WO2010101016A1 - 炭化珪素半導体装置の製造方法 - Google Patents

炭化珪素半導体装置の製造方法 Download PDF

Info

Publication number
WO2010101016A1
WO2010101016A1 PCT/JP2010/052153 JP2010052153W WO2010101016A1 WO 2010101016 A1 WO2010101016 A1 WO 2010101016A1 JP 2010052153 W JP2010052153 W JP 2010052153W WO 2010101016 A1 WO2010101016 A1 WO 2010101016A1
Authority
WO
WIPO (PCT)
Prior art keywords
epitaxial layer
epitaxial
layer
manufacturing
silicon carbide
Prior art date
Application number
PCT/JP2010/052153
Other languages
English (en)
French (fr)
Inventor
健一 浜野
健一 大塚
信之 冨田
政良 多留谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2011502705A priority Critical patent/JP5393772B2/ja
Priority to CN201080010581.7A priority patent/CN102341893B/zh
Priority to DE112010000953.8T priority patent/DE112010000953B4/de
Priority to US13/148,537 priority patent/US8569106B2/en
Publication of WO2010101016A1 publication Critical patent/WO2010101016A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02447Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/6606Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • H01L29/7828Vertical transistors without inversion channel, e.g. vertical ACCUFETs, normally-on vertical MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT

Definitions

  • the present invention relates to a method of manufacturing a silicon carbide (hereinafter referred to as “SiC”) semiconductor device.
  • SiC silicon carbide
  • step flow growth by inclining the wafer, the reactive species attached to the crystal surface diffuse on the terrace and are sequentially taken in from the reactive species that have reached the step, and a flat surface morphology is obtained.
  • the wafer is inclined from the (0001) plane of the substrate toward the [11-20] direction. The above inclination angle is referred to as “off angle”, and so far, a general off angle is 8 degrees for 4H—SiC substrates and 3.5 degrees for 6H—SiC.
  • Patent Document 1 epitaxial growth is performed on a 4H—SiC substrate having an off angle of 8 degrees in the [11-20] direction from the (0001) plane of the substrate, and further on the epitaxial layer generated thereby. It has been proposed to reduce the density of Basal Plane dislocations inherited from the SiC substrate by increasing the growth temperature and performing epitaxial growth.
  • the terrace width increases, and the reaction species cannot reach the step and remain on the terrace to become a nucleus.
  • the probability of two-dimensional nuclear growth starting from that nucleus increases. To do.
  • the migration length of the reactive species on the terrace is shortened, so that crystal defects due to poor migration of the reactive species on the terrace surface are likely to occur.
  • the terrace width greatly increases with respect to the migration length of the reactive species as the off angle decreases. Therefore, the reactive species stay on the terrace and form nuclei easily, and the probability of occurrence of crystal defects starting from the nuclei increases. In particular, these crystal defects are more likely to occur near the interface between the substrate in the initial stage of growth and the epitaxial layer formed thereon than during the growth.
  • an effective method is to increase the growth temperature and increase the migration length of the reactive species.
  • the present invention has been made to solve the above-mentioned problems newly recognized in an SiC substrate having an off angle of 5 degrees or less, and is caused by a bunching step and a migration failure.
  • the main object of the present invention is to obtain a method for manufacturing a silicon carbide semiconductor device that includes an epitaxial layer with few crystal defects or that can widen the process margin (also referred to as a process window) of the epitaxial layer.
  • a method of manufacturing a silicon carbide semiconductor device includes a step of growing a first epitaxial layer on a main surface of a silicon carbide semiconductor substrate having an off angle, and an upper surface of the first epitaxial layer. And a step of growing the second epitaxial layer in contact with the upper surface of the first epitaxial layer at a growth temperature lower than the growth temperature of the first epitaxial layer.
  • the subject matter of the present invention it is possible to generate an epitaxial film on a SiC substrate having an off angle while suppressing the occurrence of a bunching step and having few crystal defects caused by a defective migration of reactive species. . That is, the above-described crystal defects are suppressed by epitaxially growing the first epitaxial layer at a high temperature, and the height of the bunching step is increased by growing the second epitaxial layer at a temperature lower than the growth temperature of the first epitaxial layer. To reduce. Thereby, both the height of the bunching step and the crystal defect density starting from the migration failure can be reduced.
  • FIG. 1 is a longitudinal sectional view showing a structure of a vertical n-channel SiC-MOSFET as an example of a semiconductor element structure of an SiC semiconductor device manufactured by the method of manufacturing an SiC semiconductor device according to the first embodiment.
  • FIG. 6 is a longitudinal sectional view showing a method for manufacturing a vertical n-channel SiC-MOSFET according to the present embodiment.
  • FIG. 6 is a longitudinal sectional view showing a method for manufacturing a vertical n-channel SiC-MOSFET according to the present embodiment.
  • FIG. 6 is a longitudinal sectional view showing a method for manufacturing a vertical n-channel SiC-MOSFET according to the present embodiment.
  • FIG. 6 is a longitudinal sectional view showing a method for manufacturing a vertical n-channel SiC-MOSFET according to the present embodiment.
  • FIG. 6 is a longitudinal sectional view showing a method for manufacturing a vertical n-channel SiC-MOSFET according to the present embodiment.
  • FIG. 6 is a longitudinal sectional view showing a method for manufacturing a vertical n-channel SiC-MOSFET according to the present embodiment. It is a longitudinal cross-sectional view showing a method for manufacturing a vertical n-channel SiC-MOSFET according to the present embodiment.
  • FIG. 6 is a longitudinal sectional view showing a method for manufacturing a vertical n-channel SiC-MOSFET according to the present embodiment.
  • FIG. 6 is a longitudinal sectional view showing a method for manufacturing a vertical n-channel SiC-MOSFET according to the present embodiment.
  • FIG. 1 It is the figure showing the temperature profile in a reaction furnace until producing the 1st drift layer and 2nd drift layer which were shown by FIG. It is a figure which shows the crystal defect observed from the migration defect observed. It is a figure which shows the crystal defect observed from the migration defect observed. It is a figure which shows the crystal defect observed from the migration defect observed. It is the figure showing the temperature profile in a reaction furnace until producing the 1st drift layer and 2nd drift layer which were shown by FIG. It is a longitudinal cross-sectional view which shows the structure of the SiC Schottky diode which was produced by the manufacturing method which concerns on Embodiment 2, and has an SiC substrate with an off angle of 5 degrees or less.
  • FIG. 1 SiC Schottky diode
  • FIG. 10 is a longitudinal sectional view showing a structure of a SiC-MOSFET having a SiC substrate with an off angle of 5 degrees or less, created by the manufacturing method according to the third embodiment.
  • FIG. 10 is a longitudinal sectional view showing a structure of a SiC-MOSFET having a SiC substrate with an off angle of 5 degrees or less, created by the manufacturing method according to the fourth embodiment. It is a figure which shows the relationship between the growth temperature of an epitaxial layer, and the height of a bunching step. It is the figure which showed the relationship between the growth temperature of an epitaxial layer, and the crystal defect density resulting from a migration defect.
  • the feature of the method of manufacturing the SiC semiconductor device according to the present embodiment is that when the drift layer of the SiC semiconductor element (vertical MOSFET or IGBT) is formed, the first epitaxial film (first drift layer) is formed. A first drift layer is formed by growth, and a second epitaxial film (second drift layer) is grown on the first drift layer at a temperature lower than the growth temperature of the first epitaxial film. Is to form.
  • FIG. 1 A vertical n-channel SiC-MOSFET is shown in a longitudinal sectional view of FIG. 1 as an example of a semiconductor element structure of an SiC semiconductor device manufactured by the method of manufacturing an SiC semiconductor device according to the present embodiment.
  • the reference numerals indicate the following components. That is, 1 is an n-type (corresponding to the first conductivity type) SiC substrate having an off angle of 5 degrees or less (for example, an off angle of 4 degrees), and 2 is an epitaxial growth layer made of n-type SiC.
  • first epitaxial layer 3 is a second drift layer (second epitaxial layer) made of n-type SiC obtained by epitaxial growth under a growth temperature lower than the growth temperature of the first drift layer 2 4 is a p-type (second conductivity type) base region (well region), 5 is an n-type source region, 6 is a gate insulating film, 7 is a gate electrode, 8 is a source electrode, and 9 is a drain electrode. , Respectively. Therefore, the drift layer in the vertical n-channel SiC-MOSFET of FIG.
  • FIGS. 2 to 9 are longitudinal sectional views showing a method of manufacturing the SiC semiconductor device according to the present embodiment, specifically, a method of manufacturing a vertical n-channel SiC-MOSFET.
  • a method for manufacturing an SiC semiconductor device according to the present embodiment will be described with reference to FIGS.
  • a first drift layer 2 made of n-type SiC is formed thereon as a first epitaxial film, and 2) on the upper surface of the first drift layer 2 and on the upper surface of the first drift layer 2 In contact therewith, the second drift layer 3 is formed as a second epitaxial film by an epitaxial crystal growth method under a growth temperature lower than the growth temperature of the first drift layer 2 (FIG. 2).
  • Such a series of epitaxial crystal growth steps correspond to the core part of the present embodiment, and will be described in detail later.
  • FIG. 3 shows the longitudinal sectional structure of the element after the mask is removed.
  • the impurity whose conductivity type is p-type in the second drift layer 3 include boron (B) and aluminum (Al).
  • FIG. 4 shows a longitudinal sectional structure of the element after the mask is removed.
  • the n-type impurity include phosphorus (P) and nitrogen (N).
  • FIG. 5 shows a longitudinal sectional structure of the element after the heat treatment.
  • the gate insulating film 6 is formed by thermal oxidation or deposition. Then, after forming a gate electrode 7 on the gate insulating film 6, the gate electrode 7 is patterned as shown in FIG. In the gate electrode 7, the pair of base regions 4 and the pair of source regions 5 are located below both ends of the electrode 7, and a part of the second drift layer 3 located between the pair of base regions 4 is the portion of the electrode 7. It is patterned into a shape that is located directly under the center.
  • the remaining part of the gate insulating film 6 on each source region 5 is removed by photolithography technique and etching technique (FIG. 8), and after removal, the source electrode 8 is formed on the part where the source region 5 is exposed. And patterning (FIG. 9). Thereafter, the drain electrode 9 is formed on the back surface side of the SiC substrate 1, thereby completing the main part of the element structure as shown in FIG.
  • FIG. 10 is a view showing a temperature profile in the reaction furnace until the first drift layer 2 and the second drift layer 3 shown in FIG. 1 are produced.
  • the horizontal axis represents the elapsed time
  • the vertical axis represents the temperature in the reactor.
  • a carrier gas (H 2 ) is flowed into the reaction furnace, and the temperature rise is started.
  • gases of monosilane (SiH 4 ), propane (C 3 H 8 ), and nitrogen (N 2 ) are introduced into the reaction furnace.
  • epitaxial growth is started.
  • the first epitaxial layer 2 is grown from time t1 to time t2 when a predetermined time has elapsed. Thereafter, the temperature in the reactor is lowered to the growth temperature T2 ( ⁇ T1) of the second epitaxial layer 3.
  • the epitaxial growth of the second epitaxial layer 3 is performed within a predetermined time from the time t3 when the temperature in the reactor falls to the growth temperature T2 until the time t4. Then, at the time t4 when the predetermined time has elapsed, the temperature in the reaction furnace is lowered.
  • FIG. 11 typical ones (observation results) as crystal defects starting from migration failure are shown in FIG. 11, FIG. 12 and FIG.
  • Each of the crystal defects shown in FIGS. 11 to 13 has a triangular shape in plan view.
  • the crystal defects shown in FIG. 11 have dents of several tens to several hundreds of nm in the depth direction, and some of the crystal defects shown in FIG. 12 have dents in the depth direction.
  • the crystal defect shown in FIG. 13 has a structure in which the entire triangular shape is recessed by several tens of nm in the depth direction.
  • a crystal defect based on a migration failure occurs at the interface between the upper surface (main surface) of the SiC substrate having an off angle of 5 degrees or less and the epitaxial film epitaxially grown thereon.
  • the density of the crystal defects strongly depends on the film formation conditions of the first epitaxial film. For example, when the first epitaxial film is grown at a growth temperature of 1600 ° C. and then the second epitaxial film is grown at a growth temperature of 1550 ° C., the density of the crystal defects is as follows: The density of the crystal defects is about 1/10 when the epitaxial film is grown at a growth temperature of 1550 ° C. consistently.
  • the height of the bunching step when the two-layer epitaxial film is grown under the above growth temperature conditions, the epitaxial film growth is consistently performed at a growth temperature of 1600 ° C. The height of the bunching step is suppressed to about 1 ⁇ 2.
  • the above example is a case where the first epitaxial film having a thickness of about 0.5 ⁇ m is laminated on the main surface of the SiC substrate having an off angle of 5 degrees or less.
  • the thickness of the first-layer epitaxial film is about 0.2 ⁇ m
  • the first-layer epitaxial film of about 0.5 ⁇ m is formed on the SiC substrate with respect to the height of the bunching step.
  • the crystal defect density is about 1/3 compared with the crystal defect density when epitaxial growth is consistently performed at a growth temperature of 1550 ° C. Stay on. Nevertheless, even if the thickness of the first epitaxial film is thinner than about 0.5 ⁇ m, the effect of reducing the density of crystal defects can be obtained. On the other hand, in the case where the film thickness of the first epitaxial film is thick, the crystal defect density is sufficiently reduced, but particularly when the film thickness of the first epitaxial film exceeds 1.0 ⁇ m, It is considered that the surface roughness becomes remarkable before the growth of the second-layer epitaxial film, and the height of the bunching step is increased. Considering the above viewpoints, it can be said that the thickness of the first epitaxial film is desirably a value in the range of 0.3 ⁇ m to 0.8 ⁇ m.
  • the rate of temperature decrease is desirably set to a value in the range of 5 ° C./min to 30 ° C./min.
  • the results of growing the first and second epitaxial films with the C / Si ratio fixed between the first epitaxial film and the second epitaxial film are shown.
  • the C / Si ratio of the first epitaxial film is made higher than that of the first epitaxial film
  • the C / Si ratio of the first epitaxial film is made higher than that of the first epitaxial film.
  • monosilane (SiH 4 ), propane (C 3 H 8 ), and nitrogen are grown during the growth, for example, the growth rate of the second epitaxial film is increased compared to the growth rate of the first epitaxial film.
  • the gas flow rate or flow rate ratio of (N 2 ) may be changed.
  • the impurity concentration of the SiC substrate is 5 ⁇ 10 18 cm ⁇ 3 to 1 ⁇ 10 19 cm ⁇ 3
  • the impurity concentration of the epitaxial layer serving as the drift layer is 5 ⁇ 10 15 cm depending on the application. It is generally about ⁇ 3 to 5 ⁇ 10 16 cm ⁇ 3 . Therefore, a difference in impurity concentration of 1 ⁇ 10 2 cm ⁇ 3 occurs at the interface between the main surface of the SiC substrate and the epitaxial layer thereon.
  • the first epitaxial film is formed on the main surface of the SiC substrate at the growth temperature T1, and the second epitaxial film is continuously formed thereon at the growth temperature T2 ( ⁇ T1).
  • the effect of the first epitaxial film functioning as a buffer layer for relaxing the impurity concentration difference of 1 ⁇ 10 2 cm ⁇ 3 is also expected. I can do it.
  • the temperature in the reactor is lowered (T1 ⁇ T2) while the growth gas is kept flowing.
  • the flow rate of the growth gas may be reduced during this temperature drop period.
  • the flow of the growth gas is interrupted during the temperature drop period between the time t2 and the time t3, and the temperature in the reactor
  • the propane gas may be cooled before epitaxial growth of the first drift layer 2 (time t01 in FIG. 14) for the purpose of alleviating C desorption from the main surface or the surface of the SiC substrate. May be allowed to flow into the reactor.
  • the inflow of monosilane and nitrogen gas is shut off within the period between the growth completion time t2 of the first drift layer 2 and the growth disclosure time t3 of the second drift layer 3, and only propane gas is supplied into the reactor. It may be left as it is.
  • the growth temperature of the first epitaxial layer is a temperature at which there are few crystal defects due to poor migration of reactive species and the height of the bunching step is relatively small.
  • the growth temperature of the second epitaxial layer is desirably a temperature at which the height of the bunching step is reduced.
  • FIG. 18 is a diagram showing the relationship between the growth temperature of the epitaxial layer and the height of the bunching step
  • FIG. 19 is a diagram showing the relationship between the growth temperature of the epitaxial layer and the crystal defect density caused by migration failure.
  • the growth thickness of the epitaxial layer is about 2 ⁇ m.
  • 18 and 19 it can be seen that both the crystal defect density due to migration failure and the bunching step height are small when the growth temperature of the epitaxial layer is in the range of 1550 ° C. to 1650 ° C. It can also be seen that the height of the bunching step is small at a value in the range of 1450 ° C. or more and 1550 ° C. or less.
  • the growth temperature of the first epitaxial layer is preferably 1550 ° C. or higher and 1650 ° C. or lower, more preferably 1570 ° C. or higher and 1620 ° C. or lower.
  • the growth temperature of the second epitaxial layer is preferably 1450 ° C. or higher and 1550 ° C. or lower, and more preferably 1470 ° C. or higher and 1520 ° C. or lower.
  • the direction of the off-angle of the SiC substrate is the ⁇ 11-29> direction.
  • the same effect can be obtained when the off angle direction is, for example, the ⁇ 1-100> direction, or when the off angle is formed on the other surface of the SiC substrate.
  • an n-type epitaxial layer on an n-type SiC substrate having an off angle of 5 degrees or less is assumed, but if the SiC substrate has an off angle of 5 degrees or less, 1) In each case of forming a p-type epitaxial layer on an n-type SiC substrate, 2) forming a p-type epitaxial layer on a p-type SiC substrate, or 3) forming an n-type epitaxial layer on a p-type SiC substrate.
  • the same effect can be obtained by similarly applying the manufacturing method for forming the drift layer composed of the two epitaxial layers under the condition where the growth temperature is T1> T2.
  • the drift layer of the semiconductor device when the drift layer of the semiconductor device is formed by the epitaxial layer on the main surface of the SiC substrate in which the off angle of 5 degrees or less is formed, the migration of reactive species is performed.
  • the density of crystal defects due to defects can be reduced, and the height of the bunching step can be suppressed to be relatively small.
  • the growth temperature of the second epitaxial layer is lower than the growth temperature of the first epitaxial layer, the thermal uniformity is improved and the epitaxial layer thickness and the carrier concentration in-plane distribution are improved. Furthermore, the margin for epitaxial growth between wafers or lots can be increased.
  • drift layers 2 and 3 manufactured by the manufacturing method according to the present embodiment, carrier scattering in the channel portion in the SiC semiconductor device can be suppressed.
  • FIG. 15 is a longitudinal sectional view showing the structure of a SiC Schottky diode (hereinafter referred to as “SIC-SBD”) according to the present embodiment. A method for manufacturing the SiC-SBD of FIG. 15 will be described below.
  • SIC-SBD SiC Schottky diode
  • the n-type first epitaxial layer 2 is epitaxially grown at the growth temperature T1.
  • the growth temperature T2 is lower than the growth temperature T1 of the first epitaxial layer 2 (see FIG. 10 or FIG. 14).
  • the n-type second epitaxial layer 3 is epitaxially grown, and then the surface of the same layer 3 is sacrificial oxidized.
  • a photoresist patterning mask (not shown) having a desired pattern is formed on the surface of the n-type second epitaxial layer 3 in order to produce the termination structure 14 for increasing the breakdown voltage.
  • impurity ions are implanted from above the mask to form an ion implantation layer that finally becomes the termination structure 14 in the n-type second epitaxial layer 3.
  • the mask and the sacrificial oxide film are removed.
  • an activation annealing process for activating the implanted impurity atoms is performed to form a p-type (second conductivity type) termination structure 14.
  • an ohmic electrode 15 for ohmic junction is formed on the back surface of the SiC substrate, and a Schottky electrode 16 for Schottky junction is formed on the substrate surface composed of the surface of the second epitaxial layer 3 and the surface of the termination structure 14.
  • the height of the bunching step is suppressed to be small, and the density of crystal defects due to poor migration of raw materials is reduced.
  • the SiC-SBD having the epitaxial layer (2 + 3) is completed.
  • FIG. 16 is a longitudinal sectional view showing a structure of a SiC-MOSFET having a SiC substrate having an off angle of 5 degrees or less, which is produced by the manufacturing method according to the present embodiment.
  • the SiC-MOSFET in FIG. 16 is structurally different from the SiC-MOSFET in FIG. 1 in that the drift layer is composed of one epitaxial layer 3 and the source region 5 is formed in the surface of the p-type base region 4.
  • Two n-type first and second epitaxial layers 10 and 11 are arranged on the surface portion that is not formed and on the surface of the drift layer 3 sandwiched between the opposing surface portions of the pair of base regions 4. It is a point that has been established.
  • the first and second epitaxial layers 10 and 11 form a channel portion of the SiC-MOSFET.
  • the purpose of the present embodiment is to suppress the height of the bunching step in the first and second epitaxial layers 10 and 11 on the surface of the drift layer 3, and further, the density of the defect lattice caused by the interface between the epitaxial layers. It is to propose a manufacturing method for reducing the above. Hereinafter, the manufacturing method according to the present embodiment will be described with reference to FIG.
  • the first drift layer 2 is formed in the processing steps until the n-type source region 5 is formed by activation annealing of ions implanted in the p-type base region 4 in the drift layer 3. Except for the steps to be performed, the process is the same as the process described in the first embodiment. After that, after the activation of the implanted ions, sacrificial oxidation is performed to form the n-type first epitaxial layer 10, and then the first epitaxial layer 10 is directly over and in contact with the surface of the layer 10. The n-type second epitaxial layer 11 is epitaxially grown at a growth temperature lower than the growth temperature of the first epitaxial layer 10.
  • a resist mask (not shown) is formed on the first and second epitaxial layers 10 and 11, and the first and second epitaxial layers 10 and 11 are removed except for a portion to become a channel.
  • the channel portion has a pair of base region 4 and source region 5 located below both ends of the channel portion, and the portion of the drift layer 3 sandwiched between the opposing base regions 4 is the center of the channel portion. It is patterned into a shape that is located immediately below.
  • the gate insulating film 6 is formed by thermal oxidation or deposition.
  • a gate electrode 7 is formed directly on the gate insulating film 6 and then patterned.
  • a pair of base region 4 and source region 5 are located below both ends of the electrode 7, and a part of the drift layer 3 sandwiched between the opposing base regions 4 is a central portion of the electrode 7. It is patterned into a shape that is located below.
  • the remaining part of the gate insulating film 6 on each source region 5 is removed by a photolithography technique and an etching technique, and after the removal, a source electrode 8 is formed on the part where the source region 5 is exposed. Pattern. Further, the drain electrode 9 is formed on the back surface of the SiC substrate 1. The main part of the element structure as shown in FIG. 16 is completed through the above processing steps.
  • the first and second epitaxial layers 10 and 11 are formed under the condition of (growth temperature T1 of the first epitaxial layer 10)> (growth temperature T2 of the second epitaxial layer 11). Since the epitaxial growth is performed on the upper surface of the drift layer 3, 1) the density of lattice defects starting from the interface between the drift layer 3, which is an epitaxial layer, and the first epitaxial layer 10 can be reduced; There is an advantage that the height of the bunching step can be suppressed in the two epitaxial layers 11.
  • the first and second drift layers 2 and 3 described in the first embodiment can also be applied to the present embodiment. . Thereby, the effect of the first embodiment described above can also be obtained synergistically.
  • FIG. 17 is a longitudinal sectional view showing a structure of a SiC-MOSFET having a SiC substrate having an off angle of 5 degrees or less, which is produced by the manufacturing method according to the present embodiment.
  • two n-type first and second epitaxial layers 10 and 11 are grown on the drift layer 3 with a carrier concentration different from that of the drift layer 3.
  • the second epitaxial layers 10 and 11 are configured as a channel portion of the present SiC-MOSFET.
  • the main purpose of the present embodiment is to suppress the height of the bunching step in the first and second epitaxial layers 10 and 11 on the surface of the drift layer 3, and further to provide a defect lattice caused by the interface between the epitaxial layers.
  • the object is to propose a manufacturing method for reducing the density.
  • the n-type first epitaxial layer 12 is epitaxially grown at a growth temperature T1 with a carrier concentration different from that of the drift layer 3.
  • the second epitaxial layer 13 is formed by performing epitaxial growth on the upper surface of the first epitaxial layer 12 at a growth temperature T2 lower than the growth temperature T1 of the first epitaxial layer 12 so as to be in contact with the upper surface.
  • the main part of the element structure as shown in FIG. 17 is completed by performing the same process as that after the formation of the drift layer of the first embodiment.
  • the first and second epitaxial layers 12 and 13 are drifted under the condition of (growth temperature T1 of first epitaxial layer 12)> (growth temperature T2 of second epitaxial layer 13). Since the epitaxial growth is performed on the upper surface of the layer 3, the density of lattice defects starting from the interface between the drift layer 3 as the epitaxial layer and the first epitaxial layer 12 can be reduced, and 2) the second There is an advantage that the height of the bunching step can be suppressed in the epitaxial layer 13.
  • the first and second drift layers 2 and 3 described in the first embodiment can also be applied to the present embodiment. . Thereby, the effect of the first embodiment described above can also be obtained synergistically.
  • 1 n-type (corresponding to the first conductivity type) SiC substrate 2 first drift layer made of n-type SiC, 3 second made of n-type SiC epitaxially grown at a lower growth temperature than the first drift layer Drift layer, 4 p-type (corresponding to the second conductivity type) base layer, 5 n-type source region, 6 gate insulating film, 7 gate electrode, 8 source electrode, 9 drain electrode, 10 n-type SiC 1st epitaxial layer, 11 2nd epitaxial layer made of SiC epitaxially grown at a lower growth temperature than the 1st epitaxial layer, 1st epitaxial layer made of 12 n-type SiC, 13 lower than the 1st epitaxial layer A second epitaxial layer made of n-type SiC epitaxially grown at the growth temperature, 14 termination structure, 15 o Mick electrode, 16 Schottky electrode.

Abstract

 バンチングステップ高さと、テラス上に於ける反応種のマイグレーション不良に起因した結晶欠陥とを共に減少させたエピタキシャル層を、オフ角が5度以下のSiC半導体基板上に成膜する。オフ角が5度以下のSiC半導体基板の表面上に且つ当該表面に接して、成長温度T1に於いて第1層目のエピタキシャル層を時刻t1から時刻t2の期間内に成膜する。反応炉の温度を成長温度T1から成長温度T2に降温させ、第1層目のエピタキシャル層の表面上に且つ当該表面に接して、成長温度T2(<T1)に於いて第2層目のエピタキシャル層を時刻t3から時刻t4の期間内にエピタキシャル成長させる。以上の様に、エピタキシャル層を2層構造にし、第1エピタキシャル層よりも第2エピタキシャル層の成長温度を低く設定する。

Description

炭化珪素半導体装置の製造方法
 この発明は、炭化珪素(以下「SiC」と言う。)半導体装置の製造方法に関する。
 SiC半導体装置を形成するためには、SiC基板上に、半導体素子の活性領域となるエピタキシャル層を成長させる必要性がある。このエピタキシャル層は、ステップフロー成長によって成される。SiC基板の結晶表面には、細かい凹凸が存在しており、段差部を「ステップ」、何も無い表面を「テラス」と言う。ステップフロー成長では、ウエハに傾斜を付けることにより、結晶表面に付着した反応種がテラス上を拡散し、ステップにたどり着いた反応種から順次に取り込まれ、平坦な表面モフォロジーが得られる。一般的には、ウエハの傾斜は、基板の(0001)面から[11-20]方向に向かって形成される。上記の傾斜角は「オフ角」と言われ、これまでは、4H-SiC基板では8度、6H-SiCでは3.5度がそれぞれ一般的なオフ角であった。
 特許文献1では、基板の(0001)面から[11-20]方向に8度のオフ角が付けられた4H-SiC基板に対してエピタキシャル成長を行い、それにより生成されたエピタキシャル層の上に更に成長温度を上げてエピタキシャル成長を行うことで、SiC基板から引継ぐBasal Plane転位の密度を減らすことが、提案されている。
特開2006-120897号公報
 しかしながら、近年は、SiC基板の生産コストの問題から、低オフ角化が目指されており、オフ角が4度以下のSiC基板を使用することが望まれている。更に、SiC基板の加工マージン及びオフ角の基板面内分布を考慮すると、オフ角が5度以下のSiC基板を想定する必要性がある。しかも、一般に市販されているSiC基板に関して、オフ角が0度のジャスト面基板に於いても、加工性上の問題から、完全な(0001)面が形成されている訳ではなく、僅かながらオフ角が付いている。
 以上の観点から、ジャスト面基板から5度以下のオフ角が形成されたSiC基板のウエハに対してエピタキシャル成長を行う必要性が生じて来ている。
 基板のオフ角が小さくなるにつれて、テラス幅は長くなり、反応種がステップまでにたどり着くことが出来ずにテラス上に留まって核と成り、その核を起点として二次元核成長を起こす確率が上昇する。特に、エピタキシャル層の成長温度が低い場合には、テラス上での反応種のマイグレーション長が短くなるため、テラス表面での反応種のマイグレーション不良に起因した結晶欠陥が発生し易くなる。
 加えて、基板のオフ角が小さくなるにつれて、表面エネルギーの問題から、「バンチングステップ」と言われる表面荒れが生じ易く成る。特に、エピタキシャル層の成長温度が高い場合には、バンチングステップが顕著になるといった不具合が生じる。
 オフ角が5度以下の低オフ角SiC基板上にSiCエピタキシャル層を成長させる場合には、オフ角の低下に伴って反応種のマイグレーション長に対してテラス幅が大幅に増加する様になる。そのため、反応種がテラス上に留まり核を形成し易くなり、その核を起点とした結晶欠陥の発生確率が上昇する。特に、これらの結晶欠陥は、成長中よりも、成長初期の基板とその上に生成されるエピタキシャル層との界面付近で発生し易い。
 上記の様な結晶欠陥を減少させるには、成長温度を上げて、反応種のマイグレーション長を長くすることが有効な方法であると考えられる。
 しかしながら、成長温度が比較的高い条件下に於いて、数μm以上の厚さのエピタキシャル層の成長を行った場合には、大きなバンチングステップが発生して表面が荒れるといった問題点があった。
 この発明は、オフ角が5度以下のSiC基板に於いて新たに認識されることとなった上記の問題点を解決するために成されたものであり、バンチングステップ、及び、マイグレーション不良に起因した結晶欠陥が共に少ないエピタキシャル層を含む、或いは、上記エピタキシャル層のプロセスマージン(プロセスウィンドウとも言う。)を広げ得る炭化珪素半導体装置の製造方法を得ることを、その主目的とする。
 本発明の主題に係る炭化珪素半導体装置の製造方法は、オフ角を有する炭化珪素半導体基板の主面上に、第1エピタキシャル層を成長させる工程と、前記第1エピタキシャル層の上面上であって且つ前記第1エピタキシャル層の前記上面と接して、前記第1エピタキシャル層の成長温度よりも低い成長温度で第2エピタキシャル層を成長させる工程とを、備えることを特徴とする。
 本発明の主題によれば、バンチングステップの発生を抑制しつつ、反応種のマイグレーション不良が起点となって引き起こされる結晶欠陥が少ないエピタキシャル膜を、オフ角を有するSiC基板上に生成することが出来る。即ち、第1エピタキシャル層を高い温度でエピタキシャル成長させることで上記の結晶欠陥を抑制し、第1エピタキシャル層の成長温度よりも低い温度で第2エピタキシャル層を成長させることにより、バンチングステップの高さを低減する。これにより、バンチングステップ高さ並びにマイグレーション不良が起点となる結晶欠陥密度を共に減少させることが出来る。
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
実施の形態1に係るSiC半導体装置の製造方法によって製造されるSiC半導体装置の半導体素子構造の一例として、縦型のnチャネルSiC-MOSFETの構造を示す縦断面図である。 本実施の形態に係る縦型nチャネルSiC-MOSFETの製造方法を示す縦断面図である。 本実施の形態に係る縦型nチャネルSiC-MOSFETの製造方法を示す縦断面図である。 本実施の形態に係る縦型nチャネルSiC-MOSFETの製造方法を示す縦断面図である。 本実施の形態に係る縦型nチャネルSiC-MOSFETの製造方法を示す縦断面図である。 本実施の形態に係る縦型nチャネルSiC-MOSFETの製造方法を示す縦断面図である。 本実施の形態に係る縦型nチャネルSiC-MOSFETの製造方法を示す縦断面図である。 本実施の形態に係る縦型nチャネルSiC-MOSFETの製造方法を示す縦断面図である。 本実施の形態に係る縦型nチャネルSiC-MOSFETの製造方法を示す縦断面図である。 図1に示された第1ドリフト層及び第2ドリフト層を作製するまでの反応炉内の温度プロファイルを表した図である。 観測された、マイグレーション不良を起点とする結晶欠陥を示す図である。 観測された、マイグレーション不良を起点とする結晶欠陥を示す図である。 観測された、マイグレーション不良を起点とする結晶欠陥を示す図である。 図1に示された第1ドリフト層及び第2ドリフト層を作製するまでの反応炉内の温度プロファイルを表した図である。 実施の形態2に係る製造方法により作成された、オフ角が5度以下のSiC基板を有するSiCショットキダイオードの構造を示す縦断面図である。 実施の形態3に係る製造方法により作成された、オフ角が5度以下のSiC基板を有するSiC-MOSFETの構造を示す縦断面図である。 実施の形態4に係る製造方法により作成された、オフ角が5度以下のSiC基板を有するSiC-MOSFETの構造を示す縦断面図である。 エピタキシャル層の成長温度とバンチングステップの高さとの関係を示す図である。 エピタキシャル層の成長温度とマイグレーション不良に起因する結晶欠陥密度との関係を示した図である。
 (実施の形態1)
 本実施の形態に係るSiC半導体装置の製造方法の特徴点は、SiC半導体素子(縦型MOSFET又はIGBT等)のドリフト層を作る際に、第1層目のエピタキシャル膜(第1ドリフト層)を成長させて第1ドリフト層を形成し、その上に第1層目のエピタキシャル膜の成長温度よりも低い温度で第2層目のエピタキシャル膜(第2ドリフト層)を成長させることによって当該ドリフト層を形成する点にある。
 本実施の形態に係るSiC半導体装置の製造方法によって製造されるSiC半導体装置の半導体素子構造の一例として、縦型のnチャネルSiC-MOSFETを、図1の縦断面図に示す。図1に於いて、各参照符号は次の構成要素を示す。即ち、1はオフ角が5度以下(例えばオフ角は4度。)であるn型(第1導電型に該当。)のSiC基板、2はn型のSiCから成る、エピタキシャル成長層である第1ドリフト層(第1エピタキシャル層)、3は第1ドリフト層2の成長温度よりも低い成長温度の下でエピタキシャル成長させて得られたn型のSiCから成る第2ドリフト層(第2エピタキシャル層)、4はp型(第2導電型に該当。)のベース領域(ウエル領域)、5はn型のソース領域、6はゲート絶縁膜、7はゲート電極、8はソース電極、9はドレイン電極、をそれぞれ示す。従って、図1の縦型nチャネルSiC-MOSFETに於けるドリフト層は、第1及び第2ドリフト層2,3の2層より成る。
 又、図2~図9の各図は、本実施の形態に係るSiC半導体装置の製造方法を、具体的には、縦型のnチャネルSiC-MOSFETの製造方法を示す縦断面図である。以下、図2~図9の各図に基づき、本実施の形態に係るSiC半導体装置の製造方法を記載する。
 先ず、図2に示す様に、1)エピタキシャル結晶成長法により、オフ角が5度以下(例えばオフ角が4度に設定されている。)であるn型のSiC基板1の主面ないしは上面上に、n型のSiCから成る第1ドリフト層2を第1層目のエピタキシャル膜として形成し、更に、2)第1ドリフト層2の上面上に、且つ、第1ドリフト層2の上面に接して、第1ドリフト層2の成長温度よりも低い成長温度の下でのエピタキシャル結晶成長法により、第2ドリフト層3を第2層目のエピタキシャル膜として形成する(図2)。斯かる一連のエピタキシャル結晶成長工程は、本実施の形態の核心部分に該当するので、後に詳述する。
 エピタキシャル結晶成長後、第2ドリフト層3中で所定の間隔に離間した部位に、レジスト等よる成るマスク(図示せず。)を形成した上で不純物をイオン注入して、一対のp型のベース領域4を形成する。図3は、上記マスクを除去した後の素子の縦断面構造を示している。第2ドリフト層3中で導電型がp型となる不純物としては、例えばボロン(B)或いはアルミニウム(Al)が挙げられる。
 更に、上記各p型ベース領域4中に、レジスト等より成るマスク(図示せず。)を形成した上で不純物をイオン注入して、n型のソース領域5を形成する。図4は、上記マスクを除去した後の素子の縦断面構造を示す。n型不純物としては、例えばリン(P)或いは窒素(N)が挙げられる。
 イオン注入後に引き続いて熱処理装置(図示せず。)によってウエハを高温で熱処理すると、n型及びp型の注入イオンが電気的に活性化される。図5は、当該熱処理後の素子の縦断面構造を示す。
 その後、図6に示す様に、ゲート絶縁膜6を、熱酸化或いは堆積によって形成する。そして、ゲート絶縁膜6上に、ゲート電極7を成膜した上で、図7に示す様にゲート電極7をパターニングする。ゲート電極7は、一対のベース領域4及び一対のソース領域5が同電極7の両端部の下方に位置し、一対のベース領域4間に位置する第2ドリフト層3の一部分が同電極7の中央直下に位置する様な形状に、パターニングされる。
 更に、各ソース領域5上のゲート絶縁膜6の残余の部分は、フォトリソグラフィ技術及びエッチング技術によって除去され(図8)、除去後、ソース領域5が露出した部分上にソース電極8を成膜し且つパターニングする(図9)。その後、SiC基板1の裏面側にドレイン電極9を形成することにより、図1に示す様な素子構造の主要部が完成する。
 次に、本実施の形態に係るSiC半導体装置の製造方法に於いて特徴的な第1及び第2ドリフト層2,3の作製工程について詳述する。
 図10は、図1に示された第1ドリフト層2及び第2ドリフト層3を作製するまでの反応炉内の温度プロファイルを表した図である。図10に於いて、横軸は経過時間を、縦軸は反応炉内の温度を示す。以下、図10を基にして、図1の参照符号を用いつつ、斯かる一連の製膜工程について記載する。
 先ず、時刻t0に於いて、キャリアガス(H2)を反応炉内に流し、昇温を開始する。次に、反応炉内の温度が第1成長温度T1に達した時刻t1より、モノシラン(SiH4)、プロパン(C38、)、及び窒素(N2)のガスを反応炉内に導入し、エピタキシャル成長を開始する。時刻t1より所定の時間が経過した時刻t2迄の間に、第1エピタキシャル層2の成長を行う。その後、反応炉内の温度を、第2エピタキシャル層3の成長温度T2(<T1)まで降下させる。そして、反応炉内の温度が成長温度T2にまで降下した時刻t3から時刻t4迄の所定の時間内に、第2エピタキシャル層3のエピタキシャル成長を行う。そして、上記所定の時間が経過した時刻t4移行、反応炉内の温度を降下させる。
 尚、第1及び第2ドリフト層2,3の各々の成長を行う前に、SiC基板1のダメージ層除去の目的で、H2若しくはHClのガス又はそれらの混合ガス等によるガスエッチングを行っても良い。
 ここで、マイグレーション不良を起点とする結晶欠陥として代表的なもの(観測結果)を、図11、図12及び図13に示す。図11~図13に示される結晶欠陥は、何れも、平面視としては、三角の形状を成している。そして、図11に示される結晶欠陥は深さ方向に数十nm~数100nmの凹みを有し、図12に示される結晶欠陥の一部は深さ方向に凹みを有する。又、図13に示される結晶欠陥は、三角形状の全体が深さ方向に数十nm凹んでいる構造を有している。
 図11~図13に示される様な、マイグレーション不良を基点とする結晶欠陥は、オフ角が5度以下であるSiC基板の上面(主面)とその上にエピタキシャル成長されるエピタキシャル膜との界面に於いて、多く確認される。そのため、上記結晶欠陥の密度は、第1層目のエピタキシャル膜の成膜条件に強く依存する。例えば、成長温度1600℃の下で第1層目のエピタキシャル膜を成長し、引き続いて第2層目のエピタキシャル膜を成長温度1550℃の下で成長させた場合に於ける上記結晶欠陥の密度は、一貫して成長温度1550℃の下でエピタキシャル膜の成長を行った場合に於ける上記結晶欠陥の密度と比べて、およそ1/10程度となる。他方、バンチングステップの高さに関しては、上記の成長温度の条件下で2層のエピタキシャル膜を成長させた場合、一貫して成長温度1600℃の下でエピタキシャル膜の成長を行った場合と比べて、バンチングステップの高さは1/2程度に抑制される。但し、上記の例は、約0.5μm程度の厚みを有する第1層目のエピタキシャル膜を、オフ角が5度以下のSiC基板の主面上に積層させた場合である。これに対して、第1層目のエピタキシャル膜の厚みが約0.2μm程度の場合には、バンチングステップの高さに関しては、約0.5μm程度の第1層目のエピタキシャル膜をSiC基板の主面上に積層させた場合と同程度の値が得られるが、結晶欠陥密度は、一貫して成長温度1550℃の下でエピタキシャル成長を行った場合の結晶欠陥密度と比べて、1/3程度に留まる。とは言え、第1層目のエピタキシャル膜の膜厚が約0.5μmよりも薄い場合であっても、上記結晶欠陥の密度の低減化と言う効果は得られる。他方、第1層目のエピタキシャル膜の膜厚が厚い場合に於いては、結晶欠陥密度の減少は十分であるが、特に第1層目のエピタキシャル膜の膜厚が1.0μmを超えると、第2層目のエピタキシャル膜の成長前に表面荒れが顕著になり、バンチングステップの高さが大きくなると考えられる。以上の観点を考慮すると、第1層目のエピタキシャル膜の厚さは、0.3μm以上0.8μm以下の範囲内の値が望ましいと、言える。
 上記の結果は、第1層目のエピタキシャル膜の成膜完了時(図10の時刻t2)と、第2層目のエピタキシャル膜の成膜開始時(図10の時刻t3)との間の降温速度を20℃/分に設定して得られた結果である。第1層目のエピタキシャル膜の成長温度が第2層目のエピタキシャル膜のそれよりも高い場合に於いて、成長ガスを止めて反応炉内の温度を降温する場合に、降温速度が遅いと、水素エッチングによる表面荒れが起こる可能性がある。逆に、降温速度が速いと、温度を制御しきれずにアンダーシュートを起こすことで、一時的に必要以上に成長温度が低下して、結晶欠陥増加の原因になる可能性がある。そのため、降温速度は、5℃/分以上30℃/分以下の範囲内の値に設定されることが望ましいと、言える。
 更に、今回は第1層目のエピタキシャル膜と第2層目のエピタキシャル膜とでC/Si比を固定して第1層目及び第2層目のエピタキシャル膜を成長させた場合についての結果を示しているが、例えば第1層目のエピタキシャル膜よりも第2層目のエピタキシャル膜のC/Si比を高くするなど、第1層目のエピタキシャル膜のC/Si比と第2層目のエピタキシャル膜のC/Si比とを変えてエピタキシャル成長を行っても、上記と同様の効果は得られる。
 加えて、例えば第1層目のエピタキシャル膜の成長速度に比べ第2層目のエピタキシャル膜の成長速度を上げるなど、成長中にモノシラン(SiH4)、プロパン(C38、)、及び窒素(N2)のガスの流量や流量比を変えてもよい。
 又、成長温度が高いと、炭化珪素で一般的なn型のドーパントとなる窒素の取り込み効率が上がる。ここで、SiC基板の不純物濃度は5×1018cm-3~1×1019cm-3であるのに対して、ドリフト層となるエピタキシャル層の不純物濃度は用途に応じて5×1015cm-3~5×1016cm-3程度であるのが一般的である。そのため、SiC基板の主面とその上のエピタキシャル層との界面では、1×102cm-3の不純物濃度の差が生じることとなる。よって、SiC基板の主面上に成長温度T1で第1層目のエピタキシャル膜を成膜し、更にその上に成長温度T2(<T1)で第2層目のエピタキシャル膜を連続的に成膜してn型のドリフト層(2+3)を形成する製造方法に於いては、第1層目のエピタキシャル膜がこの不純物濃度差1×102cm-3を緩和するバッファ層として機能する効果も期待出来る。
 又、図10に於いては成長ガスを流したままで反応炉内の温度の降温(T1→T2)を行っているが、この降温期間内に成長ガスの流量を少なくしても良い。
 更に、第1ドリフト層2の成長完了後に、図14の反応炉内の温度プロファイルに示す様に、時刻t2と時刻t3間の降温期間内では成長ガスの流入を中断して反応炉内の温度を降温しても良く、更には、SiC基板の主面ないしは表面上のCの脱離を緩和する目的で、第1ドリフト層2のエピタキシャル成長を行う前に(図14の時刻t01)、プロパンガスを反応炉内に流すこととしても良い。上記と同様の理由で、第1ドリフト層2の成長完了時刻t2と第2ドリフト層3成長開示時刻t3との期間内にモノシラン及び窒素のガスの流入を遮断し、プロパンガスのみを反応炉内に流したままとしても良い。
 ここで留意すべき点は、第1層目のエピタキシャル層の表面荒れは、その上の第2層目のエピタキシャル層にまで引き継がれると言う点である。そのため、第1層目のエピタキシャル層の成長温度は、反応種のマイグレーション不良による結晶欠陥が少なく、且つ、バンチングステップの高さが比較的小さいくなるような温度であることが望ましい。また第2層目のエピタキシャル層の成長温度は、バンチングステップの高さが小さくなるような温度であることが望ましい。
 図18はエピタキシャル層の成長温度とバンチングステップの高さとの関係を示す図であり、図19はエピタキシャル層の成長温度とマイグレーション不良に起因する結晶欠陥密度との関係を示した図である。これらは、エピタキシャル層の成長膜厚を約2μm程度とした場合の例である。図18、図19から、エピタキシャル層の成長温度が1550℃以上1650℃以下の範囲内では、マイグレーション不良による結晶欠陥密度とバンチングステップ高さの両方が小さくなることが分かる。また1450℃以上1550℃以下の範囲内の値では、バンチングステップの高さが小さくなることも分かる。
 従って、第1層目のエピタキシャル層の成長温度は、1550℃以上1650℃以下であることが望ましく、さらに望ましくは1570℃以上1620℃以下である。また第2層目のエピタキシャル層の成長温度は、1450℃以上1550℃以下であることが望ましく、さらに望ましくは1470℃以上1520℃以下である。
 又、上記の例では、SiC基板のオフ角の方向を〈11-29〉方向としているが、ステップとテラスとが存在すれば同様に既述した効果が得られると考えられるため、SiC基板のオフ角の方向を例えば〈1-100〉方向とする場合、又は、SiC基板の他の面へのオフの形成の場合に於いても、同等の効果がある。
 更に、上記の例では、オフ角が5度以下のn型SiC基板上のn型エピタキシャル層を想定しているが、5度以下のオフ角が形成されているSiC基板であれば、1)n型SiC基板上のp型エピタキシャル層の形成、2)p型SiC基板上のp型エピタキシャル層の形成、又は、3)p型SiC基板上のn型エピタキシャル層の形成の各々の場合に於いても、既述した成長温度がT1>T2の条件下で2層のエピタキシャル層から成るドリフト層を形成する製造方法を同様に適用して同等の効果が得られる。
 また、今回は成長ガスとしては、モノシラン、プロパンを使用したが、ジシラン(Si26)、ジクロルシラン(SiH2Cl2)、トリクロルシラン(SiHCl3)などの他の成長ガスや、他の炭化水素ガスを用いても上記と同様の効果が得られる。
 以上の通り、本実施の形態によれば、5度以下のオフ角が形成されているSiC基板の主面上に半導体装置のドリフト層をエピタキシャル層により形成する際に於いて、反応種のマイグレーション不良による結晶欠陥の密度を低減化することが出来、且つ、バンチングステップの高さをも比較的小さく抑制することが出来る。又、第2層目のエピタキシャル層の成長温度が第1層目のエピタキシャル層の成長温度よりも低いため、均熱性が向上し、エピタキシャル層厚及びキャリア濃度面内分布が改善される。更に、ウエハ間、或いは、ロット間でのエピタキシャル成長のマージンも広げることが出来る。
 又、本実施の形態に係る製造方法により製造されたドリフト層2,3の採用により、SiC半導体装置に於けるチャネル部でのキャリアの散乱を抑制し得る。
 (実施の形態2)
 図15は、本実施の形態に係るSiCショットキダイオード(以下「SIC-SBD」と言う。)の構造を示す縦断面図である。以下に、図15のSiC-SBDの製造方法について記載する。
 先ず、オフ角が5度以下(例えばオフ角は4度に設定される。)であるSiCより成るn型(第1導電型)基板1の主面ないしは表面上に、当該主面に接して成長温度T1に於いてn型の第1エピタキシャル層2をエピタキシャル成長させる。それに引き続いて、第1エピタキシャル層2の上面上に、且つ、当該上面に接して、第1エピタキシャル層2の成長温度T1よりも低い成長温度T2(図10又は図14を参照。)の下でn型の第2エピタキシャル層3をエピタキシャル成長させ、その後に、同層3の表面を犠牲酸化する。
 次に、耐圧を高めるための終端構造14を作製するために、n型の第2エピタキシャル層3の表面上に、所望のパターンを有するフォトレジストパターニングマスク(図示せず。)を形成する。そして、当該マスクの上から不純物イオンを注入し、n型の第2エピタキシャル層3内に、最終的に終端構造14となるべきイオン注入層を形成する。その後、上記マスク及び犠牲酸化膜を除去する。
 この後、注入された不純物原子を活性化させるための活性化アニール処理を行うことで、p型(第2導電型)の終端構造14を形成する。
 最後に、SiC基板の裏面上にオーミック接合するオーミック電極15を形成し、第2エピタキシャル層3の表面及び終端構造14の表面より成る基板表面上にショットキー接合するショットキー電極16を形成する。
 以上の製造過程を経ることで、実施の形態1の縦型SiC-MOSFETの場合と同様に、バンチングステップの高さが小さく抑制され且つ原料のマイグレーション不良に起因する結晶欠陥の密度が低減化されたエピタキシャル層(2+3)を備えるSiC-SBDが完成する。
 (実施の形態3)
 図16は、本実施の形態に係る製造方法により作成された、オフ角が5度以下のSiC基板を有するSiC-MOSFETの構造を示す縦断面図である。図16のSiC-MOSFETが図1のSiC-MOSFETと構造上相違する点は、ドリフト層が1層のエピタキシャル層3より成り、p型のベース領域4の表面の内でソース領域5が形成されていない表面部分上と、一対のベース領域4の対向する当該表面部分同士で挟まれたドリフト層3の表面上とに、2層のn型の第1及び第2エピタキシャル層10,11が配設されている点である。図16に於いては、第1及び第2エピタキシャル層10,11がSiC-MOSFETのチャネル部を成す。
 本実施の形態の目的は、ドリフト層3の表面上の第1及び第2エピタキシャル層10,11内のバンチングステップの高さを抑制する、さらにはエピタキシャル層同士の界面に起因する欠陥格子の密度を低減化するための製造方法を提案することにある。以下、図16を基に、本実施の形態に係る製造方法を記載する。
 図16に於いて、ドリフト層3内のp型ベース領域4内に注入されたイオンの活性化アニール処理によりn型のソース領域5を形成する迄の処理工程は、第1ドリフト層2を形成する工程を除いて、実施の形態1に於いて既述したプロセスと同様のプロセスである。その上で、注入イオンの活性化後に、犠牲酸化を行い、n型の第1エピタキシャル層10を形成し、引き続いて第1エピタキシャル層10の直上に且つ同層10の表面と接する様に、第1エピタキシャル層10の成長温度よりも低い成長温度で、n型の第2エピタキシャル層11をエピタキシャル成長させる。
 続いて、第1及び第2エピタキシャル層10,11上にレジストマスク(図示せず。)を形成し、チャネルとなる部分を除いて第1及び第2エピタキシャル層10,11を除去する。これにより、チャネル部は、一対のベース領域4及びソース領域5が当該チャネル部の両端部下方に位置し、対向し合うベース領域4間に挟まれたドリフト層3の部分が当該チャネル部の中央直下に位置する様な形状に、パターニングされる。
 次に、ゲート絶縁膜6を、熱酸化或いは堆積によって、形成する。そのゲート絶縁膜6の直上にゲート電極7を成膜した上でパターニングする。ゲート電極7は、一対のベース領域4及びソース領域5が同電極7の両端部の下方に位置し、対向し合うベース領域4間で挟まれたドリフト層3の一部分が同電極7の中央部の下方に位置する様な形状に、パターニングされる。
 更に、各ソース領域5上のゲート絶縁膜6の残余の部分は、フォトリソグラフィ技術及びエッチング技術によって除去され、その除去後に、ソース領域5が露出した部分上にソース電極8を成膜した上でパターニングする。又、SiC基板1の裏面上に、ドレイン電極9を形成する。以上の処理工程を経て、図16に示す様な素子構造の主要部が完成する。
 本実施の形態に於いては、(第1エピタキシャル層10の成長温度T1)>(第2エピタキシャル層11の成長温度T2)の条件の下に於いて第1及び第2エピタキシャル層10,11をドリフト層3の上面上にエピタキシャル成長させているので、1)エピタキシャル層であるドリフト層3と第1エピタキシャル層10との界面を起点とする格子欠陥の密度を低減することが出来ると共に、2)第2エピタキシャル層11内に於いてバンチングステップの高さをも抑えることが出来ると言う、利点が得られる。
 尚、本実施の形態に於けるドリフト層3に代えて、実施の形態1に於いて既述した第1及び第2ドリフト層2,3をも本実施の形態に適用することは可能である。これにより、既述した実施の形態1の効果も相乗的に得られる。
 (実施の形態4)
 図17は、本実施の形態に係る製造方法により作成された、オフ角が5度以下のSiC基板を有するSiC-MOSFETの構造を示す縦断面図である。図17に示されるSiC-MOSFETでは、ドリフト層3上にドリフト層3とは異なるキャリア濃度で2層のn型の第1及び第2エピタキシャル層10,11を成長させ、これらn型の第1及び第2エピタキシャル層10,11を本SiC-MOSFETのチャネル部として構成している。本実施の形態の主目的は、ドリフト層3の表面上の第1及び第2エピタキシャル層10,11内のバンチングステップの高さを抑制する、さらにはエピタキシャル層同士の界面に起因する欠陥格子の密度を低減化するための製造方法を提案することにある。
 オフ角が5度以下のSiC基板1上にドリフト層3をエピタキシャル成長させた後、ドリフト層3とは異なるキャリア濃度でn型の第1エピタキシャル層12を成長温度T1でエピタキシャル成長させる。更に、第1エピタキシャル層12の上面上に且つ当該上面に接する様に、第1エピタキシャル層12の成長温度T1よりも低い成長温度T2でエピタキシャル成長を行うことにより、第2エピタキシャル層13を形成する。その後、実施の形態1のドリフト層の形成後のプロセスと同様のプロセスを踏むことにより、図17に示す様な素子構造の主要部が完成する。
 本実施の形態に於いては、(第1エピタキシャル層12の成長温度T1)>(第2エピタキシャル層13の成長温度T2)の条件下に於いて第1及び第2エピタキシャル層12,13をドリフト層3の上面上にエピタキシャル成長させているので、1)エピタキシャル層であるドリフト層3と第1エピタキシャル層12との界面を起点とする格子欠陥の密度を低減することが出来ると共に、2)第2エピタキシャル層13内に於いてバンチングステップの高さをも抑えることが出来ると言う、利点が得られる。
 尚、本実施の形態に於けるドリフト層3に代えて、実施の形態1に於いて既述した第1及び第2ドリフト層2,3をも本実施の形態に適用することは可能である。これにより、既述した実施の形態1の効果も相乗的に得られる。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 1 n型(第1導電型に該当。)のSiC基板、 2 n型のSiCから成る第1ドリフト層、 3 第1ドリフト層よりも低い成長温度でエピタキシャル成長させたn型のSiCからなる第2ドリフト層、4 p型(第2導電型に該当。)のベース層、5 n型のソース領域、6 ゲート絶縁膜、7 ゲート電極、8 ソース電極、9 ドレイン電極、10 n型のSiCから成る第1エピタキシャル層、 11 第1エピタキシャル層よりも低い成長温度でエピタキシャル成長させたn型のSiCから成る第2エピタキシャル層、12 n型のSiCから成る第1エピタキシャル層、13 第1エピタキシャル層よりも低い成長温度でエピタキシャル成長させたn型のSiCから成る第2エピタキシャル層、14 終端構造、15 オーミック電極、16 ショットキー電極。

Claims (9)

  1.  オフ角を有する炭化珪素半導体基板(1)の主面上に、第1エピタキシャル層(2,10,12)を成長させる工程と、
     前記第1エピタキシャル層の上面上であって且つ前記第1エピタキシャル層の前記上面と接して、前記第1エピタキシャル層の成長温度よりも低い成長温度で第2エピタキシャル層(2,11,13)を成長させる工程とを、
    備えることを特徴とする、
    炭化珪素半導体装置の製造方法。
  2.  請求項1記載の炭化珪素半導体装置の製造方法であって、
     前記炭化珪素半導体基板の前記オフ角は5度以下である、
    炭化珪素半導体装置の製造方法。
  3.  請求項1記載の炭化珪素半導体装置の製造方法であって、
     前記第1エピタキシャル層は、前記炭化珪素半導体基板の前記主面と接してエピタキシャル成長されることを特徴とする、
    炭化珪素半導体装置の製造方法。
  4.  請求項3記載の炭化珪素半導体装置の製造方法であって、
     前記第1及び第2エピタキシャル層は、当該炭化珪素半導体装置のドリフト層(2,3)として用いられる、
    炭化珪素半導体装置の製造方法。
  5.  請求項3記載の炭化珪素半導体装置の製造方法であって、
     前記第2エピタキシャル層上にショットキー接合する電極(16)を形成する工程をさらに備える、
    炭化珪素半導体装置の製造方法。
  6.  請求項1記載の炭化珪素半導体装置の製造方法であって、
     前記第1エピタキシャル層(10)は、前記炭化珪素半導体基板の前記主面と接して配設されたエピタキシャル層であるドリフト層の上面と接してエピタキシャル成長されることを特徴とする、
    炭化珪素半導体装置の製造方法。
  7.  請求項6記載の炭化珪素半導体装置の製造方法であって、
     前記第1及び第2エピタキシャル層は、当該炭化珪素半導体装置のチャネル部(10,11,12,13)として用いられる、
    炭化珪素半導体装置の製造方法。
  8.  請求項1記載の炭化珪素半導体装置の製造方法であって、
     前記第1エピタキシャル層の成長温度は、1570℃以上1620℃以下である、
    炭化珪素半導体装置の製造方法。
  9.  請求項1記載の炭化珪素半導体装置の製造方法であって、
     前記第2エピタキシャル層の成長温度は、1470℃以上1520℃以下である、
    炭化珪素半導体装置の製造方法。
PCT/JP2010/052153 2009-03-05 2010-02-15 炭化珪素半導体装置の製造方法 WO2010101016A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011502705A JP5393772B2 (ja) 2009-03-05 2010-02-15 炭化珪素半導体装置の製造方法
CN201080010581.7A CN102341893B (zh) 2009-03-05 2010-02-15 碳化硅半导体装置的制造方法
DE112010000953.8T DE112010000953B4 (de) 2009-03-05 2010-02-15 Verfahren zum Herstellen einer Siliziumkarbid-Halbleitervorrichtung
US13/148,537 US8569106B2 (en) 2009-03-05 2010-02-15 Method for manufacturing silicon carbide semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-051551 2009-03-05
JP2009051551 2009-03-05

Publications (1)

Publication Number Publication Date
WO2010101016A1 true WO2010101016A1 (ja) 2010-09-10

Family

ID=42709577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052153 WO2010101016A1 (ja) 2009-03-05 2010-02-15 炭化珪素半導体装置の製造方法

Country Status (6)

Country Link
US (1) US8569106B2 (ja)
JP (1) JP5393772B2 (ja)
KR (1) KR20110116203A (ja)
CN (1) CN102341893B (ja)
DE (1) DE112010000953B4 (ja)
WO (1) WO2010101016A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013239606A (ja) * 2012-05-16 2013-11-28 Mitsubishi Electric Corp 炭化珪素エピタキシャルウェハの製造方法
WO2014125550A1 (ja) * 2013-02-13 2014-08-21 三菱電機株式会社 SiCエピタキシャルウエハの製造方法
JP2014154666A (ja) * 2013-02-07 2014-08-25 Sumitomo Electric Ind Ltd 炭化珪素半導体基板の製造方法および炭化珪素半導体装置の製造方法
WO2015170500A1 (ja) * 2014-05-08 2015-11-12 三菱電機株式会社 SiCエピタキシャルウエハおよび炭化珪素半導体装置の製造方法
JP2015213102A (ja) * 2014-05-01 2015-11-26 信越半導体株式会社 エピタキシャルウェーハの製造方法
JP2017183589A (ja) * 2016-03-31 2017-10-05 住友電気工業株式会社 炭化珪素半導体基板および半導体装置の製造方法
JP2018006384A (ja) * 2016-06-27 2018-01-11 昭和電工株式会社 SiCエピタキシャルウェハの製造方法
JP2020047943A (ja) * 2014-08-29 2020-03-26 住友電気工業株式会社 炭化珪素半導体装置
JP2020178141A (ja) * 2019-04-03 2020-10-29 住友電気工業株式会社 半導体装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012064873A (ja) * 2010-09-17 2012-03-29 Rohm Co Ltd 半導体装置およびその製造方法
JP5814881B2 (ja) 2012-07-31 2015-11-17 株式会社東芝 トランジスタ及びその製造方法
KR20140055338A (ko) * 2012-10-31 2014-05-09 엘지이노텍 주식회사 에피택셜 웨이퍼 및 그 제조 방법
JP6036200B2 (ja) * 2012-11-13 2016-11-30 富士電機株式会社 炭化珪素半導体装置の製造方法
KR102098209B1 (ko) * 2013-02-05 2020-04-08 엘지이노텍 주식회사 에피택셜 웨이퍼 및 그 제조 방법
KR102131245B1 (ko) * 2013-06-28 2020-08-05 엘지이노텍 주식회사 에피택셜 웨이퍼
KR102128495B1 (ko) * 2013-05-21 2020-06-30 엘지이노텍 주식회사 에피택셜 웨이퍼
KR102053077B1 (ko) * 2012-11-30 2020-01-08 엘지이노텍 주식회사 에피택셜 웨이퍼 및 그 제조 방법
KR102119755B1 (ko) * 2012-11-30 2020-06-08 엘지이노텍 주식회사 에피택셜 웨이퍼 및 그 제조 방법
WO2014084550A1 (ko) * 2012-11-30 2014-06-05 엘지이노텍 주식회사 에피택셜 웨이퍼, 이를 이용한 스위치 소자 및 발광 소자
CN104779141A (zh) * 2015-04-16 2015-07-15 中国科学院半导体研究所 低偏角碳化硅同质外延材料的制作方法
CN104934318B (zh) * 2015-06-08 2018-12-04 国网智能电网研究院 一种n型低缺陷碳化硅外延片的制备方法
CN105006423B (zh) * 2015-06-08 2018-12-18 国网智能电网研究院 一种p型低偏角碳化硅外延片的制备方法
CN105006425A (zh) * 2015-06-08 2015-10-28 国网智能电网研究院 一种无台阶聚集低偏角碳化硅外延生长方法
CN105826186B (zh) * 2015-11-12 2018-07-10 中国电子科技集团公司第五十五研究所 高表面质量碳化硅外延层的生长方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009013914A1 (ja) * 2007-07-26 2009-01-29 Ecotron Co., Ltd. SiCエピタキシャル基板およびその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248385A (en) * 1991-06-12 1993-09-28 The United States Of America, As Represented By The Administrator, National Aeronautics And Space Administration Process for the homoepitaxial growth of single-crystal silicon carbide films on silicon carbide wafers
JP3047666B2 (ja) 1993-03-16 2000-05-29 富士電機株式会社 シリコンオキサイド半導体膜の成膜方法
JPH10256666A (ja) 1997-03-13 1998-09-25 Hitachi Ltd 窒化物系化合物半導体の結晶成長方法及び半導体発光素子
EP1215730B9 (en) * 1999-09-07 2007-08-01 Sixon Inc. SiC WAFER, SiC SEMICONDUCTOR DEVICE AND PRODUCTION METHOD OF SiC WAFER
JP2002270516A (ja) * 2001-03-07 2002-09-20 Nec Corp Iii族窒化物半導体の成長方法、iii族窒化物半導体膜およびそれを用いた半導体素子
TW200402796A (en) * 2002-03-29 2004-02-16 Tokyo Electron Ltd Forming method of substrate insulation film
CN100405545C (zh) * 2003-06-06 2008-07-23 三垦电气株式会社 氮化物类半导体元件及其制造方法
JP4449357B2 (ja) 2003-07-08 2010-04-14 日立電線株式会社 電界効果トランジスタ用エピタキシャルウェハの製造方法
US7109521B2 (en) * 2004-03-18 2006-09-19 Cree, Inc. Silicon carbide semiconductor structures including multiple epitaxial layers having sidewalls
JP2006120897A (ja) 2004-10-22 2006-05-11 Matsushita Electric Ind Co Ltd 炭化珪素素子及びその製造方法
US7391058B2 (en) * 2005-06-27 2008-06-24 General Electric Company Semiconductor devices and methods of making same
EP2083448A4 (en) * 2006-11-10 2010-11-17 Sumitomo Electric Industries SEMICONDUCTOR DEVICE OF SILICON CARBIDE AND METHOD OF MANUFACTURING THE SAME
US8198675B2 (en) * 2006-11-21 2012-06-12 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and method of manufacturing the same
JP5274030B2 (ja) * 2007-03-07 2013-08-28 リコー光学株式会社 投射光学系およびプロジェクタ装置および画像読取装置
JP2008222509A (ja) * 2007-03-14 2008-09-25 Matsushita Electric Ind Co Ltd SiCエピタキシャル膜付き単結晶基板の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009013914A1 (ja) * 2007-07-26 2009-01-29 Ecotron Co., Ltd. SiCエピタキシャル基板およびその製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013239606A (ja) * 2012-05-16 2013-11-28 Mitsubishi Electric Corp 炭化珪素エピタキシャルウェハの製造方法
US9633840B2 (en) 2013-02-07 2017-04-25 Sumitomo Electric Industries, Ltd. Method of manufacturing silicon carbide semiconductor substrate and method of manufacturing silicon carbide semiconductor device
JP2014154666A (ja) * 2013-02-07 2014-08-25 Sumitomo Electric Ind Ltd 炭化珪素半導体基板の製造方法および炭化珪素半導体装置の製造方法
WO2014125550A1 (ja) * 2013-02-13 2014-08-21 三菱電機株式会社 SiCエピタキシャルウエハの製造方法
JP6012841B2 (ja) * 2013-02-13 2016-10-25 三菱電機株式会社 SiCエピタキシャルウエハの製造方法
JPWO2014125550A1 (ja) * 2013-02-13 2017-02-02 三菱電機株式会社 SiCエピタキシャルウエハの製造方法
US9988738B2 (en) 2013-02-13 2018-06-05 Mitsubishi Electric Corporation Method for manufacturing SiC epitaxial wafer
JP2015213102A (ja) * 2014-05-01 2015-11-26 信越半導体株式会社 エピタキシャルウェーハの製造方法
WO2015170500A1 (ja) * 2014-05-08 2015-11-12 三菱電機株式会社 SiCエピタキシャルウエハおよび炭化珪素半導体装置の製造方法
JPWO2015170500A1 (ja) * 2014-05-08 2017-04-20 三菱電機株式会社 SiCエピタキシャルウエハおよび炭化珪素半導体装置の製造方法
JP2020047943A (ja) * 2014-08-29 2020-03-26 住友電気工業株式会社 炭化珪素半導体装置
JP2017183589A (ja) * 2016-03-31 2017-10-05 住友電気工業株式会社 炭化珪素半導体基板および半導体装置の製造方法
JP2018006384A (ja) * 2016-06-27 2018-01-11 昭和電工株式会社 SiCエピタキシャルウェハの製造方法
JP2020178141A (ja) * 2019-04-03 2020-10-29 住友電気工業株式会社 半導体装置

Also Published As

Publication number Publication date
DE112010000953T5 (de) 2012-07-26
JPWO2010101016A1 (ja) 2012-09-06
JP5393772B2 (ja) 2014-01-22
DE112010000953B4 (de) 2017-08-24
CN102341893A (zh) 2012-02-01
KR20110116203A (ko) 2011-10-25
US20110312161A1 (en) 2011-12-22
US8569106B2 (en) 2013-10-29
CN102341893B (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
JP5393772B2 (ja) 炭化珪素半導体装置の製造方法
US8203150B2 (en) Silicon carbide semiconductor substrate and method of manufacturing the same
CN108807154B (zh) 碳化硅外延晶片、碳化硅绝缘栅双极型晶体管及制造方法
US20070015333A1 (en) Method for manufacturing silicon carbide semiconductor devices
US9752254B2 (en) Method for manufacturing a single-crystal 4H—SiC substrate
JP2004241507A (ja) 半導体基板及び電界効果型トランジスタ並びにこれらの製造方法
JP2015503215A (ja) 炭化ケイ素エピタキシャル成長法
JP5730393B2 (ja) 複合基板およびその製造方法
JP6479347B2 (ja) SiCエピタキシャルウェハの製造装置、およびSiCエピタキシャルウェハの製造方法
WO2016140051A1 (ja) SiCエピタキシャルウェハ、SiCエピタキシャルウェハの製造方法
JP2016063190A (ja) 炭化珪素エピタキシャル基板の製造方法、炭化珪素エピタキシャル基板および炭化珪素半導体装置
JP5999687B2 (ja) SiCエピタキシャルウエハおよびそれを用いたSiC半導体素子
JP6758491B2 (ja) SiCエピタキシャルウエハおよびその製造方法
JP2013049609A (ja) SiCエピタキシャルウエハおよびそれを用いたSiC半導体素子
JP5545310B2 (ja) 炭化珪素エピタキシャルウエハの製造方法、および、炭化珪素エピタキシャルウエハ、ならびに、炭化珪素半導体装置
JP2004200234A (ja) 半導体及び半導体基板、その製造方法、並びに半導体素子
WO2017199792A1 (ja) 炭化珪素エピタキシャル基板および炭化珪素半導体装置
JP4826373B2 (ja) 単結晶ウェハの製造方法
JP6338490B2 (ja) 炭化珪素エピタキシャルウエハ、炭化珪素半導体装置および炭化珪素エピタキシャルウエハの製造方法
JP2012084702A (ja) ダイヤモンド電子素子及びその製造方法
JP2009218272A (ja) 化合物半導体基板およびその製造方法
JP4546982B2 (ja) 半導体装置の製造方法
JP2006216632A (ja) Soiウエハの製造方法
CN114975127B (zh) 一种碳化硅平面式功率mosfet器件的制造方法
WO2024089963A1 (ja) スーパージャンクション構造を有する半導体素子の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080010581.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748612

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011502705

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13148537

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117020499

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120100009538

Country of ref document: DE

Ref document number: 112010000953

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10748612

Country of ref document: EP

Kind code of ref document: A1