CN114057402B - 一种活性物质玻璃粉末的制备方法、钒钼玻璃材料及其应用 - Google Patents

一种活性物质玻璃粉末的制备方法、钒钼玻璃材料及其应用 Download PDF

Info

Publication number
CN114057402B
CN114057402B CN202111369440.0A CN202111369440A CN114057402B CN 114057402 B CN114057402 B CN 114057402B CN 202111369440 A CN202111369440 A CN 202111369440A CN 114057402 B CN114057402 B CN 114057402B
Authority
CN
China
Prior art keywords
vanadium
glass
glass powder
molybdenum
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111369440.0A
Other languages
English (en)
Other versions
CN114057402A (zh
Inventor
李长久
孔凡厚
王丹
陈泽霖
于晓龙
饶寅朝
张瑞翔
梁雪
易兰林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan University
Original Assignee
Hainan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan University filed Critical Hainan University
Priority to CN202111369440.0A priority Critical patent/CN114057402B/zh
Publication of CN114057402A publication Critical patent/CN114057402A/zh
Application granted granted Critical
Publication of CN114057402B publication Critical patent/CN114057402B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明提供一种活性物质玻璃粉末的制备方法、钒钼玻璃材料及其应用,方法包括:将含钒物料和强还原剂混合,在惰性气氛中升温至500~800℃,保温100~300min,再继续升温至1000~2000℃,保温10~30min,冷却成型后,经退火及热处理析晶,研磨,得到活性物质玻璃粉末;含钒物料选自V、V2O5、V2O4、V2O3、V6O13、VC、NH4VO3、VN和S3V2中一种或多种;强还原剂选自MoB、Mo2B、MoP、MoSi2、MoB2、MoTe2和MoSe2中一种或多种。粉末再与粘结剂和导电填料制得钒钼玻璃材料作为锂离子电池正极材料,其比容量大且首圈损失率小、倍率性能优越、离子扩散系数大。

Description

一种活性物质玻璃粉末的制备方法、钒钼玻璃材料及其应用
技术领域
本发明属于玻璃材料技术领域,尤其涉及一种活性物质玻璃粉末的制备方法、钒钼玻璃材料及其应用。
背景技术
锂离子电池是性能卓越的新一代绿色高能电池,已成为高新技术发展的重点之一。锂离子电池具有以下特点:高电压、高容量、低消耗、无记忆效应、无公害、体积小、内阻小、自放电少、循环次数多。因其上述特点,锂离子电池已应用到移动电话、笔记本电脑、摄像机、数码相机等众多民用及军事领域。
锂离子电池的主要构成材料包括电解液、隔离材料、正负极材料等。其中,锂离子电池正极材料主要是钴、锰、镍等及其复合氧化物。商业应用已经证明这些材料具有高的电位及稳定性,但其比容量较低(205mAh/g)。如,作为最早商用的正极材料,钴酸锂(LiCoO2)的理论比容量为273mAh/g,但是实际比容量只有约140mAh/g,同时还存在价格高、毒性大的缺陷;虽然镍酸锂(LiNiO2)的比容量可达到150mAh/g,略高于LiCoO2,但在LiNiO2的合成过程中,容易发生锂的缺失,合成满足标准化学组分的LiNiO2较困难;与LiCoO2相比,锰酸锂(LiMnO4)价格低廉,但理论比容量较低(148mAh/g),且循环性能较差;磷酸铁锂(LiFeO4)的理论比容量可达到170mAh/g,但导电性较差,能量密度低。而负极石墨理论比容量372mAh/g,实际比容量达360mAh/g。由此可见,正极材料限制锂离子电池比容量。这些因素制约着锂离子电池性能的提升,迫切需要研究和开发出新型的高性能正极材料以满足储能设备的应用。高能量密度阴极材料的搜索空间扩大到阳离子无序的锂过渡金属氧化物。
在锂离子电池中,过渡族金属化合物材料反常的超出理论极限的额外容量现象引发了人们的广泛关注。无定形材料无晶界没有固定的结构,锂离子可以存储在各个位置,例如阳离子和阴离子的空位,空隙,簇隙或间隙位置。由于缺乏不可逆的转变和锂的俘获,以及锂离子可容易进入的大量空位。固溶体能有效解决溶解度大问题;固溶体根据其微观结构和性能来灵活调整其成分;玻璃在热处理时可以部分结晶。
公开号CN111668468A提供一种V2O5-LiBO2-石墨烯玻璃正极材料及其制备方法和应用,将V2O5和LiBO2混匀,升温,保温,淬火;再次保温,冷却后球磨,得到粒径D50小于10μm的粉体;将粉体和腐蚀剂混合,造孔,再和片状石墨烯分散液超声混合得到前驱体;Ar氛围下,将前驱体退火,保温,得到玻璃正极材料。该方法通过将片状石墨烯引入到V2O5-LiBO2中,作为强导电剂,采用腐蚀剂进行腐蚀造孔,再经过热处理和超声,使得片状石墨烯组装镶嵌填充在V2O5-LiBO2玻璃微粒中。
公开号CN111484247B提供了一种玻璃正极材料及其制备方法和应用,玻璃正极材料包括质量比为6~10:1的玻璃粉末和粘结剂;所述玻璃粉末包括质量比为10~20:0.5~5:0.1~4的V2O5、Li3PO4和CaC2。本发明采用CaC2作为强还原剂和导电剂,Li3PO4引入锂源和磷源,使得玻璃正极材料具有较好的导电性。另外,组装的锂离子电池的可逆比容量高、电池循环稳定性强。实验结果表明:正极V4+/V为58~62%;电池首次放电容量为285~292mAh/g(0.1C);0.1C下100次循环后放电容量为274~281mAh/g(0.1C);循环效率为95%以上。
半导体氧化物玻璃被认为是一种具有极大潜在应用前景的锂离子电池电极材料。现有专利已经公开复合V2O5玻璃用于锂离子电池正极材料活性物质,如V2O5-Li3PO4-CaC2(CN111484247B)、五氧化二钒-硼酸锂-石墨烯(CN111668468A),该类正极材料组装的锂离子电池的能提高电子及离子传输速率且抑制了充放电过程的体积膨胀,但存在电导率低、电池库伦效率低、比容量小且首圈损失率大等问题。
发明内容
有鉴于此,本发明的目的在于提供一种活性物质玻璃粉末的制备方法、钒钼玻璃材料及其应用,该方法制备的粉末作为锂离子电池的正极材料具有较高的首次放电容量。
本发明提供了一种活性物质玻璃粉末的制备方法,包括以下步骤:
将含钒物料和强还原剂混合,在惰性气氛中升温至500℃~800℃,保温100~300min,再继续升温至1000℃~2000℃,保温10~30min,冷却成型后,经退火及热处理析晶,研磨,得到活性物质玻璃粉末;
所述含钒物料选自V、V2O5、V2O4、V2O3、V6O13、VC、NH4VO3、VN和S3V2中的一种或多种;
所述强还原剂选自MoB、Mo2B、MoP、MoSi2、MoB2、MoTe2和MoSe2中一种或多种。
在本发明中,钒(Vanadium)是一种金属元素,元素符号为V,银灰色金属,在元素周期表中属VB族,原子序数23,原子量50.9414,体心立方晶体,常见化合价为+5、+4、+3、+2。钒的熔点很高,为难熔金属,有延展性,质坚硬,无磁性。钒具有耐盐酸和硫酸的本领,并且在耐气、耐盐、耐水腐蚀的性能要比大多数不锈钢好。
在本发明中,钼位于周期表第5周期、第VIB族,为一过渡金属元素,钼原子序数42,原子量95.95,原子中电子排布为:1s22s22p63s23p64s23d104p64d55s1。钼的热膨胀系数很低,钼的热传导率较高,钼电阻率较低。钼在空气中加热,颜色开始由白(色)转暗灰色;温升至520℃,钼开始被缓慢氧化,生成Mo2O3;温升至600℃以上,钼迅速被氧化成MoO3。钼在水蒸气中加热至700~800℃便开始生成MoO2,将它进一步加热,二氧化钼被继续氧化成三氧化钼。
在本发明中,所述含钒物料和强还原剂的质量比为(30~80):(20~70)。具体实施例中,所述含钒物料为V2O5、VN和NH4VO3中的一种或多种;所述强还原剂选自MoB、MoP、MoSi2、MoTe2和MoSe2中一种或多种。所述含钒物料和强还原剂的质量比为40:60;或30:70;或45:55;或50:50。
在本发明中,所述惰性气氛选自N2气或Ar气。
在本发明中,退火的温度为200~300℃,退火的时间为10~100min;
在本发明中,热处理的温度为250~450℃,热处理的时间为100~2000min。
本发明优选以5~15℃/min的速率升温至500~800℃;本发明优选以5~15℃/min的速率升温至1000~2000℃。
保温结束后,冷却成型;本发明优选在液态锡表面冷却成型;玻璃液在锡液面上铺开、摊平、形成表面平整、硬化、冷却后被引入过渡辊台。
本发明采用球磨进行研磨;活性物质玻璃粉末的粒度优选小于等于250目。
本发明提供了一种钒钼玻璃材料,包括质量比为(6~10):(1~3):(1~2)的活性物质玻璃粉末、粘结剂和导电填料;
所述活性物质玻璃粉末为上述技术方案所述制备方法制备的活性物质玻璃粉末。
本发明提供的玻璃正极材料以玻璃粉末为活性物质。玻璃的分子排列是无规则的,其分子在空间中具有统计上的均匀性。在理想状态下,均质玻璃的物理、化学性质(如折射率、硬度、弹性模量、热膨胀系数、导热率、电导率等)在各方向都是相同的。玻璃态物质一般是由熔融体快速冷却而得到,从熔融态向玻璃态转变时,冷却过程中黏度急剧增大,质点来不及做有规则排列而形成晶体,没有释出结晶潜热,因此,玻璃态物质比结晶态物质含有较高的内能,其能量介于熔融态和结晶态之间,属于亚稳状态。从力学观点看,玻璃是一种不稳定的高能状态,比如存在低能量状态转化的趋势,即有析晶倾向,所以,玻璃是一种亚稳态固体材料。并且,玻璃态物质从熔融态到固体状态的过程是渐变的,其物理、化学性质的变化也是连续的和渐变的。这与熔体的结晶过程明显不同,结晶过程必然出现新相,在结晶温度点附近,许多性质会发生突变。而玻璃态物质从熔融状态到固体状态是在较宽温度范围内完成的,随着温度逐渐降低,玻璃熔体黏度逐渐增大,最后形成固态玻璃,但是过程中没有新相形成。相反玻璃加热变为熔体的过程也是渐变的。
在本发明中,所述钒钼玻璃材料包括的活性物质玻璃粉末、粘结剂和导电填料质量比为(6~10):(1~3):(1~2),优选为(7~8):(1~2):(1~2);在本发明具体实施例中,所述活性物质玻璃粉末、粘结剂和导电填料质量比为8:1:1。
在本发明中,所述粘结剂优选自聚偏氟乙烯;所述导电填料选自导电炭黑。
本发明将活性物质玻璃粉末、粘结剂和导电填料的混合物与溶剂混合,得到浆料,涂布,干燥,得到钒钼玻璃材料。
在本发明中,所述溶剂优选自N-甲基吡咯烷酮;所述溶剂占所述玻璃粉末质量的10~25%。本发明优选涂布在集流体铝箔上;涂布的厚度为60~120μm。
本发明提供的制备方法简单,易于实施,有利于推广应用。
本发明提供了一种活性物质玻璃粉末的制备方法,包括以下步骤:将含钒物料和强还原剂混合,在惰性气氛中升温至500℃~800℃,保温100~300min,再继续升温至1000℃~2000℃,保温10~30min,冷却成型后,经退火及热处理析晶,研磨,得到活性物质玻璃粉末;所述含钒物料选自V、V2O5、V2O4、V2O3、V6O13、VC、NH4VO3、VN和S3V2中的一种或多种;所述强还原剂选自BMo、Mo2B、MoP、MoSi2、B2Mo、MoTe2和MoSe2中一种或多种。本发明采用特定种类的含钒物料和强还原剂在上述工艺下制得活性物质玻璃粉末,粉末再与粘结剂和导电填料制备的钒钼玻璃材料作为锂离子电池的正极材料,其比容量大且首圈损失率小、倍率性能优越、离子扩散系数大;并且该玻璃正极材料制备工艺简单,成本低,易于实施,有利于产业化推广应用。离子扩散系数(cm2/S):10-9-10-10~10-10-10-11;首次放电比容量(0.1C)296~376mAh/g;首次循环库伦效率92~95%;电池100个循环放电比容量290~326.4mAh/g,循环效率96~98%。
附图说明
图1为本发明实施例3制备的玻璃粉末的XRD谱图;
图2为本发明实施例5制备玻璃粉末的SEM电子扫描显微镜图。
具体实施方式
为了进一步说明本发明,下面结合实施例对本发明提供的一种活性物质玻璃粉末的制备方法、钒钼玻璃材料及其应用进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
实施例1
以重量份计,将40份V2O5、60份MoB混合,搅拌研磨均匀,所得混合原料转移至氧化铝坩埚中。氩气保护状态下管式加热炉中熔化,以5℃/min的升温速率升温至700℃,保温100min;再以15℃/min的升温速率升高温度至1000℃,保温30min;迅速将混合液倒入液态锡表面使玻璃成型。玻璃液在锡液面上铺开、摊平、形成上下表面平整、硬化、冷却后被引上过渡辊台。辊台的辊子转动,把玻璃带拉出锡槽进入退火炉,炉体温度200℃,经退火100min,然后加热至300℃,时间为1000min,自然冷却到室温,得到玻璃。
破碎玻璃,使用球磨机充分研磨,过筛(250目)得到玻璃粉末。
将质量比为8:1:1的玻璃粉末、粘结剂(聚偏氟乙烯)、导电炭黑(粒径分布1~10μm)粉体混合,然后滴入适量溶剂N-甲基吡咯烷酮(占玻璃粉末质量的20%)球磨,所得的浆料涂在铝箔上烘干,涂覆的厚度120μm,然后以该铝箔为正极,1mol/L LiPF6为碳酸乙烯酯/碳酸二甲酯(体积比1:1)电解液,Celgard 2025为隔膜,锂片为对电极,在手套箱中组装成CR2025型硬币电池。在电化学工作站上测试该对比样锂离子电池在1.5-4.2V电压范围内不同电流密度下的充放电性能。
实施例2~4
按照实施例1的工艺流程,不用原料种类和用量见表1:
表1实施例1~5制备玻璃正极材料采用的原料的种类及用量
实施例 物料A 份数 强还原剂 份数
2 VN 30 MoP 70
3 NH<sub>4</sub>VO<sub>3</sub> 40 MoSi<sub>2</sub> 60
4 VN 45 MoTe<sub>2</sub> 55
5 NH<sub>4</sub>VO<sub>3</sub> 50 MoSe<sub>2</sub> 50
图1为本发明实施例3制备的玻璃粉末的XRD谱图;
图2为本发明实施例5制备玻璃粉末的SEM电子扫描显微镜图。
对比例
将12.74g V2O5、3.474g Li3PO4、0.8g CaC2混合,搅拌研磨均匀,所得混合原料转移至氧化铝坩埚中,氩气保护状态下管式加热炉中熔化,以5℃/min的升温速率升温至700℃,保温30min;以15℃/min的升温速率升高温度至1000℃,保温30min;在氩气保护状态下室温猝火即可。最后,无需添加导电剂,玻璃粉末与粘结剂混合比例8:1,然后滴入溶剂N-甲基吡咯烷酮球磨,所得的浆料涂在铜箔上烘干,最后组装锂离子电池并对电池电化学性能进行测试表征。实验结果表明:电池首次放电比容量为292mAh/g(0.1C);0.1C下100次循环后放电比容量为277.4mAh/g(0.1C);循环效率为95%。
本发明对实施例和对比例制备的玻璃正极组装的电池的性能进行测试,结果见表2:
表2实施例和对比例提供的电池的性能测试结果
Figure BDA0003354889160000071
由以上实施例可知,本发明采用特定种类的含钒物料和强还原剂在上述工艺下制得活性物质玻璃粉末,粉末再与粘结剂和导电填料制备的钒钼玻璃材料作为锂离子电池的正极材料,其比容量大且首圈损失率小、倍率性能优越、离子扩散系数大;并且该玻璃正极材料制备工艺简单,成本低,易于实施,有利于产业化推广应用。离子扩散系数(cm2/S):10-9-10-10~10-10-10-11;首次放电比容量(0.1C)296~376mAh/g;首次循环库伦效率92~95%;电池100个循环放电比容量290~326.4mAh/g,循环效率96~98%。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种活性物质玻璃粉末的制备方法,包括以下步骤:
将含钒物料和强还原剂混合,在惰性气氛中升温至500℃~800℃,保温100~300min,再继续升温至1000℃~2000℃,保温10~30min,冷却成型后,经退火及热处理析晶,研磨,得到活性物质玻璃粉末;
所述含钒物料和强还原剂的质量比为(30~80):(20~70);
所述含钒物料选自V、V2O5、V2O4、V2O3、V6O13、VC、NH4VO3、VN和V2S3中的一种或多种;
所述强还原剂选自MoB、Mo2B、MoP、MoSi2、MoB2、MoTe2和MoSe2中一种或多种。
2.根据权利要求1所述的制备方法,其特征在于,所述退火的温度为200~300℃,退火的时间为10~100min。
3.根据权利要求1所述的制备方法,其特征在于,所述热处理的温度为250~450℃,热处理的时间为100~2000min。
4.根据权利要求1所述的制备方法,其特征在于,以5~15℃/min速率升温至500℃~800℃;
以5~15℃/min速率升温至1000℃~2000℃。
5.一种钒钼玻璃材料,包括质量比为(6~10):(1~3):(1~2)的活性物质玻璃粉末、粘结剂和导电填料;
所述活性物质玻璃粉末为权利要求1~4任一项所述制备方法制备的活性物质玻璃粉末。
6.一种锂离子电池,其特征在于,包括正极材料;
所述正极材料为权利要求5所述钒钼玻璃材料。
CN202111369440.0A 2021-11-15 2021-11-15 一种活性物质玻璃粉末的制备方法、钒钼玻璃材料及其应用 Active CN114057402B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111369440.0A CN114057402B (zh) 2021-11-15 2021-11-15 一种活性物质玻璃粉末的制备方法、钒钼玻璃材料及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111369440.0A CN114057402B (zh) 2021-11-15 2021-11-15 一种活性物质玻璃粉末的制备方法、钒钼玻璃材料及其应用

Publications (2)

Publication Number Publication Date
CN114057402A CN114057402A (zh) 2022-02-18
CN114057402B true CN114057402B (zh) 2022-10-11

Family

ID=80277903

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111369440.0A Active CN114057402B (zh) 2021-11-15 2021-11-15 一种活性物质玻璃粉末的制备方法、钒钼玻璃材料及其应用

Country Status (1)

Country Link
CN (1) CN114057402B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2336398A4 (en) * 2008-09-29 2014-01-08 Hitachi Metals Ltd MONOCRYSTALLINE SCINTILLATOR MATERIAL, MANUFACTURING METHOD THEREOF, RADIATION DETECTOR, AND PET SYSTEM
US20120064406A1 (en) * 2009-04-01 2012-03-15 Namics Corporation Electrode material, method for producing same, and lithium ion secondary battery
CN104248949A (zh) * 2013-06-27 2014-12-31 中国科学院大连化学物理研究所 一种钼钒复合氧化物材料及其制备方法
CN107746184B (zh) * 2017-10-20 2020-11-24 苏州晶银新材料股份有限公司 一种玻璃粉组合物及含有其的导电银浆和制备方法
KR102590573B1 (ko) * 2018-01-25 2023-10-18 한국전기연구원 탄소재 표면에 자기 결합된 복합체 코팅을 포함하는 음극 활물질, 그의 제조 방법 및 이러한 음극 활물질을 구비한 비수계 리튬이차전지 및 그의 제조 방법
CN110854477A (zh) * 2019-11-22 2020-02-28 中国科学院物理研究所 混合活性金属离子/金属-氧电池体系、其构建方法和应用
CN111484247B (zh) * 2020-04-16 2021-02-26 海南大学 一种玻璃正极材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Order in Chaos:Effect of Boron Anomaly and V-Mo Coupling Multi-electron Reactions on Lithiation Process of Amorphous Cathodes;Fanhou Kong 等;《SSRN》;20211211;第1-20页 *

Also Published As

Publication number Publication date
CN114057402A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
CN102958835B (zh) 具有低氧含量的亚微米级的硅粉末
CN101752555B (zh) 一种锂离子电池正极材料磷酸铁锂的制备方法
CN106784770A (zh) 高镁含量的锂镁合金为负极的锂硫二次电池
CN109244473A (zh) 一种锂合金带材及其制备方法
CN111261833B (zh) 自支撑金属锂负极及其制备和应用
CN114665058A (zh) 一种锂离子电池正极材料磷酸锰铁锂的制备方法
CN111484247B (zh) 一种玻璃正极材料及其制备方法和应用
US6972134B2 (en) Method of preparing positive active material for rechargeable lithium batteries
CN106025182A (zh) 一种钛铬掺杂氟化铁-碳纳米复合正极材料及其制备方法和应用
CN107845791A (zh) 一种双层沥青碳包覆磷酸铁锂正极材料的制备方法
CN114171729A (zh) 一种石墨烯基磷酸铁锂正极材料的制备方法
CN112993226A (zh) 一种氧化物玻璃正极材料、其制备方法及应用
CN114057402B (zh) 一种活性物质玻璃粉末的制备方法、钒钼玻璃材料及其应用
CN114204006B (zh) 电池负极活性材料及其制备方法、电池负极以及二次电池
CN113603141B (zh) 一种复合正极材料、制备方法及其应用
WO2023056633A1 (zh) 一种电池层状正极材料及其制备方法和应用
CN114044631B (zh) 一种活性物质玻璃粉末的制备方法及其应用
CN113104898B (zh) Li2Fe3(MoO4)4在锂离子电池负极中的应用
CN113104891B (zh) K2Mn2(MoO4)3在锂离子电池负极中的应用
CN114678497A (zh) 一种掺杂改性钠离子电池正极材料及其制备方法
CN114057401B (zh) 一种硒化物玻璃材料及其制备方法和应用
CN113104899A (zh) K2Fe2(MoO4)3在锂离子电池负极中的应用
CN113013402A (zh) 一种玻璃正极材料、其制备方法及应用
CN109148862A (zh) 一种Zn-Co-O/C锂离子电池负极材料的制备及其应用
CN114583137B (zh) 一种在碳表面进行硫掺杂磷修饰的方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant