WO2010147070A1 - 樹脂組成物及び有機電解液電池 - Google Patents

樹脂組成物及び有機電解液電池 Download PDF

Info

Publication number
WO2010147070A1
WO2010147070A1 PCT/JP2010/060013 JP2010060013W WO2010147070A1 WO 2010147070 A1 WO2010147070 A1 WO 2010147070A1 JP 2010060013 W JP2010060013 W JP 2010060013W WO 2010147070 A1 WO2010147070 A1 WO 2010147070A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
epoxy resin
current collector
alicyclic skeleton
aromatic ring
Prior art date
Application number
PCT/JP2010/060013
Other languages
English (en)
French (fr)
Inventor
天野 博
啓志 荻野
賢司 保坂
仙北谷 良一
下井田 良雄
堀江 英明
Original Assignee
味の素株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社, 日産自動車株式会社 filed Critical 味の素株式会社
Priority to EP10789445.3A priority Critical patent/EP2444437B1/en
Priority to CN201080027467.5A priority patent/CN102459395B/zh
Priority to KR1020127000911A priority patent/KR101798668B1/ko
Priority to JP2011519763A priority patent/JP5732389B2/ja
Priority to BRPI1016037A priority patent/BRPI1016037A2/pt
Priority to RU2012101470/04A priority patent/RU2532162C2/ru
Publication of WO2010147070A1 publication Critical patent/WO2010147070A1/ja
Priority to US13/325,647 priority patent/US8574745B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/26Di-epoxy compounds heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4021Ureas; Thioureas; Guanidines; Dicyandiamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5006Amines aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a resin composition having both excellent adhesion to metal and high organic solvent resistance, in particular, a resin composition suitable for use as a sealing agent for organic electrolyte batteries, and a long term having a sealing portion by the resin composition.
  • the present invention relates to a highly reliable organic electrolyte battery.
  • organic electrolyte batteries that are small, lightweight, and capable of high output and high energy density have attracted attention as secondary batteries, and lithium ion secondary batteries have become the mainstream.
  • the sealing agent used for this is a very important material that isolates the organic electrolyte from the external moisture.
  • Patent Document 1 a polyolefin-based adhesive
  • Patent Document 2 a polyvinylidene fluoride resin
  • an organic electrolyte battery such as a lithium ion secondary battery
  • a vehicle such as an electric vehicle or a hybrid electric vehicle
  • a stacked parallel battery or a stacked series battery including a plurality of power generation elements is advantageous.
  • the thickness of the entire stacked battery is increased and the size of the battery is increased.
  • the material used for the electrolyte layer interposed between the positive electrode and the negative electrode generally does not have high heat resistance, and the sealant that seals between the two current collectors sandwiching the power generation element has a relatively low temperature. What can perform a sealing operation is advantageous, and a sealing agent that can provide high adhesion to a metal at low temperatures is demanded.
  • the problem to be solved by the present invention is a resin composition having excellent adhesion to metals (in particular, excellent adhesion to refractory metals such as stainless steel and nickel) and having excellent organic solvent resistance. Is to provide.
  • an organic electrolyte battery sealed in a highly reliable sealed structure particularly a gap between two current collectors sandwiching a power generation element
  • the present inventors use at least an epoxy resin having an aromatic ring and an alicyclic skeleton as an epoxy resin, and combine the epoxy resin with a specific curing agent.
  • the inventors have found that the above-described problems can be solved, and have completed the present invention.
  • a resin composition comprising an epoxy resin (A) containing at least an epoxy resin (E1) having an aromatic ring and an alicyclic skeleton, and a latent curing agent (B).
  • the epoxy resin (A) comprises an epoxy resin (E1) having an aromatic ring and an alicyclic skeleton and a rubbery core-shell polymer-modified epoxy resin (E2).
  • the epoxy resin (E1) having an aromatic ring and an alicyclic skeleton is a terpene structure skeleton-containing epoxy resin (E1-1) in which the alicyclic skeleton is a skeleton of a residue of a cyclic terpene compound (E1-1)
  • the epoxy resin (E1) having an aromatic ring and an alicyclic skeleton is a dicyclopentadiene type epoxy resin (E1-2) in which the alicyclic skeleton is a skeleton formed from a residue of dicyclopentadiene.
  • 1) is a resin composition according to (2).
  • the molar ratio (aromatic ring / alicyclic skeleton) between the aromatic ring and the alicyclic skeleton in the epoxy resin (E1) having an aromatic ring and an alicyclic skeleton is 2.5 or more
  • the epoxy resin (A) contains 60 to 80 parts by weight of an epoxy resin (E1) having an aromatic ring and an alicyclic skeleton and 20 to 40 parts by weight of a rubbery core-shell polymer-modified epoxy resin (E2) in 100 parts by weight of the epoxy resin (A).
  • the molar ratio (aromatic ring / alicyclic skeleton) of the aromatic ring to the alicyclic skeleton in the epoxy resin (E1) having an aromatic ring and an alicyclic skeleton is less than 2.5, In 100 parts by weight of epoxy resin (A), 18-24 parts by weight of epoxy resin (E1) having an aromatic ring and an alicyclic skeleton, 42-56 parts by weight of bisphenol type epoxy resin, and rubbery core-shell polymer modified epoxy resin
  • the sealing agent for sealing between the electrode terminal connected to the current collector and the exterior body and / or sealing between the peripheral portions of the opposing current collector (1) The resin composition as described in any one of (13).
  • An organic electrolyte battery sealing agent comprising the resin composition according to any one of (1) to (13) above.
  • Between the electrode terminal connected to the current collector and the exterior body and / or between the peripheral portions of the opposing current collector is sealed with the resin composition according to any one of (1) to (14) above.
  • Electrolyte battery (18) a positive electrode having a positive electrode active material layer electrically coupled to the current collector on the current collector; A negative electrode having a negative electrode active material layer electrically coupled to the current collector on the current collector; The organic electrolyte battery according to (16) or (17) above, comprising an electrolyte layer disposed between the positive electrode and the negative electrode.
  • the resin composition of the present invention can be cured at a relatively low temperature, and the cured product is excellent in adhesion to metal, adheres to high melting point metals such as stainless steel and nickel with high adhesive force, and is excellent. Resistant to organic solvents. In addition, it can be directly applied to a complicated shape or a narrow gap portion and thermally cured. Therefore, by using the resin composition of the present invention as, for example, a sealing agent for an organic electrolyte battery, a highly reliable gap between the peripheral portions of the current collectors facing each other in the power generation element or between the electrode terminal and the outer package is obtained.
  • a highly reliable organic electrolyte battery that can be sealed in a sealed structure, and as a result, a liquid junction (short circuit) due to the leakage of the organic electrolyte from the electrolyte layer is reliably prevented over a long period of time. Can be realized. Moreover, since the space between two opposing metal surfaces with a narrow gap can be sealed in a highly reliable sealed structure, and the sealing operation can be performed at a relatively low temperature, the power generation element of the organic electrolyte battery It can sufficiently cope with the reduction in thickness.
  • FIG. 1 is a cross-sectional view (FIG. 1A, FIG. 1B) and a plan view (FIG. 1C) schematically showing an organic electrolyte battery according to an example of the present invention. It is a schematic cross section of the electric power generation element (cell) of the organic electrolyte battery by the other example of this invention.
  • FIG. 3 is a schematic cross-sectional view of a stacked series battery completed by stacking multiple power generation elements (cells) shown in FIG. 2.
  • the resin composition of the present invention is mainly characterized by containing an epoxy resin (A) containing at least an epoxy resin (E1) having an aromatic ring and an alicyclic skeleton, and a latent curing agent (B).
  • Epoxy resin (A) The epoxy resin (A) in the present invention includes at least an epoxy resin (E1) having an aromatic ring and an alicyclic skeleton.
  • the “epoxy resin (E1) having an aromatic ring and an alicyclic skeleton” means an aromatic ring such as a benzene ring and a naphthalene ring in one molecule, and 6 to 11 (preferably 6 to 10) carbon atoms.
  • the epoxy compound is not particularly limited as long as it is an epoxy compound having an alicyclic skeleton by a residue of an unsaturated alicyclic compound synthesized by a known method using a polyaddition reaction product with vinyl norbon-2-ene or the like) as a raw material.
  • the form of the alicyclic skeleton may be any of monocyclic, bicyclic, condensed polycyclic, condensed polycyclic including bicyclic, etc., and aromatic ring and alicyclic skeleton in one molecule Each may consist of one type, or two or more types may coexist.
  • the “dicyclopentadiene type epoxy resin (E1-2)” is particularly preferably used.
  • the terpene structure skeleton-containing epoxy resin (E1-1) includes polyglycidyl ether of mononuclear polyhydric phenol, polyglycidyl of polynuclear polyhydric phenol having 4 or less carbon atoms in the bond that binds each nucleus. Mention may be made of a reaction product obtained by adding a terpene structure skeleton-containing phenol compound (b) to at least one epoxy resin (a) selected from the group consisting of ethers and polyglycidyl ethers of novolaks. it can.
  • epoxy resin (a) examples include mononuclear polyhydric phenol compounds such as hydroquinone, resorcin, and pyrocatechol; dihydroxynaphthalene, biphenol, methylene bisphenol (bisphenol F), ethylidene bisphenol (bisphenol AD), and isopropylidene.
  • mononuclear polyhydric phenol compounds such as hydroquinone, resorcin, and pyrocatechol
  • dihydroxynaphthalene biphenol
  • methylene bisphenol bisphenol
  • bisphenol AD ethylidene bisphenol
  • isopropylidene isopropylidene.
  • Bisphenol bisphenol A
  • thiobisphenol methylenebis (orthocresol), isopropylidenebis (orthocresol), tetrabromobisphenol A
  • 1,4-bis 4-hydroxycumylbenzene
  • 1,1,3-tris 4,4-bis ( 4-hydroxycumylbenzene)
  • 1,1,3-tris 4,4-bis ( 4-hydroxycumylbenzene) butane
  • 1,1,2,2-tetra (4-hydroxyphenyl) ethane 1,1,2,2-tetra (4-hydroxyphenyl) ethane
  • sulfobisphenol oxybisphenol
  • Polynuclear polyhydric phenol compounds such Lumpur
  • phenol novolak, o-cresol novolak, resorcinol novolak include polyglycidyl ethers of novolac such as naphthol novolak.
  • an epoxy resin made of polyglycidyl ether of bisphenol (bisphenol A, bisphenol F, bisphenol AD, etc.) is preferable, and an epoxy resin made of polyglycidyl ether of bisphenol F is particularly preferable.
  • the terpene structure skeleton-containing phenol compound (b) is obtained by adding phenols such as phenol or alkylphenol to a cyclic terpene compound, and the cyclic terpene compound may be a monocyclic terpene compound. It may be a bicyclic terpene compound. Moreover, the cyclic terpene compound may be one type or two or more types. Specific examples include limonene ( ⁇ -type, ⁇ -type), terbinolene, pinene ( ⁇ -type, ⁇ -type), terpinene ( ⁇ -type, ⁇ -type, ⁇ -type), mentadiene (3, 3, and 2, 4 types). Is mentioned.
  • phenols phenol, cresol, xylenol, propylphenol, butylphenol, pentylphenol, amylphenol, octylphenol, nonylphenol, dodecylphenol, methoxyphenol, chlorophenol, bromophenol, 4-isopropyl-3-methylphenol, 5 -Methyl-2- (1-methylethyl) phenol and the like.
  • phenols phenol, cresol, xylenol, propylphenol, butylphenol, pentylphenol, amylphenol, octylphenol, nonylphenol, dodecylphenol, methoxyphenol, chlorophenol, bromophenol, 4-isopropyl-3-methylphenol, 5 -Methyl-2- (1-methylethyl) phenol and the like.
  • phenols phenol, cresol, xylenol, propylphenol, butylphenol, pentylphenol, amylphenol,
  • the method of adding phenols to the cyclic terpene compound preferably uses 0.5 to 5 mol of phenol with respect to 1 mol of the cyclic terpene compound.
  • the reaction can be easily carried out by reacting at 40 to 160 ° C. for 1 to 10 hours in the presence.
  • the above reaction can also be performed in a solvent such as aromatic hydrocarbons, alcohols, ethers and the like.
  • the acid catalyst used in the reaction include hydrochloric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, boron trifluoride or a complex thereof, and activated clay.
  • terpene structure skeleton-containing phenol compound (b) include, for example, compounds (1) to (11) having the following structures, among which compounds (4) to (8) are preferable, particularly preferable. Is compound (5).
  • the terpene structure skeleton-containing phenol compound (b) may be a commercially available product. Specific examples thereof include YP-90LL, Mighty Ace G125, Mighty Ace G150, Mighty Ace K125, YS Resin TO125, and YS Resin.
  • a usual method of adding a phenol compound to the epoxy resin can be employed.
  • a method of heating both to 60 to 200 ° C. in the presence of a basic catalyst such as dimethylbenzylamine can be used.
  • the amount ratio of the epoxy resin (a) and the terpene structure skeleton-containing phenol compound (b) is such that the phenolic hydroxyl group of the terpene structure skeleton phenol compound (b) is 0.05 to 1 with respect to one epoxy group of the epoxy resin (a).
  • the use ratio of the terpene structure skeleton phenol compound (b) is less than the above range (less than 0.05 hydroxyl groups with respect to one epoxy group), for example, when used as a sealant for an organic electrolyte battery
  • the adhesiveness of the resin composition to the current collector or the exterior body becomes insufficient, and the above range is exceeded (more than 0.8 hydroxyl groups relative to one epoxy group)
  • the epoxy equivalent becomes remarkably large.
  • the curability of the target resin composition becomes insufficient.
  • a sufficiently high resistance to an electrolyte tends to be hardly obtained.
  • the terpene structure skeleton-containing epoxy resin (E1-1) is a polyglycidyl ether obtained by glycidyl etherification of a terpene structure skeleton-containing phenol compound (b) having two or more hydroxyl groups. Also good.
  • the reaction of the terpene structure skeleton-containing phenol compound (b) with an epihalohydrin such as epichlorohydrin or epibromohydrin is, for example, an inert organic solvent such as an aprotic polar solvent such as isopropyl alcohol or dimethyl sulfoxide. It can be carried out by adding caustic soda etc. in the presence to react.
  • quaternary ammonium salt may be used as the catalyst.
  • the quaternary ammonium salt include tetramethylammonium chloride, tetramethylammonium bromide, trimethylbenzylammonium chloride, triethylbenzylammonium chloride and the like.
  • E1-1 terpene structure skeleton-containing epoxy resin (E1-1) in the present invention
  • commercially available products can be used.
  • EP9003 epoxy equivalent: 250
  • YL7291 manufactured by Japan Epoxy Resin Co., Ltd.
  • J1994 Epoxy equivalent: 229
  • the “dicyclopentadiene type epoxy resin (E1-2)” used in the present invention is a dicyclopentadiene skeleton-containing phenol compound or dicyclopentadiene skeleton-containing naphthol compound obtained by reacting dicyclopentadiene with phenols or naphthols Is an epoxy resin (polyglycidyl ether) obtained by reacting with an epihalohydrin such as epichlorohydrin or epibromohydrin by a conventional method.
  • the dicyclopentadiene skeleton-containing phenol compound and the dicyclopentadiene skeleton-containing naphthol compound can be obtained by, for example, a method of reacting dicyclopentadiene with phenols or naphthols in the presence of an acid catalyst using the Friedel-Craft reaction.
  • phenols include o-cresol, m-cresol, p-cresol, 2,6-dimethylphenol, 2,4-dimethylphenol, 2-methylhydroquinone, resorcin, hydroquinone, catechol, bromophenol and the like.
  • naphthols examples include ⁇ -naphthol, ⁇ -naphthol, dihydroxynaphthalene and the like.
  • the amount of phenols (naphthols) charged is preferably at least 1 molar equivalent, more preferably 3 to 8 molar equivalents, relative to the amount of dicyclopentadiene.
  • the reaction conditions are preferably 10 to 200 ° C., 30 minutes to 7 hours.
  • boron trifluoride / phenol complex is used as a catalyst, preferably 20 to 160 ° C., particularly preferably It is in the range of 50 to 150 ° C.
  • the catalyst is removed from the reaction solution, and then the desired dicyclopentadiene skeleton-containing phenol compound (dicyclopentadiene skeleton-containing naphthol compound) can be obtained by concentrating the reaction solution.
  • the dicyclopentadiene type epoxy resin (E1-2) is preferably represented by the general formula (III):
  • m Rs each independently represent a hydrogen atom, a methyl group, an ethyl group, a propyl group, or a t-butyl group
  • n is an integer of 0 to 4
  • m is an integer of 1 to 3.
  • an epoxy resin in which R is a hydrogen atom or a methyl group preferably m is 1).
  • Such an epoxy resin is obtained from DIC Corporation, It is commercially available under the names of Epicron HP-7200 (epoxy equivalent: 258), HP-7200L (epoxy equivalent: 247), HP-7200H (epoxy equivalent: 280), and the like.
  • the epoxy resin (E1) having an aromatic ring and an alicyclic skeleton preferably has an epoxy equivalent of 200 or more, more preferably an epoxy equivalent of 220 or more, and an epoxy equivalent of 230 or more. Those are particularly preferred. Also, those having an epoxy equivalent of 2000 or less are preferred, those having an epoxy equivalent of 1500 or less are more preferred, those having an epoxy equivalent of 300 or less are particularly preferred, and those having an epoxy equivalent of 260 or less are particularly preferred. When the epoxy equivalent is less than 200, for example, when the target resin composition is used as a sealant for an organic electrolyte battery, the adhesion to a current collector or an exterior material becomes insufficient.
  • the epoxy equivalent of the epoxy resin as used in the field of this invention is a value measured by the method described in JIS K 7236.
  • the epoxy resin (E1) having an aromatic ring and an alicyclic skeleton particularly preferably has an alicyclic skeleton content of 20% by weight or more, more preferably from the viewpoint of adhesion of the resin composition to the metal. Is 25% by weight or more.
  • the content of the alicyclic skeleton is preferably 55% by weight or less, and more preferably 53% by weight. % Or less.
  • the content of the alicyclic skeleton is a value represented by a weight ratio analyzed by gel permeation chromatography (GPC).
  • the molar ratio of the aromatic ring to the alicyclic skeleton (aromatic ring / alicyclic skeleton) in the epoxy resin (E1) having an aromatic ring and an alicyclic skeleton is the viewpoint of the adhesiveness and electrolyte resistance of the resin composition. Therefore, 1.0 to 5.0 is preferable, and 1.5 to 3.0 is more preferable.
  • the molar ratio of the aromatic ring to the alicyclic skeleton (aromatic ring / alicyclic skeleton) is less than 1.0, the epoxy resin becomes semi-solid or solid, and the viscosity of the sealing material tends to increase.
  • the molar ratio of the aromatic ring to the alicyclic skeleton is measured by structural analysis using an arbitrary analysis method such as GPC or NMR.
  • the amount of the epoxy resin (E1) having an aromatic ring and an alicyclic skeleton in the entire component A (epoxy resin (A)) is the kind of the epoxy resin (E1) having an aromatic ring and an alicyclic skeleton.
  • the epoxy resin (E1) having an aromatic ring and an alicyclic skeleton is 18 to 100 parts by weight (preferably 20 to 100 parts by weight) in 100 parts by weight of the epoxy resin (A). ) Is used within the range.
  • the amount of the epoxy resin (E1) having an aromatic ring and an alicyclic skeleton is less than 18 parts by weight, the adhesiveness of the target resin composition tends to be lowered, and particularly good for heat resistant metals such as stainless steel. It tends to be difficult to obtain adhesiveness.
  • an epoxy resin (“combined epoxy resin”) that can be used in combination with the epoxy resin (E1) having an aromatic ring and an alicyclic skeleton in the epoxy resin (A)
  • a bisphenol type epoxy resin bisphenol A
  • bisphenol F type epoxy resin bisphenol F type epoxy resin
  • bisphenol AD type epoxy resin bisphenol AD type epoxy resin
  • biphenyl type epoxy resin novolac type epoxy resin
  • naphthalene type epoxy resin and the like
  • these epoxy resins were modified with a rubbery core-shell polymer Examples thereof include a rubbery core-shell polymer-modified epoxy resin.
  • These epoxy resins may be used alone or in combination of two or more. These epoxy resins preferably have an epoxy equivalent in the range of 150 to 300, and more preferably have an epoxy equivalent in the range of 160 to 245.
  • liquid bisphenol A type epoxy resin for example, “Epicoat 828” (epoxy equivalent: 190) manufactured by Japan Epoxy Resin Co., Ltd.), etc.
  • Liquid bisphenol F type epoxy resin for example, “Epicoat 806” (epoxy equivalent: 165) manufactured by Japan Epoxy Resin Co., Ltd., “YDF8170” (epoxy equivalent: 160) manufactured by Toto Kasei Co., Ltd.
  • liquid bisphenol AD Type epoxy resin for example, “ZX1059” manufactured by Tohto Kasei Co., Ltd.
  • a rubbery core-shell polymer modified epoxy resin obtained by modifying these epoxy resins with a rubbery core-shell polymer (ie, rubber) Core-shell polymer modified bisphenol A type epoxy resin, rubber-like core Shell polymer-modified bisphenol F type epoxy resin, rubber-like core-shell polymer-modified bisphenol AD type epoxy resin, etc.), liquid bisphenol F type epoxy resin, liquid bisphenol AD type epoxy resin, rubbery core shell polymer modified bisphenol A type epoxy resin are preferred. Particularly preferred.
  • the “rubber-like core-shell polymer-modified epoxy resin (E2)” means an epoxy resin composition in which a rubber-like core-shell polymer is dispersed in the state of primary particles in the epoxy resin.
  • JP-A-2004-315572 It can manufacture by the method as described in gazette.
  • the rubbery core-shell polymer (X) used for the modification of the epoxy resin is 50% by weight or more of at least one monomer selected from the group consisting of diene monomers and (meth) acrylate monomers, and others Rubber particle core (X-1) comprising 50 to 95% by weight of a rubber elastic body, polysiloxane rubber-based elastic body, or a mixture thereof containing less than 50% by weight of a copolymerizable vinyl monomer as a monomer component
  • (meth) acrylic acid ester, aromatic vinyl, vinyl cyanide, epoxy alkyl vinyl ether, unsaturated acid derivative, (meth) acrylamide derivative and one or more monomers selected from the group consisting of maleimide derivatives Obtained by graft polymerization of 5 to 50% by weight of the shell layer (X-2).
  • Examples of the diene monomer constituting the rubber particle core (X-1) include butadiene, isoprene, and chloroprene, but butadiene is preferred.
  • Examples of the (meth) acrylic acid ester monomer include butyl acrylate, 2-ethylhexyl acrylate, lauryl methacrylate and the like, but butyl acrylate and 2-ethylhexyl acrylate are preferable.
  • Examples of other copolymerizable vinyl monomers include alkyl (meth) acrylates other than the above-described alkyl (meth) acrylates, vinyl aromatic monomers, vinyl cyan monomers, and the like.
  • (Meth) acrylate monomers include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, vinyl aromatic monomers include styrene, ⁇ -methylstyrene, vinylcyan monomers ( Examples thereof include (meth) acrylonitrile and substituted acrylonitrile. These may be used alone or in combination of two or more, and the amount used is preferably less than 50% by weight, more preferably less than 40% by weight, based on the total weight of the rubber particle core (X-1). is there.
  • a polyfunctional monomer may be used as a component constituting the rubber particle core (X-1) in order to adjust the degree of crosslinking
  • examples of the polyfunctional monomer include divinylbenzene, butanediol diene. Examples include (meth) acrylate, triallyl (iso) cyanurate, allyl (meth) acrylate, diallyl itaconate, diallyl phthalate, and the like. These are used in an amount of not more than 10% by weight, preferably not more than 5% by weight, more preferably not more than 3% by weight, based on the total weight of the rubber particle core.
  • the shell layer (X-2) has a function of giving affinity to the epoxy resin so that the rubbery core-shell polymer (X) is stably dispersed in the state of primary particles in the epoxy resin.
  • the polymer constituting the shell layer (X-2) is graft-polymerized to the polymer constituting the rubber particle core (X-1), and is substantially bonded to the polymer constituting the rubber particle core (X-1).
  • the polymer constituting the shell layer (X-2) is preferably 70% by weight or more, more preferably 80% by weight or more, and still more preferably 90% by weight or more in the rubber particle core (X-1). It is desirable that they are combined.
  • the shell layer (X-2) preferably has swelling property, compatibility or affinity for the epoxy resin.
  • the polymer constituting the shell layer (X-2) is selected from the group consisting of (meth) acrylic acid ester, aromatic vinyl, vinyl cyanide, epoxyalkyl vinyl ether, unsaturated acid derivative, (meth) acrylamide derivative and maleimide derivative. Consisting of one or more monomers.
  • examples thereof include glycidyl (meth) acrylate, glycidyl vinyl ether, (meth) acrylamide, maleic anhydride, maleic imide and the like, and these can be used alone or in combination of two or more.
  • the ratio (weight ratio) of the rubber particle core (X-1) / shell layer (X-2) of the rubbery core-shell polymer (X) is preferably in the range of 50/50 to 95/5, more preferably. Is 60/40 to 90/10.
  • the rubbery core-shell polymer (X) can be produced by a known method, for example, emulsion polymerization, suspension polymerization, microsuspension polymerization or the like. Among these, the production method by emulsion polymerization is particularly suitable.
  • the particle size of the rubber-like core-shell polymer (X) is not particularly limited, and any rubber-like core-shell polymer (X) can be used without any problem as long as the rubber-like core-shell polymer (X) can be stably obtained in the state of an aqueous latex. From the viewpoint of industrial productivity, those having a volume average particle size of about 0.03 to 1 ⁇ m are more preferable in terms of easy production. The volume average particle diameter can be measured by a microtrack method.
  • the rubber-like core-shell polymer modified epoxy resin (E2) is prepared by mixing the rubber-like core-shell polymer obtained in the state of aqueous latex with an organic solvent, taking out the rubber-like core-shell polymer into the organic phase, and dispersing the rubber-like core-shell polymer into the organic solvent. After obtaining the above dispersion, it is obtained by mixing with an epoxy resin.
  • the content of the rubbery core-shell polymer (X) is preferably 10 to 40% by weight.
  • the rubbery core-shell polymer-modified epoxy resin (E2) is commercially available, and a commercially available product can be used as it is.
  • Kaneace MX120 epoxy equivalent: 243
  • MX125 epoxy equivalent: 243
  • MX130 epoxy equivalent: 243
  • MX130 epoxy
  • MX965 epoxy equivalent: 220
  • RKB 3040 epoxy equivalent: 230 manufactured by Resinas Kasei Co., Ltd. and the like can be used particularly preferably.
  • Kane Ace MX120, MX125 and MX130 contain 25% by weight of a rubbery core-shell polymer whose rubber particle core is made of a styrene-butadiene copolymer.
  • Kane Ace MX960 and MX965 have a rubber particle core made of a polydimethylsiloxane or the like. It contains 25% by weight of a rubbery core-shell polymer made of siloxane rubber (silicone rubber).
  • RKB3040 manufactured by Resina Chemicals Co., Ltd. contains 29% by weight of a rubbery core-shell polymer whose rubber particle core is made of butadiene rubber.
  • the epoxy resin (A) is a rubber-like epoxy resin (E1) having an aromatic ring and an alicyclic skeleton from the viewpoint of imparting an extremely high level of electrolytic solution resistance to the target resin composition.
  • An embodiment containing the core-shell polymer-modified epoxy resin (E2) is preferable.
  • an epoxy having an aromatic ring and an alicyclic skeleton is an epoxy having an aromatic ring and an alicyclic skeleton
  • a heat-resistant metal such as stainless steel in the resin composition 60 to 80 parts by weight (preferably 60 to 70 parts by weight) of an epoxy resin (E1) having an aromatic ring and an alicyclic skeleton in 100 parts by weight of the epoxy resin (A)
  • a composition containing 20 to 40 parts by weight (preferably 30 to 40 parts by weight) of the rubbery core-shell polymer-modified epoxy resin (E2) is preferable.
  • the epoxy resin (A) includes an epoxy resin (E1) having an aromatic ring and an alicyclic skeleton and a rubbery core-shell polymer-modified epoxy resin (E2)
  • an epoxy having an aromatic ring and an alicyclic skeleton When the molar ratio of the aromatic ring to the alicyclic skeleton (aromatic ring / alicyclic skeleton) in the resin (E1) is less than 2.5 (particularly less than 2.1), the heat resistant metal such as stainless steel in the resin composition
  • a cyclic skeleton is used for the purpose of improving workability when applying the resin composition to a portion to be sealed (sealing portion).
  • a cyclic skeleton is used for the purpose of adjusting the viscosity of the resin composition.
  • low viscosity as used herein means that the viscosity at room temperature (25 ° C.) is approximately 10 poise or less.
  • a cyclic terpene skeleton-containing monoepoxy compound obtained by reacting a cyclic terpene skeleton-containing monophenol compound obtained by adding equimolar amounts of a cyclic terpene phenol compound and phenols with an epihalohydrin, phenyl Glycidyl ether, cyclohexane dimethanol diglycidyl ether (for example, “EP4085S” manufactured by ADEKA Corporation), dicyclopentadiene diglycidyl ether (for example, “EP4088S” manufactured by ADEKA Corporation), resorcinol diglycidyl ether ( For example, “Denacol EX201” manufactured by Nagase ChemteX Co., Ltd.), glycidyl orthotoluidine (eg “GOT” manufactured by Nippon Kayaku Co., Ltd.), diglycidylaniline (eg
  • the amount used is within a range of 30 parts by weight or less, preferably 20 parts by weight or less, more preferably 15 parts by weight or less, in 100 parts by weight of the epoxy resin of component A. . This is because when the amount exceeds 30 parts by weight, although the dilution effect is large, the electrolytic solution resistance and the adhesion to the current collector and the exterior material tend to decrease. If the amount is less than 5 parts by weight, the viscosity dilution effect is small, so 5 parts by weight or more is preferable, and 7 parts by weight or more is more preferable.
  • the content of the epoxy resin (A) is preferably 55% by weight or more, more preferably 58% by weight or more, and still more preferably 60% by weight or more based on the entire resin composition. Moreover, 85 weight% or less is preferable, 83 weight% is more preferable, 80% or less is further more preferable, and 75 weight% is still more preferable.
  • the latent curing agent used in the present invention is preferably a latent modified polyamine-based curing agent, specifically, a microencapsulated imidazole group-containing modified polyamine (for example, NovaCure HX3721 and HX3721 manufactured by Asahi Kasei Chemicals Corporation). , HX3921HP, HX3941HP, etc.), dicyandiamide-modified polyamine (eg, EH3842 from ADEKA Corporation), tertiary amino group-containing modified aliphatic polyamine (eg, EH4380S, EH3615S, etc.
  • a latent modified polyamine-based curing agent specifically, a microencapsulated imidazole group-containing modified polyamine (for example, NovaCure HX3721 and HX3721 manufactured by Asahi Kasei Chemicals Corporation). , HX3921HP, HX3941HP, etc.), dicyandiamide-modified polyamine (eg, EH3842 from ADEKA Corporation),
  • imidazole group-containing Modified polyamines for example, Amico PN23, PN31, PN40, PN50, PN-H manufactured by Ajinomoto Fine Techno Co., Adeka Hardener EH3293S, EH3366S, EH4346S manufactured by ADEKA Co., Ltd.
  • urea bond-containing modified Polyamines for example, Fujicure-FXR1000, FXR1110, FXR1121, FXR1081, etc.
  • urea bond-containing modified aliphatic polyamines for example, EH4353S manufactured by ADEKA Corporation
  • urea bond and imidazole group-containing modified Examples include polyamines (for example, FXR1110 and FXR1121 manufactured by Fuji Kasei Kogyo Co., Ltd.), imidazole compounds (for example, Curesol 2MZ-A, 2MA-OK, 2PHZ, 2P4MHZ, etc. manufactured by Shikoku Kasei Kogyo Co., Ltd.) and the like.
  • Such latent curing agents may be used alone or in combination of two or more.
  • tertiary amino group-containing modified aliphatic polyamine, urea bond-containing modified polyamine (urea bond) Containing modified aliphatic polyamine), imidazole group containing modified polyamine, urea bond and imidazole group containing modified polyamine are preferred, tertiary amino group containing modified aliphatic polyamine, urea bond containing modified polyamine (urea bond containing modified aliphatic polyamine), urea Bonded and imidazole group-containing modified polyamines are particularly preferred.
  • the amount of the component B latent curing agent used is in the range of 0.7 to 1.3 equivalents relative to the component A epoxy resin (epoxy resin (A)).
  • 0.9 to 1.1 equivalents are preferable from the viewpoint of the electrolytic solution resistance and curability of the resin composition. If it is less than 0.7 equivalent, curing tends to be slow and it is difficult to form a sufficient cross-linked structure, adhesion strength also decreases, and organic solvent resistance (electrolytic solution resistance) tends to decrease. .
  • the unreacted curing agent tends to be present in the cured resin and elutes into the organic solvent (electrolyte), and the target resin composition is used as a sealant for organic electrolyte batteries. When it does, it will become the tendency for a battery characteristic to fall remarkably.
  • the resin composition of the present invention comprises at least the above-described epoxy resin (A) and latent curing agent (B), and may further contain a co-curing agent (C).
  • a co-curing agent By containing (curing accelerator), the adhesiveness of the resin composition can be further improved, and in particular, the adhesiveness to the stainless steel foil can be improved.
  • the co-curing agent for component C include dicyandiamide, urea bond-containing modified aliphatic polyamine (for example, EH4353S manufactured by ADEKA, etc.), and it is particularly preferable to use dicyandiamide and urea bond-containing modified aliphatic polyamine together.
  • the amount of the C component co-curing agent used is in the range of 0.5 to 10 parts by weight per 100 parts by weight of the epoxy resin of component A, and the organic solvent resistance (electrolytic solution resistance) of the composition and From the viewpoint of curability, 0.8 to 8 parts by weight is preferable, and 1 to 5 parts by weight is particularly preferable. If it is less than 0.5 parts by weight, it may not sufficiently contribute to the improvement in adhesion to the stainless steel foil, and if it exceeds 10 parts by weight, the organic solvent resistance (electrolytic solution resistance) of the composition tends to decrease, When the target resin composition is used as a sealant for an organic electrolyte battery, there is a risk of elution into the electrolyte or impairing battery characteristics.
  • a filler (D) can be further blended from the viewpoints of improvement in adhesiveness, workability during application of the resin composition, and the like.
  • the type of filler is not particularly limited, and any inorganic filler can be used.
  • Specific examples include talc, calcium carbonate, alumina, crystalline silica, and fused silica. These may be used alone or in combination of two or more.
  • talc is preferable from the viewpoint of adhesion to a metal foil (current collector) such as stainless steel foil
  • calcium carbonate is preferable from the viewpoint of organic solvent resistance (electrolytic solution resistance).
  • the blending amount of the filler (D) is preferably 15 to 60 parts by weight, more preferably 20 to 50 parts by weight, and particularly preferably 25 to 50 parts by weight with respect to 100 parts by weight of the A component epoxy resin. If it is less than 15 parts by weight, it may not sufficiently contribute to the improvement of the adhesiveness of the resin composition, workability at the time of application of the resin composition, and if it exceeds 60 parts by weight, the viscosity of the resin composition is high. The handling at the time of application may be deteriorated.
  • the amount ratio thereof talc: calcium carbonate
  • the amount ratio thereof is preferably 1: 2 to 6 and more preferably 1: 3 to 5 by weight.
  • various additives that can be usually used in the resin composition may be blended to such an extent that the effect is not impaired.
  • various additives include pigments, dyes, antifoaming agents, coupling agents, and surfactants. From the viewpoint of improving adhesiveness and reducing viscosity, silane coupling agents and titanate coupling agents are preferred.
  • the resin composition of the present invention is excellent in adhesiveness to metals, can firmly bond two opposing metal surfaces, and has high organic solvent resistance, so it can be used as various functional chemicals. it can.
  • the metal here is not particularly limited, and includes various metals that are generally used in apparatuses and members in various technical fields such as aluminum, aluminum-based alloys, copper, copper alloys, nickel, and stainless steel.
  • various functional chemicals include adhesives, sealants (coil sealants, relay sealants, organic electrolyte battery sealants, etc.), casting agents, coating agents (moisture resistance of various electronic components) Coating, etc.), paint (insulating paint for printed circuit boards, etc.) and the like.
  • the resistance to the liquid electrolyte (organic electrolyte) of the organic electrolyte battery is extremely high, the deterioration is small even when it comes into contact with a high-temperature organic electrolyte, and high adhesion to highly heat-resistant metals such as nickel and stainless steel. It is particularly useful as a sealing agent for an organic electrolyte battery from the viewpoint of obtaining a high strength.
  • the resin composition of the present invention exhibits excellent adhesion and deterioration resistance to organic electrolytes by heat curing.
  • Heat curing may be performed within a range of about 100 to 120 ° C. for about 0.5 to 1.0 hour.
  • the resin composition of the present invention is a liquid having a viscosity in the range of 500 to 2500 poise (preferably 500 to 2000 poise) at room temperature (25 ° C.) in an uncured state before being heat-cured.
  • a seal portion can be formed, and a highly hermetic seal portion is formed even for a gap of 50 ⁇ m or less.
  • a highly hermetic seal portion can be formed between two metal surfaces facing each other with a gap of 50 ⁇ m or less.
  • JIS K-6854-3 is applied to a test piece in which two stainless steel foils are bonded together with the resin composition of the present invention interposed between two stainless steel foils.
  • cured material (heat-cured material) obtained by heating the resin composition of this invention is 100 degreeC or more, More preferably, it is 120 degreeC or more, Especially preferably, it is 140 degreeC or more. is there.
  • the glass transition temperature of the heat-cured product is 100 ° C. or higher, the deterioration resistance (electrolytic solution resistance) with respect to the organic electrolytic solution is further improved.
  • the glass transition temperature of the heat-cured product is adjusted by changing the type of the curing agent, the blending amount (equivalent ratio with epoxy), and the like.
  • the glass transition temperature of the heat-cured product becomes too high, the crosslinking density of the heat-cured product tends to increase and the shrinkage of the heat-cured product tends to increase. Therefore, the glass transition temperature is preferably 200 ° C. or less, and 180 ° C. The following is more preferable.
  • organic electrolyte battery organic electrolyte battery of the present invention in which a sealing portion is formed using the resin composition of the present invention as a sealant will be described.
  • an organic electrolyte battery such as a lithium ion secondary battery basically has a positive electrode having a positive electrode active material layer electrically coupled on a current collector and a negative electrode active material electrically coupled on the current collector.
  • a negative electrode having a material layer and an electrolyte layer disposed between the positive electrode and the negative electrode are provided as power generation elements.
  • the basic configuration of an organic electrolyte battery to which the resin composition of the present invention is applied is the same.
  • the resin composition of the present invention can be used for sealing various parts to be sealed in an organic electrolyte battery, and the sealing of a resin insulating gasket in a square battery or a cylindrical battery described in the background art section. It can be used as a sealing agent for enhancing the properties.
  • a sealing agent for sealing between the electrode terminal connected to the current collector and the outer body (sheet) in the sheet outer type battery, and (2) the gap between the opposing current collectors It can be used as a sealing agent for sealing, (3) a sealing agent for sealing a peripheral portion of a sheet as an exterior body, and the like.
  • FIG. 1 is a schematic sectional view (FIG. 1 (a), FIG. 1 (b)) and a schematic plan view (FIG. 1 (c)) of an organic electrolyte battery of a first example of the present invention.
  • FIG. 1A is a cross-sectional view at a position passing through the electrode terminal arrangement portion
  • FIG. 1B is a cross-sectional view at a position other than the electrode terminal arrangement portion.
  • the positive electrode 1 includes a current collector 2 and a positive electrode active material layer 3 formed on one main surface of the current collector 2, and the negative electrode 4 includes a current collector 5 and the current collector 5. It is comprised with the negative electrode active material layer 6 formed in one main surface.
  • the current collector 2 of the positive electrode 1 is made of a metal foil and may be formed of one or more metal elements, or may be formed of one or more metal elements and one or more non-metallic elements.
  • Specific examples include stainless steel (SUS) foil, nickel foil, aluminum foil, aluminum alloy foil, and the like, preferably stainless steel foil.
  • SUS stainless steel
  • aluminum generally used for current collectors has a relatively low melting point (about 500 ° C.) among metals, whereas stainless steel can withstand up to about 1200 ° C. Therefore, when the stainless steel foil is used as the current collector, the heat resistance of the electrode is remarkably improved.
  • Nickel has a higher melting point than aluminum, and depending on the positive electrode used, nickel foil is preferable from the viewpoint of heat resistance.
  • the thickness of the current collector 2 is not particularly limited, but is generally 1 to 30 ⁇ m.
  • the size (area of the plane) of the two current collectors is determined according to the intended use of the battery.
  • the positive electrode active material contained in a cathode active material layer 3 for example, Li ⁇ Co-based composite oxide such as LiCoO 2, Li ⁇ Ni based composite oxide such as LiNiO 2, Li such as spinel LiMn 2 O 4 ⁇ Mn-based composite oxides, such as those obtained by substituting Li ⁇ Fe-based composite oxides and another element some of these transition metals, such as LiFeO 2.
  • These lithium-transition metal composite oxides are materials excellent in reactivity and cycle durability, and are low in cost.
  • positive electrode active materials include, for example, transition metal oxides such as LiFePO 4 and lithium phosphate compounds and sulfuric acid compounds; transition metal oxides such as V 2 O 5 , MnO 2 , TiS 2 , MoS 2 , and MoO 3 Sulfides; PbO 2 , AgO, NiOOH and the like.
  • transition metal oxides such as LiFePO 4 and lithium phosphate compounds and sulfuric acid compounds
  • transition metal oxides such as V 2 O 5 , MnO 2 , TiS 2 , MoS 2 , and MoO 3 Sulfides
  • PbO 2 AgO, NiOOH and the like.
  • two or more positive electrode active materials may be used in combination.
  • the positive electrode active material layer 3 is a mixture of a positive electrode active material, a conductive agent such as graphite, and a binder such as polyvinylidene fluoride (PVDF) and dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP).
  • a slurry (a positive electrode mixture) is prepared, and the slurry is applied to one main surface of the current collector 2, dried and compressed.
  • the conductive agent is generally about 5 to 10 parts by weight per 100 parts by weight of the positive electrode active material.
  • the positive electrode active material layer 3 is preferably formed so that the positive electrode active material has an adhesion amount of about 1 to 50 mg / cm 2 on one side of the current collector.
  • the current collector 5 of the negative electrode 4 is made of a metal foil, and examples thereof include an aluminum foil, a nickel foil, a copper foil, and a stainless steel foil. Similar to the positive electrode current collector 2, it is preferable to use a stainless steel foil or a nickel foil because the heat resistance of the electrode is significantly improved.
  • the thickness of the current collector 5 is not particularly limited, but is generally 1 to 30 ⁇ m. The size (area of the plane) of the current collector is determined according to the usage application of the battery.
  • various natural graphites and artificial graphites for example, graphites such as fibrous graphite, flake graphite, and spherical graphite, and various lithium alloys are suitably used. Used.
  • carbon, graphite, metal oxide, lithium-metal composite oxide, or the like can be used.
  • carbon or lithium-transition metal composite oxide is used. These are materials excellent in reactivity and cycle durability, and are low in cost. Therefore, a battery having excellent output characteristics can be formed by using these materials for the electrodes.
  • the lithium-transition metal composite oxide include lithium-titanium composite oxides such as Li 4 Ti 5 O 12 .
  • carbon include graphite (graphite), hard carbon, and soft carbon. In some cases, two or more negative electrode active materials may be used in combination.
  • the negative electrode active material layer 6 is prepared by mixing a negative electrode active material, a conductive agent such as graphite, and a binder such as polyvinylidene fluoride (PVDF) in a solvent such as N-methyl-2-pyrrolidone (NMP).
  • a slurry (negative electrode mixture) is prepared by dispersing, and the slurry is applied to one main surface of the current collector 5, dried and compressed.
  • the negative electrode active material layer 6 is preferably formed so that the negative electrode active material has an adhesion amount of about 1 to 50 mg / cm 2 on one side of the current collector.
  • An electrolyte layer 7 is disposed between the positive electrode 1 and the negative electrode 4, and the positive electrode 1, the negative electrode 4, and the electrolyte layer 7 constitute a power generation element 10.
  • the electrolyte constituting the electrolyte layer 7 is not particularly limited, but a liquid electrolyte or a gel polymer electrolyte (gel electrolyte) is used.
  • the liquid electrolyte is an organic electrolytic solution in which a lithium salt as a supporting electrolyte is dissolved in an organic solvent as a plasticizer, and the organic solvent is not particularly limited.
  • LiBOB lithium bisoxide borate
  • LiPF 6 LiBF 4 , LiClO 4 , LiAsF 6 , LiTaF 6 , LiAlCl 4 , Li 2 B 10 Cl 10 and other inorganic acid anion salts
  • LiCF 3 SO 3 Li (CF 3 SO 2 ) 2 N, Li (C 2 F 5 SO 2 ) selected from organic acid anion salts such as 2 N, wherein at least one lithium salt, cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC); dimethyl carbonate, methylethyl carbonate, diethyl Chain carbonates such as carbonate; tetrahydrofuran, 2 Ethers such as methyltetrahydrofuran, 1,4-dioxane, 1,2-dime
  • the gel polymer electrolyte has a configuration in which the above liquid electrolyte is injected into a matrix polymer (host polymer) made of an ion conductive polymer or a matrix polymer made of a polymer not having ionic conductivity.
  • the ion conductive polymer used as the matrix polymer (host polymer) is not particularly limited.
  • a polymer of polyethylene oxide (PEO), polypropylene oxide (PPO), polyvinylidene fluoride (PVdF), hexafluoropyrene (HFP) examples thereof include PAN, PMMA, and copolymers thereof.
  • the electrolyte layer 7 When the electrolyte layer 7 is a liquid electrolyte or a gel polymer electrolyte and its self-supporting property is poor, the electrolyte layer 7 may be configured with a separator made of a microporous film made of polyolefin such as polyethylene or polypropylene. Good. That is, a separator impregnated with a liquid electrolyte and / or a gel polymer electrolyte is interposed between the positive electrode 1 and the negative electrode 4.
  • a separator impregnated with a liquid electrolyte and / or a gel polymer electrolyte is interposed between the positive electrode 1 and the negative electrode 4.
  • the matrix polymer of the gel polymer electrolyte can exhibit excellent mechanical strength by forming a crosslinked structure.
  • thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam is applied to a polymerizable polymer (for example, PEO or PPO) for forming a polyelectrolyte, using an appropriate polymerization initiator.
  • a polymerization process such as polymerization may be performed.
  • the matrix polymer is dissolved together with the liquid electrolyte with a large amount of solvent, applied to the electrode or separator by a method such as casting, and the solvent is volatilized to form a space between the polymer chains. What is necessary is just to carry out physical crosslinking. Which cross-linking method is used may be selected according to the form of the battery, the manufacturing method, and the like.
  • Electrode terminals (tabs) 8 and 9 are connected to the current collector 2 of the positive electrode 1 and the current collector 5 of the negative electrode 4, respectively, and between the electrode terminal 8 and the exterior bodies 11A and 11B and between the electrode terminal 9 and the exterior bodies 11A and 11B. Is sealed with a cured product layer 12 of the resin composition of the present invention (FIG. 1 (a)), and the exterior body 11A on the positive electrode 1 side and the negative electrode except for the arrangement portion of the electrode terminals (tabs) 8 and 9 The peripheral portion of the outer package 11B on the 4 side is sealed with the cured product layer 12 of the resin composition of the present invention (FIG. 1 (b)).
  • the electrode terminals 8 and 9 metal foils similar to the current collectors 2 and 5 of the positive electrode 1 and the negative electrode 4 are used, respectively, and connected to the current collectors 2 and 5 by welding or the like. From the viewpoint of improving the heat resistance of the battery, the electrode terminals 8 and 9 are preferably stainless steel foil. The thickness of the electrode terminals 8 and 9 is not particularly limited, but is generally about 50 to 500 ⁇ m. As the exterior bodies 11A and 11B, metal foil such as aluminum, a resin sheet, or a laminate sheet thereof is used.
  • an electrolytic resistant solution such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, or ionomer
  • An electrical insulating property such as a polyamide resin or a polyester resin
  • a laminate sheet having a three-layer structure of an outer layer made of an excellent resin film is used.
  • the thickness of the cured product layer 12 of the resin composition of the present invention is not particularly limited, and can be appropriately selected from the range of 1 to 1000 ⁇ m. However, in order to obtain a more reliable sealing state, the thickness is relatively thin. From the viewpoint, the upper limit value of the thickness of the cured product layer is preferably 100 ⁇ m, more preferably 70 ⁇ m, still more preferably 60 ⁇ m, still more preferably 50 ⁇ m, still more preferably 40 ⁇ m, and particularly preferably 30 ⁇ m. However, if the thickness is too thin, the adhesiveness tends to decrease. Therefore, the lower limit of the thickness of the cured product layer is preferably 1 ⁇ m, more preferably 2 ⁇ m, still more preferably 5 ⁇ m, and even more preferably 10 ⁇ m.
  • the current collectors 2 and 5 of the electrode plates (positive electrode 1 and negative electrode 4) and the electrode terminals 8 and 9 are formed separately. However, the current collectors of the electrode plates (positive electrode 1 and negative electrode 4) are separated.
  • the electric bodies 2 and 5 can be used as electrode terminals (tabs) by extending as far as the peripheral edge of the outer package.
  • the battery of FIG. 1 is a single-layer battery having one power generation element, but the battery of the present invention may be a stacked parallel battery having a plurality of power generation elements or a stacked series battery.
  • an organic electrolyte battery is used as a power source for driving a vehicle such as an electric vehicle or a hybrid electric vehicle, it is necessary to increase the capacity and voltage of the battery. Electricity is generated to increase the capacity and voltage of the battery.
  • a stacked parallel battery or a stacked series battery having a plurality of elements is advantageously used.
  • the stacked parallel battery and the stacked series battery will be described.
  • a stacked parallel battery In the case of a stacked parallel battery, it has a positive electrode having a positive electrode active material layer electrically connected to both main surfaces of the current collector, and a negative electrode active material layer electrically connected to both main surfaces of the current collector.
  • a negative electrode and an electrolyte layer disposed between the positive electrode and the negative electrode are alternately stacked, and between the electrode terminals connected to each current collector and the outer package, and the periphery of the outer package other than the electrode terminal arrangement portion The part is sealed with a cured product layer of the resin composition of the present invention.
  • the current collector and active material layer of the positive electrode, the current collector and active material layer of the negative electrode, the electrode terminals and the constituent materials and thicknesses of the outer package are the same as those of the battery 20 of FIG.
  • the stacked series battery includes a positive electrode having a positive electrode active material layer electrically coupled to one main surface of the current collector, and a negative electrode active material layer electrically coupled to the other main surface of the current collector.
  • FIG. 2 and 3 show an organic electrolyte battery according to a second example of the present invention
  • FIG. 2 is a schematic cross-sectional view (FIG. 2 (a)) and a plan view (FIG. 2 (b)) of the power generation element (cell).
  • FIG. 3 is a schematic cross-sectional view of a stacked series battery completed by stacking the power generation elements (cells) of FIG. 2 in multiple layers.
  • the power generation element (cell) 10 includes one current collector 13 in which the positive electrode active material layer 3 is formed on the main surface and the other current collector in which the negative electrode active material layer 6 is formed on the main surface.
  • the body 13 is opposed to the electrolyte layer 7 and the peripheral portions of the two current collectors 13 facing each other are sealed with the cured product layer 12 of the resin composition of the present invention.
  • the stacked series battery 30 has a configuration in which the power generation elements (cells) 10 of FIG. 2 are formed in multiple layers, and the positive electrode active material layer 3 and the negative electrode active material layer 6 are current collectors. 13 has a plurality of electrodes formed on both main surfaces, and each electrode is laminated via an electrolyte layer 7 to form a power generation element 10. At this time, each electrode and the electrolyte layer 7 are laminated so that the positive electrode active material layer 3 of one electrode and the negative electrode active material layer 6 of another electrode adjacent to the one electrode face each other through the electrolyte layer 7.
  • the adjacent positive electrode active material layer 3, electrolyte layer 7, and negative electrode active material layer 6 constitute one unit cell layer 15, and therefore the stacked series battery 30 is interposed between the opposing current collectors 13. It can also be said that a plurality of unit cell layers 15 composed of a laminate unit of the formed positive electrode / electrolyte layer / negative electrode are stacked, and between the adjacent current collectors 13 on the outer periphery of the unit cell layer 15. It is insulated by the cured product layer 12 of the resin composition of the invention. It should be noted that either the positive electrode active material layer 3 or the negative electrode active material layer 6 is formed on only one side of the current collectors 13a and 13b located in both outermost layers.
  • the positive electrode side outermost layer current collector 13a is extended to be a positive electrode terminal 16 and led out between the exterior bodies 11A and 11B
  • the negative electrode side outermost layer current collector 13b is extended to be the negative electrode terminal 17 to It is derived
  • the shape covers the entire surface of the electrode projection portion of the outermost current collector.
  • the cured product of the resin composition of the present invention can adhere to a heat-resistant metal such as stainless steel or nickel used for a current collector or electrode terminal of an organic electrolyte battery with high adhesive force, It has high resistance to liquids, and does not easily swell or dissolve even when in contact with a high-temperature organic electrolyte. For this reason, organic electrolysis from the electrolyte layer 7 is carried out by sealing between the peripheral part of the opposing electrical power collector in an electric power generation element, or between electrode terminals and exterior bodies with the hardened
  • a narrow gap of 50 ⁇ m or less can be sealed, which has been conventionally difficult for a polyolefin-based or modified polyolefin-based adhesive or sealant film, which has been widely used as a sealing agent for organic electrolyte batteries, Contributes to thinner organic electrolyte batteries.
  • a laminate unit having a total thickness of positive electrode / electrolyte layer / negative electrode of 50 ⁇ m or less between opposing current collectors made of stainless steel foil, Since a thin unit cell layer in which the peripheral part is sealed with the cured product of the resin composition of the present invention can be formed, the use of a plurality of unit cell layers can increase the capacity and voltage of the battery. On the other hand, it is possible to realize a stacked parallel battery or a stacked series battery whose total thickness is thinner than the conventional one. Further, since the resin composition of the present invention can be sufficiently cured even at a temperature of 100 ° C. or lower, more preferably 80 ° C.
  • the sealing operation of the peripheral portion of the current collector is performed at a temperature of 100 ° C. or lower, preferably 80 ° C. or lower. And the deterioration of the electrolyte layer in the power generation element during the sealing operation can be suppressed. Therefore, by using the resin composition of the present invention as a sealant, a high-performance and highly reliable organic electrolyte battery can be realized.
  • a plurality of the batteries described above can be connected in parallel and / or in series to form an assembled battery.
  • Viscosity of resin composition 25 ° C
  • E-type viscometer (RE-80U manufactured by Toki Sangyo Co., Ltd.) according to JIS-K7117-2, using a 3 ° ⁇ R9.7 rotor, 5 rpm, 2 minutes The measured value was used.
  • Glass transition temperature of cured product of resin composition A sample (a thin film having a plane size of 7 mm x 30 mm and a thickness of 0.1 mm) made of a cured product obtained by curing the resin composition at 100 ° C for 1 hour is used as a dynamic viscosity.
  • A 0 to 5% by weight, ⁇ : Over 5% by weight to 10% by weight, ⁇ : Over 10% by weight to 15% by weight, ⁇ : more than 15 wt% to 20 wt%, ⁇ : More than 20% by weight, or swelling, dissolution
  • T-type peel strength test (test piece preparation) Prepare two stainless steel foils of the same size (SUS 316-L, size: 15 ⁇ m ⁇ 50 mm ⁇ 70 mm) degreased with acetone, and apply the resin composition uniformly over the entire surface of one stainless steel foil to a thickness of 25 ⁇ m.
  • the other stainless steel foil was bonded from above, cured in an oven at 100 ° C. for 1 hour, cooled to 25 ° C., and then cut into a width of 10 mm to prepare a test piece.
  • the gap between the stainless steel foils was 25 ⁇ m.
  • adhesion area percentage is a ratio of the area (cohesive failure area) of the part to which hardened
  • Excellent: 70-100%
  • good
  • possible
  • impossible
  • urea bond-containing modified aliphatic polyamine FXR1000 is manufactured by Fuji Kasei Kogyo Co., Ltd., urea bond-containing modified aliphatic polyamine, FXR1110 is manufactured by Fuji Kasei Kogyo Co., Ltd., urea bond and imidazole group-containing modified aliphatic polyamine, PN-H is an imidazole group-containing modified polyamine manufactured by Ajinomoto Fine Techno Co., Ltd.
  • Examples 7 to 13, Comparative Example 6 A resin composition having the composition shown in Table 2 below was prepared.
  • the epoxy resin (component A), the curing agent (component B) and the co-curing agent (component C) were weighed and mixed for 10 minutes with a kneader.
  • a predetermined amount of filler (component D) was added, mixed for 20 minutes, passed twice through three rolls, and prepared by defoaming and mixing for 30 minutes with a kneader.
  • the resin composition after adjustment was subjected to the above test.
  • Example 14 to 20 A resin composition having the composition shown in Table 3 below was prepared.
  • the epoxy resin (component A), the curing agent (component B) and the co-curing agent (component C) were weighed and mixed for 10 minutes with a kneader.
  • a predetermined amount of filler (component D) was added, mixed for 20 minutes, passed twice through three rolls, and prepared by defoaming and mixing for 30 minutes with a kneader.
  • the resin composition after adjustment was subjected to the above test.
  • ZX1059 is manufactured by Tohto Kasei Co., Ltd., liquid bisphenol AD type epoxy resin (epoxy equivalent: 165), MX965 is manufactured by Kaneka Corporation, silicone Rubber-based rubber-like core-shell polymer-modified epoxy resin (epoxy equivalent: 220), RKB3040 is a butadiene rubber-based rubber-like core-shell polymer-modified epoxy resin (epoxy equivalent: 230) manufactured by Resina Kasei Co., Ltd.
  • Example 21 to 28 A resin composition having the composition shown in Table 4 below was prepared.
  • the epoxy resin (component A), the curing agent (component B) and the co-curing agent (component C) were weighed and mixed for 10 minutes with a kneader.
  • a predetermined amount of filler (component D) was added, mixed for 20 minutes, passed twice through three rolls, and prepared by defoaming and mixing for 30 minutes with a kneader.
  • the resin composition after adjustment was subjected to the above test.
  • Example 29 (1) Production of electrode (a) Formation of positive electrode The following materials were mixed at a predetermined ratio to produce a positive electrode slurry. Specifically, LiMn 2 O 4 is used as a positive electrode active material, acetylene black is used as a conductive auxiliary agent, and polyvinylidene fluoride (PVdF) is used as a binder. 60 parts by mass of N-methyl-2-pyrrolidone (NMP) is added as a slurry viscosity adjusting solvent to 40 parts by mass of these mixtures (NMP is added until the viscosity becomes optimum for the coating process) The positive electrode slurry was prepared by mixing.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode slurry was applied to one side of a current collector made of stainless steel (SUS) foil having a thickness of 20 ⁇ m and dried to form a positive electrode composed of an electrode layer (positive electrode active material layer) having a thickness of 10 ⁇ m.
  • SUS stainless steel
  • (B) Formation of negative electrode The following materials were mixed at a predetermined ratio to prepare a negative electrode slurry. Specifically, hard carbon is used as the negative electrode active material, PVdF is used as the binder, the negative electrode active material and the binder are mixed in a ratio of 90 wt% and 10 wt%, respectively, and 60 parts by mass of NMP is added to 40 parts by mass of these mixtures. It added as a slurry viscosity adjustment solvent (it added NMP until it became the optimal viscosity for an application
  • hard carbon is used as the negative electrode active material
  • PVdF is used as the binder
  • the negative electrode active material and the binder are mixed in a ratio of 90 wt% and 10 wt%, respectively, and 60 parts by mass of NMP is added to 40 parts by mass of these mixtures. It added as a slurry viscosity adjustment solvent (it added NMP until it became the optimal viscosity for
  • the negative electrode slurry was applied to the opposite surface of the current collector on which the positive electrode was formed and dried to form a negative electrode composed of an electrode layer (negative electrode active material layer) having a thickness of 11 ⁇ m.
  • the positive electrode area and the negative electrode area were the same, and the positive electrode and the negative electrode were formed by adjusting the positive electrode and the negative electrode so that projections onto the current collector coincided with each other.
  • a laminated series electrode was formed by forming a positive electrode and a negative electrode on both surfaces of a SUS foil as a current collector.
  • This multilayer series electrode was cut into a length of 160 mm ⁇ width of 130 mm, and the outer peripheral edge of both the positive electrode and the negative electrode was peeled off by 10 mm to expose the SUS surface as a current collector.
  • a laminated series electrode having an electrode area of 140 mm ⁇ 110 mm and an exposed SUS foil as a current collector having a width of 10 mm was produced on the outer peripheral edge.
  • electrolyte material containing LiPF 6 of 1.0 M, propylene carbonate (PC) and ethylene carbonate (EC) (1: 1 (volume ratio)) electrolyte 90 wt% consisting of a mixture of, the HFP component as the host polymer 10% by weight of polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP) containing 10%, and 200 parts by weight of dimethyl carbonate (DMC) as a viscosity adjusting solvent with respect to 100 parts by weight of the total amount of the electrolyte and PVdF-HFP (coating)
  • a pregel electrolyte (pregel solution) was prepared by mixing NMP until the viscosity became optimum for the process.
  • the pregel electrolyte (pregel solution) is applied to the entire surface of the positive and negative electrode portions on both sides of the previously formed multilayer series electrode, and the DMC is removed by vacuum drying and dried, whereby the positive and negative electrodes (void portions thereof) To complete a multilayer series electrode containing gel electrolyte (soaked with gel electrolyte).
  • a seal part precursor (Example) using a dispenser on the electrode uncoated part (all four sides of the outer peripheral part of the electrode) around the positive electrode of the multilayer series electrode obtained above. 6 resin composition) was applied.
  • a polyolefin separator having a thickness of 12 ⁇ m and having fine porosity was installed on the positive electrode side so as to cover all the SUS foil as a current collector.
  • the resin composition of Example 6 was applied to the separator on the outer periphery of the gel electrolyte layer and impregnated.
  • the resin composition of Example 6 was added as necessary so that the seal portion precursor was located inside the separator (impregnated) and the upper portion (position corresponding to the electrode uncoated portion in the periphery of the negative electrode). It was applied in batches.
  • the laminated series battery element (battery structure) obtained above was hot-pressed with a hot press at a surface pressure of 1 kg / cm 2 and 100 ° C for 1 hour. By doing so, the seal part precursor by the resin composition of Example 6 was hardened. In this process, the seal portion precursor is thinned to a thickness equivalent to the sum of the positive electrode, negative electrode, and separator (about 33 ⁇ m) of each layer to a thickness equivalent to the electrode portion (about 700 ⁇ m) in each layer. It was possible to form a predetermined sealed structure in which the seal portion was formed by curing.
  • a stacked series battery element having a 12 series (12 cell series) structure in which 12 single battery layers (single cells) were stacked was completed.
  • (6) Completion of laminated series battery The electrode structure produced as described above was enclosed in an aluminum laminate pack with the positive electrode tab and the negative electrode tab outside the pack, thereby completing a laminated series battery.
  • Example 30 A stacked series battery was produced in the same manner as in Example 29 except that the resin composition of Example 11 using a dicyclopentadiene type epoxy resin as an epoxy resin was used instead of the resin composition of Example 6. did.
  • Example 7 A laminated series battery was produced in the same manner as in Example 29 except that the resin composition of Comparative Example 4 in which no terpene structure skeleton-containing epoxy resin was used was used as the epoxy resin instead of the resin composition of Example 6. .
  • the batteries prepared in Examples 29 and 30 and Comparative Example 7 were subjected to charge / discharge cycle tests.
  • the temperature environment was 55 ° C.
  • the upper limit voltage was 50.4 V
  • the lower limit voltage was 25 V
  • constant current-constant voltage charge (CC-CV) during charging at 100 mA
  • constant current discharge (CC) during discharge.
  • Example 29 in which the seal portion was formed with a resin composition using a terpene structure skeleton-containing epoxy resin as the main epoxy resin, no significant capacity reduction was confirmed even in charge and discharge exceeding 500 cycles.
  • Example 30 in which the seal portion was formed with a resin composition using a dicyclopentadiene type epoxy resin as the main epoxy resin, a large capacity decrease was not confirmed in 200 cycles, and the same capacity as in Example 29 was obtained. Was maintained.
  • the resin composition of the present invention is excellent in adhesion to metals, heat resistance and organic solvent resistance, it is also used as an adhesive or coating agent applied to other than the seal part of a primary battery or a secondary battery using an electrolytic solution.
  • it can be expected to be used for a sealing agent, an adhesive, a coating agent, a potting agent, and the like of electronic device parts in electronic equipment for industrial use, home use and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

 金属に対する接着性に優れ、しかも、高い耐有機溶媒性を有する樹脂組成物、特に、ステンレスやニッケルの高耐熱性金属からなる端子や集電体に対して優れた接着性を示し、かつ、高温の有機電解液に接しても劣化が生じ難く、電解液に対しても影響を与え難い、有機電解液電池のシール剤に好適な樹脂組成物及び該樹脂組成物によって電解質層からの電解液の染み出しが防止される信頼性の高い有機電解液電池を提供する。 芳香環及び脂環式骨格を有するエポキシ樹脂(E1)を少なくとも含むエポキシ樹脂(A)と、潜在性硬化剤(B)とを含有することを特徴とする、樹脂組成物。集電体13上に電気的に結合した正極活物質層2を有する正極と、集電体13上に電気的に結合した負極活物質層6を有する負極と、正極及び負極の間に配置された電解質層7とを有し、対向する2つの集電体13の周縁部の間が上記樹脂組成物の硬化物12によって密閉された封止部を形成してなる、有機電解液電池。

Description

樹脂組成物及び有機電解液電池
 本発明は金属に対する優れた接着性と高い耐有機溶媒性を併せもつ樹脂組成物、特に、有機電解液電池のシール剤用途に好適な樹脂組成物及び該樹脂組成物による封止部を有する長期信頼性の高い有機電解液電池に関する。
 近年、二次電池として、小型で、軽量な、高出力及び高エネルギー密度化が可能な有機電解液電池が脚光を浴びており、中でもリチウムイオン二次電池が主流になってきた。これに使用されるシール剤は、有機電解液と外界の水分とを隔絶する大変重要な材料である。
 樹脂系のシール剤としては、従来、例えば、ポリオレフィン系接着剤(特許文献1)、ポリフッ化ビニリデン樹脂(特許文献2)等が使用されてきた。
 ところで、電気自動車(EV)やハイブリッド電気自動車(HEV)等の車両の駆動用電源として使用されるリチウムイオン二次電池においては、電池の長期信頼性のために電池の耐熱性向上が重要な課題になっている。このため、電極の集電体や電極端子(タブ)には、リチウムイオン二次電池において従来から汎用されてきたアルミニウムに代わり、高耐熱性金属であるステンレスやニッケルが検討され、電池を密閉するためのシール剤には、アルミニウムのみならず、ステンレスやニッケル等の高耐熱性金属に対する優れた接着性が求められ、さらに、高温の有機電解液に接してもその接着状態が持続する、耐有機溶媒性も必要になっている。
 また、リチウムイオン二次電池等の有機電解液電池を電気自動車やハイブリッド電気自動車等の車両の駆動用電源に使用する場合、電池の高容量化、高電圧化が必要であり、そのためには、発電要素を複数備えた積層型並列電池や積層型直列電池が有利である。しかし、発電要素の数を増やすと、それだけ積層型電池全体の厚みが大きくなり、大型化してしまうため、発電要素(正極/電解質層/負極の積層単位)をより薄くする必要が生じ、発電要素を挟む2枚の集電体間のギャップもより狭くなり、従来のポリオレフィン系接着剤やポリフッ化ビニリデン樹脂等のシール剤では高信頼性の封止構造を形成することが困難になってきている。
 また、正極と負極の間に介在させる電解質層に用いる材料は一般に高い耐熱性を備えておらず、発電要素を挟む2枚の集電体間を封止するシール剤には、比較的低温で封止作業を行えるものが有利であり、低温で金属に対して高い接着力が得られるシール剤が求められている。
特開昭56-032672号公報 特開平1-040469号公報
 従って、本発明の解決課題は、金属に対する接着性に優れ(特にステンレスやニッケルなどの高融点金属に対しても優れた接着性を示し)、しかも、優れた耐有機溶媒性を有する樹脂組成物を提供することである。
 また、金属に対する接着性に優れ(特にステンレスやニッケルなどの高融点金属に対しても優れた接着性を示し)、比較的低温で高い接着力の接着状態を形成し得、しかも、優れた耐有機溶媒性を有する、特に有機電解液電池のシール剤として好適な樹脂組成物を提供することである。
 また、封止すべき部分が複雑な形状や狭ギャップであっても高信頼性の密閉構造に封止された有機電解液電池、特に、発電要素を挟む2枚の集電体間のギャップが従来よりも狭くても、2枚の集電体間が高信頼性の密閉構造に封止され、その封止部が長期間安定した封止性能を示す、有機電解液電池を提供することである。
 本発明者等は、上記課題を解決すべく鋭意検討した結果、エポキシ樹脂として、芳香環及び脂環式骨格を有するエポキシ樹脂を少なくとも使用し、かつ、かかるエポキシ樹脂に特定の硬化剤を組み合わせることにより、上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の通りである。
(1)芳香環及び脂環式骨格を有するエポキシ樹脂(E1)を少なくとも含むエポキシ樹脂(A)と、潜在性硬化剤(B)とを含有することを特徴とする、樹脂組成物。
(2)エポキシ樹脂(A)が、芳香環及び脂環式骨格を有するエポキシ樹脂(E1)とゴム状コアシェルポリマー変性エポキシ樹脂(E2)とを含むものである、上記(1)記載の樹脂組成物。
(3)芳香環及び脂環式骨格を有するエポキシ樹脂(E1)が、脂環式骨格が環状テルペン化合物の残基による骨格からなるテルペン構造骨格含有エポキシ樹脂(E1-1)である、上記(1)又は(2)記載の樹脂組成物。
(4)芳香環及び脂環式骨格を有するエポキシ樹脂(E1)が、脂環式骨格がジシクロペンタジエンの残基による骨格からなるジシクロペンタジエン型エポキシ樹脂(E1-2)である、上記(1)は(2)記載の樹脂組成物。
(5)芳香環及び脂環式骨格を有するエポキシ樹脂(E1)中の芳香環と脂環式骨格のモル比率(芳香環/脂環式骨格)が2.5以上であり、
 エポキシ樹脂(A)100重量部中、芳香環及び脂環式骨格を有するエポキシ樹脂(E1)を60~80重量部及びゴム状コアシェルポリマー変性エポキシ樹脂(E2)を20~40重量部含む、上記(2)記載の樹脂組成物。
(6)芳香環及び脂環式骨格を有するエポキシ樹脂(E1)中の芳香環と脂環式骨格のモル比率(芳香環/脂環式骨格)が2.5未満であり、
 エポキシ樹脂(A)100重量部中、芳香環及び脂環式骨格を有するエポキシ樹脂(E1)を18~24重量部、ビスフェノール型エポキシ樹脂を42~56重量部、及びゴム状コアシェルポリマー変性エポキシ樹脂(E2)を20~40重量部含む、上記(2)記載の樹脂組成物。
(7)潜在性硬化剤(B)が3級アミノ基含有変性脂肪族ポリアミンであることを特徴とする、上記(1)~(6)のいずれかに記載の樹脂組成物。
(8)潜在性硬化剤(B)が尿素結合含有変性ポリアミンであることを特徴とする、上記(1)~(6)のいずれかに記載の樹脂組成物。
(9)潜在性硬化剤(B)が尿素結合及びイミダゾール基含有変性ポリアミンであることを特徴とする、上記(1)~(6)のいずれかに記載の樹脂組成物。
(10)共硬化剤(C)をさらに含有することを特徴とする、上記(1)~(6)のいずれかに記載の樹脂組成物。
(11)共硬化剤(C)がジシアンジアミドであることを特徴とする、上記(10)記載の樹脂組成物。
(12)加熱硬化物のガラス転移温度が100℃以上である、上記(1)~(11)のいずれかに記載の樹脂組成物。
(13)当該樹脂組成物を介在させて2枚のステンレス箔を貼り合わせた試験片に対し、JIS K-6854-3に準じて剥離速度100mm/minでT型剥離を行った時の剥離強度が0.7N/10mm以上である、上記(1)~(12)のいずれかに記載の樹脂組成物。
(14)有機電解液電池における、集電体に接続した電極端子と外装体間の封止、及び/又は、対向する集電体の周縁部間の封止を行うシール剤用である、上記(1)~(13)のいずれかに記載の樹脂組成物。
(15)上記(1)~(13)のいずれかに記載の樹脂組成物を含む有機電解液電池用シール剤。
(16)集電体に接続した電極端子と外装体間、及び/又は、対向する集電体の周縁部間が、上記(1)~(14)のいずれかに記載の樹脂組成物により封止されてなることを特徴とする、有機電解液電池。
(17)集電体に接続した電極端子と外装体間のギャップ、及び/又は、対向する集電体の周縁部間のギャップが10~50μmの範囲内である、上記(16)記載の有機電解液電池。
(18)集電体上に該集電体に電気的に結合した正極活物質層を有する正極と、
 集電体上に該集電体に電気的に結合した負極活物質層を有する負極と、
 正極及び負極の間に配置された電解質層とを含んでなることを特徴とする、上記(16)又は(17)記載の有機電解液電池。
(19)集電体の一方の主面と電気的に結合した正極活物質層を有する正極及び前記集電体の他方の主面と電気的に結合した負極活物質層を有する負極と、正極及び負極の間に配置された電解質層とが、交互に積層されてなる積層型直列電池であることを特徴とする、上記(18)記載の有機電解液電池。
(20)集電体及び電極端子がステンレス箔である、上記(16)~(19)のいずれかに記載の有機電解液電池。
(21)対向する集電体の間に正極/電解質層/負極の積層単位を有し、対向する集電体の周縁部の間が上記(1)~(13)のいずれかに記載の樹脂組成物の硬化物により封止されてなる単電池層を単数または複数有する有機電解液電池であって、正極/電解質層/負極の総厚みが50μm以下であり、前記樹脂組成物の硬化物が100℃以下の加熱によって硬化したものであることを特徴とする、有機電解液電池。
(22)集電体及び電極端子がステンレス箔である、上記(21)記載の有機電解液電池。
(23)上記(1)~(13)のいずれかに記載の樹脂組成物を含むことを特徴とする機能化学品。
 本発明の樹脂組成物は、比較的低温で硬化し得、その硬化物は、金属に対する接着性に優れ、ステンレスやニッケルなどの高融点金属に対しても高い接着力で接着し、しかも、優れた耐有機溶媒性を有する。また、複雑な形状や狭ギャップの部位にも、それを直接塗工して、熱硬化することができる。
 従って、本発明の樹脂組成物を、例えば、有機電解液電池用のシール剤として使用することで、発電要素における対向する集電体の周縁部間や電極端子と外装体間を高信頼性の密閉構造に封止することができ、その結果、電解質層からの有機電解液の染み出しによる液絡(短絡)等が長期に亘って確実に防止される、信頼性の高い有機電解液電池を実現することができる。
 また、狭ギャップの対向する2つの金属面間を高信頼性の密閉構造に封止でき、しかも、その封止作業を比較的低い温度で行うことができるので、有機電解液電池の発電要素の薄型化にも十分に対応することができる。
本発明の一例による有機電解液電池を模式的示した断面図(図1(a)、図1(b))と平面図(図1(c))である。 本発明の他の例による有機電解液電池の発電要素(セル)の模式断面図である。 図2に示す発電要素(セル)を多重に積み重ねて完成させた積層型直列電池の模式断面図である。
 以下、本発明をその好適な実施形態に即して説明する。
 本発明の樹脂組成物は、芳香環及び脂環式骨格を有するエポキシ樹脂(E1)を少なくとも含むエポキシ樹脂(A)と、潜在性硬化剤(B)とを含有することが主たる特徴である。
[エポキシ樹脂(A)]
 本発明におけるエポキシ樹脂(A)は、芳香環及び脂環式骨格を有するエポキシ樹脂(E1)を少なくとも含む。
 本発明において「芳香環及び脂環式骨格を有するエポキシ樹脂(E1)」とは、1分子中にベンゼン環、ナフタレン環等の芳香環と、炭素数が6~11(好ましくは6~10)の脂環式骨格とが導入されたエポキシ樹脂であり、フェノール類やナフトール類と、不飽和脂環式化合物(例えば、環状テルペン化合物、ジシクロペンタジエン、トリシクロペンタジエン、4-ビニルシクロヘキセン、5-ビニルノルボナ-2-エン等)との重付加反応物を原料として公知の方法により合成される、不飽和脂環式化合物の残基による脂環式骨格を有するエポキシ化合物であれば特に限定されない。なお、脂環式骨格の形態は、単環式、双環式、縮合多環式、双環を含む縮合多環式等のいずれでもよく、また、1分子中の芳香環及び脂環式骨格はそれぞれが1種類からなるものであっても、2種類以上が共存しているものであってもよい。中でも、以下に詳述する脂環式骨格が環状テルペン化合物の残基による骨格からなる「テルペン構造骨格含有エポキシ樹脂(E1-1)」や、脂環式骨格がジシクロペンタジエンの残基による骨格からなる「ジシクロペンタジエン型エポキシ樹脂(E1-2)」が特に好適に使用される。
<テルペン構造骨格含有エポキシ樹脂(E1-1)>
 本発明において、テルペン構造骨格含有エポキシ樹脂(E1-1)としては、単核多価フェノールのポリグリシジルエーテル、各核を結合する結合手の炭素原子数が4以下の多核多価フェノールのポリグリシジルエーテル、及び、ノボラック類のポリグリシジルエーテルからなる群から選ばれた少なくとも一種のエポキシ樹脂(a)に、テルペン構造骨格含有フェノール化合物(b)を付加させた反応生成物からなるものを挙げることができる。
 上記エポキシ樹脂(a)の具体例としては、例えば、ハイドロキノン、レゾルシン、ピロカテコール等の単核多価フェノール化合物;ジヒドロキシナフタレン、ビフェノール、メチレンビスフェノール(ビスフェノールF)、エチリデンビスフェノール(ビスフェノールAD)、イソプロピリデンビスフェノール(ビスフェノ-ルA)、チオビスフェノール、メチレンビス(オルソクレゾール)、イソプロピリデンビス(オルソクレゾール)、テトラブロムビスフェノールA、1,3-ビス(4-ヒドロキシクミルベンゼン)、1,4-ビス(4-ヒドロキシクミルベンゼン)、1,1,3-トリス(4-ヒドロキシフェニル)ブタン、1,1,2,2-テトラ(4-ヒドロキシフェニル)エタン、スルホビスフェノール、オキシビスフェノールなどの多核多価フェノール化合物;フェノールノボラック、オルソクレゾールノボラック、レゾルシンノボラック、ナフトールノボラック等のノボラック類のポリグリシジルエーテルが挙げられる。これらは1種又は2種以上を使用することができる。中でも、ビスフェノール(ビスフェノールA、ビスフェノールF、ビスフェノールAD等)のポリグリシジルエーテルからなるエポキシ樹脂が好ましく、特に好ましくはビスフェノールFのポリグリシジルエーテルからなるエポキシ樹脂である。
 また、上記テルペン構造骨格含有フェノール化合物(b)は、環状テルペン化合物にフェノールまたはアルキルフェノール等のフェノール類を付加して得られるものであり、環状テルペン化合物としては、単環のテルペン化合物であってもよいし、双環のテルペン化合物であってもよい。また、環状テルペン化合物は1種であっても、2種以上であってもよい。具体例としては、リモネン(α型、β型)、テルビノーレン、ピネン(α型、β型)、テルピネン(α型、β型、γ型)、メンタジエン(3,3型、2,4型)等が挙げられる。一方、フェノール類としては、フェノール、クレゾール、キシレノール、プロピルフェノール、ブチルフェノール、ペンチルフェノール、アミルフェノール、オクチルフェノール、ノニルフェノール、ドデシルフェノール、メトキシフェノール、クロロフェノール、ブロモフェノール、4-イソプロピル-3-メチルフェノール、5-メチル-2-(1-メチルエチル)フェノール等が挙げられる。これらは1種又は2種以上を使用することができる。
 テルペン構造骨格含有フェノール化合物(b)において、環状テルペン化合物にフェノール類を付加する方法は、環状テルペン化合物1モルに対し、フェノール類を好ましくは0.5~5モル使用し、例えば、酸触媒の存在下、40~160℃で1~10時間反応させることにより容易に行なうことができる。また、芳香族炭化水素類、アルコール類、エーテル類等の溶媒中で上記反応を行なうこともできる。また、上記反応で使用される上記酸触媒としては、例えば、塩酸、硫酸、リン酸、ポリリン酸、三フッ化ホウ素もしくはその錯体、活性白土等が挙げられる。
 テルペン構造骨格含有フェノール化合物(b)の具体例としては、例えば、下記の構造からなる化合物(1)~(11)等が挙げられ、中でも、化合物(4)~(8)が好ましく、特に好ましくは化合物(5)である。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 なお、テルペン構造骨格含有フェノール化合物(b)は市販品を使用してもよく、具体例としては、例えば、YP-90LL、マイティエースG125、マイティエースG150、マイティエースK125、YSレジンTO125、YSレジンTO115、YSレジンTO105、YSレジンTO85、YSレジンTR105TR、YSレジンZ115、YSレジンZ100、YSポリスター2130、YSポリスター2115、YSポリスター2100、YSポリスターU115、YSポリスターT160、YSポリスターT145、YSポリスターT130、YSポリスターTH130、YSポリスターT115、YSポリスターT100、YSポリスターT80、YSポリスターT30、YSポリスターS145、YSポリスターN125(全て、ヤスハラケミカル社製の商品名)が挙げられる。
 エポキシ樹脂(a)にテルペン構造骨格含有フェノール化合物(b)を付加させて目的の反応生成物を得る方法としては、エポキシ樹脂にフェノール化合物を付加させる通常の方法を採用することができ、例えば、ジメチルベンジルアミン等の塩基性触媒の存在下に、両者を60~200℃に加熱する方法等を用いることができる。
 エポキシ樹脂(a)とテルペン構造骨格含有フェノール化合物(b)の量比は、エポキシ樹脂(a)のエポキシ基1個に対し、テルペン構造骨格フェノール化合物(b)のフェノール性水酸基が0.05~0.8個、好ましくは0.1~0.7個となる比率、特に上記(b)としてモノフェノール化合物を用いる場合には、好ましくは0.1~0.5個となる比率が好適である。テルペン構造骨格フェノール化合物(b)の使用比率が上記の範囲未満(エポキシ基1個に対し、水酸基0.05個未満)の場合には、例えば、有機電解液電池のシール剤として使用する場合の樹脂組成物の集電体や外装体への密着性が不十分となり、また上記の範囲を超える(エポキシ基1個に対し、水酸基0.8個超)場合には、エポキシ当量が著しく大きくなるため、目的の樹脂組成物の硬化性が不十分となり、例えば、有機電解液電池のシール剤として使用する場合に十分に高い耐電解液性が得られにくくなる傾向となる。
 なお、本発明において、テルペン構造骨格含有エポキシ樹脂(E1-1)は、水酸基を2個以上有するテルペン構造骨格含有フェノール化合物(b)をグリシジルエーテル化することによって得られたポリグリシジルエーテルであってもよい。この場合、テルペン構造骨格含有フェノール化合物(b)とエピクロルヒドリンやエピブロモヒドリンなどのエピハロヒドリンとの反応は、例えば、イソプロピルアルコールやジメチルスルホキシドのような非プロトン性極性溶媒等の不活性な有機溶媒の存在下に苛性ソーダなどを添加して反応させることによって行うことができる。また、触媒として4級アンモニウム塩を用いても良いく4級アンモニウム塩としては、テトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド等が挙げられる。
 本発明におけるテルペン構造骨格含有エポキシ樹脂(E1-1)は、市販品を使用することができ、例えば、(株)ADEKA製のEP9003(エポキシ当量:250)、ジャパンエポキシレジン(株)製のYL7291(エポキシ当量:229)等を挙げることができる。
<ジシクロペンタジエン型エポキシ樹脂(E1-2)>
 本発明でいう、「ジシクロペンタジエン型エポキシ樹脂(E1-2)」は、ジシクロペンタジエンとフェノール類又はナフトール類を反応させて得られるジシクロペンタジエン骨格含有フェノール化合物又はジシクロペンタジエン骨格含有ナフトール化合物を常法によりエピクロルヒドリンやエピブロモヒドリンなどのエピハロヒドリンと反応させることによって得られるエポキシ樹脂(ポリグリシジルエーテル)である。
 ジシクロペンタジエン骨格含有フェノール化合物やジシクロペンタジエン骨格含有ナフトール化合物は、例えば、フリーデルクラフト反応を利用し、ジシクロペンタジエンとフェノール類又はナフトール類を酸触媒の存在下で反応させる方法等によって得ることができる。フェノール類としては、例えば、o-クレゾール、m-クレゾール、p-クレゾール、2,6-ジメチルフェノール、2,4-ジメチルフェノール、2-メチルヒドロキノン、レゾルシン、ヒドロキノン、カテコール、ブロモフェノール等を挙げることができる。また、ナフトール類としては、α-ナフトール、β-ナフトール、ジヒドロキシナフタレン等を挙げることができる。フェノール類(ナフトール類)の仕込み量はジシクロペンタジエンの仕込み量に対して1倍モル当量以上、特に3~8倍モル当量用いるのが好ましい。反応条件は、好ましくは、10~200℃で、30分~7時間、具体的には、例えば、触媒に三フッ化ホウ素・フェノール錯体を使用する場合、好ましくは20~160℃、特に好ましくは50~150℃の範囲である。反応終了後、反応液から触媒を除去した後、反応液を濃縮すること等により所望のジシクロペンタジエン骨格含有フェノール化合物(ジシクロペンタジエン骨格含有ナフトール化合物)を得ることができる。
 本発明において、ジシクロペンタジエン型エポキシ樹脂(E1-2)は、好ましくは、一般式(III):
Figure JPOXMLDOC01-appb-C000008
(式中、m個のRは、それぞれ独立して、水素原子、メチル基、エチル基、プロピル基又はt-ブチル基を表し、nは0~4の整数、mは1~3の整数を表す。)
で表されるエポキシ樹脂であり、特に好ましくは、式中のRが水素原子又はメチル基であるエポキシ樹脂(好ましくはmが1)であり、このようなエポキシ樹脂は、DIC(株)より、エピクロンHP-7200(エポキシ当量:258)、HP-7200L(エポキシ当量:247)、HP-7200H(エポキシ当量:280)等の名称で市販されている。
 本発明において、芳香環及び脂環式骨格を有するエポキシ樹脂(E1)は、エポキシ当量が200以上であるものが好ましく、エポキシ当量が220以上であるものがより好ましく、エポキシ当量が230以上であるものがとりわけ好ましい。また、エポキシ当量が2000以下であるものが好ましく、エポキシ当量が1500以下であるものがより好ましく、エポキシ当量が300以下であるものがとりわけ好ましく、エポキシ当量が260以下であるものが特に好ましい。エポキシ当量が200未満では、例えば、目的の樹脂組成物を有機電解液電池のシール剤として使用する場合の集電体や外装材への密着性が不十分となり、2000を超えると、目的の樹脂組成物の硬化性が不十分となり、例えば、有機電解液電池のシール剤として使用する場合に十分に高い耐電解液性が得られにくくなる傾向となる。なお、本発明でいうエポキシ樹脂のエポキシ当量はJIS K 7236に記載の方法による測定値である。
 また、芳香環及び脂環式骨格を有するエポキシ樹脂(E1)は、特に樹脂組成物の金属に対する接着性の観点から、脂環式骨格の含有量が好ましくは20重量%以上であり、より好ましくは25重量%以上である。一方、脂環式骨格の含有量が多すぎると、樹脂組成物の耐電解液性が低下する傾向となるため、脂環式骨格の含有量は55重量%以下が好ましく、より好ましくは53重量%以下ある。ここで、脂環式骨格の含有量は、ゲルパーミュエーションクロマトグラフィー(GPC)によって分析された重量割合で表される値である。
 また、芳香環及び脂環式骨格を有するエポキシ樹脂(E1)における芳香環と脂環式骨格のモル比率(芳香環/脂環式骨格)は樹脂組成物の接着性、耐電解液性の観点から、1.0~5.0が好ましく、より好ましくは1.5~3.0である。芳香環と脂環式骨格のモル比率(芳香環/脂環式骨格)が1.0未満であると、エポキシ樹脂が半固形や固形となり、シール材の粘度が高くなる傾向となり、5.0を超えると、脂環式骨格による耐電解液性や接着性の向上効果が得られにくい傾向となる。ここで、芳香環と脂環式骨格のモル比率(芳香環/脂環式骨格)は、GPC、NMRなど任意の分析方法を用いた構造解析によって測定される。
 本発明において、A成分(エポキシ樹脂(A))全体における芳香環及び脂環式骨格を有するエポキシ樹脂(E1)の使用量は、芳香環及び脂環式骨格を有するエポキシ樹脂(E1)の種類によって適宜決定されるが、一般的には、エポキシ樹脂(A)100重量部中、芳香環及び脂環式骨格を有するエポキシ樹脂(E1)が18~100重量部(好ましくは20~100重量部)となる範囲内で使用される。芳香環及び脂環式骨格を有するエポキシ樹脂(E1)の使用量が18重量部より少ないと目的の樹脂組成物の接着性が低下する傾向となり、特にステンレス等の耐熱性金属に対して良好な接着性が得られにくい傾向となる。
 本発明において、エポキシ樹脂(A)における、芳香環及び脂環式骨格を有するエポキシ樹脂(E1)と併用可能なエポキシ樹脂(「併用エポキシ樹脂」)としては、例えば、ビスフェノール型エポキシ樹脂(ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂)、ビフェニル型エポキシ樹脂、ノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂等の芳香族エポキシ樹脂およびこれらのエポキシ樹脂をゴム状コアシェルポリマーで変性したゴム状コアシェルポリマー変性エポキシ樹脂等が挙げられる。これらのエポキシ樹脂はいずれか1種を使用するか2種以上を混合して用いてもよい。また、これらのエポキシ樹脂はエポキシ当量が150~300の範囲内のものが好ましく、エポキシ当量が160~245の範囲内のものがより好ましい。
 樹脂組成物の耐電解液性と集電体や外装材への密着性の観点から、液状ビスフェノールA型エポキシ樹脂(例えば、ジャパンエポキシレジン(株)製「エピコート828」(エポキシ当量:190)等)、液状ビスフェノールF型エポキシ樹脂(例えば、ジャパンエポキシレジン(株)製「エピコート806」(エポキシ当量:165)、東都化成(株)製「YDF8170」(エポキシ当量:160)等)、液状ビスフェノールAD型エポキシ樹脂(例えば、東都化成(株)製「ZX1059」(エポキシ当量:165)等)又はこれらのエポキシ樹脂をゴム状コアシェルポリマーで変性したゴム状コアシェルポリマー変性エポキシ樹脂(EC2)(すなわち、ゴム状コアシェルポリマー変性ビスフェノールA型エポキシ樹脂、ゴム状コアシェルポリマー変性ビスフェノールF型エポキシ樹脂、ゴム状コアシェルポリマー変性ビスフェノールAD型エポキシ樹脂等)等が好ましく、液状ビスフェノールF型エポキシ樹脂、液状ビスフェノールAD型エポキシ樹脂、ゴム状コアシェルポリマー変性ビスフェノールA型エポキシ樹脂が特に好ましい。
 ここで「ゴム状コアシェルポリマー変性エポキシ樹脂(E2)」とは、エポキシ樹脂中にゴム状コアシェルポリマーが一次粒子の状態で分散しているエポキシ樹脂組成物を意味し、例えば、特開2004-315572号公報に記載の通りの方法で製造することができる。
 エポキシ樹脂の変性に使用するゴム状コアシェルポリマー(X)は、ジエン系単量体および(メタ)アクリル酸エステル単量体からなる群より選ばれる1種以上の単量体50重量%以上及びその他の共重合可能なビニル単量体50重量%未満を単量体成分とするゴム弾性体、ポリシロキサンゴム系弾性体、またはこれらの混合物からなるゴム粒子コア(X-1)50~95重量%に対して、(メタ)アクリル酸エステル、芳香族ビニル、シアン化ビニル、エポキシアルキルビニルエーテル、不飽和酸誘導体、(メタ)アクリルアミド誘導体およびマレイミド誘導体からなる群より選ばれる1種以上の単量体からなるシェル層(X-2)5~50重量%をグラフト重合して得られるものである。
 ゴム粒子コア(X-1)を構成するジエン系単量体としては、例えば、ブタジエン、イソプレン、クロロプレン等を挙げることができるが、ブタジエンが好ましい。(メタ)アクリル酸エステル系モノマーとしては、例えば、ブチルアクリレート、2-エチルヘキシルアクリレート、ラウリルメタクリレートなどが挙げられるが、ブチルアクリレートおよび2-エチルヘキシルアクリレートが好ましい。その他の共重合可能なビニル単量体としては、上述のアルキル(メタ)アクリレート以外のアルキル(メタ)アクリレート、ビニル芳香族系モノマー、ビニルシアン系モノマー等が例示できる。(メタ)アクリレート系モノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、ビニル芳香族系モノマーとしては、スチレン、α-メチルスチレン、ビニルシアン系モノマーとしては、(メタ)アクリロニトリル、置換アクリロニトリルを例示することができる。これらは1種或いは2種以上組み合わせて使用することができ、その使用量は、ゴム粒子コア(X-1)全体の重量に対して好ましくは50重量%未満、より好ましくは40重量%未満である。
 また、ゴム粒子コア(X-1)を構成する成分として、架橋度を調節するために、多官能性モノマーを使用しても良く、多官能性モノマーとしては、例えば、ジビニルベンゼン、ブタンジオールジ(メタ)アクリレート、(イソ)シアヌル酸トリアリル、(メタ)アクリル酸アリル、イタコン酸ジアリル、フタル酸ジアリル等を例示できる。これらの使用量はゴム粒子コアの全重量に対して10重量%以下、好ましくは5重量%以下、更に好ましくは3重量%以下である。
 シェル層(X-2)は、ゴム状コアシェルポリマー(X)がエポキシ樹脂中で安定に一次粒子の状態で分散するための、エポキシ樹脂に対する親和性を与える機能を有する。シェル層(X-2)を構成するポリマーはゴム粒子コア(X-1)を構成するポリマーにグラフト重合されており、実質的にゴム粒子コア(X-1)を構成するポリマーと結合していることが好ましい。具体的には、シェル層(X-2)を構成するポリマーは、好ましくは70重量%以上、より好ましくは80重量%以上、さらに好ましくは90重量%以上がゴム粒子コア(X-1)に結合していることが望ましい。シェル層(X-2)は、エポキシ樹脂に対して膨潤性、相容性もしくは親和性を有するものが好ましい。
 シェル層(X-2)を構成するポリマーは、(メタ)アクリル酸エステル、芳香族ビニル、シアン化ビニル、エポキシアルキルビニルエーテル、不飽和酸誘導体、(メタ)アクリルアミド誘導体およびマレイミド誘導体からなる群より選ばれる1種以上の単量体からなる。具体的には、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、スチレン、α-メチルスチレン、(メタ)アクリロニトリル、(メタ)アクリル酸、2-ヒドロキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、グリシジルビニルエーテル、(メタ)アクリルアミド、マレイン酸無水物、マレイン酸イミド等をそれぞれ例示することができ、これらは1種或いは2種以上を適宜組み合わせて使用できる。
 ゴム状コアシェルポリマー(X)の好ましいゴム粒子コア(X-1)/シェル層(X-2)の比率(重量比)は、50/50~95/5の範囲であることが好ましく、より好ましくは60/40~90/10である。
 ゴム状コアシェルポリマー(X)は周知の方法、例えば、乳化重合、懸濁重合、マイクロサスペンジョン重合などで製造することができる。この中でも特に乳化重合による製造方法が好適である。
 ゴム状コアシェルポリマー(X)の粒子径には特に制限は無く、ゴム状コアシェルポリマー(X)を水性ラテックスの状態で安定的に得ることができるものであれば問題なく使用できる。なお、工業生産性の面からは、体積平均粒子径が0.03~1μm程度のものが、製造が容易であるという点でより好ましい。なお、体積平均粒子径は、マイクロトラック法により測定することができる。
 ゴム状コアシェルポリマー変性エポキシ樹脂(E2)は、水性ラテックスの状態で得られるゴム状コアシェルポリマーを有機溶剤と混合してゴム状コアシェルポリマーを有機相中に取り出し、有機溶剤へゴム状コアシェルポリマーが分散した分散体を得た後に、エポキシ樹脂と混合することで得られる。
 ゴム状コアシェルポリマー変性エポキシ樹脂(E2)において、ゴム状コアシェルポリマー(X)の含有量は10~40重量%が好ましい。
 ゴム状コアシェルポリマー変性エポキシ樹脂(E2)は上市されており、市販品をそのまま使用することができる。例えば、ゴム状コアシェルポリマー変性ビスフェノールA型エポキシ樹脂として市販されている(株)カネカ製カネエースMX120(エポキシ当量:243)、MX125(エポキシ当量:243)、MX130(エポキシ当量:243)、MX960(エポキシ当量:245)、MX965(エポキシ当量:220)、レジナス化成(株)製のRKB3040(エポキシ当量:230)等を特に好適に使用することができる。
 カネエースMX120、MX125、MX130は、ゴム粒子コアがスチレン-ブタジエン共重合物からなるゴム状コアシェルポリマーを25重量%含有するものであり、カネエースMX960、MX965は、ゴム粒子コアがポリジメチルシロキサン等のポリシロキサンゴム(シリコーンゴム)からなるゴム状コアシェルポリマーを25重量%含有するものである。また、レジナス化成(株)製RKB3040はゴム粒子コアがブタジエンゴムからなるゴム状コアシェルポリマーを29重量%含有するものである。
 本発明において、エポキシ樹脂(A)は、目的の樹脂組成物に極めて高いレベルの耐電解液性を付与するという観点から、芳香環及び脂環式骨格を有するエポキシ樹脂(E1)と、ゴム状コアシェルポリマー変性エポキシ樹脂(E2)とを含む態様が好ましい。
 また、かかるエポキシ樹脂(A)として芳香環及び脂環式骨格を有するエポキシ樹脂(E1)とゴム状コアシェルポリマー変性エポキシ樹脂(E2)を使用する態様において、芳香環及び脂環式骨格を有するエポキシ樹脂(E1)における芳香環と脂環式骨格のモル比率(芳香環/脂環式骨格)が2.5以上(特に3.0以上)である場合、樹脂組成物のステンレス等の耐熱性金属に対する接着性とのバランスの点から、エポキシ樹脂(A)100重量部中、芳香環及び脂環式骨格を有するエポキシ樹脂(E1)を60~80重量部(好ましくは60~70重量部)及びゴム状コアシェルポリマー変性エポキシ樹脂(E2)を20~40重量部(好ましくは30~40重量部)含む組成とするのが好ましい。
 また、かかるエポキシ樹脂(A)が芳香環及び脂環式骨格を有するエポキシ樹脂(E1)とゴム状コアシェルポリマー変性エポキシ樹脂(E2)とを含む態様において、芳香環及び脂環式骨格を有するエポキシ樹脂(E1)における芳香環と脂環式骨格のモル比率(芳香環/脂環式骨格)が2.5未満(特に2.1未満)である場合、樹脂組成物のステンレス等の耐熱性金属に対する接着性とのバランスの点から、エポキシ樹脂(A)100重量部中、芳香環及び脂環式骨格を有するエポキシ樹脂(E1)を18~24重量部、ビスフェノール型エポキシ樹脂(好ましくはビスフェノールF型エポキシ樹脂)を42~56重量部、及びゴム状コアシェルポリマー変性エポキシ樹脂(E2)を20~40重量部含む組成とするのが好ましい。
 なお、樹脂組成物を封止すべき部分(シール部)に適用する際の作業性の改善等を目的として、樹脂組成物の粘度調整のために、上述の併用エポキシ樹脂とは別に、環状骨格(脂環式骨格)を有する低粘度エポキシ樹脂(エポキシ化合物)を配合してもよい。ここでいう低粘度とは室温(25℃)での粘度が概ね10poise以下であることを意味する。このような、環状骨格を有する低粘度エポキシ樹脂としては、環状テルペンフェノール化合物とフェノール類とを等モル付加した環状テルペン骨格含有モノフェノール化合物にエピハロヒドリンを反応させた環状テルペン骨格含有モノエポキシ化合物、フェニルグリシジルエーテル、シクロへキサンジメタノールジグリシジルエーテル(例えば、(株)ADEKA製「EP4085S」等)、ジシクロペンタジエンジグリシジルエーテル(例えば、(株)ADEKA製「EP4088S」等)、レゾルシノールジグリシジルエーテル(例えば、ナガセケムテックス(株)製「デナコールEX201」等)、グリシジルオルソトルイジン(例えば、日本化薬(株)製「GOT」等)、ジグリシジルアニリン(例えば、日本化薬(株)製「GAN」等)等が挙げられる。該低粘度エポキシ樹脂を使用する場合、その使用量はA成分のエポキシ樹脂100重量部中、30重量部以下の範囲内であり、好ましくは20重量部以下、より好ましくは15重量部以下である。これは、30重量部を超えると希釈効果は大きいものの耐電解液性と集電体や外装材への密着性が低下する傾向となるためである。なお、5重量部未満では粘度の希釈効果が小さいので、5重量部以上が好ましく、7重量部以上がより好ましい。
 本発明の樹脂組成物において、エポキシ樹脂(A)の含有量は樹脂組成物全体当たり55重量%以上が好ましく、より好ましくは、58重量%以上、さらにより好ましくは60重量%以上である。また、85重量%以下が好ましく、83重量%がより好ましく、80%以下がさらに好ましく、75重量%がさらにより好ましい。
[潜在性硬化剤(B)]
 本発明に使用される潜在性硬化剤は、潜在性変性ポリアミン系の硬化剤が好ましく、具体的には、マイクロカプセル化イミダゾール基含有変性ポリアミン(例えば、旭化成ケミカルズ(株)製のノバキュアHX3721、HX3721、HX3921HP、HX3941HP等)、ジシアンジアミド変性ポリアミン(例えば、(株)ADEKA製のEH3842等)、3級アミノ基含有変性脂肪族ポリアミン(例えば、(株)ADEKA製のEH4380S、EH3615S等)、イミダゾール基含有変性ポリアミン(例えば、味の素ファインテクノ(株)製のアミキュアPN23、PN31、PN40、PN50、PN-H、(株)ADEKA製のアデカハードナーEH3293S、EH3366S、EH4346S等)、尿素結合含有変性ポリアミン(例えば、富士化成工業(株)製のフジキュア-FXR1000、FXR1110、FXR1121、FXR1081等)、尿素結合含有変性脂肪族ポリアミン(例えば、(株)ADEKA製のEH4353S)、尿素結合およびイミダゾール基含有変性ポリアミン(例えば、富士化成工業(株)製のFXR1110、FXR1121)、イミダゾール化合物(例えば、四国化成工業(株)製キュアゾール2MZ-A、2MA-OK、2PHZ、2P4MHZ等)等が挙げられる。かかる潜在性硬化剤はいずれか1種のみ使用しても2種以上を併用してもよい。なかでも、耐電解液性およびステンレス箔(電極端子や集電体に使用されるステンレス箔)への接着性の観点から、3級アミノ基含有変性脂肪族ポリアミン、尿素結合含有変性ポリアミン(尿素結合含有変性脂肪族ポリアミン)、イミダゾール基含有変性ポリアミン、尿素結合およびイミダゾール基含有変性ポリアミンが好ましく、3級アミノ基含有変性脂肪族ポリアミン、尿素結合含有変性ポリアミン(尿素結合含有変性脂肪族ポリアミン)、尿素結合およびイミダゾール基含有変性ポリアミンが特に好ましい。
 本発明の樹脂組成物において当該B成分の潜在性硬化剤の使用量は、A成分のエポキシ樹脂(エポキシ樹脂(A))に対して0.7~1.3当量の範囲で使用される。特に樹脂組成物の耐電解液性及び硬化性の観点から0.9~1.1当量が好ましい。0.7当量未満であると、硬化が遅くなり十分な架橋構造が形成され難くなる傾向があり、接着強度も低下し、耐有機溶媒性(耐電解液性)が低下してしまう傾向がある。また1.3当量を超えると未反応の硬化剤が硬化後の樹脂中に存在し有機溶媒(電解液)に溶出する傾向があり、目的の樹脂組成物を有機電解液電池のシール剤として使用した場合に、電池特性を著しく低下させる傾向となる。
 本発明の樹脂組成物は少なくとも上述のエポキシ樹脂(A)及び潜在性硬化剤(B)を含有して構成されるが、更に共硬化剤(C)を含有してもよく、当該共硬化剤(硬化促進剤)を含有することで、樹脂組成物の接着性をさらに向上させることができ、特にステンレス箔への接着性を向上させることができる。当該C成分の共硬化剤としては、ジシアンジアミド、尿素結合含有変性脂肪族ポリアミン(例えば、ADEKA製のEH4353S等)等が挙げられ、ジシアンジアミド及び尿素結合含有変性脂肪族ポリアミンを併用するのが特に好ましい。
 当該C成分の共硬化剤の使用量は、A成分のエポキシ樹脂100重量部に対して0.5~10重量部の範囲で使用され、組成物の耐有機溶媒性(耐電解液性)及び硬化性の観点から、0.8~8重量部が好ましく、1~5重量部が特に好ましい。0.5重量部未満ではステンレス箔への接着性向上に十分に寄与しない可能性があり、10重量部を超える場合は組成物の耐有機溶媒性(耐電解液性)が低下する傾向となり、目的の樹脂組成物を有機電解液電池のシール剤として使用した場合に、電解液への溶出を生じたり、電池特性を損なう恐れがある。
 本発明の樹脂組成物には、接着性の向上、樹脂組成物の塗布時の作業性等の観点から、さらに充填剤(D)を配合することができる。充填剤の種類は特に限定されず、無機系充填剤であればいずれのものも使用可能であるが、具体的には、タルク、炭酸カルシウム、アルミナ、結晶性シリカ、溶融シリカ等が挙げられ、これらは1種のみ使用しても良いし、2種以上を混合して使用しても構わない。なかでも、ステンレス箔等の金属箔(集電体)への密着性の点からタルクが好ましく、耐有機溶媒性(耐電解液性)の点から炭酸カルシウムが好ましい。充填剤(D)の配合量はA成分のエポキシ樹脂100重量部に対して15~60重量部が好ましく、20~50重量部がより好ましく、25~50重量部が特に好ましい。15重量部未満では、樹脂組成物の接着性、樹脂組成物の塗布時の作業性等の向上に十分に寄与しない可能性があり、60重量部を超える場合は、樹脂配合物の粘度が高くなる傾向となり、塗布時の取り扱い性が悪くなる恐れがある。なお、充填剤(D)として、タルクと炭酸カルシウムを併用する場合、それらの量比(タルク:炭酸カルシウム)は重量比で1:2~6が好ましく、1:3~5がより好ましい。
 本発明の樹脂組成物には、その効果を阻害しない程度に、通常樹脂組成物に使用し得る各種添加剤を配合しても良い。各種添加剤としては、顔料、染料、消泡剤、カップリング剤、界面活性剤等が挙げられる。接着性改善や粘度低減できるという観点で、シラン系カップリング剤やチタネート系カップリング剤が好ましい。
 本発明の樹脂組成物は、金属に対する接着性に優れ、対向する2つの金属面同士を強固に接着し得、しかも、高い耐有機溶媒性を有することから、各種機能化学品として使用することができる。なお、ここでいう金属は特に限定されず、アルミニウム、アルミニウム系合金、銅、銅合金、ニッケル、ステンレス等の種々の技術分野の装置や部材において汎用的に使用されている種々の金属が含まれる。各種機能化学品としては、具体的には、接着剤、シール剤(コイル用シール剤、リレー用シール剤、有機電解液電池用シール剤等)、注型剤、コーティング剤(各種電子部品の耐湿コート等)、塗料(プリント基板の絶縁塗料等)等が挙げられる。なかでも、有機電解液電池の液体電解質(有機電解液)に対する耐性が極めて高く、高温の有機電解液に接触しても劣化が小さく、ニッケル、ステンレス等の高耐熱性金属に対しても高い接着力を得ることができるという観点で、有機電解液電池用シール剤として特に有用である。
 本発明の樹脂組成物は、加熱硬化によって優れた接着性及び有機電解液に対する耐劣化性を発現する。加熱硬化は100~120℃程度の範囲内で、0.5~1.0時間程度行えばよい。なお、100℃以下、さらには80℃以下の温度でも十分に硬化し得るので、より低温での硬化が必要である場合は、80℃付近で加熱硬化してもよい。また、本発明の樹脂組成物は、加熱硬化する前の未硬化状態では室温下(25℃)での粘度が500~2500poise(好ましくは500~2000poise)の範囲内の液状であり、塗布作業が行いやすく、また、塗布後に加圧等によって容易に延展(薄厚化)させることがきるので、シールすべき部分が複雑な形状(形態)であったり、狭ギャップであっても、密閉性の高いシール部を形成することができ、50μm以下というようなギャップに対しても、高い密閉性のシール部を形成する。具体的には、50μm以下のギャップで対向する2つの金属面間に高い密閉性のシール部を形成し得る。例えば、後述の実施例から明らかなように、本発明の樹脂組成物を2枚のステンレス箔の間に介在させて2枚のステンレス箔を貼り合わせた試験片に対し、JIS K-6854-3に準じて剥離速度100mm/minでT型剥離を行った時の剥離強度が0.7N/10mm以上という、高密着強度のシール構造を形成することができる。
 また、本発明の樹脂組成物は、加熱して得られる硬化物(加熱硬化物)のガラス転移温度が100℃以上であるのが好ましく、より好ましくは120℃以上、特に好ましくは140℃以上である。加熱硬化物のガラス転移温度が100℃以上を示すことで有機電解液に対する耐劣化性(耐電解液性)がさらに向上する。加熱硬化物のガラス転移温度は、硬化剤の種類、配合量(エポキシとの当量比)等を変更することで調整される。なお、加熱硬化物のガラス転移温度が高くなり過ぎると、加熱硬化物の架橋密度が高くなり加熱硬化物の硬化収縮が大きくなる傾向があるため、ガラス転移温度は200℃以下が好ましく、180℃以下がより好ましい。
 以下、本発明の樹脂組成物をシール剤に使用して封止部を形成した有機電解液電池(本発明の有機電解液電池)について説明する。
 一般に、リチウムイオン二次電池等の有機電解液電池は、基本構成として、集電体上に電気的に結合した正極活物質層を有する正極と、集電体上に電気的に結合した負極活物質層を有する負極と、正極及び負極の間に配置された電解質層とを発電要素として備えるが、本発明の樹脂組成物を適用する有機電解液電池もその基本構成は同じである。本発明の樹脂組成物は有機電解液電池内の種々の密閉すべき部位の密閉に使用することができ、背景技術の欄で説明した、角型電池や円筒型電池における樹脂製絶縁ガスケットのシール性を高めるためのシール剤として使用することができる。また、シート外装タイプの電池での、(1)集電体に接続された電極端子と外装体(シート)間を密閉するためのシール剤、(2)対向する集電体の周縁部間を密閉するためのシール剤、(3)外装体であるシートの周縁部を封止するシール剤等として使用することができる。
 図1は本発明の第1例の有機電解液電池の模式断面図(図1(a)、図1(b))と模式平面図(図1(c))である。図1(a)は電極端子の配置部を通る位置での断面図であり、図1(b)は電極端子の配置部以外の位置での断面図である。
 当該電池20において、正極1は集電体2とこの集電体2一方の主面に形成された正極活物質層3とで構成され、負極4は集電体5とこの集電体5の一方の主面に形成された負極活物質層6とで構成されている。
 正極1の集電体2は、金属箔からなり、一種若しくは複数の金属元素から形成されてもよく、または1種若しくは複数の金属元素と1種若しくは複数の非金属元素から形成されてもよい。具体例としては、ステンレス(SUS)箔、ニッケル箔、アルミニウム箔、アルミニウム合金箔等であり、好ましくはステンレス箔である。従来、集電体に一般的に使用されているアルミニウムは金属の中でも比較的融点が低い(約500℃)のに対し、ステンレスは約1200℃まで耐えられる。従って、集電体としてステンレス箔を用いた場合、電極の耐熱性が顕著に向上する。なお、ニッケルはアルミニウムより高い融点を有しており、使用される正極によっては、ニッケル箔も耐熱性の点で好ましいものである。集電体2の厚さは、特に限定されることはないが、一般的には1~30μmである。集電2体の大きさ(平面の面積)は、電池の使用用途に応じて決定される。また、正極活物質層3に含まれる正極活物質としては、例えば、LiCoOなどのLi・Co系複合酸化物、LiNiOなどのLi・Ni系複合酸化物、スピネルLiMnなどのLi・Mn系複合酸化物、LiFeOなどのLi・Fe系複合酸化物およびこれらの遷移金属の一部を他の元素により置換したもの等が挙げられる。これらリチウム-遷移金属複合酸化物は、反応性、サイクル耐久性に優れる材料であり、低コストである。したがって、これらの材料を電極に用いることにより、出力特性に優れた電池を形成しうる。この他の正極活物質としては、例えば、LiFePOなどの遷移金属とリチウムのリン酸化合物や硫酸化合物;V、MnO、TiS、MoS、MoOなどの遷移金属酸化物や硫化物;PbO、AgO、NiOOHなどが挙げられる。場合によっては、2種以上の正極活物質が併用されてもよい。正極活物質層3は正極活物質と、黒鉛等の導電剤と、ポリフッ化ビニリデン(PVDF)等の結着剤とを混合してN-メチル-2-ピロリドン(NMP)等の溶媒中に分散させてスラリー(正極合剤)を作製し、当該スラリーを集電体2一方の主面に塗布し、乾燥及び圧縮することにより形成されている。なお、特に限定はされないが、導電剤は正極活物質100重量部当たり5~10重量部程度が一般的である。正極活物質層3は正極活物質が集電体の片面において1~50mg/cm程度の付着量となるように形成するのが好ましい。
 負極4の集電体5は金属箔からなり、例えば、アルミニウム箔、ニッケル箔、銅箔、ステンレス箔等が挙げられる。正極の集電体2と同様に、ステンレス箔、ニッケル箔を用いた場合、電極の耐熱性が顕著に向上するので好ましい。集電体5の厚さは、特に限定されることはないが、一般的には1~30μmである。集電体の大きさ(平面の面積)は、電池の使用用途に応じて決定される。また、負極活物質層6に含まれる負極活物質としては、例えば各種の天然黒鉛や人造黒鉛、例えば繊維状黒鉛、鱗片状黒鉛、球状黒鉛などの黒鉛類、および各種のリチウム合金類が好適に用いられる。具体的には、カーボン、グラファイト、金属酸化物、リチウム-金属複合酸化物等が用いられうる。好ましくは、カーボンまたはリチウム-遷移金属複合酸化物が用いられる。これらは、反応性、サイクル耐久性に優れる材料であり、低コストである。そのため、これらの材料を電極に用いることにより、出力特性に優れた電池が形成されうる。なお、リチウム-遷移金属複合酸化物としては、例えば、LiTi12などのリチウム-チタン複合酸化物等が挙げられる。また、カーボンとしては、例えば、黒鉛(グラファイト)、ハードカーボン、ソフトカーボン等が挙げられる。場合によっては、2種以上の負極活物質が併用されてもよい。負極活物質層6は、負極活物質と、黒鉛等の導電剤と、ポリフッ化ビニリデン(PVDF)等の結着剤とを混合してN-メチル-2-ピロリドン(NMP)等の溶媒中に分散させてスラリー(負極合剤)を作製し、当該スラリーを集電体5の一方の主面に塗布し、乾燥及び圧縮することにより形成されている。負極活物質層6は負極活物質が集電体の片面において1~50mg/cm程度の付着量となるように形成するのが好ましい。
 正極1及び負極4の間には電解質層7が配置されており、これら正極1、負極4及び電解質層7により発電要素10が構成される。
 電解質層7を構成する電解質は特に限定されないが、液体電解質またはゲルポリマー電解質(ゲル電解質)が用いられる。
 液体電解質は、可塑剤である有機溶媒に支持電解質であるリチウム塩が溶解した有機電解液であり、有機溶媒は、特に制限されないが、例えば、LiBOB(リチウムビスオキサイドボレート)、LiPF、LiBF、LiClO、LiAsF、LiTaF、LiAlCl、Li10Cl10等の無機酸陰イオン塩、LiCFSO、Li(CFSON、Li(CSON等の有機酸陰イオン塩の中から選ばれる、少なくとも1種類のリチウム塩を含み、プロピレンカーボネート(PC)、エチレンカーボネート(EC)等の環状カーボネート類;ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の鎖状カーボネート類;テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジブトキシエタン等のエーテル類;γ-ブチロラクトン等のラクトン類;アセトニトリル等のニトリル類;プロピオン酸メチル等のエステル類;ジメチルホルムアミド等のアミド類;酢酸メチル、蟻酸メチルの中から選ばれる1種または2種以上を混合した、非プロトン性溶媒等の有機溶媒(可塑剤)等が挙げられる。
 一方、ゲルポリマー電解質は、イオン伝導性ポリマーからなるマトリックスポリマー(ホストポリマー)に、あるいは、イオン導電性を持たないポリマーからなるマトリクスポリマーに、上記の液体電解質が注入されてなる構成を有する。マトリックスポリマー(ホストポリマー)として用いられるイオン伝導性ポリマーとしては、特に限定されないが例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、ポリフッ化ビニリデン(PVdF)、ヘキサフルオロピレン(HFP)のポリマー、PAN、PMMA及びこれらの共重合体等が挙げられる。
 なお、電解質層7が液体電解質である場合や、ゲルポリマー電解質であって、その自立性が乏しい場合、電解質層7はポリエチレンやポリプロピレン等のポリオレフィン製の微多孔膜からなるセパレータとともに構成してもよい。すなわち、正極1及び負極4の間には液体電解質および/またはゲルポリマー電解質が含浸したセパレータが介在する。
 ゲルポリマー電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現しうる。化学的な架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。また、物理的な架橋構造を形成させるには、多量の溶媒でマトリックスポリマーを液体電解質とともに溶かし、それをキャストなどの方法で電極あるいはセパレータに塗工、溶媒を揮発させることで高分子鎖間を物理架橋させればよい。
 どちらの架橋方法を用いるかは電池の形態、製造方法などにより選択すればよい。
 正極1の集電体2と負極4の集電体5にそれぞれ電極端子(タブ)8、9が接続され、電極端子8と外装体11A、11Bの間及び電極端子9と外装体11A、11Bの間が本発明の樹脂組成物の硬化物層12によって密閉され(図1(a))、さらに、電極端子(タブ)8、9の配置部以外は、正極1側の外装体11Aと負極4側の外装体11Bの周縁部が本発明の樹脂組成物の硬化物層12によって密閉されている(図1(b))。電極端子8、9にはそれぞれ、正極1、負極4の集電体2、5と同様の金属箔が使用され、溶接等で集電体2、5に接続されている。電池の耐熱性向上の観点から、電極端子8、9はステンレス箔が好ましい。また、電極端子8、9の厚みは特に限定はされないが、一般的には50~500μm程度である。外装体11A、11Bは、アルミニウム等の金属箔や樹脂シート、又はこれらのラミネートシートが使用され、具体的には、例えば、ポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン、又は、アイオノマー等の耐電解液性及び熱融着性に優れた樹脂フィルムから構成されている内側層と、例えば、アルミニウム等の金属箔から構成されている中間層と、例えば、ポリアミド系樹脂やポリエステル系樹脂等の電気絶縁性に優れた樹脂フィルムで構成されている外側層の三層構造のラミネートシートが使用される。
 本発明の樹脂組成物の硬化物層12の厚みは特に限定されず、1~1000μmの範囲から適宜選択できるが、より高い信頼性の封止状態を得るためには比較的薄い厚みであるという観点から、硬化物層の厚み上限値は100μmが好ましく、70μmがより好ましく、60μmが更に好ましく、50μmが更に一層好ましく、40μmが殊更好ましく、30μmが特に好ましい。しかし、厚みが薄すぎると、接着性が低下する傾向となることから、硬化物層の厚みの下限値は1μmが好ましく、2μmがより好ましく、5μmが更に好ましく、10μmが更に一層好ましい。
 なお、かかる図1の電池では、電極板(正極1、負極4)の集電体2、5と電極端子8、9を別体で構成したが、電極板(正極1、負極4)の集電体2、5をそのまま外装体の周縁部まで延存させて電極端子(タブ)として使用することもできる。
 また、図1の電池は発電要素が1個の単層電池であるが、本発明の電池は発電要素を複数備えた積層型並列電池であっても積層型直列電池であってもよい。有機電解液電池を電気自動車やハイブリッド電気自動車等の車両の駆動用電源に使用する場合、電池の高容量化、高電圧化が必要であり、電池の高容量化、高電圧化のために発電要素を複数備えた積層型並列電池や積層型直列電池が有利に使用される。以下、積層型並列電池及び積層型直列電池について説明する。
<積層型並列電池>
 積層型並列電池の場合、集電体の両主面とそれぞれ電気的に結合した正極活物質層を有する正極と、集電体の両主面とそれぞれ電気的に結合した負極活物質層を有する負極と、これら正極及び前記負極の間に配置された電解質層とを、交互に積層し、各集電体に接続した電極端子と外装体の間及び電極端子の配置部以外の外装体の周縁部を本発明の樹脂組成物の硬化物層によって密閉する。この場合、正極の集電体及び活物質層、負極の集電体及び活物質層、電極端子並びに外装体の構成材料、厚み等は、上述の図1の電池20のそれが踏襲される。
<積層型直列電池>
 積層型直列電池は、集電体の一方の主面と電気的に結合した正極活物質層を有する正極と、前記集電体の他方の主面と電気的に結合した負極活物質層を有する負極と、正極及び負極の間に配置された電解質層とが交互に積層された構造の電池、あるいは集電体の片面に電気的に結合した正極活物質層を有する正極と、集電体の片面に電気的に結合した負極活物質層を有する負極と、正極および負極の間に配置された電解質層とにより形成された単電池を複数積層した電池であり、積層型直列電池は積層型並列電池に比して一層の高出力密度及び高電圧を有しうる利点がある。
 図2、3は本発明の第2例による有機電解液電池を示し、図2は発電要素(セル)の模式断面図(図2(a))と平面図(図2(b))であり、図3は図2の発電要素(セル)を多重に積み重ねて完成させた積層型直列電池の模式断面図である。
 発電要素(セル)10は、図2に示されるように、主面に正極活物質層3を形成した一方の集電体13と、主面に負極活物質層6を形成した他方の集電体13とを、電解質層7を挟んで対向させ、対向する2つの集電体13の周縁部の間を本発明の樹脂組成物の硬化物層12によって密閉している。
 図3に示されるように、積層型直列電池30は、図2の発電要素(セル)10を多重に形成した構成であり、正極活物質層3と、負極活物質層6とが集電体13の両主面に形成された電極を複数個有し、各電極が、電解質層7を介して積層されて発電要素10を形成している。この際、一つの電極の正極活物質層3と前記一つの電極に隣接する他の電極の負極活物質層6とが電解質層7を介して向き合うように、各電極および電解質層7が積層される。
 隣接する正極活物質層3、電解質層7、および負極活物質層6は、一つの単電池層15を構成しており、従って、積層型直列電池30は、対向する集電体13の間に形成された正極/電解質層/負極の積層単位からなる単電池層15が複数積層されてなる構成を有するともいえ、単電池層15の外周にて、隣接する集電体13の間が本発明の樹脂組成物の硬化物層12によって絶縁されている。なお、両最外層に位置する集電体13a、13bには、片面のみに、正極活物質層3または負極活物質層6のいずれか一方が形成されている。
 正極側最外層集電体13aが延長されて正極端子16とされて、外装体11A、11Bの間に導出され、負極側最外層集電体13bが延長されて負極端子17とされて、外装体11A、11Bの間に導出され、正極端子16と外装体11A、11Bの間及び負極端子17と外装体11A、11Bの間が本発明の樹脂組成物の硬化物層12によって密閉されている。なお、最外層集電体に正極端子を別途設置し、外部に導出する形状としてもよい。その場合は最外層集電体に正極端子を圧着、溶接などで接合させる。好ましくは最外層集電体の電極投影部全面を覆う形状とするのが良い。
 本発明の樹脂組成物の硬化物は、有機電解液電池の集電体や電極端子に使用されるステンレスやニッケル等の耐熱性金属に対しても高い接着力で接着し得、しかも、有機電解液に対して高い耐性を有し、高温の有機電解液に接しても膨潤や溶出等も生じにくい。このため、発電要素における対向する集電体の周縁部間や、電極端子と外装体間を、本発明の樹脂組成物の硬化物層12にて密封することで、電解質層7からの有機電解液の染み出しによる液絡(短絡)等が長期に亘って確実に防止される、信頼性の高い有機電解液電池を実現することができる。また、従来から有機電解液電池のシール剤として汎用されている、ポリオレフィン系や変性ポリオレフィン系の接着剤やシーラントフィルムでは困難であった、シールすべき隙間が50μm以下の狭い隙間を封止でき、有機電解液電池の薄型化に寄与する。
 従って、本発明では、例えば、ステンレス箔からなる対向する集電体の間に正極/電解質層/負極からなる総厚みが50μm以下の積層単位(発電要素)を有し、対向する集電体の周縁部の間が本発明の樹脂組成物の硬化物により封止された薄厚の単電池層を形成することができるので、単電池層を複数用いて電池の高容量化や高電圧化が図りつつ、総厚みが従来よりも薄い積層型並列電池や積層型直列電池を実現することができる。また、本発明の樹脂組成物は100℃以下、さらには80℃以下の温度でも十分に硬化し得るため、集電体の周縁部の封止作業を100℃以下、好ましくは80℃以下の温度で行うことができ、封止作業時の発電要素中の電解質層の劣化を抑制できる。従って、本発明の樹脂組成物をシール剤に使用することで、高性能かつ高信頼性の有機電解液電池を実現することができる。
 また、本発明では、以上説明した電池(本発明の有機電解液電池)の複数個を並列及び/または直列に接続して組電池を構成することができる。
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明は下記の実施例により限定されるものではない。
<樹脂組成物>
[実施例1~6、比較例1~4]
 下記の表1に示す組成の樹脂組成物を調製した。
 樹脂組成物の調製は、エポキシ樹脂(A成分)、硬化剤(B成分)および共硬化剤(C成分)を計量し、ニーダーにて10分間混合した。その後所定量の充填剤(D成分)を投入し20分混合後、3本ロールに2回通し、ニーダーにて30分脱泡混合することで調製した。
 実施例及び比較例の樹脂組成物は、その物性(粘度、硬化物のガラス転移温度)を以下の方法で測定し、また、以下の評価試験に供した。
1.樹脂組成物の粘度(25℃)
 E型粘度計(東機産業(株)社製RE-80U)にてJIS-K7117-2に準拠した手順で、3°×R9.7のロータを用い、5rpm、2分の値を粘度の測定値とした。
2.樹脂組成物の硬化物のガラス転移温度
 樹脂組成物を100℃、1時間の条件で硬化させた硬化物からなる試料(平面サイズが7mm×30mm、厚みが0.1mmの薄膜)を動的粘弾性装置DMA(SIIナノテクノロジー(株)社製DMS6100)にて、JIS-K7198に準拠した手順で25℃~200℃、2℃/minで昇温、1Hzの条件で測定した際のtanδのピーク値をガラス転移温度とした。
3.耐電解液性試験
 樹脂組成物を100℃、1時間の条件で硬化させた硬化物からなる試料(直径(φ)24mm×厚み6mmのペレット:約4g)を、プロピレンカーボネート/エチレンカーボネート=1/1(重量比)の混合液に80℃で7日間浸漬後、重量を測定する。浸漬前の試料の重量に対する浸漬後の試料の重量の増加率を求め、下記の5段階の基準で評価した。
 ◎:0~5重量%、
 ○:5重量%超~10重量%、
 △:10重量%超~15重量%、
 ▲:15重量%超~20重量%、
 ×:20重量%超、または、膨潤、溶解
4.T型剥離強度試験
(試験片の作製)
 アセトン脱脂した同一サイズの2枚のステンレス箔(SUS 316-L、サイズ:15μm×50mm×70mm)を用意し、樹脂組成物を一方のステンレス箔の全面に均一に厚み25μmになるように塗布し、その上から他方のステンレス箔を貼り合わせ、オーブンを用いて、100℃、1時間で硬化し、25℃に冷却後、幅10mmに裁断し、試験片を作製した。ステンレス箔間のギャップは25μmであった。
(剥離試験)
 試験は基本的にはJIS K-6854-3に準じて実施した。
 接着硬化した試験片をテンシロン(オリエンテック社製、RTM-500)を用いてクロスヘッドスピード100mm/minでT型剥離を行って、剥離強度を測定した。結果は下記の4段階の基準で評価した。
 ◎(優):1.0N/10mm以上
 ○(良):0.7N/10mm~1.0N/10mm未満
 △(可):0.5N/10mm~0.7N/10mm未満
 ×(不可):0.5N/10mm未満
 また、試験片をプロピレンカーボネート/エチレンカーボネート=1/1(重量比)の混合液に80℃で7日間浸漬した後、上記と同様のT型剥離を行って、剥離強度を測定した。
5.凝集破壊率
 T型剥離試験を行った試験片の剥離後の2つの破断面(2枚のステンレス箔)双方に樹脂組成物の硬化物が付着した面積について、その付着面積百分率(%)を目視により求めた。結果は下記の4段階の基準で評価した。
 なお、付着面積百分率(%)は接着面積全体(2枚のステンレス箔の全面の合計面積)に対する硬化物が付着した部分の面積(凝集破壊した面積)の割合である。
 ◎(優):70~100%
 ○(良):50~70%未満
 △(可):30~50%未満
 ×(不可):0~30%未満
Figure JPOXMLDOC01-appb-T000009
 表1中、EP9003は(株)ADEKA製、テルペン構造骨格含有エポキシ樹脂(脂環式骨格含有量=25.1重量%、芳香環と脂環式骨格のモル比率(芳香環/脂環式骨格)=3.0、エポキシ当量=250、粘度(25℃)=200poise))、EP828はジャパンエポキシレジン(株)製、液状ビスフェノールA型エポキシ樹脂(エポキシ当量:190)、EPU-78-13Sは(株)ADEKA製、ウレタン変性エポキシ樹脂、EPU-1206は(株)ADEKA製、オキサゾリドン環含有エポキシ樹脂、MX960は(株)カネカ製、シリコーンゴム系のゴム状コアシェルポリマー変性エポキシ樹脂、EH4380Sは(株)ADEKA製、3級アミノ基含有変性脂肪族ポリアミン、EH4353Sは(株)ADEKA製、尿素結合含有変性脂肪族ポリアミン、FXR1000は富士化成工業(株)製、尿素結合含有変性脂肪族ポリアミン、FXR1110は富士化成工業(株)製、尿素結合およびイミダゾール基含有変性脂肪族ポリアミン、PN-Hは味の素ファインテクノ(株)製イミダゾール基含有変性ポリアミンである。
[比較例5]
 アセトン脱脂した同一サイズの2枚のステンレス箔(SUS 316-L、サイズ:15μm×50mm×70mm)を用意し、かかる2枚のステンレス箔の間に、厚み60μmのポリオレフィン系フィルムを挟み込み、上下から180℃、圧力0.5MPaで3秒の加熱プレスによりステンレス同士を貼り合わせ幅10mmに裁断し、試験片を作製した。該試験片に対し、前述の剥離試験を行った。その結果、電解液浸漬前の初期の剥離強度は13N/10mmと接着強度は高いものの、試験片をプロピレンカーボネート/エチレンカーボネート=1/1(重量比)の混合液に80℃で7日間浸漬した後は試験片は容易に剥離し、剥離強度は0N/10mmであった。
 なお、厚みが60μmよりもさらに薄いポリオレフィン系フィルムの製造は可能であるが、フィルムの取り扱いが非常に困難になるため、電池のシール材として使用することは困難である。
[実施例7~13、比較例6]
 下記の表2に示す組成の樹脂組成物を調製した。
 樹脂組成物の調製は、エポキシ樹脂(A成分)、硬化剤(B成分)および共硬化剤(C成分)を計量し、ニーダーにて10分間混合した。その後所定量の充填剤(D成分)を投入し20分混合後、3本ロールに2回通し、ニーダーにて30分脱泡混合することで調製した。調整後の樹脂組成物を前記の試験に供した。
Figure JPOXMLDOC01-appb-T000010
 表2中の記載(表1と重複するものは除く)において、EP9003-1は(株)ADEKA製、テルペン構造骨格含有エポキシ樹脂(EP9003の低粘度化品、粘度(25℃)=90poise)、EP9003-2は(株)ADEKA製、テルペン構造骨格含有エポキシ樹脂(EP9003の高粘度化品、粘度(25℃)=230poise)、YL7291はジャパンエポキシレジン(株)製、テルペン構造骨格含有エポキシ樹脂(脂環式骨格含有量=29.8重量%、芳香環と脂環式骨格のモル比率(芳香環/脂環式骨格)=2.0、エポキシ当量:229)、HP-7200LはDIC(株)製、芳香環を含有するジシクロペンタジエン型エポキシ樹脂(脂環式骨格含有量=31.8重量%、芳香環と脂環式骨格のモル比率(芳香環/脂環式骨格)=1.9、エポキシ当量:247)、HP-7200はDIC(株)製、芳香環を含有するジシクロペンタジエン型エポキシ樹脂(脂環式骨格含有量=40.5重量%、芳香環と脂環式骨格のモル比率(芳香環/脂環式骨格)=1.7、エポキシ当量:258)、HP-7200HはDIC(株)製、芳香環を含有するジシクロペンタジエン型エポキシ樹脂(脂環式骨格含有量=52.1重量%、芳香環と脂環式骨格のモル比率(芳香環/脂環式骨格)=1.6、エポキシ当量:280)、YDF8170は東都化成(株)製、液状ビスフェノールF型エポキシ樹脂(エポキシ当量:160)、EP-4088Sは(株)ADEKA製、芳香環非含有ジシクロペンタジエン型エポキシ樹脂(エポキシ当量:173)である。
[実施例14~20]
 下記の表3に示す組成の樹脂組成物を調製した。
 樹脂組成物の調製は、エポキシ樹脂(A成分)、硬化剤(B成分)および共硬化剤(C成分)を計量し、ニーダーにて10分間混合した。その後所定量の充填剤(D成分)を投入し20分混合後、3本ロールに2回通し、ニーダーにて30分脱泡混合することで調製した。調整後の樹脂組成物を前記の試験に供した。
Figure JPOXMLDOC01-appb-T000011
 表3中の記載(表1、2と重複するものは除く)において、ZX1059は東都化成(株)製、液状ビスフェノールAD型エポキシ樹脂(エポキシ当量:165)、MX965は(株)カネカ製、シリコーンゴム系のゴム状コアシェルポリマー変性エポキシ樹脂(エポキシ当量:220)、RKB3040はレジナス化成(株)製のブタジエンゴム系のゴム状コアシェルポリマー変性エポキシ樹脂(エポキシ当量:230)である。
[実施例21~28]
 下記の表4に示す組成の樹脂組成物を調製した。
 樹脂組成物の調製は、エポキシ樹脂(A成分)、硬化剤(B成分)および共硬化剤(C成分)を計量し、ニーダーにて10分間混合した。その後所定量の充填剤(D成分)を投入し20分混合後、3本ロールに2回通し、ニーダーにて30分脱泡混合することで調製した。調整後の樹脂組成物を前記の試験に供した。
Figure JPOXMLDOC01-appb-T000012
<積層型直列電池>
[実施例29]
(1)電極の作製
(a)正極の形成
 以下の材料を所定の比で混合して正極スラリーを作製した。詳しくは、正極活物質としてLiMn、導電助剤としてアセチレンブラック、バインダとしてポリフッ化ビニリデン(PVdF)を使用し、正極活物質、導電助剤、バインダをそれぞれ85wt%、5wt%、10wt%の比率に混合し、これらの混合物40質量部に対して60質量部のN-メチル-2-ピロリドン(NMP)をスラリー粘度調整溶媒として添加し(塗布工程に最適な粘度になるまでNMPを添加したものである)、混合して正極スラリーを調製した。
 厚さ20μmのステンレス(SUS)箔からなる集電体の片面に、該正極スラリーを塗布し、乾燥させて厚さ10μmの電極層(正極活物質層)よりなる正極を形成した。
(b)負極の形成
 以下の材料を所定の比で混合して負極スラリーを作製した。詳しくは、負極活物質としてハードカーボン、バインダとしてPVdFを使用し、負極活物質、バインダをそれぞれ90wt%、10wt%の比率に混合し、これらの混合物40質量部に対して60質量部のNMPをスラリー粘度調整溶媒として添加し(塗布工程に最適な粘度になるまでNMPを添加したものである)、混合して負極スラリーを調製した。
 該負極スラリーを正極を形成した集電体の反対面に塗布し、乾燥させて厚さ11μmの電極層(負極活物質層)よりなる負極を形成した。この際、正極面積と負極面積を同じとし、正極と負極の集電体への投影図が一致するように調整して正極及び負極を形成した。
(c)積層型直列電極の作製
 上記の通り、集電体であるSUS箔の両面に正極と負極がそれぞれ形成されることにより、積層型直列電極が形成された。この積層型直列電極を縦160mm×横130mmに切り取り、正極、負極ともに外周縁部は電極層を10mm剥がしとることにより、集電体であるSUS表面を露出させた。これにより、電極面積が140mm×110mmであり、外周縁部に幅10mmの集電体であるSUS箔が露出した積層型直列電極を作製した。
(2)積層型直列電極及び電解質層の完成
 以下の材料を所定の比で混合して電解質材料を作製した。
 電解液として、1.0MのLiPFを含有する、プロピレンカーボネート(PC)とエチレンカーボネート(EC)(1:1(体積比))の混合液からなる電解液90wt%、ホストポリマーとしてHFP成分を10%含むポリフッ化ビニリデン-ヘキサフルオロプロピレンコポリマー(PVdF-HFP)10wt%、および粘度調整溶媒として、電解液とPVdF-HFPの合計量100質量部に対してジメチルカーボネート(DMC)200質量部(塗布工程に最適な粘度になるまでNMPを添加したものである)を混合してプレゲル電解質(プレゲル溶液)を調製した。
 該プレゲル電解質(プレゲル溶液)を先に形成された積層型直列電極両面の正極及び負極電極部の全面に塗布し、真空乾燥によりDMCを除去、乾燥させることで、正極及び負極(の空隙部)にゲル電解質を含有してなる(ゲル電解質の染み込んだ)積層型直列電極を完成させた。
(3)シール部前駆体の形成
 上記で得られた積層型直列電極の正極周辺部の電極未塗布部分(電極の外周部の4辺全て)に、ディスペンサを用いてシール部前駆体(実施例6の樹脂組成物)を塗布した。
 次に微多孔を有する厚さ12μmのポリオレフィンセパレータを正極側に集電体であるSUS箔すべてを覆うように設置した。
 その後、ゲル電解質層のうち、外周部近傍のゲル電解質未塗布部分のセパレータの上から電極未塗布部分(=ゲル電解質未塗布部分;前記シール部前駆体を塗布した部分と同じ部分)にディスペンサを用いて、ゲル電解質層外周部のセパレータに実施例6の樹脂組成物を塗布し、含浸させた。ここでは、セパレータ内部(含浸)とその上部(負極周辺部の電極未塗布部分に相当する位置)にシール部前駆体が位置するように、実施例6の樹脂組成物を、必要に応じて数回に分けて塗布した。
(4)積層
 上記で得られたゲル電解質層を載せた積層型直列電極を13枚真空密封しつつ、正極(活物質層)と負極(活物質層)がゲル電解質層を挟んで対向するように順次積層することで、単電池層が12積層された積層型直列電池要素(電池構造体)を作製した。
(5)積層型直列電池要素(電池構造体)の作製
 上記で得られた積層型直列電池要素(電池構造体)を、熱プレス機により面圧1kg/cm、100℃で1時間熱プレスすることにより、実施例6の樹脂組成物によるシール部前駆体を硬化させた。この工程によりシール部前駆体が各層間では、各層の正極、負極、セパレータの厚み和と同等の厚み(約33μm)電池全体としては、電極部分と同等の厚み(約700μm)まで薄膜化した状態で硬化してシール部が形成された、所定の密閉構造を形成することができた。
 以上の作業により、単電池層(単セル)が12セル積層された12直列(12セル直列)構造の積層型直列電池要素(電池構造体)を完成させた。
(6)積層型直列電池の完成
 上記のようにして作製した電極構造体をアルミラミネートパック内に正極タブと負極タブをパック外に出した状態で封入し、積層型直列電池を完成させた。
[実施例30]
 実施例6の樹脂組成物の代わりに、エポキシ樹脂としてジシクロペンタジエン型のエポキシ樹脂を使用した実施例11の樹脂組成物を使用した以外は実施例29と同様にして、積層型直列電池を作製した。
[比較例7]
 実施例6の樹脂組成物の代わりに、エポキシ樹脂にテルペン構造骨格含有エポキシ樹脂を使用しない比較例4の樹脂組成物を使用した以外は実施例29と同様にして、積層型直列電池を作製した。
 上記の実施例29、30及び比較例7で作製した電池にそれぞれ充放電サイクル試験を実施した。温度環境は55℃で、上限電圧は50.4V、下限電圧は25Vとし、100mAで充電時は定電流-定電圧充電(CC-CV)、放電時は定電流放電(CC)として行った。
 比較例7の電池は200サイクルを超えたところで容量が半分になり、250サイクルで容量がなくなり、充放電できなくなってしまった。電池を解体し、調査したところ、シール部が電解液に膨潤、界面剥離し、シール部から外部へ電解液が漏れ出していた。この結果は、エポキシ樹脂としてテルペン構造骨格含有エポキシ樹脂を使用しない樹脂組成物の硬化物は耐電解液性が弱く、ステンレスとの密着性を維持できないため電解液が容易に漏れ出したものと考えられる。これに対し、主たるエポキシ樹脂にテルペン構造骨格含有エポキシ樹脂を使用した樹脂組成物によりシール部を形成した実施例29の電池では500サイクルを超える充放電においても顕著な容量低下は確認されなかった。また、主たるエポキシ樹脂にジシクロペンタジエン型エポキシ樹脂を使用した樹脂組成物によりシール部を形成した実施例30の電池においても200サイクルで大きな容量低下は確認されず、実施例29と同様の容量を維持していた。
 本発明の樹脂組成物は、金属に対する接着性、耐熱性及び耐有機溶媒性に優れるので、電解液を用いる一次電池や二次電池のシール部以外に適用する接着剤やコーテイング剤等としても使用でき、さらには工業用、家庭用等の電子機器における電子デバイス部品のシール剤、接着剤、コーテイング剤及びポッテイング剤等への使用も期待できる。
 1 正極
 2、5、13 集電体
 3 正極活物質層
 4 負極 
 6 負極活物質層
 7 電解質層
 12 樹脂組成物の硬化物
 
 本出願は日本で出願された特願2009-142774を基礎としており、その内容は本明細書に全て包含される。

Claims (23)

  1.  芳香環及び脂環式骨格を有するエポキシ樹脂(E1)を少なくとも含むエポキシ樹脂(A)と、潜在性硬化剤(B)とを含有することを特徴とする、樹脂組成物。
  2.  エポキシ樹脂(A)が、芳香環及び脂環式骨格を有するエポキシ樹脂(E1)とゴム状コアシェルポリマー変性エポキシ樹脂(E2)とを含むものである、請求項1記載の樹脂組成物。
  3.  芳香環及び脂環式骨格を有するエポキシ樹脂(E1)が、脂環式骨格が環状テルペン化合物の残基による脂環式骨格からなるテルペン構造骨格含有エポキシ樹脂(E1-1)である、請求項1又は2記載の樹脂組成物。
  4.  芳香環及び脂環式骨格を有するエポキシ樹脂(E1)が、脂環式骨格がジシクロペンタジエンの残基による脂環式骨格からなるジシクロペンタジエン型エポキシ樹脂(E1-2)である、請求項1又は2記載の樹脂組成物。
  5.  芳香環及び脂環式骨格を有するエポキシ樹脂(E1)中の芳香環と脂環式骨格のモル比率(芳香環/脂環式骨格)が2.5以上であり、
     エポキシ樹脂(A)100重量部中、芳香環及び脂環式骨格を有するエポキシ樹脂(E1)を60~80重量部及びゴム状コアシェルポリマー変性エポキシ樹脂(E2)を20~40重量部含む、請求項2記載の樹脂組成物。
  6.  芳香環及び脂環式骨格を有するエポキシ樹脂(E1)中の芳香環と脂環式骨格のモル比率(芳香環/脂環式骨格)が2.5未満であり、
     エポキシ樹脂(A)100重量部中、芳香環及び脂環式骨格を有するエポキシ樹脂(E1)を18~24重量部、ビスフェノール型エポキシ樹脂を42~56重量部、及びゴム状コアシェルポリマー変性エポキシ樹脂(E2)を20~40重量部含む、請求項2記載の樹脂組成物。
  7.  潜在性硬化剤(B)が3級アミノ基含有変性脂肪族ポリアミンであることを特徴とする、請求項1~6のいずれか1項記載の樹脂組成物。
  8.  潜在性硬化剤(B)が尿素結合含有変性ポリアミンであることを特徴とする、請求項1~6のいずれか1項記載の樹脂組成物。
  9.  潜在性硬化剤(B)が尿素結合及びイミダゾール基含有変性ポリアミンであることを特徴とする、請求項1~6のいずれか1項記載の樹脂組成物。
  10.  共硬化剤(C)をさらに含有することを特徴とする、請求項1~6のいずれか1項記載の樹脂組成物。
  11.  共硬化剤(C)がジシアンジアミドであることを特徴とする、請求項10記載の樹脂組成物。
  12.  加熱硬化物のガラス転移温度が100℃以上である、請求項1~11のいずれか1項記載の樹脂組成物。
  13.  当該樹脂組成物を介在させて2枚のステンレス箔を貼り合わせた試験片に対し、JIS K-6854-3に準じて剥離速度100mm/minでT型剥離を行った時の剥離強度が0.7N/10mm以上である、請求項1~12のいずれか1項記載の樹脂組成物。
  14.  有機電解液電池における、集電体に接続した電極端子と外装体間の封止、及び/又は、対向する集電体の周縁部間の封止を行うシール剤用である、請求項1~13のいずれか1項記載の樹脂組成物。
  15.  請求項1~13のいずれか1項記載の樹脂組成物を含む有機電解液電池用シール剤。
  16.  集電体に接続した電極端子と外装体間、及び/又は、対向する集電体の周縁部間が、請求項1~14のいずれか1項記載の樹脂組成物により封止されてなることを特徴とする、有機電解液電池。
  17.  集電体に接続した電極端子と外装体間のギャップ、及び/又は、対向する集電体の周縁部間のギャップが10~50μmの範囲内である、請求項16記載の有機電解液電池。
  18.  集電体上に該集電体に電気的に結合した正極活物質層を有する正極と、
     集電体上に該集電体に電気的に結合した負極活物質層を有する負極と、
     正極及び負極の間に配置された電解質層とを含んでなることを特徴とする、請求項16又は17記載の有機電解液電池。
  19.  集電体の一方の主面と電気的に結合した正極活物質層を有する正極及び前記集電体の他方の主面と電気的に結合した負極活物質層を有する負極と、正極及び負極の間に配置された電解質層とが、交互に積層されてなる積層型直列電池であることを特徴とする、請求項18記載の有機電解液電池。
  20.  集電体及び電極端子がステンレス箔である、請求項16~19のいずれか1項記載の有機電解液電池。
  21.  対向する集電体の間に正極/電解質層/負極の積層単位を有し、対向する集電体の周縁部の間が請求項1~13のいずれか1項記載の樹脂組成物の硬化物により封止されてなる単電池層を単数または複数有する有機電解液電池であって、正極/電解質層/負極の総厚みが50μm以下であり、前記樹脂組成物の硬化物が100℃以下の加熱によって硬化したものであることを特徴とする、有機電解液電池。
  22.  集電体及び電極端子がステンレス箔である、請求項21記載の有機電解液電池。
  23.  請求項1~13のいずれか1項記載の樹脂組成物を含むことを特徴とする機能化学品。
PCT/JP2010/060013 2009-06-15 2010-06-14 樹脂組成物及び有機電解液電池 WO2010147070A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP10789445.3A EP2444437B1 (en) 2009-06-15 2010-06-14 Resin composition and organic-electrolyte battery
CN201080027467.5A CN102459395B (zh) 2009-06-15 2010-06-14 树脂组合物和有机电解液电池
KR1020127000911A KR101798668B1 (ko) 2009-06-15 2010-06-14 수지 조성물 및 유기 전해액 전지
JP2011519763A JP5732389B2 (ja) 2009-06-15 2010-06-14 樹脂組成物及び有機電解液電池
BRPI1016037A BRPI1016037A2 (pt) 2009-06-15 2010-06-14 composição de resina, uso de uma composição de resina, vedante para uma bateria de eletrólito orgânico, bateria de eletrólito orgânico, e, produto químico funcional.
RU2012101470/04A RU2532162C2 (ru) 2009-06-15 2010-06-14 Композиция смолы и батарея с органическим электролитом
US13/325,647 US8574745B2 (en) 2009-06-15 2011-12-14 Resin composition and organic-electrolyte battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-142774 2009-06-15
JP2009142774 2009-06-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/325,647 Continuation US8574745B2 (en) 2009-06-15 2011-12-14 Resin composition and organic-electrolyte battery

Publications (1)

Publication Number Publication Date
WO2010147070A1 true WO2010147070A1 (ja) 2010-12-23

Family

ID=43356388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060013 WO2010147070A1 (ja) 2009-06-15 2010-06-14 樹脂組成物及び有機電解液電池

Country Status (9)

Country Link
US (1) US8574745B2 (ja)
EP (1) EP2444437B1 (ja)
JP (1) JP5732389B2 (ja)
KR (1) KR101798668B1 (ja)
CN (1) CN102459395B (ja)
BR (1) BRPI1016037A2 (ja)
RU (1) RU2532162C2 (ja)
TW (1) TWI506081B (ja)
WO (1) WO2010147070A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094543A1 (ja) * 2011-12-22 2013-06-27 味の素株式会社 導電性接着剤
JP2013182735A (ja) * 2012-02-29 2013-09-12 Sekisui Chem Co Ltd 多層の膜電極接合体の製造方法及びリチウムイオン二次電池
JP2013219040A (ja) * 2013-05-21 2013-10-24 Dainippon Printing Co Ltd 電気化学セル用包装材料
JP2014107275A (ja) * 2012-11-29 2014-06-09 Swatch Group Research & Development Ltd 電気化学セル
JP2014120390A (ja) * 2012-12-18 2014-06-30 Okura Ind Co Ltd フッ化水素による接着強度の低下が防止できるリード端子接着用テープ
JP2014123445A (ja) * 2012-12-20 2014-07-03 Okura Ind Co Ltd 収縮が防止された電池リード端子接着用ヒートシールテープ
JP2014203645A (ja) * 2013-04-04 2014-10-27 協立化学産業株式会社 電池のタブリード封止用液状組成物及び電池の製造方法
WO2015069676A1 (en) * 2013-11-08 2015-05-14 Cooper Technologies Company Joining dissimilar materials using an epoxy resin composition
JP2015098520A (ja) * 2013-11-19 2015-05-28 田岡化学工業株式会社 一液型液状エポキシ樹脂組成物
JP2015125929A (ja) * 2013-12-26 2015-07-06 株式会社東芝 非水電解質電池、組電池及び蓄電池装置
JP2017115132A (ja) * 2015-12-22 2017-06-29 信越化学工業株式会社 液状エポキシ樹脂組成物
JP2019207840A (ja) * 2018-05-30 2019-12-05 トヨタ自動車株式会社 全固体電池
JP2020510974A (ja) * 2017-09-29 2020-04-09 輝能科技股▲分▼有限公司Prologium Technology Co., Ltd. 可撓性リチウム電池
WO2024154493A1 (ja) * 2023-01-17 2024-07-25 Toppanホールディングス株式会社 蓄電デバイス用外装材及び蓄電デバイス

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI494340B (zh) * 2010-08-02 2015-08-01 Taiwan Union Technology Corp 環氧樹脂組成物及其製成的預浸材和印刷電路板
TWI447993B (zh) * 2011-12-30 2014-08-01 Ind Tech Res Inst 負極材料與負極極板
CN103187571B (zh) * 2011-12-30 2015-10-21 财团法人工业技术研究院 负极材料与负极极板
US20140018475A1 (en) * 2012-07-16 2014-01-16 Baker Hughes Incorporated High glass transition temperature thermoset and method of making the same
EP2892097B1 (en) * 2012-08-30 2018-06-06 Kaneka Corporation Current collector for battery and battery using same
CN104619741B (zh) * 2012-09-17 2017-06-20 3M创新有限公司 液体环氧树脂涂料组合物、方法和制品
JP6178428B2 (ja) 2012-11-27 2017-08-09 ブルー スパーク テクノロジーズ,インク. バッテリセル構成
CN108749176B (zh) * 2013-02-18 2020-08-07 大日本印刷株式会社 电池用包装材料
JP6353670B2 (ja) * 2013-05-08 2018-07-04 昭和電工パッケージング株式会社 成形用包装材
CN103474697B (zh) * 2013-09-10 2016-09-07 东莞新能源科技有限公司 一种凝胶聚合物锂离子电池
US20160297960A1 (en) * 2013-12-13 2016-10-13 Blue Cube Ip Llc Epoxy composition containing core-shell rubber
KR101774517B1 (ko) * 2014-07-31 2017-09-04 주식회사 엘지화학 절연 특성이 강화된 이차전지용 파우치 및 그의 제조방법
TWI612713B (zh) * 2016-04-08 2018-01-21 新普科技股份有限公司 電池模組及其製造方法
CN108886162B (zh) * 2016-04-18 2021-09-28 罗伯特·博世有限公司 包括电极隔离框架的电化学电池
DE102017111509B4 (de) * 2016-06-01 2023-07-06 Toyota Jidosha Kabushiki Kaisha Herstellungsverfahren für eine Vollfestkörperbatterie, Herstellungsvorrichtung für eine Vollfestkörperbatterie, und Vollfestkörperbatterie
CN106384802A (zh) * 2016-11-08 2017-02-08 曙鹏科技(深圳)有限公司 一种电池隔膜及其制备方法、锂离子电池
WO2018226710A1 (en) 2017-06-09 2018-12-13 Hexion Inc. Epoxy resin systems for composites
CN109976092B (zh) * 2017-12-27 2022-04-01 太阳油墨(苏州)有限公司 固化性树脂组合物、干膜、固化物、及印刷电路板
JP6863299B2 (ja) * 2018-01-09 2021-04-21 トヨタ自動車株式会社 全固体電池
CN115566134A (zh) * 2022-12-05 2023-01-03 吉林大学 一种结构储能一体化复合材料及其制备方法
CN115775887B (zh) * 2022-12-05 2024-08-23 吉林大学 一种结构可设计的结构电池及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632672A (en) 1979-08-27 1981-04-02 Japan Storage Battery Co Ltd Battery with nonaqueous electrolyte
JPH1140469A (ja) 1997-07-16 1999-02-12 Nikon Corp リソグラフィシステム及びその作業管理方法
JP2000345010A (ja) * 1999-04-01 2000-12-12 Mitsui Chemicals Inc 異方導電性ペースト
JP2004075914A (ja) * 2002-08-21 2004-03-11 Toray Ind Inc エポキシ樹脂組成物及びプリプレグ
JP2004238555A (ja) * 2003-02-07 2004-08-26 Asahi Denka Kogyo Kk 熱硬化型エポキシ樹脂組成物
JP2004315572A (ja) 2003-04-11 2004-11-11 Kanegafuchi Chem Ind Co Ltd エポキシ樹脂組成物の製造方法
JP2007095653A (ja) * 2005-09-05 2007-04-12 Nissan Motor Co Ltd バイポーラ電池、およびバイポーラ電池の製造方法
JP2007106852A (ja) * 2005-10-13 2007-04-26 Three Bond Co Ltd 一液加熱硬化型難燃性組成物及びその硬化物
JP2008166256A (ja) * 2006-12-08 2008-07-17 Nissan Motor Co Ltd バイポーラ電池およびその製造方法
JP2008528769A (ja) * 2005-06-30 2008-07-31 ゼネラル・エレクトリック・カンパニイ 成形用組成物並びに成形法及び成形品
JP2009117052A (ja) * 2007-11-01 2009-05-28 Nissan Motor Co Ltd バイポーラ電池の製造方法および製造装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU516721A1 (ru) * 1974-08-26 1976-06-05 Предприятие П/Я В-2304 Эпоксидна композици
JPS5935356A (ja) 1982-08-24 1984-02-27 Furukawa Battery Co Ltd:The 円筒密閉型アルカリ電池
DE3564957D1 (en) * 1984-06-23 1988-10-20 Shikoku Chem Epoxy resin composition
SU1641832A1 (ru) * 1988-12-29 1991-04-15 Предприятие П/Я М-5314 Эпоксидна композици
JPH11171974A (ja) * 1997-12-08 1999-06-29 Toray Ind Inc 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
US6812065B1 (en) 1999-04-01 2004-11-02 Mitsui Chemicals, Inc. Anisotropic conductive paste
WO2003005118A1 (en) * 2001-07-02 2003-01-16 Loctite Corporation Epoxy-based composition
JP4238124B2 (ja) * 2003-01-07 2009-03-11 積水化学工業株式会社 硬化性樹脂組成物、接着性エポキシ樹脂ペースト、接着性エポキシ樹脂シート、導電接続ペースト、導電接続シート及び電子部品接合体
JP4155054B2 (ja) * 2003-02-18 2008-09-24 日産自動車株式会社 バイポーラ電池
WO2006006593A1 (ja) * 2004-07-13 2006-01-19 Hitachi Chemical Co., Ltd. 封止用エポキシ樹脂成形材料及び電子部品装置
KR101235933B1 (ko) * 2005-02-17 2013-02-21 가부시끼가이샤 쓰리본드 가열 경화형 일액성 수지 조성물
ATE534703T1 (de) * 2005-08-24 2011-12-15 Henkel Kgaa Epoxidzusammensetzungen mit verbesserter schlagzähigkeit
WO2007129662A1 (ja) * 2006-05-08 2007-11-15 Sekisui Chemical Co., Ltd. 絶縁材料、電子部品装置の製造方法及び電子部品装置
CN101517029B (zh) * 2006-07-31 2013-10-16 汉高股份及两合公司 可固化的环氧树脂-基粘合剂组合物
EP1930977B1 (en) 2006-12-08 2012-05-30 Nissan Motor Co., Ltd. Bipolar Battery and Method of Manufacturing the Same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632672A (en) 1979-08-27 1981-04-02 Japan Storage Battery Co Ltd Battery with nonaqueous electrolyte
JPH1140469A (ja) 1997-07-16 1999-02-12 Nikon Corp リソグラフィシステム及びその作業管理方法
JP2000345010A (ja) * 1999-04-01 2000-12-12 Mitsui Chemicals Inc 異方導電性ペースト
JP2004075914A (ja) * 2002-08-21 2004-03-11 Toray Ind Inc エポキシ樹脂組成物及びプリプレグ
JP2004238555A (ja) * 2003-02-07 2004-08-26 Asahi Denka Kogyo Kk 熱硬化型エポキシ樹脂組成物
JP2004315572A (ja) 2003-04-11 2004-11-11 Kanegafuchi Chem Ind Co Ltd エポキシ樹脂組成物の製造方法
JP2008528769A (ja) * 2005-06-30 2008-07-31 ゼネラル・エレクトリック・カンパニイ 成形用組成物並びに成形法及び成形品
JP2007095653A (ja) * 2005-09-05 2007-04-12 Nissan Motor Co Ltd バイポーラ電池、およびバイポーラ電池の製造方法
JP2007106852A (ja) * 2005-10-13 2007-04-26 Three Bond Co Ltd 一液加熱硬化型難燃性組成物及びその硬化物
JP2008166256A (ja) * 2006-12-08 2008-07-17 Nissan Motor Co Ltd バイポーラ電池およびその製造方法
JP2009117052A (ja) * 2007-11-01 2009-05-28 Nissan Motor Co Ltd バイポーラ電池の製造方法および製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2444437A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094543A1 (ja) * 2011-12-22 2013-06-27 味の素株式会社 導電性接着剤
JP2013182735A (ja) * 2012-02-29 2013-09-12 Sekisui Chem Co Ltd 多層の膜電極接合体の製造方法及びリチウムイオン二次電池
JP2014107275A (ja) * 2012-11-29 2014-06-09 Swatch Group Research & Development Ltd 電気化学セル
JP2015187989A (ja) * 2012-11-29 2015-10-29 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド 電気化学セル
JP2014120390A (ja) * 2012-12-18 2014-06-30 Okura Ind Co Ltd フッ化水素による接着強度の低下が防止できるリード端子接着用テープ
JP2014123445A (ja) * 2012-12-20 2014-07-03 Okura Ind Co Ltd 収縮が防止された電池リード端子接着用ヒートシールテープ
JP2014203645A (ja) * 2013-04-04 2014-10-27 協立化学産業株式会社 電池のタブリード封止用液状組成物及び電池の製造方法
JP2013219040A (ja) * 2013-05-21 2013-10-24 Dainippon Printing Co Ltd 電気化学セル用包装材料
US9490067B2 (en) 2013-11-08 2016-11-08 Cooper Technologies Company Joining dissimilar materials using an epoxy resin composition
WO2015069676A1 (en) * 2013-11-08 2015-05-14 Cooper Technologies Company Joining dissimilar materials using an epoxy resin composition
US9761374B2 (en) 2013-11-08 2017-09-12 Cooper Technologies Company Joining dissimilar materials using an epoxy resin composition
JP2015098520A (ja) * 2013-11-19 2015-05-28 田岡化学工業株式会社 一液型液状エポキシ樹脂組成物
JP2015125929A (ja) * 2013-12-26 2015-07-06 株式会社東芝 非水電解質電池、組電池及び蓄電池装置
JP2017115132A (ja) * 2015-12-22 2017-06-29 信越化学工業株式会社 液状エポキシ樹脂組成物
JP2020510974A (ja) * 2017-09-29 2020-04-09 輝能科技股▲分▼有限公司Prologium Technology Co., Ltd. 可撓性リチウム電池
JP2019207840A (ja) * 2018-05-30 2019-12-05 トヨタ自動車株式会社 全固体電池
JP7085127B2 (ja) 2018-05-30 2022-06-16 トヨタ自動車株式会社 全固体電池
WO2024154493A1 (ja) * 2023-01-17 2024-07-25 Toppanホールディングス株式会社 蓄電デバイス用外装材及び蓄電デバイス

Also Published As

Publication number Publication date
US20120156546A1 (en) 2012-06-21
CN102459395A (zh) 2012-05-16
CN102459395B (zh) 2015-01-28
EP2444437B1 (en) 2019-02-20
JPWO2010147070A1 (ja) 2012-12-06
RU2532162C2 (ru) 2014-10-27
TW201116574A (en) 2011-05-16
JP5732389B2 (ja) 2015-06-10
EP2444437A1 (en) 2012-04-25
TWI506081B (zh) 2015-11-01
KR101798668B1 (ko) 2017-11-16
RU2012101470A (ru) 2013-07-27
EP2444437A4 (en) 2014-02-19
BRPI1016037A2 (pt) 2016-05-10
US8574745B2 (en) 2013-11-05
KR20120037462A (ko) 2012-04-19

Similar Documents

Publication Publication Date Title
JP5732389B2 (ja) 樹脂組成物及び有機電解液電池
TWI623139B (zh) 電池用集電體及使用其之電池
EP2717367A1 (en) Conductive film, current collector using same, battery and bipolar battery
WO2016158754A1 (ja) リチウム電池用正極
US10608257B2 (en) Electrode for nonaqueous electrolyte secondary cell and nonaqueous electrolyte secondary cell
KR20170085053A (ko) 전극 구성체 고정용 양면 테이프 및 이차전지
KR20120117853A (ko) 고체 전해질용 조성물, 고체 전해질, 리튬 이온 2차 전지 및 리튬 이온 2차 전지의 제조방법
CN103035940A (zh) 一种锂离子电池及其制备方法
JP5478233B2 (ja) 電池電極形成用バインダー及び電極合材
JP2006313742A (ja) ケイ素系またはスズ系アノード活性材料を含むリチウム二次電池
KR102508629B1 (ko) 일액형 접착제 및 연료전지 세퍼레이터
JP5500675B2 (ja) 電池電極形成用バインダー及び電極合材
WO2007145174A1 (ja) 非水電解質二次電池用電極およびこれを用いた非水電解質二次電池
JP2014112485A (ja) 固体電池
JP2007280806A (ja) 電池用電極
JP2014116136A (ja) 全固体二次電池
WO2022250144A1 (ja) 組電池
KR20210110297A (ko) 전고체 이차 전지용 바인더 조성물
JP6887103B2 (ja) 非水電解質二次電池
JP2014062255A (ja) ポリイミド樹脂
JP3729757B2 (ja) ポリマー電解質基材、ポリマー電解質および非水二次電池用ポリマー電解質シート
JP4601323B2 (ja) 大型リチウムイオン二次電池用の電極素子とその製造方法
JP2014135272A (ja) 全固体電池
WO2022260183A1 (ja) リチウムイオン電池用被覆正極活物質粒子、リチウムイオン電池用正極、リチウムイオン電池用被覆正極活物質粒子の製造方法及びリチウムイオン電池
WO2023157391A1 (ja) 全固体二次電池用外装材および全固体二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080027467.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789445

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519763

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010789445

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127000911

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 453/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012101470

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1016037

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1016037

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111215