WO2017090421A1 - 水添共役ジエン系重合体の製造方法、水添共役ジエン系重合体、重合体組成物、架橋重合体及びタイヤ - Google Patents

水添共役ジエン系重合体の製造方法、水添共役ジエン系重合体、重合体組成物、架橋重合体及びタイヤ Download PDF

Info

Publication number
WO2017090421A1
WO2017090421A1 PCT/JP2016/083089 JP2016083089W WO2017090421A1 WO 2017090421 A1 WO2017090421 A1 WO 2017090421A1 JP 2016083089 W JP2016083089 W JP 2016083089W WO 2017090421 A1 WO2017090421 A1 WO 2017090421A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated diene
polymer
group
diene polymer
hydrogenated conjugated
Prior art date
Application number
PCT/JP2016/083089
Other languages
English (en)
French (fr)
Inventor
拓海 足立
寛文 千賀
貴臣 松本
了司 田中
郁宏 豊川
直矢 野坂
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2017515847A priority Critical patent/JP6252705B2/ja
Priority to SG11201804093WA priority patent/SG11201804093WA/en
Publication of WO2017090421A1 publication Critical patent/WO2017090421A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/02Hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives

Definitions

  • the present disclosure relates to a method for producing a hydrogenated conjugated diene polymer, a hydrogenated conjugated diene polymer, a polymer composition, a crosslinked polymer, and a tire.
  • a conjugated diene polymer obtained by polymerization using a conjugated diene compound has good properties such as heat resistance, wear resistance, mechanical strength, and moldability, so that a pneumatic tire, a vibration-proof rubber, Widely used in various industrial products such as hoses.
  • rubber compositions used for pneumatic tire treads and sidewalls should contain a reinforcing agent such as carbon black or silica together with a conjugated diene polymer in order to improve the durability and wear resistance of the tire. It has been known. Conventionally, in order to increase the affinity between conjugated diene polymer and silica, etc., a modified conjugated diene polymer in which the terminal of the conjugated diene polymer is modified with a compound containing silicon or nitrogen is added to the rubber composition. (See, for example, Patent Documents 1 to 3). Patent Document 1 discloses modifying the terminal of a conjugated diene polymer using an aminosilane compound.
  • Patent Documents 2 and 3 disclose that a terminal of a conjugated diene polymer is modified using a polyorganosiloxane having a plurality of functional groups. In addition, it is known to react a terminal of a conjugated diene polymer with a coupling agent for the purpose of increasing the molecular weight of the conjugated diene polymer (for example, see Patent Document 1).
  • a conventional rubber composition containing a hydrogenated conjugated diene polymer is not sufficiently high in processability and has room for further improvement. Therefore, there is a demand for a rubber material that is excellent in fracture strength and wear resistance and excellent in workability.
  • the present disclosure has been made in view of the above problems, and provides a hydrogenated conjugated diene polymer capable of obtaining a rubber composition having high fracture characteristics and wear resistance when made into a crosslinked product and excellent in processability.
  • One purpose is to provide.
  • the following method for producing a hydrogenated conjugated diene polymer, a hydrogenated conjugated diene polymer, a polymer composition, a crosslinked polymer, and a tire are provided.
  • a polyorganosiloxane having a total of two or more specific functional groups selected from the group consisting of an epoxy group, an alkoxy group, a carbonyl group, a 2-pyrrolidonyl group, a vinyl group and a halogen atom, and an active end A method for producing a hydrogenated conjugated diene polymer, comprising reacting a conjugated diene polymer and hydrogenating a modified conjugated diene polymer obtained by the reaction.
  • a polymer composition comprising a hydrogenated conjugated diene polymer obtained by the production method of [1], silica, and a crosslinking agent.
  • a rubber composition having excellent processability can be obtained.
  • the crosslinked polymer obtained by crosslinking the rubber composition has sufficiently high fracture characteristics and wear resistance, and can be applied to various applications.
  • the hydrogenated conjugated diene polymer of the present disclosure is a hydrogenated product of a conjugated diene polymer having a structural unit derived from a conjugated diene compound.
  • the hydrogenated conjugated diene polymer is produced by a method including the following polymerization step, modification step and hydrogenation step.
  • a monomer containing a conjugated diene compound is polymerized to obtain a conjugated diene polymer having an active end.
  • the conjugated diene compound used for the polymerization may be 1,3-butadiene alone or a conjugated diene compound other than 1,3-butadiene (hereinafter also referred to as “other conjugated diene compound”).
  • other conjugated diene compounds include isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, 1,3-heptadiene, and 2-phenyl-1,3-butadiene. , 3-methyl-1,3-pentadiene, 2-chloro-1,3-butadiene and the like. Of these, isoprene and 2,3-dimethyl-1,3-butadiene are preferred.
  • the conjugated diene polymer in the present disclosure may be a homopolymer using a conjugated diene compound, but is a copolymer of a conjugated diene compound and an aromatic vinyl compound from the viewpoint of increasing rubber strength. Is preferred.
  • aromatic vinyl compound used for polymerization examples include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 4 -T-butylstyrene, 5-t-butyl-2-methylstyrene, vinylethylbenzene, divinylbenzene, trivinylbenzene, divinylnaphthalene, t-butoxystyrene, vinylbenzyldimethylamine, (4-vinylbenzyl) dimethylaminoethyl ether N, N-dimethylaminoethylstyrene, N, N-dimethylaminomethylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethylstyrene, 2-ty
  • the conjugated diene polymer in the present disclosure is a copolymer of a conjugated diene compound and an aromatic vinyl compound
  • 1,3-butadiene and styrene are included in the monomer composition in terms of high living property in anionic polymerization.
  • a polymer is preferred. It is preferable that the copolymer has a random copolymer portion in which the distribution of the conjugated diene compound and the aromatic vinyl compound is irregular.
  • the said copolymer may further have the block part which consists of a conjugated diene compound or an aromatic vinyl compound.
  • the conjugated diene polymer is a copolymer of a conjugated diene compound and an aromatic vinyl compound
  • the proportion of the aromatic vinyl compound used is a balance between the low hysteresis loss characteristic of the resulting crosslinked polymer and the wet grip property.
  • the content is preferably 3 to 55% by mass, more preferably 5 to 50% by mass, based on the total amount of the conjugated diene compound and the aromatic vinyl compound used for the polymerization.
  • the content ratio of the structural unit derived from the aromatic vinyl compound in the polymer is a value measured by 1 H-NMR.
  • a conjugated diene compound and an aromatic vinyl compound may be used individually by 1 type, respectively, and may be used in combination of 2 or more type.
  • a compound other than the conjugated diene compound and the aromatic vinyl compound may be used as the monomer.
  • other monomers include acrylonitrile, methyl (meth) acrylate, ethyl (meth) acrylate, and the like.
  • the proportion of other monomers used is preferably 15% by mass or less, and more preferably 10% by mass or less, based on the total amount of monomers used for polymerization.
  • any of solution polymerization method, gas phase polymerization method and bulk polymerization method may be used, but the solution polymerization method is particularly preferable.
  • a polymerization form you may use any of a batch type and a continuous type.
  • the solution polymerization method as an example of a specific polymerization method, a monomer containing a conjugated diene compound is polymerized in an organic solvent in the presence of a polymerization initiator and a randomizer used as necessary. The method of doing is mentioned.
  • an alkali metal compound and an alkaline earth metal compound can be used as the polymerization initiator.
  • alkali metal compound and an alkaline earth metal compound include, for example, methyllithium, ethyllithium, n-propyllithium, n-butyllithium, sec-butyllithium, alkyllithium such as t-butyllithium, 1,4-dilithiobutane, phenyllithium, stilbenelithium, Naphthyl lithium, 1,3-bis (1-lithio-1,3-dimethylpentyl) benzene, 1,3-phenylenebis (3-methyl-1-phenylpentylidene) dilithium, naphthyl sodium, naphthyl potassium, di-n -Compounds obtained by mixing at least one of butylmagnesium, di-n-hexylmagnesium, ethoxypotassium, calcium stearate, alkali metal compounds and alka
  • Raised It is. Among them, it is preferable to use a lithium compound as the polymerization initiator.
  • the total amount of the polymerization initiator used is preferably 0.2 to 20 mmol with respect to 100 g of the monomer used for the polymerization.
  • polymerization is carried out in the presence of a mixture of at least one of an alkali metal compound and an alkaline earth metal compound and a compound having a functional group that interacts with silica, as a polymerization initiator.
  • a functional group that interacts with silica can be introduced at the polymerization initiation terminal of the coalescence.
  • the “functional group that interacts with silica” means a group having an element that interacts with silica, such as nitrogen, sulfur, phosphorus, and oxygen.
  • Interaction refers to an intermolecular force that forms a covalent bond between molecules or is weaker than a covalent bond (eg, ion-dipole interaction, dipole-dipole interaction, hydrogen bond, van der Waals This means that an electromagnetic force between molecules such as force is formed.
  • a nitrogen-containing compound such as a secondary amine compound
  • the nitrogen-containing compound include, for example, dimethylamine, diethylamine, dipropylamine, dibutylamine, dodecamethyleneimine, N, N′-dimethyl-N′-trimethylsilyl-1,6-diaminohexane, piperidine, pyrrolidine, Hexamethyleneimine, heptamethyleneimine, dicyclohexylamine, N-methylbenzylamine, di- (2-ethylhexyl) amine, diallylamine, morpholine, N- (trimethylsilyl) piperazine, N- (tert-butyldimethylsilyl) piperazine, 1, Examples include 3-ditrimethylsilyl-1,3,5-triazinane.
  • At least one of an alkali metal compound and an alkaline earth metal compound and a compound having a functional group that interacts with silica are mixed in advance, and the mixture is added to the polymerization system.
  • Polymerization may be performed.
  • at least one of an alkali metal compound and an alkaline earth metal compound and a compound having a functional group that interacts with silica may be added to the polymerization system, and polymerization may be performed by mixing both in the polymerization system. Good.
  • the randomizer can be used for the purpose of adjusting the vinyl bond content representing the vinyl bond content in the polymer.
  • randomizers include dimethoxybenzene, tetrahydrofuran, dimethoxyethane, diethylene glycol dibutyl ether, diethylene glycol dimethyl ether, 2,2-di (tetrahydrofuryl) propane, 2- (2-ethoxyethoxy) -2-methylpropane, triethylamine, pyridine N-methylmorpholine, tetramethylethylenediamine and the like. These can be used individually by 1 type or in combination of 2 or more types.
  • the organic solvent used for the polymerization may be an organic solvent inert to the reaction, and for example, aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons and the like can be used.
  • hydrocarbons having 3 to 8 carbon atoms are preferable, and specific examples thereof include, for example, propane, n-butane, isobutane, n-pentane, isopentane, n-hexane, cyclohexane, propene, 1-butene and isobutene.
  • the monomer concentration in the reaction solvent is preferably 5 to 50% by mass, and preferably 10 to 30% by mass from the viewpoint of maintaining a balance between productivity and ease of polymerization control. More preferred.
  • the temperature of the polymerization reaction is preferably ⁇ 20 ° C. to 150 ° C., more preferably 0 to 120 ° C.
  • the polymerization reaction is preferably performed under a pressure sufficient to keep the monomer in a substantially liquid phase. Such a pressure can be obtained by a method such as pressurizing the inside of the reactor with a gas inert to the polymerization reaction.
  • the weight average molecular weight (Mw) in terms of polystyrene by gel permeation chromatography (GPC) of the resulting conjugated diene polymer is preferably 1.0 ⁇ 10 4 to 2.0 ⁇ 10 6 . If the Mw is smaller than 1.0 ⁇ 10 4 , the resulting crosslinked polymer tends to be reduced in tensile strength, fuel efficiency and wear resistance, and if larger than 2.0 ⁇ 10 6 , the polymer The processability of the composition tends to decrease. More preferably, it is 1.2 ⁇ 10 4 to 1.5 ⁇ 10 6 , and still more preferably 1.5 ⁇ 10 4 to 1.0 ⁇ 10 6 .
  • the vinyl bond content in the butadiene unit is preferably 30 to 70% by mass, more preferably 33 to 68% by mass, and 35 to 65% by mass. Is more preferable. If the vinyl bond content is less than 30 mol%, the grip characteristics tend to be low, and if it exceeds 70 mass%, the wear resistance of the resulting vulcanized rubber tends to decrease.
  • the “vinyl bond content” is a value indicating the content ratio of structural units having 1,2-bonds to all structural units of butadiene in the conjugated diene polymer. 1 H-NMR Is a value measured by.
  • a polyorganosiloxane having a total of two or more specific functional groups in one molecule that is at least one selected from the group consisting of epoxy groups, alkoxy groups, carbonyl groups, 2-pyrrolidonyl groups, vinyl groups, and halogen atoms ( Hereinafter, it is also referred to as “specific polyorganosiloxane”) and an active terminal of the conjugated diene polymer obtained above is reacted.
  • the specific polyorganosiloxane is a linear, cyclic or branched compound having a siloxane bond.
  • Preferable specific examples of the specific polyorganosiloxane include a compound represented by the following formula (1).
  • R 1 to R 8 are each independently a hydrocarbyl group
  • a 1 is a group having a specific functional group
  • a 2 and A 3 are each independently a specific functional group.
  • B 1 is a group having a polyether structure
  • a is an integer of 3 to 200
  • b is an integer of 0 to 200
  • c is an integer of 0 to 200.
  • R 1 , R 4 , R 5 , R 8 , A 1 and B 1 may be the same or different from one another among the structural units.
  • the hydrocarbyl group of R 1 to R 8 , A 2 , A 3 in the above formula (1) is a linear or branched alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or carbon Examples thereof include aryl groups of 6 to 20. Of these, an alkyl group or a phenyl group is preferable.
  • a group having 4 to 12 carbon atoms having an epoxy group, a group having 4 to 20 carbon atoms having a 2-pyrrolidonyl group, or an alkoxy group having 1 to 5 carbon atoms is preferable.
  • Examples of the polyether structure of B 1 include a structure having an alkylene glycol unit having 2 to 20 carbon atoms as a repeating unit, and specific examples thereof include a polyethylene glycol structure and a polypropylene glycol structure.
  • a is preferably from 20 to 150, more preferably from 30 to 150, from the viewpoint of sufficiently securing the processability improvement effect of the polymer composition and suppressing the viscosity of the specific polyorganosiloxane from becoming too high.
  • b is preferably from 0 to 150, more preferably from 0 to 120.
  • c is preferably from 0 to 180, more preferably from 10 to 150.
  • the total number of a, b and c is preferably 400 or less, and more preferably 300 or less.
  • the specific polyorganosiloxane can be obtained by a known synthesis method. Moreover, you may obtain and use a commercial item.
  • the reaction between the conjugated diene polymer having an active end and the specific polyorganosiloxane can be performed, for example, as a solution reaction.
  • the use ratio of the specific polyorganosiloxane determines the processability of the polymer composition and the fracture characteristics and viscoelasticity of the crosslinked polymer obtained using the composition. From the viewpoint of achieving both, it is preferably 0.001 mol or more, more preferably 0.005 mol or more with respect to 1 mol of the metal atom involved in the polymerization of the polymerization initiator.
  • the upper limit of the use ratio is preferably less than 0.1 mol, and more preferably less than 0.05 mol, with respect to 1 mol of the metal atom involved in the polymerization of the polymerization initiator.
  • the temperature of the modification reaction is usually the same as that of the polymerization reaction, preferably ⁇ 20 ° C. to 150 ° C., more preferably 0 to 120 ° C. When the reaction temperature is low, the viscosity of the polymer after modification tends to increase, and when the reaction temperature is high, the polymerization active terminal tends to be deactivated.
  • the reaction time is preferably 1 minute to 5 hours, more preferably 2 minutes to 1 hour.
  • other modifiers may be used together with the specific polyorganosiloxane.
  • the other modifier is not particularly limited as long as it has a functional group that interacts with silica and can react with the active terminal of the polymer, and a known compound can be used as the modifier.
  • the proportion of use is determined from the viewpoint of sufficiently proceeding the reaction between the conjugated diene polymer having an active terminal and the specific polyorganosiloxane, with the specific polyorganosiloxane and the other modifier. It is preferable to set it as 10 mol% or less with respect to a total amount, and it is more preferable to set it as 5 mol% or less.
  • the modified conjugated diene polymer obtained by the reaction of a conjugated diene polymer having an active end and a specific polyorganosiloxane is one in which a plurality of conjugated diene polymer chains are bonded to one molecule of the specific polyorganosiloxane. It is preferable that By blending a hydrogenated product of a modified conjugated diene polymer having a structure in which a plurality of conjugated diene polymer chains are bonded via a specific polyorganosiloxane with silica, the polymer composition It is preferable in that a cross-linked polymer having sufficiently high fracture characteristics and viscoelasticity can be obtained while sufficiently improving the workability of the resin.
  • the number of conjugated diene polymer chains of the modified conjugated diene polymer is preferably 3 or more, more preferably 4 or more.
  • the weight average molecular weight in terms of polystyrene of the modified conjugated diene polymer obtained above by GPC is preferably 1.0 ⁇ 10 5 to 3.0 from the viewpoint of improving the fracture strength, wear resistance and workability in a balanced manner.
  • ⁇ 10 6 more preferably 1.2 ⁇ 10 5 to 2.0 ⁇ 10 6 , and still more preferably 1.5 ⁇ 10 5 to 1.2 ⁇ 10 6 .
  • the modified conjugated diene polymer which is a polymer obtained by the above modification step, is hydrogenated (hydrogenated).
  • hydrogenation method and conditions any method and conditions can be used as long as a polymer having a desired hydrogenation rate can be obtained. Examples of such hydrogenation methods include a method in which a catalyst mainly composed of an organometallic compound of titanium is used as a hydrogenation catalyst, and a catalyst comprising an organometallic compound of iron, nickel, cobalt and an organometallic compound such as alkylaluminum.
  • Method of using method of using an organic complex of an organometallic compound such as ruthenium, rhodium, method of using a catalyst in which a metal such as palladium, platinum, ruthenium, cobalt or nickel is supported on a carrier such as carbon, silica or alumina and so on.
  • a homogeneous catalyst composed of an organometallic compound of titanium alone or an organometallic compound of lithium, magnesium, and aluminum (Japanese Patent Publication No. 63-4841 and Japanese Patent Publication No. 1-337970) is used.
  • the hydrogenation method under mild conditions of low pressure and low temperature is industrially preferable, and the hydrogenation selectivity to the double bond derived from butadiene is high, which is suitable for the purpose of the present disclosure.
  • Hydrogenation is carried out in a solvent that is inert to the catalyst and in which the conjugated diene polymer is soluble.
  • Preferred solvents include aliphatic hydrocarbons such as n-pentane, n-hexane and n-octane, alicyclic hydrocarbons such as cyclohexane and cycloheptane, aromatic hydrocarbons such as benzene and toluene, diethyl ether , Ethers such as tetrahydrofuran alone or a mixture containing them as a main component.
  • the polymer In the hydrogenation reaction, the polymer is generally held at a predetermined temperature in hydrogen or an inert atmosphere, a hydrogenation catalyst is added with stirring or under stirring, and hydrogen gas is then introduced to increase the pressure. It is carried out by pressing.
  • the inert atmosphere means an atmosphere that does not react with the hydrogenation reaction participant, and is formed of, for example, helium, neon, argon, or the like. Air or oxygen is not preferable because it oxidizes the catalyst and deactivates the catalyst. Nitrogen is not preferred because it acts as a catalyst poison during the hydrogenation reaction and reduces the hydrogenation activity.
  • the hydrogenation reactor preferably has an atmosphere of hydrogen gas alone.
  • any of a batch process, a continuous process, and a combination thereof may be used.
  • the addition amount of the hydrogenation catalyst is preferably 0.02 to 20 mmol per 100 g of the modified conjugated diene polymer before hydrogenation.
  • the hydrogenation rate is not particularly limited, but it is preferable to hydrogenate the modified conjugated diene polymer so that the hydrogenation rate of butadiene units is 70 to 99%.
  • the hydrogenation rate is more preferably 80% or more, further preferably 90% or more, and particularly preferably 92% or more.
  • the upper limit of a hydrogenation rate is 99% or less from a viewpoint of suppressing the fall of manufacturing efficiency. More preferably, it is 98% or less, More preferably, it is 97% or less.
  • the hydrogenation rate is a value measured by 1 H-NMR.
  • the hydrogenation rate can be set to a desired value by changing the amount of the hydrogenation catalyst, the hydrogen pressure during the hydrogenation reaction, and the reaction time.
  • the hydrogenated conjugated diene English polymer of the present disclosure includes a structural unit represented by the following formula (3), a structural unit represented by the following formula (4), a structural unit represented by the following formula (5), and the following:
  • a polymer that satisfies the following formula (A) is preferable. 0.70 ⁇ (p + r) / (p + q + r + s) ⁇ 0.99 (A)
  • the numerical formula (A) indicates that “the hydrogenation rate of the structural unit derived from butadiene is 70 to 99%”.
  • the vinyl bond content (%) of the hydrogenated conjugated diene polymer is represented by “[(p + q) / (p + q + r + s)] ⁇ 100”.
  • a preferred method for obtaining the hydrogenated conjugated diene-based polymer of the present disclosure is a solution polymerization of a monomer containing butadiene in the presence of an alkali metal compound, a modification step is performed using the obtained polymer solution as it is, and then It is used for the hydrogenation process and is industrially useful.
  • the hydrogenated conjugated diene polymer of the present disclosure can be obtained by removing the solvent from the solution obtained above and isolating the polymer.
  • the polymer can be isolated by a known desolvation method such as steam stripping and a drying operation such as heat treatment.
  • the polymer composition of the present disclosure contains the hydrogenated conjugated diene polymer obtained above, silica, and a crosslinking agent.
  • the content ratio of the hydrogenated conjugated diene polymer in the polymer composition is preferably 20% by mass or more, more preferably 30% by mass or more with respect to the total amount of the polymer composition. More preferably, it is 40% by mass or more.
  • silica examples include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), colloidal silica, precipitated silica, calcium silicate, and aluminum silicate.
  • wet silica is particularly preferable from the viewpoint of the effect of improving fracture characteristics and the effect of achieving both wet grip properties and low rolling resistance.
  • high dispersible type silica from the viewpoint of improving dispersibility in the polymer composition and improving physical properties and processability.
  • a silica can be used individually by 1 type or in combination of 2 or more types.
  • the polymer composition may contain various reinforcing fillers such as carbon black, clay and calcium carbonate in addition to silica as a filler.
  • silica or a combination of carbon black and silica is used.
  • the total amount of silica and carbon black in the polymer composition is preferably 20 to 130 parts by mass, more preferably 25 to 110 parts per 100 parts by mass of the total amount of polymer components contained in the polymer composition. Part by mass.
  • crosslinking agent examples include sulfur, sulfur halides, organic peroxides, quinonedioximes, organic polyvalent amine compounds, alkylphenol resins having a methylol group, and sulfur is usually used.
  • the amount of sulfur is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the total amount of polymer components contained in the polymer composition.
  • the polymer composition of the present disclosure may contain other rubber components in addition to the hydrogenated conjugated diene polymer obtained above.
  • the type of the rubber component is not particularly limited, but butadiene rubber (BR, for example, high cis BR having 90% or more of cis-1,4 bonds, BR containing syndiotactic-1,2-polybutadiene (SPB), etc.), styrene butadiene rubber (SBR), natural rubber (NR), isoprene rubber (IR), styrene isoprene copolymer rubber, butadiene isoprene copolymer rubber and the like, and BR and SBR are more preferable.
  • BR butadiene rubber
  • SBR styrene butadiene rubber
  • NR natural rubber
  • IR isoprene rubber
  • styrene isoprene copolymer rubber butadiene isoprene copolymer rubber and the like
  • the polymer composition may be blended with a process oil generally used for oil-extended elastomer as an oil for oil-extended.
  • the process oil is formulated into the polymer composition, for example, by adding the oil directly during rubber compounding.
  • the process oil to be used may be an oil for oil extension present in the elastomer or a process oil added during compounding.
  • Preferred process oils include various oils known in the art, such as aromatic oils, paraffinic oils, naphthenic oils, vegetable oils, and oils with a low content of polycyclic aromatic compounds (low PCA oil), for example, mild extract solvate (MES), oil treated with aromatic extract from distillate (TDAE), aromatic special extract from residual oil (SRAE: special ⁇ residual aromatic extract), heavy naphthenic oil and the like.
  • MES mild extract solvate
  • TDAE aromatic extract from distillate
  • SRAE aromatic special extract from residual oil
  • MES MES
  • TDAE TDAE
  • SRAE SRAE
  • the blending amount of the process oil is preferably 10 to 100 parts by mass with respect to 100 parts by mass of the total amount of the polymer components contained in the polymer composition.
  • polymer composition in addition to the above-described components, for example, anti-aging agent, zinc white, stearic acid, softener, sulfur, vulcanization accelerator, silane coupling agent, compatibilizing agent, vulcanization aid, Various additives generally used in rubber compositions for tires such as processing aids and scorch inhibitors can be blended. These blending ratios can be appropriately selected according to various components within a range not impairing the effects of the present disclosure.
  • the components to be blended as necessary include an open kneader (for example, a roll) and a closed kneader (for example, a Banbury mixer). It can be applied to various rubber products as a crosslinked polymer by kneading using a kneading machine such as the like and crosslinking (vulcanizing) after molding.
  • an open kneader for example, a roll
  • a closed kneader for example, a Banbury mixer
  • tire applications such as tire treads, under treads, carcass, sidewalls, and bead parts; seal materials such as packings, gaskets, weather strips, O-rings; various vehicles such as automobiles, ships, aircraft, and railways Interior and exterior skin materials for building; building materials; anti-vibration rubber for industrial machinery and equipment; various hoses and hose covers such as diaphragms, rolls, radiator hoses and air hoses; belts such as power transmission belts; Dust boots; Medical equipment materials; Fenders; Wire insulation materials; Other industrial products.
  • seal materials such as packings, gaskets, weather strips, O-rings
  • various vehicles such as automobiles, ships, aircraft, and railways Interior and exterior skin materials for building; building materials; anti-vibration rubber for industrial machinery and equipment
  • various hoses and hose covers such as diaphragms, rolls, radiator hoses and air hoses
  • belts such as power transmission belts; Dust boots; Medical equipment materials; Fenders; Wire insulation materials;
  • the crosslinked polymer obtained by using the hydrogenated conjugated diene polymer of the present disclosure is excellent in wet skid resistance, low hysteresis loss characteristics, and wear resistance, and is used as a material for tire treads and sidewalls. It can be used suitably.
  • the tire can be manufactured according to a conventional method.
  • the above polymer composition is mixed with a kneader and formed into a sheet, and is placed in a predetermined position according to a conventional method and vulcanized to form a tread rubber or sidewall rubber. can get.
  • the reaction solution was returned to room temperature and normal pressure and extracted from the reaction vessel to obtain a polymer solution.
  • 14.1 g of 2,6-di-tert-butyl-p-cresol is added to the obtained polymer solution, and the pH is 8.5 with ammonia (pH at 80 ° C. according to the glass electrode method, the same applies hereinafter).
  • An aqueous solution (temperature: 80 ° C.) adjusted to 1 is put into a desolvation tank, and the above polymer solution is further added (a ratio of 200 parts by mass of the aqueous solution to 100 parts by mass of the polymer solution).
  • the solvent was removed by steam stripping (steam temperature: 190 ° C) for 2 hours at a temperature of 95 ° C, and drying was performed with a hot roll adjusted to 110 ° C to obtain a hydrogenated conjugated diene polymer A.
  • the polymerization formulation of the hydrogenated conjugated diene polymer A is shown in Table 1 below, and the properties of the obtained hydrogenated conjugated diene polymer A are shown in Table 2 below.
  • the second stage kneading the blend obtained above was cooled to room temperature, and then sulfur and a vulcanization accelerator were blended and kneaded. This was molded and vulcanized with a vulcanizing press at 160 ° C.
  • a measurement result is shown by the index
  • (4) Abrasion resistance A DIN abrasion tester (manufactured by Toyo Seiki Co., Ltd.) was used, and measurement was performed at 25 ° C.
  • Example 2 Synthesis and Evaluation of Hydrogenated Conjugated Diene Polymer B]
  • Polymerization was carried out in the same manner as in Example 1 except that 42.3 mmol of piperidine was further charged when cyclohexane, tetrahydrofuran, styrene and 1,3-butadiene were charged into the autoclave reactor to obtain a hydrogenated conjugated diene polymer B.
  • Table 1 The properties of the resulting hydrogenated conjugated diene polymer B are shown in Table 2 below.
  • the properties of the resulting hydrogenated conjugated diene polymer R are shown in Table 2 below. Further, using the hydrogenated conjugated diene polymer R, a polymer composition was produced in the same manner as in Example 1 with the formulation shown in Table 3 below, and vulcanized to obtain a crosslinked polymer to evaluate physical properties. Went. The results are shown in Table 4 below.
  • hydrogenated conjugated diene polymers (Examples 1 and 2), which are hydrogenated polymers obtained by the reaction of specific polyorganosiloxanes and conjugated diene polymers having active ends, are as follows. Compared with the hydrogenated conjugated diene polymers of Comparative Examples 1 and 2, the processability was excellent. The crosslinked polymers of Examples 1 and 2 had various properties such as breaking strength, viscoelasticity, abrasion resistance, wet grip properties, and low hysteresis loss properties in a well-balanced manner.

Abstract

エポキシ基、アルコキシ基、カルボニル基、2-ピロリドニル基、ビニル基及びハロゲン原子よりなる群から選ばれる少なくとも一種である特定官能基を合計2個以上有するポリオルガノシロキサンと、活性末端を有する共役ジエン系重合体とを反応させ、該反応の生成物である変性共役ジエン系重合体を水素添加することにより水添共役ジエン系重合体を製造する。得られた水添共役ジエン系重合体と、シリカと、架橋剤とを含む重合体組成物、当該重合体組成物を架橋させてなる架橋重合体、及び当該架橋重合体を、少なくともトレッド又はサイドウォールの材料として用いたタイヤを提供する。

Description

水添共役ジエン系重合体の製造方法、水添共役ジエン系重合体、重合体組成物、架橋重合体及びタイヤ
 本開示は、水添共役ジエン系重合体の製造方法、水添共役ジエン系重合体、重合体組成物、架橋重合体及びタイヤに関するものである。
 共役ジエン化合物を用いた重合により得られる共役ジエン系重合体は、耐熱性、耐摩耗性、機械的強度、成形加工性等の各種特性が良好であることから、空気入りタイヤや防振ゴム、ホースなどの各種工業製品に広く使用されている。
 例えば空気入りタイヤのトレッド、サイドウォールに用いられるゴム組成物としては、タイヤの耐久性や耐摩耗性を向上させるべく、共役ジエン系重合体と共に、カーボンブラックやシリカ等の補強剤を含有させることが知られている。また従来、共役ジエン系重合体とシリカ等との親和性を高めるために、共役ジエン系重合体の末端を、ケイ素や窒素を有する化合物で変性した変性共役ジエン系重合体をゴム組成物に配合させることが行われている(例えば特許文献1~3参照)。特許文献1には、アミノシラン化合物を用いて共役ジエン系重合体の末端を変性することが開示されている。特許文献2,3には、複数の官能基を有するポリオルガノシロキサンを用いて共役ジエン系重合体の末端を変性することが開示されている。また、共役ジエン系重合体の分子量を増大させることを目的として、共役ジエン系重合体の末端とカップリング剤とを反応させることが知られている(例えば、特許文献1参照)。
 また近年では、アミノ基やアルコキシシリル基等の官能基を片末端又は両末端に有する変性共役ジエン系重合体の水添物を用いて、引張強度(破壊特性)が高くかつ低摩耗なタイヤ部材を得ることが提案されている(特許文献4参照)。
特許第4129619号公報 特開平9-110904号公報 国際公開第2005/021637号 国際公開第2014/133097号
 水添共役ジエン系重合体を含む従来のゴム組成物は加工性が十分に高くなく、更なる改良の余地がある。そこで、破壊強度、耐摩耗性に優れ、しかも加工性に優れたゴム材料が求められている。
 本開示は上記課題に鑑みなされたものであり、架橋体としたときの破壊特性及び耐摩耗性が高く、かつ加工性に優れたゴム組成物を得ることができる水添共役ジエン系重合体を提供することを一つの目的とする。
 本開示によれば、以下の水添共役ジエン系重合体の製造方法、水添共役ジエン系重合体、重合体組成物、架橋重合体及びタイヤが提供される。
 [1]エポキシ基、アルコキシ基、カルボニル基、2-ピロリドニル基、ビニル基及びハロゲン原子よりなる群から選ばれる少なくとも一種である特定官能基を合計2個以上有するポリオルガノシロキサンと、活性末端を有する共役ジエン系重合体とを反応させ、該反応により得られた変性共役ジエン系重合体を水素添加する、水添共役ジエン系重合体の製造方法。
 [2]上記[1]の製造方法により得られる水添共役ジエン系重合体。
 [3]上記[1]の製造方法により得られる水添共役ジエン系重合体と、シリカと、架橋剤とを含む重合体組成物。
 [4]上記[3]の重合体組成物を架橋させてなる架橋重合体。
 [5]上記[4]の架橋重合体を、少なくともトレッド又はサイドウォールの材料として用いたタイヤ。
 本開示によれば、加工性に優れたゴム組成物を得ることができる。また、当該ゴム組成物を架橋させて得られる架橋重合体は、破壊特性及び耐摩耗性が十分に高く、種々の用途に適用することができる。
 本開示の水添共役ジエン系重合体は、共役ジエン化合物に由来する構造単位を有する共役ジエン系重合体の水添物である。当該水添共役ジエン系重合体は、以下の重合工程、変性工程及び水添工程を含む方法により製造される。以下、本開示の態様に関連する事項について詳細に説明する。
<重合工程>
 本工程は、共役ジエン化合物を含むモノマーを重合して、活性末端を有する共役ジエン系重合体を得る工程である。重合に使用する共役ジエン化合物は、1,3-ブタジエン単独でもよいし、1,3-ブタジエン以外の共役ジエン化合物(以下「その他の共役ジエン化合物」ともいう。)を併用してもよい。その他の共役ジエン化合物としては、例えばイソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-ヘプタジエン、2-フェニル-1,3-ブタジエン、3-メチル-1,3-ペンタジエン、2-クロロ-1,3-ブタジエン等が挙げられる。これらの中でも、イソプレン及び2,3-ジメチル-1,3-ブタジエンが好ましい。
 本開示における共役ジエン系重合体は、共役ジエン化合物を用いた単独重合体であってもよいが、ゴムの強度を高める観点から、共役ジエン化合物と芳香族ビニル化合物との共重合体であることが好ましい。重合に使用する芳香族ビニル化合物としては、例えば、スチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、α-メチルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン、ビニルエチルベンゼン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレン、t-ブトキシスチレン、ビニルベンジルジメチルアミン、(4-ビニルベンジル)ジメチルアミノエチルエーテル、N,N-ジメチルアミノエチルスチレン、N,N-ジメチルアミノメチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2-t-ブチルスチレン、3-t-ブチルスチレン、4-t-ブチルスチレン、ビニルキシレン、ビニルナフタレン、ビニルピリジン、ジフェニルエチレン、3級アミノ基含有ジフェニルエチレン(例えば、1-(4-N,N-ジメチルアミノフェニル)-1-フェニルエチレンなど)等が挙げられる。芳香族ビニル化合物としては、これらの中でもスチレン及びα-メチルスチレンが好ましい。
 本開示における共役ジエン系重合体が、共役ジエン化合物と芳香族ビニル化合物との共重合体である場合、アニオン重合におけるリビング性が高い点、1,3-ブタジエンとスチレンとをモノマー組成に含む重合体であることが好ましい。上記共重合体は、共役ジエン化合物と芳香族ビニル化合物との分布が不規則なランダム共重合部分を有することが好ましい。また、上記共重合体は、共役ジエン化合物又は芳香族ビニル化合物からなるブロック部分をさらに有していてもよい。
 共役ジエン系重合体が、共役ジエン化合物と芳香族ビニル化合物との共重合体である場合、芳香族ビニル化合物の使用割合は、得られる架橋重合体の低ヒステリシスロス特性とウェットグリップ性とのバランスの観点から、重合に使用する共役ジエン化合物及び芳香族ビニル化合物の合計量に対して、3~55質量%とすることが好ましく、5~50質量%とすることがより好ましい。なお、重合体中における、芳香族ビニル化合物に由来する構造単位の含有割合はH-NMRによって測定した値である。共役ジエン化合物、芳香族ビニル化合物は、それぞれ1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 上記重合に際しては、モノマーとして、共役ジエン化合物及び芳香族ビニル化合物以外の化合物(以下、「他のモノマー」ともいう。)を使用してもよい。他のモノマーとしては、例えばアクリロニトリル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等が挙げられる。他のモノマーの使用割合は、重合に使用するモノマーの全体量に対して、15質量%以下とすることが好ましく、10質量%以下とすることがより好ましい。
 使用する重合法としては、溶液重合法、気相重合法、バルク重合法のいずれを用いてもよいが、溶液重合法が特に好ましい。また、重合形式としては、回分式及び連続式のいずれを用いてもよい。溶液重合法を用いる場合、具体的な重合方法の一例としては、有機溶媒中において、共役ジエン化合物を含む単量体を、重合開始剤、及び必要に応じて用いられるランダマイザーの存在下で重合する方法が挙げられる。
 重合開始剤としては、アルカリ金属化合物及びアルカリ土類金属化合物の少なくともいずれかを用いることができる。これらの具体例としては、例えばメチルリチウム、エチルリチウム、n-プロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウムなどのアルキルリチウム、1,4-ジリチオブタン、フェニルリチウム、スチルベンリチウム、ナフチルリチウム、1,3-ビス(1-リチオ-1,3-ジメチルペンチル)ベンゼン、1,3-フェニレンビス(3-メチル-1-フェニルペンチリデン)ジリチウム、ナフチルナトリウム、ナフチルカリウム、ジ-n-ブチルマグネシウム、ジ-n-ヘキシルマグネシウム、エトキシカリウム、ステアリン酸カルシウム、アルカリ金属化合物及びアルカリ土類金属化合物の少なくともいずれかと、シリカと相互作用する官能基を有する化合物とを混合して得られる化合物等が挙げられる。重合開始剤は、中でもリチウム化合物を用いることが好ましい。重合開始剤の合計の使用量は、重合に使用するモノマー100gに対して、0.2~20mmolとすることが好ましい。
 重合反応に際し、重合開始剤として、アルカリ金属化合物及びアルカリ土類金属化合物の少なくともいずれかと、シリカと相互作用する官能基を有する化合物との混合物の存在下で重合を行うことにより、共役ジエン系重合体の重合開始末端に、シリカと相互作用を有する官能基を導入することができる。なお、本明細書において「シリカと相互作用する官能基」とは、窒素、硫黄、リン、酸素などのシリカと相互作用する元素を有する基を意味する。「相互作用」とは、分子間で共有結合を形成するか、又は共有結合よりも弱い分子間力(例えば、イオン-双極子相互作用、双極子-双極子相互作用、水素結合、ファンデルワールス力等といった分子間に働く電磁気学的な力)を形成することを意味する。
 重合開始末端の変性に用いる、シリカと相互作用する官能基を有する化合物としては、中でも、第2級アミン化合物などの窒素含有化合物が好ましい。当該窒素含有化合物の具体例としては、例えばジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ドデカメチレンイミン、N,N’-ジメチル-N’-トリメチルシリル-1,6-ジアミノヘキサン、ピペリジン、ピロリジン、ヘキサメチレンイミン、ヘプタメチレンイミン、ジシクロヘキシルアミン、N-メチルベンジルアミン、ジ-(2-エチルヘキシル)アミン、ジアリルアミン、モルホリン、N-(トリメチルシリル)ピペラジン、N-(tert-ブチルジメチルシリル)ピペラジン、1,3-ジトリメチルシリル-1,3,5-トリアジナン等が挙げられる。
 なお、開始末端変性に際しては、アルカリ金属化合物及びアルカリ土類金属化合物の少なくともいずれかと、シリカと相互作用する官能基を有する化合物とを予め混合しておき、その混合物を重合系中に添加して重合を行ってもよい。あるいは、重合系中に、アルカリ金属化合物及びアルカリ土類金属化合物の少なくともいずれかと、シリカと相互作用する官能基を有する化合物とを添加し、重合系中で両者を混合して重合を行ってもよい。
 ランダマイザーは、重合体中におけるビニル結合の含有率を表すビニル結合含量の調整等を目的として用いることができる。ランダマイザーの例としては、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、2,2-ジ(テトラヒドロフリル)プロパン、2-(2-エトキシエトキシ)-2-メチルプロパン、トリエチルアミン、ピリジン、N-メチルモルホリン、テトラメチルエチレンジアミン等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて使用できる。
 重合に使用する有機溶媒としては、反応に不活性な有機溶剤であればよく、例えば脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素などを用いることができる。中でも、炭素数3~8の炭化水素が好ましく、その具体例としては、例えばプロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、n-へキサン、シクロへキサン、プロペン、1-ブテン、イソブテン、トランス-2-ブテン、シス-2-ブテン、1-ペンチン、2-ペンチン、1-ヘキセン、2-ヘキセン、ベンゼン、トルエン、キシレン、エチルベンゼン、ヘプタン、シクロペンタン、メチルシクロペンタン、メチルシクロヘキサン、1-ペンテン、2-ペンテン、シクロヘキセン等が挙げられる。なお、有機溶媒としては、1種を単独で又は2種以上を組み合わせて使用することができる。
 溶液重合とする場合、反応溶媒中のモノマー濃度は、生産性と重合コントロールの容易性のバランスを維持する観点から、5~50質量%であることが好ましく、10~30質量%であることがより好ましい。重合反応の温度は、-20℃~150℃であることが好ましく、0~120℃であることがより好ましい。また、重合反応は、単量体を実質的に液相に保つのに十分な圧力の下で行うことが好ましい。このような圧力は、重合反応に対して不活性なガスによって、反応器内を加圧する等の方法によって得ることができる。
 こうした重合反応により、活性末端を有する共役ジエン系重合体を得ることができる。得られる共役ジエン系重合体のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算の重量平均分子量(Mw)は、好ましくは1.0×10~2.0×10である。Mwが1.0×10よりも小さいと、得られる架橋重合体において引張強度、低燃費性能及び耐摩耗性が低下しやすい傾向にあり、2.0×10よりも大きいと、重合体組成物の加工性が低下しやすい傾向にある。より好ましくは、1.2×10~1.5×10であり、さらに好ましくは、1.5×10~1.0×10である。
 活性末端を有する共役ジエン系重合体につき、ブタジエン単位におけるビニル結合含量は、30~70質量%であることが好ましく、33~68質量%であることがより好ましく、35~65質量%であることがさらに好ましい。ビニル結合含量が30モル%未満であると、グリップ特性が低くなる傾向があり、70質量%を超えると、得られる加硫ゴムの耐摩耗性が低下する傾向にある。なお、本明細書において「ビニル結合含量」は、共役ジエン系重合体中において、ブタジエンの全構造単位に対する、1,2-結合を有する構造単位の含有割合を示す値であり、H-NMRによって測定した値である。
<変性工程>
 本工程では、エポキシ基、アルコキシ基、カルボニル基、2-ピロリドニル基、ビニル基及びハロゲン原子よりなる群から選ばれる少なくとも一種である特定官能基を一分子内に合計2個以上有するポリオルガノシロキサン(以下、「特定ポリオルガノシロキサン」ともいう。)と、上記で得られた共役ジエン系重合体が有する活性末端とを反応させる。
 特定ポリオルガノシロキサンは、シロキサン結合を有する直鎖状、環状又は分岐状の化合物である。特定ポリオルガノシロキサンの好ましい具体例としては、下記式(1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000002
(式(1)中、R~Rは、それぞれ独立にヒドロカルビル基であり、Aは、特定官能基を有する基であり、A及びAは、それぞれ独立に、特定官能基を有する基又はヒドロカルビル基であり、Bは、ポリエーテル構造を有する基である。aは3~200の整数であり、bは0~200の整数であり、cは0~200の整数である。R,R,R,R,A,Bは、構造単位間で互いに同じでも異なっていてもよい。)
 上記式(1)のR~R,A,Aのヒドロカルビル基としては、炭素数1~20の直鎖状若しくは分岐状のアルキル基、炭素数3~20のシクロアルキル基又は炭素数6~20のアリール基が挙げられる。これらのうち、アルキル基又はフェニル基が好ましい。
 A~Aの特定官能基を有する基としては、エポキシ基を有する炭素数4~12の基、2-ピロリドニル基を有する炭素数4~20の基、炭素数1~5のアルコキシ基、炭素数1~5のハロゲン化アルキル基、炭素数2~5のアルケニル基、スチリル基、ビニルフェニル基、エステル基等が挙げられる。好ましくは、エポキシ基を有する炭素数4~12の基、2-ピロリドニル基を有する炭素数4~20の基又は炭素数1~5のアルコキシ基である。
 Bのポリエーテル構造としては、例えば炭素数2~20のアルキレングリコール単位を繰り返し単位に有する構造が挙げられ、具体例としては、例えばポリエチレングリコール構造、ポリプロピレングリコール構造などが挙げられる。
 aは、重合体組成物の加工性の改善効果を十分に確保するとともに、特定ポリオルガノシロキサンの粘度が高くなりすぎるのを抑制する観点から、好ましくは20~150であり、より好ましくは30~120である。bは、0~150が好ましく、0~120がより好ましい。cは、0~180が好ましく、10~150がより好ましい。
 a,b及びcの合計数は、特定ポリオルガノシロキサンの取り扱い容易性の観点から、400以下が好ましく、300以下がより好ましい。なお、特定ポリオルガノシロキサンは公知の合成方法により得ることができる。また、市販品を入手して使用してもよい。
 活性末端を有する共役ジエン系重合体と特定ポリオルガノシロキサンとの反応は、例えば溶液反応として行うことができる。特定ポリオルガノシロキサンの使用割合(二種以上使用する場合にはその合計量)は、重合体組成物の加工性と、該組成物を用いて得られる架橋重合体の破壊特性及び粘弾性とを両立させる観点から、重合開始剤が有する重合に関与する金属原子1モルに対して、0.001モル以上とすることが好ましく、0.005モル以上とすることがより好ましい。また、当該使用割合の上限値は、重合開始剤が有する重合に関与する金属原子1モルに対して、0.1モル未満とすることが好ましく、0.05モル未満とすることがより好ましい。
 変性反応の温度は、通常、重合反応と同じであり、-20℃~150℃とすることが好ましく、0~120℃とすることがより好ましい。反応温度が低いと、変性後の重合体の粘度が上昇する傾向があり、反応温度が高いと重合活性末端が失活しやすくなる。反応時間は、好ましくは1分~5時間であり、より好ましくは2分~1時間である。
 活性末端を有する共役ジエン系重合体と特定ポリオルガノシロキサンとの反応に際しては、特定ポリオルガノシロキサンと共にその他の変性剤を用いてもよい。その他の変性剤は、シリカと相互作用する官能基を有し、かつ重合体の活性末端と反応し得る化合物であれば特に限定されず、変性剤として公知の化合物を用いることができる。その他の変性剤を使用する場合、その使用割合は、活性末端を有する共役ジエン系重合体と特定ポリオルガノシロキサンとの反応を十分に進行させる観点から、特定ポリオルガノシロキサンとその他の変性剤との合計量に対して、10モル%以下とすることが好ましく、5モル%以下とすることがより好ましい。
 活性末端を有する共役ジエン系重合体と特定ポリオルガノシロキサンとの反応により得られる変性共役ジエン系重合体は、特定ポリオルガノシロキサン一分子に対して複数個の共役ジエン系重合体鎖が結合したものであることが好ましい。特定ポリオルガノシロキサンを介して複数個の共役ジエン系重合体鎖が結合された構造を有する変性共役ジエン系重合体の水添物をシリカと共に重合体組成物に配合することにより、重合体組成物の加工性を十分に改善しつつ、破壊特性及び粘弾性が十分に高い架橋重合体が得られる点で好ましい。変性共役ジエン系重合体が有する共役ジエン系重合体鎖の個数は、好ましくは3以上、より好ましくは4以上である。
 上記で得られる変性共役ジエン系重合体のGPCによるポリスチレン換算の重量平均分子量は、破壊強度、耐摩耗性及び加工性をバランス良く改善する観点から、好ましくは1.0×10~3.0×10であり、より好ましくは1.2×10~2.0×10であり、さらに好ましくは1.5×10~1.2×10である。
<水添工程>
 本工程では、上記変性工程により得られた重合体である変性共役ジエン系重合体を水素添加(水添)する。水添の方法及び条件は、所望の水添率の重合体が得られるのであれば、いずれの方法及び条件を用いることが可能である。それらの水添方法の例としては、チタンの有機金属化合物を主成分とする触媒を水添触媒として使用する方法、鉄、ニッケル、コバルトの有機化合物とアルキルアルミニウム等の有機金属化合物からなる触媒を使用する方法、ルテニウム、ロジウム等の有機金属化合物の有機錯体を使用する方法、パラジウム、白金、ルテニウム、コバルト、ニッケル等の金属を、カーボン、シリカ、アルミナ等の担体に担持した触媒を使用する方法などがある。各種の方法の中では、チタンの有機金属化合物単独、又はそれとリチウム、マグネシウム、アルミニウムの有機金属化合物とから成る均一触媒(特公昭63-4841号公報、特公平1-37970号公報)を用い、低圧、低温の穏和な条件で水添する方法は工業的に好ましく、またブタジエンに由来する二重結合への水添選択性も高く、本開示の目的に適している。
 水素添加は、触媒に不活性で、かつ共役ジエン系重合体が可溶な溶剤中で実施される。好ましい溶媒としては、n-ペンタン、n-ヘキサン、n-オクタンのような脂肪族炭化水素、シクロヘキサン、シクロヘプタンのような脂環族炭化水素、ベンゼン、トルエンのような芳香族炭化水素、ジエチルエーテル、テトラヒドロフランのようなエーテル類の単独又はそれらを主成分とする混合物である。
 水添反応は、一般には重合体を水素又は不活性雰囲気下、所定の温度に保持し、攪拌下又は不攪拌下にて水添触媒を添加し、次いで水素ガスを導入して所定圧に加圧することによって実施される。不活性雰囲気とは、水添反応の関与体とも反応しない雰囲気を意味し、例えばヘリウム、ネオン、アルゴン等により形成する。空気や酸素は触媒を酸化したりして触媒の失活を招くので好ましくない。また、窒素は水添反応時に触媒毒として作用し、水添活性を低下させるので好ましくない。特に、水添反応器内は水素ガス単独の雰囲気であることが好適である。水添共役ジエン系重合体を得る水添反応プロセスは、バッチプロセス、連続プロセス、及びそれらの組合せのいずれを用いてもよい。水添触媒の添加量は、水添前の変性共役ジエン系重合体100g当たり0.02~20ミリモルとすることが好ましい。
 水添率は特に限定されないが、ブタジエン単位の水添率を70~99%となるように変性共役ジエン系重合体を水素添加することが好ましい。水添率を70%以上とすることで、架橋重合体とした場合の機械的強度の改善効果が十分に高いゴムを得ることができる。水添率は、より好ましくは80%以上であり、さらに好ましくは90%以上であり、特に好ましくは92%以上である。また、水添率の上限値は、製造効率の低下を抑制する観点から、99%以下であることが好ましい。より好ましくは98%以下であり、さらに好ましくは97%以下である。なお、水添率はH-NMRで測定した値である。水添率は、水添触媒の量、水添反応時の水素圧力及び反応時間を変えることにより所望の値にすることができる。
 本開示の水添共役ジエン英重合体は、下記式(3)で表される構造単位、下記式(4)で表される構造単位、下記式(5)で表される構造単位、及び下記式(6)で表される構造単位の構成比をそれぞれp、q、r、sとしたとき、下記の数式(A)を満たす重合体であることが好ましい。
0.70≦(p+r)/(p+q+r+s)≦0.99   …(A)
Figure JPOXMLDOC01-appb-C000003
 なお、上記数式(A)は、「ブタジエンに由来する構造単位の水添率が70~99%である」ことを表す。水添共役ジエン系重合体のビニル結合含量(%)は「[(p+q)/(p+q+r+s)]×100」で表される。
 本開示の水添共役ジエン系重合体を得る好ましい方法は、ブタジエンを含む単量体をアルカリ金属化合物の存在下で溶液重合し、得られた重合体溶液をそのまま用いて変性工程を行い、次いで水添工程に供することであり、工業的に有用である。本開示の水添共役ジエン系重合体は、上記で得られた溶液から溶媒を除去し、重合体を単離して得られる。重合体を単離するには、例えばスチームストリッピング等の公知の脱溶媒方法及び熱処理等の乾燥の操作によって行うことができる。
<重合体組成物>
 本開示の重合体組成物は、上記で得られる水添共役ジエン系重合体、シリカ及び架橋剤を含有する。重合体組成物中における上記水添共役ジエン系重合体の含有割合は、重合体組成物の全体量に対して、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることがさらに好ましい。
 シリカとしては、例えば湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、コロイダルシリカ、沈降シリカ、ケイ酸カルシウム、ケイ酸アルミニウム等が挙げられる。これらのうち、破壊特性の改良効果や、ウェットグリップ性と低転がり抵抗性との両立効果の観点から、湿式シリカが特に好ましい。また、高分散型(High Dispersible Type)のシリカを使用することも、重合体組成物中における分散性を良好にできるとともに物性及び加工性を向上できる観点から好ましい。なお、シリカは、一種を単独で又は二種以上を組み合わせて用いることができる。
 上記重合体組成物には、フィラーとしてシリカの他に、カーボンブラック、クレー、炭酸カルシウムなどの各種の補強性充填剤が配合されていてもよい。好ましくは、シリカ、又はカーボンブラックとシリカとの併用である。上記重合体組成物中におけるシリカ及びカーボンブラックの合計量は、重合体組成物に含まれる重合体成分の全体量100質量部に対して、好ましくは20~130質量部、より好ましくは25~110質量部である。
 架橋剤としては、硫黄、ハロゲン化硫黄、有機過酸化物、キノンジオキシム類、有機多価アミン化合物、メチロール基を有するアルキルフェノール樹脂等が挙げられ、通常、硫黄が使用される。硫黄の配合量は、重合体組成物に含まれる重合体成分の合計量100質量部に対して、好ましくは0.1~5質量部、より好ましくは0.5~3質量部である。
 本開示の重合体組成物には、上記で得られた水添共役ジエン系重合体に加えて、他のゴム成分が配合されていてもよい。かかるゴム成分の種類は特に限定されないが、ブタジエンゴム(BR、例えばシス-1,4結合90%以上のハイシスBR、シンジオタクチック-1,2-ポリブタジエン(SPB)含有BRなど)、スチレンブタジエンゴム(SBR)、天然ゴム(NR)、イソプレンゴム(IR)、スチレンイソプレン共重合体ゴム、ブタジエンイソプレン共重合体ゴム等が挙げられ、より好ましくはBR、SBRである。
 また、上記重合体組成物には、油展のためのオイルとして、エラストマーを油展するために一般的に用いられるプロセスオイルが配合されていてもよい。プロセスオイルは、例えば、ゴム配合中にオイルを直接添加することによって重合体組成物に配合される。使用するプロセスオイルとしては、エラストマー中に存在する油展のためのオイルでもよいし、配合中に添加されたプロセスオイルでもよい。好ましいプロセスオイルとしては、当業界で公知の様々なオイルが挙げられ、例えば、芳香族系オイル、パラフィン系オイル、ナフテン系オイル、植物油、並びに、多環式芳香族化合物の含量の低いオイル(低PCAオイル)、例えば軽度抽出溶媒和物(MES:mild extraction solvate)、留出油からの芳香族系抽出物を処理した油(TDAE:treated distillate aromatic extract)、残油からの芳香族系特殊抽出物(SRAE:special residual aromatic extract)、及び重ナフテン系オイルなどが挙げられる。市販のMES、TDAE及びSRAEの例としては、MESとしてShell製のCatenex SNR(留出油を溶媒で脱ワックスした重質パラフィン)、TDAEとしてH&R Wasag AG製のVivatec 500、及びSRAEとしてJapan Energy Corp.製のNC140などが挙げられる。プロセスオイルの配合量は、重合体組成物に含まれる重合体成分の合計量100質量部に対して、好ましくは10~100質量部である。
 上記重合体組成物には、上記した成分の他に、例えば老化防止剤、亜鉛華、ステアリン酸、軟化剤、硫黄、加硫促進剤、シランカップリング剤、相溶化剤、加硫助剤、加工助剤、スコーチ防止剤など、タイヤ用ゴム組成物において一般に使用される各種添加剤を配合することができる。これらの配合割合は、本開示の効果を損なわない範囲で、各種成分に応じて適宜選択することができる。
 本開示の重合体組成物は、重合体成分、シリカ及び架橋剤の他、必要に応じて配合される成分を、開放式混練機(例えば、ロール)、密閉式混練機(例えば、バンバリーミキサー)等の混練機を用いて混練され、成形加工後に架橋(加硫)することによって、架橋重合体として各種ゴム製品に適用可能である。具体的には、例えばタイヤトレッド、アンダートレッド、カーカス、サイドウォール、ビード部等のタイヤ用途;パッキン、ガスケット、ウェザーストリップ、O-リング等のシール材;自動車、船舶、航空機、鉄道等の各種車両用の内外装表皮材;建築材料;産業機械用や設備用などの防振ゴム類;ダイヤフラム、ロール、ラジエータホース、エアーホース等の各種ホース及びホースカバー類;動力伝達用ベルトなどのベルト類;ライニング;ダストブーツ;医療用機器材料;防舷材;電線用絶縁材料;その他の工業品等の用途に適用できる。特に、本開示の水添共役ジエン系重合体を用いて得られる架橋重合体は、ウェットスキッド抵抗性、低ヒステリシスロス特性及び耐摩耗性に優れており、タイヤのトレッド及びサイドウォール用の材料として好適に用いることができる。
 タイヤの製造は、常法に従い行うことができる。例えば、上記重合体組成物を混練機で混合し、シート状にしたものを、常法に従い所定位置に配して加硫成形することによりトレッドゴム又はサイドウォールゴムとして形成され、空気入りタイヤが得られる。
 以下、実施例に基づいて具体的に説明するが、本開示はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。各種物性値の測定方法を以下に示す。
[結合スチレン含量(%)]:500MHzのH-NMR測定によって求めた。
[ビニル結合含量(%)]:水添前の重合体中の1,2-ビニル結合の含有量を500MHzのH-NMRによって求めた。
[ガラス転移温度(℃)]:ASTM D3418に準拠して測定した。
[重量平均分子量]:ゲルパーミエーションクロマトグラフィー(GPC)(HLC-8120GPC(商品名(東ソー社製)))を使用して得られたGPC曲線の最大ピークの頂点に相当する保持時間から、ポリスチレン換算で求めた。なお、変性後の測定値である。
(GPCの条件)
  カラム;商品名「GMHXL」(東ソー社製)2本
  カラム温度;40℃
  移動相;テトラヒドロフラン
  流速;1.0ml/分
  サンプル濃度;10mg/20ml
[ムーニー粘度(ML1+4,100℃)]:JIS K6300に準拠し、Lローターを使用して、予熱1分、ローター作動時間4分、温度100℃の条件で求めた。
[水添率(%)]:ブタジエン単位の水添率を500MHzのH-NMRにより求めた。
[実施例1]
<水添共役ジエン系重合体Aの合成>
 窒素置換された内容積50リットルのオートクレーブ反応器に、シクロヘキサン25,600g、テトラヒドロフラン384g、スチレン800g及び1,3-ブタジエン2,336gを仕込んだ。反応器内容物の温度を45℃に調整した後、n-ブチルリチウム(60.0mmol)を含むシクロヘキサン溶液を添加して重合を開始した。重合は断熱条件で実施し、最高温度は85℃に達した。重合転化率が99%に達した時点で、1,3-ブタジエン64gを追加し、さらに1分間重合させ、重合体を含む反応液を得た。その後、反応液に下記式(a-1)で表される化合物 0.4mmolを加えて15分間反応させた。
 次いで、反応液を80℃以上にして系内に水素を導入した。次いで、[ビス(η5-シクロペンタジエニル)チタニウム(フルフリルオキシ)クロライド] 2.34g、ジエチルアルミニウムクロライド3.72g、及びn-ブチルリチウム1.28gを加え、水素圧0.7MPa以上を保つようにして反応させた。所定の水素積算流量に到達後、反応液を常温、常圧に戻して反応容器より抜き出し、重合体溶液を得た。
 次いで、得られた重合体溶液に、2,6-ジ-tert-ブチル-p-クレゾール14.1gを添加し、アンモニアによりpH8.5(ガラス電極法による、80℃におけるpH、以下同じ。)に調整した水溶液(温度:80℃)を脱溶媒槽に入れ、さらに上記重合体溶液を加え(重合体溶液100質量部に対して、水溶液200質量部の割合)、脱溶媒槽の液相の温度95℃で、2時間スチームストリッピング(スチーム温度:190℃)により脱溶媒を行い、110℃に調温された熱ロールにより乾燥を行うことで水添共役ジエン系重合体Aを得た。水添共役ジエン系重合体Aの重合処方を下記表1、得られた水添共役ジエン系重合体Aの性質を下記表2に示す。
Figure JPOXMLDOC01-appb-C000004
<重合体組成物及び架橋重合体の製造、並びに物性評価>
 上記で得られた水添共役ジエン系重合体Aを用いて、下記表3に示す配合処方により各成分を配合し、これを混練りすることによって重合体組成物を製造した。混練りは以下の方法で行った。温度制御装置を付属したプラストミル(内容量:250ml)を使用し、一段目の混練りとして、充填率72%、回転数60rpmの条件で、水添共役ジエン系重合体A、シリカ、カーボンブラック、シランカップリング剤、伸展油、ステアリン酸、老化防止剤及び酸化亜鉛を配合して混練りした。次いで、二段目の混練りとして、上記で得た配合物を室温まで冷却後、硫黄及び加硫促進剤を配合し、混練りした。これを成型し、160℃で所定時間、加硫プレスにて加硫成型を行い、架橋重合体を得た。得られた架橋重合体を用いて以下の物性評価(1)~(4)を行った。また、加硫前の重合体組成物を用いて以下の物性評価(5)を行った。それらの結果を下記表4に示す。
(1)引張強度
 JISK6251:2010に従って100%モジュラス(M100)、300%モジュラス(M300)、破断時の破断強度(TB)及び伸び(EB)を測定した。測定結果は、以下の比較例1を100とした指数で示し、数値が大きいほど、破断強度が高く、また伸び(粘弾性)が大きく、良好であることを示す。
(2)0℃tanδ
 ARES-RDA(TA Instruments社製)を使用し、剪断歪1.0%、角速度100ラジアン毎秒、0℃の条件で測定した。測定結果は比較例1を100とした指数で示し、数値が大きいほど、ウェットグリップ特性が良好であることを示す。
(3)50℃tanδ
 ARES-RDA(TA Instruments社製)を使用し、剪断歪1.0%、角速度100ラジアン毎秒、50℃の条件で測定した。測定結果は比較例1を100とした指数で示し、数値が大きいほどエネルギーロスが小さく、低ヒステリシスロス特性が良好であることを示す。
(4)耐摩耗性
 DIN摩耗試験機(東洋精機社製)を使用し、JIS K 6264に準拠し、荷重10Nで25℃にて測定した。測定結果は比較例1を100とした指数で示し、数値が大きいほど耐摩耗性が良好であることを示す。
(5)加工性
 加硫前の重合体組成物を60℃の6インチオープンロールに巻き付け、ロールに対する巻き付き状態を目視で観察し、ロール加工性を次の4段階(I~IV)で評価した。
I:ロール投入初期から粘着し、ロールに巻きつく。ロール加工性は極めて良好。
II:ロール投入初期から、ある程度ロールに巻き付く。ロール加工性に大きな問題なし。
III:ロール投入初期は巻き付かないが、徐々にロールに巻き付く。ロール加工性は可。
IV:粘着性がなくロールに巻き付かない。ロール加工は困難(試料は粉又は粒状)。
[比較例1〔水添共役ジエン系重合体Qの合成及び評価〕]
 上記式(a-1)で表される化合物に替えて、四塩化ケイ素13.2mmolを使用した点以外は実施例1と同様にして重合を行い、水添共役ジエン系重合体Qを得た(表1)。得られた水添共役ジエン系重合体Qの性質を下記表2に示す。また、水添共役ジエン系重合体Qを用いて、下記表3に示す処方で実施例1と同様にして重合体組成物を製造し、それを加硫して架橋重合体を得て物性評価を行った。その結果を下記表4に示す。
[実施例2〔水添共役ジエン系重合体Bの合成及び評価〕]
 オートクレーブ反応器にシクロヘキサン、テトラヒドロフラン、スチレン及び1,3-ブタジエンを仕込む際に更にピペリジン42.3mmolを仕込んだ以外は実施例1と同様にして重合を行い、水添共役ジエン系重合体Bを得た(表1)。得られた水添共役ジエン系重合体Bの性質を下記表2に示す。また、水添共役ジエン系重合体Bを用いて、下記表3に示す処方で実施例1と同様にして重合体組成物を製造し、それを加硫して架橋重合体を得て物性評価を行った。その結果を下記表4に示す。
[比較例2〔水添共役ジエン系重合体Rの合成、及びその評価〕]
 オートクレーブ反応器にシクロヘキサン、テトラヒドロフラン、スチレン及び1,3-ブタジエンを仕込む際に更にピペリジン42.3mmolを仕込んだ点以外は比較例1と同様にして重合を行い、水添共役ジエン系重合体Rを得た(表1)。得られた水添共役ジエン系重合体Rの性質を下記表2に示す。また、水添共役ジエン系重合体Rを用いて、下記表3に示す処方で実施例1と同様にして重合体組成物を製造し、それを加硫して架橋重合体を得て物性評価を行った。その結果を下記表4に示す。
Figure JPOXMLDOC01-appb-T000005
 表1中、化合物の略称は以下のとおりである。
 特定ポリオルガノシロキサンA:上記式(a-1)で表される化合物
 化合物B:四塩化ケイ素
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表3中、各成分について、使用した商品名は以下の通りである。
*1:ローディア社製 ZEOSIL 1165MP、*2:三菱化学社製 ダイアブラックN339、*3:エボニック社製 Si75、*4:ジャパンエナジー社製 JOMOプロセスNC-140、*5:精工化学社製 オゾノン6C、*6:大内新興化学工業社製 ノクセラーCZ*7:大内新興化学工業社製 ノクセラーD。
Figure JPOXMLDOC01-appb-T000008
 表4の結果から、特定ポリオルガノシロキサンと活性末端を有する共役ジエン系重合体との反応により得られた重合体の水添物である水添共役ジエン系重合体(実施例1,2)は、比較例1,2の水添共役ジエン系重合体との対比で加工性に優れていた。また、実施例1,2の架橋重合体は、破断強度、粘弾性、耐摩耗性、ウェットグリップ特性及び低ヒステリシスロス特性の各種特性をバランス良く有していた。

Claims (10)

  1.  エポキシ基、アルコキシ基、カルボニル基、2-ピロリドニル基、ビニル基及びハロゲン原子よりなる群から選ばれる少なくとも一種である特定官能基を合計2個以上有するポリオルガノシロキサンと、活性末端を有する共役ジエン系重合体とを反応させ、該反応により得られた変性共役ジエン系重合体を水素添加する、水添共役ジエン系重合体の製造方法。
  2.  前記変性共役ジエン系重合体は、前記特定官能基を合計2個以上有するポリオルガノシロキサンに、複数個の共役ジエン系重合体鎖が結合したものである、請求項1に記載の水添共役ジエン系重合体の製造方法。
  3.  前記活性末端を有する共役ジエン系重合体はブタジエン単位を有し、
     前記ブタジエン単位の水添率を70~99%となるように前記変性共役ジエン系重合体を水素添加する、請求項1又は2に記載の水添共役ジエン系重合体の製造方法。
  4.  前記ポリオルガノシロキサンは、下記式(1)で表される化合物である、請求項1~3のいずれか一項に記載の水添共役ジエン系重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R~Rは、それぞれ独立にヒドロカルビル基であり、Aは、前記特定官能基を有する基であり、A及びAは、それぞれ独立に、前記特定官能基を有する基又はヒドロカルビル基であり、Bは、ポリエーテル構造を有する基である。aは3~200の整数であり、bは0~200の整数であり、cは0~200の整数である。R,R,R,R,A,Bは、構造単位間で互いに同じでも異なっていてもよい。)
  5.  アルカリ金属化合物及びアルカリ土類金属化合物の少なくともいずれかの存在下で、共役ジエン化合物を含むモノマーを重合することにより、前記活性末端を有する共役ジエン系重合体を得る、請求項1~4のいずれか一項に記載の水添共役ジエン系重合体の製造方法。
  6.  アルカリ金属化合物及びアルカリ土類金属化合物の少なくともいずれかと、シリカと相互作用する官能基を有する化合物との混合物の存在下で重合する、請求項5に記載の水添共役ジエン系重合体の製造方法。
  7.  エポキシ基、アルコキシ基、カルボニル基、2-ピロリドニル基、ビニル基及びハロゲン原子よりなる群から選ばれる少なくとも一種である特定官能基を合計2個以上有するポリオルガノシロキサンと、活性末端を有する共役ジエン系重合体との反応生成物を水素添加して得られる水添共役ジエン系重合体。
  8.  請求項1~6のいずれか一項に記載の製造方法により得られる水添共役ジエン系重合体又は請求項7に記載の水添共役ジエン系重合体と、シリカと、架橋剤と、を含む重合体組成物。
  9.  請求項8に記載の重合体組成物を架橋させてなる架橋重合体。
  10.  請求項9に記載の架橋重合体を、少なくともトレッド又はサイドウォールの材料として用いたタイヤ。
PCT/JP2016/083089 2015-11-26 2016-11-08 水添共役ジエン系重合体の製造方法、水添共役ジエン系重合体、重合体組成物、架橋重合体及びタイヤ WO2017090421A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017515847A JP6252705B2 (ja) 2015-11-26 2016-11-08 水添共役ジエン系重合体の製造方法、水添共役ジエン系重合体、重合体組成物、架橋重合体及びタイヤ
SG11201804093WA SG11201804093WA (en) 2015-11-26 2016-11-08 Method for producing hydrogenated conjugated diene polymer, hydrogenated conjugated diene polymer, polymer composition, crosslinked polymer, and tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-231087 2015-11-26
JP2015231087 2015-11-26

Publications (1)

Publication Number Publication Date
WO2017090421A1 true WO2017090421A1 (ja) 2017-06-01

Family

ID=58763077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083089 WO2017090421A1 (ja) 2015-11-26 2016-11-08 水添共役ジエン系重合体の製造方法、水添共役ジエン系重合体、重合体組成物、架橋重合体及びタイヤ

Country Status (3)

Country Link
JP (1) JP6252705B2 (ja)
SG (1) SG11201804093WA (ja)
WO (1) WO2017090421A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151127A1 (ja) * 2018-01-31 2019-08-08 Jsr株式会社 組成物、架橋成形体及びタイヤ
WO2019151126A1 (ja) * 2018-01-31 2019-08-08 Jsr株式会社 組成物、架橋成形体及びタイヤ
EP3878904A1 (en) 2020-02-05 2021-09-15 JSR Corporation Polymer composition, crosslinked polymer, and tire
EP4056612A1 (en) 2021-03-12 2022-09-14 JSR Corporation Block copolymer and adhesive
EP4056613A1 (en) 2021-03-12 2022-09-14 JSR Corporation Block polymer, polymer composition, and adhesive

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110009588A1 (en) * 2009-07-08 2011-01-13 Tsrc Corporation Coupled polymers and manufacturing method thereof
WO2012073828A1 (ja) * 2010-12-03 2012-06-07 住友化学株式会社 電気装置
JP2014047295A (ja) * 2012-08-31 2014-03-17 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物
US20140187723A1 (en) * 2012-12-28 2014-07-03 Chi Mei Corporation Polysiloxane compound, modified conjugated diene-vinyl aromatic copolymer and preparing method thereof
WO2014133097A1 (ja) * 2013-02-28 2014-09-04 Jsr株式会社 タイヤ用部材、水添共役ジエン系重合体、及び、重合体組成物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5447667B2 (ja) * 2010-12-03 2014-03-19 横浜ゴム株式会社 タイヤトレッド用ゴム組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110009588A1 (en) * 2009-07-08 2011-01-13 Tsrc Corporation Coupled polymers and manufacturing method thereof
WO2012073828A1 (ja) * 2010-12-03 2012-06-07 住友化学株式会社 電気装置
JP2014047295A (ja) * 2012-08-31 2014-03-17 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物
US20140187723A1 (en) * 2012-12-28 2014-07-03 Chi Mei Corporation Polysiloxane compound, modified conjugated diene-vinyl aromatic copolymer and preparing method thereof
WO2014133097A1 (ja) * 2013-02-28 2014-09-04 Jsr株式会社 タイヤ用部材、水添共役ジエン系重合体、及び、重合体組成物

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151127A1 (ja) * 2018-01-31 2019-08-08 Jsr株式会社 組成物、架橋成形体及びタイヤ
WO2019151126A1 (ja) * 2018-01-31 2019-08-08 Jsr株式会社 組成物、架橋成形体及びタイヤ
EP3878904A1 (en) 2020-02-05 2021-09-15 JSR Corporation Polymer composition, crosslinked polymer, and tire
EP4056612A1 (en) 2021-03-12 2022-09-14 JSR Corporation Block copolymer and adhesive
EP4056613A1 (en) 2021-03-12 2022-09-14 JSR Corporation Block polymer, polymer composition, and adhesive

Also Published As

Publication number Publication date
SG11201804093WA (en) 2018-06-28
JP6252705B2 (ja) 2017-12-27
JPWO2017090421A1 (ja) 2017-11-24

Similar Documents

Publication Publication Date Title
JP6503064B2 (ja) 水添共役ジエン系ゴム、ゴム組成物、架橋ゴム及びタイヤ
JP6252716B1 (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体、タイヤ及び化合物
JP6004081B2 (ja) タイヤ用部材、及び、重合体組成物
KR102526006B1 (ko) 수소 첨가 공액 디엔계 중합체의 제조 방법, 수소 첨가 공액 디엔계 중합체, 중합체 조성물, 가교 중합체 및 타이어
JP6252705B2 (ja) 水添共役ジエン系重合体の製造方法、水添共役ジエン系重合体、重合体組成物、架橋重合体及びタイヤ
WO2017014283A1 (ja) 水添共役ジエン系重合体及びその製造方法、重合体組成物、架橋重合体、並びにタイヤ
WO2017014282A1 (ja) 水添共役ジエン系重合体及びその製造方法、重合体組成物、架橋重合体、並びにタイヤ
CN113382882B (zh) 氢化共轭二烯系聚合物、聚合物组合物、交联体及轮胎
JPWO2017014281A1 (ja) 水添共役ジエン系重合体及びその製造方法、重合体組成物、架橋重合体、並びにタイヤ
WO2021085616A1 (ja) 変性共役ジエン系重合体の製造方法、重合体組成物、架橋体及びタイヤ
JPWO2017026288A1 (ja) 共役ジエン系重合体及びその製造方法、重合体組成物、架橋重合体、並びにタイヤ
US11945937B2 (en) Method for producing modified conjugated diene polymer, modified conjugated diene polymer, polymer composition, crosslinked body and tire
WO2017086208A1 (ja) 水添共役ジエン系重合体の製造方法、水添共役ジエン系重合体、重合体組成物、架橋重合体及びタイヤ
EP3269744B1 (en) Modified conjugated diene polymer, method for producing modified conjugated diene polymer, polymer composition, crosslinked polymer, and tire
KR20200137976A (ko) 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체, 중합체 조성물, 가교체 및 타이어
WO2018199280A1 (ja) 架橋ゴム及びタイヤ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017515847

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868369

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201804093W

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868369

Country of ref document: EP

Kind code of ref document: A1