WO2010113710A1 - 電極材料とその製造方法、及び、リチウムイオン二次電池 - Google Patents

電極材料とその製造方法、及び、リチウムイオン二次電池 Download PDF

Info

Publication number
WO2010113710A1
WO2010113710A1 PCT/JP2010/055025 JP2010055025W WO2010113710A1 WO 2010113710 A1 WO2010113710 A1 WO 2010113710A1 JP 2010055025 W JP2010055025 W JP 2010055025W WO 2010113710 A1 WO2010113710 A1 WO 2010113710A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
active material
electrode material
powder
source compound
Prior art date
Application number
PCT/JP2010/055025
Other languages
English (en)
French (fr)
Inventor
佐藤 洋
隆幸 藤田
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US13/009,921 priority Critical patent/US20120064406A1/en
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Priority to CN201080014570.6A priority patent/CN102388486B/zh
Priority to KR1020117025923A priority patent/KR101718559B1/ko
Publication of WO2010113710A1 publication Critical patent/WO2010113710A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrode material and a manufacturing method thereof, and more particularly to an electrode material suitable for use in a lithium ion secondary battery and a manufacturing method thereof.
  • Non-aqueous lithium ion secondary batteries are characterized in that a high voltage exceeding the electrolysis voltage of water is obtained and the energy density is high. Because of such characteristics, the use of lithium ion secondary batteries in hybrid cars has been studied.
  • the lithium ion secondary battery has a drawback in that the internal resistance is high because the conductivity of the active material constituting the electrode is low.
  • Patent Document 1 a method of mixing an auxiliary conductive material such as carbon with an active material has been disclosed (Patent Document 1).
  • Patent Document 2 discloses a technique for ensuring the conductivity of an active material by coating the surface of an electrode active material with metal material particles having a particle size of 0.005 ⁇ m to 10 ⁇ m.
  • Patent Document 2 describes an example using titanium or aluminum as metal material particles. These metal fine particles have extremely high surface activity, and there is a risk of dust explosion due to rapid oxidation, and handling in the state of fine particles is difficult.
  • Patent Document 2 mentions “application” (paragraph [0024]) as a method of coating metal material particles, but there is no description of a specific method. For example, there is no description on how to handle highly active metal particles safely without causing the dust explosion described above.
  • Patent Document 2 discloses a sufficient invention that can be easily reproduced by those skilled in the art.
  • the coating method described in Patent Document 2 is a method in which metal particles are deposited on an active material by a physical method that does not involve a chemical reaction. Therefore, the surface of these metal fine particles is usually formed from a thin oxide film layer.
  • the oxide film of titanium or aluminum, which is a metal particle exemplified in Patent Document 2 is difficult to be converted into a metal by reduction using a gas such as a chemical or hydrogen due to the nature of the element, and is usually a semiconductor or an insulator. . Therefore, even if the metal particles are coated on the active material by the method of Patent Document 2, it is actually difficult to obtain conductivity similar to that of metal.
  • Patent Document 2 describes that a method such as atmospheric pressure plasma can also be used as a method for coating metal material particles (paragraph [0009]).
  • a method such as atmospheric pressure plasma can also be used as a method for coating metal material particles (paragraph [0009]).
  • CVD and PVD are described as conventional methods having problems, it is difficult to think that the method such as atmospheric pressure plasma is plasma CVD. It is unclear how to use plasma.
  • JP 2008-112594 Japanese Patent Laid-Open No. 11-250896 JP 11-297311 A JP 2003-192327 A JP 2006-261020 JP
  • An object of the present invention is to provide a method for safely producing an electrode material with high conductivity, and to provide an electrode material with high conductivity, mainly for reducing internal resistance and improving input / output characteristics of a lithium ion secondary battery. .
  • the present invention (1) is an electrode material for a lithium ion secondary battery in which a metal generated by thermal decomposition and / or reduction from a metal source compound is deposited on an active material.
  • the present invention (2) is the electrode material according to the invention (1), wherein the metal is deposited on the active material in a state where the active material and the metal are in contact with each other without any oxide interposed therebetween. is there.
  • the metal source compound is composed of any one of an organic metal compound, an organic metal complex, a metal compound containing a carbonate radical, a metal hydroxide, a metal peroxide hydroxide, or a combination thereof.
  • the electrode material according to the invention (1) or the invention (2) which is a substance.
  • the present invention (4) is characterized in that the metal is composed of any one of nickel, copper, platinum, palladium, silver, zinc, cobalt, vanadium, tungsten, molybdenum, chromium, iron, or a mixture or an alloy thereof.
  • the present invention (5) is a battery active material paste formed by mixing and dispersing at least the electrode materials of the invention (1) to the invention (4) and a vehicle.
  • the present invention (6) is a wet or all solid-state lithium ion secondary battery formed using the battery active material paste of the invention (5).
  • the present invention (7) includes at least a step of mixing and dispersing an active material and a metal source compound to produce a first powder, and thermally decomposing the first powder to thereby remove a metal from the metal source compound. And a process for producing an electrode material in which the metal is deposited on the active material.
  • the present invention (8) includes at least a step of mixing and dispersing an active material and a metal source compound to produce a first powder, and vapor-phase reducing the first powder to form a metal from the metal source compound. And producing a electrode material in which the metal is deposited on the active material.
  • the present invention (9) includes at least a step of mixing and dispersing an active material and a metal source compound to produce a first powder, and a step of thermally decomposing the first powder to produce a second powder.
  • a method of producing an electrode material comprising: a step of producing a metal from the metal source compound by vapor-phase reduction of the second powder, and producing an electrode material in which the metal is deposited on the active material. is there.
  • the metal source compound is composed of any one of an organic metal compound, an organic metal complex, a metal compound containing a carbonate radical, a metal hydroxide, a metal peroxide hydroxide, or a combination thereof.
  • the present invention (11) is characterized in that the metal is made of any one of nickel, copper, platinum, palladium, silver, zinc, cobalt, vanadium, tungsten, molybdenum, chromium, iron, or a mixture or alloy thereof.
  • the present invention (1) to (4) it is possible to produce a highly conductive electrode material for a lithium ion secondary battery.
  • (5) and (6) by using an electrode material having high conductivity, it is possible to manufacture a lithium ion secondary battery having low internal resistance and excellent input / output characteristics.
  • (7) to (11) it is possible to produce an electrode material for a lithium ion secondary battery having high work safety and high conductivity by a low-cost production process.
  • the inventors of the present application investigated the cause of not having a remarkable effect on improving the conductivity even if the surface of the active material was coated with metal particles by the method described in Patent Document 2.
  • metal particles are coated by a physical method, for example, a metal oxide is formed by a reaction with oxygen in the atmosphere, and the active material and the metal particles come into contact via a metal oxide having low conductivity. I found out to be.
  • the inventors of the present application have conducted intensive studies. As a result, after mixing and dispersing the active material and the metal source compound, the chemicals in which metal particles are deposited on the active material surface from the metal source compound by decomposition or reduction.
  • the method for producing an electrode material of the present invention is a useful production method having excellent features in the following items (2) to (5).
  • (2) The active material is not decomposed or altered by the reaction of depositing the metal particles.
  • Highly hazardous products such as toxicity and explosive properties are not formed.
  • (4) The manufacturing cost is low without using a high-cost process such as special high-temperature processing or using a vacuum apparatus.
  • the metal or active material is not aggregated by the reaction of depositing the metal particles, and an appropriate dispersion mixed state is maintained.
  • any one of an organometallic compound, an organometallic complex, a metal compound containing a carbonate radical, a metal hydroxide or a metal peroxide hydroxide, or a combination thereof is preferable to use substances made of combinations.
  • the decomposition or reduction method a method comprising any one of thermal decomposition, gas phase reduction, and liquid phase reduction or a combination thereof is preferably used. The inventors of the present application can efficiently deposit metal fine particles on the surface of the active material by using these materials and treating them by these methods.
  • the electron donation to the active material, from the active material The present inventors have found that the electron emission can be made smooth and the input / output characteristics of the lithium ion secondary battery composed of the active material thus obtained can be improved, and the present invention has been completed.
  • the active material and the auxiliary conductive powder are conductive only by point contact.
  • the metal particles are deposited on the surface of the active material by the chemical deposition method. Therefore, the contact area between the active material and the metal particles is increased, and higher conductivity is realized.
  • FIG. 1 is a cross-sectional view in order of steps for explaining a preferred embodiment of the metal particle deposition method of the present invention.
  • the active material powder 3 and the metal source compound 4 are mixed and dispersed in (a) dry or (b) wet, and the resulting powder is heated at a temperature equal to or higher than the thermal decomposition temperature of the metal source compound 4 A method of obtaining a predetermined powder by crushing.
  • the active material powder 3 and the metal source compound 4 are mixed and dispersed in (a) dry type or (b) wet type, and the resulting powder is heated at a temperature equal to or higher than the thermal decomposition temperature of the metal source compound 4.
  • (3) The active material powder 3 and the metal source compound 4 are mixed and dispersed in (a) dry type or (b) wet type, and the resulting powder is heated at a temperature equal to or higher than the thermal decomposition temperature of the metal source compound 4.
  • Metal source compound material As the metal constituting the electrode material of the present invention, it is preferable to use a metal element that is higher than the electron conductivity of the carbon particles.
  • an organometallic compound is preferably used. Specifically, for example, organic acid metal compounds such as silver acetate, copper acetate, copper formate, nickel acetate, copper acetate, zinc acetate, zinc formate, cobalt acetate, iron acetate, ethylenediaminetetraacetic acid (EDTA) metal complex, An acetylacetonate complex, a metal soap, etc. are mentioned.
  • the metal source compound may be a metal compound containing a carbonate radical, a metal hydroxide, or a metal peroxide hydroxide instead of an organometallic compound.
  • Specific examples include silver carbonate, basic nickel carbonate, and basic copper carbonate.
  • Metal carbonates / organometallic complexes and basic metal compounds are non-toxic gases such as water, oxygen, and carbon dioxide, which are generated during thermal decomposition and reduction. This is preferable.
  • the metal source compound may be used by mixing one or more kinds of metal compounds. For example, when active material is mixed and dispersed as appropriate in nickel acetate and copper acetate and thermally decomposed in a reducing atmosphere or inert gas atmosphere, nickel and copper metals can be deposited simultaneously on the active material surface, and an alloy can be formed.
  • the metal to be deposited it is preferable to use a metal made of any one of nickel, copper, platinum, palladium, silver, zinc, cobalt, vanadium, tungsten, molybdenum, chromium, iron, a mixture or an alloy thereof.
  • the organometallic compound serving as a metal source it is preferable to use a substance having a small molecular weight.
  • a more preferable order of the organometallic compound is metal formate> metal acetate> metal oxalate> metal soap.
  • the reason is that if the molecular weight of the organic substance bound to the metal is small, the decomposition temperature is low. 1. It is possible to keep the energy cost of the manufacturing process low. 2. The metal content per unit weight increases. 3. Does not cause thermal damage to the active material. There is an advantage that the metal source compound hardly reacts with the active material during the thermal decomposition. The details of the experiment that led to this finding are shown below.
  • LiMn 2 O 4 and iron oxalate were mixed, pyrolyzed at 500 ° C. with a reducing gas, and metal deposition was performed. As a result, LiMn 2 O 4 itself was reduced and the structure was broken. The iron oxide remained as iron oxide, and a peak that appeared to be iron and lithium composite oxide by XRD (X-ray diffraction structure analysis) appeared.
  • XRD X-ray diffraction structure analysis
  • a metal source compound for example, metal formate
  • an inert gas such as nitrogen gas instead of a reducing gas.
  • the material of the active material that can be suitably used for the electrode material of the present invention is not limited to a specific substance as long as it is a substance capable of releasing and occluding lithium ions, and any substance can be suitably used. it can.
  • the positive electrode has the potential at which lithium ion release and occlusion occurs on the noble side
  • the negative electrode has the potential on the base side.
  • lithium ion donor examples include composite oxides, composite sulfides, composite nitrides, and composite fluoride oxides composed of lithium and one or more metals.
  • lithium ion acceptors include metal oxides composed of one or more metals, metal sulfides, metal nitrides, composite oxides composed of lithium and one or more metals, composite nitrides, composite sulfides, and sulfides. Examples thereof include phosphorus compounds, carbon, and metal alloys.
  • LiCoO 2 and Cu are difficult to react, for example, even when LiCoO 2 and copper formate are mixed and subjected to thermal decomposition, copper oxide or metal copper generated by the decomposition hardly causes unnecessary reaction with LiCoO 2 .
  • Ni can also be used as the metal species.
  • LiNiO 2 is a positive electrode active material, in the case of synthesizing a positive electrode material, for example, LiCo (1-x) Ni x O that may be generated even if treatment is performed by combining LiCoO 2 and nickel formate. Since 2 is also a positive electrode active material, there is no possibility of deteriorating battery characteristics. Of course, there is no problem using Co as the metal species.
  • Li 4 Ti 5 O 12 Li 4 Ti 5 O 12 that does not easily change its structure even when heat-treated in a reducing gas atmosphere can select a wide range of substances as a metal source compound.
  • Ni, Cu, Co, or the like can be selected as the metal species of the metal source compound.
  • the electrode material according to the present invention comprises at least an active material having metal particles deposited on the surface.
  • Such an electrode material usually uses an active material and a metal source compound processed into a powder form as raw materials, and these raw materials are first uniformly dispersed and mixed by one of dry mixing dispersion and wet mixing dispersion methods.
  • the initial raw material is not necessarily processed into a powder form, and may be in a bulk form or a lump form. Even in that case, the raw material is pulverized and processed into powder in the mixing and dispersing step.
  • Dry mixing / dispersing is a method of performing mixing / dispersing without using a liquid, and can be processed using an apparatus such as a vibration mill, a planetary ball mill, or a pot mill.
  • Wet mixing and dispersion is a mixing and dispersing method in which a raw material powder is mixed with a liquid to form a slurry, which can be processed using, for example, an apparatus such as a bead mill.
  • the bead mill is an apparatus in which a rotating container called a grinding chamber is filled with grinding media called beads.
  • the slurry is pumped into the crushing chamber, and beads are collided with the slurry to finely pulverize and disperse the raw material. Finally, the slurry and beads are separated by a centrifuge or screen at the exit of the grinding chamber.
  • Which method of dry mixing dispersion or wet mixing dispersion is used may be an optimum method depending on the type of raw material used. It is also possible to use methods other than dry mixing dispersion and wet mixing dispersion. Whichever method is used, it is preferable to use a method that can be controlled so that the concentration of the metal source compound surrounding the active material powder falls within the optimum range. It is preferable that the concentration range of the metal source compound is appropriately set in accordance with the intended use of the battery, the active material, and the metal source compound material. For example, a secondary battery provided with a solar battery and used for a warning indicator lamp on a computer or road has a substantially constant power consumption and a low priority for high output characteristics.
  • the minimum concentration of the deposited metal is set so that the electrical resistance between the active material in the electrode and the collecting electrode can be effectively reduced, and the lithium ion between the active material in the electrode and the electrolyte layer It is preferable to set the maximum concentration of the precipitated metal to such an extent that the movement is not inhibited, and to set the concentration of the metal source compound within the range.
  • the concentration of the metal source compound is preferably 30 to 70 vol%.
  • the powder obtained by the dry mixing and dispersion of the active material and the metal source compound is in the form of a powder or is formed into a molded body, and heated in the atmosphere to a temperature higher than the thermal decomposition temperature of the metal source compound to form a metal on the active material surface. Or metal oxide is preferably deposited. Manufacturing costs can be reduced by processing in the atmosphere.
  • thermal decomposition may be performed in an inert gas atmosphere, or after performing thermal decomposition in the air, liquid phase reduction or gas phase reduction The metal oxide may be reduced to precipitate the metal.
  • the metal particles may be deposited by liquid phase reduction or gas phase reduction of the powder obtained by mixing and dispersion directly or the molded body formed from the powder without performing thermal decomposition.
  • the slurry obtained by the wet mixing and dispersion of the active material and the metal source compound is volatilized by drying the solvent by crushing the solvent to a powder, and then subjected to the same heat treatment and reduction treatment as in the case of the dry mixing and dispersion. Precipitation of metal particles can be obtained.
  • apparatuses used for slurry drying include slurry dryers, spray dryers, band dryers, and batch dryers.
  • the metal source compound is desirably dried while maintaining high dispersibility, and it is preferable to use a spray dryer.
  • the drying step may also serve as a thermal decomposition step, and precipitation of metal particles can be obtained by setting the drying temperature by the dryer to a temperature higher than the thermal decomposition temperature of the metal source compound.
  • Gas phase reduction can be performed by performing heat treatment in a reducing gas atmosphere such as hydrogen.
  • the heat treatment temperature and time may be appropriately set depending on the active material to be treated and the material of the metal source compound.
  • thermogravimetric change In the process of precipitating a metal or metal oxide from a mixture of an active material and a metal source compound by thermal decomposition, determination of an appropriate temperature and heating condition is determined by measuring a thermogravimetric change (TG) of the metal source compound. it can.
  • TG thermogravimetric change
  • the thermal decomposition is preferably performed at the lowest possible temperature.
  • the heating upper limit temperature can be determined by the thermogravimetric change of the active material, differential heat (TG-DTA), and temperature rising X-ray structure diffraction. The temperature at which the active material does not undergo structural change and the lithium diffusion resistance in the active material does not increase is the upper limit of the thermal decomposition temperature.
  • the metal deposition active material obtained in the present invention can be mixed and dispersed with an appropriate vehicle, a dispersing agent or the like to form a paste, thereby producing an active material paste for a lithium ion secondary battery.
  • an appropriate vehicle e.g., a car, a styrene foam
  • a dispersing agent e.g., a styrene foam
  • Auxiliary conductive materials, rheology modifiers and the like may be added as appropriate in accordance with the required battery performance.
  • the paste produced by the above method is applied to a collector electrode foil to produce an active material coated foil.
  • Two types of active material coated foils with different lithium ion release and occlusion potentials are produced, and a separator for ensuring electronic insulation between these active material coated foils and a non-aqueous electrolyte solution are held on the surface of the active material coated foil
  • a non-woven fabric is provided to constitute a lithium ion secondary battery.
  • a metal foil such as an aluminum foil or a copper foil can be mainly used.
  • the current collector electrode foil is not limited to these materials, and any metal material can be used as long as it is a metal foil that does not undergo a chemical change with the charge / discharge reaction of the battery. Also, any known non-aqueous electrolyte and supporting electrolyte can be used. Furthermore, a room temperature molten salt (ionic liquid) may be used as appropriate.
  • a solid electrolyte slip consisting of fine powder with a skeleton structure capable of diffusing lithium ions, a binder, a dispersant, and a rheology modifier is formed into a thin film on a substrate by the doctor blade method and dried, and then the paste prepared by the above method is used. Application / printing and further drying yields an active material application-solid electrolyte sheet.
  • Active material-solid electrolyte sheet for two active materials with different lithium ion storage / release potentials are prepared as described above, then stacked alternately, and after firing together, the same active material is electrically joined to form lithium ions
  • a secondary battery is configured.
  • the metal fine particles deposited on the surface of the active material in the batch firing are dissolved so as to fill the gaps between the adjacent active material particles, and the metal fine particles change from a dispersed particle state to a continuous matrix state. Thereby, an ideal electronic conduction path is formed in the active material.
  • the paste applied to the solid electrolyte sheet may be applied over a plurality of layers with several pastes having different active material and deposited metal ratios.
  • the all-solid-state secondary battery is prepared by batch firing, it is preferable to select the firing environment according to the metal species deposited on the active material surface used in the active material paste. For example, when a metal that is easily oxidized by heating in an air atmosphere is used, it is preferable to perform firing in a nitrogen atmosphere or a reducing gas atmosphere in order to suppress oxidation during batch firing.
  • Patent Document 2 (Differences from similar prior art) In Patent Document 2, an electroless plating (paragraph [0012]) or chemical plating (paragraph [0026]) is performed to further form a metal film on the active material coating film with metal material particles coated on the surface. Techniques to do this are disclosed. Electroless plating and chemical plating are a kind of liquid phase reduction in a broad sense. However, Patent Document 2 describes that when the metal film is usually formed directly on the active material, it is necessary to etch the active material before forming the film, and if the coating film is formed, an etching process is not necessary. (Paragraph [0012]). On the other hand, when metal particles are deposited on the active material by liquid phase reduction according to the present invention, no etching treatment is required.
  • Patent Document 3 describes a non-aqueous secondary battery including, as a negative electrode active material, a composite composed of a silicon powder capable of inserting and releasing lithium ions into a negative electrode material and a conductive metal imparting conductivity to silicon. .
  • the conductive metal described in Patent Document 3 is described as being obtained by reducing and depositing a conductive metal on silicon with an aqueous solvent (paragraph [0010]).
  • a conductive metal on silicon with an aqueous solvent (paragraph [0010]).
  • copper sulfate is reduced to precipitate copper.
  • toxic formaldehyde is used, and since copper is a substance that is easily oxidized, vacuum drying is performed, so there is a problem in terms of safety and manufacturing cost.
  • the present invention is a technology that is high in safety, low in manufacturing cost, and superior to Patent Document 3.
  • Patent Document 4 describes a technique of heating a silicon oxide and a metal to generate a mixed gas, depositing an active material powder on a cooling substrate, and manufacturing a negative electrode active material made of a metal element-doped silicon oxide powder. Yes.
  • a preferable heating temperature is 1100 to 1600 ° C.
  • the technique described in Patent Document 4 vaporizes a metal and deposits it on an active material, and does not generate a metal due to a chemical change such as reduction or decomposition, and this is different from the present invention. It is.
  • the high-temperature heat treatment described in Patent Document 4 can be applied to a material that hardly undergoes thermal decomposition even at a high temperature, such as silicon oxide, but the lithium cited as a preferred active material in the present invention.
  • Patent Document 5 discloses a lithium ion secondary battery including an electrode material in which a transition metal oxide film is formed on a nickel mesh.
  • the nickel mesh functions as a conductive material, and the transition metal oxide film functions as an active material.
  • the transition metal hydroxide is deposited on the mesh and then thermally decomposed to form a transition metal oxide film, or the mesh is immersed in a metal acetate solution and then thermally decomposed to form the transition metal oxide film.
  • the structure of the electrode material described in Patent Document 5 is different from the electrode material in the present invention in the arrangement of the active material and the conductive material.
  • the process is substantially the same as the process according to the present invention.
  • the conductive material is electrically conductive. Since the metal film is formed on the material, it does not function as an electrode material.
  • the electrode material described in Patent Document 5 is a material in which the transition metal oxide film is brittle, and there is a problem in that the transition metal oxide film peels off when processing is performed after deposition. Therefore, like the electrode material of this invention, there exists a problem that the manufactured electrode material cannot be processed into the molded object for batteries from which a shape or a magnitude
  • metal source compound nickel acetate, copper acetate, zinc acetate, and silver acetate were used, and as the active material, lithium manganate, lithium cobaltate, lithium cobalt phosphate, lithium cobalt silicate, and lithium titanate were used.
  • active material lithium manganate, lithium cobaltate, lithium cobalt phosphate, lithium cobalt silicate, and lithium titanate were used.
  • These metal source compound and active material were dry-mixed and dispersed, then formed into pellets, and heated to a decomposition temperature determined by TG-DTA measurement. After the heating, the fired body cooled to room temperature was crushed by dry crushing, and then the precipitation of metal or metal oxide particles was evaluated by XRD (X-ray diffraction structure analysis).
  • FIG. 2 shows XRD measurement data of a sample obtained by mixing the active material Li 1.33 Ti 1.66 O 4 and nickel acetate at 20:80 vol% and performing heat treatment at 800 ° C. Signal peaks corresponding to nickel and the active material Li 1.33 Ti 1.66 O 4 were detected from the sample, and precipitation of metal particles was confirmed. It was also confirmed that the structure of the active material was not changed by the heat treatment.
  • FIG. 3 shows XRD measurement data of a sample obtained by mixing the active material Li 1.33 Ti 1.66 O 4 and nickel acetate at 20:80 vol% and performing heat treatment at 800 ° C. A signal peak corresponding to copper and the active material Li 1.33 Ti 1.66 O 4 was detected from the sample, and precipitation of metal particles was confirmed. It was also confirmed that the structure of the active material was not changed by the heat treatment.
  • a lithium ion secondary battery using a treated active material and a lithium ion secondary battery using an untreated electrode material were prepared, and battery characteristics ( The charge / discharge rate characteristics were evaluated and compared.
  • a wet battery was prepared and evaluated.
  • the active material and the metal source compound were mixed. The mixing ratio was set by the ratio of the volume of the metal after deposition (room temperature) and the volume of the active material (room temperature). Depending on the materials used, two mixing and dispersion methods were used: dry mixing dispersion and wet mixing dispersion.
  • the weighed material was mixed and dispersed for 4 hours with a lykai machine.
  • the obtained mixed powder was molded with a tablet molding machine at a surface pressure of 2 t / cm 2 to obtain a molded body.
  • this molded body was pyrolyzed under predetermined conditions to obtain an electrode material made of an active material in which metal was deposited on the surface.
  • the metal source compound was dissolved in ion-exchanged water, and the active material powder was further dispersed therein to prepare an active material slurry.
  • the obtained slurry was supplied to a spray dryer having a blowing temperature of 230 ° C., and the slurry was dried by evaporating the ion exchange water in the slurry.
  • the amount of slurry supplied was such that the exhaust temperature of the spray dryer was 90 ° C.
  • the median diameter of the obtained granulated body it was confirmed that the median diameter was in the range of about 8 to 20 ⁇ m depending on the rotation speed of the atomizer.
  • the obtained mixed powder was molded to a surface pressure of 2 t / cm 2 with a tablet molding machine to obtain a molded body. Furthermore, this molded body was pyrolyzed under predetermined conditions to obtain an electrode material made of an active material in which metal was deposited on the surface. For the obtained electrode material, confirmation of metal deposition by XRD and the presence or absence of change in the structure of the active material before and after metal deposition were examined. The results and details of the preparation conditions are shown in Table 1. From this result, in this example, it was confirmed that in any active material, the metal was precipitated by the thermal decomposition of the metal source compound, and the active material did not undergo structural change by the thermal decomposition treatment.
  • Example 1A shown in Table 1, 1B and 2A correspond to a method of depositing a metal by thermal decomposition, and Examples 2B, 3, 4, and 5 correspond to a method of depositing a metal by gas phase reduction.
  • the metal can be precipitated from the metal oxide by performing gas phase reduction after the pyrolysis.
  • Table 1 Electrode material fabrication conditions and structural analysis results (Production of wet battery) The active material, ketjen black, and polyvinylidene fluoride fluoride were mixed at a weight ratio of 70: 25: 5, and further N-methylpyrrolidone was added to form an active material slip. Then, a doctor blade was used on the aluminum foil. It was applied uniformly and dried.
  • An active material-coated aluminum sheet punched with a 14 mm ⁇ punch (hereinafter referred to as “disc sheet electrode”) is vacuum degassed and dried for 24 hours at 120 ° C. and placed in a glove box with a dew point of ⁇ 65 ° C. or lower. And weighed precisely.
  • an aluminum foil disc sheet punched out of only an aluminum sheet to 14 mm ⁇ is separately weighed separately, and the weight of the active material applied to the disc sheet electrode is accurately determined from the difference from the precision value of the previous disc sheet electrode. was calculated.
  • the same battery was created and evaluated using the active material which has not applied this invention, and it was set as the comparative example.
  • Electrode material preparation step Step of obtaining a metal deposition active material by thermal decomposition and / or reduction after mixing and dispersing the metal source compound and the active material
  • Battery paste preparation step a step of kneading and dispersing a metal deposition active material and a binder, a solvent, a dispersant, etc. to obtain an electrode material paste, and a solid electrolyte and binder, a solvent, a dispersant, etc.
  • Steps for obtaining an electrolyte paste and steps for obtaining a current collector paste (c) Printing lamination process: a process of producing a lithium ion conductive inorganic material sheet, printing an extraction electrode paste and an electrode material paste, laminating these sheets, and further providing a protective layer (d) Firing step: Step of pressure-bonding and firing the laminate. (e) Extraction electrode formation process (details of each process) ⁇ Electrode material preparation process and battery paste preparation process> The metal source compound and the active material were weighed and mixed so that the volume ratio defined above was 50:50 vol%, and pulverized and dispersed to obtain a mixed powder.
  • the obtained mixed powder was molded with a tablet molding machine at a surface pressure of 2 t / cm 2 to obtain a molded body. Furthermore, this molded body was pyrolyzed under predetermined conditions to obtain an electrode material made of an active material in which metal was deposited on the surface. To 100 parts by weight of the obtained electrode material, 15 parts by weight of ethyl cellulose as a binder, 65 parts by weight of dihydroterpineol as a solvent, and fine boron compound powder are added, and the mixture is kneaded and dispersed with a three roll to obtain an electrode material paste. Produced. As the solid electrolyte, Li 3.5 Si 0.5 P 0.5 O 4 powder having a median diameter of 0.54 ⁇ m was used.
  • the current collector paste is composed of 15 parts by weight of ethyl cellulose as a binder and 65 parts of dihydroterpineol as a solvent with respect to 100 parts by weight of powder mixed so that the true specific gravity converted volume ratio of the metal powder and the active material powder is 80:20 vol. And kneaded and dispersed with three rolls to prepare an electrode material paste.
  • the prepared solid electrolyte paste was formed into a sheet using a PET film as a base material by a doctor blade method to obtain a lithium ion conductive inorganic material sheet.
  • the electrode material paste and the current collector paste are printed by screen printing, heated at 80 to 100 ° C. for 5 to 10 minutes, and the paste is dried. Then, an active material unit sheet in which the electrode material paste was printed on the lithium ion conductive inorganic material sheet was obtained.
  • an active material unit having a positive lithium ion storage / release potential is referred to as a “positive electrode unit”
  • an active material unit having a base is referred to as a “negative electrode unit”.
  • Such a positive electrode unit and a negative electrode unit were prepared, and each PET film was peeled off, and then alternately stacked with a lithium ion conductive inorganic substance interposed therebetween. At this time, the positive electrode unit and the negative electrode unit were shifted and stacked so that the positive electrode current collector extended only to one end surface and the negative electrode current collector extended only to the other surface.
  • each laminated block was 3 mm ⁇ 2.1 mm ⁇ 0.1 mm.
  • the extraction electrode paste was applied to the end face of the laminate, and thermosetting was performed at 150 ° C. for 30 minutes. Furthermore, a pair of extraction electrodes was formed to obtain an all solid state lithium ion secondary battery.
  • As the extraction electrode paste a thermosetting conductive paste made of fine silver powder, epoxy resin, solvent, and curing agent was used. (Characteristic evaluation of all-solid-state battery) The charge / discharge rate of the produced battery was 0.1C, 0.2C, 0.5C, 1C, 2C, 5C, and the charge / discharge capacity per unit weight of the active material was measured.
  • the present invention relates to an electrode material and a battery manufactured using the electrode material, and it is possible to manufacture a battery having low internal resistance and excellent charge / discharge rate characteristics. High energy efficiency, low waste heat generation and low environmental impact, especially effective as a power tool that requires instantaneously large output, for example, as a secondary battery for electric vehicles such as hybrid cars Has availability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 自動車用二次電池には、良好な入出力特性、低い内部抵抗が要求される。電池の内部抵抗を低減するため、活物質表面に金属粒子をコーティングする技術があるが、金属粒子表面に酸化膜が形成されるため、活物質の導電性向上、電池の内部抵抗低減に顕著な効果が得られないという問題があった。 活物質と金属源化合物を混合分散して、熱分解、気相還元、又は、液相還元、或いはそれらを組み合わせた化学的反応により金属粒子が活物質表面に析出した電極材料を製造することにした。金属粒子上に酸化膜が形成されないため、導電性の高い電極材料が得られ、電池の内部抵抗低減、入出力特性の改善に大きな効果が得られる。

Description

電極材料とその製造方法、及び、リチウムイオン二次電池
 本発明は、電極材料とその製造方法に関し、特に、リチウムイオン二次電池に用いて好適な電極材料とその製造方法に関する。
 近年、環境に配慮した自動車として、ハイブリッドカーの開発が進んでいる。一方、非水系のリチウムイオン二次電池は、水の電気分解電圧を超える高い電圧が得られる、エネルギー密度が高いという特徴がある。このような特徴を持つことから、リチウムイオン二次電池のハイブリッドカーへの利用が検討されている。しかし、従来、リチウムイオン二次電池は、電極を構成する活物質の導電性が低いことから、内部抵抗が高いという欠点があった。リチウムイオン二次電池の内部抵抗を低減する試みとして、活物質にカーボン等の助導電材料を混合する方法が開示されている(特許文献1)。しかしながら、ハイブリッドカーを電池で駆動するには、発進時のモーター駆動、停止時の回生エネルギーの回収、パワーツール始動時の高い入出力負荷に対応するため、極めて入出力特性が良好な、すなわち、内部抵抗の低い二次電池が求められている。従来のカーボンを助導電材とする電池では、この要求に対応することができなかった。内部抵抗の高い二次電池に大きな入出力負荷をかけると、エネルギーの多くが電池の発熱に消費され、エネルギー効率が悪い。非水系の電池においては、発熱により内部圧力が上昇することから、エネルギー効率だけでなく安全性の面でも電池の内部抵抗を可能な限り低く抑える必要があった。
 特許文献2には、電極活物質の表面に粒径0.005μm~10μmの金属材料粒子をコーティングすることにより、活物質の導電性を確保する技術が開示されている。特許文献2には金属材料粒子としてチタンやアルミニウムを使用した実施例が記載されている。これらの金属微粒子は表面活性が極めて高く、急激な酸化による粉塵爆発のおそれがあり、微粒子の状態での取扱いが難しい。しかし、特許文献2には、金属材料粒子のコーティングの方法として「塗布」(段落[0024])が挙げられているが、具体的な方法についての記載がない。例えば、前記した粉塵爆発を起こさずにいかに活性の高い金属微粒子を安全に取り扱うかについての記載がない。従って、特許文献2は、当業者が容易に再現できるほど十分な発明の開示がなされたとは言えない。また、特許文献2に記載されたコーティングの方法は、化学反応を伴わない物理的な方法で金属粒子を活物質上に付着させるものである。そのため、これらの金属微粒子の表面は通常薄い酸化膜の層から形成されている。特許文献2に例示された金属粒子であるチタンやアルミニウムの酸化膜は、元素の性質上、化学薬品や水素等のガスを用いた還元により金属とすることが難しく、通常半導体又は絶縁体である。そのため、特許文献2の方法で金属粒子を活物質上にコーティングしたとしても、実際は、金属同様の導電性を得ることは困難である。また、特許文献2には金属材料粒子のコーティングの方法として、常圧プラズマ等の方法も用いることができる(段落[0009])と記載されている。しかし、段落[0011]に記載されているように、CVDやPVDを問題点のある従来法と記載していることから、前記常圧プラズマ等の方法がプラズマCVDであるとは考えにくく、具体的にプラズマをどのように用いる方法なのか不明である。
特開2008-112594号公報 特開平11-250896号公報 特開平11-297311号公報 特開2003-192327号公報 特開2006-261020号公報
 本発明は、主にリチウムイオン二次電池の内部抵抗低減、入出力特性改善のため、導電性の高い電極材料を安全に製造する方法、及び、高導電性の電極材料の提供を目的とする。
 本発明(1)は、金属源化合物から熱分解及び/又は還元により生成した金属が活物質上に析出したリチウムイオン二次電池用の電極材料である。
 本発明(2)は、前記活物質と前記金属が酸化物を介在せずに接触する状態で、前記金属が前記活物質上に析出したことを特徴とする前記発明(1)の電極材料である。
 本発明(3)は、前記金属源化合物が、有機金属化合物、有機金属錯体、炭酸根を含む金属化合物、金属水酸化物、金属過酸化水酸化物のいずれか一つ又はそれらの組み合わせからなる物質であることを特徴とする前記発明(1)又は前記発明(2)の電極材料である。
 本発明(4)は、前記金属が、ニッケル、銅、白金、パラジウム、銀、亜鉛、コバルト、バナジウム、タングステン、モリブデン、クロム、鉄のいずれか一つ又はそれらの混合物又は合金からなることを特徴とする前記発明(1)乃至前記発明(3)の電極材料である。
 本発明(5)は、少なくとも、前記発明(1)乃至前記発明(4)の電極材料とビヒクルを混合分散して形成された電池用活物質ペーストである。
 本発明(6)は、前記発明(5)の電池用活物質ペーストを用いて形成された湿式又は全固体型のリチウムイオン二次電池である。
 本発明(7)は、少なくとも、活物質と金属源化合物を混合分散し第一の粉体を製造する工程と、前記第一の粉体を熱分解することにより、前記金属源化合物から金属を生成し、前記金属が前記活物質上に析出した電極材料を製造する工程とからなる電極材料の製造方法である。
 本発明(8)は、少なくとも、活物質と金属源化合物を混合分散し第一の粉体を製造する工程と、前記第一の粉体を気相還元することにより、前記金属源化合物から金属を生成し、前記金属が前記活物質上に析出した電極材料を製造する工程とからなる電極材料の製造方法である。
 本発明(9)は、少なくとも、活物質と金属源化合物を混合分散し第一の粉体を製造する工程と、前記第一の粉体を熱分解し第二の粉体を製造する工程と、前記第二の粉体を気相還元することにより、前記金属源化合物から金属を生成し、前記金属が前記活物質上に析出した電極材料を製造する工程とからなる電極材料の製造方法である。
 本発明(10)は、前記金属源化合物が、有機金属化合物、有機金属錯体、炭酸根を含む金属化合物、金属水酸化物、金属過酸化水酸化物のいずれか一つ又はそれらの組み合わせからなる物質であることを特徴とする前記発明(7)乃至前記発明(9)の電極材料の製造方法である。
 本発明(11)は、前記金属が、ニッケル、銅、白金、パラジウム、銀、亜鉛、コバルト、バナジウム、タングステン、モリブデン、クロム、鉄のいずれか一つ又はそれらの混合物又は合金からなることを特徴とする前記発明(7)乃至前記発明(10)の電極材料の製造方法である。
 本発明(1)~(4)によれば、導電性の高いリチウムイオン二次電池用電極材料の製造が可能である。
 本発明(5)、(6)によれば、導電性の高い電極材料を用いることにより、内部抵抗の低い入出力特性に優れたリチウムイオン二次電池の製造が可能である。
 本発明(7)~(11)によれば、作業安全性が高く低コストの製造プロセスによる導電性の高いリチウムイオン二次電池用電極材料の製造が可能になる。
本発明の金属粒子析出方法の好ましい実施形態を説明するための工程順断面図である。 活物質上にニッケル粒子を析出した試料のXRD測定データである。 活物質上に銅粒子を析出した試料のXRD測定データである。 従来の金属材料粒子を有する活物質の模式的な断面図である。
1 活物質
2 金属源化合物
3 活物質粒子
4 金属源化合物粒子
5 金属粒子
6 金属酸化物粒子
101 電極活物質
102 コートした粒子
 以下、本発明の最良形態について説明する。
 本願発明者等は、特許文献2に記載された方法で金属粒子を活物質表面にコーティングしても導電性改善に顕著な効果が得られない原因を調査した。その結果、物理的な方法で金属粒子をコーティングすると、例えば大気中の酸素との反応で金属酸化物が形成され、活物質と金属粒子が導電性の低い金属酸化物を介して接触することになるためであることを見出した。この知見をふまえて、本願発明者等は、鋭意検討を行った結果、活物質と金属源化合物を混合分散した後、分解又は還元により金属源化合物から活物質表面に金属粒子を析出する化学的方法により、酸化物を形成せずに、導電性の高い電極材料を製造可能なことを見出した。
 酸化物が形成されないことに加えて、本発明の電極材料の製造方法は、以下の項目(2)~(5)の点において優れた特長を持つ有用な製造方法である。
(1)酸化物などの導電性の低い生成物が形成されない。
(2)金属粒子を析出する反応で活物質が分解、或いは、変質することがない。
(3)毒性や爆発性などの危険性の高い生成物が形成されない。
(4)特別な高温処理、真空装置の使用など高コストプロセスを使用せず、製造コストが安い。
(5)金属粒子を析出する反応で金属又は活物質が凝集せず、適切な分散混合状態を維持する。
 本発明の電極材料の製造方法では、前記金属源化合物として、有機金属化合物、有機金属錯体、炭酸根を含む金属化合物、金属水酸化物又は金属過酸化水酸化物のいずれか一つ又はそれらの組み合わせからなる物質を用いるのが好ましい。前記分解又は還元の方法としては、熱分解、気相還元、液相還元のうちいずれか一つ又はそれらの組み合わせからなる方法を用いるのが好ましい。本願発明者等は、これらの材料を用い、これらの方法で処理することにより、活物質表面に金属微粒子を効率よく析出させることができ、その結果、活物質への電子供与、活物質からの電子放出をスムーズにし、こうして得た活物質により構成されるリチウムイオン二次電池の入出力特性が改善され得ることを見出し、本発明を完成するに至った。従来技術に見られるような、活物質に対してカーボンのような補助導電粉末を混合・接触させる、或いは、金属粒子をコーティングする方法では活物質と補助導電粉末は点接触によってのみしか導電性が確保できないのに対し、本発明によれば化学的析出方法によって活物質表面上に金属粒子の析出を行うので、活物質と金属粒子の接触面積が増え、より高い導電性が実現される。
 本発明の電極材料の製造方法として、好ましい実施形態としては、以下の方法を挙げることができる。図1は、本発明の金属粒子析出方法の好ましい実施形態を説明するための工程順断面図である。
(1)活物質粉末3と金属源化合物4とを(a)乾式又は(b)湿式にて混合分散し、得られた粉末を、金属源化合物4の熱分解温度以上の温度で加熱、解砕を行うことにより所定の粉末を得る方法。
(2)活物質粉末3と金属源化合物4とを(a)乾式又は(b)湿式にて混合分散し、得られた粉末を、金属源化合物4の熱分解温度以上の温度で加熱、解砕後、更に、金属酸化物6が形成される場合は、液相還元を行い所定の粉末を得る方法。
(3)活物質粉末3と金属源化合物4とを(a)乾式又は(b)湿式にて混合分散し、得られた粉末を、金属源化合物4の熱分解温度以上の温度で加熱、解砕後、更に、金属酸化物6が形成される場合は、気相還元を行い所定の粉末を得る方法。
(4)活物質粉末3と金属源化合物4とを(a)乾式又は(b)湿式にて混合分散し、得られた粉末を液相還元し所定の粉末を得る方法。
(5)活物質粉末3と金属源化合物4とを(a)乾式又は(b)湿式にて混合分散し、得られた粉末を気相還元し所定の粉末を得る方法。
(金属源化合物材料)
 本発明の電極材料を構成する金属は、カーボン粒子の電子伝導性と比較してより高い金属元素を用いるのが好ましい。係る金属を析出する金属源化合物は、有機金属化合物を用いるのが好ましい。具体的には、例えば、酢酸銀、酢酸銅、蟻酸銅、酢酸ニッケル、酢酸銅、酢酸亜鉛、蟻酸亜鉛、酢酸コバルト、酢酸鉄等の有機酸金属化合物や、エチレンジアミン四酢酸(EDTA)金属錯体、アセチルアセトナート錯体、金属石鹸等が挙げられる。
 また、前記金属源化合物は、有機金属化合物の代わりに炭酸根を含む金属化合物、金属水酸化物、金属過酸化水酸化物を用いることもできる。具体的には、炭酸銀、塩基性炭酸ニッケル、塩基性炭酸銅等が挙げられる。金属炭酸塩・有機金属錯体、塩基性金属化合物は熱分解や還元の際に発生するガスが、水、酸素、炭酸ガス等の毒性のないガスであり、本発明の実施にあたって取扱作業の安全性の点で好適である。
 また、前記金属源化合物は、一種類以上の金属化合物を混合して用いてもよい。例えば、活物質と酢酸ニッケル、酢酸銅とを適宜混合分散し還元雰囲気、イナートガス雰囲気にて熱分解した場合、活物質表面にニッケルと銅の金属を同時に析出することができ、合金の形成も可能である。析出させる複数種の金属の使用割合と熱分解温度をコントロールすることによって析出する金属種の結晶子径、粒子径、電子伝導性、電池特性に自由度を持たせる電池設計が可能となる。
 析出する金属としては、ニッケル、銅、白金、パラジウム、銀、亜鉛、コバルト、バナジウム、タングステン、モリブデン、クロム、鉄のいずれか一つ又はそれらの混合物又は合金からなる金属を用いるのが好ましい。
 金属源となる有機金属化合物としては、分子量が小さい物質を用いるのが好ましい。例えば、より好ましい有機金属化合物の順番は、ギ酸金属>酢酸金属>シュウ酸金属>金属石鹸である。その理由は、金属に結合する有機物の分子量が小さいと分解温度が低く、1.製造プロセスのエネルギーコストを低く抑えることが可能である、2.単位重量当たりの金属含有量が多くなる、3.活物質にサーマルダメージを与えない、4.金属源化合物が熱分解の途中で活物質と反応を起こしにくいなどの利点がある。この知見を得るに至った実験内容を以下に示す。
(1)最初に、LiMnとシュウ酸鉄を混合し、還元ガスにて500℃で熱分解、金属析出をおこなったところ、LiMn自体が還元されて構造が壊れるとともに、シュウ酸鉄が酸化鉄のまま残り、XRD(X線回折構造解析)により鉄とリチウム複合酸化物と見られるピークが現れた。
(2)次に、ギ酸銅とLiMnを組み合わせ、還元ガスにて処理したところ、XRDにて金属銅のピークが確認されるものの、やはりLiMnの構造変化が観測された。
(3)LiMnの構造変化を抑えるために、LiMnとギ酸銅の混合物を大気雰囲気中で熱分解を行ったところ、LiMnが構造を保ったまま、酸化銅(CuO)が生成した。その後、更に還元ガスで処理すると、金属銅が析出したが、LiMnの構造が変化した。
(4)LiMnとギ酸銅を混合し、窒素雰囲気下300℃で処理を行ったところ、LiMnと金属銅が生成した。LiMnの構造は変化しなかった。(この時のプロセス条件と評価データは、実施例1Bとして実施例に記載してある。)
 以上のことから、次のことが言える。
(1)還元ガス雰囲気で還元され構造変化しやすい活物質を用いる場合は、低温で熱分解するような金属源化合物(例えば、ギ酸金属)を用い、処理温度を低くするとともに、熱分解の雰囲気としては、還元ガスではなく、窒素ガスなどの不活性ガスを用いるのが好ましい。
(2)処理温度で活物質と反応を起こさない金属源化合物を選択する。
(活物質材料)
 本発明の電極材料に好適に使用可能な活物質の材料は、リチウムイオンの放出・吸蔵能がある物質であれば特定の物質に限定されるものではなく、いずれの物質でも好適に用いることができる。これらの物質のうちリチウムイオンの放出、吸蔵が起こる電位が貴側にあるものが正極、前記電位が卑側にあるものが負極である。外部電力によって正極-負極の電位差以上の電圧が負極を基準として正極に印加された場合に、正極がリチウムイオンドナー、負極がリチウムイオンアクセプターとなることが電池機能を発現する条件である。本発明が適応可能な活物質の内、リチウムイオンドナーとしては、例えば、リチウムと一種類以上の金属からなる複合酸化物、複合硫化物、複合窒化物、複合フッ化酸化物などが挙げられる。リチウムイオンアクセプターとしては、例えば、一種類以上の金属からなる金属酸化物、金属硫化物、金属窒化物、リチウムと一種類以上の金属からなる複合酸化物、複合窒化物、複合硫化物、硫化リン化合物、カーボン、金属合金が挙げられる。具体的には、LiCoO、LiNiO、LiMnO、LiMn、LiCuO、LiCoVO、LiMnCoO、LiMnCrO、LiCoPO、LiCoPOF、Li2CoSiO、LiFePO4、Li4/3Ti5/3、LiTiO、LiM1M2(M1、M2は遷移金属であり、s、t、uは任意の正数)、MoS2、TiS、MnO、NiPS、リチウム-アルミニウム合金、高黒鉛化ソフトカーボン、低黒鉛化ソフトカーボン、低温焼成炭素、ハードカーボン等が挙げられる。
(活物質と金属源化合物の好適な組み合わせ)
 (活物質がLiMnの場合)
 活物質がLiMnの場合は、上記したように活物質が構造変化しやすいので、分子量の小さい金属源化合物、例えば、ギ酸金属を用い、不活性ガス雰囲気で低温熱処理を行うのが好ましい。
 (活物質がLiCoOの場合)
 活物質がLiCoOの場合は、金属源化合物の金属種としてCuを用いることが可能である。LiCoOとCuが反応しにくいので、例えば、LiCoOとギ酸銅を混合し、熱分解を行っても、分解で生じた酸化銅や金属銅がLiCoOと不要な反応を起こしにくい。
 また、金属種としてNiを用いることも可能である。LiNiOは正極活物質であるため、正極材料の合成の場合は、例えば、LiCoOとギ酸ニッケルを組み合わせて処理を行っても、生成される可能性のあるLiCo(1-x)Nixも正極活物質であるため、電池の特性を劣化させるおそれはない。
 もちろん、金属種としてCoを用いることは問題がない。析出金属CoとLiCoO内のCoとの交換反応が仮に起こるとしても問題が生じるおそれはない。
 (活物質がLiTi12の場合)
 還元ガス雰囲気で熱処理しても容易に構造変化を生じないLiTi12は、金属源化合物として広範囲の物質を選択することが可能である。金属源化合物の金属種として、例えば、Ni、Cu、Coなどを選択することが可能である。
(製造方法の具体例)
(混合分散)
 本発明に係る電極材料は、少なくとも、表面に金属粒子が析出した活物質からなる。係る電極材料は、通常、粉末状に加工した活物質と金属源化合物を原料とし、最初に乾式混合分散、湿式混合分散のいずれかの方法により、これらの原料を均一に分散させ混合する。また、初期原料は必ずしも粉末状に加工されておらず、バルク状、かたまり状であってもよい。その場合であっても、混合分散工程において原料が粉砕され粉末状に加工される。乾式混合分散は液体を用いずに混合分散を行う方法であり、例えば、振動ミル、遊星ボールミル、ポットミル等の装置を用いて加工することができる。
 湿式混合分散は、原料となる粉末を液体と混ぜてスラリー化して加工する混合分散方法であり、例えば、ビーズミル等の装置を用いて加工することができる。ビーズミルは、粉砕室と呼ばれる回転容器の中にビーズと呼ばれる粉砕メディアを充填した装置である。係る粉砕室に前記スラリーをポンプで送り込み、スラリーにビーズを衝突させることにより原料の微粉砕・分散を行う。最後に粉砕室の出口にある遠心分離器やスクリーンによりスラリーとビーズを分離する。
 乾式混合分散、湿式混合分散のいずれの方法を用いるかは、用いる原料の種類に応じて最適な方法を用いればよい。乾式混合分散、湿式混合分散以外の方法を用いることも可能である。いずれの方法を用いる場合でも、活物質粉末を取り囲む金属源化合物濃度が最適な範囲となるように制御可能な方法を用いるのが好ましい。金属源化合物の濃度範囲は、電池の使用目的、活物質材料、金属源化合物材料に応じて、適宜、最適範囲を設定するのが好ましい。例えば、太陽電池を備えた、計算機や道路上の警告表示灯で用いる二次電池は、消費電力がほぼ一定しており、高出力特性の優先度が低い。そのため、例えば、電池容量等を優先して、活物質の量を増やした電池設計が行われる。それに対して、ハイブリッドカー用の二次電池では、出力特性が重視されるので、より金属源化合物の濃度が高い電池設計を行うことになる。
 湿式電池の場合は、電極内の活物質と集電電極の間の電気抵抗を有効に低減できるように析出金属の最小濃度が設定され、かつ、電極内の活物質と電解質層とのリチウムイオン移動を阻止しない程度に析出金属の最大濃度を設定し、その範囲内に金属源化合物の濃度を設定するのが好ましい。
 全固体電池の場合は、一括焼成後、析出金属が連続性を保ちながら集電電極につながり、かつ、活物質が連続性を保ちながら固体電解質層につながることが必要であり、パーコレーション理論等を考慮して三次元で粒子が連続性を保持できる範囲として、金属源化合物の濃度を30~70vol%とするのが好ましい。
(乾式混合分散で得られた粉体の処理方法)
 活物質と金属源化合物との乾式混合分散で得られた粉体は、粉体のまま、もしくは成型体とし、大気中において金属源化合物の熱分解温度以上に加熱することで活物質表面に金属、又は金属酸化物を析出するのが好ましい。大気中で処理することにより製造コストの低減が可能である。
 大気中で熱分解を行うことで金属酸化物を生じる場合は、不活性ガス雰囲気で熱分解を行ってもよいし、大気中で熱分解を行った後に、液相還元、又は、気相還元を行って、金属酸化物を還元して金属を析出させてもよい。さらに、熱分解を行わずに、直接、混合分散で得られた粉体、又は、粉体から形成した成型体を液相還元又は気相還元して、金属粒子を析出させてもよい。
(湿式混合分散で得られた粉体の処理方法)
 活物質と金属源化合物との湿式混合分散で得られたスラリーは、乾燥により溶媒を揮発させ乾燥物を解砕、粉末にした後、前記乾式混合分散の場合と同様の加熱処理及び還元処理によって金属粒子の析出を得ることができる。スラリー乾燥に使用される装置としてはスラリードライヤー、スプレードライヤー、バンド乾燥機、バッチ乾燥機等が挙げられる。金属源化合物は高い分散性を維持したまま乾燥されることが望ましく、スプレードライヤーを用いるのが好ましい。また、乾燥工程が熱分解工程を兼ねていても良く、前記乾燥機による乾燥温度を金属源化合物の熱分解温度より高い温度とすることにより金属粒子の析出を得ることができる。
(気相還元の具体的方法)
 水素など還元性のガス雰囲気中で熱処理を行うことにより気相還元を行うことができる。熱処理温度と時間は、処理する活物質と金属源化合物の材料等により適宜設定すればよい。
(融剤の添加)
 活物質と金属源化合物を前記手法にて混合分散時に、活物質表面の流動性を促す目的で融剤を添加するのが好ましい。熱分解工程での活物質表面流動が促されることによって活物質と析出金属又は、析出金属酸化物との結合がより強固なものとなり、その結果、これら析出物と活物質との接触面積が大きくなり電子伝導性はより良好なものとなる。
(熱分解温度)
 活物質と金属源化合物との混合物から熱分解により金属、又は金属酸化物を析出する工程で適切な温度と加熱条件の決定は、金属源化合物の熱重量変化(TG)を測定することにより決定できる。活物質表面に析出した金属粒子、金属酸化物粒子が活物質表面上に均一に分散された状態で保持するためには、熱分解は可能な限り低温で行われることが好ましい。また、加熱上限温度については同様に、活物質の熱重量変化、示差熱(TG-DTA)及び昇温X線構造回折により決定することが可能である。活物質が構造変化を起こさず、活物質内のリチウム拡散抵抗が増大に至らない温度が熱分解温度の上限値となる。
(電池用ペースト)
 本発明で得られた金属析出活物質は、適当なビヒクル、分散剤等と混合分散してペースト化し、リチウムイオン二次電池用活物質ペーストを作製することができる。必要とする電池性能に合わせて更に助導電材料、レオロジー調整剤等を適宜添加しても良い。
(湿式電池の製造)
 以下に、湿式リチウムイオン二次電池の製造方法を説明する。上記方法で作製したペーストを集電電極箔に塗布し、活物質塗布箔を作製する。リチウムイオン放出・吸蔵電位の異なる二種類の活物質塗布箔を作製し、これらの活物質塗布箔同士の電子絶縁性を確保するためのセパレータ、活物質塗布箔表面に非水系電解液を保持するための不織布を配し、リチウムイオン二次電池を構成する。集電電極箔には主にアルミニウム箔、銅箔などの金属箔が使用できる。集電電極箔にはこれらの材料に限定されず、電池の充放電反応に伴い化学変化をきたさない金属箔であればいずれの金属材料でも使用することができる。又、非水系電解液および支持電解質は、いずれも公知のものを使うことができる。更には常温溶融塩(イオン性液体)を適宜用いても良い。
(全固体電池の製造)
 次に、全固体リチウムイオン二次電池の製造方法を説明する。リチウムイオン拡散可能な原子骨格構造を持つ微粉末、バインダー、分散剤、レオロジー調整剤からなる固体電解質スリップをドクターブレード法等により基材上に薄膜形成・乾燥した後、上記方法で作製したペーストを塗布・印刷し、更に乾燥することにより活物質塗布-固体電解質シートを得る。
 リチウムイオン吸蔵・放出電位の異なる活物質二種について活物質-固体電解質シート前記のように作製した後、交互に積層し、一括焼成後、同一活物質同士を電気的に接合することでリチウムイオン二次電池を構成する。一括焼成において活物質表面に析出していた金属微粒子は隣り合う活物質粒子の空隙を埋めるように溶解し、金属微粒子は点在する粒子状態から連続するマトリックス状態へと変化する。これにより、活物質中に理想的な電子導電経路が形成される。
 また、固体電解質シートに塗布するペーストは、活物質と析出金属比率の異なるペースト数種を複数層にわたって塗布してもかまわない。活物質と析出金属比率の異なる層を作ることにより、より最適な金属マトリックス構造を形成することが可能となる。
 前記全固体二次電池を一括焼成により作成する場合、活物質ペーストに使用された活物質表面に析出させた金属種によって焼成環境を選択することが好ましい。例えば、大気雰囲気下での加熱で容易に酸化される金属を用いた場合、一括焼成時での酸化を抑制するため窒素雰囲気、還元ガス雰囲気での焼成を行うことが好ましい。
(類似の先行技術との相違点)
 特許文献2では、無電解メッキ(段落[0012])、或いは、化学メッキ(段落[0026])を行うことにより、金属材料粒子を表面にコーティングした活物質のコーティング膜上にさらに金属被膜を形成する技術が開示されている。無電解メッキや化学メッキは、広義では液相還元の一種である。しかし、特許文献2には、通常前記金属被膜を直接活物質上に形成する場合は、被膜形成前に活物質をエッチングする必要があり、コーティング膜を形成すればエッチング工程が不要になると記載されている(段落[0012])。それに対し、本願発明による液相還元により活物質上に金属粒子を析出する場合は、エッチング処理が不要である。エッチング処理を活物質に対し行うと、活物質が変質するおそれがあり、高性能の電池を製造するには好ましくない。特許文献2において、無電解メッキ、化学メッキの具体的な方法について詳細な記載が無いため、相違点について明確な言及ができないが、本発明の電極材料の製造方法では、液相還元前の活物質のエッチングは不要であり、本願発明に係る液相還元と特許文献2に記載された無電解メッキ、化学メッキは異なる方法であると推定される。
 さらに言えば、特許文献2に記載された金属粒子の塗布は、金属被膜形成前のエッチングの代わりに行う方法であるとの記載(段落[0012])もあるが、本発明に係る技術は活物質に対するメッキの前処理ではなく、その点においても、本発明と特許文献2に記載された技術は異なるものである。
 特許文献3には、負極材料にリチウムイオンを挿入放出可能なケイ素粉末とケイ素に導電性を付与する導電性金属とからなる複合体を負極活物質として含む非水系二次電池が記載されている。特許文献3に記載された導電性金属は、ケイ素上に導電性金属を水系溶媒で還元析出させて得られると記載されている(段落[0010])。しかし、特許文献3に記載された液相還元の実施例では、硫酸銅を還元して銅を析出している。しかし、処理工程において、毒性のあるホルムアルデヒドを用いていること、銅が酸化しやすい物質であるため真空乾燥を行っていることから、安全性、製造コストの点で問題があり、この点で、本発明は、安全性が高く、製造コストが低く、特許文献3と比較して優れた技術である。
 特許文献4には、酸化ケイ素と金属を加熱して混合ガスを発生し、冷却基体上で活物質粉末を析出し、金属元素ドープ酸化ケイ素粉末からなる負極活物質を製造する技術が記載されている。好ましい加熱温度は1100~1600℃であるとしている。特許文献4に記載された技術は、金属を気化して活物質上に析出するものであり、還元や分解などの化学変化により金属が生成されるものではなく、この点で本発明と異なるものである。また、特許文献4に記載されたような高温の熱処理は、酸化ケイ素などの高温でも熱分解を起こしにくい物質に適用することは可能であるが、本発明で好適な活物質として挙げているリチウムのように比較的揮発性の高い物質に適用することは困難である。また、これだけの高温化で熱処理を行うと、活物質と金属が反応するおそれもあり、その点でも、本発明と特許文献4に記載された技術は異なるものである。
 特許文献5には、ニッケルメッシュ上に遷移金属酸化物被膜を形成した電極材料を備えたリチウムイオン二次電池が開示されている。ニッケルメッシュが導電材として機能し、遷移金属酸化物被膜が活物質として機能する。遷移金属水酸化物をメッシュ上に析出後、熱分解して遷移金属酸化物被膜を形成する、又は、酢酸金属溶液中にメッシュを浸漬した後、熱分解して遷移金属酸化物被膜を形成すると記載されている。特許文献5に記載された電極材料の構造は、本発明における電極材料とは、活物質と導電性物質の配置が異なる。
 特許文献5に記載された電極材料に対し、さらに還元を行うと、プロセスとしては、本発明に係るプロセスと略同一の工程となるが、特許文献5に記載された電極材料の構造では、導電材の上に金属膜を形成した構造となるため、電極材料として機能しない。また、特許文献5に記載された電極材料は、遷移金属酸化物被膜が脆い材料であり、析出後に加工を行おうとすると遷移金属酸化物被膜のはがれてしまうという問題がある。そのため、本発明の電極材料のように、製造した電極材料を粉末状、あるいは、ペースト状にして、形状や大きさの異なる電池用成型体に加工することができないという問題がある。
 以下に、実施例を用いて本発明を詳細に説明するが、本発明はこれらの実施例に限定されない。
(金属粒子析出実験)
 まず、金属粒子析出実験の準備として、TG-DTAを用い金属源化合物及び活物質の各種環境下における熱分解温度を測定した。金属源化合物として、酢酸ニッケル、酢酸銅、酢酸亜鉛、酢酸銀を用い、活物質としてマンガン酸リチウム、コバルト酸リチウム、リン酸コバルトリチウム、ケイ酸コバルトリチウム、チタン酸リチウムを用いた。いずれの測定も昇温速度200℃/hrで行い、試料の重量変化を測定し、分解温度を判断するめやすとした。次に、これらの活物質に対し、本発明に係る析出方法を用い、金属粒子が析出するか確認する実験を行った。金属源化合物としては、酢酸ニッケル、酢酸銅、酢酸亜鉛、酢酸銀を用い、活物質としては、マンガン酸リチウム、コバルト酸リチウム、リン酸コバルトリチウム、ケイ酸コバルトリチウム、チタン酸リチウムを用いた。これらの金属源化合物と活物質とを乾式混合分散した後、ペレット成型し、TG-DTAの測定によって定めた分解温度まで加熱を行なった。加熱後、室温まで冷却した焼成体について、乾式解砕にて解砕を行なったのち、XRD(X線回折構造解析)により金属または金属酸化物粒子の析出を評価した。また、活物質の構造変化の有無により目的物の状態を判断した。
 図2は、活物質Li1.33Ti1.66O4と酢酸ニッケルを20:80vol%で混合して800℃で熱処理を行った試料のXRD測定データである。試料からニッケルと活物質Li1.33Ti1.66O4に相当する信号ピークが検出され、金属粒子の析出が確認された。また、活物質の構造が加熱処理により変化していないことも確認できた。
 図3は、活物質Li1.33Ti1.66O4と酢酸ニッケルを20:80vol%で混合して800℃で熱処理を行った試料のXRD測定データである。試料から銅と活物質Li1.33Ti1.66O4に相当する信号ピークが検出され、金属粒子の析出が確認された。また、活物質の構造が加熱処理により変化していないことも確認できた。
(湿式電池の作成と電池特性評価)
 本発明の処理を施した電極材料の効果を検証するために、処理済活物質を用いたリチウムイオン二次電池と未処理の電極材料を用いたリチウムイオン二次電池を作製し、電池特性(充放電レート特性)を評価、比較した。最初に、湿式電池を作製し、評価を行った。
(電極材料の作製)
 最初に、活物質と金属源化合物を混合した。混合割合は、析出後の金属の体積(常温)と活物質の体積(常温)の比率により設定した。使用する材料に応じて、乾式混合分散と湿式混合分散の二つの混合分散方法を使った。
 乾式混合分散の場合は、体積比が、金属:活物質=5:95vol%、及び20:80vol%となるように材料の秤量を行った。秤量を行った材料は、ライカイ機にて4時間の混合分散を行なった。得られた混合粉末を、タブレット成型機にて面圧力2t/cm2にて成型し、成型体を得た。更に、この成型体を所定の条件下にて熱分解を行い、表面に金属析出した活物質からなる電極材料を得た。
 湿式混合分散には、スプレードライヤーを用いた。まず、体積比が、金属:活物質=5:95vol%となるように材料の秤量を行った。その後、金属源化合物をイオン交換水に溶解し、更にこれに活物質粉末を分散させて活物質スラリーを作製した。次に、得られたスラリーを送風温度230℃としたスプレードライヤーに供給し、スラリー中のイオン交換水の蒸発させることでスラリー乾燥を行なった。スラリー供給量は、スプレードライヤーの排風温度が90℃になるような供給量とした。得られた造粒体の粒径は、アトマイザー回転速度によりメジアン径が約8~20μmの範囲にあることが確認された。得られた混合粉末を、タブレット成型機にて面圧力2t/cm2に成型し、成型体を得た。更に、この成型体を所定の条件下にて熱分解を行い、表面に金属析出した活物質からなる電極材料を得た。
 得られた電極材料に対し、XRDによる金属析出の確認と、金属析出前後での活物質の構造の変化の有無を調べた。結果と調製条件の詳細と共に表1に示す。この結果から、本実施例ではいずれの活物質においても金属源化合物の熱分解より金属が析出し且つ活物質が熱分解処理によって構造変化を起こしていないことが確認された。
 表1に示す実施例1A,
1B, 2Aが熱分解により金属を析出させる方法に相当し、実施例2B, 3, 4, 5が気相還元により金属を析出させる方法に相当する。熱分解により、金属酸化物が形成される場合は、熱分解の後に気相還元を行うことにより金属酸化物から金属を析出することができる。
(表1)電極材料作製条件と構造解析結果
Figure JPOXMLDOC01-appb-T000001
(湿式電池の作製)
 前記活物質とケッチェンブラック、ポリフッ化ビニリデンフロリドとを70:25:5の重量比率で混合し、更にN-メチルピロリドンを加え活物質スリップとした後、アルミニウム箔上にドクターブレードを用いて均一に塗工し乾燥させた。活物質塗布アルミニウムシートを14mmφのポンチで打ち抜いたもの(以下、「円板シート電極」と称する。)を120℃、24時間の真空脱気乾燥を行い、露点-65℃以下のグローブボックス中にて重量を精秤した。又、アルミニウムシートのみを14mmφにポンチ抜きしたアルミニウム箔円板シートを別途精秤し、先の円板シート電極の精秤値との差より円板シート電極に塗布されている活物質重量を正確に算出した。こうして得られた円板シート電極とリチウムメタル、多孔質ポリプロピレンセパレータ、不織布製電解質保持シート、リチウムイオンが溶解された有機電解質(EC:DEC=1:1volの有機溶剤にLiPF6が1mol/Lで溶解したもの)からなる湿式電池を作成した。
(湿式電池の特性評価)
 作成した電池の充放電レートを0.1C、0.2C、0.5C、1C、2C、5Cで充放電試験を行い、活物質単位重量当たりの充放電容量を測定した。比較・検討に使用した値は、電池特性が安定する5サイクル目の充放電容量から算出した。なお、本発明を施していない活物質を用いて同様の電池を作成、評価し比較例とした。結果を表2に示す。この結果より、実験に用いたいずれの活物質と金属源化合物の組み合わせにおいても比較例の電池と比べて放電容量が高く、特に、充放電レートが高くなるにつれて比較例より優れた急速充放電特性が得られることが確認された。乾式混合分散の場合は、体積比が、金属:活物質=5:95vol%、及び20:80vol%となるように材料の秤量を行って電池を作製したが、ほぼ同等の優れた特性が得られた。
(表2)湿式電池の放電容量評価
Figure JPOXMLDOC01-appb-T000002
(全固体電池の作製と電池特性評価)
 次に、本発明に係る金属析出活物質を用いた全固体電池を作製し、電池特性を評価した。
全固体電池は、以下に示す工程を順に行うことにより作製した。
(a)電極材料作製工程:金属源化合物と活物質とを混合分散後、熱分解及び/又は還元により金属析出活物質を得る工程
(b)電池用ペースト作製工程:金属析出活物質とバインダー、溶媒、分散剤等を混練分散して電極材料ペーストを得る工程と、固体電解質とバインダー、溶媒、分散剤等を混練分散して固体電解質ペーストを得る工程と、集電体ペーストを得る工程
(c)印刷積層工程:リチウムイオン伝導性無機物質シートを作製し、引出電極ペースト、電極材料ペーストを印刷し、これらシートを積層し、更に保護層を設ける工程
(d)焼成工程:上記積層体を圧着、焼成する工程
(e)引出電極形成工程
(各工程の詳細)
<電極材料作製工程と電池用ペースト作製工程>
 金属源化合物と活物質を、先に定義した体積比率が50:50vol%となるように秤量して混合し、粉砕分散し、混合粉末を得た。得られた混合粉末を、タブレット成型機にて面圧力2t/cm2にて成型し、成型体を得た。更に、この成型体を所定の条件下にて熱分解を行い、表面に金属析出した活物質からなる電極材料を得た。得られた電極材料100重量部に対してバインダーとしてエチルセルロース15重量部と、溶媒としてジヒドロターピネオール65重量部、さらに微粒子ホウ素化合物粉末とを加えて、三本ロールで混練・分散して電極材料ペーストを作製した。
 固体電解質としては、メジアン径0.54μmのLi3.5Si0.50.5粉末を用いた。この粉末100重量部に、エタノール100重量部、トルエン200重量部をボールミルで加えて湿式混合し、その後ポリビニールブチラール系バインダー16重量部とフタル酸ベンジルブチル4.8重量部をさらに投入し、混合して固体電解質ペーストを調製した。
 集電体ペーストは、金属粉末と活物質粉末の真比重換算体積比が80:20volとなるように混合した粉末100重量部に対してバインダーとしてエチルセルロース15重量部と、溶媒としてジヒドロターピネオール65部とを加えて、三本ロールで混練・分散して電極材料ペーストを作製した。
<印刷積層工程>
 調整した固体電解質ペーストをドクターブレード法でPETフィルムを基材としてシート成形し、リチウムイオン伝導性無機物質シートを得た。得られたリチウムイオン伝導性無機物質シートのPETフィルムとは反対面に、電極材料ペーストと集電体ペーストをスクリーン印刷により印刷し、80~100℃で5~10分間加熱し、ペーストを乾燥し、リチウムイオン伝導性無機物質シート上に、電極材料ペーストが印刷された活物質ユニットのシートを得た。
 以下、二種類の異なる活物質種を用いて作製した活物質ユニットに関し、リチウムイオンの吸蔵・放出電位が貴である活物質ユニットを「正極ユニット」、卑である活物質ユニットを「負極ユニット」と称することにする。係る正極ユニットと負極ユニットを作製し、それぞれのPETフィルムを剥離した後、リチウムイオン伝導性無機物質を介するようにして、交互に積み重ねた。このとき、正極集電体が一の端面にのみ延出し、負極集電体が他の面にのみ延出するように、正極ユニットと負極ユニットをずらして積み重ねた。更にこれをリチウムイオン伝導性無機物質シートのみを50層重ねた保護層により挟み込み、温度80℃で圧力1000kgf/cm2で成形し、次いで切断して積層ブロックを作製した。
<焼成工程>
 得られた積層ブロックを、大気中で昇温速度200℃/時間で800℃まで昇温し、その温度に8時間保持して焼成した。焼成後は自然冷却した。こうして得られた焼成後の積層体における各リチウムイオン伝導性無機物質の厚さは7μm、正極ユニットの厚さは5μm、負極ユニットの厚さは6μmであった。また、積層ブロックの縦、横、高さはそれぞれ3mm×2.1mm×0.1mmであった。
<引出電極形成工程>
 積層体の端面に引出電極ペーストを塗布し、150℃、30分の熱硬化を行った。さらに、一対の引出電極を形成して、全固体型リチウムイオンニ次電池を得た。引出電極ペーストには、銀微粉末、エポキシ樹脂、溶剤、硬化剤からなる熱硬化型導電ペーストを使用した。
(全固体型電池の特性評価)
 作成した電池の充放電レートを0.1C、0.2C、0.5C、1C、2C、5Cで充放電試験を行い、活物質単位重量当たりの充放電容量を測定した。比較・検討に使用した値は、電池特性が安定する5サイクル目の充放電容量から算出した。なお、本発明を施していない活物質を用いて同様の電池を作成、評価し比較例とした。結果を表3に示す。
 実験で使用した全固体型電池の作製に際し、正極ユニットの作製には表1の実施例1Aの条件を用い、負極ユニットの作製には表1の実施例2Bに示される条件を用いた。
 表3に示す結果より、全固体型電池の場合でも本発明の実施例は、比較例の電池と比べて放電容量が高く、湿式電池の場合と同様に、充放電レートが高くなるにつれて比較例より優れた急速充放電特性が得られることが確認された。
(表3)全固体型電池の放電容量評価
Figure JPOXMLDOC01-appb-T000003
 以上詳述したように、本発明は、電極材料及びその電極材料を用いて製造した電池に係るものであり、内部抵抗が小さく、充放電レート特性に優れた電池の製造が可能になる。高いエネルギー効率が得られ、廃熱生成量が少なく環境負荷が小さいため、特に、瞬間的に大きな出力を必要とするパワーツールとして有効で、例えば、ハイブリッドカーなどの電気自動車用二次電池として高い利用可能性を有する。

Claims (11)

  1.  金属源化合物から熱分解及び/又は還元により生成した金属が活物質上に析出したリチウムイオン二次電池用の電極材料。
  2.  前記活物質と前記金属が酸化物を介在せずに接触する状態で、前記金属が前記活物質上に析出したことを特徴とする請求項1記載の電極材料。
  3.  前記金属源化合物が、有機金属化合物、有機金属錯体、炭酸根を含む金属化合物、金属水酸化物、金属過酸化水酸化物のいずれか一つ又はそれらの組み合わせからなる物質であることを特徴とする請求項1又は2のいずれか1項記載の電極材料。
  4.  前記金属が、ニッケル、銅、白金、パラジウム、銀、亜鉛、コバルト、バナジウム、タングステン、モリブデン、クロム、鉄のいずれか一つ又はそれらの混合物又は合金からなることを特徴とする請求項1乃至3のいずれか1項記載の電極材料。
  5.  少なくとも、請求項1乃至4のいずれか1項記載の電極材料とビヒクルを混合分散して形成された電池用活物質ペースト。
  6.  請求項5記載の電池用活物質ペーストを用いて形成された湿式又は全固体型のリチウムイオン二次電池。
  7.  少なくとも、活物質と金属源化合物を混合分散し第一の粉体を製造する工程と、前記第一の粉体を熱分解することにより、前記金属源化合物から金属を生成し、前記金属が前記活物質上に析出した電極材料を製造する工程とからなる電極材料の製造方法。
  8.  少なくとも、活物質と金属源化合物を混合分散し第一の粉体を製造する工程と、前記第一の粉体を気相還元することにより、前記金属源化合物から金属を生成し、前記金属が前記活物質上に析出した電極材料を製造する工程とからなる電極材料の製造方法。
  9.  少なくとも、活物質と金属源化合物を混合分散し第一の粉体を製造する工程と、前記第一の粉体を熱分解し第二の粉体を製造する工程と、前記第二の粉体を気相還元することにより、前記金属源化合物から金属を生成し、前記金属が前記活物質上に析出した電極材料を製造する工程とからなる電極材料の製造方法。
  10.  前記金属源化合物が、有機金属化合物、有機金属錯体、炭酸根を含む金属化合物、金属水酸化物、金属過酸化水酸化物のいずれか一つ又はそれらの組み合わせからなる物質であることを特徴とする請求項7乃至9のいずれか1項記載の電極材料の製造方法。
  11.  前記金属が、ニッケル、銅、白金、パラジウム、銀、亜鉛、コバルト、バナジウム、タングステン、モリブデン、クロム、鉄のいずれか一つ又はそれらの混合物又は合金からなることを特徴とする請求項7乃至10のいずれか1項記載の電極材料の製造方法。
PCT/JP2010/055025 2009-04-01 2010-03-24 電極材料とその製造方法、及び、リチウムイオン二次電池 WO2010113710A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/009,921 US20120064406A1 (en) 2009-04-01 2007-03-24 Electrode material, method for producing same, and lithium ion secondary battery
CN201080014570.6A CN102388486B (zh) 2009-04-01 2010-03-24 电极材料及其制造方法、以及锂离子二次电池
KR1020117025923A KR101718559B1 (ko) 2009-04-01 2010-03-24 전극 재료와 그 제조 방법 및 리튬 이온 2차 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-089420 2009-04-01
JP2009089420A JP4782856B2 (ja) 2009-04-01 2009-04-01 電極材料とその製造方法、及び、リチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2010113710A1 true WO2010113710A1 (ja) 2010-10-07

Family

ID=42828005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055025 WO2010113710A1 (ja) 2009-04-01 2010-03-24 電極材料とその製造方法、及び、リチウムイオン二次電池

Country Status (5)

Country Link
US (1) US20120064406A1 (ja)
JP (1) JP4782856B2 (ja)
KR (1) KR101718559B1 (ja)
CN (1) CN102388486B (ja)
WO (1) WO2010113710A1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5485674B2 (ja) * 2009-12-11 2014-05-07 三洋電機株式会社 非水電解質二次電池
WO2013035525A1 (ja) * 2011-09-09 2013-03-14 株式会社 村田製作所 全固体電池用積層成形体、全固体電池およびその製造方法
CN102593440A (zh) * 2011-12-01 2012-07-18 湖北中能锂电科技有限公司 锂电池的负极材料及其生产方法
US9234112B2 (en) * 2013-06-05 2016-01-12 Korea Institute Of Machinery & Materials Metal precursor powder, method of manufacturing conductive metal layer or pattern, and device including the same
JP6090085B2 (ja) * 2013-09-27 2017-03-08 トヨタ自動車株式会社 正極活物質及び正極活物質の製造方法並びにリチウム電池
CN103730636B (zh) * 2013-12-20 2015-12-09 广西科技大学 制备高电位LiNi0.5Mn1.5O4锂离子电池正极片方法
CN106104862B (zh) * 2014-03-13 2020-04-28 株式会社半导体能源研究所 电极、蓄电装置、电子设备、以及电极的制造方法
JP6681603B2 (ja) * 2015-05-26 2020-04-15 パナソニックIpマネジメント株式会社 全固体リチウムイオン二次電池、および、その製造方法
CN106887581B (zh) * 2015-12-16 2020-03-10 中国科学院大连化学物理研究所 一种锌电极材料及其制备和应用
US9640497B1 (en) * 2016-06-30 2017-05-02 Semiconductor Components Industries, Llc Semiconductor backmetal (BM) and over pad metallization (OPM) structures and related methods
KR102323397B1 (ko) 2016-07-05 2021-11-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질, 양극 활물질의 제작 방법, 및 이차 전지
CN106099099A (zh) * 2016-08-26 2016-11-09 新乡天力锂能股份有限公司 一种镍钴锰酸锂薄膜材料的制备方法
CN116387602A (zh) 2016-10-12 2023-07-04 株式会社半导体能源研究所 正极活性物质粒子以及正极活性物质粒子的制造方法
KR101926140B1 (ko) * 2016-11-29 2018-12-07 전자부품연구원 전도체 패턴을 형성하기 위한 복합 소재 및 이의 제조 방법
WO2018139580A1 (ja) 2017-01-30 2018-08-02 公立大学法人首都大学東京 電極用組成物、電極、その製造方法及び電池
KR102606545B1 (ko) 2017-05-12 2023-11-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질 입자
CN115995596A (zh) 2017-05-19 2023-04-21 株式会社半导体能源研究所 锂离子二次电池
EP3783707A1 (en) 2017-06-26 2021-02-24 Semiconductor Energy Laboratory Co., Ltd. Lithium ion secondary battery
KR102246632B1 (ko) * 2017-07-11 2021-04-30 주식회사 엘지화학 리튬 금속을 음극으로 하는 이차전지의 제조방법
JP6907805B2 (ja) * 2017-08-17 2021-07-21 セイコーエプソン株式会社 複合体、リチウム電池、複合体の製造方法、リチウム電池の製造方法、電子機器
JP7310118B2 (ja) * 2018-10-29 2023-07-19 セイコーエプソン株式会社 正極材の製造方法
JP6726780B1 (ja) * 2019-03-04 2020-07-22 ナミックス株式会社 銅箔並びにそれを含むリチウムイオン電池の負極集電体及びその製造方法
CN113053677B (zh) * 2019-12-26 2023-12-01 佳能株式会社 电源单元和包括电源单元的放射线摄像装置
CN111916693B (zh) * 2020-06-28 2022-05-20 南昌大学 一种制备有机物包覆高镍正极材料的方法
CN112186150B (zh) * 2020-09-16 2022-03-04 合肥国轩高科动力能源有限公司 一种碳包覆硅/金属/碳纳米管负极复合材料及制备方法
CN114057402B (zh) * 2021-11-15 2022-10-11 海南大学 一种活性物质玻璃粉末的制备方法、钒钼玻璃材料及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185753A (ja) * 1997-12-18 1999-07-09 Fuji Photo Film Co Ltd 非水電解質リチウム二次電池
JP2003157850A (ja) * 2001-11-22 2003-05-30 Kyushu Univ 2次電池用正極材料、および2次電池
WO2006123601A1 (ja) * 2005-05-16 2006-11-23 Mitsubishi Chemical Corporation 非水電解質二次電池、その負極、及びその材料
JP2008277120A (ja) * 2007-04-27 2008-11-13 Tdk Corp 電極用複合粒子及びその製造方法、並びに、電気化学デバイス

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11250896A (ja) 1998-02-27 1999-09-17 Sii Micro Parts:Kk 化学電池
JPH11297311A (ja) 1998-04-15 1999-10-29 Kao Corp 非水系二次電池用負極材料
JP3852579B2 (ja) 2001-12-26 2006-11-29 信越化学工業株式会社 金属元素ドープ酸化珪素粉末の製造方法及び製造装置
JP2006092808A (ja) * 2004-09-21 2006-04-06 Nissan Motor Co Ltd 電池構造体
JP5098150B2 (ja) * 2004-12-07 2012-12-12 日産自動車株式会社 バイポーラ電池およびその製造方法
JP4625926B2 (ja) 2005-03-18 2011-02-02 独立行政法人産業技術総合研究所 リチウムイオン二次電池用電極材料及びその製造方法並びに二次電池
CN101171710A (zh) * 2005-05-16 2008-04-30 三菱化学株式会社 非水电解质二次电池、其负极及负极材料
WO2007055007A1 (ja) * 2005-11-10 2007-05-18 Pionics Co., Ltd. リチウム二次電池用の負極活物質粒子、それを用いた負極及びそれらの製造方法
JP2008112594A (ja) 2006-10-30 2008-05-15 Hitachi Vehicle Energy Ltd リチウム二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185753A (ja) * 1997-12-18 1999-07-09 Fuji Photo Film Co Ltd 非水電解質リチウム二次電池
JP2003157850A (ja) * 2001-11-22 2003-05-30 Kyushu Univ 2次電池用正極材料、および2次電池
WO2006123601A1 (ja) * 2005-05-16 2006-11-23 Mitsubishi Chemical Corporation 非水電解質二次電池、その負極、及びその材料
JP2008277120A (ja) * 2007-04-27 2008-11-13 Tdk Corp 電極用複合粒子及びその製造方法、並びに、電気化学デバイス

Also Published As

Publication number Publication date
CN102388486B (zh) 2015-09-30
CN102388486A (zh) 2012-03-21
JP2010244727A (ja) 2010-10-28
KR101718559B1 (ko) 2017-03-21
US20120064406A1 (en) 2012-03-15
JP4782856B2 (ja) 2011-09-28
KR20120005008A (ko) 2012-01-13

Similar Documents

Publication Publication Date Title
JP4782856B2 (ja) 電極材料とその製造方法、及び、リチウムイオン二次電池
JP7237167B2 (ja) シリコン複合物負極材料、その調製方法及びリチウムイオン電池
Wu et al. A LiF Nanoparticle‐Modified Graphene Electrode for High‐Power and High‐Energy Lithium Ion Batteries
CN111864207B (zh) 全固体电池
CN115377419A (zh) 骨架形成剂及使用该骨架形成剂的负极
JP5838934B2 (ja) 非水電解質二次電池用正極活物質の製造方法
JP2020504433A (ja) リチウムイオン電池に使用するためのグラフェン/三元系材料複合体を調製する方法およびその製造物
JP2011076820A (ja) リチウム二次電池及びリチウム二次電池用正極
JP2017204374A (ja) 酸化珪素系粉末負極材
JP5756781B2 (ja) シリコン複合体及びその製造方法と負極活物質及び非水系二次電池
JP6288257B2 (ja) ナノシリコン材料とその製造方法及び二次電池の負極
JP2013054958A (ja) 非水電解質二次電池用負極材、リチウムイオン二次電池及び電気化学キャパシタ
JP2016162733A (ja) 電極体の製造方法
KR20140010143A (ko) 이중 탄소 코팅을 갖는 캐소드 물질 및 이의 제조 방법
WO2014196615A1 (ja) リチウムイオン二次電池用正極材料及びその製造方法
JP2016058129A (ja) リチウムイオン電池及びリチウムイオン電池用セパレータ
CN106458605B (zh) 硅材料和二次电池的负极
JP6476019B2 (ja) 炭素−金属複合体
KR20170084307A (ko) 전기 디바이스
CN110462912B (zh) 全固体电池
JP2016154140A (ja) リチウム二次電池用リチウム複合酸化物焼結板の製造方法
JP6622242B2 (ja) 電極構造体、電極、二次電池、組電池、電池パック、及び車両
EP2432051A1 (en) Negative-electrode material and lithium secondary battery using same
CN111933917A (zh) 一种含硅材料及其制备方法和应用
JP5969554B2 (ja) 二次電池用正極活物質及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080014570.6

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117025923

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13262199

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10758484

Country of ref document: EP

Kind code of ref document: A1