3) of the "15th Edition Japanese Pharmacopoeia Manual (published by Hirokawa Shoten)". do.
  • the weight average molecular weight (Mw) of the cellulose nanofibers is 100,000 or more, more preferably 200,000 or more.
  • the ratio of weight average molecular weight to number average molecular weight (Mn) (Mw/Mn) is 6 or less, preferably 5.4 or less. The larger the weight average molecular weight, the fewer the number of terminal groups in the cellulose molecule. Furthermore, since the ratio of the weight average molecular weight to the number average molecular weight (Mw/Mn) represents the width of the molecular weight distribution, it means that the smaller the Mw/Mn, the fewer the number of ends of the cellulose molecule.
  • the ends of cellulose molecules are the starting point for thermal decomposition, so when cellulose nanofibers not only have a large weight-average molecular weight, but also have a large weight-average molecular weight and a narrow molecular weight distribution, it is especially important to have high heat resistance.
  • Cellulose nanofibers and a rubber composition containing cellulose nanofibers and rubber are obtained.
  • the weight average molecular weight (Mw) of the cellulose nanofibers may be, for example, 600,000 or less, or 500,000 or less, from the viewpoint of availability of cellulose raw materials.
  • the ratio of weight average molecular weight to number average molecular weight (Mn) may be, for example, 1.5 or more, or 2 or more, from the viewpoint of ease of manufacturing cellulose nanofibers.
  • Mw can be controlled within the above range by selecting a cellulose raw material having a Mw depending on the purpose, appropriately performing physical treatment and/or chemical treatment on the cellulose raw material within an appropriate range, and the like.
  • Mw/Mn can also be adjusted within the above range by selecting a cellulose raw material having an Mw/Mn according to the purpose, appropriately performing physical treatment and/or chemical treatment on the cellulose raw material within an appropriate range, etc. can be controlled.
  • each of Mw and Mw/Mn of the cellulose raw material may be within the above ranges.
  • the above-mentioned physical processing includes dry pulverization or wet pulverization using a microfluidizer, ball mill, disc mill, etc., a crusher, a homomixer, a high-pressure homogenizer, and an ultrasonic device.
  • Physical treatments that apply mechanical forces such as impact, shearing, shearing, friction, etc. can be exemplified, and examples of the above-mentioned chemical treatments include cooking, bleaching, acid treatment, regenerated celluloseization, and the like.
  • the weight average molecular weight and number average molecular weight of cellulose nanofibers here mean that cellulose nanofibers are dissolved in N,N-dimethylacetamide to which lithium chloride has been added, and then gelled using N,N-dimethylacetamide as a solvent. This value was determined by permeation chromatography.
  • Examples of methods for controlling the degree of polymerization (that is, average degree of polymerization) or molecular weight of cellulose nanofibers include hydrolysis treatment and the like.
  • hydrolysis treatment depolymerization of the amorphous cellulose inside the cellulose nanofibers progresses, and the average degree of polymerization decreases.
  • the hydrolysis treatment removes impurities such as hemicellulose and lignin in addition to the above-mentioned amorphous cellulose, so that the inside of the fiber becomes porous.
  • the method of hydrolysis is not particularly limited, and examples thereof include acid hydrolysis, alkaline hydrolysis, hydrothermal decomposition, steam explosion, and microwave decomposition. These methods may be used alone or in combination of two or more.
  • acid hydrolysis method for example, ⁇ -cellulose obtained as pulp from fibrous plants is used as a cellulose raw material, and while this is dispersed in an aqueous medium, an appropriate amount of protonic acid, carboxylic acid, Lewis acid, heteropolyacid, etc. is added.
  • the reaction conditions such as temperature, pressure, time, etc.
  • the conditions include using an aqueous mineral acid solution of 2% by mass or less and treating cellulose nanofibers at 100° C. or higher under pressure for 10 minutes or longer.
  • catalyst components such as acids penetrate into the interior of cellulose nanofibers, promoting hydrolysis, reducing the amount of catalyst components used, and facilitating subsequent purification.
  • the dispersion of the cellulose raw material during hydrolysis may contain, in addition to water, a small amount of an organic solvent within a range that does not impair the effects of the present invention.
  • Alkali-soluble polysaccharides that cellulose nanofibers may contain include not only hemicellulose but also ⁇ -cellulose and ⁇ -cellulose.
  • Alkali-soluble polysaccharide is a component obtained as the alkali-soluble portion of holocellulose obtained by solvent extraction and chlorination of plants (for example, wood) (i.e., a component obtained by removing ⁇ -cellulose from holocellulose). It will be understood by those skilled in the art.
  • Alkali-soluble polysaccharides are polysaccharides containing hydroxyl groups and have poor heat resistance, causing decomposition when exposed to heat, causing yellowing during heat aging, and causing a decrease in the strength of cellulose nanofibers. Since this may cause inconvenience, it is preferable that the alkali-soluble polysaccharide content in the cellulose nanofibers be small.
  • the average alkali-soluble polysaccharide content in the cellulose nanofibers is preferably 20% by mass or less based on 100% by mass of the cellulose nanofibers, from the viewpoint of obtaining good dispersibility of the cellulose nanofibers. or 18% by mass or less, or 15% by mass or less, or 12% by mass or less. From the viewpoint of ease of manufacturing cellulose nanofibers, the content may be 1% by mass or more, 2% by mass or more, or 3% by mass or more.
  • the average alkali-soluble polysaccharide content can be determined by the method described in the non-patent literature (Wood Science Experiment Manual, edited by the Japan Wood Society, pp. 92-97, 2000), and the holocellulose content (Wise method) It is determined by subtracting the ⁇ -cellulose content from Note that this method is understood in the art as a method for measuring the amount of hemicellulose.
  • the alkali-soluble polysaccharide content is calculated three times for each sample, and the number average of the calculated alkali-soluble polysaccharide contents is taken as the average alkali-soluble polysaccharide content.
  • the average content of acid-insoluble components in the cellulose nanofibers is preferably 10% by mass based on 100% by mass of the cellulose nanofibers, from the viewpoint of avoiding a decrease in the heat resistance of the cellulose nanofibers and the accompanying discoloration. or less, or less than or equal to 5% by mass, or less than or equal to 3% by mass.
  • the content may be 0.1% by mass or more, 0.2% by mass or more, or 0.3% by mass or more from the viewpoint of ease of manufacturing cellulose nanofibers.
  • the average content of acid-insoluble components is determined by quantifying the acid-insoluble components using the Clason method described in a non-patent document (Wood Science Experiment Manual, edited by the Japan Wood Society, pp. 92-97, 2000). Note that this method is understood in the art as a method for measuring the amount of lignin.
  • the sample is stirred in a sulfuric acid solution to dissolve cellulose, hemicellulose, etc., and then filtered through glass fiber filter paper, and the resulting residue corresponds to acid-insoluble components.
  • the acid-insoluble component content is calculated from this acid-insoluble component weight, and the number average of the acid-insoluble component content calculated for the three samples is taken as the average acid-insoluble component content.
  • the thermal decomposition initiation temperature (T D ) of cellulose nanofibers is 270° C. or higher, preferably 275° C. or higher, more preferably 275° C. or higher, from the viewpoint of exhibiting the heat resistance and mechanical strength desired for in-vehicle applications, etc.
  • the temperature is 280°C or higher, more preferably 285°C or higher.
  • the thermal decomposition start temperature is preferably as high as possible, but from the viewpoint of ease of manufacturing cellulose nanofibers, it may be, for example, 320° C. or lower, or 300° C. or lower.
  • T D is a value determined from a graph in thermogravimetric (TG) analysis in which the horizontal axis is temperature and the vertical axis is weight residual rate %.
  • TG thermogravimetric
  • the 1% weight loss temperature (T 1% ) is the temperature at which the weight decreases by 1% by weight starting from the weight of 150° C. when the temperature is continued to increase by the method of TD described above.
  • the 250°C weight loss rate (T 250°C ) of cellulose nanofibers is the weight loss rate when cellulose nanofibers are held at 250°C for 2 hours under nitrogen flow in TG analysis.
  • the cellulose nanofibers may be chemically modified cellulose nanofibers.
  • Cellulose nanofibers may be chemically modified in advance, for example, at the raw material pulp or linter stage, during or after the defibration process, or during or after the slurry preparation process, or during the drying (granulation) process. Chemical modifications may be made during or afterward.
  • a compound that reacts with the hydroxyl group of cellulose can be used, and examples thereof include an esterifying agent, an etherifying agent, and a silylating agent.
  • modifying agents with polar groups such as carboxylic acids and phosphoric esters tend to reduce heat resistance by introducing ionic groups (e.g. carboxy groups) into cellulose nanofibers, and they also tend to reduce heat resistance after defibration. Since it tends to reduce the fiber diameter of the filler, it is preferable not to use it from the viewpoint of reinforcing effect as a filler.
  • the chemical modification is acylation using an esterifying agent, particularly preferably acetylation.
  • esterifying agent acid halides, acid anhydrides, carboxylic acid vinyl esters, and carboxylic acids are preferred.
  • the acid halide may be at least one selected from the group consisting of compounds represented by the following formula.
  • acid halides include acetyl chloride, acetyl bromide, acetyl iodide, propionyl chloride, propionyl bromide, propionyl iodide, butyryl chloride, butyryl bromide, butyryl iodide, benzoyl chloride, benzoyl bromide, and iodide.
  • acid chlorides can be preferably employed from the viewpoint of reactivity and ease of handling.
  • one or more alkaline compounds may be added for the purpose of acting as a catalyst and at the same time neutralizing by-product acidic substances.
  • the alkaline compound include, but are not limited to, tertiary amine compounds such as triethylamine and trimethylamine; and nitrogen-containing aromatic compounds such as pyridine and dimethylaminopyridine.
  • any suitable acid anhydride can be used as the acid anhydride.
  • anhydrides of saturated aliphatic monocarboxylic acids such as acetic acid, propionic acid, (iso)butyric acid, and valeric acid
  • anhydrides of unsaturated aliphatic monocarboxylic acids such as (meth)acrylic acid and oleic acid
  • cyclohexanecarboxylic acid anhydrides of alicyclic monocarboxylic acids such as tetrahydrobenzoic acid
  • anhydrides of aromatic monocarboxylic acids such as benzoic acid and 4-methylbenzoic acid
  • dibasic carboxylic anhydrides include saturated aliphatic dicarboxylic acid anhydrides such as succinic acid and adipic acid; unsaturated aliphatic dicarboxylic acid anhydrides such as maleic anhydride and itaconic anhydride; 1-cyclohexene-1 anhydride; , 2-dicarboxylic acid, he
  • an acidic compound such as sulfuric acid, hydrochloric acid, phosphoric acid, or a Lewis acid (for example, a Lewis acid compound represented by MYn, where M is B, As, Ge, etc.) is used as a catalyst.
  • n is an integer corresponding to the valence of M, and 2 or 3 and Y represents a halogen atom, OAc, OCOCF 3 , ClO 4 , SbF 6 , PF 6 or OSO 2 CF 3 (OTf)), or one or more alkaline compounds such as triethylamine and pyridine are added. You may.
  • R-COO-CH CH 2
  • R is an alkyl group having 1 to 24 carbon atoms, an alkenyl group having 2 to 24 carbon atoms, a cycloalkyl group having 3 to 16 carbon atoms, or an aryl group having 6 to 24 carbon atoms.
  • Carboxylic acid vinyl esters are preferred.
  • Carboxylic acid vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl caproate, vinyl cyclohexanecarboxylate, vinyl caprylate, vinyl caprate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate, and pivalin.
  • alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates, alkaline earth metal carbonates, alkali metal hydrogen carbonates, primary to tertiary metal hydrogen carbonates are used as catalysts.
  • One or more selected from the group consisting of amines, quaternary ammonium salts, imidazole and its derivatives, pyridine and its derivatives, and alkoxides may be added.
  • alkali metal hydroxide and alkaline earth metal hydroxide examples include sodium hydroxide, potassium hydroxide, lithium hydroxide, calcium hydroxide, barium hydroxide, and the like.
  • alkali metal carbonates, alkaline earth metal carbonates, and alkali metal hydrogen carbonates include lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, magnesium carbonate, calcium carbonate, barium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, Examples include potassium hydrogen carbonate and cesium hydrogen carbonate.
  • Primary to tertiary amines refer to primary amines, secondary amines, and tertiary amines, and specific examples include ethylenediamine, diethylamine, proline, N,N,N',N'-tetramethylethylenediamine, N,N,N',N'-tetramethyl-1,3-propanediamine, N,N,N',N'-tetramethyl-1,6-hexanediamine, tris(3-dimethylaminopropyl)amine, Examples include N,N-dimethylcyclohexylamine and triethylamine.
  • imidazole and its derivatives examples include 1-methylimidazole, 3-aminopropylimidazole, carbonyldiimidazole, and the like.
  • pyridine and its derivatives examples include N,N-dimethyl-4-aminopyridine and picoline.
  • alkoxides include sodium methoxide, sodium ethoxide, potassium-t-butoxide, and the like.
  • Examples of the carboxylic acid include at least one selected from the group consisting of compounds represented by the following formula.
  • R represents an alkyl group having 1 to 16 carbon atoms, an alkenyl group having 2 to 16 carbon atoms, a cycloalkyl group having 3 to 16 carbon atoms, or an aryl group having 6 to 16 carbon atoms.
  • carboxylic acids include acetic acid, propionic acid, butyric acid, caproic acid, cyclohexanecarboxylic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, pivalic acid, methacrylic acid, crotonic acid, and octyl acid. At least one selected from the group consisting of acid, benzoic acid, and cinnamic acid.
  • carboxylic acids at least one selected from the group consisting of acetic acid, propionic acid, and butyric acid, particularly acetic acid, is preferred from the viewpoint of reaction efficiency.
  • an acidic compound such as sulfuric acid, hydrochloric acid, phosphoric acid, or a Lewis acid (for example, a Lewis acid compound represented by MYn, where M is B, As, Ge, etc.) is used as a catalyst.
  • a Lewis acid compound represented by MYn, where M is B, As, Ge, etc. Represents a metalloid element, a base metal element such as Al, Bi, In, or a transition metal element such as Ti, Zn, Cu, or a lanthanoid element, where n is an integer corresponding to the valence of M, and 2 or 3.
  • Y represents a halogen atom, OAc, OCOCF 3 , ClO 4 , SbF 6 , PF 6 or OSO 2 CF 3 (OTf)
  • alkaline compounds such as triethylamine and pyridine are added. It's okay.
  • esterification reactants at least one selected from the group consisting of acetic anhydride, propionic anhydride, butyric anhydride, vinyl acetate, vinyl propionate, vinyl butyrate, and acetic acid, especially acetic anhydride and vinyl acetate, Preferable from the viewpoint of reaction efficiency.
  • Cellulose nanofibers tend to have good dispersibility in rubber when they are chemically modified (e.g., by hydrophobization such as acylation); however, the cellulose nanofibers of the present disclosure tend to have good dispersibility in rubber. Or, even if the degree of substitution is low, it can show good dispersibility in rubber.
  • the degree of substitution of the cellulose nanofibers is 0 (ie, unsubstituted).
  • the degree of acyl substitution (DS) of cellulose nanofibers is greater than 0, or 0.1 or more, or 0.2 or more, or It may be 0.25 or more, or 0.3 or more, or 0.5 or more.
  • the esterified cellulose nanofibers have both the high tensile strength and dimensional stability derived from cellulose and the high thermal decomposition initiation temperature derived from chemical modification.
  • the degree of acyl substitution (DS) of cellulose nanofibers is 1.2 or less, or 1.0 or less, or 0.8 or less, or 0.7 or less, or 0.6 or less, or It may be 0.5 or less.
  • the degree of acyl substitution can be determined from the attenuated total reflection (ATR) infrared absorption spectrum of the esterified cellulose nanofibers. It can be calculated based on the peak intensity ratio with the peak of The peak of the C ⁇ O absorption band based on the acyl group appears at 1730 cm ⁇ 1 , and the peak of the C—O absorption band based on the cellulose backbone chain appears at 1030 cm ⁇ 1 .
  • a correlation graph with the modification rate (IR index 1030) defined by the ratio of is created, and the calibration curve substitution degree DS calculated from the correlation graph is 4.13 ⁇ IR index (1030) It can be found by using
  • the cellulose nanofibers are cellulose nanofibers that are combined with other components (e.g., surfactants and/or liquid rubber) during the production of a rubber-modifying masterbatch or branched conjugated diene-based polymer composition. It may be added to the system in the form of a composition.
  • other components e.g., surfactants and/or liquid rubber
  • the content of cellulose nanofibers relative to 100 parts by mass of the first rubber component is preferably 15 parts by mass or more, or 20 parts by mass, from the viewpoint of obtaining a good reinforcing effect by cellulose nanofibers.
  • the above from the viewpoint of obtaining a cured product with excellent mechanical strength and elongation at break by dispersing cellulose nanofibers well in rubber in a branched conjugated diene polymer composition, preferably 100 parts by mass or less, or 70 parts by mass or less, or 50 parts by mass or less.
  • the content of cellulose nanofibers relative to 100 parts by mass of the branched conjugated diene polymer is preferably 15 parts by mass or more, or 20 parts by mass or more, or 30 parts by mass or more, and preferably , 100 parts by mass or less, or 80 parts by mass or less, or 60 parts by mass or less.
  • the content of cellulose nanofibers in the masterbatch for rubber modification is 10% by mass or more, or 20% by mass or more, or 25% by mass or more, and in one embodiment, 50% by mass or less, or 40% by mass or more. % by mass or less, or 30% by mass or less.
  • the content of cellulose nanofibers relative to 100 parts by mass of the rubber component is determined by the effect of blending the cellulose nanofibers.
  • the amount is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and still more preferably 3 parts by mass or more.
  • the content is preferably 15 parts by mass or less, more preferably 10 parts by mass or less.
  • the content of cellulose nanofibers in the branched conjugated diene polymer composition is preferably 0.5% by mass or more, 1% by mass or more, or 3% by mass from the viewpoint of obtaining a good reinforcing effect by cellulose nanofibers. From the viewpoint of obtaining a cured product having good rubber elasticity, the content is preferably 30% by mass or less, 20% by mass or less, or 10% by mass or less.
  • the rubber-modifying masterbatch or branched conjugated diene polymer composition includes a surfactant.
  • a surfactant constitutes the cellulose nanofiber composition.
  • the surfactant is present in the vicinity of the cellulose nanofibers in the rubber-modifying masterbatch or in the branched conjugated diene polymer composition, whereby the surfactant is present in the vicinity of the cellulose nanofibers. Contributes to improved dispersibility in rubber.
  • the surfactant is a nonionic surfactant.
  • the nonionic surfactant can enter into the voids of the aggregate of cellulose nanofibers and make the aggregate porous. For example, if a nonionic surfactant is infiltrated into the aggregate in a wet state and then dried to form a dry body, a dry body obtained by drying the aggregate without using the nonionic surfactant is Since shrinkage during drying can be reduced compared to drying, cellulose nanofibers are well dispersed when the dried material is mixed with a rubber component, particularly a liquid rubber.
  • the nonionic surfactant is preferably a compound having a hydrophilic group selected from the group consisting of a hydroxyl group, a carboxy group, a sulfonic acid group, and an amino group, and a hydrocarbon group.
  • the nonionic surfactant has an aliphatic group having 6 to 30 carbon atoms as a hydrophobic portion.
  • the cellulose nanofibers of this embodiment typically form a loose aggregate, and the nonionic surfactant has good affinity with the rubber component due to the contribution of the carbon chain of the hydrophobic part.
  • the carbon chain of the hydrophobic portion is not too long, it can easily enter the voids of the cellulose nanofiber aggregate, making the aggregate porous.
  • a nonionic surfactant is infiltrated into the aggregate in a wet state and then dried to form a dry body
  • a dry body obtained by drying the aggregate without using the nonionic surfactant is Since shrinkage during drying can be reduced compared to drying, cellulose nanofibers are well dispersed when the dried material is mixed with a rubber component, particularly a liquid rubber.
  • the aliphatic group may be linear or alicyclic, or a combination thereof.
  • the number of carbon atoms in the aliphatic group is 6 or more, or 8 or more, or 10 or more, from the viewpoint of obtaining good dispersibility of cellulose nanofibers in the rubber component, and the number of carbon atoms in the cellulose nanofiber aggregate is 6 or more, or 8 or more, or 10 or more.
  • it is 30 or less, or 25 or less, or 20 or less.
  • the nonionic surfactant preferably has, as a hydrophilic portion, one or more structures selected from the group consisting of oxyethylene, glycerol, and sorbitan (specifically, a repeating structure having one or more of these as repeating units). ). These structures are preferable because they exhibit high hydrophilicity and can be used in combination with various hydrophobic moieties to easily obtain various nonionic surfactants.
  • the number of carbon atoms n in the hydrophobic part and the number m of repeating units in the hydrophilic part are determined from the viewpoint of obtaining good dispersibility of cellulose nanofibers in the rubber component.
  • the repeating number m of the hydrophilic portion is preferably 1 or more, or 2 or more, or 3 or more, or 5 or more, from the viewpoint of good penetration of the nonionic surfactant into the voids of the cellulose nanofiber aggregate. From the viewpoint of obtaining good dispersibility of cellulose nanofibers in the rubber component, it is preferably 30 or less, or 25 or less, or 20 or less, or 18 or less.
  • the nonionic surfactant is preferably General formula (1) below: R-(OCH 2 CH 2 )m-OH (1) [In the formula, R represents a monovalent aliphatic group having 6 to 30 carbon atoms, and m is a natural number smaller than the number of carbon atoms in R. ], and the following general formula (2): R 1 OCH 2 -(CHOH) 4 -CH 2 OR 2 (2) [In the formula, R 1 and R 2 each independently represent a hydrogen atom, an aliphatic group having 1 to 30 carbon atoms, -COR 3 ⁇ wherein R 3 represents an aliphatic group having 1 to 30 carbon atoms].
  • R corresponds to the above-mentioned hydrophobic moiety
  • (OCH 2 CH 2 ) ie, oxyethylene unit
  • the number of carbon atoms in R and the number m of repeating (OCH 2 CH 2 ) are preferably in the same ranges as described above for the number n of carbon atoms in the hydrophobic portion and the number m of repeating hydrophilic portions, respectively.
  • the number of carbon atoms in the aliphatic group having 1 to 30 carbon atoms is preferably 6 or more, or 8 or more, or 10 or more. Yes, preferably 24 or less, or 20 or less, or 18 or less.
  • y is 1 or more, preferably 2 or more, or 4 or more, and preferably 30 or less, or 25 or less, or 20 or less.
  • the amount of surfactant in the cellulose nanofiber composition, the masterbatch for rubber modification, or the branched conjugated diene polymer composition is preferably 10 parts by mass or more based on 100 parts by mass of cellulose nanofibers. , or 15 parts by mass or more, or 20 parts by mass or more, and preferably 50 parts by mass or less, or 45 parts by mass or less, or 40 parts by mass or less.
  • the rubber-modifying masterbatch or branched conjugated diene polymer composition includes liquid rubber.
  • liquid rubber constitutes the cellulose nanofiber composition.
  • liquid rubber may constitute the first rubber component.
  • liquid rubber may constitute the second rubber component.
  • the liquid rubber is present in the vicinity of the cellulose nanofibers in the masterbatch for rubber modification or in the branched conjugated diene polymer composition, whereby the liquid rubber is present in the rubber of the cellulose nanofibers. Contributes to improved dispersibility.
  • liquid rubber refers to a substance that has fluidity at 23° C. and forms a rubber elastic body through crosslinking (more specifically, vulcanization) and/or chain extension. That is, the liquid rubber is an uncured product in one embodiment.
  • having fluidity means that liquid rubber dissolved in cyclohexane is poured into a vial with a body diameter of 21 mm and a total length of 50 mm at 23° C., and then dried. This means that when a vial is filled to a height of 1 mm and sealed, and the vial is left standing upside down for 24 hours, movement of the substance by 0.1 mm or more in the height direction can be confirmed.
  • the rubber constituting the rubber component, the first rubber component, or the second rubber component of the present disclosure is distinguished from liquid rubber in that it does not meet the definition of liquid rubber of the present disclosure.
  • the liquid rubber may have a common rubber monomer composition, and preferably has a relatively low molecular weight from the viewpoint of ease of handling and good dispersibility of cellulose nanofibers.
  • the liquid rubber exhibits a liquid form by having a number average molecular weight (Mn) of 80,000 or less.
  • Mn number average molecular weight
  • the molecular weight and molecular weight distribution of the rubber component are determined by measuring a chromatogram using gel permeation chromatography using three columns connected with polystyrene gel as a packing material, and using standard polystyrene. This value is calculated using a calibration curve. Note that tetrahydrofuran is used as the solvent.
  • the liquid rubber be vulcanized during curing, from the viewpoint of improving the mechanical properties of the cured rubber product.
  • the number average molecular weight (Mn) of the liquid rubber is preferably 1,000 or more, or 1,000 or more, from the viewpoint of obtaining a rubber composition that has a high storage modulus and excellent dispersibility in the matrix component in the rubber composition. 500 or more, or 2,000 or more, or 5,000 or more, and has high fluidity suitable for dispersing cellulose nanofibers well in liquid rubber, and the liquid rubber becomes too hard after curing. In terms of having good rubber elasticity, it is preferably 80,000 or less, or 50,000 or less, or 40,000 or less, or 30,000 or less, or 10,000 or less.
  • the weight average molecular weight (Mw) of the liquid rubber is preferably 1,000 or more, or 2. 000 or more, or 4,000 or more, and has high fluidity suitable for dispersing cellulose nanofibers well in liquid rubber, and the liquid rubber does not become too hard after curing and has good rubber elasticity. It is preferably 240,000 or less, or 150,000 or less, or 30,000 or less.
  • the fact that the number average molecular weight (Mn) of the liquid rubber is within the above range means that the natural rubber has excellent dispersibility in the second rubber component containing natural rubber. It is preferable from the viewpoint of obtaining a masterbatch for rubber modification.
  • the ratio (Mw/Mn) between the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the liquid rubber is such that the molecular weight varies to a certain extent, so that the rubber molded product can achieve a high degree of compatibility with multiple properties (in one embodiment, It is preferably 1.2 or more, or 1.5 or more, or 1.8 or more, or 2.0 or more, in that it is possible to achieve a high degree of compatibility between the storage elastic modulus and rubber elasticity of the rubber molded article.
  • the molecular weight is preferably 10 or less, or 8 or less, or 5 or less, since the molecular weight variation is not excessively large and the desired physical properties of the rubber molded product can be stably obtained.
  • the liquid rubber may be a conjugated diene polymer, a non-conjugated diene polymer, or a hydrogenated product thereof.
  • the above polymer or its hydrogenated product may be an oligomer.
  • the liquid rubber may have a reactive group (for example, one or more selected from the group consisting of a hydroxyl group, a carboxy group, an isocyanato group, a thio group, an amino group, and a halo group) at both ends, Therefore, it may be bifunctional. These reactive groups contribute to crosslinking and/or chain extension of the liquid rubber.
  • the liquid rubber contains one or more selected from the group consisting of diene rubber, silicone rubber, urethane rubber, polysulfide rubber, and hydrogenated products thereof.
  • the liquid rubber may be a modified liquid rubber.
  • the modified liquid rubber is a compound capable of forming a covalent bond with cellulose nanofibers.
  • the liquid rubber is particularly preferably a modified liquid rubber obtained by modifying an unmodified liquid rubber with an unsaturated carboxylic acid and/or a derivative thereof.
  • Unmodified liquid rubber is mainly 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, Unmodified liquid polymer obtained by polymerizing conjugated diene monomers such as 2-methyl-1,3-pentadiene, 4,5-diethyl-1,3-octadiene, and 3-butyl-1,3-octadiene. It is a combination (liquid diene polymer).
  • unmodified liquid rubber examples include liquid polybutadiene, liquid polyisoprene, liquid styrene-butadiene random copolymer, liquid styrene-butadiene block copolymer, liquid butadiene-isoprene random copolymer, and liquid styrene-butadiene-isoprene random copolymer.
  • liquid diene polymers such as copolymers and liquid styrene-butadiene-isoprene block copolymers. These may be used alone or in combination of two or more.
  • Examples of the unsaturated carboxylic acids include maleic acid, fumaric acid, itaconic acid, (meth)acrylic acid, and the like.
  • Examples of the unsaturated carboxylic acid derivatives include unsaturated carboxylic anhydrides such as maleic anhydride and itaconic anhydride; maleic esters, fumaric esters, itaconic esters, glycidyl (meth)acrylate, hydroxyethyl (meth)acrylate, etc.
  • the modified liquid rubber may be modified with one type of unsaturated carboxylic acid and an unsaturated carboxylic acid derivative, or may be modified with two or more types of unsaturated carboxylic acid derivatives.
  • maleic anhydride-modified liquid rubber is preferred from the economic point of view and from the viewpoint of effects such as tensile properties and elastic modulus, and maleic anhydride-modified liquid polybutadiene, maleic anhydride-modified liquid polyisoprene, and maleic anhydride More preferred is an acid-modified liquid styrene-butadiene random copolymer.
  • the amount of modification of the modified liquid rubber is 1 or more, 3 or more, or 5 or more per molecular chain of the modified liquid rubber, from the viewpoint of improving tensile properties and elastic modulus.
  • the number is preferably 25 or less, 20 or less, or 15 or less.
  • the amount of denaturation is confirmed by 1 H-NMR measurement.
  • the weight average molecular weight (Mw) of the modified liquid rubber is preferably 1,000 or more, or 2. 000 or more, or 4,000 or more, or 5,000 or more, or 10,000 or more, and has high fluidity suitable for dispersing cellulose nanofibers well in the rubber composition, and modified. It is preferably 240,000 or less, 150,000 or less, 100,000 or less, or 50,000 or less, in that the liquid rubber does not become too hard after curing and has good rubber elasticity.
  • modified liquid rubber in the master batch for rubber modification or in the conjugated diene polymer composition from the viewpoint of improving the dispersibility of cellulose nanofibers.
  • the content of liquid rubber or the content of modified liquid rubber in the masterbatch for rubber modification is such that the dispersibility of cellulose nanofibers is improved and the tensile modulus and elastic modulus are increased based on 100 parts by mass of the first rubber component.
  • the amount may be 10 parts by mass or more, or 25 parts by mass or more, or 30 parts by mass or more, or 50 parts by mass or more, and in one embodiment, 200 parts by mass or less, or 150 parts by mass or more. It may be less than 100 parts by mass or less than 100 parts by mass.
  • the content of liquid rubber or the content of modified liquid rubber in the branched conjugated diene polymer composition is based on 100 parts by mass of the rubber component (in one embodiment, the total of the first and second rubber components), From the viewpoint of improving the dispersibility of cellulose nanofibers and obtaining a cured product with high tensile modulus and elastic modulus, in one embodiment, 1 part by mass or more, 2 parts by mass or more, 5 parts by mass or more, or 10 parts by mass or more. In one embodiment, the amount may be 25 parts by weight or less, or 20 parts by weight or less, or 15 parts by weight or less.
  • the cellulose nanofiber composition may be in the form of a powder.
  • the powder may have one or more of the following properties.
  • the powder has excellent processing properties, and the cellulose nanofibers can exhibit excellent dispersion in the rubber component.
  • the loose bulk density of the powder is preferably 0.01 g/g/g from the viewpoints of good fluidity of the powder, excellent feedability to a kneader, and prevention of migration of surfactant to rubber.
  • 0.50 g/cm 3 or less since the cellulose nanofibers can be disintegrated and dispersed well in the rubber, and the powder is not too heavy and poor mixing of the powder and rubber can be avoided. or 0.40 g/cm 3 or less, or 0.30 g/cm 3 or less, or 0.25 g/cm 3 or less, or 0.20 g/cm 3 or less.
  • the solidified bulk density of the powder is controlled within a range that is useful for controlling the looseness and compaction within suitable ranges, and in one embodiment, is preferably 0.01 g/cm 3 or more, or 0.05 g. /cm 3 or more, or 0.10 g/cm 3 or more, or 0.15 g/cm 3 or more, or 0.20 g/cm 3 or more, preferably 1.00 g/cm 3 or less, or 0. 80g/cm 3 or less, or 0.70g/cm 3 or less, or 0.60g/cm 3 or less, or 0.50g/cm 3 or less, or 0.40g/cm 3 or less, or 0.30g/cm 3 or less It is.
  • An example of a method for producing the powder includes a slurry preparation step of preparing a slurry containing cellulose nanofibers and a liquid medium, and a drying step of drying the slurry to form a powder.
  • Liquid media include water-miscible organic solvents, such as: alcohols with a boiling point of 50° C. to 170° C., such as methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, s-butanol, t-butanol, butanol, etc.); ethers (e.g., propylene glycol monomethyl ether, 1,2-dimethoxyethane, diisopropyl ether, tetrahydrofuran, 1,4-dioxane, etc.); carboxylic acids (e.g., formic acid, acetic acid, lactic acid, etc.); esters (e.g., ethyl acetate, (vinyl acetate, etc.); ketones (eg, acetone, methyl ethyl ketone,
  • water-miscible organic solvents such as: alcohols with
  • the concentration of cellulose nanofibers in the slurry is preferably 5% by mass or more, or 10% by mass or more, or 15% by mass or more, or 20% by mass or more, or 25% by mass. % or more, and from the viewpoint of maintaining good handling properties by avoiding an excessive increase in the viscosity of the slurry and solidification due to agglomeration, it is preferably 60% by mass or less, or 55% by mass or less, or 50% by mass or less. , or 45% by mass or less.
  • concentration of cellulose nanofibers in the slurry may be adjusted to the above-mentioned preferred range.
  • methods such as suction filtration, pressure filtration, centrifugal deliquification, and heating can be used.
  • drying process In this step, the slurry is dried under controlled drying conditions to form powder.
  • the timing of addition of components other than cellulose nanofibers may be before drying, during drying, and/or after drying of the slurry.
  • a drying device such as a spray dryer or an extruder can be used.
  • the drying device may be a commercial product, and examples include a micro-mist spray dryer (manufactured by Fujisaki Electric), a spray dryer (manufactured by Okawara Kakoki), a twin-screw extruder (manufactured by Japan Steel Works), and the like.
  • the drying rate which is the amount (parts by mass) of the liquid medium desorbed per minute per 100 parts by mass of the slurry, is, for example, 10%/
  • the rate may be 50%/min or more, or 50%/min or more, or 100%/min or more, and by avoiding excessive pulverization of the cellulose nanofibers, agglomeration of the cellulose nanofibers is suppressed and good handling properties are obtained. From this point of view, it may be, for example, 10000%/min or less, or 1000%/min or less, or 500%/min or less.
  • Drying speed (%/min) (slurry moisture content at the start of drying (mass %) - moisture content of the powder at the drying end point (mass %)) / required from the start of drying to the drying end point. This is the value determined according to the time (minutes) taken (i.e., the average value throughout the drying process).
  • the start of drying is the point at which the slurry or cake to be dried is supplied to the device and the drying process begins at the desired drying temperature, degree of vacuum, and shear rate.
  • the drying time does not include the time for pre-mixing in a state different from the drying process.
  • drying end point refers to the point in time when sampling is performed at intervals of at most 10 minutes from the start of drying, and the moisture content becomes 7% by mass or less for the first time.
  • the time required from the start of drying to the end point of drying can be interpreted as residence time.
  • the residence time can be calculated by the heating air volume and the volume of the drying chamber. Further, when an extruder is used as a drying device, the residence time can be calculated from the screw rotation speed and the total pitch number of the screw.
  • the drying temperature is, for example, 20° C. or higher, 30° C. or higher, 40° C. or higher, or 50° C. or higher, from the viewpoint of drying efficiency and appropriately agglomerating the cellulose nanofibers to form a powder with a desired particle size.
  • the temperature may be 130°C or lower, or 100°C or lower.
  • the drying temperature is the temperature of the heat source that comes into contact with the slurry, and is defined, for example, by the surface temperature of the temperature control jacket of the drying device, the surface temperature of the heating cylinder, and the temperature of the hot air.
  • the degree of reduced pressure is -1 kPa or less, or -10 kPa or less, or -20 kPa or less, or -30 kPa or less, or - It may be 40 kPa or less, or -50 kPa or less, and from the viewpoint of avoiding excessive pulverization of cellulose nanofibers, it may be -100 kPa or more, -95 kPa or more, or -90 kPa or more.
  • the residence time of the slurry at a temperature of 20° C. to 200° C. is preferably set to 0.01 minutes to 10 minutes, or 0.05 minutes to 5 minutes, or 0.1 minutes to 2 minutes. good.
  • the slurry when using a spray dryer, the slurry is sprayed into a drying chamber through which hot gas is circulated using a spraying mechanism (rotating disk, pressurized nozzle, etc.) and dried.
  • the slurry droplet size upon spray introduction may be, for example, from 0.01 ⁇ m to 500 ⁇ m, or from 0.1 ⁇ m to 100 ⁇ m, or from 0.5 ⁇ m to 10 ⁇ m.
  • the hot gas may be nitrogen, an inert gas such as argon, air, or the like.
  • the hot gas temperature may be, for example, from 50°C to 300°C, or from 80°C to 250°C, or from 100°C to 200°C.
  • Contact of the slurry droplets with the hot gas within the drying chamber may be cocurrent, countercurrent, or cocurrent.
  • the particulate powder produced by drying the droplets is collected using a cyclone, drum, etc.
  • the slurry when using an extruder, the slurry is introduced from a hopper into a kneading section equipped with a screw, and the slurry is dried by continuously transporting the slurry with a screw within the kneading section under reduced pressure and/or heating.
  • a conveying screw, a counterclockwise screw, and a kneading disk may be combined in any order.
  • the drying temperature may be, for example, 50°C to 300°C, or 80°C to 250°C, or 100°C to 200°C.
  • the rubber-modifying masterbatch or branched conjugated diene polymer composition includes a branched conjugated diene polymer.
  • the “branched conjugated diene polymer” of the present disclosure is The contraction factor (g') determined by GPC-light scattering measurement using a GPC with a viscosity detector is 0.72 or more, The relationship between the aromatic vinyl monomer content (ST) and the coupling polymer ratio (CS) determined by GPC is expressed by the following formula: -0.8ST+40 ⁇ CS ⁇ -1.5ST+115 The filling, The relationship between the peak top molecular weight Mp1 of the non-coupling polymer determined by GPC and the peak top molecular weight Mp2 of the coupling polymer determined by GPC is expressed by the following formula: 1.5 ⁇ (Mp2/Mp1) ⁇ 4.5 It means a conjugated diene polymer that satisfies the following.
  • a branched conjugated diene polymer that satisfies the following.
  • the branched conjugated diene polymer of this embodiment preferably includes a structural unit based on an aromatic vinyl monomer (also referred to as an "aromatic vinyl monomer unit” in the present disclosure).
  • aromatic vinyl monomer also referred to as an "aromatic vinyl monomer unit” in the present disclosure
  • a random copolymer containing the aromatic vinyl monomer unit and a structural unit based on a conjugated diene monomer also referred to as a "conjugated diene monomer unit” in the present disclosure
  • conjugated diene monomer unit also referred to as a "conjugated diene monomer unit” in the present disclosure
  • a "random copolymer” refers to a copolymer in which the proportion of chains in which 8 or more structural units derived from an aromatic vinyl compound are consecutive is 10% by mass or less with respect to the entire structural units derived from an aromatic vinyl compound. means a certain copolymer.
  • the content of chains containing 8 or more consecutive structural units derived from an aromatic vinyl compound is determined by the following (A) to ( It can be calculated as the ratio of the integral value in the range (A) to the total integral value in each chemical shift range in C).
  • the aromatic vinyl compound is styrene
  • find the ratio of the integral value in the range (A) to the total of the integral values in the ranges (A) to (C) and multiply that value by 2.5.
  • the percentage of styrene can be calculated. This allows the state of the chain of structural units derived from the aromatic vinyl compound to be grasped.
  • B Aromatic vinyl compound chains 2 to 7: 6.68 ⁇ S ⁇ 6.89
  • C Aromatic vinyl compound short chain: 6.89 ⁇ S ⁇ 8.00
  • aromatic vinyl compounds include, but are not limited to, styrene, ⁇ -methylstyrene, 1-vinylnaphthalene, 3-vinyltoluene, ethylvinylbenzene, divinylbenzene, 4-cyclohexylstyrene, and 2,4,6-trimethyl.
  • styrene examples include styrene. These may be used alone or in combination of two or more, but among these, styrene is particularly preferred from the practical standpoint of ease of monomer availability.
  • Conjugated diene compounds include, but are not particularly limited to, 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethylbutadiene, 2-phenyl-1,3-butadiene, 1,3-hexadiene, etc. can be mentioned. These may be used alone or in combination of two or more, but among these, 1,3-butadiene and isoprene are preferred from the practical standpoint such as ease of monomer availability. ,3-butadiene is more preferred.
  • ST which is the content of aromatic vinyl monomer units in the branched conjugated diene polymer, improves the dispersibility of cellulose nanofibers in the branched conjugated diene polymer.
  • % or more from the viewpoint of improving the mechanical properties of the cured product and adjusting the glass transition temperature of the rubber composition, it is preferably 60% by mass or less, or 55% by mass or less, or 50% by mass or less.
  • NMR nuclear magnetic resonance
  • the vinyl bond amount (1,2-bond amount) in the conjugated diene monomer unit is used to control the glass transition temperature of the rubber composition, for example, in a cured product for tire treads.
  • the vinyl bond amount (1,2-bond amount) in the conjugated diene monomer unit is used to control the glass transition temperature of the rubber composition, for example, in a cured product for tire treads.
  • it is preferably 10 mol% or more, or 20 mol% or more, or 25 mol% or more, or 30 mol% or more.
  • the abrasion resistance and fracture strength of the cured product it is preferably 65 mol% or less, or 60 mol% or less, or 55 mol% or less.
  • the conjugated diene polymer is a copolymer of butadiene and styrene
  • the butadiene monomer unit is The amount of vinyl bonds inside can be determined. Specifically, it is measured by the method described in Examples below.
  • the branched conjugated diene polymer has a bonded styrene content of 3% by mass or more and 30% by mass or less, and has a 1,2-vinyl bond content as a microstructure of the butadiene moiety. It has 10 mol% or more and 85 mol% or less.
  • a branched conjugated diene polymer that satisfies these requirements is considered to be compatible with natural rubber, improve the microdispersion of cellulose nanofibers, and improve the tensile properties of cured products, particularly the tensile modulus and tensile strength.
  • the amount of bound styrene is preferably 3% by mass or more, or 5% by mass or more, or 7% by mass or more, and preferably 30% by mass or less, or 25% by mass or less, or 20% by mass or less.
  • the amount of 1,2-vinyl bond is preferably 10 mol% or more, or 20 mol% or more, or 30 mol% or more, or 40 mol% or more, and preferably 85 mol% or less, or 75 mol%. or less than 65 mol%.
  • the branched conjugated diene polymer of this embodiment has two or more molecular weight peaks in GPC (gel permeation chromatography), and is determined by the above-mentioned aromatic vinyl monomer content (ST) and GPC.
  • the relationship between the coupling polymer ratio (CS) (hereinafter also referred to as "coupling rate") is expressed by the following formula: -0.8ST+40 ⁇ CS ⁇ -1.5ST+115 satisfy.
  • the relationship between ST and CS is expressed by the following formula: -0.8ST+40 ⁇ CS ⁇ -1.5ST+95 satisfy.
  • the coupling rate of the branched conjugated diene polymer of this embodiment can be determined as follows. First, using the GPC molecular weight distribution curve of the branched conjugated diene polymer of this embodiment, polymer) (hereinafter referred to as the "non-coupled polymer peak"), and the peak of a higher molecular weight component in which conjugated diene polymer chains are bonded via coupling residues, the “coupled polymer peak”. It is divided into “combined peak”.
  • Branching is calculated from the mass % of the non-coupled polymer calculated from the peak area of the non-coupled polymer peak and the total mass % of the coupled polymer calculated from the total peak area of all coupled polymer peaks.
  • the ratio of the "coupling polymer peak" to the total mass of the conjugated diene polymer is calculated, and the coupling rate (mass %) is expressed as a percentage.
  • the shape stability (especially cold flow resistance) of the rubber component containing the branched conjugated diene polymer improves, and the rubber composition improves.
  • the raw rubber can be easily handled when manufacturing products, and a cured product with excellent tensile strength and abrasion resistance can be obtained.
  • the proportion of the coupling polymer (CS) is 5% or more, or 15% or more, or 25% or more, and in one embodiment, 99% or less, or 95% or less, or 90% or less. .
  • the coupling rate of the branched conjugated diene polymer can be controlled by adjusting the number of functional groups, amount added, etc. of the coupling agent when producing the conjugated diene polymer of this embodiment.
  • GPC measurement can be performed by the method described in the Examples below.
  • the amount of bound styrene in the branched conjugated diene polymer is preferably 3% by mass or more, or 5% by mass or more, or 7% by mass or more, and preferably , 30% by mass or less, or 25% by mass or less, or 20% by mass or less.
  • the amount of 1,2-vinyl bonds is preferably 10 mol% or more, or 20 mol% or more, or 30 mol% or more, or 40 mol% or more. , preferably 85 mol% or less, or 75 mol% or less, or 65 mol% or less.
  • the relationship between the peak top molecular weight Mp1 of the non-coupling polymer and the peak top molecular weight Mp2 of the coupling polymer determined by GPC of the branched conjugated diene polymer satisfies the following formula. 1.5 ⁇ (Mp2/Mp1) ⁇ 4.5
  • the peak top molecular weight of the peak with the highest peak height is set as Mp2.
  • the relationship between Mp1 and Mp2 is expressed by the following formula: 1.7 ⁇ (Mp2/Mp1) ⁇ 4.0 satisfy.
  • the branched conjugated diene polymer having Mp1 contains a non-coupled polymer.
  • the branched conjugated diene-based polymer according to one aspect is characterized in that the shrinkage factor (g ') is 0.72 or more.
  • the shrinkage factor (g') of 0.72 or more means that the conjugated diene polymer has substantially less than 5 branches.
  • a branched polymer tends to have a smaller molecular size when compared to a linear polymer having the same absolute molecular weight.
  • the shrinkage factor (g') in one embodiment of a branched conjugated diene polymer is an indicator of the ratio of the size of the molecule to a linear polymer that is assumed to have the same absolute molecular weight. That is, as the degree of branching of a polymer increases, the shrinkage factor (g') tends to decrease.
  • the shrinkage factor (g') is preferably 0.72 or more in one embodiment from the viewpoint of improving the dispersibility of the cellulose nanofibers in the branched conjugated diene polymer and improving the mechanical properties of the cured product of the rubber composition. is 0.75 or more, or 0.80 or more, or 0.85 or more, and is preferably 1.0 or less, or 0.99 or less, or 0 from the viewpoint of suppressing cold flow of the conjugated diene polymer. .97 or less, or 0.95 or less.
  • the shrinkage factor (g') tends to depend on the degree of branching, for example, the shrinkage factor (g') can be controlled using the degree of branching as an index. Specifically, in a branched conjugated diene polymer having a degree of branching of 4, the shrinkage factor (g') tends to be 0.75 or more and 0.85 or less. Contraction factor (g') can be measured by the method described in Examples below.
  • the branched conjugated diene polymer is a polymer that has branches and has a degree of branching of less than 5.
  • the degree of branching is preferably 4.5 or less, more preferably 4.0 or less.
  • the lower limit of the degree of branching is not particularly limited, but preferably exceeds 2.0.
  • the molecular weight distribution (Mw/Mn) of the branched conjugated diene polymer of this embodiment is preferably 1.1 or more, or 1.2 or more from the viewpoint of processability, tensile strength and abrasion resistance of the cured product. , or 1.3 or more, and is preferably 1.5 or less, or 1.4 or less from the viewpoint of dispersibility of cellulose nanofibers and low hysteresis loss when cured.
  • the weight average molecular weight of the branched conjugated diene polymer is determined from the viewpoints of the shape stability (especially cold flow resistance) of the rubber component containing the conjugated diene polymer, as well as the tensile strength and abrasion resistance of the cured product of the rubber composition. Therefore, it is preferably 200,000 or more and 2,000,000 or less.
  • the weight average molecular weight is more preferably 300,000 or more, 400,000 or more, or 500,000 or more, and more preferably 1.8 million or less, 1.5 million or less, or 1 million or less.
  • the weight average molecular weight of the branched conjugated diene polymer is a value measured by GPC (gel permeation chromatography), and more specifically, it can be measured by the method described in Examples below.
  • the Mooney viscosity at 100° C. of the branched conjugated diene polymer is preferably 250 or less, or 200 or less, or 180 or less, from the viewpoint of ease of kneading and prevention of breaking of the kneaded dough when preparing a rubber compound. or 150 or less, or 130 or less.
  • the Mooney viscosity is preferably 40 or more, or 50 or more, or 60 or more, or 70 or more, from the viewpoint of obtaining good physical properties of the cured product of the rubber composition.
  • the Mooney viscosity at 100° C. is 70 or more and 130 or less.
  • Ratio of Mooney viscosity at 100°C of the composition of the present disclosure that is, a branched conjugated diene polymer composition containing a branched conjugated diene polymer and cellulose nanofibers, to the Mooney viscosity of the branched conjugated diene polymer at 100°C is preferably 0.7 or more, or 0.75 or more, or 0.8 or more, from the viewpoint of improving the surface texture and appearance of the cured product of the rubber composition, and the hardness of the cured product of the rubber composition and From the viewpoint of the balance of mechanical properties, it is preferably 1.5 or less, or 1.4 or less, or 1.3 or less.
  • the Mooney viscosity at 100° C. of the branched conjugated diene polymer composition containing the branched conjugated diene polymer and cellulose nanofibers is preferably 30 from the viewpoint of obtaining good physical properties of the cured product of the rubber composition. or more, or 50 or more, or 70 or more, and preferably 200 or less, or 150 or less, or 100 or less from the viewpoint of processability, particularly fluidity, of the rubber composition.
  • Mooney viscosity is measured using a Mooney viscometer in accordance with ISO 289 (corresponding to JIS K6300-1) and using an L-shaped rotor, and more specifically, by the method of the example described below. It can be measured by
  • branched conjugated diene polymer There are no particular restrictions on the polymerization method for branched conjugated diene polymers as long as the above-mentioned predetermined physical properties are obtained, and any of solution polymerization, gas phase polymerization, and bulk polymerization can be used, but commercial production From the above point of view, solution polymerization is particularly preferred. Further, the polymerization type may be either a batch type or a continuous type, but a particularly preferred polymerization type is a batch type.
  • the monomer concentration in the solution is preferably 5% by mass or more, more preferably 10% by mass or more.
  • the monomer concentration in the solution is preferably 50% by mass or less, more preferably 30% by mass or less.
  • the monomer concentration in the solution is 50% by mass or less, the viscosity of the solution becomes low, stirring becomes easy, and polymerization tends to occur easily.
  • the branched conjugated diene polymer is obtained by anionic polymerization.
  • the polymerization initiator for anionic polymerization is not particularly limited, but organic lithium compounds are preferably used.
  • the organic lithium compound preferably has an alkyl group having 2 to 20 carbon atoms, such as ethyllithium, n-propyllithium, isopropyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium, tert-octyllithium, etc.
  • Examples include lithium, n-decyllithium, phenyllithium, 2-naphthyllithium, 2-butyl-phenyllithium, 4-phenyl-butyllithium, cyclohexyllithium, cyclopentyllithium, reaction products of diisopropenylbenzene and butyllithium, etc. It will be done. Among these, n-butyllithium or sec-butyllithium is preferred from the viewpoint of availability, safety, etc.
  • the conjugated diene polymer is obtained by coordination polymerization.
  • the polymerization initiator for coordination polymerization it is preferable to use the polymerization catalyst composition described in JP-A-2020-45500.
  • Polymerization method There is no particular restriction on the method for producing a branched conjugated diene copolymer by anionic polymerization or coordination polymerization using a polymerization initiator, and conventionally known methods can be used. Specifically, in an organic solvent inert to the reaction, for example, a hydrocarbon solvent such as a chain aliphatic, alicyclic, or aromatic hydrocarbon compound, for example, butyllithium is used as a polymerization initiator, and as necessary. By polymerizing styrene, 1,3-butadiene, etc. in the presence of a randomizer, the desired conjugated diene copolymer can be obtained.
  • a hydrocarbon solvent such as a chain aliphatic, alicyclic, or aromatic hydrocarbon compound, for example, butyllithium
  • hydrocarbon solvent preferably has 3 to 8 carbon atoms, such as propane, n-butane, isobutane, n-pentane, isopentane, n-hexane, cyclohexane, propene, 1-butene, isobutene, trans-2- Examples include butene, cis-2-butene, 1-pentene, 2-pentene, 1-hexene, 2-hexene, benzene, toluene, xylene, ethylbenzene and the like. These may be used alone or in combination of two or more.
  • a randomizer is used to control the microstructure of the conjugated diene moiety in a branched conjugated diene copolymer, for example, to increase the number of 1,2-bonds in butadiene, 3,4-bonds in isoprene, etc., or to increase the number of monomer units in the copolymer. It refers to a compound that has the effect of controlling the composition distribution, for example, randomizing the styrene units or butadiene units in a styrene-butadiene copolymer.
  • This randomizer is not particularly limited, and any one of the known compounds commonly used as a randomizer can be used.
  • ethers such as methylethylenediamine and 1,2-dipiperidinoethane, and tertiary amines.
  • potassium salts such as potassium t-amylate and potassium t-butoxide
  • sodium salts such as sodium t-amylate can also be used. These randomizers may be used alone or in combination of two or more.
  • the amount of randomizer used is preferably 0.01 molar equivalent or more, more preferably 0.05 molar equivalent or more, per 1 mol of the organic lithium compound.
  • the amount of randomizer used is 0.01 molar equivalent or more, the effect of addition is large, and randomization tends to occur easily.
  • the amount of the randomizer used is preferably 1000 molar equivalents or less, more preferably 500 molar equivalents or less per mol of the organolithium compound. When the amount of randomizer used is 1000 molar equivalents or less, the reaction rate of the monomer does not change significantly, so it is possible to avoid the disadvantage that randomization is difficult.
  • reaction temperature The reaction temperature during polymerization is not particularly limited as long as the reaction proceeds suitably, but it is usually preferably -10°C to 100°C, more preferably 25°C to 70°C.
  • the method for producing a branched conjugated diene polymer according to the present embodiment includes, after the polymerization step described above, a reaction step of reacting the conjugated diene polymer obtained in the polymerization step with a predetermined coupling agent.
  • the active end of the conjugated diene polymer and a functional group having two or more functional groups that is, having two or more functional groups that react with the active end of the conjugated diene polymer
  • a step of reacting with a coupling agent is preferred.
  • the number of functional groups of the coupling agent is preferably 2 or more, or 3 or more, or 4 or more, and preferably 6 or less, or 5 or less.
  • the amount of the coupling agent added is such that the number of moles of the functional group of the coupling agent is 0.1 mole or more, or 0.3 mole per mole of the polymerization catalyst (for example, an organic monolithium compound) used in the polymerization process.
  • the amount is preferably 0.8 mol or less, or 0.7 mol or less, or less than 0.7 mol.
  • the shrinkage factor (g') can be easily controlled to 0.72 or more by using a coupling agent having two or more functional groups in the amount added above.
  • the shrinkage factor (g') can be easily controlled to 0.72 or more by using a coupling agent having a functional group of 5 or less functional groups in the amount added above.
  • the functional groups that actually contribute to the reaction with the active end of the conjugated diene polymer are counted as the number of functional groups of the coupling agent.
  • the number of functional groups for a halogenated silyl group is the same as the number of halogens
  • an azasilyl group is counted as one functional group
  • a carbonyl group is counted as one functional group
  • an epoxy group is counted as one functional group
  • an ester group is counted as two functional groups. Find the total number of functional groups in the compound.
  • the number of functional groups in the alkoxysilyl group is determined by subtracting 1 from the number of alkoxy groups bonded to the same silicon atom. More specifically, the number of functional groups of the coupling agent is calculated by assuming that the trialkoxysilyl group is a difunctional group, the dialkoxysilyl group is a monofunctional group, and the monoalkoxysilyl group is a zero functional group. According to such a calculation method, the amount of coupling agent added can be calculated more appropriately.
  • the compound used as a coupling agent preferably does not have active hydrogen.
  • the coupling agent does not have active hydrogen, side reactions are suppressed and the degree of branching and contraction factor (g') tend to be easily adjusted.
  • the coupling agent examples include a difunctional or more functional coupling agent having a silicon atom, a difunctional or more functional coupling agent having a nitrogen atom-containing group, or a coupling agent containing a silicon atom and a sulfur atom. .
  • bifunctional or more functional coupling agent having a silicon atom examples include, but are not limited to, halogenated silane compounds, epoxidized silane compounds, alkoxysilane compounds, and the like.
  • halogenated silane compound examples include, but are not limited to, dimethyldichlorosilane, methyltrichlorosilane, tetrachlorosilane, and the like.
  • Examples of the epoxidized silane compound include, but are not limited to, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, etc. can be mentioned.
  • alkoxysilane compound examples include, but are not limited to, trimethoxymethylsilane, tetraethoxysilane, triphenoxymethylsilane, 1,2-bis(triethoxysilyl)ethane, and the like.
  • Examples of coupling agents having a nitrogen atom-containing group include, but are not limited to, isocyanate compounds, isocyanuric acid derivatives, carbonyl compounds having a nitrogen atom-containing group, vinyl compounds having a nitrogen atom-containing group, nitrogen Examples include epoxy compounds having an atom-containing group and alkoxysilane compounds having a nitrogen atom-containing group.
  • Isocyanate compounds include, but are not limited to, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane diisocyanate, polymeric type diphenylmethane diisocyanate (C -MDI), phenyl isocyanate, isophorone diisocyanate, hexamethylene diisocyanate, butyl isocyanate, 1,3,5-benzene triisocyanate, and the like.
  • isocyanuric acid derivatives include, but are not limited to, 1,3,5-tris(3-trimethoxysilylpropyl)isocyanurate, 1,3,5-tris(3-triethoxysilylpropyl) ) isocyanurate, 1,3,5-tris(oxiran-2-yl)-1,3,5-triazinane-2,4,6-trione, 1,3,5-tris(isocyanatomethyl)-1, Examples include 3,5-triazinane-2,4,6-trione and 1,3,5-trivinyl-1,3,5-triazinane-2,4,6-trione.
  • Examples of the carbonyl compound having a nitrogen atom-containing group include, but are not limited to, 1,3-dimethyl-2-imidazolidinone, 1-methyl-3-ethyl-2-imidazolidinone, 1 -Methyl-3-(2-methoxyethyl)-2-imidazolidinone, N-methyl-2-pyrrolidone, N-methyl-2-piperidone, N-methyl-2-quinolone, 4,4'-bis(diethylamino) ) benzophenone, 4,4'-bis(dimethylamino)benzophenone, methyl-2-pyridyl ketone, methyl-4-pyridyl ketone, propyl-2-pyridyl ketone, di-4-pyridyl ketone and the like.
  • Examples of the vinyl compound having a nitrogen atom-containing group include, but are not limited to, N,N-dimethylacrylamide, N,N-dimethylmethacrylamide, N-methylmaleimide, N-methylphthalimide, N, Examples include N-bistrimethylsilylacrylamide and 3-(2-dimethylaminoethyl)styrene.
  • Examples of the epoxy compound having a nitrogen atom-containing group include, but are not limited to, N,N-diglycidyl-4-glycidoxyaniline, 1-N,N-diglycidylaminomethyl-4-glycidoxy -cyclohexane, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, and the like.
  • alkoxysilane compounds having a nitrogen atom-containing group include, but are not limited to, 3-dimethylaminopropyltrimethoxysilane, 3-dimethylaminopropylmethyldimethoxysilane, 3-diethylaminopropyltriethoxysilane, and 3-dimethylaminopropyltrimethoxysilane.
  • Examples include morpholinopropyltrimethoxysilane, 3-piperidinopropyltriethoxysilane, and 3-hexamethyleneiminopropylmethyldiethoxysilane.
  • Preferred coupling agents for embodiments using natural rubber include: - Coupling agents that do not have an amine structure or basic nitrogen atom in the molecule, such as tetrafunctional 1,2-bis(methyldichlorosilyl)ethane, 1,2-bis(trimethoxysilyl)ethane, etc. , and - a coupling agent having an amine structure or a basic nitrogen atom in the molecule, for example, a tetrafunctional bis(3-trimethoxysilylpropyl)-[3-(2,2-dimethoxy-1-aza) -2-silacyclopentane)propyl]amine, bis(3-trimethoxysilylpropyl)methylamine, etc. can be mentioned.
  • the reaction temperature in the reaction step is preferably the same temperature as the polymerization temperature of the conjugated diene polymer, more preferably 0°C or more and 120°C or less, and even more preferably 50°C or more and 100°C or less. .
  • the reaction time in the reaction step is preferably 10 seconds or more, more preferably 30 seconds or more. In one embodiment, the reaction time may be 15 minutes or less, or 10 minutes or less.
  • Mixing in the reaction step may be performed by mechanical stirring, stirring using a static mixer, or the like.
  • the coupling agent may be diluted with an inert solvent and continuously supplied to the reactor.
  • the reaction process may be carried out by charging a coupling agent into a polymerization reactor or by transferring the polymerization product to another reactor.
  • the time from the polymerization step to the reaction step is preferably shorter from the viewpoint of obtaining a high coupling rate, preferably within 10 minutes, more preferably within 5 minutes.
  • the time from the polymerization process to the reaction process means the time from when the polymerization peak temperature is reached until the coupling agent is added when the polymerization process is a batch process, and when the polymerization process is a continuous process. , means the time from when the reaction solution containing the conjugated diene polymer leaves the polymerization reactor until the coupling agent is added.
  • reaction stopped Anionic polymerization can be stopped by addition of reaction terminators commonly used in this field.
  • reaction terminators include, but are not particularly limited to, polar solvents having active protons (for example, alcohols such as methanol, ethanol, isopropanol, or acetic acid) and mixtures thereof, or one or more of the above polar solvents. Examples include a mixture of a solvent and a nonpolar solvent such as hexane or cyclohexane.
  • the amount of the reaction terminator added is usually the same molar amount or twice the molar amount of the anionic polymerization initiator.
  • a deactivator At the final stage of the polymerization process of the conjugated diene polymer, a deactivator, a neutralizing agent, etc. may be added as necessary.
  • the deactivator include, but are not limited to, water, alcohols such as methanol, ethanol, and isopropanol, and the like.
  • the final stage of the polymerization process here refers to a state in which 95 mol% or more of the added monomer has been consumed in the polymerization.
  • the neutralizing agent include, but are not limited to, carboxylic acids such as stearic acid, oleic acid, and versatic acid (a mixture of highly branched carboxylic acids with 9 to 11 carbon atoms, mainly 10 carbon atoms). Examples include acids, aqueous solutions of inorganic acids, carbon dioxide gas, and the like.
  • the stabilizer for rubber is not limited to the following, and any known stabilizer can be used, such as 2,6-di-tert-butyl-4-hydroxytoluene (BHT), n-octadecyl-3 Antioxidants such as -(4'-hydroxy-3',5'-di-tert-butylphenol)propinate and 2-methyl-4,6-bis[(octylthio)methyl]phenol are preferred.
  • BHT 2,6-di-tert-butyl-4-hydroxytoluene
  • BHT 2,6-di-tert-butyl-4-hydroxytoluene
  • n-octadecyl-3 Antioxidants such as -(4'-hydroxy-3',5'-di-tert-butylphenol)propinate and 2-methyl-4,6-bis[(octylthio)methyl]phenol are preferred.
  • Rubber softeners include, but are not particularly limited to, extender oils, liquid rubbers, resins, and the like.
  • the liquid rubber can be selected from those exemplified above. Extended oils are preferred in terms of processability, productivity and economy.
  • Methods for adding a rubber softener to a conjugated diene polymer include, but are not limited to, the following methods: Adding a rubber softener to a polymer solution and mixing the resulting rubber softener-containing polymer solution. A method of removing the solvent is preferred.
  • Examples of preferred extender oils include aroma oils, naphthenic oils, paraffin oils, and the like.
  • aromatic alternative oils containing 3% by mass or less of polycyclic aromatic (PCA) components according to the IP346 method are preferred.
  • aroma substitute oils include TDAE (Treated Distillate Aromatic Extracts), MES (Mild Extract) shown in Kautschuk Kunststoffe 52 (12) 799 (1999) action Solvate), and RAE (Residual Aromatic Extracts).
  • the content of the extender oil is determined based on 100 parts by mass of the first rubber component in a masterbatch for rubber modification, or the content of the extender oil in the case of a rubber modification masterbatch, or in the case of a branched conjugated diene polymer composition, based on 100 parts by mass of the first rubber component. 37.5 parts by mass or less, more preferably 30 parts by mass or less, even more preferably 25 parts by mass or less, based on 100 parts by mass of the components (in one embodiment, the total of the first and second rubber components), Most preferably, it is 20 parts by mass or less. In one embodiment, the content may be 5 parts by mass or more, 10 parts by mass or more, or 15 parts by mass or more.
  • the content of extender oil is set to 100 parts by mass of the first rubber component in the masterbatch for rubber modification, or In the conjugated diene polymer composition, the amount is preferably 37.5 parts by mass or less, more preferably 30 parts by mass or less, based on 100 parts by mass of the rubber component (in one embodiment, the total of the first and second rubber components). It is preferably 25 parts by mass or less, more preferably 15 parts by mass or less, and most preferably 10 parts by mass or less. In one embodiment, the content may be 5 parts by mass or more.
  • solvent removal A known method can be used to obtain the branched conjugated diene polymer by removing the solvent from the polymer solution containing the branched conjugated diene polymer. For example, after separating the solvent by steam stripping, etc., the polymer is filtered, then dehydrated and dried to obtain a polymer, or the polymer solution is concentrated in a flushing tank, and then vented. Examples include a method of devolatilizing with an extruder or the like, and a method of directly devolatilizing with a drum dryer or the like.
  • the amount of the branched conjugated diene polymer in 100% by mass of the first rubber component is 50% by mass or more, or 60% by mass, from the viewpoint of providing a cured product with excellent mechanical strength. % by mass or more, or 80% by mass or more. The above amount may be 100% by mass, but in one embodiment, it can also be 90% by mass or less, or 80% by mass or less, or 70% by mass or less.
  • the amount of the branched conjugated diene polymer in 100% by mass of the second rubber component has excellent mechanical strength.
  • the content is 50% by mass or more, 60% by mass or more, or 80% by mass or more.
  • the above ratio is 95% by mass or less, or 90% by mass or less, or 85% by mass or less.
  • the proportion of the branched conjugated diene polymer in 100% by mass of the rubber component is determined to be a cured material with excellent mechanical strength.
  • the content is 50% by mass or more, 60% by mass or more, or 80% by mass or more.
  • the above ratio is 95% by mass or less, or 90% by mass or less, or 85% by mass or less.
  • the proportion of the branched conjugated diene polymer in 100% by mass of the second rubber component is In one embodiment, the amount may be 5% by mass or more, 10% by mass or more, or 15% by mass or more from the viewpoint of providing a cured product with excellent mechanical strength. In one embodiment, the ratio may be 50% by mass or less, or 45% by mass or less, or 40% by mass or less.
  • the ratio of the branched conjugated diene polymer in 100% by mass of the rubber component is From the viewpoint of providing a cured product with excellent mechanical strength, in one embodiment, the content may be 5% by mass or more, 10% by mass or more, or 15% by mass or more. In one embodiment, the ratio may be 50% by mass or less, or 45% by mass or less, or 40% by mass or less.
  • the rubber component of the present disclosure may contain rubbers other than diene polymers, but is typically composed of diene polymers.
  • the masterbatch for rubber modification or the branched conjugated diene polymer composition may contain a rubber other than the branched conjugated diene polymer as a rubber component.
  • Such rubbers include, but are not limited to, conjugated diene polymers or hydrogenated products thereof, random copolymers of conjugated diene compounds and vinyl aromatic compounds or hydrogenated products thereof, and conjugated diene polymers or hydrogenated products thereof. Examples include a block copolymer of a vinyl aromatic compound and a vinyl aromatic compound or a hydrogenated product thereof, a diene polymer such as natural rubber, and a non-diene polymer.
  • branched conjugated diene is present in 100% by mass of the first rubber component, in 100% by mass of the second rubber component, or in 100% by mass of the first and second rubber components.
  • the content of the diene polymer other than the based polymer is preferably 50% by mass or less, or 45% by mass or less, or 40% by mass or less, or 30% by mass or less, Or 20% by mass or less. In one embodiment, the content may be 5% by mass or more, 10% by mass or more, or 15% by mass or more.
  • the second rubber component contains natural rubber in an embodiment using a rubber-modifying masterbatch.
  • the first rubber component may or may not contain natural rubber.
  • Natural rubber may be unmodified rubber or modified rubber.
  • Natural rubber is not particularly limited, but for example, from the viewpoint of having a high molecular weight component and excellent breaking strength: RSS (Ribbed Smoked Sheet) No. 3 to 5, which is a smoke drying type; TSR (Technically Specified Rubber), which is a mechanical drying type Examples include SIR (Standard Indonesian Rubber) (made in Indonesia), STR (Standard Thai Rubber) (made in Thailand), SMR (Standard Malaysian Rubber) (made in Malaysia), and epoxidized natural rubber.
  • RSS Rabbed Smoked Sheet
  • TSR Technicalnically Specified Rubber
  • the masterbatch for rubber modification or the branched conjugated diene polymer composition may contain additives in addition to the cellulose nanofibers and the rubber component.
  • Additives include organic or inorganic reinforcing fillers (e.g. carbon black, silica-based inorganic fillers, etc.), silane coupling agents, metal oxides or metal hydroxides, stearic acid, various anti-aging agents, rubber.
  • softeners oil, waxes, etc.
  • vulcanizing agents sulfur, organic peroxides, etc.
  • vulcanization accelerators sulfenamide-based or guanidine-based vulcanization accelerators, etc.
  • additives one or more of additional polymers, dispersants, heat stabilizers, antioxidants, antistatic agents, colorants, etc. can also be used.
  • the branched conjugated diene polymer composition of this embodiment may contain a silica-based inorganic filler.
  • the silica-based inorganic filler is combined with a rubber-modifying masterbatch during the production of the branched conjugated diene-based polymer composition.
  • the content of the silica-based inorganic filler with respect to 100 parts by mass of the rubber component is as follows: From the viewpoint of mechanical strength and elastic modulus, it is preferably 10 parts by mass or more and 80 parts by mass or less. From the viewpoint of reducing the weight of the rubber molded product, the content of the silica-based inorganic filler is preferably 80 parts by mass or less, 50 parts by mass or less, or 30 parts by mass or less.
  • the silica-based inorganic filler is not particularly limited and any known one can be used, but solid particles containing SiO 2 or Si 3 Al as a constituent unit are preferable, and SiO 2 or Si 3 Al is the main component of the constituent unit. It is more preferable that throughout this disclosure, the main component means a component that accounts for more than 50% by mass, preferably 70% by mass or more, and more preferably 80% by mass or more of the total mass.
  • silica-based inorganic filler examples include, but are not limited to, inorganic fibrous substances such as silica, clay, talc, mica, diatomaceous earth, wollastonite, montmorillonite, zeolite, and glass fiber.
  • a commercially available silica-based inorganic filler includes, for example, the product name "Ultrasil 7000GR" manufactured by Evonik. Also included are silica-based inorganic fillers whose surfaces have been made hydrophobic, and mixtures of silica-based inorganic fillers and inorganic fillers other than silica-based fillers.
  • silica and glass fiber are preferred, and silica is more preferred.
  • examples of silica include dry silica, wet silica, and synthetic silicate silica.
  • wet silica is more preferable from the viewpoint of improving mechanical strength and having an excellent balance of wet skid resistance.
  • the branched conjugated diene polymer composition of this embodiment may contain carbon black.
  • carbon black is combined with a rubber-modifying masterbatch during the production of a branched conjugated diene-based polymer composition.
  • the carbon black content relative to 100 parts by mass of the rubber component is determined by the mechanical strength of the cured rubber molded product.
  • it is preferably 10 parts by mass or more and 80 parts by mass or less.
  • the content of carbon black is preferably 80 parts by mass or less, 50 parts by mass or less, or 30 parts by mass or less.
  • the carbon black is not particularly limited, and for example, carbon blacks of various classes such as SRF, FEF, HAF, ISAF, and SAF can be used.
  • carbon black has a nitrogen adsorption specific surface area of 50 m2/g or more and a dibutyl phthalate (DBP) oil absorption of 80 mL/100 g or more. is preferred.
  • the nitrogen adsorption specific surface area may be 130 m 2 /g or less in one embodiment
  • the dibutyl phthalate (DBP) oil absorption may be 120 mL/100 g or less in one embodiment.
  • the content of the reinforcing filler with respect to 100 parts by mass of the rubber component is such that the mechanical strength and elastic modulus of the cured rubber molded product are determined. From the viewpoint of this, it is preferably 10 parts by mass or more, and from the viewpoint of reducing the weight of the rubber molded product, it is preferably 80 parts by mass or less, or 50 parts by mass or less, or 30 parts by mass or less.
  • the branched conjugated diene polymer composition of this embodiment may contain a metal oxide and/or a metal hydroxide.
  • the metal oxide is a solid particle whose main constituent unit is the chemical formula M x O y (M represents a metal atom, and x and y each independently represent an integer from 1 to 6). be. Examples include alumina, titanium oxide, magnesium oxide, zinc oxide, and the like. Metal oxides may also be used in mixtures with inorganic fillers.
  • the metal hydroxide is not particularly limited, and examples thereof include aluminum hydroxide, magnesium hydroxide, zirconium hydroxide, and the like.
  • the branched conjugated diene polymer composition of this embodiment may contain a rubber softener for the purpose of improving processability.
  • a rubber softener for example, mineral oil-based rubber softeners and liquid or low molecular weight synthetic softeners are suitable.
  • the mineral oil-based rubber softener is also called process oil or extender oil, and is used to soften, increase the volume, or improve processability of rubber.
  • the mineral oil-based softener for rubber contains an aromatic ring, a naphthene ring, and a paraffin chain, and those in which the number of carbon atoms in the paraffin chain accounts for 50% or more of the total carbon are called paraffin type, and the naphthene ring carbon Those containing 30 to 45% aromatic carbon are called naphthenic, and those containing more than 30% aromatic carbon are called aromatic.
  • a rubber softener used with a conjugated diene-aromatic vinyl copolymer one having an appropriate aromatic content is preferred because it tends to have good affinity with the copolymer.
  • the rubber softener may be blended during the production of the branched conjugated diene polymer, the rubber modification masterbatch, and/or the branched conjugated diene polymer composition.
  • the content of the rubber softener relative to 100 parts by mass of the rubber component is determined from the viewpoint of improving processability.
  • the amount is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and even more preferably 30 parts by mass or more.
  • the rubber composition preferably 100 parts by mass or less, or 70 parts by mass or less, or 50 parts by mass or less, or 40 parts by mass or less, or 30 parts by mass or less. It is.
  • the masterbatch for rubber modification of this embodiment contains the first rubber component containing the branched conjugated diene polymer of this embodiment described above, and cellulose nanofibers.
  • the content of the first rubber component in the masterbatch for rubber modification is 30% by mass or more, or 40% by mass or more, or 50% by mass or more, and in one embodiment, 80% by mass or less, or 70% by mass or less, or 60% by mass or less.
  • the masterbatch for rubber modification may be a kneaded product.
  • Methods for mixing the constituent materials of the masterbatch for rubber modification include, but are not limited to, the following methods, for example, open roll, Banbury mixer, kneader, single screw extruder, twin screw extruder, and multi-screw extruder. Examples include a melt-kneading method using a general mixer such as a kneading machine, a method of dissolving and mixing each component, and then removing the solvent by heating.
  • melt-kneading methods using rolls, Banbury mixers, kneaders, or extruders are preferred from the viewpoint of productivity and kneading performance.
  • a method of kneading the constituent materials of the rubber-modifying masterbatch of this embodiment at once or a method of mixing them in a plurality of batches can be applied.
  • the kneading temperature may be around room temperature (about 15°C to 30°C), but it may also be heated at a high temperature to the extent that the rubber component does not undergo a crosslinking reaction, for example, at 160°C or lower, or 140°C or lower, or 120°C or lower. be.
  • the lower limit is preferably 70°C or higher, or 80°C or higher. In one embodiment, the above lower limit is preferable from the viewpoint of dispersibility of cellulose nanofibers in the rubber component.
  • the heating temperature is preferably 80°C to 160°C, or 80°C to 140°C, or 80°C to 120°C.
  • the rubber modification masterbatch of the present disclosure contains a surfactant
  • a step of preparing a cellulose nanofiber composition containing cellulose nanofibers and a surfactant a step of preparing a cellulose nanofiber composition containing cellulose nanofibers and a surfactant; and a step of mixing the cellulose nanofiber composition and a first rubber component containing a branched conjugated diene polymer.
  • methods include:
  • methods include:
  • the cellulose nanofiber composition may be the powder of the present disclosure.
  • the discharge temperature during kneading is set to a high enough temperature that the modified liquid rubber and cellulose nanofibers react. Thereby, a cured product having high tensile modulus and high elastic modulus can be obtained. From this point of view, the preferred kneading temperature is 100°C to 170°C, 120°C to 160°C, or 150°C to 160°C.
  • the masterbatch for rubber modification is preferably formed into a sheet with a thickness of, for example, 10 mm to 40 mm or 10 mm to 30 mm using a rolling roll in order to improve cohesiveness and handling properties.
  • the rubber-modifying masterbatch may further contain components other than those exemplified in the present disclosure, as long as the effects of the present invention are not impaired.
  • the branched conjugated diene polymer composition of this embodiment includes a rubber component and cellulose nanofibers.
  • the branched conjugated diene polymer composition is a rubber composition containing a component derived from a rubber-modifying masterbatch and a second rubber component containing a branched conjugated diene polymer.
  • the second rubber component includes natural rubber.
  • the branched conjugated diene polymer composition is a kneaded product of the rubber-modifying masterbatch of the present embodiment, a second rubber component, and one or more optional additives.
  • the content of the first rubber component derived from the masterbatch in the total 100% by mass of the first and second rubber components is equal to the amount of cellulose nanofibers contained in the rubber composition.
  • the content is preferably 5% by mass or more, more preferably 10% by mass or more, and still more preferably 15% by mass or more, since the content does not become too small and the effects of the present invention can be obtained well.
  • the content may be 50% by mass or less, 40% by mass or less, or 30% by mass or less, from the viewpoint of dispersibility of cellulose nanofibers in the rubber composition.
  • the content of the rubber component in the branched conjugated diene polymer composition (in one embodiment, the total content of the first and second rubber components) is 70% by mass or more, or 80% by mass or more, or 90% by mass or more, and in one embodiment, 99% by mass or less, or 95% by mass or less, or 90% by mass or less.
  • the branched conjugated diene polymer composition includes a rubber component containing the branched conjugated diene polymer, cellulose nanofibers (as a cellulose nanofiber composition in one embodiment), and optionally additives (for example, a silica-based inorganic filler, It can be obtained by mixing carbon black, other fillers, silane coupling agents, rubber softeners, etc.).
  • the method for mixing the constituent materials of the branched conjugated diene polymer composition is not limited to the following methods, but includes, for example, an open roll, a Banbury mixer, a kneader, a single screw extruder, a twin screw extruder, and a multi-screw extruder.
  • examples include a melt-kneading method using a general mixer such as a screw extruder, a method of dissolving and mixing each component, and then removing the solvent by heating.
  • melt-kneading methods using rolls, Banbury mixers, kneaders, or extruders are preferred from the viewpoint of productivity and kneading performance.
  • either a method of kneading the constituent materials of the rubber composition of the present embodiment at once or a method of mixing them in a plurality of batches can be applied.
  • a mixture (masterbatch) of the first rubber component containing a branched conjugated diene polymer and cellulose nanofibers is prepared in advance. It is preferable to do so.
  • the manufacturing method includes: preparing a cellulose nanofiber composition containing cellulose nanofibers and a surfactant; A step of preparing a rubber modification masterbatch by mixing a cellulose nanofiber composition and a first rubber component containing a branched conjugated diene polymer, and a step of preparing a rubber modification masterbatch and a second rubber component. a step of preparing a branched conjugated diene polymer composition by mixing; Examples of methods include:
  • the manufacturing method includes: preparing a cellulose nanofiber composition containing cellulose nanofibers, liquid rubber, and a surfactant; A step of preparing a rubber modification masterbatch by mixing a cellulose nanofiber composition and a first rubber component containing a branched conjugated diene polymer, and a step of preparing a rubber modification masterbatch and a second rubber component. a step of preparing a branched conjugated diene polymer composition by mixing; Examples of methods include:
  • the cellulose nanofiber composition may be the powder of the present disclosure.
  • the branched conjugated diene polymer composition of the present embodiment may be a vulcanized composition (branched conjugated diene polymer cured product) that is vulcanized with a vulcanizing agent.
  • a vulcanizing agent include, but are not limited to, radical generators such as organic peroxides and azo compounds, oxime compounds, nitroso compounds, polyamine compounds, sulfur, and sulfur compounds.
  • Sulfur compounds include sulfur monochloride, sulfur dichloride, disulfide compounds, polymeric polysulfur compounds, and the like.
  • the content of the vulcanizing agent is preferably 0.01 parts by mass or more and 20 parts by mass or less, and 0.1 parts by mass based on 100 parts by mass of the rubber component (in one embodiment, the total of the first and second rubber components). Parts or more and 15 parts by mass or less are more preferable.
  • the vulcanization method conventionally known methods can be applied, and the vulcanization temperature is preferably 120°C or more and 200°C or less, more preferably 140°C or more and 180°C or less.
  • a vulcanization accelerator may be used as necessary.
  • the vulcanization accelerator conventionally known materials can be used, including, but not limited to, sulfenamide, guanidine, thiuram, aldehyde-amine, aldehyde-ammonia, and thiazole. , thiourea-based, and dithiocarbamate-based vulcanization accelerators.
  • the vulcanization aid is not limited to the following, but examples thereof include zinc white and stearic acid.
  • the content of the vulcanization accelerator is preferably 0.01 parts by mass or more and 20 parts by mass or less, and 0.1 parts by mass or less, based on 100 parts by mass of the rubber component (in one embodiment, the total of the first and second rubber components). It is more preferably 15 parts by mass or more and 15 parts by mass or less.
  • the branched conjugated diene polymer is a branched conjugated diene polymer (also referred to as a low branched conjugated diene polymer) having a shrinkage factor (g') of 0.72 or more according to the present disclosure
  • the low branched conjugated diene polymer is combined with natural rubber.
  • the molecular weight distribution (Mw/Mn) of the low branched conjugated diene polymer of this embodiment is 1.1 or more, or 1.2 or more, or 1.3 or more, or 1.5 or more, or 1. It may be 7 or more, or 1.9 or more, and in one embodiment, it may be 4.0 or less, or 3.0 or less, or 2.5 or less.
  • the low-branched conjugated diene polymer has one or more coupling residues and a conjugated diene polymer chain bonded to the coupling residue, and the branched includes a branch in which less than 5 of the conjugated diene polymer chains are bonded to the coupling residue of the conjugated diene polymer chain.
  • the structure of the branched conjugated diene polymer is such that the degree of branching is less than 5, and the branching includes a branch in which less than 5 conjugated diene polymer chains are bonded to one coupling residue.
  • the reaction step for reducing branching is preferably a step of reacting the active terminal of the conjugated diene polymer with a coupling agent having a functional group of 5 or less functional groups.
  • the number of functional groups of the coupling agent is preferably 5 or less, 4 or less, or 3 or less, and in one embodiment, 2 or more.
  • a masterbatch for modifying natural rubber or a branched conjugated diene polymer composition containing natural rubber contains such a low-branched conjugated diene polymer.
  • the first rubber component contains the low-branched conjugated diene polymer.
  • the second rubber component may or may not contain the low-branched conjugated diene polymer.
  • the low-branched conjugated diene polymer can provide a cured product with excellent tensile modulus and mechanical strength (eg, elastic modulus) in combination with natural rubber.
  • This disclosure also includes the following items.
  • a low-branched conjugated diene polymer composition comprising: [Item 2] The low-branched conjugated diene polymer composition according to item 1, wherein the low-branched conjugated diene polymer has a weight average molecular weight of 200,000 or more and 2,000,000 or less.
  • the low-branched conjugated diene polymer has a bonded styrene content of 3% by mass or more and 30% by mass or less, and has a 1,2-vinyl bond content of 10% by mole or more and 85% by mole or less as the microstructure of the butadiene moiety.
  • the surfactant is a nonionic surfactant.
  • the nonionic surfactant is a compound having a hydrophilic group selected from the group consisting of a hydroxyl group, a carboxy group, a sulfonic acid group, and an amino group, and a hydrocarbon group. based polymer composition.
  • the nonionic surfactant has the following general formula (1): R-(OCH 2 CH 2 ) m -OH (1) [In the formula, R represents a monovalent aliphatic group having 6 to 30 carbon atoms, and m is a natural number smaller than the number of carbon atoms in R. ] and the following general formula (2): R 1 OCH 2 -(CHOH) 4 -CH 2 OR 2 (2) [In the formula, R 1 and R 2 each independently represent a hydrogen atom, an aliphatic group having 1 to 30 carbon atoms, -COR 3 ⁇ wherein R 3 represents an aliphatic group having 1 to 30 carbon atoms].
  • the low-branched conjugated diene polymer composition according to item 13 which contains the modified liquid rubber in an amount of 1 part by mass or more and 25 parts by mass or less based on 100 parts by mass of the rubber component.
  • the low-branched conjugated diene polymer composition according to any one of items 1 to 15.
  • [Item 17] A first compound containing 50% by mass or more of a low-branched conjugated diene polymer having a contraction factor (g') of 0.72 or more as determined by GPC-light scattering measurement using gel permeation chromatography (GPC) with a viscosity detector.
  • Masterbatches for natural rubber modification including: [Item 18] The masterbatch for modifying natural rubber according to item 17, wherein the low-branched conjugated diene polymer has a weight average molecular weight of 200,000 or more and 2,000,000 or less. [Item 19] The low-branched conjugated diene polymer has a bonded styrene content of 3% by mass or more and 30% by mass or less, and has a 1,2-vinyl bond content of 10% by mole or more and 85% by mole or less as the microstructure of the butadiene moiety. The masterbatch for natural rubber modification according to item 17 or 18.
  • the nonionic surfactant is a compound having a hydrophilic group selected from the group consisting of a hydroxyl group, a carboxy group, a sulfonic acid group, and an amino group, and a hydrocarbon group.
  • the nonionic surfactant has the following general formula (1): R-(OCH 2 CH 2 ) m -OH (1) [In the formula, R represents a monovalent aliphatic group having 6 to 30 carbon atoms, and m is a natural number smaller than the number of carbon atoms in R. ] and the following general formula (2): R 1 OCH 2 -(CHOH) 4 -CH 2 OR 2 (2) [In the formula, R 1 and R 2 each independently represent a hydrogen atom, an aliphatic group having 1 to 30 carbon atoms, -COR 3 ⁇ wherein R 3 represents an aliphatic group having 1 to 30 carbon atoms].
  • [Item 27] The masterbatch for modifying natural rubber according to item 25 or 26, wherein the ratio of number average molecular weight (Mn) to weight average molecular weight (Mw) (Mw/Mn) of the liquid rubber is 1.5 to 5.
  • the liquid rubber contains one or more selected from the group consisting of diene rubber, silicone rubber, urethane rubber, polysulfide rubber, and hydrogenated products thereof. Masterbatch for reforming.
  • the masterbatch for modifying natural rubber according to item 29, comprising 10 parts by mass or more and 200 parts by mass or less of the modified liquid rubber based on 100 parts by mass of the first rubber component.
  • Item 31 Item 17, wherein the ratio of weight average molecular weight (Mw) to number average molecular weight (Mn) (Mw/Mn) of the low-branched conjugated diene polymer is 1.5 or more as determined by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • a low-branched conjugated diene polymer composition which is a kneaded product comprising the masterbatch for modifying natural rubber according to any one of items 17 to 31 and a second rubber component containing natural rubber.
  • the low-branched conjugated diene polymer composition according to item 32 comprising 1 part by mass or more and 15 parts by mass or less of cellulose nanofibers based on a total of 100 parts by mass of the first rubber component and the second rubber component. .
  • the low-branched conjugated diene polymer according to item 32 or 33 which contains 10 parts by mass or more and 80 parts by mass or less of a reinforcing filler with respect to a total of 100 parts by mass of the first rubber component and the second rubber component. Coalescing composition.
  • [Item 36] The low branched conjugated diene polymer composition according to item 35, comprising 1 part by mass or more and 25 parts by mass or less of the modified liquid rubber based on a total of 100 parts by mass of the first rubber component and the second rubber component. thing.
  • [Item 37] A cured product of a low-branched conjugated diene polymer, which is a cured product of the low-branched conjugated diene polymer composition according to any one of items 1 to 16.
  • [Item 38] A cured product of a low-branched conjugated diene polymer, which is a cured product of the low-branched conjugated diene polymer composition according to any one of items 32 to 36.
  • a method for producing a low-branched conjugated diene polymer composition comprising: preparing a cellulose nanofiber composition comprising cellulose nanofibers and a surfactant; a step of preparing a masterbatch for modifying natural rubber by mixing the cellulose nanofiber composition and a first rubber component containing a low-branched conjugated diene polymer; a step of preparing a low-branched conjugated diene polymer composition by mixing with a second rubber component containing rubber; including methods.
  • Example A Coupling rate and molecular weight
  • GPC gel permeation chromatography
  • Mp1 represents the peak top molecular weight of the non-coupled polymer (the peak on the lowest molecular weight side) in the conjugated diene polymer.
  • Mp2 represents the peak top molecular weight of the coupling polymer in the conjugated diene polymer.
  • Mp2 represents the peak top molecular weight of the coupling polymer in the conjugated diene polymer.
  • the coupling rate was determined as the ratio (in mass % units) of the total peak area of all coupling polymers when the total area of the chromatogram was 100 mass %.
  • Measurement was performed by injecting 20 ⁇ L of the following measurement solution into a GPC measuring device.
  • Oven temperature 40°C
  • Flow rate 0.6mL/min
  • Detector RI detector (trade name "HLC8020" manufactured by Tosoh Corporation)
  • Measurement liquid 20 ⁇ L of a measurement solution in which 10 mg of a measurement sample was dissolved in 20 mL of THF was injected into the GPC measurement device.
  • Mooney viscosity of conjugated diene polymer, masterbatch, and conjugated diene polymer composition was measured using a Mooney viscometer (trade name "VR1132" manufactured by Ueshima Seisakusho Co., Ltd.) in accordance with JIS K6300-1 and an L-shaped rotor. The measurement temperature was 100°C. First, after preheating the sample at the test temperature for 1 minute, the rotor was rotated at 2 rpm, and the torque after 4 minutes was measured and defined as Mooney viscosity (ML (1+4) ).
  • the intrinsic viscosity [ ⁇ ] at each molecular weight M of the sample obtained by 3D-GPC measurement is expressed as the relationship between the intrinsic viscosity [ ⁇ ] and the standard intrinsic viscosity [ ⁇ ] 0 [ ⁇ ]/[ ⁇ ] 0 was calculated for each molecular weight M, and the average value was taken as the contraction factor (g').
  • the columns used were a guard column manufactured by Tosoh Corporation under the trade name “TSKguardcolumn HHR-H” and a column manufactured by Tosoh Corporation under the trade name “TSKgel G6000HHR”, “TSKgel G5000HHR”, and “TSKgel G4000HHR” connected together.
  • ⁇ Cellulose nanofiber> (CNF: Microfibrous cellulose) 3 parts by mass of cotton linter pulp was immersed in 27 parts by mass of water and dispersed using a pulper. 170 parts by mass of water was added to 30 parts by mass of pulped cotton linter pulp slurry (including 3 parts by mass of cotton linter pulp) and dispersed in water (solid content 1.5% by mass), and Aikawa Iron Works used it as a disc refiner device. The aqueous dispersion was refined for 30 minutes using an SDR14 type laboratory refiner (pressure type DISK type) manufactured by Co., Ltd. with a clearance between disks of 1 mm.
  • CNF Microfibrous cellulose
  • CNF composition (CNF-1) Purified water was added to the CNF (aqueous dispersion of cellulose fibers) to obtain an aqueous dispersion having a final cellulose nanofiber content of 5% by mass. Liquid rubber-1 and surfactant-1 were added to this, and the final composition was 90% by mass of water, 5% by mass of cellulose fiber, 2.86% by mass of liquid rubber, and 2.14% by mass of surfactant.
  • An aqueous dispersion was prepared. The aqueous dispersion was mixed for 5 minutes using a rotation and revolution mixer ARE-310 manufactured by Shinky Co., Ltd. to obtain a dispersion of a cellulose nanofiber composition.
  • the obtained dispersion liquid was dried at 80° C. using SPH-201 manufactured by ESPEC Co., Ltd. to obtain a dried product.
  • the obtained dry body was pulverized for 30 seconds using a mini speed mill MS-05 manufactured by Labnect Co., Ltd. to obtain a CNF composition powder (CNF-1).
  • the solidified bulk density of the obtained dry powder was measured using a powder tester PT-X manufactured by Hosokawa Micron. Specifically, a resin adapter (inner diameter 50.46 mm x length 40 mm) with sufficient capacity was tightly connected to the top of a stainless steel 100 mL (inner diameter 50.46 mm x depth 50 mm) bottomed cylindrical container. After adding the dried material to the container at a rate of 10 g/min using a medicine spoon until it overflows, the container was placed in a bottomed cylindrical container with the adapter connected, and a motor with an eccentric weight attached to the rotating shaft was used to vibrate at an amplitude of 1.5 mm and 50 Hz. It was given for 30 seconds. Subsequently, the adapter was removed, the dry body was ground, and the weight was measured to the nearest 0.01 g. The number average value of the three measurements of the weight was divided by the internal volume of the bottomed cylindrical container to calculate the solidified bulk density.
  • CNF composition (CNF-2) Add liquid rubber-1 and surfactant-1 so that the final composition is 90% by mass of water, 5% by mass of cellulose fiber, 2.86% by mass of liquid rubber, and 2.14% by mass of surfactant.
  • a CNF composition powder (CNF-2) was obtained in the same manner as in Production Example 1, except that an aqueous dispersion was prepared.
  • CNF composition (CNF-3) Production example except that surfactant-1 was added to prepare an aqueous dispersion with a final composition of 92.86% by mass of water, 5% by mass of cellulose fiber, and 2.14% by mass of surfactant.
  • a CNF composition powder (CNF-3) was obtained in the same manner as in Example 1.
  • CNF composition (CNF-4) Production example except that surfactant-2 was added to prepare an aqueous dispersion with a final composition of 92.86% by mass of water, 5% by mass of cellulose fiber, and 2.14% by mass of surfactant.
  • a CNF composition powder (CNF-4) was obtained in the same manner as in Example 1.
  • the mixture obtained above was cooled to room temperature and then kneaded again in order to improve the dispersion of CNF.
  • the temperature of the internal mixer was controlled and the discharge temperature was adjusted to 155 to 160°C to obtain a masterbatch for rubber modification (MB-1).
  • Masterbatches for rubber modification (MB-2 to MB-5) A masterbatch for rubber modification was prepared in the same manner as in Production Example 1, except that the raw materials (conjugated diene polymer and CNF composition) and blending amounts used for the production of the masterbatch for rubber modification were changed as shown in Table 3. Masterbatches (MB-2 to MB-5) were obtained.
  • the mixture obtained above was cooled to room temperature and then kneaded again in order to improve the dispersion of CNF.
  • the temperature of the internal mixer was controlled and the discharge temperature was adjusted to 155 to 160°C to obtain a masterbatch for rubber modification (MB-6).
  • LR-3 LIR-403 manufactured by Kuraray Co., Ltd.
  • the properties of the conjugated diene polymer composition (rubber composition) before vulcanization and the conjugated diene polymer composition (cured product) after vulcanization were evaluated by the following method.
  • Tensile strength, tensile modulus and tensile elongation Tensile strength, tensile modulus, and tensile elongation were measured according to the tensile test method of JIS K6251, and the results of Comparative Example 4 were set as 100 and indexed. The larger the index, the better the tensile strength, tensile modulus, and tensile elongation.
  • the hardness of the vulcanizate was measured using a type A durometer according to JIS K6253 "Hardness test method for vulcanized rubber and thermoplastic rubber.” Measurements were performed at 25°C. The results of Comparative Example 4 were set as 100 and indexed. The larger the index, the better the hardness.
  • the mixture obtained above was cooled to room temperature, an anti-aging agent was added, and the mixture was kneaded again in order to improve the dispersion of cellulose nanofibers or silica.
  • the discharge temperature of the blend was adjusted to 155-160° C. by temperature control of the mixer.
  • sulfur, vulcanization accelerator-1, and vulcanization accelerator-2 were added and kneaded using open rolls set at 70° C. as the third stage of kneading. Thereafter, it was molded and vulcanized in a vulcanization press at 160° C. for 25 minutes.
  • the properties of the conjugated diene polymer composition before vulcanization and the conjugated diene polymer composition after vulcanization were evaluated. The results are shown in Table 4.
  • Conjugated diene polymer, cellulose nano A fiber composition, silica, modified liquid rubber, process oil, zinc white, and stearic acid were kneaded. At this time, the temperature of the closed mixer was controlled, and the discharge temperature was 155 to 160° C. to obtain a conjugated diene polymer composition (compound).
  • the mixture obtained above was cooled to room temperature, an anti-aging agent was added, and the mixture was kneaded again in order to improve the dispersion of cellulose nanofibers or silica.
  • the discharge temperature of the blend was adjusted to 155-160° C. by temperature control of the mixer.
  • sulfur, vulcanization accelerator-1, and vulcanization accelerator-2 were added and kneaded using open rolls set at 70°C as the third stage of kneading. Thereafter, it was molded and vulcanized in a vulcanization press at 160° C. for 25 minutes.
  • the properties of the conjugated diene polymer composition before vulcanization and the conjugated diene polymer composition after vulcanization were evaluated. The results are shown in Table 5.
  • Conjugated diene polymer (SBR-3) Silica, silane coupling agent, process oil, zinc white, and stearic acid were kneaded. At this time, the temperature of the closed mixer was controlled and the discharge temperature was 155 to 160° C. to obtain each conjugated diene polymer composition (compound).
  • the mixture obtained above was cooled to room temperature, an anti-aging agent was added, and the mixture was kneaded again to improve the dispersion of silica.
  • the discharge temperature of the blend was adjusted to 155-160° C. by temperature control of the mixer.
  • sulfur, vulcanization accelerator-1, and vulcanization accelerator-2 were added and kneaded using open rolls set at 70° C. as the third stage of kneading. Thereafter, it was molded and vulcanized in a vulcanization press at 160° C. for 25 minutes.
  • the properties of the conjugated diene polymer composition before vulcanization and the conjugated diene polymer composition after vulcanization were evaluated. The results are shown in Table 5.
  • the mixture obtained above was cooled to room temperature, an antiaging agent was added, and the mixture was kneaded again in order to improve the dispersion of cellulose nanofibers.
  • the discharge temperature of the blend was adjusted to 155-160° C. by temperature control of the mixer.
  • sulfur, vulcanization accelerator 1, and vulcanization accelerator 2 were added and kneaded using open rolls set at 70° C. as the third stage of kneading. Thereafter, it was molded and vulcanized in a vulcanization press at 160° C. for 15 minutes.
  • the conjugated diene polymer compositions obtained in Examples 1 to 20 had higher vulcanizate properties than the conjugated diene polymer compositions obtained in Comparative Examples 1 to 6. It was confirmed that the cellulose nanofibers had excellent dispersibility, excellent tensile strength, high tensile modulus, and high elastic modulus.
  • the conjugated diene polymer compositions using the masterbatches obtained in Examples 1 to 10 had superior tensile strength compared to the conjugated diene polymer compositions obtained in Examples 11 to 20. It was confirmed that the material had a high tensile modulus and a high elastic modulus, and it was confirmed that the physical properties were improved by using the masterbatch.
  • the conjugated diene polymer compositions obtained in Examples 7 to 10 and Examples 17 to 20 were the same as the conjugated diene polymer compositions obtained in Examples 1 to 6 and Examples 11 to 16. By comparison, it was confirmed that it had excellent tensile strength, high tensile modulus, and high elastic modulus, and it was confirmed that the physical properties were improved by blending the modified liquid rubber.
  • the conjugated diene polymer composition obtained in Example 1 has excellent processability, excellent tensile strength, and high tensile modulus compared to the conjugated diene polymer composition obtained in Comparative Example 3. It was confirmed that the conjugated diene polymer had a high elastic modulus and that the physical properties were improved by using a conjugated diene polymer in which the proportion of the coupling polymer was within the range of the present invention.
  • the conjugated diene polymer compositions obtained in Examples 21 to 24 have higher tensile strength, higher tensile modulus, and higher elastic modulus than the conjugated diene polymer composition obtained in Comparative Example 7. It was confirmed that the compound had the following properties, and improvement in physical properties was also confirmed in a compound containing natural rubber and polybutadiene.
  • Example B Coupling rate and molecular weight), (Mooney viscosity), (amount of bound styrene: content of aromatic vinyl monomer units), (microstructure of butadiene moiety: amount of 1,2-vinyl bonds), Example A It was measured in the same way.
  • a GPC-light scattering measurement device equipped with a viscosity detector (trade name "Viscotek TDAmax” manufactured by Malvern) was used under the conditions of an oven temperature of 40° C. and a THF flow rate of 1.0 mL/min.
  • n-butyllithium for inactivating residual impurities was added at a rate of 0.08 mmol/min and mixed, and then added to the bottom of the reaction group. Supplied continuously. Further, 2,2-bis(2-oxolanyl)propane as a polar substance was mixed at a rate of 0.0699 g/min, and n-butyllithium was mixed as a polymerization initiator at a rate of 0.252 mmol/min, using a stirrer. It was supplied to the bottom of the reactor to continue the polymerization reaction continuously. The temperature was controlled so that the temperature of the polymerization solution at the top outlet of the reactor was 75°C.
  • N-3-trimethoxysilylpropyltriazole was continuously added at a rate of 0.041 mmol/min as a coupling reaction to the polymer solution flowing out from the outlet of the reactor.
  • the polymer solution to which the ring agent was added was mixed by passing through a static mixer to complete the coupling reaction.
  • SBR-3 Conjugated diene polymer
  • SBR-3 A highly branched conjugated diene polymer (SBR-3) was obtained in the same manner as in Example 2 except that 1,3-butadiene was used at 24.5 g/min and styrene was used at 10.5 g/min.
  • Table 7 shows the physical properties of SBR-3.
  • CNF composition (CNF-2) Liquid rubber-1 and surfactant-1 were added, and the final composition was 91.43% by mass of water, 5% by mass of cellulose fiber, 2.86% by mass of liquid rubber, and 0.71% by mass of surfactant.
  • a CNF composition powder (CNF-2) was obtained in the same manner as in Production Example 1, except that an aqueous dispersion was prepared as follows.
  • the mixture obtained above was cooled to room temperature and then kneaded again in order to improve the dispersion of CNF.
  • the temperature of the internal mixer was controlled and the discharge temperature was adjusted to 155 to 160°C to obtain a masterbatch for natural rubber modification (MB-1).
  • the mixture obtained above was cooled to room temperature and then kneaded again in order to improve the dispersion of CNF.
  • the temperature of the internal mixer was controlled and the discharge temperature was adjusted to 155 to 160°C to obtain a masterbatch for natural rubber modification (MB-5).
  • Production Example 6 Masterbatch for natural rubber modification (MB-6, MB-7)
  • the same method as Production Example 6 was used except that the raw materials (conjugated diene polymer, CNF composition, liquid rubber) and compounding amounts used for producing a masterbatch for natural rubber modification were changed as shown in Table 9. Masterbatches for natural rubber modification (MB-6, MB-7) were obtained.
  • Production Example 8 Masterbatch for natural rubber modification (MB-8) Natural rubber was modified in the same manner as in Production Example 1, except that the raw materials (conjugated diene polymer and CNF composition) and blending amounts used in the production of the masterbatch for natural rubber modification were changed as shown in Table 9. A quality masterbatch (MB-8) was obtained.
  • Example A ⁇ Liquid rubber>, ⁇ Silica>, ⁇ Carbon black>, ⁇ S-RAE oil>, ⁇ Silane coupling agent>, ⁇ Zinc white>, ⁇ Stearic acid>, ⁇ Anti-aging agent>, ⁇ Wax>, ⁇ Sulfur >, ⁇ vulcanization accelerator-1>, and ⁇ vulcanization accelerator-2> are the same as in Example A.
  • the properties of the conjugated diene polymer composition (rubber composition) before vulcanization and the conjugated diene polymer composition (cured product) after vulcanization were evaluated by the following method.
  • Example A (Dispersibility of cellulose nanofiber) Evaluation was made in the same manner as in Example A. (Formulation Mooney viscosity (index)) Evaluation was made in the same manner as in Example A. (Tensile strength, tensile modulus and tensile elongation) Measurements were made in the same manner as in Example A, and the results of Comparative Example 2 were set as 100 and indexed.
  • a low-branched conjugated diene polymer composition was obtained by kneading the masterbatch shown in Table 10 and natural rubber as raw rubber components according to the formulation shown in Table 10 by the following method. Using a closed kneader (inner capacity 0.35 L) equipped with a temperature control device, the masterbatch, raw rubber (natural rubber ), process oil, zinc white, stearic acid, anti-aging agent, and wax were kneaded. At this time, the temperature of the closed mixer was controlled, and the discharge temperature was 155 to 160° C. to obtain a low-branched conjugated diene polymer composition (compound).
  • the mixture obtained above was cooled to room temperature and then kneaded again in order to improve the dispersion of cellulose nanofibers.
  • the discharge temperature of the blend was adjusted to 155-160° C. by temperature control of the mixer.
  • sulfur and vulcanization accelerator-1 were added and kneaded using open rolls set at 70° C. in the third stage of kneading. Thereafter, it was molded and vulcanized in a vulcanization press at 160° C. for 15 minutes.
  • the properties of the low-branched conjugated diene polymer composition after vulcanization were evaluated. The results are shown in Table 10.
  • Example 5 A low-branched conjugated diene polymer composition was obtained by kneading the masterbatch shown in Table 10 and natural rubber as raw rubber components according to the formulation shown in Table 10 by the following method. Using a closed kneader (inner capacity 0.35 L) equipped with a temperature control device, the masterbatch, raw rubber (natural rubber ), reinforcing filler (silica), process oil, silane coupling agent, zinc white, stearic acid, anti-aging agent, and wax were kneaded. At this time, the temperature of the closed mixer was controlled, and the discharge temperature was 155 to 160° C. to obtain a low-branched conjugated diene polymer composition (compound).
  • the mixture obtained above was cooled to room temperature and then kneaded again in order to improve the dispersion of cellulose nanofibers and reinforcing filler (silica).
  • the discharge temperature of the blend was adjusted to 155-160° C. by temperature control of the mixer.
  • sulfur, vulcanization accelerator-1, and vulcanization accelerator-2 were added and kneaded using open rolls set at 70° C. as the third stage of kneading. Thereafter, it was molded and vulcanized in a vulcanization press at 160° C. for 15 minutes.
  • the properties of the low-branched conjugated diene polymer composition after vulcanization were evaluated. The results are shown in Table 10.
  • Example 6 A low-branched conjugated diene polymer composition was obtained by kneading the masterbatch shown in Table 10 and natural rubber as raw rubber components according to the formulation shown in Table 10 by the following method. Using a closed kneader (inner capacity 0.35 L) equipped with a temperature control device, the masterbatch, raw rubber (natural rubber ), reinforcing filler (carbon black), process oil, zinc white, stearic acid, anti-aging agent, and wax were kneaded. At this time, the temperature of the closed mixer was controlled, and the discharge temperature was 155 to 160° C. to obtain a low-branched conjugated diene polymer composition (compound).
  • the mixture obtained above was cooled to room temperature and then kneaded again in order to improve the dispersion of cellulose nanofibers and reinforcing filler (carbon black).
  • the discharge temperature of the blend was adjusted to 155-160° C. by temperature control of the mixer.
  • sulfur and vulcanization accelerator-1 were added and kneaded using open rolls set at 70° C. in the third stage of kneading. Thereafter, it was molded and vulcanized in a vulcanization press at 160° C. for 15 minutes.
  • the properties of the low-branched conjugated diene polymer composition after vulcanization were evaluated. The results are shown in Table 10.
  • a low-branched conjugated diene polymer composition was obtained by kneading the masterbatch shown in Table 10 and natural rubber as raw rubber components according to the formulation shown in Table 10 by the following method. Using a closed kneader (inner capacity 0.35 L) equipped with a temperature control device, the masterbatch, raw rubber (natural rubber ), process oil, zinc white, stearic acid, anti-aging agent, and wax were kneaded. At this time, the temperature of the closed mixer was controlled, and the discharge temperature was 155 to 160° C. to obtain a low-branched conjugated diene polymer composition (compound).
  • the mixture obtained above was cooled to room temperature and then kneaded again in order to improve the dispersion of cellulose nanofibers.
  • the discharge temperature of the blend was adjusted to 155-160° C. by temperature control of the mixer.
  • sulfur and vulcanization accelerator-1 were added and kneaded using open rolls set at 70° C. in the third stage of kneading. Thereafter, it was molded and vulcanized in a vulcanization press at 160° C. for 15 minutes.
  • the properties of the low-branched conjugated diene polymer composition after vulcanization were evaluated. The results are shown in Table 10.
  • Example 10 A low-branched conjugated diene polymer composition was obtained by kneading the masterbatch shown in Table 10 and natural rubber as raw rubber components according to the formulation shown in Table 10 by the following method. Using a closed kneader (inner capacity 0.35 L) equipped with a temperature control device, the masterbatch, raw rubber (natural rubber ), reinforcing filler (silica), process oil, silane coupling agent, zinc white, stearic acid, anti-aging agent, and wax were kneaded. At this time, the temperature of the closed mixer was controlled, and the discharge temperature was 155 to 160° C. to obtain a low-branched conjugated diene polymer composition (compound).
  • the mixture obtained above was cooled to room temperature and then kneaded again in order to improve the dispersion of cellulose nanofibers and reinforcing filler (silica).
  • the discharge temperature of the blend was adjusted to 155-160° C. by temperature control of the mixer.
  • sulfur, vulcanization accelerator-1, and vulcanization accelerator-2 were added and kneaded using open rolls set at 70° C. as the third stage of kneading. Thereafter, it was molded and vulcanized in a vulcanization press at 160° C. for 15 minutes.
  • the properties of the low-branched conjugated diene polymer composition after vulcanization were evaluated. The results are shown in Table 10.
  • a highly branched conjugated diene polymer composition was obtained by kneading the masterbatch shown in Table 10 and natural rubber as raw rubber components according to the formulation shown in Table 10 by the following method. Using a closed kneader (inner capacity 0.35 L) equipped with a temperature control device, the masterbatch, raw rubber (natural rubber ), process oil, zinc white, stearic acid, anti-aging agent, and wax were kneaded. At this time, the temperature of the closed mixer was controlled, and the discharge temperature was 155 to 160° C. to obtain a highly branched conjugated diene polymer composition (compound).
  • the mixture obtained above was cooled to room temperature and then kneaded again in order to improve the dispersion of cellulose nanofibers.
  • the discharge temperature of the blend was adjusted to 155-160° C. by temperature control of the mixer.
  • sulfur and vulcanization accelerator-1 were added and kneaded using open rolls set at 70° C. in the third stage of kneading. Thereafter, it was molded and vulcanized in a vulcanization press at 160° C. for 15 minutes.
  • the properties of the highly branched conjugated diene polymer composition after vulcanization were evaluated. The results are shown in Table 10.
  • Example 11 to 14 Using the low-branched conjugated diene polymer shown in Table 11 as a raw rubber component, the mixture was kneaded according to the formulation shown in Table 11 in the following manner to obtain a low-branched conjugated diene polymer composition.
  • a closed kneader inner capacity: 0.35 L equipped with a temperature control device, the low-branched conjugated diene polymer ( SBR-1), raw rubber (natural rubber), cellulose nanofiber composition, process oil, zinc white, stearic acid, anti-aging agent, and wax were kneaded.
  • the temperature of the closed mixer was controlled, and the discharge temperature was 155 to 160° C. to obtain a low-branched conjugated diene polymer composition (compound).
  • the mixture obtained above was cooled to room temperature and then kneaded again in order to improve the dispersion of cellulose nanofibers.
  • the discharge temperature of the blend was adjusted to 155-160° C. by temperature control of the mixer.
  • sulfur and vulcanization accelerator-1 were added and kneaded using open rolls set at 70° C. as the third stage of kneading. Thereafter, it was molded and vulcanized in a vulcanization press at 160° C. for 15 minutes.
  • the properties of the low-branched conjugated diene polymer composition after vulcanization were evaluated. The results are shown in Table 11.
  • Example 15 Using the low-branched conjugated diene polymer shown in Table 11 as a raw rubber component, the mixture was kneaded according to the formulation shown in Table 11 in the following manner to obtain a low-branched conjugated diene polymer composition.
  • a closed kneader inner capacity: 0.35 L equipped with a temperature control device, the low-branched conjugated diene polymer ( SBR-1), raw rubber (natural rubber), cellulose nanofiber composition, reinforcing filler (silica), process oil, silane coupling agent, zinc white, stearic acid, anti-aging agent, and wax were kneaded.
  • the temperature of the closed mixer was controlled, and the discharge temperature was 155 to 160° C. to obtain a low-branched conjugated diene polymer composition (compound).
  • the mixture obtained above was cooled to room temperature and then kneaded again in order to improve the dispersion of cellulose nanofibers and reinforcing filler (silica).
  • the discharge temperature of the blend was adjusted to 155-160° C. by temperature control of the mixer.
  • sulfur, vulcanization accelerator-1, and vulcanization accelerator-2 were added and kneaded using open rolls set at 70°C as the third stage of kneading. Thereafter, it was molded and vulcanized in a vulcanization press at 160° C. for 15 minutes.
  • the properties of the low-branched conjugated diene polymer composition after vulcanization were evaluated. The results are shown in Table 11.
  • Example 16 Using the low-branched conjugated diene polymer shown in Table 11 as a raw rubber component, the mixture was kneaded according to the formulation shown in Table 11 in the following manner to obtain a low-branched conjugated diene polymer composition.
  • a closed kneader inner capacity: 0.35 L equipped with a temperature control device, the low-branched conjugated diene polymer ( SBR-1), raw rubber (natural rubber), cellulose nanofiber composition, reinforcing filler (carbon black), process oil, zinc white, stearic acid, anti-aging agent, and wax were kneaded.
  • the temperature of the closed mixer was controlled, and the discharge temperature was 155 to 160° C. to obtain a low-branched conjugated diene polymer composition (compound).
  • the mixture obtained above was cooled to room temperature and then kneaded again in order to improve the dispersion of cellulose nanofibers and reinforcing filler (carbon black).
  • the discharge temperature of the blend was adjusted to 155-160° C. by temperature control of the mixer.
  • sulfur and vulcanization accelerator-1 were added and kneaded using open rolls set at 70° C. as the third stage of kneading. Thereafter, it was molded and vulcanized in a vulcanization press at 160° C. for 15 minutes.
  • the properties of the low-branched conjugated diene polymer composition after vulcanization were evaluated. The results are shown in Table 11.
  • Example 17 Using the low-branched conjugated diene polymer shown in Table 11 as a raw rubber component, the mixture was kneaded according to the formulation shown in Table 11 in the following manner to obtain a low-branched conjugated diene polymer composition.
  • a closed kneader inner capacity: 0.35 L equipped with a temperature control device, the low-branched conjugated diene polymer ( SBR-1), raw rubber (natural rubber), modified liquid rubber, cellulose nanofiber composition, process oil, zinc white, stearic acid, anti-aging agent, and wax were kneaded.
  • the temperature of the closed mixer was controlled, and the discharge temperature was 155 to 160° C. to obtain a low-branched conjugated diene polymer composition (compound).
  • the mixture obtained above was cooled to room temperature and then kneaded again in order to improve the dispersion of cellulose nanofibers.
  • the discharge temperature of the blend was adjusted to 155-160° C. by temperature control of the mixer.
  • sulfur and vulcanization accelerator-1 were added and kneaded using open rolls set at 70° C. as the third stage of kneading. Thereafter, it was molded and vulcanized in a vulcanization press at 160° C. for 15 minutes.
  • the properties of the low-branched conjugated diene polymer composition after vulcanization were evaluated. The results are shown in Table 11.
  • Example 20 Using the low-branched conjugated diene polymer shown in Table 11 as a raw rubber component, the mixture was kneaded according to the formulation shown in Table 11 in the following manner to obtain a low-branched conjugated diene polymer composition.
  • a closed kneader inner capacity: 0.35 L equipped with a temperature control device, the low-branched conjugated diene polymer ( SBR-1), raw rubber (natural rubber), modified liquid rubber, cellulose nanofiber composition, reinforcing filler (silica), process oil, silane coupling agent, zinc white, stearic acid, anti-aging agent, wax.
  • the temperature of the closed mixer was controlled, and the discharge temperature was 155 to 160° C. to obtain a low-branched conjugated diene polymer composition (compound).
  • the mixture obtained above was cooled to room temperature and then kneaded again in order to improve the dispersion of cellulose nanofibers and reinforcing filler (silica).
  • the discharge temperature of the blend was adjusted to 155-160° C. by temperature control of the mixer.
  • sulfur, vulcanization accelerator-1, and vulcanization accelerator-2 were added and kneaded using open rolls set at 70°C as the third stage of kneading. Thereafter, it was molded and vulcanized in a vulcanization press at 160° C. for 15 minutes.
  • the properties of the low-branched conjugated diene polymer composition after vulcanization were evaluated. The results are shown in Table 11.
  • the mixture obtained above was cooled to room temperature and then kneaded again in order to improve the dispersion of cellulose nanofibers.
  • the discharge temperature of the blend was adjusted to 155-160° C. by temperature control of the mixer.
  • sulfur and vulcanization accelerator-1 were added and kneaded using open rolls set at 70° C. as the third stage of kneading. Thereafter, it was molded and vulcanized in a vulcanization press at 160° C. for 15 minutes.
  • the properties of the highly branched conjugated diene polymer composition after vulcanization were evaluated. The results are shown in Table 11.
  • the low branched conjugated diene polymer compositions obtained in Examples 1 to 20 were compared with the highly branched conjugated diene polymer compositions obtained in Comparative Examples 1 to 4. It was confirmed that when made into a vulcanized product, cellulose nanofibers have excellent dispersibility, excellent tensile strength and elongation, high tensile modulus, and high elastic modulus.
  • the low-branched conjugated diene polymer compositions using the masterbatches obtained in Examples 1 to 10 had the following characteristics compared to the low branched conjugated diene polymer compositions obtained in Examples 11 to 20. It was confirmed that it had excellent tensile strength and tensile elongation, as well as high tensile modulus and high elastic modulus, and it was confirmed that the physical properties were improved by using the masterbatch.
  • the low branched conjugated diene polymer compositions obtained in Examples 7 to 9 and Examples 17 to 19 are the same as the low branched conjugated diene polymer compositions obtained in Examples 1 to 4 and Examples 11 to 14. It was confirmed that the composition had high hardness, excellent tensile strength and tensile elongation, high tensile modulus, and high elastic modulus, and it was confirmed that the physical properties were improved by blending the modified liquid rubber.
  • the branched conjugated diene polymer composition of the present invention is suitably used, for example, in interior and exterior parts of automobiles, anti-vibration rubber, belts, footwear, foams, various industrial products, and the like.
  • the branched conjugated diene polymer composition can be particularly applied to members made of rubber or flexible plastic, and is preferably applied to tires. Examples of tire applications include treads and sidewalls of tires for passenger cars, trucks, buses, heavy vehicles, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

一態様において、GPC-光散乱測定により求められる収縮因子(g')が0.72以上であり、芳香族ビニル単量体の含有量(ST)とカップリング重合体の割合(CS)とが特定関係を満たし、非カップリング重合体のピークトップ分子量Mp1とカップリング重合体のピークトップ分子量Mp2とが特定関係を満たす、分岐共役ジエン系重合体と、セルロースナノファイバーとを含む、ゴム組成物が提供される。一態様において、当該分岐共役ジエン系重合体を50質量%以上含む第1のゴム成分100質量部と、セルロースナノファイバー15質量部以上100質量部以下とを含む、ゴム改質用マスターバッチが提供される。

Description

ゴム改質用マスターバッチ、及び分岐共役ジエン系重合体組成物
 本発明は、セルロースナノファイバーを含むゴム改質用マスターバッチ及びゴム組成物に関する。
 従来、ゴム組成物の弾性率、硬度、機械強度、耐摩耗性などの特性を向上させる目的で、ゴム組成物中にカーボンブラック及びシリカ等の補強性充填剤を配合することが一般的に行われている。
 近年、石油資源の代替及び環境問題への意識の高まりから、従来から使用されてきた補強性充填剤の代替として、低比重で且つ天然素材であるセルロース系繊維を利用する技術が、種々提案されている。
 セルロースナノファイバーを充填剤としてゴム組成物に配合することで、ゴム組成物を補強し、硬度及び引張モジュラスを向上できることが知られている(例えば、特許文献1,特許文献2)。
 このようにセルロースナノファイバーは、ゴムの補強性充填剤として機能して、高強度且つ軽量、及び薄肉のゴム成形体を提供できることから、カーボンブラック及びシリカに代わる補強性充填剤として注目されている。
 例えば特許文献3には、引張特性及び燃費を改善できるタイヤ用ゴム組成物等を提供することを目的として、スチレンブタジエン共重合体とセルロースナノファイバーとのマスターバッチ組成物が記載されている。
 上記の特許文献1には、タイヤのドライグリップ性能と耐摩耗性のバランスを改善できるタイヤ用ゴム組成物等を提供することを目的として、高分子量のスチレンブタジエンゴムとセルロース短繊維とのゴム組成物が記載されている。
特開2017-2148号公報 特開2021-191841号公報 特開2020-41076号公報
 しかしながら、従来提案されているゴムとセルロースナノファイバーとを含むゴム組成物では、セルロースナノファイバーの分散性が不十分であり、引張モジュラス及び機械強度に劣る傾向にある、という問題点を有している。
 本発明は上記の課題を解決し、セルロースナノファイバーがゴム中に良好に分散し、優れた加工性を有するとともに優れた引張モジュラスと機械的特性とを硬化後に有するゴム組成物を与える、ゴムとセルロースナノファイバーとを含むゴム改質用マスターバッチ、及び、それを用いたゴム組成物を提供することを目的とする。
 本発明は、以下の項目を包含する。
[項目1]
 粘度検出器付きゲルパーミエーションクロマトグラフィ(GPC)を用いたGPC-光散乱測定により求められる収縮因子(g’)が、0.72以上であり、
 芳香族ビニル単量体の含有量(ST)と、ゲルパーミエーションクロマトグラフィ(GPC)により求められるカップリング重合体の割合(CS)との関係が、下記式:
  -0.8ST+40 ≦ CS ≦ -1.5ST+115
を満たし、
 ゲルパーミエーションクロマトグラフィ(GPC)により求められる非カップリング重合体のピークトップ分子量Mp1と、ゲルパーミエーションクロマトグラフィ(GPC)により求められるカップリング重合体のピークトップ分子量Mp2との関係が、下記式:
  1.5≦(Mp2/Mp1)≦4.5
を満たす、分岐共役ジエン系重合体と、
 セルロースナノファイバーと、
を含む、分岐共役ジエン系重合体組成物。
[項目2]
 前記分岐共役ジエン系重合体が、芳香族ビニル単量体単位を含む、項目1に記載の分岐共役ジエン系重合体組成物。
[項目3]
 前記分岐共役ジエン系重合体の100℃におけるムーニー粘度が、70以上130以下である、項目1又は2に記載の分岐共役ジエン系重合体組成物。
[項目4]
 前記分岐共役ジエン系重合体の100℃におけるムーニー粘度に対する、前記分岐共役ジエン系重合体組成物の100℃におけるムーニー粘度の比が、0.7以上1.5以下である、項目1~3のいずれかに記載の分岐共役ジエン系重合体組成物。
[項目5]
 粘度検出器付きゲルパーミエーションクロマトグラフィ(GPC)を用いたGPC-光散乱測定により求められる収縮因子(g’)が、0.72以上であり、
 芳香族ビニル単量体の含有量(ST)と、ゲルパーミエーションクロマトグラフィ(GPC)により求められるカップリング重合体の割合(CS)との関係が、下記式:
  -0.8ST+40 ≦ CS ≦ -1.5ST+115
を満たし、
 ゲルパーミエーションクロマトグラフィ(GPC)により求められる非カップリング重合体のピークトップ分子量Mp1と、ゲルパーミエーションクロマトグラフィ(GPC)により求められるカップリング重合体のピークトップ分子量Mp2との関係が、下記式:
  1.5≦(Mp2/Mp1)≦4.5
を満たす、分岐共役ジエン系重合体を50質量%以上含む第1のゴム成分100質量部と、
 セルロースナノファイバー15質量部以上100質量部以下と、
を含む、ゴム改質用マスターバッチ。
[項目6]
 前記分岐共役ジエン系重合体の重量平均分子量が、20万以上200万以下である、項目5に記載のゴム改質用マスターバッチ。
[項目7]
 前記分岐共役ジエン系重合体が、芳香族ビニル単量体単位を3質量%以上60質量%以下含む、項目5又は6に記載のゴム改質用マスターバッチ。
[項目8]
 前記分岐共役ジエン系重合体が、結合スチレン量3質量%以上30質量%以下を有し、ブタジエン部分のミクロ構造として、1,2-ビニル結合量10モル%以上85モル%以下を有する、項目5~7のいずれかに記載のゴム改質用マスターバッチ。
[項目9]
 前記セルロースナノファイバーがイオン性基を有さない、項目5~8のいずれかに記載のゴム改質用マスターバッチ。
[項目10]
 前記ゴム改質用マスターバッチが、界面活性剤を更に含む、項目5~9のいずれかに記載のゴム改質用マスターバッチ。
[項目11]
 前記界面活性剤がノニオン性界面活性剤である、項目10に記載のゴム改質用マスターバッチ。
[項目12]
 前記ノニオン性界面活性剤が、水酸基、カルボキシ基、スルホン酸基、及びアミノ基からなる群から選択される親水基と、炭化水素基とを有する化合物である、項目11に記載のゴム改質用マスターバッチ。
[項目13]
 前記ノニオン性界面活性剤が、下記一般式(1):
R-(OCH2CH2m-OH   (1)
[式中、Rは炭素数6~30の1価の脂肪族基を表し、そしてmはRの炭素数よりも小さい自然数である。]で表される化合物、及び下記一般式(2):
1OCH2-(CHOH)4-CH2OR2   (2)
[式中、R1及びR2は各々独立に、水素原子、炭素数1~30の脂肪族基、-COR3{式中、R3は、炭素数1~30の脂肪族基を表す。}、又は-(CH2CH2O)y-R4{式中、R4は、水素原子、又は炭素数1~30の脂肪族基を表し、そしてyは1~30の整数である。}を表す。]で表される化合物、
からなる群から選択される1種以上である、項目11又は12に記載のゴム改質用マスターバッチ。
[項目14]
 前記ゴム改質用マスターバッチが、液状ゴムを更に含む、項目10~13のいずれかに記載のゴム改質用マスターバッチ。
[項目15]
 前記液状ゴムの数平均分子量が、1,000~80,000である、項目14に記載のゴム改質用マスターバッチ。
[項目16]
 前記液状ゴムの数平均分子量(Mn)と重量平均分子量(Mw)との比(Mw/Mn)が、1.5~5である、項目14又は15に記載のゴム改質用マスターバッチ。
[項目17]
 前記液状ゴムが、ジエン系ゴム、シリコーンゴム、ウレタンゴム、及び多硫化ゴム並びにこれらの水素添加物からなる群から選択される1種以上を含む、項目14~16のいずれかに記載のゴム改質用マスターバッチ。
[項目18]
 前記液状ゴムが、不飽和カルボン酸及び/又はその誘導体で変性した変性液状ゴムを含む、項目14~17のいずれかに記載のゴム改質用マスターバッチ。
[項目19]
 前記第1のゴム成分100質量部に対して前記変性液状ゴムを10質量部以上200質量部以下含む、項目18に記載のゴム改質用マスターバッチ。
[項目20]
 項目5~19のいずれか一項に記載のゴム改質用マスターバッチと、第2のゴム成分とを含む混練物である、分岐共役ジエン系重合体組成物。
[項目21]
 前記第2のゴム成分が、天然ゴムを含む、項目20に記載の分岐共役ジエン系重合体組成物。
[項目22]
 前記第1のゴム成分と前記第2のゴム成分との合計100質量部に対してセルロースナノファイバーを1質量部以上15質量部以下含む、項目20又は21に記載の分岐共役ジエン系重合体組成物。
[項目23]
 前記第1のゴム成分と前記第2のゴム成分との合計100質量部に対して補強性充填剤を10質量部以上80質量部以下含む、項目20~22のいずれかに記載の分岐共役ジエン系重合体組成物。
[項目24]
 不飽和カルボン酸及び/又はその誘導体で変性した変性液状ゴムを含む、項目20~23のいずれかに記載の分岐共役ジエン系重合体組成物。
[項目25]
 前記第1のゴム成分と前記第2のゴム成分との合計100質量部に対して前記変性液状ゴムを1質量部以上25質量部以下含む、項目24に記載の分岐共役ジエン系重合体組成物。
[項目26]
 項目20~25のいずれかに記載の分岐共役ジエン系重合体組成物の硬化物である、分岐共役ジエン系重合体硬化物。
[項目27]
 粘度検出器付きゲルパーミエーションクロマトグラフィ(GPC)を用いたGPC-光散乱測定により求められる収縮因子(g’)が、0.72以上であり、
 芳香族ビニル単量体の含有量(ST)と、ゲルパーミエーションクロマトグラフィ(GPC)により求められるカップリング重合体の割合(CS)との関係が、下記式:
  -0.8ST+40 ≦ CS ≦ -1.5ST+115
を満たし、
 ゲルパーミエーションクロマトグラフィ(GPC)により求められる非カップリング重合体のピークトップ分子量Mp1と、ゲルパーミエーションクロマトグラフィ(GPC)により求められるカップリング重合体のピークトップ分子量Mp2との関係が、下記式:
  1.5≦(Mp2/Mp1)≦4.5
を満たす、分岐共役ジエン系重合体を50質量%以上含むゴム成分100質量部と、
 セルロースナノファイバー1質量部以上15質量部以下と、
を含む、分岐共役ジエン系重合体組成物。
[項目28]
 粘度検出器付きゲルパーミエーションクロマトグラフィ(GPC)を用いたGPC-光散乱測定により求められる収縮因子(g’)が0.72以上であり、
 芳香族ビニル単量体の含有量(ST)と、ゲルパーミエーションクロマトグラフィ(GPC)により求められるカップリング重合体の割合(CS)との関係が、下記式:
  -0.8ST+40 ≦ CS ≦ -1.5ST+115
を満たし、
 ゲルパーミエーションクロマトグラフィ(GPC)により求められる非カップリング重合体のピークトップ分子量Mp1と、ゲルパーミエーションクロマトグラフィ(GPC)により求められるカップリング重合体のピークトップ分子量Mp2との関係が、下記式:
  1.5≦(Mp2/Mp1)≦4.5
を満たす分岐共役ジエン系重合体5質量%以上及び天然ゴムを含むゴム成分100質量部と、
 セルロースナノファイバー1質量部以上15質量部以下と、
を含む、分岐共役ジエン系重合体組成物。
[項目29]
 前記分岐共役ジエン系重合体の重量平均分子量が、20万以上200万以下である、項目27又は28に記載の分岐共役ジエン系重合体組成物。
[項目30]
 前記分岐共役ジエン系重合体が、芳香族ビニル単量体単位を3質量%以上60質量%以下含む、項目27~29のいずれかに記載の分岐共役ジエン系重合体組成物。
[項目31]
 前記分岐共役ジエン系重合体が、結合スチレン量3質量%以上30質量%以下を有し、ブタジエン部分のミクロ構造として、1,2-ビニル結合量10モル%以上85モル%以下を有する、項目27~30のいずれかに記載の分岐共役ジエン系重合体組成物。
[項目32]
 前記セルロースナノファイバーがイオン性基を有さない、項目27~31のいずれかに記載の分岐共役ジエン系重合体組成物。
[項目33]
 前記分岐共役ジエン系重合体組成物が、界面活性剤を更に含む、項目27~32のいずれかに記載の分岐共役ジエン系重合体組成物。
[項目34]
 前記界面活性剤がノニオン性界面活性剤である、項目33に記載の分岐共役ジエン系重合体組成物。
[項目35]
 前記ノニオン性界面活性剤が、水酸基、カルボキシ基、スルホン酸基、及びアミノ基からなる群から選択される親水基と、炭化水素基とを有する化合物である、項目34に記載の分岐共役ジエン系重合体組成物。
[項目36]
 前記ノニオン性界面活性剤が、下記一般式(1):
R-(OCH2CH2)m-OH   (1)
[式中、Rは炭素数6~30の1価の脂肪族基を表し、そしてmはRの炭素数よりも小さい自然数である。]で表される化合物、及び下記一般式(2):
1OCH2-(CHOH)4-CH2OR2   (2)
[式中、R1及びR2は各々独立に、水素原子、炭素数1~30の脂肪族基、-COR3{式中、R3は、炭素数1~30の脂肪族基を表す。}、又は-(CH2CH2O)y-R4{式中、R4は、水素原子、又は炭素数1~30の脂肪族基を表し、そしてyは1~30の整数である。}を表す。]で表される化合物、
からなる群から選択される1種以上である、項目34又は35に記載の分岐共役ジエン系重合体組成物。
[項目37]
 前記分岐共役ジエン系重合体組成物が、液状ゴムを更に含む、項目33~36のいずれかに記載の分岐共役ジエン系重合体組成物。
[項目38]
 前記液状ゴムの数平均分子量が、1,000~80,000である、項目37に記載の分岐共役ジエン系重合体組成物。
[項目39]
 前記液状ゴムの数平均分子量(Mn)と重量平均分子量(Mw)との比(Mw/Mn)が、1.5~5である、項目37又は38に記載の分岐共役ジエン系重合体組成物。
[項目40]
 前記液状ゴムが、ジエン系ゴム、シリコーンゴム、ウレタンゴム、及び多硫化ゴム並びにこれらの水素添加物からなる群から選択される1種以上を含む、項目37~39のいずれかに記載の分岐共役ジエン系重合体組成物。
[項目41]
 前記液状ゴムが、不飽和カルボン酸及び/又はその誘導体で変性した変性液状ゴムを含む、項目37~40のいずれかに記載の分岐共役ジエン系重合体組成物。
[項目42]
 前記ゴム成分100質量部に対して前記変性液状ゴムを1質量部以上25質量部以下含む、項目41に記載の分岐共役ジエン系重合体組成物。
[項目43]
 前記ゴム成分100質量部に対して補強性充填剤を10質量部以上80質量部以下含む、項目27~42のいずれかに記載の分岐共役ジエン系重合体組成物。
[項目44]
 項目27~43のいずれかに記載の分岐共役ジエン系重合体組成物の硬化物である、分岐共役ジエン系重合体硬化物。
[項目45]
 項目10~13のいずれかに記載のゴム改質用マスターバッチの製造方法であって、
 セルロースナノファイバーと界面活性剤とを含むセルロースナノファイバー組成物を調製する工程、及び
 前記セルロースナノファイバー組成物と、分岐共役ジエン系重合体を含む第1のゴム成分とを混合する工程、
を含む、方法。
[項目46]
 項目14~19のいずれかに記載のゴム改質用マスターバッチの製造方法であって、
 セルロースナノファイバーと、液状ゴムと、界面活性剤とを含むセルロースナノファイバー組成物を調製する工程、及び
 前記セルロースナノファイバー組成物と、分岐共役ジエン系重合体を含む第1のゴム成分とを混合する工程、
を含む、方法。
[項目47]
 前記セルロースナノファイバー組成物が粉体である、項目45又は46に記載の方法。
[項目48]
 項目33~36のいずれかに記載の分岐共役ジエン系重合体組成物の製造方法であって、
 セルロースナノファイバーと界面活性剤とを含むセルロースナノファイバー組成物を調製する工程、
 前記セルロースナノファイバー組成物と、分岐共役ジエン系重合体を含む第1のゴム成分とを混合してゴム改質用マスターバッチを調製する工程、及び
 前記ゴム改質用マスターバッチと第2のゴム成分とを混合して分岐共役ジエン系重合体組成物を調製する工程、
を含む、方法。
[項目49]
 項目37~42のいずれかに記載の分岐共役ジエン系重合体組成物の製造方法であって、
 セルロースナノファイバーと、液状ゴムと、界面活性剤とを含むセルロースナノファイバー組成物を調製する工程、
 前記セルロースナノファイバー組成物と、分岐共役ジエン系重合体を含む第1のゴム成分とを混合してゴム改質用マスターバッチを調製する工程、及び
 前記ゴム改質用マスターバッチと第2のゴム成分とを混合して分岐共役ジエン系重合体組成物を調製する工程、
を含む、方法。
[項目50]
 前記セルロースナノファイバー組成物が粉体である、項目48に記載の方法。
[項目51]
 前記セルロースナノファイバー組成物が粉体である、項目49に記載の方法。
 本発明の一態様によれば、セルロースナノファイバーがゴム中に良好に分散し、優れた加工性を有するとともに優れた引張モジュラスと機械的特性とを硬化後に有するゴム組成物を与える、ゴムとセルロースナノファイバーとを含むゴム改質用マスターバッチ、及び、それを用いたゴム組成物を提供できる。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。なお以下の本実施形態は、本発明を説明するための例示であり、本発明は以下の実施形態に限定されるものではない。本発明は、その要旨の範囲内で適宜に変形して実施することができる。
 本発明の一態様は、分岐共役ジエン系重合体とセルロースナノファイバーとを含むゴム改質用マスターバッチを提供する。本発明の一態様はまた、分岐共役ジエン系重合体とセルロースナノファイバーとを含む分岐共役ジエン系重合体組成物(本開示で、ゴム組成物ともいう。)を提供する。
 一態様において、ゴム改質用マスターバッチは、分岐共役ジエン系重合体を50質量%以上含むゴム成分(本開示で、第1のゴム成分ともいう。)100質量部と、セルロースナノファイバー15質量部以上100質量部以下とを含む。
 一態様において、分岐共役ジエン系重合体組成物は、本実施形態のゴム改質用マスターバッチと、第2のゴム成分とを含む混合物、より具体的には混練物である。
 一態様において、分岐共役ジエン系重合体は、
 粘度検出器付きゲルパーミエーションクロマトグラフィ(GPC)を用いたGPC-光散乱測定により求められる収縮因子(g’)が、0.72以上であり、
 芳香族ビニル単量体の含有量(ST)と、ゲルパーミエーションクロマトグラフィ(GPC)により求められるカップリング重合体の割合(CS)との関係が、下記式:
  -0.8ST+40 ≦ CS ≦ -1.5ST+115
を満たし、
 ゲルパーミエーションクロマトグラフィ(GPC)により求められる非カップリング重合体のピークトップ分子量Mp1と、ゲルパーミエーションクロマトグラフィ(GPC)により求められるカップリング重合体のピークトップ分子量Mp2との関係が、下記式:
  1.5≦(Mp2/Mp1)≦4.5
を満たす、共役ジエン系重合体である。カップリング重合体は、共役ジエン系重合体鎖がカップリング残基を介して結合してなる重合体である。
 一態様において、分岐共役ジエン系重合体組成物は、分岐共役ジエン系重合体を50質量%以上含むゴム成分(一態様において、第1のゴム成分と第2のゴム成分との合計)100質量部と、セルロースナノファイバー1質量部以上15質量部以下とを含む。
 一態様において、分岐共役ジエン系重合体組成物は、分岐共役ジエン系重合体5質量%以上及び天然ゴムを含むゴム成分100質量部と、セルロースナノファイバー1質量部以上15質量部以下とを含む。
 本実施形態のゴム組成物、特に、ゴム改質用マスターバッチと、第2のゴム成分とを混練りして得られる分岐共役ジエン系重合体組成物においては、ゴム組成物中にセルロースナノファイバーが良好に分散することでその補強効果が良好に発現される。本実施形態のゴム組成物の硬化物は、分岐共役ジエン系重合体の寄与により、引張モジュラス及び機械的特性に優れる。すなわち、本実施形態のゴム組成物を硬化させることで、高強度、高弾性率、及び高耐摩耗性の硬化物を得ることができる。
 以下、本実施形態のゴム改質用マスターバッチ及び分岐共役ジエン系重合体組成物の各成分について詳細に説明する。ゴム組成物の製造においてゴム改質用マスターバッチと組合される第2のゴム成分は、ゴム改質用マスターバッチ中の第1のゴム成分と同じ又は異なる材料であってよい。
<セルロースナノファイバー>
 セルロースナノファイバーの原料としては、天然セルロース及び再生セルロースを用いることができる。天然セルロースとしては、木材種(広葉樹又は針葉樹)から得られる木材パルプ、非木材種(綿、竹、麻、バガス、ケナフ、コットンリンター、サイザル、ワラ等)から得られる非木材パルプ、動物(例えばホヤ類)、藻類又は微生物(例えば酢酸菌)が産生するセルロース集合体、等を使用できる。再生セルロースとしては、再生セルロース繊維(ビスコース、キュプラ、テンセル等)、セルロース誘導体繊維、エレクトロスピニング法により得られた再生セルロース又はセルロース誘導体の極細糸等を使用できる。
 セルロースナノファイバーは、パルプ等のセルロース原料を100℃以上の熱水等で処理し、ヘミセルロースを加水分解して脆弱化したのち、高圧ホモジナイザー、マイクロフリュイダイザー、ボールミル、ディスクミル、ミキサー(例えばホモミキサー)等の粉砕法により機械的に解繊した微細なセルロース繊維を指す。一態様において、セルロースナノファイバーは数平均繊維径1nm以上1000nm以下である。セルロースナノファイバーは後述のように化学修飾されたものであってもよいが、フィラーとしての補強効果の点では、化学修飾されていないものが好ましい。例えば、2,2,6,6-テトラメチルピペリジン-1-オキシル(TEMPO)リン酸エステル等を用いた化学的な酸化処理を行って解繊されたセルロースナノファイバーは、セルロースナノファイバーに導入されたイオン性基(例えばカルボキシ基)によって耐熱性が低くなる傾向があり、また解繊後の繊維径が小さくなる傾向がある。フィラーとしての補強効果の点では、解繊が機械的な解繊のみである(すなわち、酸化等の化学的な解繊処理がされていない)セルロースナノファイバーがより有利である。したがって、好ましい一態様において、セルロースナノファイバーは、イオン性基を有さない。なお本開示で、セルロースナノファイバーがイオン性基を有さないとは、電導度滴定法で測定されるイオン性基量が0.1mmol/g以下であることを意味する。
 セルロース繊維を液体媒体中に分散させることによってスラリーを調製できる。スラリー中のセルロース繊維の分散は、高圧ホモジナイザー、マイクロフリュイダイザー、ボールミル、ディスクミル、ミキサー(例えばホモミキサー)等を用いて行ってよく、例えば上記解繊の生成物を本開示のスラリー調製工程の生成物として得てもよい。スラリー中の液体媒体は、水、及び任意に、1種単独又は2種以上の組合せで水以外の液体媒体(例えば有機溶媒)を更に含み得る。有機溶媒としては、一般的に用いられる水混和性有機溶媒、例えば:沸点が50℃~170℃のアルコール(例えばメタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、s-ブタノール、t-ブタノール等);エーテル(例えばプロピレングリコールモノメチルエーテル、1,2-ジメトキシエタン、ジイソプロピルエーテル、テトラヒドロフラン、1,4-ジオキサン等);カルボン酸(例えばギ酸、酢酸、乳酸等);エステル(例えば酢酸エチル、酢酸ビニル等);ケトン(例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等);含窒素溶媒(例えばジメチルホルムアミド、ジメチルアセトアミド、アセトニトリル等)、等を使用できる。典型的な態様においては、スラリー中の液体媒体は実質的に水のみである。
 セルロース原料は、アルカリ可溶分、及び硫酸不溶成分(リグニン等)を含有するため、蒸解処理による脱リグニン等の精製工程、及び漂白工程を経て、アルカリ可溶分及び硫酸不溶成分を減らしても良い。他方、蒸解処理による脱リグニン等の精製工程、及び漂白工程は、セルロースの分子鎖を切断し、重量平均分子量、及び数平均分子量を変化させてしまうため、セルロース原料の精製工程及び漂白工程は、セルロースナノファイバーの重量平均分子量、及び重量平均分子量と数平均分子量との比が適切な範囲となるようにコントロールされていることが望ましい。
 また、蒸解処理による脱リグニン等の精製工程、及び漂白工程は、セルロース分子の分子量を低下させるため、これらの工程によって、セルロースナノファイバーが低分子量化すること、及びセルロース原料が変質してアルカリ可溶分の存在比率が増加することが懸念される。アルカリ可溶分は耐熱性に劣るため、セルロース原料の精製工程及び漂白工程は、セルロース原料に含有されるアルカリ可溶分の量が一定の値以下の範囲となるようにコントロールされていることが望ましい。
 一態様において、セルロースナノファイバーの数平均繊維径は、1~1000nmであり、セルロースナノファイバーによる物性向上効果を良好に得る観点から、好ましくは2~1000nmである。セルロースナノファイバーの数平均繊維径は、より好ましくは4nm以上、又は5nm以上、又は10nm以上、又は15nm以上、又は20nm以上であり、より好ましくは500nm以下、又は450nm以下、又は400nm以下、又は350nm以下、又は300nm以下、又は250nm以下である。
 セルロースナノファイバーの繊維長(L)/繊維径(D)比は、セルロースナノファイバーを含むゴム組成物の機械的特性を少量のセルロースナノファイバーで良好に向上させる観点から、好ましくは、30以上、又は50以上、又は80以上、又は100以上、又は120以上、又は150以上である。上限は特に限定されないが、取扱い性の観点から好ましくは5000以下である。
 本開示で、セルロースナノファイバーの繊維長、繊維径、及びL/D比は、セルロースナノファイバーの水分散液を、高剪断ホモジナイザー(例えば日本精機(株)製、商品名「エクセルオートホモジナイザーED-7」)を用い、処理条件:回転数15,000rpm×5分間で分散させた水分散体を、0.1~0.5質量%まで純水で希釈し、マイカ上にキャストし、風乾したものを測定サンプルとし、走査型電子顕微鏡(SEM)又は原子間力顕微鏡(AFM)で計測して求める。具体的には、少なくとも100本のセルロースナノファイバーが観測されるように倍率が調整された観察視野にて、無作為に選んだ100本のセルロースナノファイバーの長さ(L)及び径(D)を計測し、比(L/D)を算出する。セルロースナノファイバーについて、繊維長(L)の数平均値、繊維径(D)の数平均値、及び比(L/D)の数平均値を算出する。
 又は、ゴム組成物中のセルロースナノファイバーの繊維長、繊維径、及びL/D比は、これらを測定サンプルとして、上述の測定方法により測定することで確認することができる。
 又は、ゴム改質用マスターバッチ、ゴム組成物等に含まれるセルロースナノファイバーの繊維長、繊維径、及びL/D比は、これらに含まれるポリマー成分を溶解できる有機又は無機の溶媒に当該ポリマー成分を溶解させ、セルロースナノファイバーを分離し、前記溶媒で充分に洗浄した後、溶媒を純水に置換した水分散液を調製し、セルロースナノファイバー濃度を、0.1~0.5質量%まで純水で希釈し、マイカ上にキャストし、風乾したものを測定サンプルとして上述の測定方法により測定することで確認することができる。この際、測定するセルロースナノファイバーは無作為に選んだ100本以上での測定を行う。
 セルロースナノファイバーの結晶化度は、好ましくは55%以上である。結晶化度がこの範囲にあると、セルロース自体の力学物性(強度、寸法安定性)が高いため、セルロースナノファイバーをゴムに分散した際に、ゴム組成物の強度、寸法安定性が高い傾向にある。より好ましい結晶化度の下限は、60%であり、さらにより好ましくは70%であり、最も好ましくは80%である。セルロースナノファイバーの結晶化度について上限は特に限定されず、高い方が好ましいが、生産上の観点から好ましい上限は99%である。
 植物由来のセルロースナノファイバーのミクロフィブリル同士の間、及びミクロフィブリル束同士の間には、ヘミセルロース等のアルカリ可溶多糖類、及びリグニン等の酸不溶成分が存在する。ヘミセルロースはマンナン、キシラン等の糖で構成される多糖類であり、セルロースと水素結合して、ミクロフィブリル間を結びつける役割を果たしている。またリグニンは芳香環を有する化合物であり、植物の細胞壁中ではヘミセルロースと共有結合していることが知られている。セルロースナノファイバー中のリグニン等の不純物の残存量が多いと、加工時の熱により変色をきたすことがあるため、押出加工時及び成形加工時のゴム組成物の変色を抑制する観点からも、セルロースナノファイバーの結晶化度は上述の範囲内にすることが望ましい。
 ここでいう結晶化度は、セルロースがセルロースI型結晶(天然セルロース由来)である場合には、サンプルを広角X線回折により測定した際の回折パターン(2θ/deg.が10~30)からSegal法により、以下の式で求められる。
結晶化度(%)=([2θ/deg.=22.5の(200)面に起因する回折強度]-[2θ/deg.=18の非晶質に起因する回折強度])/[2θ/deg.=22.5の(200)面に起因する回折強度]×100
 また結晶化度は、セルロースがセルロースII型結晶(再生セルロース由来)である場合には、広角X線回折において、セルロースII型結晶の(110)面ピークに帰属される2θ=12.6°における絶対ピーク強度h0 とこの面間隔におけるベースラインからのピーク強度h1 とから、下記式によって求められる。
結晶化度(%) =h1 /h0 ×100
 セルロースの結晶形としては、I型、II型、III型、IV型などが知られており、その中でも特にI型及びII型は汎用されており、III型、IV型は実験室スケールでは得られているものの工業スケールでは汎用されていない。本開示のセルロースナノファイバーとしては、構造上の可動性が比較的高く、当該セルロースナノファイバーをゴムに分散させることにより、線膨張係数がより低く、引っ張り、曲げ変形時の強度及び伸びがより優れた成形体が得られることから、セルロースI型結晶又はセルロースII型結晶を含有するセルロースナノファイバーが好ましく、セルロースI型結晶を含有し、かつ結晶化度が55%以上のセルロースナノファイバーがより好ましい。
 また、セルロースナノファイバーの重合度は、好ましくは100以上、より好ましくは150以上、より好ましくは200以上、より好ましくは300以上、より好ましくは400以上、より好ましくは450以上であり、好ましくは3500以下、より好ましく3300以下、より好ましくは3200以下、より好ましくは3100以下、より好ましくは3000以下である。
 加工性と機械的特性発現との観点から、セルロースナノファイバーの重合度を上述の範囲内とすることが望ましい。加工性の観点から、重合度は高すぎない方が好ましく、機械的特性発現の観点からは低すぎないことが望まれる。
 セルロースナノファイバーの重合度は、「第十五改正日本薬局方解説書(廣川書店発行)」の確認試験(3)に記載の銅エチレンジアミン溶液による還元比粘度法に従って測定される平均重合度を意味する。
 一態様において、セルロースナノファイバーの重量平均分子量(Mw)は100000以上であり、より好ましくは200000以上である。重量平均分子量と数平均分子量(Mn)との比(Mw/Mn)は6以下であり、好ましくは5.4以下である。重量平均分子量が大きいほどセルロース分子の末端基の数は少ないことを意味する。また、重量平均分子量と数平均分子量との比(Mw/Mn)は分子量分布の幅を表すものであることから、Mw/Mnが小さいほどセルロース分子の末端の数は少ないことを意味する。セルロース分子の末端は熱分解の起点となるため、セルロースナノファイバーのセルロース分子の重量平均分子量が大きいだけでなく、重量平均分子量が大きいと同時に分子量分布の幅が狭い場合に、特に高耐熱性のセルロースナノファイバー、及びセルロースナノファイバーとゴムとを含むゴム組成物が得られる。セルロースナノファイバーの重量平均分子量(Mw)は、セルロース原料の入手容易性の観点から、例えば600000以下、又は500000以下であってよい。重量平均分子量と数平均分子量(Mn)との比(Mw/Mn)はセルロースナノファイバーの製造容易性の観点から、例えば1.5以上、又は2以上であってよい。Mwは、目的に応じたMwを有するセルロース原料を選択すること、セルロース原料に対して物理的処理及び/又は化学的処理を適度な範囲で適切に行うこと、等によって上記範囲に制御できる。Mw/Mnもまた、目的に応じたMw/Mnを有するセルロース原料を選択すること、セルロース原料に対して物理的処理及び/又は化学的処理を適度な範囲で適切に行うこと、等によって上記範囲に制御できる。セルロース原料のMw及びMw/Mnの各々は一態様において上記範囲内であってもよい。Mwの制御、及びMw/Mnの制御の両者において、上記物理的処理としては、マイクロフリュイダイザー、ボールミル、ディスクミル等の乾式粉砕若しくは湿式粉砕、擂潰機、ホモミキサー、高圧ホモジナイザー、超音波装置等による衝撃、剪断、ずり、摩擦等の機械的な力を加える物理的処理を例示でき、上記化学的処理としては、蒸解、漂白、酸処理、再生セルロース化等を例示できる。
 ここでいうセルロースナノファイバーの重量平均分子量及び数平均分子量とは、セルロースナノファイバーを塩化リチウムが添加されたN,N-ジメチルアセトアミドに溶解させたうえで、N,N-ジメチルアセトアミドを溶媒としてゲルパーミエーションクロマトグラフィによって求めた値である。
 セルロースナノファイバーの重合度(すなわち平均重合度)又は分子量を制御する方法としては、加水分解処理等が挙げられる。加水分解処理によって、セルロースナノファイバー内部の非晶質セルロースの解重合が進み、平均重合度が小さくなる。また同時に、加水分解処理により、上述の非晶質セルロースに加え、ヘミセルロースやリグニン等の不純物も取り除かれるため、繊維質内部が多孔質化する。
 加水分解の方法は、特に制限されないが、酸加水分解、アルカリ加水分解、熱水分解、スチームエクスプロージョン、マイクロ波分解等が挙げられる。これらの方法は、単独で使用してもよく、2種以上を併用してもよい。酸加水分解の方法では、例えば、繊維性植物からパルプとして得たα-セルロースをセルロース原料とし、これを水系媒体に分散させた状態で、プロトン酸、カルボン酸、ルイス酸、ヘテロポリ酸等を適量加え、攪拌しながら加温することにより、容易に平均重合度を制御できる。この際の温度、圧力、時間等の反応条件は、セルロース種、セルロース濃度、酸種、酸濃度等により異なるが、目的とする平均重合度が達成されるよう適宜調製されるものである。例えば、2質量%以下の鉱酸水溶液を使用し、100℃以上、加圧下で、10分間以上セルロースナノファイバーを処理するという条件が挙げられる。この条件のとき、酸等の触媒成分がセルロースナノファイバー内部まで浸透し、加水分解が促進され、使用する触媒成分量が少なくなり、その後の精製も容易になる。なお、加水分解時のセルロース原料の分散液は、水の他、本発明の効果を損なわない範囲において有機溶媒を少量含んでいてもよい。
 セルロースナノファイバーが含み得るアルカリ可溶多糖類は、ヘミセルロースのほか、β-セルロース及びγ-セルロースも包含する。アルカリ可溶多糖類とは、植物(例えば木材)を溶媒抽出及び塩素処理して得られるホロセルロースのうちのアルカリ可溶部として得られる成分(すなわちホロセルロースからα-セルロースを除いた成分)として当業者に理解される。アルカリ可溶多糖類は、水酸基を含む多糖であり耐熱性が悪く、熱がかかった場合に分解すること、熱エージング時に黄変を引き起こすこと、セルロースナノファイバーの強度低下の原因になること等の不都合を招来し得ることから、セルロースナノファイバー中のアルカリ可溶多糖類含有量は少ない方が好ましい。
 一態様において、セルロースナノファイバー中のアルカリ可溶多糖類平均含有率は、セルロースナノファイバーの良好な分散性を得る観点から、セルロースナノファイバー100質量%に対して、好ましくは、20質量%以下、又は18質量%以下、又は15質量%以下、又は12質量%以下である。上記含有率は、セルロースナノファイバーの製造容易性の観点から、1質量%以上、又は2質量%以上、又は3質量%以上であってもよい。
 アルカリ可溶多糖類平均含有率は、非特許文献(木質科学実験マニュアル、日本木材学会編、92~97頁、2000年)に記載の手法より求めることができ、ホロセルロース含有率(Wise法)からαセルロース含有率を差し引くことで求められる。なおこの方法は当業界においてヘミセルロース量の測定方法として理解されている。1つのサンプルにつき3回アルカリ可溶多糖類含有率を算出し、算出したアルカリ可溶多糖類含有率の数平均をアルカリ可溶多糖類平均含有率とする。
 一態様において、セルロースナノファイバー中の酸不溶成分平均含有率は、セルロースナノファイバーの耐熱性低下及びそれに伴う変色を回避する観点から、セルロースナノファイバー100質量%に対して、好ましくは、10質量%以下、又は5質量%以下、又は3質量%以下である。上記含有率は、セルロースナノファイバーの製造容易性の観点から、0.1質量%以上、又は0.2質量%以上、又は0.3質量%以上であってもよい。
 酸不溶成分平均含有率は、非特許文献(木質科学実験マニュアル、日本木材学会編、92~97頁、2000年)に記載のクラーソン法を用いた酸不溶成分の定量として行う。なおこの方法は当業界においてリグニン量の測定方法として理解されている。硫酸溶液中でサンプルを撹拌してセルロース及びヘミセルロース等を溶解させた後、ガラスファイバーろ紙で濾過し、得られた残渣が酸不溶成分に該当する。この酸不溶成分重量より酸不溶成分含有率を算出し、そして、3サンプルについて算出した酸不溶成分含有率の数平均を酸不溶成分平均含有率とする。
 セルロースナノファイバーの熱分解開始温度(TD)は、車載用途等で望まれる耐熱性及び機械強度を発揮できるという観点から、一態様において270℃以上であり、好ましくは275℃以上、より好ましくは280℃以上、さらに好ましくは285℃以上である。熱分解開始温度は高いほど好ましいが、セルロースナノファイバーの製造容易性の観点から、例えば、320℃以下、又は300℃以下であってもよい。
 本開示で、TDとは、熱重量(TG)分析における、横軸が温度、縦軸が重量残存率%のグラフから求めた値である。セルロースナノファイバーの150℃(水分がほぼ除去された状態)での重量(重量減少量0wt%)を起点としてさらに昇温を続け、1wt%重量減少時の温度(T1%)と2wt%重量減少時の温度(T2%)とを通る直線を得る。この直線と、重量減少量0wt%の起点を通る水平線(ベースライン)とが交わる点の温度をTDと定義する。
 1%重量減少温度(T1%)は、上記Tの手法で昇温を続けた際の、150℃の重量を起点とした1重量%重量減少時の温度である。
 セルロースナノファイバーの250℃重量減少率(T250℃)は、TG分析において、セルロースナノファイバーを250℃、窒素フロー下で2時間保持した時の重量減少率である。
(化学修飾)
 セルロースナノファイバーは、化学修飾されたセルロースナノファイバーであってよい。セルロースナノファイバーは、例えば原料パルプ又はリンターの段階、解繊処理中、又は解繊処理後に予め化学修飾されたものであっても良いし、スラリー調製工程中又はその後、或いは乾燥(造粒)工程中又はその後に化学修飾されてもよい。
 セルロースナノファイバーの修飾化剤としては、セルロースの水酸基と反応する化合物を使用でき、エステル化剤、エーテル化剤、及びシリル化剤が挙げられる。一方,カルボン酸、リン酸エステルといった、極性基を有する修飾化剤は,セルロースナノファイバーにイオン性基(例えばカルボキシ基)が導入されることで耐熱性を低下させる傾向があり、また解繊後の繊維径を小さくする傾向があることから、フィラーとしての補強効果の観点からは、用いないことが好ましい。好ましい態様において、化学修飾は、エステル化剤を用いたアシル化であり、特に好ましくはアセチル化である。エステル化剤としては、酸ハロゲン化物、酸無水物、カルボン酸ビニルエステル、及びカルボン酸が好ましい。
 酸ハロゲン化物は、下記式で表される化合物からなる群より選択された少なくとも1種であってよい。
   R1-C(=O)-X
(式中、R1は炭素数1~24のアルキル基、炭素数2~24のアルケニル基、炭素数3~24のシクロアルキル基、又は炭素数6~24のアリール基を表し、XはCl、Br又はIである。)
 酸ハロゲン化物の具体例としては、塩化アセチル、臭化アセチル、ヨウ化アセチル、塩化プロピオニル、臭化プロピオニル、ヨウ化プロピオニル、塩化ブチリル、臭化ブチリル、ヨウ化ブチリル、塩化ベンゾイル、臭化ベンゾイル、ヨウ化ベンゾイル等が挙げられるが、これらに限定されない。中でも、酸塩化物は反応性と取り扱い性の点から好適に採用できる。尚、酸ハロゲン化物の反応においては、触媒として働くと同時に副生物である酸性物質を中和する目的で、アルカリ性化合物を1種又は2種以上添加してもよい。アルカリ性化合物としては、具体的には:トリエチルアミン、トリメチルアミン等の3級アミン化合物;及びピリジン、ジメチルアミノピリジン等の含窒素芳香族化合物;が挙げられるが、これに限定されない。
 酸無水物としては、任意の適切な酸無水物類を用いることができる。例えば、酢酸、プロピオン酸、(イソ)酪酸、吉草酸等の飽和脂肪族モノカルボン酸の無水物;(メタ)アクリル酸、オレイン酸等の不飽和脂肪族モノカルボン酸の無水物;シクロヘキサンカルボン酸、テトラヒドロ安息香酸等の脂環族モノカルボン酸の無水物;安息香酸、4-メチル安息香酸等の芳香族モノカルボン酸の無水物;
 二塩基カルボン酸無水物として、例えば、コハク酸、アジピン酸等の飽和脂肪族ジカルボン酸の無水物;無水マレイン酸、無水イタコン酸等の不飽和脂肪族ジカルボン酸無水物;無水1-シクロヘキセン-1,2-ジカルボン酸、無水ヘキサヒドロフタル酸、無水メチルテトラヒドロフタル酸等の脂環族ジカルボン酸無水物;及び、無水フタル酸、無水ナフタル酸等の芳香族ジカルボン酸無水物等;
 3塩基以上の多塩基カルボン酸無水物類として、例えば、無水トリメリット酸、無水ピロメリット酸等の(無水)ポリカルボン酸等
が挙げられる。尚、酸無水物の反応においては、触媒として、硫酸、塩酸、燐酸等の酸性化合物、又はルイス酸、(例えば、MYnで表されるルイス酸化合物であって、MはB、As,Ge等の半金属元素、又はAl、Bi、In等の卑金属元素、又はTi、Zn、Cu等の遷移金属元素、又はランタノイド元素を表し、nはMの原子価に相当する整数であり、2又は3を表し、Yはハロゲン原子、OAc、OCOCF3、ClO4、SbF6、PF6又はOSO2CF3(OTf)を表す。)、又はトリエチルアミン、ピリジン等のアルカリ性化合物を1種又は2種以上添加してもよい。
 カルボン酸ビニルエステルとしては、下記式:
   R-COO-CH=CH2
{式中、Rは、炭素数1~24のアルキル基、炭素数2~24のアルケニル基、炭素数3~16のシクロアルキル基、又は炭素数6~24のアリール基のいずれかである。}で表されるカルボン酸ビニルエステルが好ましい。カルボン酸ビニルエステルは、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、シクロヘキサンカルボン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、ピバリン酸ビニル、オクチル酸ビニルアジピン酸ジビニル、メタクリル酸ビニル、クロトン酸ビニル、オクチル酸ビニル、安息香酸ビニル、及び桂皮酸ビニルからなる群より選択された少なくとも1種であることがより好ましい。カルボン酸ビニルエステルによるエステル化反応のとき、触媒として、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩、アルカリ金属炭酸水素塩、1~3級アミン、4級アンモニウム塩、イミダゾール及びその誘導体、ピリジン及びその誘導体、並びにアルコキシドからなる群より選ばれる1種又は2種以上を添加しても良い。
 アルカリ金属水酸化物及びアルカリ土類金属水酸化物としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化カルシウム、水酸化バリウム等が挙げられる。アルカリ金属炭酸塩、アルカリ土類金属炭酸塩、及びアルカリ金属炭酸水素塩としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素セシウム等が挙げられる。1~3級アミンとは、1級アミン、2級アミン、及び3級アミンのことであり、具体例としては、エチレンジアミン、ジエチルアミン、プロリン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラメチル-1,3-プロパンジアミン、N,N,N’,N’-テトラメチル-1,6-ヘキサンジアミン、トリス(3-ジメチルアミノプロピル)アミン、N,N-ジメチルシクロヘキシルアミン、トリエチルアミン等が挙げられる。
 イミダゾール及びその誘導体としては、1-メチルイミダゾール、3-アミノプロピルイミダゾール、カルボニルジイミダゾール等が挙げられる。
 ピリジン及びその誘導体としては、N,N-ジメチル-4-アミノピリジン、ピコリン等が挙げられる。
 アルコキシドとしては、ナトリウムメトキシド、ナトリウムエトキシド、カリウム-t-ブトキシド等が挙げられる。
 カルボン酸としては、下記式で表される化合物からなる群より選択される少なくとも1種が挙げられる。
   R-COOH
(式中、Rは、炭素数1~16のアルキル基、炭素数2~16のアルケニル基、炭素数3~16のシクロアルキル基、又は炭素数6~16のアリール基を表す。)
 カルボン酸の具体例としては、酢酸、プロピオン酸、酪酸、カプロン酸、シクロヘキサンカルボン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、メタクリル酸、クロトン酸、オクチル酸、安息香酸、及び桂皮酸からなる群より選択される少なくとも1種が挙げられる。
 これらカルボン酸の中でも、酢酸、プロピオン酸、及び酪酸からなる群から選択される少なくとも一種、特に酢酸が、反応効率の観点から好ましい。
 尚、カルボン酸の反応においては、触媒として、硫酸、塩酸、燐酸等の酸性化合物、又はルイス酸、(例えば、MYnで表されるルイス酸化合物であって、MはB、As,Ge等の半金属元素、又はAl、Bi、In等の卑金属元素、又はTi、Zn、Cu等の遷移金属元素、又はランタノイド元素を表し、nはMの原子価に相当する整数であり、2又は3を表し、Yはハロゲン原子、OAc、OCOCF3、ClO4、SbF6、PF6又はOSO2CF3(OTf)を表す。)、又はトリエチルアミン、ピリジン等のアルカリ性化合物を1種又は2種以上添加してもよい。
 これらエステル化反応剤の中でも、特に、無水酢酸、無水プロピオン酸、無水酪酸、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、及び酢酸からなる群から選択された少なくとも一種、中でも無水酢酸及び酢酸ビニルが、反応効率の観点から好ましい。
 セルロースナノファイバーが化学修飾(例えばアシル化等の疎水化によって)されている場合、セルロースナノファイバーのゴム中での分散性は良好である傾向があるが、本開示のセルロースナノファイバーは、非置換又は低置換度であってもゴム中で良好な分散性を示すことができる。
 一態様において、セルロースナノファイバーの置換度は0(すなわち非置換)である。
 又は、一態様において、熱分解開始温度が高い化学修飾セルロースナノファイバーを得る観点から、セルロースナノファイバーのアシル置換度(DS)は、0超、又は0.1以上、又は0.2以上、又は0.25以上、又は0.3以上、又は0.5以上であってよい。また、エステル化セルロースナノファイバー中に未修飾のセルロース骨格が残存していることにより、セルロース由来の高い引張強度及び寸法安定性と化学修飾由来の高い熱分解開始温度を兼ね備えたエステル化セルロースナノファイバーを得ることができる点で、セルロースナノファイバーのアシル置換度(DS)は、1.2以下、又は1.0以下、又は0.8以下、又は0.7以下、又は0.6以下、又は0.5以下であってよい。
 化学修飾セルロースナノファイバーの修飾基がアシル基の場合、アシル置換度(DS)は、エステル化セルロースナノファイバーの減衰全反射型(ATR)赤外吸収スペクトルから、アシル基由来のピークとセルロース骨格由来のピークとのピーク強度比に基づいて算出することができる。アシル基に基づくC=Oの吸収バンドのピークは1730cm-1に出現し、セルロース骨格鎖に基づくC-Oの吸収バンドのピークは1030cm-1に出現する。エステル化セルロースナノファイバーのDSは、エステル化セルロースナノファイバーの固体NMR測定から得られるDSと、セルロース骨格鎖C-Oの吸収バンドのピーク強度に対するアシル基に基づくC=Oの吸収バンドのピーク強度の比率で定義される修飾化率(IRインデックス1030)との相関グラフを作製し、相関グラフから算出された検量線
置換度DS = 4.13 × IRインデックス(1030)
を使用することで求めることができる。
 一態様において、セルロースナノファイバーは、ゴム改質用マスターバッチ又は分岐共役ジエン系重合体組成物の製造時に、他の成分(例えば、界面活性剤及び/又は液状ゴム)と組合されたセルロースナノファイバー組成物の形態で系中に添加してもよい。
 ゴム改質用マスターバッチにおいて、第1のゴム成分100質量部に対するセルロースナノファイバーの含有量は、セルロースナノファイバーによる補強効果を良好に得る観点から、好ましくは、15質量部以上、又は20質量部以上であり、分岐共役ジエン系重合体組成物においてゴムに対してセルロースナノファイバーを良好に分散させることによって、機械強度及び破断伸びに優れる硬化物を得る観点から、好ましくは、100質量部以下、又は70質量部以下、又は50質量部以下である。
 ゴム改質用マスターバッチにおいて、分岐共役ジエン系重合体100質量部に対するセルロースナノファイバーの含有量は、好ましくは、15質量部以上、又は20質量部以上、又は30質量部以上であり、好ましくは、100質量部以下、又は80質量部以下、又は60質量部以下である。
 ゴム改質用マスターバッチ中のセルロースナノファイバーの含有量は、一態様において、10質量%以上、又は20質量%以上、又は25質量%以上であり、一態様において、50質量%以下、又は40質量%以下、又は30質量%以下である。
 分岐共役ジエン系重合体組成物において、ゴム成分(一態様においては、第1及び第2のゴム成分の合計)100質量部に対するセルロースナノファイバーの含有量は、セルロースナノファイバーを配合することによる効果を良好に得る観点から、好ましくは1質量部以上、より好ましくは2質量部以上、更に好ましくは3質量部以上である。また、該含有量は、ゴム中でのセルロースナノファイバーの分散性の観点から、好ましくは15質量部以下、より好ましくは10質量部以下である。
 分岐共役ジエン系重合体組成物中のセルロースナノファイバーの含有量は、セルロースナノファイバーによる良好な補強効果を得る観点から、好ましくは0.5質量%以上、又は1質量%以上、又は3質量%以上であり、良好なゴム弾性を有する硬化物を得る観点から、好ましくは、30質量%以下、又は20質量%以下、又は10質量%以下である。
<界面活性剤>
 一態様において、ゴム改質用マスターバッチ又は分岐共役ジエン系重合体組成物は界面活性剤を含む。一態様において、界面活性剤は上記セルロースナノファイバー組成物を構成する。一態様において、界面活性剤は、ゴム改質用マスターバッチ中又は分岐共役ジエン系重合体組成物中で、セルロースナノファイバーの近傍に存在しており、これによって、界面活性剤はセルロースナノファイバーのゴム中での分散性の向上に寄与する。
 一態様において、界面活性剤はノニオン性界面活性剤である。ノニオン性界面活性剤は、セルロースナノファイバーの集合体の空隙に入り込んで当該集合体を多孔質とすることができる。例えば、湿潤状態の当該集合体にノニオン性界面活性剤を浸入させた後、乾燥して乾燥体を形成すると、当該ノニオン性界面活性剤を使用せずに集合体を乾燥させて得た乾燥体と比べて乾燥時収縮が低減され得るため、乾燥体をゴム成分、特に液状ゴムと混合したときにセルロースナノファイバーが良好に分散する。
 ノニオン性界面活性剤は、好ましくは、水酸基、カルボキシ基、スルホン酸基、及びアミノ基からなる群から選択される親水基と、炭化水素基とを有する化合物である。
 一態様において、ノニオン性界面活性剤は、疎水性部分として炭素数6~30の脂肪族基を有する。本実施形態のセルロースナノファイバーは、典型的には緩やかな集合体を形成しているところ、ノニオン性界面活性剤は、疎水性部分の炭素鎖の寄与によってゴム成分との親和性が良好であるとともに、当該疎水性部分の炭素鎖が長すぎないことによってセルロースナノファイバー集合体の空隙に容易に入り込んで当該集合体を多孔質とすることができる。例えば、湿潤状態の当該集合体にノニオン性界面活性剤を浸入させた後、乾燥して乾燥体を形成すると、当該ノニオン性界面活性剤を使用せずに集合体を乾燥させて得た乾燥体と比べて乾燥時収縮が低減され得るため、乾燥体をゴム成分、特に液状ゴムと混合したときにセルロースナノファイバーが良好に分散する。
 上記脂肪族基は、鎖状若しくは脂環式又はこれらの組合せであってよい。脂肪族基の炭素数は、セルロースナノファイバーのゴム成分中での良好な分散性を得る観点から、一態様において、6以上、又は8以上、又は10以上であり、セルロースナノファイバー集合体の空隙への浸入性の観点から、一態様において、30以下、又は25以下、又は20以下である。
 ノニオン性界面活性剤は、好ましくは、親水性部分として、オキシエチレン、グリセロール及びソルビタンからなる群から選択される1つ以上の構造(具体的にはこれらの1つ以上を繰り返し単位とする繰り返し構造)を有する。これら構造は、高い親水性を示すととともに、種々の疎水性部分との組合せで種々のノニオン性界面活性剤を容易に得ることができる点で好ましい。上記親水性部分を有するノニオン性界面活性剤において、疎水性部分の炭素数nと、上記親水性部分の繰り返し単位数mとは、セルロースナノファイバーのゴム成分中への良好な分散性を得る観点から、好ましくは、下記式:n>m の関係を満たす。上記親水性部分の繰り返し数mは、セルロースナノファイバー集合体の空隙へのノニオン性界面活性剤の良好な浸入性の観点から、好ましくは、1以上、又は2以上、又は3以上、又は5以上であり、セルロースナノファイバーのゴム成分中への良好な分散性を得る観点から、好ましくは、30以下、又は25以下、又は20以下、又は18以下である。
 ノニオン性界面活性剤は、好ましくは、
 下記一般式(1):
R-(OCH2CH2)m-OH   (1)
[式中、Rは炭素数6~30の1価の脂肪族基を表し、そしてmはRの炭素数よりも小さい自然数である。]で表される化合物、及び
 下記一般式(2):
1OCH2-(CHOH)4-CH2OR2   (2)
[式中、R1及びR2は各々独立に、水素原子、炭素数1~30の脂肪族基、-COR3{式中、R3は、炭素数1~30の脂肪族基を表す。}、又は-(CH2CH2O)y-R4{式中、R4は、水素原子、又は炭素数1~30の脂肪族基を表し、そしてyは1~30の整数である。}を表す。]で表される化合物、からなる群から選択される1種以上である。
 一般式(1)において、Rは前述の疎水性部分に相当し、(OCH2CH2)(すなわちオキシエチレン単位)は前述の親水性部分に相当する。Rの炭素数及び(OCH2CH2)の繰り返し数mはそれぞれ、疎水性部分の炭素数n及び親水性部分の繰り返し数mについて前述したのと同様の範囲であることが好ましい。
 一般式(2)において、R1、R2、R3及びR4の各々について、炭素数1~30の脂肪族基の炭素数は、好ましくは、6以上、又は8以上、又は10以上であり、好ましくは、24以下、又は20以下、又は18以下である。
 またyは、1以上であり、好ましくは、2以上、又は4以上であり、好ましくは、30以下、又は25以下、又は20以下である。
 セルロースナノファイバー組成物中、ゴム改質用マスターバッチ中、又は分岐共役ジエン系重合体組成物中の界面活性剤の量は、セルロースナノファイバー100質量部に対して、好ましくは、10質量部以上、又は15質量部以上、又は20質量部以上であり、好ましくは、50質量部以下、又は45質量部以下、又は40質量部以下である。
<液状ゴム>
 一態様において、ゴム改質用マスターバッチ又は分岐共役ジエン系重合体組成物は液状ゴムを含む。一態様において、液状ゴムは上記セルロースナノファイバー組成物を構成する。一態様において、液状ゴムは第1のゴム成分を構成してよい。一態様において、液状ゴムは第2のゴム成分を構成してよい。一態様において、液状ゴムは、ゴム改質用マスターバッチ中又は分岐共役ジエン系重合体組成物中で、セルロースナノファイバーの近傍に存在しており、これによって、液状ゴムはセルロースナノファイバーのゴム中での分散性の向上に寄与する。
 本開示で、液状ゴムとは、23℃において流動性を有しており、且つ架橋(より具体的には加硫)及び/又は鎖延長によってゴム弾性体を形成する物質を意味する。すなわち液状ゴムは、一態様において未硬化物である。また流動性を有しているとは、一態様において、シクロヘキサンに溶解させた液状ゴムを23℃にて胴径21mm×全長50mmのバイアル瓶に入れた後乾燥させることによって、液状ゴムを当該バイアル瓶内に高さ1mmまで充填して密閉し、当該バイアル瓶を上下逆にした状態で24時間静置したときに高さ方向に0.1mm以上の物質の移動が確認できることを意味する。本開示のゴム成分、第1のゴム成分又は第2のゴム成分を構成するゴムは、本開示の液状ゴムの定義を満たさない点で、液状ゴムと区別される。
 液状ゴムは、一般的なゴムの単量体組成を有してよく、取り扱いの容易性、及び良好なセルロースナノファイバーの分散性が得られる観点から、比較的低分子量であることが好ましい。液状ゴムは、一態様において、数平均分子量(Mn)が80,000以下であることによって液体形状を呈する。なお、本開示で、ゴム成分の分子量及び分子量分布は、ポリスチレン系ゲルを充填剤としたカラム3本を連結して用いたゲルパーミエーションクロマトグラフィを使用してクロマトグラムを測定し、標準ポリスチレンを使用して検量線により計算して得られる値である。なお溶媒としてはテトラヒドロフランを使用する。
 ゴム組成物を硬化させてゴム硬化物とする場合、ゴム硬化物の力学物性を向上させる観点から、液状ゴムは硬化時に加硫されることが望ましい。
 液状ゴムの数平均分子量(Mn)は、高い貯蔵弾性率、及びゴム組成物中のマトリクス成分への分散性等に優れるゴム組成物を得る観点から、好ましくは、1,000以上、又は1,500以上、又は2,000以上、又は5,000以上であり、セルロースナノファイバーを液状ゴム中に良好に分散させるのに適した高い流動性を有する点、及び、液状ゴムが硬化後に硬くなり過ぎず良好なゴム弾性を有する点で、好ましくは、80,000以下、又は50,000以下、又は40,000以下、又は30,000以下、又は10,000以下である。
 液状ゴムの重量平均分子量(Mw)は、高い貯蔵弾性率、及びゴム組成物中のマトリクス成分への分散性等に優れるゴム組成物を得る観点から、好ましくは、1,000以上、又は2,000以上、又は4,000以上であり、セルロースナノファイバーを液状ゴム中に良好に分散させるのに適した高い流動性を有する点、及び、液状ゴムが硬化後に硬くなり過ぎず良好なゴム弾性を有する点で、好ましくは、240,000以下、又は150,000以下、又は30,000以下である。
 なお、天然ゴム改質用マスターバッチが液状ゴムを含む態様において、液状ゴムの数平均分子量(Mn)が上記範囲であることは、天然ゴムを含む第2のゴム成分への分散性に優れる天然ゴム改質用マスターバッチを得る観点から好ましい。
 液状ゴムの数平均分子量(Mn)と重量平均分子量(Mw)との比(Mw/Mn)は、分子量がある程度ばらついていることによってゴム成形体の複数の特性の高度な両立(一態様において、ゴム成形体の貯蔵弾性率とゴム弾性との高度の両立)が可能である点で、好ましくは、1.2以上、又は1.5以上、又は1.8以上、又は2.0以上であり、分子量のばらつきが過度に大きくなくゴム成形体の所望の物性が安定して得られる点で、好ましくは、10以下、又は8以下、又は5以下である。
 液状ゴムは、共役ジエン系重合体若しくは非共役ジエン系重合体又はこれらの水素添加物であってもよい。上記の重合体又はその水素添加物はオリゴマーであってもよい。一態様において、液状ゴムは、両末端に反応性基(例えば、水酸基、カルボキシ基、イソシアナト基、チオ基、アミノ基及びハロ基からなる群から選択される1種以上)を有してよく、したがって2官能性であってよい。これら反応性基は液状ゴムの架橋及び/又は鎖延長に寄与する。
 好ましい一態様においては、液状ゴムが、ジエン系ゴム、シリコーンゴム、ウレタンゴム、及び多硫化ゴム並びにこれらの水素添加物からなる群から選択される1種以上を含む。
 液状ゴムは、変性液状ゴムであってもよい。変性液状ゴムは、一態様において、セルロースナノファイバーと共有結合を形成することが可能な化合物である。液状ゴムは、未変性液状ゴムを不飽和カルボン酸及び/又はその誘導体で変性した変性液状ゴムであることが特に好ましい。
 未変性液状ゴムは、主に1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、2-メチル-1,3-ペンタジエン、4,5-ジエチル-1,3-オクタジエン、3-ブチル-1,3-オクタジエンなどの共役ジエン系単量体を重合して得られる未変性の液状重合体(液状ジエン系重合体)である。未変性液状ゴムとしては、例えば、液状ポリブタジエン、液状ポリイソプレン、液状スチレン-ブタジエンランダム共重合体、液状スチレン-ブタジエンブロック共重合体、液状ブタジエン-イソプレンランダム共重合体、液状スチレン-ブタジエン-イソプレンランダム共重合体、液状スチレン-ブタジエン-イソプレンブロック共重合体などの液状ジエン系重合体などが挙げられる。これらは1種を単独で用いても、2種以上を混合して用いてもよい。
 上記不飽和カルボン酸としては、マレイン酸、フマル酸、イタコン酸、(メタ)アクリル酸等が挙げられる。上記不飽和カルボン酸誘導体としては、無水マレイン酸、無水イタコン酸などの不飽和カルボン酸無水物;マレイン酸エステル、フマル酸エステル、イタコン酸エステル、グリシジル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレートなどの不飽和カルボン酸エステル;マレイン酸アミド、フマル酸アミド、イタコン酸アミドなどの不飽和カルボン酸アミド、マレイン酸イミド、イタコン酸イミドなどの不飽和カルボン酸イミド;などが挙げられる。変性液状ゴムは、不飽和カルボン酸及び不飽和カルボン酸誘導体のうち1種で変性されていてもよく、2種以上で変性されていてもよい。
 これらの中でも、経済的な観点、及び、引張特性、弾性率等の効果の観点から、無水マレイン酸変性液状ゴムが好ましく、無水マレイン酸変性液状ポリブタジエン、無水マレイン酸変性液状ポリイソプレン、及び無水マレイン酸変性液状スチレンブタジエンランダム共重合体が更に好ましい。
 変性液状ゴムの変性量は、一態様において、引張特性、及び弾性率の向上等の観点から、変性液状ゴム1分子鎖あたり1個以上、又は3個以上、又は5個以上であり、変性液状ゴムの製造コスト、及び高い流動性を有し取り扱いが容易になる点から、好ましくは25個以下、又は20個以下、又は15個以下である。変性量は、1H-NMR測定から確認される。
 変性液状ゴムの重量平均分子量(Mw)は、貯蔵弾性率、及びゴム組成物中のマトリクス成分への分散性等に優れるゴム組成物を得る観点から、好ましくは、1,000以上、又は2,000以上、又は4,000以上、又は5,000以上、又は10,000以上であり、ゴム組成物中にセルロースナノファイバーを良好に分散させるのに適した高い流動性を有する点、及び、変性液状ゴムが硬化後に硬くなり過ぎず良好なゴム弾性を有する点で、好ましくは、240,000以下、又は150,000以下、又は100,000以下、又は50,000以下である。
 変性液状ゴムをゴム改質用マスターバッチ中又は共役ジエン系重合体組成物中に含有させることは、セルロースナノファイバーの分散性向上の点で特に好ましい。
 ゴム改質用マスターバッチ中の液状ゴムの含有量、又は変性液状ゴムの含有量は、第1のゴム成分100質量部に対して、セルロースナノファイバーの分散性向上、及び引張モジュラス及び弾性率が高い硬化物を得る観点から、一態様において、10質量部以上、又は25質量部以上、又は30質量部以上、又は50質量部以上であってよく、一態様において、200質量部以下、又は150質量部以下、又は100質量部以下であってよい。
 分岐共役ジエン系重合体組成物中の液状ゴムの含有量、又は変性液状ゴムの含有量は、ゴム成分(一態様において、第1及び第2のゴム成分の合計)100質量部に対して、セルロースナノファイバーの分散性向上、及び引張モジュラス及び弾性率が高い硬化物を得る観点から、一態様において、1質量部以上、又は2質量部以上、又は5質量部以上、又は10質量部以上であってよく、一態様において、25質量部以下、又は20質量部以下、又は15質量部以下であってよい。
<セルロースナノファイバー組成物の粉体>
 セルロースナノファイバー組成物は、一態様において粉体であってもよい。当該粉体は、以下の特性のうち1つ以上を有してよい。これにより、粉体は優れた加工特性を有し、セルロースナノファイバーがゴム成分中で優れた分散状態を示し得る。
(ゆるめ嵩密度)
 一態様において、粉体のゆるめ嵩密度は、粉体の流動性が良好で混練機へのフィード性に優れる点、界面活性剤のゴムへの移行抑制の観点から、好ましくは、0.01g/cm3以上、又は0.05g/cm3以上、又は0.10g/cm3以上、又は0.15g/cm3以上、又は0.20g/cm3以上であり、粉体がゴム中で容易に崩壊してセルロースナノファイバーがゴム中に良好に分散できる点、及び、粉体が重質過ぎず粉体とゴムとの混合不良を回避できる点で、好ましくは、0.50g/cm3以下、又は0.40g/cm3以下、又は0.30g/cm3以下、又は0.25g/cm3以下、又は0.20g/cm3以下、である。
(固め嵩密度)
 粉体の固め嵩密度は、ゆるめ嵩蜜度及び圧縮度を好適範囲に制御するのに有用である範囲に制御され、一態様において、好ましくは、0.01g/cm3以上、又は0.05g/cm3以上、又は0.10g/cm3以上、又は0.15g/cm3以上であり、又は0.20g/cm3以上であり、好ましくは、1.00g/cm3以下、又は0.80g/cm3以下、又は0.70g/cm3以下、又は0.60g/cm3以下、又は0.50g/cm3以下、又は0.40g/cm3以下、又は0.30g/cm3以下である。
 上記、ゆるめ嵩密度、及び固め嵩密度は、ホソカワミクロン株式会社製パウダーテスター(型番:PT-X)を用い、本開示の[実施例]の項で説明する手順で測定される。
 粉体の製造方法としては、セルロースナノファイバーと液体媒体とを含むスラリーを調製するスラリー調製工程と、該スラリーを乾燥させて粉体を形成する乾燥工程とを含む方法を例示できる。
(スラリー調製工程)
 本工程ではスラリーを調製する。液体媒体としては、水混和性有機溶媒、例えば:沸点が50℃~170℃のアルコール(例えばメタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、s-ブタノール、t-ブタノール等);エーテル(例えばプロピレングリコールモノメチルエーテル、1,2-ジメトキシエタン、ジイソプロピルエーテル、テトラヒドロフラン、1,4-ジオキサン等);カルボン酸(例えばギ酸、酢酸、乳酸等);エステル(例えば酢酸エチル、酢酸ビニル等);ケトン(例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等);含窒素溶媒(ジメチルホルムアミド、ジメチルアセトアミド、アセトニトリル等)、等を使用できる。典型的な態様においては、スラリー中の液体媒体は実質的に水のみである。スラリーは、セルロースナノファイバーと液体媒体で構成してもよいし、界面活性剤及び/又はゴム成分、更に任意の追加成分を含んでもよい。
 スラリー中のセルロースナノファイバーの濃度は、後続の乾燥工程におけるプロセス効率の観点から、好ましくは、5質量%以上、又は10質量%以上、又は15質量%以上、又は20質量%以上、又は25質量%以上であり、スラリーの粘度の過度な増大、及び凝集による固化を回避して良好な取扱い性を保持する観点から、好ましくは、60質量%以下、又は55質量%以下、又は50質量%以下、又は45質量%以下である。例えば、セルロースナノファイバーの製造は希薄な分散液中で行われることが多いが、このような希薄分散液を濃縮することで、スラリー中のセルロースナノファイバー濃度を前記好ましい範囲に調整してもよい。濃縮には、吸引ろ過、加圧ろ過、遠心脱液、加熱等の方法を用いることができる。
(乾燥工程)
 本工程では、上記スラリーを、制御された乾燥条件で乾燥させることにより、粉体を形成する。セルロースナノファイバー以外の成分の添加タイミングは、スラリーの乾燥前、乾燥中、及び/又は乾燥後であってよい。乾燥には、スプレードライヤー、押出機等の乾燥装置を使用できる。乾燥装置は市販品であってもよく、例えば、マイクロミストスプレードライヤー(藤崎電機製)、スプレードライヤー(大川原化工機製)、二軸押出機(日本製鋼所製)等を例示できる。乾燥条件の中でも、乾燥速度、乾燥温度、及び/又は圧力(減圧度)、特に乾燥速度を適切に制御することは、粉体の所望の形状を実現するのに有利であり得る。
 スラリー100質量部当たりの液体媒体の1分当たりの脱離量(質量部)である乾燥速度は、スラリーを急速乾燥させることで望ましい粒子サイズの粉体を形成する観点から、例えば、10%/分以上、又は50%/分以上、又は100%/分以上であってよく、セルロースナノファイバーの過度な微粉化を回避することで当該セルロースナノファイバーの凝集を抑制するとともに良好な取扱い性を得る観点から、例えば、10000%/分以下、又は1000%/分以下、又は500%/分以下であってよい。
 乾燥速度は、下記式:乾燥速度(%/分)=(乾燥開始時のスラリー水分率(質量%)-乾燥終点の粉体の水分率(質量%))/乾燥開始から乾燥終点までに要した時間(分)に従って求められる値(すなわち、乾燥工程を通じての平均値)である。
 ここで、乾燥開始とは、乾燥対象となるスラリー又はケークを装置に供給して目的の乾燥温度、減圧度、ずり速度で乾燥する工程を始めた時点であり、乾燥温度、減圧度、ずり速度が乾燥工程とは異なる状態で予備混合をする時間は乾燥時間に含めない。
 また、乾燥終点とは、乾燥開始から長くとも10分の間隔でサンプリングを行い、水分率が初めて7質量%以下になった時点をいう。
 連続式の乾燥装置の場合、乾燥開始から乾燥終点までに要した時間は、滞留時間と解釈することができる。スプレードライヤーの場合、滞留時間は加熱風量と乾燥室の容積によって計算することができる。また、押出機を乾燥装置として用いる場合、滞留時間はスクリュー回転数とスクリューの総ピッチ数から計算することができる。
 乾燥温度は、乾燥効率、及びセルロースナノファイバーを適度に凝集させて望ましい粒子サイズの粉体を形成する観点から、例えば20℃以上、又は30℃以上、又は40℃以上、又は50℃以上であってよく、セルロースナノファイバー及び追加の成分の熱劣化を生じ難くする観点、及びセルロースナノファイバーの過度な微粉化を回避する観点から、例えば200℃以下、又は150℃以下、又は140℃以下、又は130℃以下、又は100℃以下であってよい。
 乾燥温度は、スラリーに接触する熱源の温度であり、例えば、乾燥装置の温調ジャケットの表面温度や、加熱シリンダーの表面温度、熱風の温度で定義される。
 減圧度は、乾燥効率、及びセルロースナノファイバーを適度に凝集させて望ましい粒子サイズの粉体を形成する観点から、-1kPa以下、又は-10kPa以下、又は-20kPa以下、又は-30kPa以下、又は-40kPa以下、又は-50kPa以下であってよく、セルロースナノファイバーの過度な微粉化を回避する観点から、-100kPa以上、又は-95kPa以上、又は-90kPa以上であってよい。
 乾燥工程において、スラリーの温度20℃~200℃での滞留時間は、好ましくは、0.01分間~10分間、又は0.05分間~5分間、又は0.1分間~2分間に設定してよい。このような条件での乾燥により、セルロースナノファイバーが急速乾燥されて、望ましい粒子サイズの粉体が良好に生成する。
 例えばスプレードライヤ―を用いる場合には、熱ガスを流通させた乾燥室内に噴霧機構(回転ディスク、加圧ノズル等)でスラリーを噴霧導入して乾燥させる。噴霧導入時のスラリー液滴サイズは、例えば、0.01μm~500μm、又は0.1μm~100μm、又は0.5μm~10μmであってよい。熱ガスは、窒素、アルゴン等の不活性ガス、空気等であってよい。熱ガス温度は、例えば、50℃~300℃、又は80℃~250℃、又は100℃~200℃であってよい。乾燥室内でのスラリーの液滴と熱ガスとの接触は、並流、向流、又は並向流であってよい。液滴の乾燥により生じた粒子状の粉体を、サイクロン、ドラム等で補集する。
 また、例えば押出機を用いる場合には、スクリューを備える混練部内にホッパーよりスラリーを投入し、減圧及び/又は加熱下の混練部内でスラリーをスクリューで連続的に輸送することで当該スラリーを乾燥させる。スクリューの態様としては、搬送スクリュー、反時計回りスクリュー、及びニーディングディスクを任意の順番に組み合わせてよい。乾燥温度は、例えば、50℃~300℃、又は80℃~250℃、又は100℃~200℃であってよい。
<分岐共役ジエン系重合体>
 一態様において、ゴム改質用マスターバッチ又は分岐共役ジエン系重合体組成物は分岐共役ジエン系重合体を含む。一態様において、本開示の「分岐共役ジエン系重合体」とは、
 粘度検出器付きGPCを用いたGPC-光散乱測定により求められる収縮因子(g’)が、0.72以上であり、
 芳香族ビニル単量体の含有量(ST)と、GPCにより求められるカップリング重合体の割合(CS)との関係が、下記式:
  -0.8ST+40 ≦ CS ≦ -1.5ST+115
を満たし、
 GPCにより求められる非カップリング重合体のピークトップ分子量Mp1と、GPCにより求められるカップリング重合体のピークトップ分子量Mp2との関係が、下記式:
  1.5≦(Mp2/Mp1)≦4.5
を満たす、共役ジエン系重合体を意味する。上記の収縮因子(g’)及び関係式を満たす分岐共役ジエン系重合体は、製造時の加工性に優れるゴム組成物、並びに、引張モジュラス及び機械的特性に優れる硬化物を与えることができる。
 本実施形態の分岐共役ジエン系重合体は、芳香族ビニル単量体に基づく構成単位(本開示で「芳香族ビニル単量体単位」とも記す)を含むことが好ましい。特に、当該芳香族ビニル単量体単位と、共役ジエン単量体に基づく構成単位(本開示で「共役ジエン単量体単位」とも記す)とを含むランダム共重合体が好ましい。
 本開示で、「ランダム共重合体」とは、芳香族ビニル化合物由来の構造単位全体に対して、芳香族ビニル化合物に由来する構造単位が8個以上連続した連鎖の割合が10質量%以下である共重合体を意味する。
 ここで、芳香族ビニル化合物に由来する構造単位が8個以上連続した連鎖の含有量は、共重合体を、重クロロホルムを溶媒として測定した1H-NMRスペクトルで、以下の(A)~(C)の各化学シフト範囲の積分値の合計に対する、(A)の範囲の積分値の割合で計算することができる。例えば、芳香族ビニル化合物がスチレンの場合、(A)~(C)の各範囲の積分値の合計に対する(A)の範囲の積分値の割合を求め、その値を2.5倍することでスチレンの割合を計算できる。これにより、芳香族ビニル化合物に由来する構造単位の連鎖の状態を把握できる。
 (A)芳香族ビニル化合物連鎖8以上: 6.00≦S<6.68
 (B)芳香族ビニル化合物連鎖2~7: 6.68≦S<6.89
 (C)芳香族ビニル化合物短連鎖  : 6.89≦S≦8.00
 芳香族ビニル化合物としては、特に限定されないが、例えば、スチレン、α-メチルスチレン、1-ビニルナフタレン、3-ビニルトルエン、エチルビニルベンゼン、ジビニルベンゼン、4-シクロヘキシルスチレン、2,4,6-トリメチルスチレン等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよいが、これらの中で、モノマーの入手容易性等の実用面の観点でスチレンが特に好ましい。
 共役ジエン化合物としては、特に限定されないが、例えば、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチルブタジエン、2-フェニル-1,3-ブタジエン、1,3-ヘキサジエン等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよいが、これらの中で、モノマーの入手容易性等の実用面の観点から1,3-ブタジエン、及びイソプレンが好ましく、1,3-ブタジエンがより好ましい。
 分岐共役ジエン系重合体中の芳香族ビニル単量体単位の含有量である、芳香族ビニル単量体の含有量(ST)は、分岐共役ジエン系重合体に対するセルロースナノファイバーの分散性の向上、硬化物の機械特性向上、及びゴム組成物のガラス転移温度調整の観点から、好ましくは、3質量%以上、又は5質量%以上、又は10質量%以上、又は15質量%以上、又は20質量%以上であり、硬化物の耐摩耗性の低下回避、及びゴム組成物のガラス転移温度調整の観点から、好ましくは、60質量%以下、又は55質量%以下、又は50質量%以下である。芳香族ビニル単量体単位の含有量は、核磁気共鳴(NMR)で測定され、より具体的には、後述する実施例の方法で測定できる。
 本実施形態の分岐共役ジエン系重合体において、共役ジエン単量体単位中のビニル結合量(1,2-結合量)は、ゴム組成物のガラス転移温度の制御、例えばタイヤトレッド用の硬化物にしたときの低ヒステリシスロス性とウェットスキッド抵抗性とのバランス、及び硬化物の耐摩耗性の観点から、好ましくは、10モル%以上、又は20モル%以上、又は25モル%以上、又は30モル%以上であり、硬化物の耐摩耗性及び破壊強度の観点から、好ましくは、65モル%以下、又は60モル%以下、又は55モル%以下である。ここで、共役ジエン系重合体がブタジエンとスチレンとの共重合体である場合には、ハンプトンの方法(R.R.Hampton,Analytical Chemistry,21,923(1949))により、ブタジエン単量体単位中のビニル結合量を求めることができる。具体的には、後述する実施例に記載の方法により測定する。
 一態様(特に、天然ゴムを用いる態様)において、分岐共役ジエン系重合体は、結合スチレン量3質量%以上30質量%以下を有し、ブタジエン部分のミクロ構造として、1,2-ビニル結合量10モル%以上85モル%以下を有する。これらを満たす分岐共役ジエン系重合体は、天然ゴムと相容し、セルロースナノファイバーのミクロ分散を向上し、硬化物の引張特性、特に引張モジュラスと引張強度を向上させ得ると考えられる。
 当該結合スチレン量は、好ましくは、3質量%以上、又は5質量%以上、又は7質量%以上であり、好ましくは、30質量%以下、又は25質量%以下、又は20質量%以下である。
 当該1,2-ビニル結合量は、好ましくは、10モル%以上、又は20モル%以上、又は30モル%以上、又は40モル%以上であり、好ましくは、85モル%以下、又は75モル%以下、又は65モル%以下である。
(カップリング重合体の割合)
 本実施形態の分岐共役ジエン系重合体は、GPC(ゲルパーミエーションクロマトグラフィー)において二つ以上の分子量ピークを有し、前述の芳香族ビニル単量体の含有量(ST)と、GPCにより求められるカップリング重合体の割合(CS)(以下、「カップリング率」ともいう。)との関係が、下記式:
  -0.8ST+40 ≦ CS ≦ -1.5ST+115
を満たす。好ましい態様において、STとCSとの関係が、下記式:
  -0.8ST+40 ≦ CS ≦ -1.5ST+95    
を満たす。
 本実施形態の分岐共役ジエン系重合体のカップリング率は、以下のようにして求めることができる。
 まず、本実施形態の分岐共役ジエン系重合体のGPCによる分子量分布曲線を用い、カップリング剤と反応していない成分である非カップリング重合体(すなわち、最も低分子量の成分である共役ジエン系重合体)のピーク(以下、「非カップリング重合体ピーク」という。)と、共役ジエン系重合体鎖がカップリング残基を介して結合したより高分子量の成分のピークである「カップリング重合体ピーク」とに分ける。カップリング重合体のピークが複数存在する場合は、全ての高分子量成分のピークを「カップリング重合体ピーク」とみなす。但し、分子量分布曲線において、ピーク面積が全体の3%未満のピークは、ピークとみなさない。
 非カップリング重合体ピークのピーク面積から換算される非カップリング重合体の質量%と、全てのカップリング重合体ピークの合計ピーク面積から換算されるカップリング重合体の合計質量%とから、分岐共役ジエン系重合体の全質量に対する「カップリング重合体ピーク」の割合を算出し、パーセントで表したものがカップリング率(質量%)である。
 本実施形態の分岐共役ジエン系重合体のカップリング率が、上記の範囲にあると、分岐共役ジエン系重合体を含むゴム成分の形状安定性(特に耐コールドフロー性)が向上してゴム組成物を製造する際に原料ゴムの取り扱いが容易となり、並びに、引張強度及び耐摩耗性に優れる硬化物が得られる。
 カップリング重合体の割合(CS)は、一態様において、5%以上、又は15%以上、又は25%以上であり、一態様において、99%以下、又は95%以下、又は90%以下である。
 分岐共役ジエン系重合体のカップリング率は、本実施形態の共役ジエン系重合体を製造する際、カップリング剤の官能基数、添加量等を調整することにより制御することができる。GPCの測定は、後述する実施例に記載する方法により行うことができる。
 一態様(特に、天然ゴムを用いる態様)においては、分岐共役ジエン系重合体の結合スチレン量が、好ましくは、3質量%以上、又は5質量%以上、又は7質量%以上であり、好ましくは、30質量%以下、又は25質量%以下、又は20質量%以下である。
 一態様(特に、天然ゴムを用いる態様)においては、1,2-ビニル結合量が、好ましくは、10モル%以上、又は20モル%以上、又は30モル%以上、又は40モル%以上であり、好ましくは、85モル%以下、又は75モル%以下、又は65モル%以下である。
(カップリング重合体のピークトップ分子量)
 一態様においては、分岐共役ジエン系重合体のGPCにより求められる非カップリング重合体のピークトップ分子量Mp1とカップリング重合体のピークトップ分子量Mp2との関係が、下記式を満たす。
 1.5≦(Mp2/Mp1)≦4.5
 なお、カップリング重合体のピークが複数存在する場合は、ピーク高さが最も高いピークのピークトップ分子量をMp2とする。
 好ましい態様においては、Mp1とMp2との関係が、下記式:
 1.7≦(Mp2/Mp1)≦4.0
を満たす。
 Mp1とMp2とが上記関係式を満たす場合、加工性、並びに、硬化物の引張モジュラス、弾性率、及び引張強度が優れる傾向にある。Mp1を有する分岐共役ジエン系重合体は非カップリング重合体を含んでいる。
(収縮因子)
 一態様に係る分岐共役ジエン系重合体は、未加硫のゴム組成物の加工性及び機械強度向上の観点から、粘度検出器付きGPCを用いたGPC-光散乱測定により求められる収縮因子(g’)が0.72以上である。当該収縮因子(g’)が0.72以上であることは、共役ジエン系重合体が、実質的に5分岐未満であることを意味する。
 一般的に、分岐を有する重合体は、同一の絶対分子量である直鎖状の重合体と比較した場合に、分子の大きさが小さくなる傾向にある。一態様の分岐共役ジエン系重合体における収縮因子(g’)は、想定上同一の絶対分子量である直鎖状重合体に対する、分子の占める大きさの比率の指標である。すなわち、重合体の分岐度が大きくなれば、収縮因子(g’)は小さくなる傾向にある。
 本実施形態では、分子の大きさの指標として固有粘度を用い、直鎖状の重合体は、固有粘度[η]=-3.883×M0.771の関係式に従うものとする(Mは絶対分子量である)。
 分岐共役ジエン系重合体の各絶対分子量のときの収縮因子(g’)を算出し、絶対分子量が100×104~200×104のときの収縮因子(g’)の平均値を、その分岐共役ジエン系重合体の収縮因子(g’)とする。ここで、「分岐」とは、1つの重合体に対して、他の重合体が直接的又は間接的に結合することにより形成されるものである。また、「分岐度」は、1の分岐に対して、直接的又は間接的に互いに結合している重合体の数である。例えば、後述するカップリング剤残基を介して間接的に、後述の4つの共役ジエン系重合体鎖が互いに結合している場合には、分岐度は4である。
 収縮因子(g’)は、分岐共役ジエン系重合体に対するセルロースナノファイバーの分散性の向上、及びゴム組成物の硬化物の機械特性向上の観点から、一態様において0.72以上であり、好ましくは、0.75以上、又は0.80以上、又は0.85以上であり、共役ジエン系重合体のコールドフロー抑制の観点から、好ましくは、1.0以下、又は0.99以下、又は0.97以下、又は0.95以下である。
 収縮因子(g’)は分岐度に依存する傾向にあるため、例えば、分岐度を指標として収縮因子(g’)を制御することができる。具体的には、分岐度が4である分岐共役ジエン系重合体において、収縮因子(g’)は0.75以上0.85以下となる傾向にある。収縮因子(g’)は、後述する実施例に記載の方法により測定することができる。
 好ましい一態様において、分岐共役ジエン系重合体は、分岐を有し且つ分岐度が5未満である重合体である。分岐度は、好ましくは4.5以下、より好ましくは4.0以下である。共役ジエン系重合体のコールドフロー抑制の観点から、分岐度の下限は、特に限定されないが、2.0を超えることが好ましい。
 本実施形態の分岐共役ジエン系重合体の分子量分布(Mw/Mn)は、加工性、並びに、硬化物の引張強度及び耐摩耗性の観点から、好ましくは1.1以上、又は1.2以上、又は1.3以上であり、セルロースナノファイバーの分散性、硬化物としたときの低ヒステリシスロス性の観点から好ましくは1.5以下、又は1.4以下である。
 分岐共役ジエン系重合体の重量平均分子量は、共役ジエン系重合体を含むゴム成分の形状安定性(特に耐コールドフロー性)、並びに、ゴム組成物の硬化物の引張強度及び耐摩耗性の観点から、20万以上200万以下であることが好ましい。当該重量平均分子量は、より好ましくは、30万以上、又は40万以上、又は50万以上であり、より好ましくは、180万以下、又は150万以下、又は100万以下である。
 分岐共役ジエン系重合体の重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)で測定される値であり、より具体的には、後述する実施例の方法で測定できる。
 分岐共役ジエン系重合体の100℃におけるムーニー粘度は、ゴム配合物を調製する際の混練のしやすさや練り生地の切れ防止の観点から、好ましくは、250以下、又は200以下、又は180以下、又は150以下、又は130以下である。当該ムーニー粘度は、ゴム組成物の硬化物の良好な物性を得る観点から、好ましくは、40以上、又は50以上、又は60以上、又は70以上である。芳香族ビニル単量体単位を含む分岐共役ジエン系重合体の特に好ましい態様においては、100℃におけるムーニー粘度が70以上130以下である。
 分岐共役ジエン系重合体の100℃におけるムーニー粘度に対する、本開示の組成物、すなわち分岐共役ジエン系重合体とセルロースナノファイバーとを含む分岐共役ジエン系重合体組成物の100℃におけるムーニー粘度の比は、ゴム組成物の硬化物の表面質感及び外観を良くする観点から、好ましくは、0.7以上、又は0.75以上、又は0.8以上であり、ゴム組成物の硬化物の硬度及び機械物性のバランスの観点から、好ましくは、1.5以下、又は1.4以下、又は1.3以下である。
 なお、分岐共役ジエン系重合体とセルロースナノファイバーとを含む分岐共役ジエン系重合体組成物の100℃におけるムーニー粘度は、ゴム組成物の硬化物の良好な物性を得る観点から、好ましくは、30以上、又は50以上、又は70以上であり、ゴム組成物の加工性、特に流動性の観点から、好ましくは、200以下、又は150以下、又は100以下である。
 本実施形態において、ムーニー粘度は、ムーニー粘度計を用い、ISO 289(JIS K6300-1に対応)に準拠し、L形ローターを用いて測定され、より具体的には、後述する実施例の方法で測定できる。
[分岐共役ジエン系重合体の製造]
 分岐共役ジエン系重合体の重合方法については、上述した所定の物性が得られれば特に制限はなく、溶液重合法、気相重合法、及びバルク重合法のいずれも用いることができるが、商業生産上の観点で、特に溶液重合法が好ましい。また、重合形式は、回分式及び連続式のいずれであってもよいが、特に好ましい重合形式は、回分式である。
 溶液重合法を用いた場合には、溶液中のモノマー濃度は、5質量%以上が好ましく、10質量%以上がより好ましい。溶液中のモノマー濃度が5質量%以上であると、得られる共役ジエン系重合体の量が十分となり、コストが安くなる傾向がある。また、溶液中のモノマー濃度は50質量%以下が好ましく、30質量%以下がより好ましい。溶液中のモノマー濃度が50質量%以下であると、溶液粘度が低くなり撹拌が容易となり、重合しやすくなる傾向がある。
(重合開始剤)s
 分岐共役ジエン系重合体は、一態様においてアニオン重合で得る。アニオン重合の重合開始剤としては、特に制限はないが、有機リチウム化合物が好ましく用いられる。有機リチウム化合物としては、炭素数2~20のアルキル基を有するものが好ましく、例えばエチルリチウム、n-プロピルリチウム、イソプロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、tert-オクチルリチウム、n-デシルリチウム、フェニルリチウム、2-ナフチルリチウム、2-ブチルーフェニルリチウム、4-フェニル-ブチルリチウム、シクロヘキシルリチウム、シクロペンチルリチウム、ジイソプロペニルベンゼンとブチルリチウムとの反応生成物等が挙げられる。これらの中で、入手容易性、安全性等の観点から、n-ブチルリチウム、又はsec-ブチルリチウムが好ましい。
 共役ジエン系重合体は、一態様において配位重合で得る。配位重合の重合開始剤としては、特開2020-45500号公報に記載の重合触媒組成物を使用することが好ましい。
(重合方法)
 重合開始剤を用いて、アニオン重合又は配位重合によって、分岐共役ジエン系共重合体を製造する方法としては、特に制限はなく、従来公知の方法を用いることができる。具体的には、反応に不活性な有機溶媒、例えば鎖式脂肪族、脂環式、又は芳香族の炭化水素化合物等の炭化水素系溶媒中において、例えばブチルリチウムを重合開始剤とし、必要に応じてランダマイザーの存在下でスチレン、1,3-ブタジエン等を重合させることにより、目的の共役ジエン系共重合体を得ることができる。
(炭化水素系溶媒)
 炭化水素系溶媒としては、炭素数3~8のものが好ましく、例えばプロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、n-ヘキサン、シクロヘキサン、プロペン、1-ブテン、イソブテン、トランス-2-ブテン、シス-2-ブテン、1-ペンテン、2-ペンテン、1-ヘキセン、2-ヘキセン、ベンゼン、トルエン、キシレン、エチルベンゼン等を挙げることができる。これらは単独で用いてもよく、2種以上を混合して用いてもよい。
(アニオン重合におけるランダマイザー)
 ランダマイザーとは、分岐共役ジエン系共重合体中の共役ジエン部分のミクロ構造制御、例えばブタジエンにおける1,2-結合、イソプレンにおける3,4-結合等の増加、或いは共重合体におけるモノマー単位の組成分布の制御、例えばスチレンブタジエン共重合体におけるスチレン単位又はブタジエン単位のランダム化、等の作用を有する化合物のことである。このランダマイザーとしては、特に制限はなく、従来ランダマイザーとして一般に使用されている公知の化合物の中から任意のものを用いることができる。例えば、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、2,2-ジ(2-テトラヒドロフリル)プロパン、トリエチルアミン、ピリジン、N-メチルモルホリン、N,N,N’,N’-テトラメチルエチレンジアミン、1,2-ジピペリジノエタン等のエーテル類、及び第三級アミン類等を挙げることができる。また、カリウム-t-アミレート、カリウム-t-ブトキシド等のカリウム塩類、ナトリウム-t-アミレート等のナトリウム塩類も用いることができる。これらのランダマイザーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、ランダマイザーの使用量は、有機リチウム化合物1モル当たり、0.01モル当量以上が好ましく、0.05モル当量以上がより好ましい。ランダマイザーの使用量が0.01モル当量以上では、添加効果が大きく、ランダム化しやすい傾向がある。また、ランダマイザーの使用量は、有機リチウム化合物1モル当たり1000モル当量以下が好ましく、500モル当量以下がより好ましい。ランダマイザーの使用量が1000モル当量以下では、モノマーの反応速度が大きく変化しないため、ランダム化しにくいという不都合を回避できる。
(反応温度)
 重合の際の反応温度は、好適に反応が進行する限り特に限定はないが、通常-10℃~100℃であることが好ましく、25℃~70℃であることがより好ましい。
(カップリング反応)
 本実施形態の分岐共役ジエン系重合体の製造方法は、上述した重合工程後、当該重合工程で得られた共役ジエン系重合体と、所定のカップリング剤とを反応させる反応工程を有する。
 分岐化のための反応工程としては、共役ジエン系重合体の活性末端と、2官能以上の官能基を有する(すなわち、共役ジエン系重合体の活性末端と反応する官能基を2個以上有する)カップリング剤とを反応させる工程が好ましい。カップリング剤の官能基数は、好ましくは、2官能以上、又は3官能以上、又は4官能以上、好ましくは、6官能以下、又は5官能以下である。
 カップリング剤の添加量としては、重合工程において使用した重合触媒(例えば有機モノリチウム化合物)1モルに対して、カップリング剤の官能基のモル数が0.1モル以上、又は0.3モル以上である量が好ましく、0.8モル以下、又は0.7モル以下、又は0.7モル未満である量が好ましい。カップリング剤の官能基のモル数を特定の範囲とすることにより、分岐度を所望範囲に容易に制御できる。特に、2官能以上の官能基を有するカップリング剤を上記のような添加量で使用することにより、収縮因子(g’)を0.72以上に容易に制御することができる。一態様においては、5官能以下の官能基を有するカップリング剤を上記のような添加量で用いることにより、収縮因子(g’)を0.72以上に容易に制御することができる。
 一態様において、カップリング剤の官能基数としては、共役ジエン系重合体の活性末端との反応に実際に寄与する官能基のみをカウントする。例えば、ハロゲン化シリル基はハロゲンの数と同数をその官能基数とし、アザシリル基は1官能基、カルボニル基は1官能基、エポキシ基は1官能基、エステル基は2官能基としてカウントして、化合物の合計の官能基数を求める。また、例えば、カップリング剤がアルコキシシリル基を有する場合、一般的に、珪素原子に結合したアルコキシ基は全て反応することなく、珪素原子1個につき1個のアルコキシ基が残る傾向にある。したがって、アルコキシシリル基の官能基数は、同じ珪素原子に結合したアルコキシ基の数から1を引いた数とする。より具体的には、トリアルコキシシリル基は2官能基、ジアルコキシシリル基は1官能基、モノアルコキシシリル基は0官能基として、カップリング剤の官能基数を算出する。このような算出手法によれば、カップリング剤の添加量をより適切に算出できる。
 また、カップリング剤として用いる化合物は、活性水素を持たないことが好ましい。カップリング剤が活性水素を有しない場合、副反応が抑えられ、分岐度、及び収縮因子(g’)を、調整しやすい傾向にある。
 カップリング剤としては、例えば、ケイ素原子を有する2官能以上のカップリング剤、窒素原子含有基を有する2官能以上のカップリング剤、又はケイ素原子と硫黄原子を含有するカップリング剤などが挙げられる。
 ケイ素原子を有する2官能以上のカップリング剤としては、以下に限定されるものではないが、例えば、ハロゲン化シラン化合物、エポキシ化シラン化合物、アルコキシシラン化合物等が挙げられる。
 ハロゲン化シラン化合物としては、以下に限定されるものではないが、例えば、ジメチルジクロロシラン、メチルトリクロロシランテトラクロロシラン等が挙げられる。
 エポキシ化シラン化合物としては、以下に限定されるものではないが、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン等が挙げられる。
 アルコキシシラン化合物としては、以下に限定されるものではないが、例えば、トリメトキメチルシシラン、テトラエトキシシラン、トリフェノキシメチルシラン、1,2-ビス(トリエトキシシリル)エタン等が挙げられる。
 窒素原子含有基を有するカップリング剤としては、以下に限定するものではないが、例えば、イソシアナート化合物、イソシアヌル酸誘導体、窒素原子含有基を有するカルボニル化合物、窒素原子含有基を有するビニル化合物、窒素原子含有基を有するエポキシ化合物、窒素原子含有基を有するアルコキシシラン化合物等が挙げられる。
 イソシアナート化合物としては、以下に限定されるものではないが、例えば、2,4-トリレンジイソシアナート、2,6-トリレンジイソシアナート、ジフェニルメタンジイソシアナート、ポリメリックタイプのジフェニルメタンジイソシアナート(C-MDI)、フェニルイソシアナート、イソホロンジイソシアナート、ヘキサメチレンジイソシアナート、ブチルイソシアナート、1,3,5-ベンゼントリイソシアナート等が挙げられる。
 イソシアヌル酸誘導体としては、以下に限定されるものではないが、例えば、1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、1,3,5-トリス(3-トリエトキシシリルプロピル)イソシアヌレート、1,3,5-トリス(オキシラン-2-イル)-1,3,5-トリアジナン-2,4,6-トリオン、1,3,5-トリス(イソシアナトメチル)-1,3,5-トリアジナン-2,4,6-トリオン、1,3,5-トリビニル-1,3,5-トリアジナン-2,4,6-トリオン等が挙げられる。
 窒素原子含有基を有するカルボニル化合物としては、以下に限定されるものではないが、例えば、1,3-ジメチル-2-イミダゾリジノン、1-メチル-3-エチル-2-イミダゾリジノン、1-メチル-3-(2-メトキシエチル)-2-イミダゾリジノン、N-メチル-2-ピロリドン、N-メチル-2-ピペリドン、N-メチル-2-キノロン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、メチル-2-ピリジルケトン、メチル-4-ピリジルケトン、プロピル-2-ピリジルケトン、ジ-4-ピリジルケトン等が挙げられる。
 窒素原子含有基を有するビニル化合物としては、以下に限定されるものではないが、例えば、N,N-ジメチルアクリルアミド、N,N-ジメチルメタクリルアミド、N-メチルマレイミド、N-メチルフタルイミド、N,N-ビストリメチルシリルアクリルアミド、3-(2-ジメチルアミノエチル)スチレン等が挙げられる。
 窒素原子含有基を有するエポキシ化合物としては、以下に限定されるものではないが、例えば、N,N-ジグリシジル-4-グリシドキシアニリン、1-N,N-ジグリシジルアミノメチル-4-グリシドキシ-シクロヘキサン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン等が挙げられる。
 窒素原子含有基を有するアルコキシシラン化合物としては、以下のものに限定されないが、例えば、3-ジメチルアミノプロピルトリメトキシシラン、3-ジメチルアミノプロピルメチルジメトキシシラン、3-ジエチルアミノプロピルトリエトキシシラン、3-モルホリノプロピルトリメトキシシラン、3-ピペリジノプロピルトリエトキシシラン、3-ヘキサメチレンイミノプロピルメチルジエトキシシラン等が挙げられる。
 天然ゴムを用いる態様の好ましいカップリング剤としては、
-分子中にアミン構造又は塩基性の窒素原子を有しないカップリング剤、例えば、4官能である、1,2-ビス(メチルジクロロシリル)エタン、1,2-ビス(トリメトキシシリル)エタン等、及び
-分子中にアミン構造又は塩基性の窒素原子を有するカップリング剤、例えば、4官能である、ビス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]アミン、ビス(3-トリメトキシシリルプロピル)メチルアミン等、
が挙げられる。
 反応工程における反応温度は、好ましくは共役ジエン系重合体の重合温度と同様の温度であるものとし、0℃以上120℃以下であることがより好ましく、さらに好ましくは50℃以上100℃以下である。
 反応工程における反応時間は、好ましくは10秒以上、より好ましくは30秒以上である。反応時間は、一態様において、15分以下、又は10分以下であってよい。
 反応工程における混合は、機械的な攪拌、スタティックミキサーによる攪拌等のいずれでもよい。
 カップリング剤は、不活性溶媒により希釈して反応器に連続的に供給してもよい。重合工程が回分式の場合は、重合反応器にカップリング剤を投入する方法でも、重合生成物を別の反応器に移送して反応工程を行う方法でもよい。
 重合工程から反応工程までの時間は、高いカップリング率を得る観点から短い方が好ましく、好ましくは10分以内、より好ましくは5分以内である。なお、重合工程から反応工程までの時間とは、重合工程がバッチ式の場合、重合のピーク温度を迎えてからカップリング剤が添加されるまでの時間を意味し、重合工程が連続式の場合、共役ジエン系重合体を含む反応液が重合反応器を出てからカップリング剤が添加されるまでの時間を意味する。
(反応停止)
 アニオン重合は、この分野で通常使用する反応停止剤の添加により、停止させることができる。そのような反応停止剤としては、特に限定されないが、活性プロトンを有する極性溶媒(例えば、メタノール、エタノール、イソプロパノール等のアルコール、又は酢酸等)及びこれらの混液、又は、上記の1種以上の極性溶媒とヘキサン、シクロヘキサン等の無極性溶媒との混液が挙げられる。反応停止剤の添加量は、通常、アニオン重合開始剤に対し、同モル量若しくは2倍モル量程度で充分である。
 共役ジエン系重合体の重合工程の終盤に、必要に応じて、失活剤、中和剤等を添加してもよい。失活剤としては、以下のものに限定されないが、例えば、水、メタノール、エタノール、イソプロパノール等のアルコール等が挙げられる。ここでの重合工程の終盤とは、添加したモノマーが95モル%以上重合に消費された状態を言う。中和剤としては、以下のものに限定されないが、例えば、ステアリン酸、オレイン酸、バーサチック酸(炭素数9~11個で、10個を中心とする、分岐の多いカルボン酸混合物)等のカルボン酸、無機酸の水溶液、炭酸ガス等が挙げられる。
(ゴム用安定剤の使用)
 共役ジエン系重合体の重合工程の終盤に、ゲル生成防止及び加工安定性向上の観点で、ゴム用安定剤を添加することが好ましい。ゴム用安定剤としては、以下のものに限定されず、公知のものを用いることができるが、例えば、2,6-ジ-tert-ブチル-4-ヒドロキシトルエン(BHT)、n-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェノール)プロピネート、2-メチル-4,6-ビス[(オクチルチオ)メチル]フェノール等の酸化防止剤が好ましい。
(ゴム用軟化剤の使用)
 共役ジエン系重合体の重合工程の終盤には、重合体の生産性、及び、ゴム組成物製造時に無機充填剤等を配合したときの加工性を改善するために、必要に応じて、ゴム用軟化剤を添加することができる。ゴム用軟化剤としては、特に限定されないが、例えば、伸展油、液状ゴム、樹脂等が挙げられる。液状ゴムは、前述で例示したものから選択できる。加工性、生産性及び経済性の点で、伸展油が好ましい。
 ゴム用軟化剤を共役ジエン系重合体に添加する方法としては、以下のものに限定されないが、ゴム用軟化剤を重合体溶液に加え、混合して得たゴム用軟化剤含有重合体溶液を脱溶媒する方法が好ましい。
 好ましい伸展油としては、例えば、アロマ油、ナフテン油、パラフィン油等が挙げられる。これらの中でも、環境安全上の観点、並びにオイルブリード防止及びウェットグリップ特性の観点から、IP346法による多環芳香族(PCA)成分が3質量%以下であるアロマ代替油が好ましい。アロマ代替油としては、Kautschuk Gummi Kunststoffe 52(12)799(1999)に示されるTDAE(Treated Distillate Aromatic Extracts)、MES(Mild Extraction Solvate)等の他、RAE(Residual Aromatic Extracts)が挙げられる。
 伸展油の含有量は、硬化物の経年劣化抑制の点で、ゴム改質用マスターバッチにおいては第1のゴム成分100質量部に対して、又は、分岐共役ジエン系重合体組成物においてはゴム成分(一態様においては、第1及び第2のゴム成分の合計)100質量部に対して、37.5質量部以下が好ましく、30質量部以下がより好ましく、25質量部以下がさらに好ましく、20質量部以下が最も好ましい。上記含有量は、一態様において、5質量部以上、又は10質量部以上、又は15質量部以上であってよい。
 又は、天然ゴムを用いる一態様において、伸展油の含有量は、硬化物の経年劣化抑制の点で、ゴム改質用マスターバッチにおいては第1のゴム成分100質量部に対して、又は、分岐共役ジエン系重合体組成物においてはゴム成分(一態様においては、第1及び第2のゴム成分の合計)100質量部に対して、37.5質量部以下が好ましく、30質量部以下がより好ましく、25質量部以下がより好ましく、15質量部以下がさらに好ましく、10質量部以下が最も好ましい。上記含有量は、一態様において、5質量部以上であってよい。
(溶媒除去)
 分岐共役ジエン系重合体を含む重合体溶液から溶媒を除去して分岐共役ジエン系重合体を取得する方法としては、公知の方法を用いることができる。その方法として、例えばスチームストリッピング等で溶媒を分離した後、重合体を濾別し、さらにそれを脱水及び乾燥して重合体を取得する方法、重合体溶液をフラッシングタンクで濃縮し、さらにベント押し出し機等で脱揮する方法、ドラムドライヤー等で直接脱揮する方法が挙げられる。
 ゴム改質用マスターバッチにおいて、第1のゴム成分100質量%中の分岐共役ジエン系重合体の量は、機械強度に優れる硬化物を与える観点から、一態様において、50質量%以上、又は60質量%以上、又は80質量%以上である。上記量は、100質量%であってもよいが、一態様において、90質量%以下、又は80質量%以下、又は70質量%以下であることもできる。
 分岐共役ジエン系重合体組成物において、第2のゴム成分が分岐共役ジエン系重合体を含む場合、第2のゴム成分100質量%中の分岐共役ジエン系重合体の量は、機械強度に優れる硬化物を与える観点から、一態様において、50質量%以上、又は60質量%以上、又は80質量%以上である。上記比率は、一態様において、95質量%以下、又は90質量%以下、又は85質量%以下である。
 分岐共役ジエン系重合体組成物において、ゴム成分(一態様において、第1のゴムと第2のゴムとの合計)100質量%中の分岐共役ジエン系重合体の比率は、機械強度に優れる硬化物を与える観点から、一態様において、50質量%以上、又は60質量%以上、又は80質量%以上である。上記比率は、一態様において、95質量%以下、又は90質量%以下、又は85質量%以下である。
 又は、天然ゴムを用いた分岐共役ジエン系重合体組成物において、第2のゴム成分が分岐共役ジエン系重合体を含む場合、第2のゴム成分100質量%中の分岐共役ジエン系重合体の量は、機械強度に優れる硬化物を与える観点から、一態様において、5質量%以上、又は10質量%以上、又は15質量%以上であってよい。上記比率は、一態様において、50質量%以下、又は45質量%以下、又は40質量%以下であってよい。
 天然ゴムを用いた分岐共役ジエン系重合体組成物において、ゴム成分(一態様において、第1のゴムと第2のゴムとの合計)100質量%中の分岐共役ジエン系重合体の比率は、機械強度に優れる硬化物を与える観点から、一態様において、5質量%以上、又は10質量%以上、又は15質量%以上であってよい。上記比率は、一態様において、50質量%以下、又は45質量%以下、又は40質量%以下であってよい。
<分岐共役ジエン系重合体以外のゴム>
 本開示のゴム成分は、ジエン系重合体以外のゴムを含んでよいが、典型的にはジエン系重合体で構成されている。ゴム改質用マスターバッチ又は分岐共役ジエン系重合体組成物は、ゴム成分として、分岐共役ジエン系重合体以外のゴムを含んでよい。このようなゴムとしては、以下のものに限定されないが、例えば共役ジエン系重合体又はその水素添加物、共役ジエン系化合物とビニル芳香族化合物とのランダム共重合体又はその水素添加物、共役ジエン系化合物とビニル芳香族化合物とのブロック共重合体又はその水素添加物、天然ゴム等のジエン系重合体、及び、非ジエン系重合体が挙げられる。
 具体的には、以下のものに限定されないが、例えば:ブタジエンゴム又はその水素添加物;イソプレンゴム又はその水素添加物;スチレン-ブタジエンゴム又はその水素添加物、スチレン-ブタジエンブロック共重合体又はその水素添加物、スチレン-イソプレンブロック共重合体又はその水素添加物等のスチレン系エラストマー;アクリロニトリル-ブタジエンゴム又はその水素添加物、等が挙げられる。
 分岐共役ジエン系重合体組成物において、第1のゴム成分100質量%中、又は第2のゴム成分100質量%中、又は第1及び第2のゴム成分の合計100質量%中、分岐共役ジエン系重合体以外のジエン系重合体の含有量は、ゴム成形体の機械強度向上の観点から、好ましくは50質量%以下、又は45質量%以下、又は40質量%以下、又は30質量%以下、又は20質量%以下である。当該含有量は、一態様において、5質量%以上、又は10質量%以上、又は15質量%以上であってよい。
 ゴム成分が天然ゴムを含む場合、ゴム改質用マスターバッチを用いる態様においては第2のゴム成分が天然ゴムを含む。第1のゴム成分は、天然ゴムを含んでも含まなくてもよい。天然ゴムは、非変性ゴム又は変性ゴムであってよい。
 天然ゴムとしては特に限定されないが、例えば、高分子量成分が多く破壊強度に優れる観点から:スモーク乾燥タイプであるRSS(Ribbed Smoked Sheet)3~5号;機械乾燥のTSR(Technically Specified Rubber)として、SIR(Standard Indonesian Rubber)(インドネシア産)、STR(Standard Thai Rubber)(タイ産)、SMR(Standard Malaysian Rubber)(マレーシア産)等;及びエポキシ化天然ゴム等が挙げられる。
<添加剤>
 ゴム改質用マスターバッチ又は分岐共役ジエン系重合体組成物は、セルロースナノファイバー及びゴム成分に加えて添加剤を含んでよい。添加剤としては、有機又は無機の補強用充填剤(例えば、カーボンブラック、シリカ系無機充填剤等)、シランカップリング剤、金属酸化物又は金属水酸化物、ステアリン酸、各種老化防止剤、ゴム用軟化剤(オイル、ワックスなど)、加硫剤(硫黄、有機過酸化物など)、加硫促進剤(スルフェンアミド系又はグアニジン系の加硫促進剤など)などの、ゴム工業において一般的に用いられている各種材料を1種以上用いてよい。添加剤としては、追加のポリマー、分散剤、熱安定剤、酸化防止剤、帯電防止剤、着色剤、等のうち1種以上も使用できる。
(シリカ系無機充填剤)
 本実施形態の分岐共役ジエン系重合体組成物は、シリカ系無機充填剤を含んでもよい。典型的な態様において、シリカ系無機充填剤は、分岐共役ジエン系重合体組成物の製造時に、ゴム改質用マスターバッチと組合される。分岐共役ジエン系重合体組成物において、ゴム成分(一態様においては、第1及び第2のゴム成分の合計)100質量部に対するシリカ系無機充填剤の含有量は、硬化物であるゴム成形体の機械強度、及び弾性率の観点から、好ましくは10質量部以上80質量部以下である。ゴム成形体の軽量化の観点から、シリカ系無機充填剤の含有量は、好ましくは、80質量部以下、又は50質量部以下、又は30質量部以下である。
 シリカ系無機充填剤としては、特に限定されず公知のものを用いることができるが、SiO2又はSi3Alを構成単位として含む固体粒子が好ましく、SiO2又はSi3Alを構成単位の主成分とすることがより好ましい。なお本開示を通じ、主成分とは、全体の50質量%超、好ましくは70質量%以上、より好ましくは80質量%以上を占める成分を意味する。
 シリカ系無機充填剤としては、以下に限定されないが、例えば、シリカ、クレイ、タルク、マイカ、珪藻土、ウォラストナイト、モンモリロナイト、ゼオライト、ガラス繊維等の無機繊維状物質が挙げられる。シリカ系無機充填剤の市販品として、例えば、エボニック社製の商品名「Ultrasil 7000GR」が挙げられる。また、表面を疎水化したシリカ系無機充填剤、シリカ系無機充填剤とシリカ系以外の無機充填剤との混合物も挙げられる。これらの中でも、機械強度及び耐摩耗性の観点から、シリカ及びガラス繊維が好ましく、シリカがより好ましい。シリカとしては、例えば、乾式シリカ、湿式シリカ、及び合成ケイ酸塩シリカが挙げられる。これらの中でも、機械強度の改良効果及びウェットスキッド抵抗性のバランスに優れる観点から、湿式シリカがさらに好ましい。
(カーボンブラック)
 本実施形態の分岐共役ジエン系重合体組成物は、カーボンブラックを含んでもよい。典型的な態様において、カーボンブラックは、分岐共役ジエン系重合体組成物の製造時に、ゴム改質用マスターバッチと組合される。分岐共役ジエン系重合体組成物において、ゴム成分(一態様においては、第1及び第2のゴム成分の合計)100質量部に対するカーボンブラックの含有量は、硬化物であるゴム成形体の機械強度及び弾性率の観点から、好ましくは10質量部以上80質量部以下である。ゴム成形体の軽量化の観点から、カーボンブラックの含有量は、好ましくは、80質量部以下、又は50質量部以下、又は30質量部以下である。
 カーボンブラックとしては、特に限定されず、例えば、SRF、FEF、HAF、ISAF、SAF等の各クラスのカーボンブラックが使用できる。これらの中でも、押出成形性の観点、及び例えばタイヤ用途における転がり抵抗特性の観点から、窒素吸着比表面積が50m2/g以上であり、ジブチルフタレート(DBP)吸油量が80mL/100g以上であるカーボンブラックが好ましい。カーボンブラックの入手容易性の観点から、窒素吸着比表面積は、一態様において130m2/g以下であってよく、ジブチルフタレート(DBP)吸油量は、一態様において120mL/100g以下であってよい。
 好ましい一態様において、ゴム成分(一態様においては、第1及び第2のゴム成分の合計)100質量部に対する補強性充填剤の含有量は、硬化物であるゴム成形体の機械強度及び弾性率の観点から、好ましくは10質量部以上であり、ゴム成形体の軽量化の観点から、好ましくは、80質量部以下、又は50質量部以下、又は30質量部以下である。
(金属酸化物、金属水酸化物)
 本実施形態の分岐共役ジエン系重合体組成物は、金属酸化物及び/又は金属水酸化物を含有してもよい。金属酸化物は、一態様において、化学式Mxy(Mは金属原子を表し、x及びyは、各々独立に、1~6の整数を表す)を構成単位の主成分とする固体粒子である。例えば、アルミナ、酸化チタン、酸化マグネシウム、酸化亜鉛等を挙げることができる。金属酸化物は、無機充填剤との混合物として用いてもよい。金属水酸化物としては、特に限定されず、例えば、水酸化アルミニウム、水酸化マグネシウム、水酸化ジルコニウム等が挙げられる。
(ゴム用軟化剤)
 本実施形態の分岐共役ジエン系重合体組成物は、加工性の改良の目的で、ゴム用軟化剤を含んでもよい。ゴム用軟化剤としては、例えば、鉱物油系ゴム用軟化剤、及び液状若しくは低分子量の合成軟化剤が好適である。上記鉱物油系ゴム用軟化剤は、プロセスオイル又はエクステンダーオイルとも呼ばれ、ゴムの軟化、増容、又は加工性の向上を図るために使用されている。また、上記鉱物油系ゴム用軟化剤は、芳香族環、ナフテン環、及びパラフィン鎖を含み、パラフィン鎖の炭素数が全炭素中50%以上を占めるものがパラフィン系と呼ばれ、ナフテン環炭素数が30~45%のものがナフテン系、芳香族炭素数が30%を超えるものが芳香族系と呼ばれている。共役ジエン-芳香族ビニル共重合体とともに用いるゴム用軟化剤としては、適度な芳香族含量を有するものが共重合体との親和性がよい傾向にあるため好ましい。
 ゴム用軟化剤は、分岐共役ジエン系重合体の製造時、ゴム改質用マスターバッチの製造時、及び/又は分岐共役ジエン系重合体組成物の製造時に配合してよい。分岐共役ジエン系重合体組成物において、ゴム成分(一態様においては、第1及び第2のゴム成分の合計)100質量部に対するゴム用軟化剤の含有量は、加工性を改良する観点から、5質量部以上が好ましく、10質量部以上がより好ましく、30質量部以上がさらに好ましい。またブリードアウトを抑制し、ゴム組成物表面のベタツキを防止できる観点から、好ましくは、100質量部以下、又は70質量部以下、又は50質量%以下、又は40質量部以下、又は30質量部以下である。
<ゴム改質用マスターバッチ>
 本実施形態のゴム改質用マスターバッチは、上述した本実施形態の分岐共役ジエン系重合体を含む第1のゴム成分と、セルロースナノファイバーとを含有する。ゴム改質用マスターバッチ中の第1のゴム成分の含有量は、一態様において、30質量%以上、又は40質量%以上、又は50質量%以上であり、一態様において、80質量%以下、又は70質量%以下、又は60質量%以下である。
[ゴム改質用マスターバッチの製造]
 ゴム改質用マスターバッチは混練物であってよい。ゴム改質用マスターバッチの構成材料を混合する方法については、以下のものに限定されないが、例えば、オープンロール、バンバリーミキサー、ニーダー、単軸スクリュー押出機、2軸スクリュー押出機、多軸スクリュー押出機等の一般的な混和機を用いた溶融混練方法、各成分を溶解混合後、溶媒を加熱除去する方法、等が挙げられる。これらのうち、ロール、バンバリーミキサー、ニーダー、又は押出機による溶融混練法が、生産性及び混練性の観点から好ましい。また、本実施形態のゴム改質用マスターバッチの構成材料を一度に混練する方法、複数の回数に分けて混合する方法のいずれも適用可能である。
 混練の温度は、常温程度(15℃~30℃程度)でもよいが、ゴム成分が架橋反応しない程度に高温で加熱してもよく、例えば160℃以下、又は140℃以下、又は120℃以下である。また下限は、好ましくは、70℃以上、又は80℃以上である。一態様において、上記の下限は、セルロースナノファイバーのゴム成分への分散性の観点から好ましい。一態様において、加熱温度は、好ましくは、80℃~160℃、又は80℃~140℃、又は80℃~120℃である。
 本開示のゴム改質用マスターバッチが界面活性剤を含む場合の製造方法としては、
 セルロースナノファイバーと界面活性剤とを含むセルロースナノファイバー組成物を調製する工程、及び
 セルロースナノファイバー組成物と、分岐共役ジエン系重合体を含む第1のゴム成分とを混合する工程、
を含む、方法を例示できる。
 本開示のゴム改質用マスターバッチが界面活性剤及び液状ゴムを含む場合の製造方法としては、
 セルロースナノファイバーと、液状ゴムと、界面活性剤とを含むセルロースナノファイバー組成物を調製する工程、及び
 セルロースナノファイバー組成物と、分岐共役ジエン系重合体を含む第1のゴム成分とを混合する工程、
を含む、方法を例示できる。
 上記の各方法において、セルロースナノファイバー組成物は本開示の粉体であってよい。
 ゴム改質用マスターバッチが変性液状ゴムを含む場合、混練りの排出温度を、変性液状ゴムとセルロースナノファイバーとが反応する程度の高温にすることが好ましい。これにより、高い引張モジュラス及び高い弾性率を有する硬化物が得られる。この観点から好ましい混練温度は、100℃~170℃、又は120℃~160℃、又は150℃~160℃である。
 ゴム改質用マスターバッチは、まとまり性、及びハンドリング性を良くするため、圧延ロールで例えば10mm~40mm又は10mm~30mm厚みのシートに成型することが好ましい。なお、ゴム改質用マスターバッチは、本発明の効果を阻害しない範囲で、本開示で例示した以外の成分を更に含んでもよい。
<分岐共役ジエン系重合体組成物>
 本実施形態の分岐共役ジエン系重合体組成物は、ゴム成分と、セルロースナノファイバーとを含む。一態様において、分岐共役ジエン系重合体組成物は、ゴム改質用マスターバッチ由来成分と、分岐共役ジエン系重合体を含む第2のゴム成分とを含むゴム組成物である。一態様において、第2のゴム成分は天然ゴムを含む。ゴム改質用マスターバッチを用いることで、ゴム中にセルロースナノファイバーが均一に分散したゴム組成物が得られる。その結果、混練工程でのゴム物性の低下防止、及び充填剤などの分散性の向上が実現し、優れた引張モジュラス及び高弾性を達成できる。一態様において、分岐共役ジエン系重合体組成物は、本実施形態のゴム改質用マスターバッチと、第2のゴム成分と、任意成分である1種以上の添加剤との混練物である。
 分岐共役ジエン系重合体組成物において、第1及び第2のゴム成分の合計100質量%中、上記マスターバッチ由来の第1のゴム成分の含有量は、ゴム組成物に含まれるセルロースナノファイバーの含有量が少なくなり過ぎないため本発明の効果が良好に得られる点で、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上である。上記含有量は、ゴム組成物中のセルロースナノファイバーの分散性の観点から、一態様において、50質量%以下、又は40質量%以下、又は30質量%以下であってよい。
 分岐共役ジエン系重合体組成物中のゴム成分の含有量(一態様において、第1及び第2のゴム成分の合計含有量)は、一態様において、70質量%以上、又は80質量%以上、又は90質量%以上であり、一態様において、99質量%以下、又は95質量%以下、又は90質量%以下である。
[分岐共役ジエン系重合体組成物の製造]
 分岐共役ジエン系重合体組成物は、分岐共役ジエン系重合体を含むゴム成分、セルロースナノファイバー(一態様においてセルロースナノファイバー組成物として)、及び任意に添加剤(例えば、シリカ系無機充填剤、カーボンブラック、その他の充填剤、シランカップリング剤、ゴム用軟化剤等)を混合して得ることができる。分岐共役ジエン系重合体組成物の構成材料を混合する方法については、以下のものに限定されないが、例えば、オープンロール、バンバリーミキサー、ニーダー、単軸スクリュー押出機、2軸スクリュー押出機、多軸スクリュー押出機等の一般的な混和機を用いた溶融混練方法、各成分を溶解混合後、溶媒を加熱除去する方法、等が挙げられる。これらのうち、ロール、バンバリーミキサー、ニーダー、又は押出機による溶融混練法が、生産性及び混練性の観点から好ましい。また、本実施形態のゴム組成物の構成材料を一度に混練する方法、複数の回数に分けて混合する方法のいずれも適用可能である。
 セルロースナノファイバーの分散性、硬化物の引張モジュラス及び弾性率等の特性の観点から、予め、分岐共役ジエン系重合体を含む第1のゴム成分とセルロースナノファイバーとの混合物(マスターバッチ)を製造することが好ましい。
 本開示の分岐共役ジエン系重合体組成物が界面活性剤を含む場合の製造方法としては、 セルロースナノファイバーと界面活性剤とを含むセルロースナノファイバー組成物を調製する工程、
 セルロースナノファイバー組成物と、分岐共役ジエン系重合体を含む第1のゴム成分とを混合してゴム改質用マスターバッチを調製する工程、及び
 ゴム改質用マスターバッチと第2のゴム成分とを混合して分岐共役ジエン系重合体組成物を調製する工程、
を含む、方法を例示できる。
 本開示の分岐共役ジエン系重合体組成物が界面活性剤及び液状ゴムを含む場合の製造方法としては、
 セルロースナノファイバーと、液状ゴムと、界面活性剤とを含むセルロースナノファイバー組成物を調製する工程、
 セルロースナノファイバー組成物と、分岐共役ジエン系重合体を含む第1のゴム成分とを混合してゴム改質用マスターバッチを調製する工程、及び
 ゴム改質用マスターバッチと第2のゴム成分とを混合して分岐共役ジエン系重合体組成物を調製する工程、
を含む、方法を例示できる。
 上記の各方法において、セルロースナノファイバー組成物は本開示の粉体であってよい。
<分岐共役ジエン系重合体硬化物>
 本実施形態の分岐共役ジエン系重合体組成物は、加硫剤により加硫処理を施した加硫組成物(分岐共役ジエン系重合体硬化物)としてもよい。加硫剤としては、以下のものに限定されないが、例えば、有機過酸化物及びアゾ化合物等のラジカル発生剤、オキシム化合物、ニトロソ化合物、ポリアミン化合物、硫黄、硫黄化合物が挙げられる。硫黄化合物には、一塩化硫黄、二塩化硫黄、ジスルフィド化合物、高分子多硫化合物等が含まれる。加硫剤の含有量は、ゴム成分(一態様において、第1及び第2のゴム成分の合計)100質量部に対して、0.01質量部以上20質量部以下が好ましく、0.1質量部以上15質量部以下がより好ましい。加硫方法としては、従来公知の方法を適用でき、加硫温度は、120℃以上200℃以下が好ましく、より好ましくは140℃以上180℃以下である。
 加硫に際しては、必要に応じて加硫促進剤を用いてもよい。加硫促進剤としては、従来公知の材料を用いることができ、以下のものに限定されないが、例えば、スルフェンアミド系、グアニジン系、チウラム系、アルデヒド-アミン系、アルデヒド-アンモニア系、チアゾール系、チオ尿素系、ジチオカルバメート系の加硫促進剤が挙げられる。また、加硫助剤としては、以下のものに限定されないが、例えば、亜鉛華、ステアリン酸が挙げられる。加硫促進剤の含有量は、ゴム成分(一態様において、第1及び第2のゴム成分の合計)100質量部に対して、0.01質量部以上20質量部以下が好ましく、0.1質量部以上15質量部以下がより好ましい。
<その他の態様>
 別の一態様において、分岐共役ジエン系重合体は本開示の収縮因子(g’)が0.72以上である分岐共役ジエン系重合体(低分岐共役ジエン系重合体ともいう。)であり、当該低分岐共役ジエン系重合体は天然ゴムと組合される。この態様の低分岐共役ジエン系重合体の分子量分布(Mw/Mn)は、一態様において、1.1以上、又は1.2以上、又は1.3以上、又は1.5以上、又は1.7以上、又は1.9以上であってよく、一態様において、4.0以下、又は3.0以下、又は2.5以下であってよい。
 この態様において、低分岐共役ジエン系重合体は、1以上のカップリング残基と、該カップリング残基に対して結合する共役ジエン系重合体鎖とを有し、さらに、上記分岐が、1の当該カップリング残基に対して5未満の当該共役ジエン系重合体鎖が結合している分岐を含む。分岐度が5未満であること、及び、分岐が、1つのカップリング残基に対して5未満の共役ジエン系重合体鎖が結合している分岐を含むよう、分岐共役ジエン系重合体の構造を特定することにより、より確実に収縮因子(g’)を0.72以上にすることができる。低分岐化のための反応工程としては、共役ジエン系重合体の活性末端と、5官能以下の官能基を有するカップリング剤とを反応させる工程が好ましい。この場合、カップリング剤の官能基数は、好ましくは、5官能以下、又は4官能以下、又は3官能以下であり、一態様において、2官能以上である。
 低分岐共役ジエン系重合体のその他の好適例は、分岐共役ジエン系重合体に関する前述の例示と同様であってよい。
 一態様においては、天然ゴム改質用マスターバッチ、又は天然ゴムを含む分岐共役ジエン系重合体組成物が、このような低分岐共役ジエン系重合体を含む。この態様において、第1のゴム成分は当該低分岐共役ジエン系重合体を含む。第2のゴム成分は、当該低分岐共役ジエン系重合体を含んでも含まなくてもよい。当該低分岐共役ジエン系重合体は、天然ゴムとの組合せにおいて、引張モジュラス及び機械強度(例えば弾性率)に優れる硬化物を与えることができる。
 本開示は以下の項目も包含する。
[項目1]
 粘度検出器付きゲルパーミエーションクロマトグラフィ(GPC)を用いたGPC-光散乱測定により求められる収縮因子(g’)が0.72以上である低分岐共役ジエン系重合体5質量%以上及び天然ゴムを含むゴム成分100質量部と、セルロースナノファイバー1質量部以上15質量部以下と、
を含む、低分岐共役ジエン系重合体組成物。
[項目2]
 前記低分岐共役ジエン系重合体の重量平均分子量が、20万以上200万以下である、項目1に記載の低分岐共役ジエン系重合体組成物。
[項目3]
 前記低分岐共役ジエン系重合体が、結合スチレン量3質量%以上30質量%以下を有し、ブタジエン部分のミクロ構造として、1,2-ビニル結合量10モル%以上85モル%以下を有する、項目1又は2に記載の低分岐共役ジエン系重合体組成物。
[項目4]
 前記セルロースナノファイバーがイオン性基を有さない、項目1~3のいずれかに記載の低分岐共役ジエン系重合体組成物。
[項目5]
 前記低分岐共役ジエン系重合体組成物が、界面活性剤を更に含む、項目1~4のいずれかに記載の低分岐共役ジエン系重合体組成物。
[項目6]
 前記界面活性剤がノニオン性界面活性剤である、項目5に記載の低分岐共役ジエン系重合体組成物。
[項目7]
 前記ノニオン性界面活性剤が、水酸基、カルボキシ基、スルホン酸基、及びアミノ基からなる群から選択される親水基と、炭化水素基とを有する化合物である、項目6に記載の低分岐共役ジエン系重合体組成物。
[項目8]
 前記ノニオン性界面活性剤が、下記一般式(1):
R-(OCH2CH2m-OH   (1)
[式中、Rは炭素数6~30の1価の脂肪族基を表し、そしてmはRの炭素数よりも小さい自然数である。]で表される化合物、及び下記一般式(2):
1OCH2-(CHOH)4-CH2OR2   (2)
[式中、R1及びR2は各々独立に、水素原子、炭素数1~30の脂肪族基、-COR3{式中、R3は、炭素数1~30の脂肪族基を表す。}、又は-(CH2CH2O)y-R4{式中、R4は、水素原子、又は炭素数1~30の脂肪族基を表し、そしてyは1~30の整数である。}を表す。]で表される化合物、
からなる群から選択される1種以上である、項目6又は7に記載の低分岐共役ジエン系重合体組成物。
[項目9]
 前記低分岐共役ジエン系重合体組成物が、液状ゴムを更に含む、項目5~8のいずれかに記載の低分岐共役ジエン系重合体組成物。
[項目10]
 前記液状ゴムの数平均分子量が、1,000~80,000である、項目9に記載の低分岐共役ジエン系重合体組成物。
[項目11]
 前記液状ゴムの数平均分子量(Mn)と重量平均分子量(Mw)との比(Mw/Mn)が、1.5~5である、項目9又は10に記載の低分岐共役ジエン系重合体組成物。
[項目12]
 前記液状ゴムが、ジエン系ゴム、シリコーンゴム、ウレタンゴム、及び多硫化ゴム並びにこれらの水素添加物からなる群から選択される1種以上を含む、項目9~11のいずれかに記載の低分岐共役ジエン系重合体組成物。
[項目13]
 前記液状ゴムが、不飽和カルボン酸及び/又はその誘導体で変性した変性液状ゴムを含む、項目9~12のいずれかに記載の低分岐共役ジエン系重合体組成物。
[項目14]
 前記ゴム成分100質量部に対して前記変性液状ゴムを1質量部以上25質量部以下含む、項目13に記載の低分岐共役ジエン系重合体組成物。
[項目15]
 前記ゴム成分100質量部に対して補強性充填剤を10質量部以上80質量部以下含む、項目1~14のいずれかに記載の低分岐共役ジエン系重合体組成物。
[項目16]
 前記低分岐共役ジエン系重合体の、ゲルパーミエーションクロマトグラフィ(GPC)による重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が、1.5以上である、項目1~15のいずれかに記載の低分岐共役ジエン系重合体組成物。
[項目17]
 粘度検出器付きゲルパーミエーションクロマトグラフィ(GPC)を用いたGPC-光散乱測定により求められる収縮因子(g’)が0.72以上である低分岐共役ジエン系重合体を50質量%以上含む第1のゴム成分100質量部と、
 セルロースナノファイバーを15質量部以上100質量部以下と、
を含む、天然ゴム改質用マスターバッチ。
[項目18]
 前記低分岐共役ジエン系重合体の重量平均分子量が20万以上200万以下である、項目17に記載の天然ゴム改質用マスターバッチ。
[項目19]
 前記低分岐共役ジエン系重合体が、結合スチレン量3質量%以上30質量%以下を有し、ブタジエン部分のミクロ構造として、1,2-ビニル結合量10モル%以上85モル%以下を有する、項目17又は18に記載の天然ゴム改質用マスターバッチ。
[項目20]
 前記セルロースナノファイバーがイオン性基を有さない、項目17~19のいずれかに記載の天然ゴム改質用マスターバッチ。
[項目21]
 前記天然ゴム改質用マスターバッチが、界面活性剤を含む、項目17~20のいずれかに記載の天然ゴム改質用マスターバッチ。
[項目22]
 前記界面活性剤がノニオン性界面活性剤である、項目21に記載の天然ゴム改質用マスターバッチ。
[項目23]
 前記ノニオン性界面活性剤が、水酸基、カルボキシ基、スルホン酸基、及びアミノ基からなる群から選択される親水基と、炭化水素基とを有する化合物である、項目22に記載の天然ゴム改質用マスターバッチ。
[項目24]
 前記ノニオン性界面活性剤が、下記一般式(1):
R-(OCH2CH2m-OH   (1)
[式中、Rは炭素数6~30の1価の脂肪族基を表し、そしてmはRの炭素数よりも小さい自然数である。]で表される化合物、及び下記一般式(2):
1OCH2-(CHOH)4-CH2OR2   (2)
[式中、R1及びR2は各々独立に、水素原子、炭素数1~30の脂肪族基、-COR3{式中、R3は、炭素数1~30の脂肪族基を表す。}、又は-(CH2CH2O)y-R4{式中、R4は、水素原子、又は炭素数1~30の脂肪族基を表し、そしてyは1~30の整数である。}を表す。]で表される化合物、
からなる群から選択される1種以上である、項目22又は23に記載の天然ゴム改質用マスターバッチ。
[項目25]
 前記天然ゴム改質用マスターバッチが、液状ゴムを更に含む、項目21~24のいずれかに記載の天然ゴム改質用マスターバッチ。
[項目26]
 前記液状ゴムの数平均分子量が、1,000~80,000である、項目25に記載の天然ゴム改質用マスターバッチ。
[項目27]
 前記液状ゴムの数平均分子量(Mn)と重量平均分子量(Mw)との比(Mw/Mn)が、1.5~5である、項目25又は26に記載の天然ゴム改質用マスターバッチ。
[項目28]
 前記液状ゴムが、ジエン系ゴム、シリコーンゴム、ウレタンゴム、及び多硫化ゴム並びにこれらの水素添加物からなる群から選択される1種以上を含む、項目25~27のいずれかに記載の天然ゴム改質用マスターバッチ。
[項目29]
 前記液状ゴムが、不飽和カルボン酸及び/又はその誘導体で変性した変性液状ゴムを含む、項目25~28のいずれかに記載の天然ゴム改質用マスターバッチ。
[項目30]
 前記第1のゴム成分100質量部に対して前記変性液状ゴムを10質量部以上200質量部以下含む、項目29に記載の天然ゴム改質用マスターバッチ。
[項目31]
 前記低分岐共役ジエン系重合体の、ゲルパーミエーションクロマトグラフィ(GPC)による重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が、1.5以上である、項目17~30のいずれかに記載の天然ゴム改質用マスターバッチ。
[項目32]
 項目17~31のいずれか一項に記載の天然ゴム改質用マスターバッチと、天然ゴムを含む第2のゴム成分とを含む混練物である、低分岐共役ジエン系重合体組成物。
[項目33]
 前記第1のゴム成分と前記第2のゴム成分との合計100質量部に対してセルロースナノファイバーを1質量部以上15質量部以下含む、項目32に記載の低分岐共役ジエン系重合体組成物。
[項目34]
 前記第1のゴム成分と前記第2のゴム成分との合計100質量部に対して補強性充填剤を10質量部以上80質量部以下含む、項目32又は33に記載の低分岐共役ジエン系重合体組成物。
[項目35]
 不飽和カルボン酸及び/又はその誘導体で変性した変性液状ゴムを含む、項目32~34のいずれかに記載の低分岐共役ジエン系重合体組成物。
[項目36]
 前記第1のゴム成分と前記第2のゴム成分との合計100質量部に対して前記変性液状ゴムを1質量部以上25質量部以下含む、項目35に記載の低分岐共役ジエン系重合体組成物。
[項目37]
 項目1~16のいずれか一項に記載の低分岐共役ジエン系重合体組成物の硬化物である、低分岐共役ジエン系重合体硬化物。
[項目38]
 項目32~36のいずれかに記載の低分岐共役ジエン系重合体組成物の硬化物である、低分岐共役ジエン系重合体硬化物。
[項目39]
 項目5~14のいずれかに記載の低分岐共役ジエン系重合体組成物の製造方法であって、
 セルロースナノファイバーと界面活性剤とを含むセルロースナノファイバー組成物を調製する工程、
 前記セルロースナノファイバー組成物と、低分岐共役ジエン系重合体を含む第1のゴム成分とを混合して天然ゴム改質用マスターバッチを調製する工程、及び
 前記天然ゴム改質用マスターバッチと天然ゴムを含む第2のゴム成分とを混合して低分岐共役ジエン系重合体組成物を調製する工程、
を含む、方法。
[項目40]
 項目9~14のいずれかに記載の低分岐共役ジエン系重合体組成物の製造方法であって、
 セルロースナノファイバーと、液状ゴムと、界面活性剤とを含むセルロースナノファイバー組成物を調製する工程、
 前記セルロースナノファイバー組成物と、低分岐共役ジエン系重合体を含む第1のゴム成分とを混合して天然ゴム改質用マスターバッチを調製する工程、及び
 前記天然ゴム改質用マスターバッチと天然ゴムを含む第2のゴム成分とを混合して低分岐共役ジエン系重合体組成物を調製する工程、
を含む、方法。
[項目41]
 前記セルロースナノファイバー組成物が粉体である、項目39又は40に記載の方法。
[項目42]
 項目21~30のいずれかに記載の天然ゴム改質用マスターバッチの製造方法であって、
 セルロースナノファイバーと界面活性剤とを含むセルロースナノファイバー組成物を調製する工程、及び
 前記セルロースナノファイバー組成物と、低分岐共役ジエン系重合体を含む第1のゴム成分とを混合する工程、
を含む、方法。
[項目43]
 項目25~30のいずれかに記載の天然ゴム改質用マスターバッチの製造方法であって、
 セルロースナノファイバーと、液状ゴムと、界面活性剤とを含むセルロースナノファイバー組成物を調製する工程、及び
 前記セルロースナノファイバー組成物と、低分岐共役ジエン系重合体を含む第1のゴム成分とを混合する工程、
を含む、方法。
[項目44]
 前記セルロースナノファイバー組成物が粉体である、項目42又は43に記載の方法。
 以下の具体的な実施例及び比較例を挙げて本実施形態を更に詳しく説明するが、本実施形態はその要旨を超えない限り、以下の実施例及び比較例により何ら限定されるものではない。後述する、実施例及び比較例における各種の物性は下記に示す方法により測定した。
(1)実施例A
(カップリング率及び分子量)
 ポリスチレン系ゲルを充填剤としたカラムを3本連結したGPC(ゲルパーミエーションクロマトグラフィ)測定装置を使用して、クロマトグラムを測定し、標準ポリスチレンを使用した検量線に基づいて、カップリング率、重量平均分子量(Mw)、重量平均分子量(Mw)/数平均分子量(Mn)の比である分子量分布、ピークトップ分子量(Mp1、Mp2)を求めた。
 Mp1は、共役ジエン系重合体における非カップリング重合体(最も低分子量側のピーク)のピークトップ分子量を表す。
 Mp2は、共役ジエン系重合体におけるカップリング重合体のピークトップ分子量を表す。カップリング重合体のピークが複数存在する場合は、ピーク高さが最も高いピークのピークトップ分子量をMp2とする。
 カップリング率は、クロマトグラムの全面積を100質量%としたときの、全てのカップリング重合体のピーク面積の合計の比率(質量%単位)として求めた。
 具体的な測定条件を以下に示す。下記測定用液20μLをGPC測定装置に注入して測定を行った。
(測定条件)
 装置    :東ソー社製の商品名「HLC-8320GPC」
 溶離液   :5mmol/Lのトリエチルアミン入りテトラヒドロフラン(THF)
 ガードカラム:東ソー社製の商品名「TSKguardcolumn SuperH-H」、
 分離カラム :東ソー社製の商品名「TSKgel SuperH5000」、「TSKgel SuperH6000」、「TSKgel SuperH7000」をこの順に連結したもの。
 オーブン温度:40℃
 流量    :0.6mL/分
 検出器   :RI検出器(東ソー社製の商品名「HLC8020」)
 測定用液  :測定用の試料10mgを20mLのTHFに溶解した測定溶液20μLをGPC測定装置に注入した。
(結合スチレン量:芳香族ビニル単量体単位の含有量(ST))
 試料100mgを、クロロホルムで100mLに溶解して測定サンプルとした。スチレンのフェニル基による紫外線吸収波長(254nm付近)の吸収量により、試料であるゴム状重合体100質量%に対しての結合スチレン量(質量%)を測定した。測定装置としては島津製作所社製の分光光度計「UV-2450」を用いた。
(ブタジエン部分のミクロ構造:1,2-ビニル結合量)
 共役ジエン系重合体を試料として、試料50mgを、10mLの二硫化炭素に溶解して測定サンプルとした。溶液セルを用いて、赤外線スペクトルを600~1000cm-1の範囲で測定して、所定の波数における吸光度によりハンプトンの方法(R.R.Hampton,Analytical Chemistry 21,923(1949)に記載の方法)の計算式に従い、ブタジエン部分のミクロ構造、すなわち、1,2-ビニル結合量(mol%)を求めた。測定には、日本分光社製のフーリエ変換赤外分光光度計「FT-IR230」を用いた。
(共役ジエン系重合体、マスターバッチ、及び共役ジエン系重合体組成物(第二段混練後の配合物)のムーニー粘度)
 ムーニー粘度計(上島製作所社製の商品名「VR1132」)を用い、JIS K6300-1に準拠し、L形ローターを用いてムーニー粘度を測定した。測定温度は、100℃とした。まず、試料を1分間試験温度で予熱した後、ローターを2rpmで回転させ、4分後のトルクを測定してムーニー粘度(ML(1+4))とした。
(収縮因子:g’)
 共役ジエン系重合体を試料として、ポリスチレン系ゲルを充填剤としたカラムを3本連結したゲルパーミエーションクロマトグラフィー(GPC)測定装置(Malvern社製の商品名「GPCmax VE-2001」)を使用して、光散乱検出器、RI検出器、粘度検出器(Malvern社製の商品名「TDA305」)の順番に接続されている3つの検出器を用いて測定し、標準ポリスチレンに基づいて、光散乱検出器とRI検出器の測定結果から絶対分子量を、RI検出器と粘度検出器の測定結果から固有粘度を求めた。
 固有粘度と分子量の関係式([η]=KMα([η]:固有粘度、M:分子量))における定数(K、α)を、logK=-3.883、α=0.771として、分子量Mの範囲を1000~2,000,000まで入力し、標準固有粘度[η]0と分子量Mとの関係を明らかにした。この標準固有粘度[η]0に対して、3D-GPC測定で得られたサンプルの各分子量Mでの固有粘度[η]を標準固有粘度[η]0に対する固有粘度[η]の関係として[η]/[η]0を各分子量Mで算出し、その平均値を収縮因子(g’)とした。
 カラムは、ガードカラム:東ソー社製の商品名「TSKguardcolumn HHR-H」と、カラム:東ソー社製の商品名「TSKgel G6000HHR」、「TSKgel G5000HHR」、「TSKgel G4000HHR」とを接続して使用した。
 測定用の試料10mgを20mLのテトラヒドロフラン(THF)に溶解して測定溶液とし、測定溶液200μLをGPC測定装置に注入して、オーブン温度40℃、THF流量1.0mL/分の条件で測定した。
(製造例1)共役ジエン系重合体(SBR-1)
 内容積10Lで、内部の高さ(L)と直径(D)との比(L/D)が4.0である攪拌機及びジャケットを具備する温度制御が可能なオートクレーブを反応器として使用し、シクロヘキサン1995gと反応器内に存在する重合反応の妨げになり得る不純物の中和用としてn-ブチルリチウムを反応器に入れ、70℃で5分撹拌した後、室温まで冷却して溶液を抜出し、反応器内を空にした。次に、予め不純物を除去した、シクロヘキサン1680g、スチレン80g、1,3-ブタジエン240g、極性物質として2,2-ビス(2-オキソラニル)プロパン0.092mmolを反応器に入れ、反応器内が58℃のときに重合開始剤としてn-ブチルリチウム1.12mmolを添加し、重合を開始した。
 重合開始直後から、反応器内の温度は上昇していき、ピーク温度を迎え、その温度は78℃であった。温度の低下が確認されたところで、カップリング剤としてN,N-ジメチル-3-(トリメトキシシリル)プロピルアミンを0.37mmol添加し、さらに10分撹拌した。カップリング剤を添加したのは、ピーク温度に達した2分後であった。
 重合停止剤としてエタノールを2.30mmol加え、反応を停止させ、共役ジエン系重合体含有ポリマー溶液を得た。得られた重合溶液に、酸化防止剤として2,6-ジ-tert-ブチル-4-ヒドロキシトルエンを0.64g添加した後、スチームストリッピングにより溶媒を除去し、真空乾燥を経て、分岐共役ジエン系重合体(SBR-1)を得た。SBR-1の分析結果を表1に示す。
(製造例2)共役ジエン系重合体(SBR-2)
 重合開始剤であるn-ブチルリチウムの添加量を2.12mmolとし、極性物質添加量を1.03mmolにし、カップリング剤をビス(3-トリメトキシシリルプロピル)-N-メチルアミンに替え、カップリング剤の添加量を0.97mmolとした。その他の条件は、(製造例1)と同様にして、分岐共役ジエン系重合体(SBR-2)を得た。SBR-2の物性を表1に示す。
(製造例3)共役ジエン系重合体(SBR-3)
 重合開始剤であるn-ブチルリチウムの添加量を2.25mmolとし、極性物質添加量を0.0216gにし、カップリング剤をトリス(3-トリメトキシシリルプロピル)アミンに替え、カップリング剤の添加量を0.21mmolに変更した。その他の条件は、(製造例1)と同様にして、分岐共役ジエン系重合体(SBR-3)を得た。SBR-3の物性を表1に示す。
(製造例4)共役ジエン系重合体(SBR-4)
 重合開始剤であるn-ブチルリチウムの添加量を2.22mmolとし、極性物質添加量を1.13mmolし、カップリング剤であるビス(3-トリメトキシシリルプロピル)-N-メチルアミンの添加量を0.41mmolとした。その他の条件は、(製造例1)と同様にして、分岐共役ジエン系重合体(SBR-4)を得た。SBR-4の物性を表1に示す。
≪セルロースナノファイバー組成物の調製≫
 表2中の各成分について、使用した製品名は以下のとおりである。
<界面活性剤-1>
花王(株)製の商品名「エマルゲン102KG」(ポリオキシエチレン(2)モノラウリルエーテル()内はオキシエチレン鎖の繰り返し数)
<界面活性剤-2>
花王(株)製の商品名「レオドールSP-O10V」(ソルビタンモノオレエート)
<液状ゴム-1>
クレイバレー社製の商品名「Ricon184」(液状ブタジエン-スチレン共重合体、Mn=8,600)
<セルロースナノファイバー>
(CNF:微小繊維状セルロース)
 コットンリンターパルプ3質量部を水27質量部に浸漬させて、パルパーで分散を行った。パルパー処理したコットンリンターパルプスラリー30質量部(内、コットンリンターパルプ3質量部)に水を170質量部入れて水中に分散させて(固形分率1.5質量%)、ディスクリファイナー装置として相川鉄工(株)製SDR14型ラボリファイナー(加圧型DISK式)を用い、ディスク間のクリアランスを1mmとして該水分散体を30分間叩解処理した。それに引き続き、クリアランスをほとんどゼロに近いレベルにまで低減させた条件下で徹底的に叩解を行い、叩解水分散体(固形分濃度:1.5質量%)を得た。得られた叩解水分散体を、そのまま高圧ホモジナイザー(ニロ・ソアビ社(伊)製NSO15H)を用いて操作圧力100MPa下で10回微細化処理し、微細セルロース繊維スラリー(固形分濃度:1.5質量%)を得た。そして、脱水機により固形分率10質量%まで濃縮し、CNFの濃縮ケーキを得た。
<組成物の調製手順>
(製造例1)CNF組成物(CNF-1)
 上記CNF(セルロース繊維の水分散液)に精製水を加えて最終的なセルロースナノファイバーの含有量が5質量%となる水分散液とした。これに液状ゴム-1、及び界面活性剤-1を加え、最終的な組成として、水90質量%、セルロース繊維5質量%、液状ゴム2.86質量%、界面活性剤2.14質量%となるように水分散体を調製した。当該水分散体を、株式会社シンキー製自転公転ミキサーARE-310を用いて5分間混合し、セルロースナノファイバー組成物の分散液を得た。得られた分散液を、エスペック株式会社製SPH-201を用いて80℃で乾燥させ、乾燥体を得た。得られた乾燥体をラボネクト株式会社製ミニスピードミルMS-05で30秒間粉砕し、CNF組成物粉体(CNF-1)を得た。
 得られた乾燥粉体の固め嵩密度をホソカワミクロン社のパウダーテスタPT-Xにて測定した。具体的には、ステンレス製100mL(内径50.46mm×深さ50mm)有底円筒容器の上部に、十分な容量の樹脂製アダプター(内径50.46mm×長さ40mm)を密着するように接続し、乾燥体を薬さじを用いて10g/分にて溢れる量まで入れた後、アダプターを接続したまま有底円筒容器に回転軸に偏心錘を取り付けたモーターで振幅1.5mm、50Hzの振動を30秒間与えた。続いて、アダプターを除き、乾燥体をすり切り後、0.01gの位で重量を測定した。当該重量の3回の測定の数平均値を上記有底円筒容器の内容積で除して、固め嵩密度として算出した。
(製造例2)CNF組成物(CNF-2)
 液状ゴム-1、及び界面活性剤-1を加え、最終的な組成として、水90質量%、セルロース繊維5質量%、液状ゴム2.86質量%、界面活性剤2.14質量%となるように水分散体を調製した以外は、製造例1と同様の方法でCNF組成物粉体(CNF-2)を得た。
(製造例3)CNF組成物(CNF-3)
 界面活性剤-1を加え、最終的な組成として、水92.86質量%、セルロース繊維5質量%、界面活性剤2.14質量%となるように水分散体を調製した以外は、製造例1と同様の方法でCNF組成物粉体(CNF-3)を得た。
(製造例4)CNF組成物(CNF-4)
 界面活性剤-2を加え、最終的な組成として、水92.86質量%、セルロース繊維5質量%、界面活性剤2.14質量%となるように水分散体を調製した以外は、製造例1と同様の方法でCNF組成物粉体(CNF-4)を得た。
≪マスターバッチの製造≫
 表3中の液状ゴムについて、使用した製品名は以下のとおりである。
<液状ゴム>
 LR-1:クレイバレー社製 Ricon131MA20(無水マレイン酸変性液状ポリブタジエン、Mn=5,600、1分子鎖あたりの無水マレイン酸の数は11個)
 LR-2:クレイバレー社製 Ricon184MA6(無水マレイン酸変性液状スチレンブタジエン共重合体、Mn=9,100、1分子鎖あたりの無水マレイン酸の数は6個)
 LR―3:クラレ社製 LIR-403(無水マレイン酸変性液状ポリイソプレン、Mn=34000、1分子鎖あたりの無水マレイン酸の数は3個)
(製造例1)ゴム改質用マスターバッチ(MB-1)
 温度制御装置を備える密閉混練機(内容量0.35L)を使用し、第一段の混練として、充填率65%、ローター回転数30~100rpmの条件で、共役ジエン系重合体(SBR-1)100質量部、CNF組成物(CNF-1)50質量部を混練りした。このとき、密閉混合器の温度を制御し、排出温度は155~160℃でゴム組成物(配合物)を得た。
 次に第二段の混練りとして、上記で得た配合物を室温まで冷却後、CNFの分散を向上させるため再度混練りした。この場合も、密閉式混合機の温度を制御し、排出温度を155~160℃に調整してゴム改質用マスターバッチ(MB-1)を得た。
(製造例2~5)ゴム改質用マスターバッチ(MB-2~MB-5)
 ゴム改質用マスターバッチの製造に用いた原料(共役ジエン系重合体とCNF組成物)及び配合量を表3に示すとおりに変更した以外は、製造例1と同様の方法でゴム改質用マスターバッチ(MB-2~MB-5)を得た。
(製造例6)ゴム改質用マスターバッチ(MB-6)
 温度制御装置を備える密閉混練機(内容量0.35L)を使用し、第一段の混練りとして、充填率65%、ローター回転数30~100rpmの条件で、共役ジエン系重合体(SBR-1)100質量部、CNF組成物(CNF-1)50質量部を1分間混練した後、変性液状ポリブタジエン(LR-1)10質量部を加えて混練した。密閉混合器の温度を制御し、排出温度は155~160℃でゴム組成物(配合物)を得た。
 次に第二段の混練りとして、上記で得た配合物を室温まで冷却後、CNFの分散を向上させるため再度混練りした。この場合も、密閉式混合機の温度を制御し、排出温度を155~160℃に調整してゴム改質用マスターバッチ(MB-6)を得た。
(製造例7、製造例8)ゴム改質用マスターバッチ(MB-7、MB-8)
 ゴム改質用マスターバッチの製造に用いた原料(共役ジエン系重合体とCNF組成物、液状ゴム)及び配合量を表3に示すとおりに変更した以外は、製造例6と同様の方法でゴム改質用マスターバッチ(MB-7、MB-8)を得た。
(製造例9、製造例11)ゴム改質用マスターバッチ(MB-9、MB-11)
 ゴム改質用マスターバッチの製造に用いた原料(共役ジエン系重合体とCNF組成物)及び配合量を表3に示すとおりに変更した以外は、製造例1と同様の方法でゴム改質用マスターバッチ(MB-9、MB-11)を得た。
(製造例10)ゴム改質用マスターバッチ(MB-10)
 ゴム改質用マスターバッチの製造に用いた原料(共役ジエン系重合体とCNF組成物、液状ゴム)及び配合量を表3に示すとおりに変更した以外は、製造例6と同様の方法でゴム改質用マスターバッチ(MB-10)を得た。
≪共役ジエン系重合体組成物の調製≫
 表4~6中の各成分について、使用した製品名は以下のとおりである。
<液状ゴム>
 LR-1:クレイバレー社製 Ricon131MA20(無水マレイン酸変性液状ポリブタジエン、Mn=5,600、1分子鎖あたりの無水マレイン酸の数は11個)
 LR-2:クレイバレー社製 Ricon184MA6(無水マレイン酸変性液状スチレンブタジエン共重合体、Mn=9,100、1分子鎖あたりの無水マレイン酸の数は6個)
 LR―3:クラレ社製 LIR-403(無水マレイン酸変性液状ポリイソプレン、Mn=34000、1分子鎖あたりの無水マレイン酸の数は3個)
<シリカ>
 エボニック社製の商品名「Ultrasil 7000GR」(窒素吸着比表面積170m/g)
<カーボンブラック>
 東海カーボン社製の商品名「シーストKH(N339)」
<S-RAEオイル>
 JX日鉱日石エネルギー社製の商品名「プロセスNC140」
<シランカップリング剤>
 エボニック社製の商品名「Si75」(ビス(トリエトキシシリルプロピル)ジスルフィド)
<亜鉛華>
 堺化学工業社製の商品名「酸化亜鉛」
<ステアリン酸>
 花王社製の商品名「ルナック S-90V」)
<老化防止剤>
 大内新興化学(株)製の商品名「ノクラック6C」(N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン)
<ワックス>
 大内新興化学社製の商品名「サンノック」
<硫黄>
 鶴見化学工業社製「サルファックス 200S」(粉末硫黄)
<加硫促進剤-1>
 大内新興化学(株)製の商品名「ノクセラーCZ」(N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド)
<加硫促進剤-2>
 大内新興化学(株)製の商品名「ノクセラーD」(1,3-ジフェニルグアニジン)
 加硫前の共役ジエン系重合体組成物(ゴム組成物)、及び加硫後の共役ジエン系重合体組成物(硬化物)の特性を下記の方法により評価した。
(セルロースナノファイバーの分散性)
 共役ジエン系重合体組成物の硬化物を加硫プレス用金型に入れた状態で、表面上の5cm四方の領域について目視にて、セルロースナノファイバーの分散状態を下記の基準で評価した。
 A:凝集物が目視確認できない
 B:凝集物が少数(1~10個)確認される。
 C:凝集が多数(11個以上)確認される。
(配合物ムーニー粘度(指数))
 上記で得た第二段の混練り後、かつ、後述の第三段の混練り前の配合物を試料として、前述のムーニー粘度計及び条件にて粘度を測定した。比較例4の結果を100として指数化した。指数が小さいほど加工性が良好であることを示す。
(引張強度、引張モジュラス及び引張伸び)
 JIS K6251の引張試験法に準拠し、引張強度、引張モジュラス及び引張伸びを測定し、比較例4の結果を100として指数化した。指数が大きいほど引張強度、引張モジュラス、引張伸びが良好であることを示す。
(硬さ)
 JIS K6253の「加硫ゴム及び熱可塑性ゴムの硬さ試験方法」に従って、タイプAデュロメーターにより、加硫物の硬さを測定した。測定は、25℃で行った。比較例4の結果を100として指数化した。指数が大きいほど硬さが良好であることを示す。
(貯蔵弾性率)
 TAインスツルメント社製 粘弾性試験装置ARES-G2を用いて、ねじり方式により、25℃、周波数10Hz、歪み1%における貯蔵弾性率を評価した。比較例4の結果を100として指数化した。指数が大きいほど貯蔵弾性率が高いことを示す。
(実施例1~10、および比較例1~3)
 表4に示すマスターバッチ、及び共役ジエン系重合体をゴム成分として、表4に示す配合に従い、次の方法により混練りして共役ジエン系重合体組成物を得た。
 温度制御装置を備える密閉混練機(内容量0.35L)を使用し、第一段の混練として、充填率65%、ローター回転数30~100rpmの条件で、マスターバッチ、共役ジエン系重合体、シリカ、シランカップリング剤、プロセスオイル、亜鉛華、ステアリン酸を混練した。このとき、密閉混合器の温度を制御し、排出温度は155~160℃で各共役ジエン系重合体組成物(配合物)を得た。
 次に第二段の混練として、上記で得た配合物を室温まで冷却後、老化防止剤を加え、セルロースナノファイバー、又はシリカの分散を向上させるため再度混練した。この場合も、混合機の温度制御により、配合物の排出温度を155~160℃に調整した。冷却後、第三段の混練りとして、70℃に設定したオープンロールにて、硫黄、加硫促進剤-1,加硫促進剤-2を加えて混練りした。その後、成型し、160℃で25分間、加硫プレスにて加硫した。加硫前の共役ジエン系重合体組成物、及び加硫後の共役ジエン系重合体組成物の特性を評価した。結果を表4に示す。
(実施例11~20、及び比較例4~5)
 表5に示す共役ジエン系重合体を原料ゴム成分として、表5に示す配合に従い、次の方法により混練して共役ジエン系重合体組成物を得た。
 温度制御装置を備える密閉混練機(内容量0.35L)を使用し、第一段の混練りとして、充填率65%、ローター回転数30~100rpmの条件で、共役ジエン系重合体、セルロースナノファイバー組成物、シリカ、変性液状ゴム、プロセスオイル、亜鉛華、ステアリン酸を混練した。このとき、密閉混合器の温度を制御し、排出温度は155~160℃で共役ジエン系重合体組成物(配合物)を得た。
 次に第二段の混練りとして、上記で得た配合物を室温まで冷却後、老化防止剤を加え、セルロースナノファイバー、又はシリカの分散を向上させるため再度混練した。この場合も、混合機の温度制御により、配合物の排出温度を155~160℃に調整した。冷却後、第三段の混練りとして、70℃に設定したオープンロールにて、硫黄、加硫促進剤-1,加硫促進剤-2を加えて混練した。その後、成型し、160℃で25分間、加硫プレスにて加硫した。加硫前の共役ジエン系重合体組成物、及び加硫後の共役ジエン系重合体組成物の特性を評価した。その結果を表5に示す。
(比較例6)
 表5に示す共役ジエン系重合体を原料ゴム成分として、表5に示す配合に従い、次の方法により混練りして共役ジエン系重合体組成物を得た。
 温度制御装置を備える密閉混練機(内容量0.35L)を使用し、第一段の混練りとして、充填率65%、ローター回転数30~100rpmの条件で、共役ジエン系重合体(SBR-3)、シリカ、シランカップリング剤、プロセスオイル、亜鉛華、ステアリン酸を混練りした。このとき、密閉混合器の温度を制御し、排出温度は155~160℃で各共役ジエン系重合体組成物(配合物)を得た。
 次に第二段の混練りとして、上記で得た配合物を室温まで冷却後、老化防止剤を加え、シリカの分散を向上させるため再度混練りした。この場合も、混合機の温度制御により、配合物の排出温度を155~160℃に調整した。冷却後、第三段の混練りとして、70℃に設定したオープンロールにて、硫黄、加硫促進剤-1,加硫促進剤-2を加えて混練りした。その後、成型し、160℃で25分間、加硫プレスにて加硫した。加硫前の共役ジエン系重合体組成物、及び加硫後の共役ジエン系重合体組成物の特性を評価した。結果を表5に示す。
(実施例21~24、比較例7)
 表6に示す共役ジエン系重合体、天然ゴム、ポリブタジエンを原料ゴム成分として、表6に示す配合に従い、次の方法により混練りして共役ジエン系重合体組成物を得た。
 温度制御装置を備える密閉混練機(内容量0.35L)を使用し、第一段の混練りとして、充填率65%、ローター回転数30~70rpmの条件で、原料ゴム(共役ジエン系重合体、天然ゴム、ポリブタジエン)、セルロースナノファイバー組成物、変性液状ゴム、プロセスオイル、ワックス、亜鉛華、ステアリン酸を混練りした。このとき、密閉混合器の温度を制御し、排出温度は155~160℃で各共役ジエン系重合体組成物(配合物)を得た。
 次に第二段の混練りとして、上記で得た配合物を室温まで冷却後、老化防止剤を加え、セルロースナノファイバーの分散を向上させるため再度混練りした。この場合も、混合機の温度制御により、配合物の排出温度を155~160℃に調整した。冷却後、第三段の混練りとして、70℃に設定したオープンロールにて、硫黄、加硫促進剤1,加硫促進剤2を加えて混練りした。その後、成型し、160℃で15分間、加硫プレスにて加硫した。加硫前の共役ジエン系重合体組成物、及び加硫後の共役ジエン系重合体組成物の特性を評価した。その結果を表6に示す。各物性値は、比較例7の結果を100として指数化した。指数が大きいほど物性値が高いことを示す。
 表4~6に示す通り、実施例1~20で得られた共役ジエン系重合体組成物は、比較例1~6で得られた共役ジエン系重合体組成物と比較して、加硫物としたときにセルロースナノファイバーの分散性に優れ、優れた引張強度、且つ高い引張モジュラス及び高い弾性率を有することが確認された。
 また、実施例1~10で得られたマスターバッチを用いた共役ジエン系重合体組成物は、実施例11~20で得られた共役ジエン系重合体組成物と比較して、優れた引張強度、且つ高い引張モジュラス及び高い弾性率を有することが確認され、マスターバッチを使用することによる物性向上が確認された。
 更に実施例7~10、及び実施例17~20で得られた共役ジエン系重合体組成物は、実施例1~6、及び実施例11~16で得られた共役ジエン系重合体組成物と比較して、優れた引張強度、且つ高い引張モジュラス及び高い弾性率を有することが確認され、変性液状ゴムを配合することによる物性向上が確認された。
 更に実施例1で得られた共役ジエン系重合体組成物は、比較例3で得られた共役ジエン系重合体組成物と比較して、加工性に優れ、優れた引張強度、且つ高い引張モジュラス及び高い弾性率を有することが確認され、カップリング重合体の割合が本発明の範囲内である共役ジエン系重合体を使用することで物性が向上することが確認された。
 更に実施例21~24で得られた共役ジエン系重合体組成物は、比較例7で得られた共役ジエン系重合体組成物と比較して、高い引張強度と高い引張モジュラス、及び高い弾性率を有することが確認され、天然ゴム、ポリブタジエンを配合した配合物でも物性向上が確認された。
(2)実施例B
 (カップリング率及び分子量)、(ムーニー粘度)、(結合スチレン量:芳香族ビニル単量体単位の含有量)、(ブタジエン部分のミクロ構造:1,2-ビニル結合量)について、実施例Aと同様に測定した。
(収縮因子:g’)
 共役ジエン系重合体を試料として、ポリスチレン系ゲルを充填剤としたカラムを3本連結した粘度検出器付きのGPC-光散乱測定装置を使用して、クロマトグラムを測定し、溶液粘度及び光散乱法に基づいて分子量を求めた。溶離液はテトラヒドロフランとトリエチルアミンとの混合溶液(THF in TEA:トリエチルアミン5mLをテトラヒドロフラン1Lに混合させ調整した。)を使用した。
 オーブン温度40℃、THF流量1.0mL/分の条件で粘度検出器付きのGPC-光散乱測定装置(マルバーン社製の商品名「Viscotek TDAmax」)を用いた。
 固有粘度と分子量の関係式([η]=KMα([η]:固有粘度、M:分子量))における定数(K、α)を、logK=-3.883、α=0.771として、分子量Mの範囲を1000~20000000まで入力して作成した標準固有粘度[η]0と分子量Mとの関係に対して、各分子量Mでの固有粘度[η]を標準固有粘度[η]0に対する固有粘度[η]の関係として[η]/[η]0を各分子量Mで算出し、その平均値を収縮因子(g’)とした。
 カラム及び測定条件は、実施例Aと同様である。
(製造例1)共役ジエン系重合体(SBR-1)
 内容積が10Lで、内部の高さ(L)と直径(D)との比(L/D)が4.0であり、底部に入口、頂部に出口を有し、攪拌機付槽型反応器である攪拌機及び温度制御用のジャケットを有する槽型圧力容器を重合反応器とした。予め水分除去した、1,3-ブタジエンを27.0g/分、スチレンを3.0g/分、n-ヘキサンを150.0g/分の条件で混合した。この混合溶液を反応基の入口に供給する配管の途中に設けたスタティックミキサーにおいて、残存不純物不活性処理用のn-ブチルリチウムを0.08mmol/分で添加、混合した後、反応基の底部に連続的に供給した。更に、極性物質として2,2-ビス(2-オキソラニル)プロパンを0.0699g/分の速度で、重合開始剤としてn-ブチルリチウムを0.252mmol/分の速度で、攪拌機で激しく混合する重合反応器の底部へ供給し、連続的に重合反応を継続させた。反応器頂部出口における重合溶液の温度が75℃となるように温度を制御した。
 重合が十分に安定したところで、反応器の出口より流出した重合体溶液に、カップリング反応として、N-3-トリメトキシシリルプロピルトリアゾールを0.041mmol/分の速度で連続的に添加し、カップリング剤を添加された重合体溶液はスタティックミキサーを通ることで混合され、カップリング反応を終了した。
 カップリング反応した重合体溶液に、酸化防止剤(BHT)を重合体100gあたり0.2gとなるように0.055g/分(n-ヘキサン溶液)で連続的に添加し、酸化防止剤を添加し、スタティックミキサーで混合した。スチームストリッピングにより溶媒を除去して、低分岐共役ジエン系重合体(SBR―1)を得た。SBR-1の物性を表7に示す。
(製造例2)共役ジエン系重合体(SBR-2)
 重合開始剤であるn-ブチルリチウムの添加量を0.15mmol/分とし、極性物質添加量を0.0131g/分にし、カップリング剤をN-(3-トリメトキシシリルプロピル)-2,2-ジメトキシ-1-アザ-2-シラシクロペンタンに替え、カップリング剤の添加量を0.037mmol/分とした。その他の条件は、(製造例1)と同様にして、高分岐共役ジエン系重合体(SBR-2)を得た。SBR-2の物性を表7に示す。
(製造例3)共役ジエン系重合体(SBR-3)
 1,3-ブタジエンを24.5g/分スチレンを10.5g/分としたこと以外は実施例2と同様にして高分岐共役ジエン系重合体(SBR-3)を得た。SBR-3の物性を表7に示す。
≪セルロースナノファイバー組成物の調製≫
 表8中の各成分について、<界面活性剤-1>、<界面活性剤-2>、<液状ゴム-1>は、実施例Aと同様である。
<セルロースナノファイバー>
(CNF:微小繊維状セルロース)
 実施例Aと同様である。
<組成物の調製手順>
(製造例1)CNF組成物(CNF-1)
 実施例Aと同様である。
(製造例2)CNF組成物(CNF-2)
 液状ゴム-1、及び界面活性剤-1を加え、最終的な組成として、水91.43質量%、セルロース繊維5質量%、液状ゴム2.86質量%、界面活性剤0.71質量%となるように水分散体を調製した以外は、製造例1と同様の方法でCNF組成物粉体(CNF-2)を得た。
(製造例3)CNF組成物(CNF-3)
 実施例Aと同様である。
(製造例4)CNF組成物(CNF-4)
 実施例Aと同様である。
≪マスターバッチの製造≫
 表9中の液状ゴムについて、<液状ゴム>は実施例Aと同様である。
(製造例1)天然ゴム改質用マスターバッチ(MB-1)
 温度制御装置を備える密閉混練機(内容量0.35L)を使用し、第一段の混練として、充填率65%、ローター回転数30~50rpmの条件で、共役ジエン系重合体(SBR-1)100質量部、CNF組成物(CNF-1)50質量部を混練りした。このとき、密閉混合器の温度を制御し、排出温度は155~160℃でゴム組成物(配合物)を得た。
 次に第二段の混練りとして、上記で得た配合物を室温まで冷却後、CNFの分散を向上させるため再度混練りした。この場合も、密閉式混合機の温度を制御し、排出温度を155~160℃に調整して天然ゴム改質用マスターバッチ(MB-1)を得た。
(製造例2~4)天然ゴム改質用マスターバッチ(MB-2~MB-4)
 天然ゴム改質用マスターバッチの製造に用いた原料(共役ジエン系重合体とCNF組成物)及び配合量を表9に示すとおりに変更した以外は、製造例1と同様の方法で天然ゴム改質用マスターバッチ(MB-2~MB-4)を得た。
(製造例5)天然ゴム改質用マスターバッチ(MB-5)
 温度制御装置を備える密閉混練機(内容量0.35L)を使用し、第一段の混練りとして、充填率65%、ローター回転数30~50rpmの条件で、共役ジエン系重合体(SBR-1)100質量部、CNF組成物(CNF-1)50質量部を1分間混練した後、変性液状ポリイソプレン(LR-3)50質量部を加えて混練した。密閉混合器の温度を制御し、排出温度は155~160℃でゴム組成物(配合物)を得た。
 次に第二段の混練りとして、上記で得た配合物を室温まで冷却後、CNFの分散を向上させるため再度混練りした。この場合も、密閉式混合機の温度を制御し、排出温度を155~160℃に調整して天然ゴム改質用マスターバッチ(MB-5)を得た。
(製造例6、製造例7)天然ゴム改質用マスターバッチ(MB-6、MB-7)
 天然ゴム改質用マスターバッチの製造に用いた原料(共役ジエン系重合体とCNF組成物、液状ゴム)及び配合量を表9に示すとおりに変更した以外は、製造例6と同様の方法で天然ゴム改質用マスターバッチ(MB-6、MB-7)を得た。
(製造例8)天然ゴム改質用マスターバッチ(MB-8)
 天然ゴム改質用マスターバッチの製造に用いた原料(共役ジエン系重合体とCNF組成物)及び配合量を表9に示すとおりに変更した以外は、製造例1と同様の方法で天然ゴム改質用マスターバッチ(MB-8)を得た。
(製造例9)天然ゴム改質用マスターバッチ(MB-9)
 天然ゴム改質用マスターバッチの製造に用いた原料(共役ジエン系重合体とCNF組成物、液状ゴム)及び配合量を表9に示すとおりに変更した以外は、製造例6と同様の方法で天然ゴム改質用マスターバッチ(MB-9)を得た。
≪共役ジエン系重合体組成物の調製≫
 表10および表11中の各成分について、使用した製品名は以下のとおりである。
<天然ゴム>
 RSS No.3(生産者:UNIMAC RUBBER CO.,LTD.(タイ)、供給者:丸紅テクノラバー)
 <液状ゴム>、<シリカ>、<カーボンブラック>、<S-RAEオイル>、<シランカップリング剤>、<亜鉛華>、<ステアリン酸>、<老化防止剤>、<ワックス>、<硫黄>、<加硫促進剤-1>、<加硫促進剤-2>は、実施例Aと同様である。
 加硫前の共役ジエン系重合体組成物(ゴム組成物)、及び加硫後の共役ジエン系重合体組成物(硬化物)の特性を下記の方法により評価した。
(セルロースナノファイバーの分散性)
 実施例Aと同様に評価した。
(配合物ムーニー粘度(指数))
 実施例Aと同様に評価した。
(引張強度、引張モジュラス及び引張伸び)
 実施例Aと同様に測定し、比較例2の結果を100として指数化した。
(硬さ)
 実施例Aと同様に測定し、比較例2の結果を100として指数化した。
(貯蔵弾性率)
 実施例Aと同様に測定し、比較例2の結果を100として指数化した。
(実施例1~4)
 表10に示すマスターバッチ、及び天然ゴムを原料ゴム成分として、表10に示す配合に従い、次の方法により混練りして低分岐共役ジエン系重合体組成物を得た。
 温度制御装置を備える密閉混練機(内容量0.35L)を使用し、第一段の混練りとして、充填率65%、ローター回転数30~70rpmの条件で、マスターバッチ、原料ゴム(天然ゴム)、プロセスオイル、亜鉛華、ステアリン酸、老化防止剤、ワックスを混練した。このとき、密閉混合器の温度を制御し、排出温度は155~160℃で低分岐共役ジエン系重合体組成物(配合物)を得た。
 次に第二段の混練りとして、上記で得た配合物を室温まで冷却後、セルロースナノファイバーの分散を向上させるため再度混練りした。この場合も、混合機の温度制御により、配合物の排出温度を155~160℃に調整した。冷却後、第三段の混練りとして、70℃に設定したオープンロールにて、硫黄、加硫促進剤-1を加えて混練りした。その後、成型し、160℃で15分間、加硫プレスにて加硫した。加硫後の低分岐共役ジエン系重合体組成物の特性を評価した。結果を表10に示す。
(実施例5)
 表10に示すマスターバッチ、及び天然ゴムを原料ゴム成分として、表10に示す配合に従い、次の方法により混練りして低分岐共役ジエン系重合体組成物を得た。
 温度制御装置を備える密閉混練機(内容量0.35L)を使用し、第一段の混練りとして、充填率65%、ローター回転数30~70rpmの条件で、マスターバッチ、原料ゴム(天然ゴム)、補強性充填剤(シリカ)、プロセスオイル、シランカップリング剤、亜鉛華、ステアリン酸、老化防止剤、ワックスを混練した。このとき、密閉混合器の温度を制御し、排出温度は155~160℃で低分岐共役ジエン系重合体組成物(配合物)を得た。
 次に第二段の混練りとして、上記で得た配合物を室温まで冷却後、セルロースナノファイバー及び補強性充填剤(シリカ)の分散を向上させるため再度混練りした。この場合も、混合機の温度制御により、配合物の排出温度を155~160℃に調整した。冷却後、第三段の混練りとして、70℃に設定したオープンロールにて、硫黄、加硫促進剤-1、加硫促進剤―2を加えて混練りした。その後、成型し、160℃で15分間、加硫プレスにて加硫した。加硫後の低分岐共役ジエン系重合体組成物の特性を評価した。結果を表10に示す。
(実施例6)
 表10に示すマスターバッチ、及び天然ゴムを原料ゴム成分として、表10に示す配合に従い、次の方法により混練りして低分岐共役ジエン系重合体組成物を得た。
 温度制御装置を備える密閉混練機(内容量0.35L)を使用し、第一段の混練りとして、充填率65%、ローター回転数30~70rpmの条件で、マスターバッチ、原料ゴム(天然ゴム)、補強性充填剤(カーボンブラック)、プロセスオイル、亜鉛華、ステアリン酸、老化防止剤、ワックスを混練した。このとき、密閉混合器の温度を制御し、排出温度は155~160℃で低分岐共役ジエン系重合体組成物(配合物)を得た。
 次に第二段の混練りとして、上記で得た配合物を室温まで冷却後、セルロースナノファイバー及び補強性充填剤(カーボンブラック)の分散を向上させるため再度混練りした。この場合も、混合機の温度制御により、配合物の排出温度を155~160℃に調整した。冷却後、第三段の混練りとして、70℃に設定したオープンロールにて、硫黄、加硫促進剤-1を加えて混練りした。その後、成型し、160℃で15分間、加硫プレスにて加硫した。加硫後の低分岐共役ジエン系重合体組成物の特性を評価した。結果を表10に示す。
(実施例7~9)
 表10に示すマスターバッチ、及び天然ゴムを原料ゴム成分として、表10に示す配合に従い、次の方法により混練りして低分岐共役ジエン系重合体組成物を得た。
 温度制御装置を備える密閉混練機(内容量0.35L)を使用し、第一段の混練りとして、充填率65%、ローター回転数30~70rpmの条件で、マスターバッチ、原料ゴム(天然ゴム)、プロセスオイル、亜鉛華、ステアリン酸、老化防止剤、ワックスを混練した。このとき、密閉混合器の温度を制御し、排出温度は155~160℃で低分岐共役ジエン系重合体組成物(配合物)を得た。
 次に第二段の混練りとして、上記で得た配合物を室温まで冷却後、セルロースナノファイバーの分散を向上させるため再度混練りした。この場合も、混合機の温度制御により、配合物の排出温度を155~160℃に調整した。冷却後、第三段の混練りとして、70℃に設定したオープンロールにて、硫黄、加硫促進剤-1を加えて混練りした。その後、成型し、160℃で15分間、加硫プレスにて加硫した。加硫後の低分岐共役ジエン系重合体組成物の特性を評価した。結果を表10に示す。
(実施例10)
 表10に示すマスターバッチ、及び天然ゴムを原料ゴム成分として、表10に示す配合に従い、次の方法により混練りして低分岐共役ジエン系重合体組成物を得た。
 温度制御装置を備える密閉混練機(内容量0.35L)を使用し、第一段の混練りとして、充填率65%、ローター回転数30~70rpmの条件で、マスターバッチ、原料ゴム(天然ゴム)、補強性充填剤(シリカ)、プロセスオイル、シランカップリング剤、亜鉛華、ステアリン酸、老化防止剤、ワックスを混練した。このとき、密閉混合器の温度を制御し、排出温度は155~160℃で低分岐共役ジエン系重合体組成物(配合物)を得た。
 次に第二段の混練りとして、上記で得た配合物を室温まで冷却後、セルロースナノファイバー及び補強性充填剤(シリカ)の分散を向上させるため再度混練りした。この場合も、混合機の温度制御により、配合物の排出温度を155~160℃に調整した。冷却後、第三段の混練りとして、70℃に設定したオープンロールにて、硫黄、加硫促進剤-1、加硫促進剤―2を加えて混練りした。その後、成型し、160℃で15分間、加硫プレスにて加硫した。加硫後の低分岐共役ジエン系重合体組成物の特性を評価した。結果を表10に示す。
(比較例1~2)
 表10に示すマスターバッチ、及び天然ゴムを原料ゴム成分として、表10に示す配合に従い、次の方法により混練りして高分岐共役ジエン系重合体組成物を得た。
 温度制御装置を備える密閉混練機(内容量0.35L)を使用し、第一段の混練りとして、充填率65%、ローター回転数30~70rpmの条件で、マスターバッチ、原料ゴム(天然ゴム)、プロセスオイル、亜鉛華、ステアリン酸、老化防止剤、ワックスを混練した。このとき、密閉混合器の温度を制御し、排出温度は155~160℃で高分岐共役ジエン系重合体組成物(配合物)を得た。
 次に第二段の混練りとして、上記で得た配合物を室温まで冷却後、セルロースナノファイバーの分散を向上させるため再度混練りした。この場合も、混合機の温度制御により、配合物の排出温度を155~160℃に調整した。冷却後、第三段の混練りとして、70℃に設定したオープンロールにて、硫黄、加硫促進剤-1を加えて混練りした。その後、成型し、160℃で15分間、加硫プレスにて加硫した。加硫後の高分岐共役ジエン系重合体組成物の特性を評価した。結果を表10に示す。
(実施例11~14)
 表11に示す低分岐共役ジエン系重合体を原料ゴム成分として、表11に示す配合に従い、次の方法により混練りして低分岐共役ジエン系重合体組成物を得た。
 温度制御装置を備える密閉混練機(内容量0.35L)を使用し、第一段の混練りとして、充填率65%、ローター回転数30~70rpmの条件で、低分岐共役ジエン系重合体(SBR-1)、原料ゴム(天然ゴム)、セルロースナノファイバー組成物、プロセスオイル、亜鉛華、ステアリン酸、老化防止剤、ワックスを混練りした。このとき、密閉混合器の温度を制御し、排出温度は155~160℃で低分岐共役ジエン系重合体組成物(配合物)を得た。
 次に第二段の混練りとして、上記で得た配合物を室温まで冷却後、セルロースナノファイバーの分散を向上させるため再度混練りした。この場合も、混合機の温度制御により、配合物の排出温度を155~160℃に調整した。冷却後、第三段の混練りとして、70℃に設定したオープンロールにて、硫黄、加硫促進剤-1を加えて混練した。その後、成型し、160℃で15分間、加硫プレスにて加硫した。加硫後の低分岐共役ジエン系重合体組成物の特性を評価した。その結果を表11に示す。
(実施例15)
 表11に示す低分岐共役ジエン系重合体を原料ゴム成分として、表11に示す配合に従い、次の方法により混練りして低分岐共役ジエン系重合体組成物を得た。
 温度制御装置を備える密閉混練機(内容量0.35L)を使用し、第一段の混練りとして、充填率65%、ローター回転数30~70rpmの条件で、低分岐共役ジエン系重合体(SBR-1)、原料ゴム(天然ゴム)、セルロースナノファイバー組成物、補強性充填剤(シリカ)、プロセスオイル、シランカップリング剤、亜鉛華、ステアリン酸、老化防止剤、ワックスを混練りした。このとき、密閉混合器の温度を制御し、排出温度は155~160℃で低分岐共役ジエン系重合体組成物(配合物)を得た。
 次に第二段の混練りとして、上記で得た配合物を室温まで冷却後、セルロースナノファイバー及び補強性充填剤(シリカ)の分散を向上させるため再度混練りした。この場合も、混合機の温度制御により、配合物の排出温度を155~160℃に調整した。冷却後、第三段の混練りとして、70℃に設定したオープンロールにて、硫黄、加硫促進剤-1、加硫促進剤-2を加えて混練した。その後、成型し、160℃で15分間、加硫プレスにて加硫した。加硫後の低分岐共役ジエン系重合体組成物の特性を評価した。その結果を表11に示す。
(実施例16)
 表11に示す低分岐共役ジエン系重合体を原料ゴム成分として、表11に示す配合に従い、次の方法により混練りして低分岐共役ジエン系重合体組成物を得た。
 温度制御装置を備える密閉混練機(内容量0.35L)を使用し、第一段の混練りとして、充填率65%、ローター回転数30~70rpmの条件で、低分岐共役ジエン系重合体(SBR-1)、原料ゴム(天然ゴム)、セルロースナノファイバー組成物、補強性充填剤(カーボンブラック)、プロセスオイル、亜鉛華、ステアリン酸、老化防止剤、ワックスを混練りした。このとき、密閉混合器の温度を制御し、排出温度は155~160℃で低分岐共役ジエン系重合体組成物(配合物)を得た。
 次に第二段の混練りとして、上記で得た配合物を室温まで冷却後、セルロースナノファイバー及び補強性充填剤(カーボンブラック)の分散を向上させるため再度混練りした。この場合も、混合機の温度制御により、配合物の排出温度を155~160℃に調整した。冷却後、第三段の混練りとして、70℃に設定したオープンロールにて、硫黄、加硫促進剤-1を加えて混練した。その後、成型し、160℃で15分間、加硫プレスにて加硫した。加硫後の低分岐共役ジエン系重合体組成物の特性を評価した。その結果を表11に示す。
(実施例17~19)
 表11に示す低分岐共役ジエン系重合体を原料ゴム成分として、表11に示す配合に従い、次の方法により混練りして低分岐共役ジエン系重合体組成物を得た。
 温度制御装置を備える密閉混練機(内容量0.35L)を使用し、第一段の混練りとして、充填率65%、ローター回転数30~70rpmの条件で、低分岐共役ジエン系重合体(SBR-1)、原料ゴム(天然ゴム)、変性液状ゴム、セルロースナノファイバー組成物、プロセスオイル、亜鉛華、ステアリン酸、老化防止剤、ワックスを混練りした。このとき、密閉混合器の温度を制御し、排出温度は155~160℃で低分岐共役ジエン系重合体組成物(配合物)を得た。
 次に第二段の混練りとして、上記で得た配合物を室温まで冷却後、セルロースナノファイバーの分散を向上させるため再度混練りした。この場合も、混合機の温度制御により、配合物の排出温度を155~160℃に調整した。冷却後、第三段の混練りとして、70℃に設定したオープンロールにて、硫黄、加硫促進剤-1を加えて混練した。その後、成型し、160℃で15分間、加硫プレスにて加硫した。加硫後の低分岐共役ジエン系重合体組成物の特性を評価した。その結果を表11に示す。
(実施例20)
 表11に示す低分岐共役ジエン系重合体を原料ゴム成分として、表11に示す配合に従い、次の方法により混練りして低分岐共役ジエン系重合体組成物を得た。
 温度制御装置を備える密閉混練機(内容量0.35L)を使用し、第一段の混練りとして、充填率65%、ローター回転数30~70rpmの条件で、低分岐共役ジエン系重合体(SBR-1)、原料ゴム(天然ゴム)、変性液状ゴム、セルロースナノファイバー組成物、補強性充填剤(シリカ)、プロセスオイル、シランカップリング剤、亜鉛華、ステアリン酸、老化防止剤、ワックスを混練りした。このとき、密閉混合器の温度を制御し、排出温度は155~160℃で低分岐共役ジエン系重合体組成物(配合物)を得た。
 次に第二段の混練りとして、上記で得た配合物を室温まで冷却後、セルロースナノファイバー及び補強性充填剤(シリカ)の分散を向上させるため再度混練りした。この場合も、混合機の温度制御により、配合物の排出温度を155~160℃に調整した。冷却後、第三段の混練りとして、70℃に設定したオープンロールにて、硫黄、加硫促進剤-1、加硫促進剤―2を加えて混練した。その後、成型し、160℃で15分間、加硫プレスにて加硫した。加硫後の低分岐共役ジエン系重合体組成物の特性を評価した。その結果を表11に示す。
(比較例3~4)
 表11に示す高分岐共役ジエン系重合体を原料ゴム成分として、表11に示す配合に従い、次の方法により混練りして高分岐共役ジエン系重合体組成物を得た。
 温度制御装置を備える密閉混練機(内容量0.35L)を使用し、第一段の混練りとして、充填率65%、ローター回転数30~70rpmの条件で、高分岐共役ジエン系重合体(SBR-2またはSBR-3)、原料ゴム(天然ゴム)、セルロースナノファイバー組成物、プロセスオイル、亜鉛華、ステアリン酸、老化防止剤、ワックスを混練りした。このとき、密閉混合器の温度を制御し、排出温度は155~160℃で高分岐共役ジエン系重合体組成物(配合物)を得た。
 次に第二段の混練りとして、上記で得た配合物を室温まで冷却後、セルロースナノファイバーの分散を向上させるため再度混練りした。この場合も、混合機の温度制御により、配合物の排出温度を155~160℃に調整した。冷却後、第三段の混練りとして、70℃に設定したオープンロールにて、硫黄、加硫促進剤-1を加えて混練した。その後、成型し、160℃で15分間、加硫プレスにて加硫した。加硫後の高分岐共役ジエン系重合体組成物の特性を評価した。その結果を表11に示す。
 表10、及び表11に示す通り、実施例1~20で得られた低分岐共役ジエン系重合体組成物は、比較例1~4で得られた高分岐共役ジエン系重合体組成物と比較して、加硫物としたときにセルロースナノファイバーの分散性に優れ、優れた引張強度と引張伸び、且つ高い引張モジュラス及び高い弾性率を有することが確認された。
 また、実施例1~10で得られたマスターバッチを用いた低分岐共役ジエン系重合体組成物は、実施例11~20で得られた低分岐共役ジエン系重合体組成物と比較して、優れた引張強度と引張伸び、且つ高い引張モジュラス及び高い弾性率を有することが確認され、マスターバッチを使用することによる物性向上が確認された。
 更に実施例7~9、及び実施例17~19で得られた低分岐共役ジエン系重合体組成物は、実施例1~4並びに実施例11~14で得られた低分岐共役ジエン系重合体組成物と比較して、高い硬度、優れた引張強度と引張伸び、且つ高い引張モジュラス及び高い弾性率を有することが確認され、変性液状ゴムを配合することによる物性向上が確認された。
 本発明の分岐共役ジエン系重合体組成物は、例えば、自動車の内装品及び外装品、防振ゴム、ベルト、履物、発泡体、各種工業用品などの用途に好適に使用される。当該分岐共役ジエン系重合体組成物は、特に、ゴム又は柔軟なプラスチックが用いられている部材への適用が可能であり、タイヤへの適用が好適である。タイヤ用途としては例えば、乗用車用、トラック用、バス用、重車両用などのタイヤのトレッド及びサイドウォールが挙げられる。

Claims (51)

  1.  粘度検出器付きゲルパーミエーションクロマトグラフィ(GPC)を用いたGPC-光散乱測定により求められる収縮因子(g’)が、0.72以上であり、
     芳香族ビニル単量体の含有量(ST)と、ゲルパーミエーションクロマトグラフィ(GPC)により求められるカップリング重合体の割合(CS)との関係が、下記式:
      -0.8ST+40 ≦ CS ≦ -1.5ST+115
    を満たし、
     ゲルパーミエーションクロマトグラフィ(GPC)により求められる非カップリング重合体のピークトップ分子量Mp1と、ゲルパーミエーションクロマトグラフィ(GPC)により求められるカップリング重合体のピークトップ分子量Mp2との関係が、下記式:
      1.5≦(Mp2/Mp1)≦4.5
    を満たす、分岐共役ジエン系重合体と、
     セルロースナノファイバーと、
    を含む、分岐共役ジエン系重合体組成物。
  2.  前記分岐共役ジエン系重合体が、芳香族ビニル単量体単位を含む、請求項1に記載の分岐共役ジエン系重合体組成物。
  3.  前記分岐共役ジエン系重合体の100℃におけるムーニー粘度が、70以上130以下である、請求項1に記載の分岐共役ジエン系重合体組成物。
  4.  前記分岐共役ジエン系重合体の100℃におけるムーニー粘度に対する、前記分岐共役ジエン系重合体組成物の100℃におけるムーニー粘度の比が、0.7以上1.5以下である、請求項1に記載の分岐共役ジエン系重合体組成物。
  5.  粘度検出器付きゲルパーミエーションクロマトグラフィ(GPC)を用いたGPC-光散乱測定により求められる収縮因子(g’)が、0.72以上であり、
     芳香族ビニル単量体の含有量(ST)と、ゲルパーミエーションクロマトグラフィ(GPC)により求められるカップリング重合体の割合(CS)との関係が、下記式:
      -0.8ST+40 ≦ CS ≦ -1.5ST+115
    を満たし、
     ゲルパーミエーションクロマトグラフィ(GPC)により求められる非カップリング重合体のピークトップ分子量Mp1と、ゲルパーミエーションクロマトグラフィ(GPC)により求められるカップリング重合体のピークトップ分子量Mp2との関係が、下記式:
      1.5≦(Mp2/Mp1)≦4.5
    を満たす、分岐共役ジエン系重合体を50質量%以上含む第1のゴム成分100質量部と、
     セルロースナノファイバー15質量部以上100質量部以下と、
    を含む、ゴム改質用マスターバッチ。
  6.  前記分岐共役ジエン系重合体の重量平均分子量が、20万以上200万以下である、請求項5に記載のゴム改質用マスターバッチ。
  7.  前記分岐共役ジエン系重合体が、芳香族ビニル単量体単位を3質量%以上60質量%以下含む、請求項5に記載のゴム改質用マスターバッチ。
  8.  前記分岐共役ジエン系重合体が、結合スチレン量3質量%以上30質量%以下を有し、ブタジエン部分のミクロ構造として、1,2-ビニル結合量10モル%以上85モル%以下を有する、請求項5に記載のゴム改質用マスターバッチ。
  9.  前記セルロースナノファイバーがイオン性基を有さない、請求項5に記載のゴム改質用マスターバッチ。
  10.  前記ゴム改質用マスターバッチが、界面活性剤を更に含む、請求項5に記載のゴム改質用マスターバッチ。
  11.  前記界面活性剤がノニオン性界面活性剤である、請求項10に記載のゴム改質用マスターバッチ。
  12.  前記ノニオン性界面活性剤が、水酸基、カルボキシ基、スルホン酸基、及びアミノ基からなる群から選択される親水基と、炭化水素基とを有する化合物である、請求項11に記載のゴム改質用マスターバッチ。
  13.  前記ノニオン性界面活性剤が、下記一般式(1):
    R-(OCH2CH2m-OH   (1)
    [式中、Rは炭素数6~30の1価の脂肪族基を表し、そしてmはRの炭素数よりも小さい自然数である。]で表される化合物、及び下記一般式(2):
    1OCH2-(CHOH)4-CH2OR2   (2)
    [式中、R1及びR2は各々独立に、水素原子、炭素数1~30の脂肪族基、-COR3{式中、R3は、炭素数1~30の脂肪族基を表す。}、又は-(CH2CH2O)y-R4{式中、R4は、水素原子、又は炭素数1~30の脂肪族基を表し、そしてyは1~30の整数である。}を表す。]で表される化合物、
    からなる群から選択される1種以上である、請求項11に記載のゴム改質用マスターバッチ。
  14.  前記ゴム改質用マスターバッチが、液状ゴムを更に含む、請求項10に記載のゴム改質用マスターバッチ。
  15.  前記液状ゴムの数平均分子量が、1,000~80,000である、請求項14に記載のゴム改質用マスターバッチ。
  16.  前記液状ゴムの数平均分子量(Mn)と重量平均分子量(Mw)との比(Mw/Mn)が、1.5~5である、請求項14に記載のゴム改質用マスターバッチ。
  17.  前記液状ゴムが、ジエン系ゴム、シリコーンゴム、ウレタンゴム、及び多硫化ゴム並びにこれらの水素添加物からなる群から選択される1種以上を含む、請求項14に記載のゴム改質用マスターバッチ。
  18.  前記液状ゴムが、不飽和カルボン酸及び/又はその誘導体で変性した変性液状ゴムを含む、請求項14に記載のゴム改質用マスターバッチ。
  19.  前記第1のゴム成分100質量部に対して前記変性液状ゴムを10質量部以上200質量部以下含む、請求項18に記載のゴム改質用マスターバッチ。
  20.  請求項5~19のいずれか一項に記載のゴム改質用マスターバッチと、第2のゴム成分とを含む混練物である、分岐共役ジエン系重合体組成物。
  21.  前記第2のゴム成分が、天然ゴムを含む、請求項20に記載の分岐共役ジエン系重合体組成物。
  22.  前記第1のゴム成分と前記第2のゴム成分との合計100質量部に対してセルロースナノファイバーを1質量部以上15質量部以下含む、請求項20に記載の分岐共役ジエン系重合体組成物。
  23.  前記第1のゴム成分と前記第2のゴム成分との合計100質量部に対して補強性充填剤を10質量部以上80質量部以下含む、請求項20に記載の分岐共役ジエン系重合体組成物。
  24.  不飽和カルボン酸及び/又はその誘導体で変性した変性液状ゴムを含む、請求項20に記載の分岐共役ジエン系重合体組成物。
  25.  前記第1のゴム成分と前記第2のゴム成分との合計100質量部に対して前記変性液状ゴムを1質量部以上25質量部以下含む、請求項24に記載の分岐共役ジエン系重合体組成物。
  26.  請求項20に記載の分岐共役ジエン系重合体組成物の硬化物である、分岐共役ジエン系重合体硬化物。
  27.  粘度検出器付きゲルパーミエーションクロマトグラフィ(GPC)を用いたGPC-光散乱測定により求められる収縮因子(g’)が、0.72以上であり、
     芳香族ビニル単量体の含有量(ST)と、ゲルパーミエーションクロマトグラフィ(GPC)により求められるカップリング重合体の割合(CS)との関係が、下記式:
      -0.8ST+40 ≦ CS ≦ -1.5ST+115
    を満たし、
     ゲルパーミエーションクロマトグラフィ(GPC)により求められる非カップリング重合体のピークトップ分子量Mp1と、ゲルパーミエーションクロマトグラフィ(GPC)により求められるカップリング重合体のピークトップ分子量Mp2との関係が、下記式:
      1.5≦(Mp2/Mp1)≦4.5
    を満たす、分岐共役ジエン系重合体を50質量%以上含むゴム成分100質量部と、
     セルロースナノファイバー1質量部以上15質量部以下と、
    を含む、分岐共役ジエン系重合体組成物。
  28.  粘度検出器付きゲルパーミエーションクロマトグラフィ(GPC)を用いたGPC-光散乱測定により求められる収縮因子(g’)が0.72以上であり、
     芳香族ビニル単量体の含有量(ST)と、ゲルパーミエーションクロマトグラフィ(GPC)により求められるカップリング重合体の割合(CS)との関係が、下記式:
      -0.8ST+40 ≦ CS ≦ -1.5ST+115
    を満たし、
     ゲルパーミエーションクロマトグラフィ(GPC)により求められる非カップリング重合体のピークトップ分子量Mp1と、ゲルパーミエーションクロマトグラフィ(GPC)により求められるカップリング重合体のピークトップ分子量Mp2との関係が、下記式:
      1.5≦(Mp2/Mp1)≦4.5
    を満たす分岐共役ジエン系重合体5質量%以上及び天然ゴムを含むゴム成分100質量部と、
     セルロースナノファイバー1質量部以上15質量部以下と、
    を含む、分岐共役ジエン系重合体組成物。
  29.  前記分岐共役ジエン系重合体の重量平均分子量が、20万以上200万以下である、請求項27又は28に記載の分岐共役ジエン系重合体組成物。
  30.  前記分岐共役ジエン系重合体が、芳香族ビニル単量体単位を3質量%以上60質量%以下含む、請求項27又は28に記載の分岐共役ジエン系重合体組成物。
  31.  前記分岐共役ジエン系重合体が、結合スチレン量3質量%以上30質量%以下を有し、ブタジエン部分のミクロ構造として、1,2-ビニル結合量10モル%以上85モル%以下を有する、請求項27又は28に記載の分岐共役ジエン系重合体組成物。
  32.  前記セルロースナノファイバーがイオン性基を有さない、請求項27又は28に記載の分岐共役ジエン系重合体組成物。
  33.  前記分岐共役ジエン系重合体組成物が、界面活性剤を更に含む、請求項27又は28に記載の分岐共役ジエン系重合体組成物。
  34.  前記界面活性剤がノニオン性界面活性剤である、請求項33に記載の分岐共役ジエン系重合体組成物。
  35.  前記ノニオン性界面活性剤が、水酸基、カルボキシ基、スルホン酸基、及びアミノ基からなる群から選択される親水基と、炭化水素基とを有する化合物である、請求項34に記載の分岐共役ジエン系重合体組成物。
  36.  前記ノニオン性界面活性剤が、下記一般式(1):
    R-(OCH2CH2)m-OH   (1)
    [式中、Rは炭素数6~30の1価の脂肪族基を表し、そしてmはRの炭素数よりも小さい自然数である。]で表される化合物、及び下記一般式(2):
    1OCH2-(CHOH)4-CH2OR2   (2)
    [式中、R1及びR2は各々独立に、水素原子、炭素数1~30の脂肪族基、-COR3{式中、R3は、炭素数1~30の脂肪族基を表す。}、又は-(CH2CH2O)y-R4{式中、R4は、水素原子、又は炭素数1~30の脂肪族基を表し、そしてyは1~30の整数である。}を表す。]で表される化合物、
    からなる群から選択される1種以上である、請求項34に記載の分岐共役ジエン系重合体組成物。
  37.  前記分岐共役ジエン系重合体組成物が、液状ゴムを更に含む、請求項33に記載の分岐共役ジエン系重合体組成物。
  38.  前記液状ゴムの数平均分子量が、1,000~80,000である、請求項37に記載の分岐共役ジエン系重合体組成物。
  39.  前記液状ゴムの数平均分子量(Mn)と重量平均分子量(Mw)との比(Mw/Mn)が、1.5~5である、請求項37に記載の分岐共役ジエン系重合体組成物。
  40.  前記液状ゴムが、ジエン系ゴム、シリコーンゴム、ウレタンゴム、及び多硫化ゴム並びにこれらの水素添加物からなる群から選択される1種以上を含む、請求項37に記載の分岐共役ジエン系重合体組成物。
  41.  前記液状ゴムが、不飽和カルボン酸及び/又はその誘導体で変性した変性液状ゴムを含む、請求項37に記載の分岐共役ジエン系重合体組成物。
  42.  前記ゴム成分100質量部に対して前記変性液状ゴムを1質量部以上25質量部以下含む、請求項41に記載の分岐共役ジエン系重合体組成物。
  43.  前記ゴム成分100質量部に対して補強性充填剤を10質量部以上80質量部以下含む、請求項27又は28に記載の分岐共役ジエン系重合体組成物。
  44.  請求項27又は28に記載の分岐共役ジエン系重合体組成物の硬化物である、分岐共役ジエン系重合体硬化物。
  45.  請求項10に記載のゴム改質用マスターバッチの製造方法であって、
     セルロースナノファイバーと界面活性剤とを含むセルロースナノファイバー組成物を調製する工程、及び
     前記セルロースナノファイバー組成物と、分岐共役ジエン系重合体を含む第1のゴム成分とを混合する工程、
    を含む、方法。
  46.  請求項14に記載のゴム改質用マスターバッチの製造方法であって、
     セルロースナノファイバーと、液状ゴムと、界面活性剤とを含むセルロースナノファイバー組成物を調製する工程、及び
     前記セルロースナノファイバー組成物と、分岐共役ジエン系重合体を含む第1のゴム成分とを混合する工程、
    を含む、方法。
  47.  前記セルロースナノファイバー組成物が粉体である、請求項45又は46に記載の方法。
  48.  請求項33に記載の分岐共役ジエン系重合体組成物の製造方法であって、
     セルロースナノファイバーと界面活性剤とを含むセルロースナノファイバー組成物を調製する工程、
     前記セルロースナノファイバー組成物と、分岐共役ジエン系重合体を含む第1のゴム成分とを混合してゴム改質用マスターバッチを調製する工程、及び
     前記ゴム改質用マスターバッチと第2のゴム成分とを混合して分岐共役ジエン系重合体組成物を調製する工程、
    を含む、方法。
  49.  請求項37に記載の分岐共役ジエン系重合体組成物の製造方法であって、
     セルロースナノファイバーと、液状ゴムと、界面活性剤とを含むセルロースナノファイバー組成物を調製する工程、
     前記セルロースナノファイバー組成物と、分岐共役ジエン系重合体を含む第1のゴム成分とを混合してゴム改質用マスターバッチを調製する工程、及び
     前記ゴム改質用マスターバッチと第2のゴム成分とを混合して分岐共役ジエン系重合体組成物を調製する工程、
    を含む、方法。
  50.  前記セルロースナノファイバー組成物が粉体である、請求項48に記載の方法。
  51.  前記セルロースナノファイバー組成物が粉体である、請求項49に記載の方法。
PCT/JP2023/030525 2022-08-24 2023-08-24 ゴム改質用マスターバッチ、及び分岐共役ジエン系重合体組成物 WO2024043311A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023575630A JPWO2024043311A1 (ja) 2022-08-24 2023-08-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022133677 2022-08-24
JP2022-133677 2022-08-24

Publications (1)

Publication Number Publication Date
WO2024043311A1 true WO2024043311A1 (ja) 2024-02-29

Family

ID=90013526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030525 WO2024043311A1 (ja) 2022-08-24 2023-08-24 ゴム改質用マスターバッチ、及び分岐共役ジエン系重合体組成物

Country Status (3)

Country Link
JP (1) JPWO2024043311A1 (ja)
TW (1) TWI847851B (ja)
WO (1) WO2024043311A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164053A1 (ja) * 2017-03-07 2018-09-13 旭化成株式会社 変性共役ジエン系重合体、重合体組成物、及びゴム組成物
JP2019147877A (ja) * 2018-02-27 2019-09-05 横浜ゴム株式会社 タイヤ用ゴム組成物
JP2020007492A (ja) * 2018-07-11 2020-01-16 旭化成株式会社 セルロース含有樹脂組成物
JP2020066700A (ja) * 2018-10-25 2020-04-30 横浜ゴム株式会社 ゴムマスターバッチおよびその製造方法
JP2021014512A (ja) * 2019-07-11 2021-02-12 国立大学法人信州大学 複合材料
JP2022047509A (ja) * 2020-09-11 2022-03-24 山陽色素株式会社 セルロースナノファイバー含有ゴム組成物の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7638559B2 (en) * 2005-05-10 2009-12-29 Nova Chemicals Inc. Expandable resins

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164053A1 (ja) * 2017-03-07 2018-09-13 旭化成株式会社 変性共役ジエン系重合体、重合体組成物、及びゴム組成物
JP2019147877A (ja) * 2018-02-27 2019-09-05 横浜ゴム株式会社 タイヤ用ゴム組成物
JP2020007492A (ja) * 2018-07-11 2020-01-16 旭化成株式会社 セルロース含有樹脂組成物
JP2020066700A (ja) * 2018-10-25 2020-04-30 横浜ゴム株式会社 ゴムマスターバッチおよびその製造方法
JP2021014512A (ja) * 2019-07-11 2021-02-12 国立大学法人信州大学 複合材料
JP2022047509A (ja) * 2020-09-11 2022-03-24 山陽色素株式会社 セルロースナノファイバー含有ゴム組成物の製造方法

Also Published As

Publication number Publication date
TWI847851B (zh) 2024-07-01
TW202419554A (zh) 2024-05-16
JPWO2024043311A1 (ja) 2024-02-29

Similar Documents

Publication Publication Date Title
KR102696644B1 (ko) 다당류-엘라스토머 마스터배치 조성물
EP3757159B1 (en) Nanocellulose/surfactant composite
Ojogbo et al. Batch mixing for the in situ grafting of epoxidized rubber onto cellulose nanocrystals
WO2005017002A1 (ja) シリカ充填ゴム顆粒体及びその製造方法
JP2021001253A (ja) ゴム・フィラー複合体の製造方法
JP7547659B2 (ja) ゴム改質用マスターバッチ、及び低分岐共役ジエン系重合体組成物
JP6353169B2 (ja) ゴム組成物及び空気入りタイヤ
WO2024043311A1 (ja) ゴム改質用マスターバッチ、及び分岐共役ジエン系重合体組成物
JP7450132B1 (ja) ゴム改質用マスターバッチ、及び水添共役ジエン系重合体組成物
Kaewsakul Silica-reinforced natural rubber for low rolling resistance, energy-saving tires: aspects of mixing, formulation and compatibilization
JP2024030656A (ja) ゴム改質用マスターバッチ、及び高分岐共役ジエン系重合体組成物
JP2024030657A (ja) 天然ゴム改質用マスターバッチ、及び高分岐共役ジエン系重合体組成物
JP2024030651A (ja) 天然ゴム改質用マスターバッチ、及び低分岐共役ジエン系重合体組成物
JP2024030654A (ja) 天然ゴム改質用マスターバッチ、及びブロック共重合体組成物
JP2024030653A (ja) ゴム改質用マスターバッチ、及びブロック共重合体組成物
US20150376348A1 (en) Rubber Compositions Including Cellulose Esters And Inorganic Oxides
JP7374372B2 (ja) セルロースナノファイバーを含む組成物
WO2022177012A1 (ja) セルロースナノファイバーを含む組成物
JP2024144239A (ja) セルロースナノファイバーを含む組成物
TW202432699A (zh) 包含纖維素奈米纖維之組合物
Chen et al. Preparation of modified sisal microcrystalline cellulose PHS‐g‐MCC and its application in NR/SiO2 composites
CN116783077A (zh) 包含纤维素纳米纤维的组合物
Ali et al. Partial replacement of silica with cellulose nanocrystals in natural rubber compounds
Blume et al. Interactions between Silica and Epoxidized Natural Rubber with and without Silane
JP2020196843A (ja) ゴム組成物及び空気入りタイヤ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023575630

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857419

Country of ref document: EP

Kind code of ref document: A1