WO2010061744A1 - シロキサン樹脂組成物およびそれを用いたタッチパネル用保護膜 - Google Patents

シロキサン樹脂組成物およびそれを用いたタッチパネル用保護膜 Download PDF

Info

Publication number
WO2010061744A1
WO2010061744A1 PCT/JP2009/069421 JP2009069421W WO2010061744A1 WO 2010061744 A1 WO2010061744 A1 WO 2010061744A1 JP 2009069421 W JP2009069421 W JP 2009069421W WO 2010061744 A1 WO2010061744 A1 WO 2010061744A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
siloxane resin
polysiloxane
compound
Prior art date
Application number
PCT/JP2009/069421
Other languages
English (en)
French (fr)
Inventor
斉 荒木
諏訪 充史
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2009548920A priority Critical patent/JP5589387B2/ja
Priority to CN2009801475664A priority patent/CN102227455B/zh
Priority to EP09828992.9A priority patent/EP2360194B1/en
Priority to US13/130,843 priority patent/US8492450B2/en
Publication of WO2010061744A1 publication Critical patent/WO2010061744A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/148Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/08Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C09D151/085Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/10Block or graft copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • the present invention relates to a siloxane resin composition and a protective film for a touch panel using the same.
  • hard coat materials are used for various purposes, and are used for improving the surface hardness of, for example, containers for automobile parts, cosmetics, sheets, films, optical disks, thin displays, and the like. Properties required for the hard coat material include heat resistance, weather resistance, adhesiveness, etc. in addition to hardness and scratch resistance.
  • a representative example of the hard coat material is a radical polymerization type UV curable hard coat (see, for example, Non-Patent Document 1), and the constitution thereof is a polymerizable group-containing oligomer, monomer, photopolymerization initiator, and other additives. It is. The oligomer and the monomer are radically polymerized by UV irradiation to crosslink and obtain a high hardness film.
  • This hard coat material has the advantage that the time required for curing is short and the productivity is improved, and a negative photosensitive material by a general radical polymerization mechanism can be used, and the production cost is low.
  • a negative photosensitive material by a general radical polymerization mechanism can be used, and the production cost is low.
  • the hardness and scratch resistance are low compared to other hard coat materials, and there is a problem that cracks are caused due to volume shrinkage due to UV curing.
  • Touch panels are one of the main uses of hard coat materials.
  • the current mainstream resistive film type touch panel cannot be processed at high temperature because the sensor is mounted on the film.
  • the above-mentioned UV curable hard coat that does not require thermal curing or can obtain a cured film by low-temperature curing has been favorably used (for example, see Patent Document 1).
  • the capacitive touch panel that has been attracting attention in recent years forms an ITO (Indium Tin Oxide) film on glass that can be processed at a high temperature, and thus can form a transparent ITO film that has been sufficiently crystallized. .
  • ITO Indium Tin Oxide
  • the surface protective film is required to have higher hardness because there is no layer having a function of mitigating external impacts such as a resistive touch panel.
  • a capacitive touch panel for example, a glass having an ITO film is used as a substrate and a protective film formed of high-hardness inorganic SiO 2 , SiNx, transparent resin, or the like is disclosed.
  • an inorganic hard coat is formed by forming SiO 2 or SiNx at a high temperature by CVD (Chemical Vapor Deposition), or by performing high temperature treatment near 300 ° C. for a long time after coating SOG (Spin On Glass).
  • the UV curable coating composition includes (A) a metal oxide colloidal sol, (B) an alkoxysilane hydrolyzed condensate containing a specific organic functional group at least partially and having a controlled molecular weight distribution, (C) A composition containing a photopolymerization initiator is known (for example, see Patent Document 3). However, these do not have pattern processability and are not sufficient for application as a protective film for a touch panel. Moreover, the photocurable organopolysiloxane composition containing (meth) acryloyloxy group containing organopolysiloxane and a photosensitizer is disclosed (for example, refer patent document 4).
  • Such a composition is limited to an organic solvent as a developer and is not suitable for a touch panel manufacturing process. It also contains polysiloxane obtained by hydrolysis and condensation of phenyltrialkoxysilane and dicarboxylic anhydride group-containing alkoxysilane, a compound containing a double bond and / or a triple bond, a photopolymerization initiator, and a solvent.
  • a resin composition is disclosed (for example, see Patent Document 5).
  • Patent Document 5 such a composition is insufficient in hardness and scratch resistance for use as a hard coat material.
  • JP 2001-330707 A JP 2007-279819 A JP 2007-277332 A JP 2003-227949 A JP 2008-208342 A
  • An object of the present invention is to provide a siloxane resin composition that provides a cured film having excellent pattern processability, high hardness and excellent scratch resistance by UV curing and thermal curing.
  • the present invention relates to (A) a polysiloxane having a carboxyl group and a radically polymerizable group, (B) a photoradical polymerization initiator, and (C) a compound having a radically polymerizable group and containing no Si—O—Si bond. It is a siloxane resin composition characterized by containing.
  • the siloxane resin composition of the present invention is excellent in pattern processability, and a cured film having high hardness and excellent scratch resistance can be obtained by UV curing and thermal curing.
  • the siloxane resin composition of the present invention comprises (A) a polysiloxane having a carboxyl group and a radically polymerizable group, (B) a photoradical polymerization initiator, and (C) a radically polymerizable group having a Si—O—Si bond. Contains compounds that do not contain.
  • the siloxane resin composition of the present invention contains (A) a polysiloxane having a carboxyl group and a radical polymerizable group.
  • a carboxyl group in the polysiloxane it is possible to improve alkali solubility (developability) and suppress a residue after development to form a good pattern.
  • a radical polymerizable group by having a radical polymerizable group, a cross-linking reaction between (A) a compound having a radical polymerizable group and not containing a Si—O—Si bond and (A) polysiloxane occurs, and the resulting cured film has Since the crosslinking density is improved, the hardness of the cured film can be dramatically improved.
  • the sensitivity of a siloxane resin composition can be improved.
  • crosslinking can be promoted uniformly, and the scratch resistance of the resulting cured film is improved. Two or more of these polysiloxanes may be contained.
  • the content of the carboxyl group in the polysiloxane having a carboxyl group and a radical polymerizable group is preferably 0.05 mol or more with respect to 1 mol of the Si atom, and development residues can be reduced. Crack resistance can be improved. More preferably, it is 0.1 mol or more. Moreover, 0.8 mol or less is preferable and the hardness of a cured film can be improved more. More preferably, it is 0.5 mol or less. Moreover, when it contains 2 or more types of (A) polysiloxane, it is preferable that at least 1 type is carboxyl group content in the said range.
  • the content of the carboxyl group in the polysiloxane is, for example, measured by measuring 29 Si-nuclear magnetic resonance spectrum of the polysiloxane, and the ratio of the peak area of Si bonded with a carboxyl group to the peak area of Si not bonded with a carboxyl group. Can be obtained from When Si and carboxyl groups are not directly bonded, the content of carboxyl groups in the entire polysiloxane can be calculated from the integral ratio of the peaks derived from carboxyl groups and other peaks excluding silanol groups from 1 H-nuclear magnetic resonance spectra. The content of the carboxyl group indirectly bonded is calculated together with the result of the 29 Si-nuclear magnetic resonance spectrum described above. In addition, the content of the carboxyl group can also be calculated by measuring the acid value after calculating the ratio of the carboxyl group to the silanol group from the 1 H-nuclear magnetic resonance spectrum.
  • the content of the radical polymerizable group in the polysiloxane having a carboxyl group and a radical polymerizable group is preferably 0.05 mol or more, more preferably 0.1 mol or more with respect to 1 mol of the Si atom. Moreover, 0.8 mol or less is preferable and 0.6 mol or less is more preferable. If it is the said range, the cured film which makes hardness, scratch resistance, and crack resistance compatible in a higher level will be obtained. Moreover, when it contains 2 or more types of (A) polysiloxane, it is preferable that at least 1 type is radical polymerizable group content in the said range.
  • the content of the radical polymerizable group in the polysiloxane can be determined by, for example, performing thermogravimetric analysis (TGA) of the obtained polymer up to 900 ° C. in the atmosphere and confirming that the ash content is SiO 2 by infrared absorption analysis. Then, after calculating the number of moles of Si atoms per 1 g of the polymer from the weight reduction rate, it can be calculated by measuring the iodine value.
  • TGA thermogravimetric analysis
  • the weight average molecular weight (Mw) of the polysiloxane having a carboxyl group and a radical polymerizable group used in the siloxane resin composition of the present invention is not particularly limited, but polystyrene measured by gel permeation chromatography (GPC) In terms of conversion, it is preferably 1,000 or more, more preferably 2,000 or more. Moreover, Preferably it is 100,000 or less, More preferably, it is 50,000 or less. By setting Mw within the above range, good coating characteristics can be obtained, and the solubility in a developer during pattern formation is also good.
  • the polysiloxane having a carboxyl group and a radical polymerizable group used in the siloxane resin composition of the present invention contains a carboxyl group and a radical polymerizable group in the same molecule is determined by GPC and normal phase. Determine if partition chromatography provides a single peak. In the case of a combination of polymers having different polarities, even if it is a single peak by GPC, a plurality of peaks are observed by normal phase partition chromatography.
  • the content of the polysiloxane having a carboxyl group and a radical polymerizable group is not particularly limited, and can be arbitrarily selected depending on the desired film thickness and application.
  • the content is generally 0.1 to 80% by weight. Moreover, 10 weight% or more in solid content is preferable.
  • the polysiloxane having a carboxyl group and a radical polymerizable group used in the siloxane resin composition of the invention is, for example, an organosilane compound having a carboxyl group and / or a dicarboxylic anhydride group and an organo having a radical polymerizable group. It is obtained by hydrolyzing an organosilane compound containing a silane compound and condensing the hydrolyzate.
  • organosilane compound having a carboxyl group examples include a urea group-containing organosilane compound represented by the following general formula (2) or a urethane group-containing organosilane compound represented by the following general formula (3). Two or more of these may be used.
  • R 4 , R 6 and R 10 represent a divalent organic group having 1 to 20 carbon atoms.
  • R 5 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 7 to R 9 each represents an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a phenyl group, a phenoxy group, an alkylcarbonyloxy group having 2 to 6 carbon atoms, or a substituted product thereof.
  • at least one of R 7 to R 9 is an alkoxy group, a phenoxy group or an acetoxy group.
  • R 4 and R 10 in the general formulas (2) to (3) include a methylene group, an ethylene group, an n-propylene group, an n-butylene group, a phenylene group, —CH 2 —C 6 H 4 —.
  • hydrocarbon groups such as CH 2 — and —CH 2 —C 6 H 4 —.
  • a hydrocarbon group having an aromatic ring such as a phenylene group, —CH 2 —C 6 H 4 —CH 2 —, —CH 2 —C 6 H 4 — or the like is preferable from the viewpoint of heat resistance.
  • R 5 in the general formula (2) is preferably hydrogen or a methyl group from the viewpoint of reactivity.
  • R 6 in the general formulas (2) to (3) include hydrocarbon groups such as a methylene group, an ethylene group, an n-propylene group, an n-butylene group and an n-pentylene group, an oxymethylene group, Examples thereof include an oxyethylene group, an oxy n-propylene group, an oxy n-butylene group, and an oxy n-pentylene group.
  • hydrocarbon groups such as a methylene group, an ethylene group, an n-propylene group, an n-butylene group and an n-pentylene group, an oxymethylene group
  • methylene group, ethylene group, n-propylene group, n-butylene group, oxymethylene group, oxyethylene group, oxy n-propylene group, and oxy n-butylene group are preferable from the viewpoint of easy synthesis.
  • R 7 to R 9 in the general formulas (2) to (3) specific examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group. From the viewpoint of ease of synthesis, a methyl group or an ethyl group is preferable.
  • Specific examples of the alkoxy group include methoxy group, ethoxy group, n-propoxy group, isopropoxy group and the like. From the viewpoint of ease of synthesis, a methoxy group or an ethoxy group is preferable.
  • examples of the substituent of the substituent include a methoxy group and an ethoxy group. Specific examples include a 1-methoxypropyl group and a methoxyethoxy group.
  • the urea group-containing organosilane compound represented by the general formula (2) includes an aminocarboxylic acid compound represented by the following general formula (4) and an isocyanate group-containing organosilane compound represented by the following general formula (6). From the above, it can be obtained by a known urea reaction.
  • the urethane group-containing organosilane compound represented by the general formula (3) has a hydroxycarboxylic acid compound represented by the following general formula (5) and an isocyanate group represented by the following general formula (6). It can be obtained from an organosilane compound by a known urethanization reaction.
  • R 4 , R 6 and R 10 represent a divalent organic group having 1 to 20 carbon atoms.
  • R 5 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 7 to R 9 each represents an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a phenyl group, a phenoxy group, an alkylcarbonyloxy group having 2 to 6 carbon atoms, or a substituted product thereof.
  • at least one of R 7 to R 9 is an alkoxy group, a phenoxy group or an acetoxy group.
  • Preferred examples of R 4 - R 10 are as described above for R 4 - R 10 in the general formula (2) to (3).
  • organosilane compound having a carboxyl group examples include compounds represented by the general formula (7).
  • R 11 represents an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a phenyl group, a phenoxy group, an alkylcarbonyloxy group having 2 to 6 carbon atoms, or a substituted product thereof.
  • R ⁇ 11> may be the same or different and at least one is an alkoxy group, a phenoxy group, or an acetoxy group.
  • p represents an integer of 1 to 3.
  • q represents an integer of 2 to 20.
  • organosilane compound having a dicarboxylic anhydride group examples include organosilane compounds represented by any one of the following general formulas (8) to (10). Two or more of these may be used.
  • R 12 to R 14 , R 16 to R 18 and R 20 to R 22 are each an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a phenyl group, a phenoxy group, or 2 carbon atoms.
  • R 15 , R 19 and R 23 are each a single bond, a chain aliphatic hydrocarbon group, a cyclic aliphatic hydrocarbon group, a carbonyl group, an ether group, an ester group, an amide group, an aromatic group, or any of these It represents a divalent group having These groups may be substituted.
  • h and l each represents an integer of 0 to 3.
  • R 15 , R 19 and R 23 include —C 2 H 4 —, —C 3 H 6 —, —C 4 H 8 —, —O—, —C 3 H 6 OCH 2 CH (OH). Examples thereof include CH 2 O 2 C—, —CO—, —CO 2 —, —CONH—, and organic groups listed below.
  • organosilane compound represented by the general formula (8) examples include 3-trimethoxysilylpropyl succinic anhydride, 3-triethoxysilylsilylpropyl succinic anhydride, 3-triphenoxysilylpropyl succinic acid. An anhydride etc. are mentioned.
  • Specific examples of the organosilane compound represented by the general formula (9) include 3-trimethoxysilylsilylpropylcyclohexyl dicarboxylic acid anhydride.
  • organosilane compound represented by the general formula (10) include 3-trimethoxysilylsilylpropylphthalic anhydride.
  • radical polymerizable group of the organosilane compound having a radical polymerizable group examples include a vinyl group, an ⁇ -methylvinyl group, an allyl group, a styryl group, and a (meth) acryloyl group. Of these, a (meth) acryloyl group is preferred. By using a (meth) acryloyl group, the hardness of the cured film and the sensitivity during pattern processing can be further improved.
  • the (meth) acryloyl group represents a methacryloyl group or an acryloyl group.
  • organosilane compound having a radical polymerizable group examples include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri (methoxyethoxy) silane, vinylmethyldimethoxysilane, vinylmethyldiethoxysilane, vinylmethyldi (methoxyethoxy) silane, Allyltrimethoxysilane, allyltriethoxysilane, allyltri (methoxyethoxy) silane, allylmethyldimethoxysilane, allylmethyldiethoxysilane, allylmethyldi (methoxyethoxy) silane, styryltrimethoxysilane, styryltriethoxysilane, styryltri (methoxyethoxy) Silane, styrylmethyldimethoxysilane, styrylmethyldiethoxysilane, styrylmethyldi (methoxyethoxy) silane, ⁇ -acryl
  • ⁇ -acryloylpropyltrimethoxysilane, ⁇ -acryloylpropyltriethoxysilane, ⁇ -methacryloylpropyltrimethoxysilane, and ⁇ -methacryloylpropyltri Ethoxysilane is preferred.
  • the polysiloxane having a carboxyl group and a radical polymerizable group used in the siloxane resin composition of the present invention is an organosilane compound having a carboxyl group and / or a dicarboxylic anhydride group and an organosilane having a radical polymerizable group
  • organosilane compound containing the compound is hydrolyzed in the presence of metal compound particles described below and the hydrolyzate is condensed, the hardness, scratch resistance and crack resistance of the cured film are further improved.
  • metal compound particles By polymerizing polysiloxane in the presence of metal compound particles, chemical bonds (covalent bonds) with metal compound particles occur in at least part of the polysiloxane, and the metal compound particles are uniformly dispersed and the coating solution is stored. This is considered to improve stability and homogeneity of the cured film. Moreover, the refractive index of the cured film obtained can be adjusted with the kind of metal compound particle. In addition, as a metal compound particle, what is illustrated as a below-mentioned (D) metal compound particle can be used.
  • D below-mentioned
  • the polysiloxane having a carboxyl group and a radical polymerizable group used in the siloxane resin composition of the present invention may contain fluorine. By containing fluorine, the scratch resistance of the cured film is further improved.
  • the polysiloxane having fluorine is obtained by hydrolyzing an organosilane compound containing an organosilane compound having fluorine and condensing the hydrolyzate.
  • the polysiloxane of component (A) in the present invention has a carboxyl group and a radical polymerizable group, an organosilane compound having a carboxyl group and / or a dicarboxylic anhydride group, an organosilane compound having a radical polymerizable group It is preferable to hydrolyze an organosilane compound having fluorine and, if necessary, another organosilane compound, and condense the hydrolyzate.
  • organosilane having fluorine examples include trifluoromethyltrimethoxysilane, trifluoromethyltriethoxysilane, trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, perfluoropropyltrimethoxysilane, perfluoropropyltrimethoxysilane.
  • trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, tridecafluorooctyltrimethoxysilane, and tridecafluorooctyltriethoxysilane are particularly preferably used.
  • the polysiloxane having a carboxyl group and a radical polymerizable group used in the siloxane resin composition of the present invention may be synthesized using another organosilane compound in addition to the above organosilane compound.
  • organosilane compounds include methyltrimethoxysilane, methyltriethoxysilane, methyltri (methoxyethoxy) silane, methyltripropoxysilane, methyltriisopropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyl Triethoxysilane, hexyltrimethoxysilane, octadecyltrimethoxysilane, octadecyltriethoxysilane, 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3-chloropropyltrimethoxy Silane, 3- (N, N-diglycidyl) aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, ⁇ -aminopropyltri
  • the polysiloxane having a carboxyl group and a radical polymerizable group used in the siloxane resin composition of the present invention hydrolyzes an organosilane compound, and then condenses the hydrolyzate in the presence of a solvent or without a solvent. Can be obtained.
  • Various conditions for the hydrolysis reaction for example, acid concentration, reaction temperature, reaction time, etc., can be appropriately set in consideration of the reaction scale, reaction vessel size, shape, etc.
  • an organosilane compound It is preferable to add an acid catalyst and water over 1 to 180 minutes and then react at room temperature to 110 ° C. for 1 to 180 minutes. By performing the hydrolysis reaction under such conditions, a rapid reaction can be suppressed.
  • the reaction temperature is more preferably 30 to 105 ° C.
  • the hydrolysis reaction is preferably performed in the presence of an acid catalyst.
  • an acid catalyst an acidic aqueous solution containing formic acid, acetic acid or phosphoric acid is preferable.
  • the content of these acid catalysts is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the total organosilane compound used in the hydrolysis reaction.
  • the condensation reaction After obtaining the silanol compound by the hydrolysis reaction of the organosilane compound, it is preferable to carry out the condensation reaction by heating the reaction solution as it is at 50 ° C. or higher and below the boiling point of the solvent for 1 to 100 hours. In order to increase the degree of polymerization of the polysiloxane, reheating or a base catalyst may be added.
  • the solvent used for the hydrolysis reaction of the organosilane compound and the condensation reaction of the hydrolyzate is not particularly limited, and can be appropriately selected in consideration of the stability, wettability, volatility, etc. of the resin composition. In addition, two or more solvents may be combined, or the reaction may be performed without solvent.
  • the solvent include methanol, ethanol, propanol, isopropanol, butanol, isobutanol, t-butanol, pentanol, 4-methyl-2-pentanol, 3-methyl-2-butanol, 3-methyl-3- Alcohols such as methoxy-1-butanol, 1-t-butoxy-2-propanol, diacetone alcohol; glycols such as ethylene glycol and propylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, Propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, ethylene glycol dimethyl ether, ethylene glycol di Ethers such as chill ether, ethylene glycol dibutyl ether and diethyl ether; ketones such as methyl ethyl ketone, acetyl acetone,
  • Diacetone alcohol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol mono t-butyl ether, propylene glycol monopropyl ether, propylene glycol Monobutyl ether, ⁇ -butyrolactone and the like are preferably used.
  • a solvent When a solvent is generated by a hydrolysis reaction, it can be hydrolyzed without solvent. It is also preferable to adjust the concentration of the resin composition to an appropriate level by adding a solvent after completion of the reaction. Further, after hydrolysis according to the purpose, an appropriate amount of the produced alcohol may be distilled and removed under heating and / or reduced pressure, and then a suitable solvent may be added.
  • the amount of the solvent used in the hydrolysis reaction is preferably 80 parts by weight or more and 500 parts by weight or less with respect to 100 parts by weight of the total organosilane compound.
  • the water used for the hydrolysis reaction is preferably ion-exchanged water.
  • the amount of water can be arbitrarily selected, but it is preferably used in the range of 1.0 to 4.0 mol with respect to 1 mol of silane atoms.
  • the siloxane resin composition of the present invention contains (B) a radical photopolymerization initiator.
  • B Any radical photopolymerization initiator may be used as long as it is decomposed and / or reacted by light (including ultraviolet rays and electron beams) to generate radicals.
  • ⁇ -aminoalkylphenone compounds in order to further increase the hardness of the cured film, ⁇ -aminoalkylphenone compounds, acylphosphine oxide compounds, oxime ester compounds, benzophenone compounds having an amino group, or benzoic acid ester compounds having an amino group are preferable.
  • These compounds are involved not only in the crosslinking reaction of radical polymerizable groups but also in crosslinking of siloxane as a base or acid during light irradiation and thermal curing, and the cured film hardness is further improved.
  • ⁇ -aminoalkylphenone compounds include 2-methyl- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-dimethylamino-2- (4-methylbenzyl) -1 -(4-morpholin-4-yl-phenyl) -butan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, and the like.
  • acylphosphine oxide compound examples include 2,4,6-trimethylbenzoylphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6-dimethoxybenzoyl)-( 2,4,4-trimethylpentyl) -phosphine oxide and the like.
  • oxime ester compound examples include 1-phenyl-1,2-propanedione-2- (o-ethoxycarbonyl) oxime, 1,2-octanedione, 1- [4- (phenylthio) -2- (O -Benzoyloxime)], 1-phenyl-1,2-butadion-2- (o-methoxycarbonyl) oxime, 1,3-diphenylpropanetrione-2- (o-ethoxycarbonyl) oxime, ethanone, 1- [9 -Ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (0-acetyloxime) and the like.
  • benzophenone compound having an amino group examples include 4,4-bis (dimethylamino) benzophenone and 4,4-bis (diethylamino) benzophenone.
  • benzoic acid ester compound having an amino group examples include ethyl p-dimethylaminobenzoate, 2-ethylhexyl-p-dimethylaminobenzoate, ethyl p-diethylaminobenzoate and the like.
  • the content of the radical photopolymerization initiator is preferably 0.01% by weight or more, and more preferably 0.1% by weight or more in the solid content of the siloxane resin composition. Moreover, 20 weight% or less is preferable and 10 weight% or less is more preferable. By setting it as the said range, radical hardening can fully be advanced and elution of the residual radical polymerization initiator etc. can be prevented and solvent resistance can be ensured.
  • the siloxane resin composition of the present invention contains (C) a compound having a radical polymerizable group and containing no Si—O—Si bond.
  • the siloxane resin composition of the present invention is obtained by polymerization of a compound having (C) a radical polymerizable group and not containing a Si—O—Si bond by radicals generated from the (B) photoradical polymerization initiator by light irradiation. The exposed portion of the object is insolubilized in the aqueous alkali solution, and a negative pattern can be formed.
  • the content of the compound having a radical polymerizable group and not containing a Si—O—Si bond is preferably 5% by weight to 85% by weight, and preferably 20% by weight to 70% by weight in the solid content of the siloxane resin composition. % Is more preferable.
  • Examples of the functional group having a double bond include an acrylic group, a methacryl group, a vinyl group, a styryl group, and an allyl group.
  • Specific examples of the compound having a double bond include diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, trimethylolpropane diacrylate, Trimethylolpropane triacrylate, trimethylolpropane dimethacrylate, trimethylolpropane trimethacrylate, styrene, ⁇ -methylstyrene, 1,2-dihydronaphthalene, 1,3-diisopropenylbenzene, 3-methylstyrene, 4-methylstyrene , 2-vinylnaphthalene, butyl acrylate, butyl methacrylate, isobutyl
  • polyfunctional compounds such as pentaerythritol triacrylate, pentaerythritol tetraacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, dipentaerythritol pentaacrylate, and dipentaerythritol hexaacrylate are preferable.
  • tricyclodecanyl acrylate, tricyclodecanyl methacrylate, dimethylol-tricyclodecane diacrylate, dimethylol-tricyclodecane dimethacrylate, isobornyl acrylate, isobornyl methacrylate, and the like are preferable.
  • Examples of the functional group having a triple bond include ethynyl group and propargyl group.
  • Specific examples of the compound having a triple bond include 1-butyne, 2-butyne, ethynylbenzene, 1,4-diethynylbenzene, 1,3-diethynylbenzene, 1,2-diethynylbenzene, 1-ethynylnaphthalene. , 2-ethynylnaphthalene, 4-ethynylphthalic anhydride, propargyl acetate, methyl propargylate, ethyl propargylate, propargyl propanoate and the like. From the viewpoint of polymerizability, it is preferable to combine with a compound containing a double bond.
  • the content of the compound containing a double bond and / or a triple bond is preferably 1 part by weight or more, more preferably 25 parts by weight or more based on 100 parts by weight of the polysiloxane (A) having a carboxyl group and a radical polymerizable group. preferable. If it is 1 weight part or more, hardening of the resin composition by light irradiation can be advanced efficiently. On the other hand, 250 parts by weight or less is preferable, and 150 parts by weight or less is more preferable. If it is 250 weight part or less, the transmittance
  • At least one of the compounds having a radical polymerizable group and not containing a Si—O—Si bond is preferably a compound represented by the general formula (1).
  • the compound represented by the general formula (1) improves heat resistance and adhesiveness.
  • R 1 represents hydrogen or a methyl group.
  • R 2 represents a linear or branched alkylene group.
  • R 3 represents an organic group having 1 to 20 carbon atoms.
  • L 1 and l 2 represent 0 to 4
  • l 1 and l 2 may be the same or different.
  • M 1 and m 2 represent an integer of 1 to 20.
  • m 1 and m 2 may be the same or different.
  • specific examples of R 2 include an ethylene group, a propylene group, and a butylene group.
  • R 3 examples include methyl groups, ethyl groups, propyl groups, isopropyl groups, butyl groups, s-butyl groups, t-butyl groups and other alkyl groups, phenyl groups, tolyl groups, mesityl groups, styryl groups, An aryl group such as a naphthyl group can be mentioned.
  • Specific examples of the compound represented by the general formula (1) include 9,9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene, 9,9-bis [4- (2-methacryloyloxyethoxy). Phenyl] fluorene, 9,9-bis [4- (2-acryloyloxypropoxy) phenyl] fluorene, 9,9-bis [4- (2-methacryloyloxypropoxy) phenyl] fluorene, 9,9-bis [4- (3-acryloyloxybutoxy) phenyl] fluorene, 9,9-bis [4- (3-methacryloyloxybutoxy) phenyl] fluorene, 9,9-bis [4- (2-acryloyloxyethoxy) -3-methylphenyl Fluorene, 9,9-bis [4- (2-methacryloyloxyethoxy) -3-methylphenyl] fur , (2-acryloyloxypropoxy)
  • 9,9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene, 9,9-bis [4- (2-acryloyloxypropoxy) phenyl] fluorene, 9 , 9-bis [4- (3-acryloyloxycibutoxy) phenyl] fluorene and the like are preferable. Two or more of these may be used. From the viewpoint of hardness and sensitivity, it is preferable to combine with a compound having a polyfunctional radically polymerizable group.
  • pentaerythritol triacrylate pentaerythritol tetraacrylate
  • pentaerythritol trimethacrylate pentaerythritol tetramethacrylate
  • examples include dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, and poly (meth) acrylate described below.
  • a compound having a radical polymerizable group and containing no Si—O—Si bond is selected from tripentaerythritol poly (meth) acrylate, tetrapentaerythritol poly (meth) acrylate and pentapentaerythritol poly (meth) acrylate.
  • (meth) acrylate is a general term for acrylate or methacrylate.
  • poly (meth) acrylate refers to those having a total of 7 or more acrylate groups or methacrylate groups, and preferably 14 or less. The compound having a radical polymerizable group consisting of these groups improves the hardness and scratch resistance of the resulting cured film.
  • the compound having a radical polymerizable group consisting of the above group include tripentaerythritol heptaacrylate, tripentaerythritol octaacrylate, tetrapentaerythritol nonaacrylate, tetrapentaerythritol decaacrylate, pentapentaerythritol undecaacrylate, penta Examples include pentaerythritol dodecaacrylate, tripentaerythritol hepta methacrylate, tripentaerythritol octamethacrylate, tetrapentaerythritol nonamethacrylate, tetrapentaerythritol decamethacrylate, pentapentaerythritol undecamethacrylate, pentapentaerythritol dodecamethacrylate, and the like. Two or more of these may be used.
  • the compound having a radical polymerizable group and containing no Si—O—Si bond may contain a carboxyl group and / or a hydroxyl group.
  • a carboxyl group and / or a hydroxyl group By containing a carboxyl group and / or a hydroxyl group, adhesion to the substrate is improved, and pattern peeling during development can be suppressed.
  • the compound containing a double bond and containing a carboxyl group and / or a hydroxyl group include acrylic acid, methacrylic acid, 2-acryloyloxyethyl succinic acid, 2-acryloyloxyethyl hexahydrophthalic acid, 2 -Acryloyloxyethylphthalic acid, 1,3-acryloyloxy-2-hydroxypropane, 1,3-methacryloyloxy-2-hydroxypropane, N-methylolacrylamide, 2-hydroxy-3-phenoxypropyl acrylate, ethylene glycol di Methacrylic acid adduct of glycidyl ether (trade name: Epoxy ester 40EM, manufactured by Kyoeisha Chemical Co., Ltd.), acrylic acid adduct of ethylene glycol diglycidyl ether, methacrylic acid adduct of propylene glycol diglycidyl ether, propylene Acrylic acid adduct of recalled diglycidyl ether
  • Specific examples of the compound containing a triple bond and containing a carboxyl group and / or a hydroxyl group include propargyl alcohol, propionic acid, 4-ethynylphthalic acid, 3- (3-aminophenyl) propionic acid, and 3-phenylpropionic acid. Etc.
  • the content of the compound containing a double bond and / or a triple bond and containing a carboxyl group and / or a hydroxyl group is 1 weight per 100 parts by weight of polysiloxane having a carboxyl group and a radical polymerizable group. Part or more is preferable, and 3 parts by weight or more is more preferable. If it is 1 weight or more, adhesiveness with a board
  • an organosilane compound having a radical polymerizable group can be contained within a range not impairing the effects of the present invention.
  • an organosilane compound having a radical polymerizable group other than (meth) acrylic group By containing an organosilane compound having a radical polymerizable group other than (meth) acrylic group, the crosslinking point is increased and the hardness of the cured film is further improved.
  • it has an organic group having 3 or more carbon atoms between the radical polymerizable group and the silane atom it enters between the (meth) acrylic part and the siloxane part and plays a role as a spacer, so that the crack resistance is further improved.
  • 0.1 weight% or more is preferable in solid content of a siloxane resin composition, and the hardness of a cured film can be improved more. More preferably, it is 1% by weight or more. On the other hand, from the viewpoint of crack resistance of the cured film, it is preferably 30% by weight or less, and more preferably 15% by weight or less.
  • organosilane compound having a radical polymerizable group examples include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, styryltrimethoxysilane, styryltriethoxysilane, and styryltriacetoxysilane. Two or more of these may be used. Of these, vinyltrimethoxysilane and vinyltriethoxysilane are particularly preferably used from the viewpoint of the hardness of the cured film.
  • the siloxane resin composition of the present invention may further contain (D) metal compound particles.
  • D metal compound particles
  • the refractive index can be adjusted to a desired range. Further, the hardness, scratch resistance and crack resistance of the cured film can be further improved.
  • the number average particle diameter of the metal compound particles is preferably 1 nm to 200 nm. In order to obtain a cured film having a high transmittance, the number average particle diameter is more preferably 1 nm to 70 nm.
  • the number average particle diameter of the metal compound particles can be measured by a gas adsorption method, a dynamic light scattering method, an X-ray small angle scattering method, a transmission electron microscope, or a scanning electron microscope.
  • Examples of the metal compound particles include silicon compound particles, aluminum compound particles, tin compound particles, titanium compound particles, zirconium compound particles, barium compound particles, and the like, and an appropriate one can be selected depending on the application.
  • titanium compound particles such as titanium oxide particles and zirconium compound particles such as zirconium oxide particles are preferably used to obtain a cured film having a high refractive index.
  • Examples of commercially available metal compound particles include silicon oxide-titanium oxide composite particles “OPTRAIK (registered trademark)” TR-502, “OPTRAIK” TR-503, “OPTRAIK” TR-504, “OPT” "Lake” TR-513, "Oplake” TR-520, “Oplake” TR-527, “Oplake” TR-528, “Oplake” TR-529, “Oplake” TR-505 of titanium oxide particles ( (Above, trade name, manufactured by Catalyst Kasei Kogyo Co., Ltd.), zirconium oxide particles (manufactured by High Purity Chemical Laboratory Co., Ltd.), tin oxide-zirconium oxide composite particles (manufactured by Catalyst Kasei Kogyo Co., Ltd.), tin oxide particles (Manufactured by Kojundo Chemical Laboratory Co., Ltd.).
  • titanium oxide particles (Above, trade name, manufactured by Catalyst Kasei Kogyo Co
  • IPA-ST and MIBK-ST having a number average particle diameter of 12 nm
  • IPA-ST-L having a number average particle diameter of 45 nm
  • IPA-ST-ZL having a number average particle diameter of 100 nm
  • 15 nm of the number average particle diameter As silica particles, IPA-ST and MIBK-ST having a number average particle diameter of 12 nm, IPA-ST-L having a number average particle diameter of 45 nm, IPA-ST-ZL having a number average particle diameter of 100 nm, and 15 nm of the number average particle diameter.
  • PGM-ST (trade name, manufactured by Nissan Chemical Industries, Ltd.), “Oscar (registered trademark)” 101 having a number average particle diameter of 12 nm, “Oscar” 105 having a number average particle diameter of 60 nm, “ “Oscar” 106, "Cataloid (registered trademark)” -S (trade name, manufactured by Catalyst Kasei Kogyo Co., Ltd.) with a number average particle size of 5 to 80 nm, "Quartron (registered trademark)” PL- with a number average particle size of 16 nm 2L-PGME, “Quartron” PL-2L-BL with a number average particle diameter of 17 nm, “Quartron” PL-2L-DAA, “Quoron with a number average particle diameter of 18-20 nm Ron "PL-2L, GP-2L ( trade names, Fuso Chemical Co., Ltd.), number average particle diameter of 100nm of silica (SiO 2) SG-
  • the content of the metal compound particles is not particularly limited and may be an appropriate amount depending on the use, but it is generally about 1 to 70% by weight in the solid content of the siloxane resin composition.
  • the siloxane resin composition of the present invention may further contain (E) a polysiloxane containing no carboxyl group.
  • E By containing a polysiloxane that does not contain a carboxyl group, it is possible to improve the adhesion during high-temperature heat treatment (230 ° C. to 250 ° C. ⁇ 3 hours treatment) of ITO of the cured film.
  • polysiloxane containing no carboxyl group examples include phenyltrialkoxysilane 20 to 70 mol% from the viewpoint of alkali solubility, methyltrialkoxysilane 15 to 50 mol% from the viewpoint of hardness, 2- (3, A preferred example is polysiloxane obtained by hydrolyzing 5 to 40 mol% of 4-epoxycyclohexyl) ethyltrimethoxysilane and condensing the hydrolyzate.
  • the content of the polysiloxane containing no carboxyl group is preferably 5% by weight or more, more preferably 10% by weight or more, based on the solid content of the siloxane resin composition. On the other hand, it is preferably 35% by weight or less, more preferably 30% by weight or less, from the viewpoint of keeping the hardness of the cured film high and photosensitivity (alkali soluble).
  • the siloxane resin composition of the present invention may contain a polymerization inhibitor.
  • a polymerization inhibitor By containing a polymerization inhibitor, the storage stability of the resin composition is improved, and the resolution after development is improved.
  • the content of the polymerization inhibitor is preferably 0.01% by weight or more and 0.1% by weight or more and 1% by weight or less in the solid content of the siloxane resin composition.
  • polymerization inhibitor examples include phenol, catechol, resorcinol, hydroquinone, 4-t-butylcatechol, 2,6-di (t-butyl) -p-cresol, phenothiazine, 4-methoxyphenol and the like.
  • the siloxane resin composition of the present invention may contain an ultraviolet absorber.
  • an ultraviolet absorber By containing an ultraviolet absorber, the light resistance of the resulting cured film is improved, and the resolution after development is improved in applications that require pattern processing.
  • the ultraviolet absorber is not particularly limited and known ones can be used, but benzotriazole compounds, benzophenone compounds, and triazine compounds are preferably used in terms of transparency and non-coloring properties.
  • Examples of ultraviolet absorbers for benzotriazole compounds include 2- (2H benzotriazol-2-yl) phenol, 2- (2H-benzotriazol-2-yl) -4,6-tert-pentylphenol, 2- (2H Benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol, 2 (2H-benzotriazol-2-yl) -6-dodecyl-4-methylphenol, 2- (2 And '-hydroxy-5'-methacryloxyethylphenyl) -2H-benzotriazole.
  • Examples of the ultraviolet absorber of the benzophenone compound include 2-hydroxy-4-methoxybenzophenone.
  • Examples of the ultraviolet absorber of the triazine compound include 2- (4,6-diphenyl-1,3,5 triazin-2-yl) -5-[(hexyl) oxy] -phenol.
  • the siloxane resin composition of the present invention may contain a solvent.
  • a compound having an alcoholic hydroxyl group or a cyclic compound having a carbonyl group is preferably used in that each component can be dissolved uniformly and the transparency of the resulting coating film can be improved. Two or more of these may be used.
  • a compound having a boiling point of 110 to 250 ° C. under atmospheric pressure is more preferable. By setting the boiling point to 110 ° C. or higher, drying proceeds moderately at the time of coating, and a good coating without uneven coating can be obtained. On the other hand, when the boiling point is 250 ° C. or lower, the amount of residual solvent in the film can be reduced, and film shrinkage during thermosetting can be further reduced, so that better flatness can be obtained.
  • Specific examples of the compound having an alcoholic hydroxyl group and having a boiling point of 110 to 250 ° C. under atmospheric pressure include acetol, 3-hydroxy-3-methyl-2-butanone, 4-hydroxy-3-methyl-2- Butanone, 5-hydroxy-2-pentanone, 4-hydroxy-4-methyl-2-pentanone (diacetone alcohol), ethyl lactate, butyl lactate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono n-propyl Examples include ether, propylene glycol mono n-butyl ether, propylene glycol mono t-butyl ether, 3-methoxy-1-butanol, 3-methyl-3-methoxy-1-butanol.
  • diacetone alcohol is preferable from the viewpoint of storage stability
  • propylene glycol mono t-butyl ether is particularly preferable from the viewpoint of step coverage.
  • cyclic compound having a carbonyl group and having a boiling point of 110 to 250 ° C. under atmospheric pressure examples include ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, propylene carbonate, N-methylpyrrolidone, cyclohexanone, And cycloheptanone.
  • ⁇ -butyrolactone is particularly preferably used.
  • the siloxane resin composition of the present invention may contain a solvent other than the above.
  • a solvent other than the above examples thereof include (A) various solvents such as acetates, ketones, and ethers exemplified as the solvent used in the hydrolysis and condensation reaction of polysiloxane having a carboxyl group and a radical polymerizable group.
  • the content of the solvent is not particularly limited, and any amount can be used depending on the coating method.
  • the content is generally 50 to 95% by weight of the entire siloxane resin composition.
  • the siloxane resin composition of the present invention may contain various curing agents that accelerate the curing of the resin composition or facilitate the curing.
  • the curing agent is not particularly limited and known ones can be used. Specific examples include nitrogen-containing organic substances, silicone resin curing agents, various metal alcoholates, various metal chelate compounds, isocyanate compounds and polymers thereof, and methylolated melamine. Derivatives, methylolated urea derivatives and the like. Two or more of these may be contained. Of these, metal chelate compounds, methylolated melamine derivatives, and methylolated urea derivatives are preferably used because of the stability of the curing agent and the processability of the obtained coating film.
  • the siloxane resin composition of the present invention may contain a curing catalyst such as a thermal acid generator.
  • a curing catalyst such as a thermal acid generator.
  • the thermal acid generator is not particularly limited and known ones can be used.
  • Various onium salt compounds such as aromatic diazonium salts, sulfonium salts, diaryl iodonium salts, triaryl sulfonium salts, triaryl selenium salts, and sulfonic acids Examples thereof include esters and halogen compounds.
  • the siloxane resin composition of the present invention may contain various surfactants such as various fluorine-based surfactants and silicone-based surfactants in order to improve the flowability during coating.
  • various surfactants such as various fluorine-based surfactants and silicone-based surfactants in order to improve the flowability during coating.
  • type of surfactant for example, “Megafac (registered trademark)” F142D, F172, F173, F183, F445, F470, F475, F477 (above, Dainippon Ink Chemicals, Inc.) INDUSTRIAL CO., LTD.), NBX-15, FTX-218 (manufactured by Neos Co., Ltd.) and other fluorosurfactants, BYK-333, BYK-301, BYK-331, BYK-345, BYK-307 (BIC Silicone surfactants such as Chemie Japan Co., Ltd., polyalkylene oxide surfactants, poly (meth) acrylate surfact
  • the siloxane resin composition of the present invention may contain additives such as a dissolution inhibitor, a stabilizer, and an antifoaming agent as necessary.
  • the solid content concentration of the siloxane resin composition of the present invention is not particularly limited, and any amount of solvent or solute can be used depending on the coating method and the like. For example, when a film is formed by spin coating as will be described later, the solid content concentration is generally 5 to 50% by weight.
  • (B) a radical photopolymerization initiator and other additives are added to an arbitrary solvent, dissolved by stirring, and then synthesized by the above-described method (A) a polysiloxane solution and (C) a radical polymerizable group And a compound containing no Si—O—Si bond is added and stirred for another 20 minutes to 3 hours. The obtained solution is filtered to obtain a siloxane resin composition.
  • the obtained siloxane resin composition can be separated and separated by high performance liquid chromatography (HPLC), and the structure of each component can be confirmed by a known analysis method (NMR, IR, MS, etc.).
  • the siloxane resin composition of the present invention is applied on a base substrate by a known method such as microgravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, slit coating, hot plate, oven, etc.
  • Pre-bake with a heating device Pre-baking is preferably performed at 50 to 150 ° C. for 30 seconds to 30 minutes, and the film thickness after pre-baking is preferably 0.1 to 15 ⁇ m.
  • pre-exposure baking After pre-baking, using an exposure machine such as a stepper, mirror projection mask aligner (MPA), parallel light mask aligner (PLA), etc., light of about 10 to 4000 J / m 2 (wavelength 365 nm exposure dose conversion) is passed through the desired mask. Irradiate with or without intervention.
  • the exposure light source is not limited, and ultraviolet rays such as i-line, g-line, and h-line, KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, and the like can be used.
  • post-exposure baking may be performed in which the film is heated in a range of 150 to 450 ° C. for about 1 hour with a heating device such as a hot plate or an oven.
  • the siloxane resin composition of the present invention preferably has a sensitivity of 100 to 4000 J / m 2 when exposed to PLA.
  • the sensitivity in the patterning exposure by the PLA is determined by the following method, for example.
  • the composition is spin-coated on a silicon wafer at an arbitrary number of revolutions using a spin coater, and prebaked at 120 ° C. for 2 minutes using a hot plate to produce a film having a thickness of 2 ⁇ m.
  • the prepared film was exposed to an ultra-high pressure mercury lamp through a gray scale mask for sensitivity measurement using PLA (PLA-501F manufactured by Canon Inc.), and then developed automatically (AD-2000 manufactured by Takizawa Sangyo Co., Ltd.).
  • a developing method it is preferable to immerse in a developing solution for 5 seconds to 10 minutes by a method such as showering, dipping or paddle.
  • a known alkali developer can be used. Specific examples include inorganic alkalis such as alkali metal hydroxides, carbonates, phosphates, silicates and borates, amines such as 2-diethylaminoethanol, monoethanolamine and diethanolamine, tetramethylammonium hydroxide. Examples thereof include an aqueous solution containing one or more quaternary ammonium salts such as side and choline.
  • this film is thermally cured at 120 to 280 ° C. for about 1 hour with a heating device such as a hot plate or oven to obtain a cured film.
  • the cured film obtained from the siloxane resin composition of the present invention preferably has a resolution of 20 ⁇ m or less.
  • the thickness of the cured film is not particularly limited, but is preferably 0.1 to 15 ⁇ m. Further, it is preferable that the hardness is 4H or more and the transmittance is 90% or more at a film thickness of 1.5 ⁇ m.
  • the transmittance refers to the transmittance at a wavelength of 400 nm. The hardness and transmittance can be adjusted by selecting the exposure amount and the thermosetting temperature.
  • the cured film obtained by curing the siloxane resin composition of the present invention is used as a protective film for touch panels, various hard coat materials, antireflection films, and optical filters.
  • it since it has negative photosensitivity, it is suitably used for insulating films for touch sensors, flattening films for TFTs of liquid crystals and organic EL displays, insulating films, antireflection films, overcoats for color filters, column materials, etc. .
  • it since it has high hardness and scratch resistance, it can be suitably used as a protective film for touch panels.
  • the touch panel system include a resistive film type, an optical type, an electromagnetic induction type, and a capacitance type. Since especially high hardness is calculated
  • Synthesis Example 3 Synthesis of Polysiloxane Solution (i) In a 500 mL three-necked flask, 17.03 g (0.125 mol) of methyltrimethoxysilane, 19.83 g (0.1 mol) of phenyltrimethoxysilane, a carboxyl group-containing silane compound ( A) 38.42 g (0.1 mol), ⁇ -acryloylpropyltrimethoxysilane 41.02 g (0.175 mol), and diacetone alcohol (DAA) 109.61 g were charged and immersed in a 40 ° C. oil bath and stirred.
  • DAA diacetone alcohol
  • DAA was added to the obtained DAA solution of polysiloxane so that the polymer concentration was 40% by weight to obtain a polysiloxane solution (i).
  • i polysiloxane solution
  • Mw weight average molecular weight
  • Synthesis Example 4 Synthesis of Polysiloxane Solution (ii) In a 500 mL three-necked flask, 17.03 g (0.125 mol) of methyltrimethoxysilane, 19.83 g (0.1 mol) of phenyltrimethoxysilane, a carboxyl group-containing silane compound ( B) was charged with 38.52 g (0.1 mol), ⁇ -acryloylpropyltrimethoxysilane (41.02 g (0.175 mol)), and DAA (109.61 g).
  • Synthesis Example 5 Synthesis of polysiloxane solution (iii) In a 500 mL three-necked flask, 34.05 g (0.25 mol) of methyltrimethoxysilane, 39.66 g (0.20 mol) of phenyltrimethoxysilane, 4-trimethoxysilylbutane 41.66 g (0.20 mol) of acid, 82.03 g (0.35 mol) of ⁇ -acryloylpropyltrimethoxysilane, and 185.08 g of DAA were placed in an oil bath at 40 ° C. and stirred into 54.0 g of water.
  • Synthesis Example 6 Synthesis of polysiloxane solution (iv) In a 500 mL three-necked flask, 47.67 g (0.35 mol) of methyltrimethoxysilane, 39.66 g (0.20 mol) of phenyltrimethoxysilane, 3-trimethoxysilylpropyl A mixture of 26.23 g (0.10 mol) of succinic acid, 82.03 g (0.35 mol) of ⁇ -acryloylpropyltrimethoxysilane and 185.08 g of DAA was placed in an oil bath at 40 ° C. and 55.8 g of water with stirring.
  • a phosphoric acid aqueous solution in which 0.401 g of phosphoric acid (0.2 wt% with respect to the charged monomer) was dissolved was added to the flask with a dropping funnel over 10 minutes. Subsequently, when the mixture was heated and stirred under the same conditions as in Synthesis Example 3, 110 g in total of methanol and water as by-products were distilled out during the reaction. DAA was added to the obtained polysiloxane DAA solution so that the polymer concentration was 40% by weight to obtain a polysiloxane solution (iii). In addition, it was 5500 (polystyrene conversion) when the weight average molecular weight of the obtained polymer was measured by GPC.
  • Synthesis Example 7 Synthesis of polysiloxane solution (v) In a 500 mL three-necked flask, 55.84 g (0.41 mol) of methyltrimethoxysilane, 39.66 g (0.20 mol) of phenyltrimethoxysilane, 3-trimethoxysilylpropyl 10.49 g (0.04 mol) of succinic acid, 82.04 g (0.35 mol) of ⁇ -acryloylpropyltrimethoxysilane, and 173.57 g of DAA were charged, immersed in an oil bath at 40 ° C. and 54.72 g of water with stirring.
  • a phosphoric acid aqueous solution in which 0.376 g of phosphoric acid (0.2 wt% with respect to the charged monomer) was dissolved was added to the flask with a dropping funnel over 10 minutes. Next, when the mixture was heated and stirred under the same conditions as in Synthesis Example 3, a total of 90 g of methanol and water as by-products were distilled out during the reaction. DAA was added to the obtained DAA solution of polysiloxane so that the polymer concentration was 40% by weight to obtain a polysiloxane solution (v). In addition, when the weight average molecular weight of the obtained polymer was measured by GPC, it was 70000 (polystyrene conversion).
  • Synthesis Example 8 Synthesis of polysiloxane solution (vi) In a 500 mL three-necked flask, 39.66 g (0.20 mol) of phenyltrimethoxysilane, 118.05 g (0.45 mol) of 3-trimethoxysilylpropyl succinic acid, ⁇ -acryloyl Charged 82.04 g (0.35 mol) of propyltrimethoxysilane and 221.31 g of DAA, dipped in an oil bath at 40 ° C. and stirred while stirring, water (62.10 g) and phosphoric acid (0.479 g) (0.1% relative to the charged monomers).
  • Synthesis Example 9 Synthesis of polysiloxane solution (vii) In a 500 mL three-necked flask, 88.53 g (0.65 mol) of methyltrimethoxysilane, 39.66 g (0.20 mol) of phenyltrimethoxysilane, 3-trimethoxysilylpropyl A mixture of 26.23 g (0.10 mol) of succinic acid, 11.72 g (0.05 mol) of ⁇ -acryloylpropyltrimethoxysilane and 153.36 g of DAA was placed in an oil bath at 40 ° C. and 55.80 g of water with stirring.
  • Synthesis Example 10 Synthesis of polysiloxane solution (viii) 26.23 g (0.10 mol) of 3-trimethoxysilylpropyl succinic acid, 210.96 g (0.90 mol) of ⁇ -acryloylpropyltrimethoxysilane, and 218.95 g of DAA Charge, add it in an oil bath at 40 ° C and stir and add phosphoric acid aqueous solution in which 0.474 g of phosphoric acid (0.2% by weight with respect to the charged monomer) is dissolved in 55.80 g of water over 10 minutes. did.
  • Synthesis Example 11 Synthesis of polysiloxane solution (ix) In a 500 mL three-necked flask, 47.67 g (0.35 mol) of methyltrimethoxysilane, 39.66 g (0.20 mol) of phenyltrimethoxysilane, 3-trimethoxysilylpropyl A mixture of 26.23 g (0.10 mol) of succinic acid, 87.29 g (0.35 mol) of ⁇ -methacryloylpropyltrimethoxysilane and 185.40 g of DAA was placed in an oil bath at 40 ° C., and 55.8 g of water with stirring.
  • a phosphoric acid aqueous solution in which 0.401 g of phosphoric acid (0.2 wt% with respect to the charged monomer) was dissolved was added to the flask with a dropping funnel over 10 minutes. Subsequently, when the mixture was heated and stirred under the same conditions as in Synthesis Example 3, 110 g in total of methanol and water as by-products were distilled out during the reaction. DAA was added to the obtained DAA solution of polysiloxane so that the polymer concentration was 40% by weight to obtain a polysiloxane solution (ix). In addition, it was 5500 (polystyrene conversion) when the weight average molecular weight of the obtained polymer was measured by GPC.
  • Synthesis Example 12 Synthesis of Polysiloxane Solution (x) In a 500 mL three-necked flask, 34.05 g (0.25 mol) of methyltrimethoxysilane, 19.83 g (0.10 mol) of phenyltrimethoxysilane, 3-trimethoxysilylpropyl 26.23 g (0.10 mol) of succinic acid, 82.04 g (0.35 mol) of ⁇ -acryloylpropyltrimethoxysilane, silica particles “PL-2L-DAA” (solid content concentration 21.9% by weight, Fuso Chemical Industries) (Made by Co., Ltd.) 54.87 g (0.20 mol in terms of Si atom) and DAA 149.68 g were charged, immersed in an oil bath at 40 ° C.
  • Synthesis Example 13 Synthesis of Polysiloxane Solution (xi) In a 500 mL three-necked flask, 54.48 g (0.40 mol) of methyltrimethoxysilane, 99.15 g (0.50 mol) of phenyltrimethoxysilane, 2- (3,4 -Epoxycyclohexyl) Ethyltrimethoxysilane (29.61 g, 0.10 mol) and DAA (145.86 g) were charged, immersed in an oil bath at 40 ° C.
  • Synthesis Example 14 Synthesis of polysiloxane solution (xii) In a 500 mL three-necked flask, 61.29 g (0.45 mol) of methyltrimethoxysilane, 39.66 g (0.20 mol) of phenyltrimethoxysilane, and ⁇ -acryloylpropyltrimethoxy Silane was charged with 86.94 g (0.35 mol) and DAA with 173.44 g, and the mixture was immersed in an oil bath at 40 ° C. and stirred while stirring with 54.0 g of water and 0.376 g of phosphoric acid (0.2% by weight based on the charged monomer).
  • Synthesis Example 15 Synthesis of Polysiloxane Solution (xiii) In a 500 mL three-necked flask, 30.65 g (0.225 mol) of methyltrimethoxysilane, 34.7 g (0.175 mol) of phenyltrimethoxysilane, a carboxyl group-containing silane compound ( A) 38.42 g (0.10 mol) and DAA 95.78 g were charged, immersed in an oil bath at 40 ° C. and stirred, with water 27.0 g and phosphoric acid 0.208 g (0.2 wt. %) Was added over 10 minutes with a dropping funnel.
  • Synthesis Example 16 Synthesis of polysiloxane solution (xiv) In a 500 mL three-necked flask, 13.621 g (0.10 mol) of methyltrimethoxysilane, 39.66 g (0.20 mol) of phenyltrimethoxysilane, ⁇ -acryloylpropyltrimethoxy Add 164.08 g (0.70 mol) of silane and 200.64 g of DAA, soak it in an oil bath at 40 ° C. and stir and stir 0.435 g of phosphoric acid in 54.0 g of water (0.2% by weight based on the charged monomers).
  • Synthesis Example 17 Synthesis of polysiloxane solution (xv) In a 500 mL three-necked flask, 81.72 g (0.60 mol) of methyltrimethoxysilane, 39.66 g (0.20 mol) of phenyltrimethoxysilane, 3-trimethoxysilylpropyl Charge 160.47g DAA of 52.47g (0.20mol) DAA of succinic acid, soak in oil bath at 40 ° C and stir and stir in water. An aqueous phosphoric acid solution in which was dissolved was added with a dropping funnel over 10 minutes.
  • Synthesis Example 18 Synthesis of Polysiloxane Solution (xvi) In a 500 mL three-necked flask, 47.67 g (0.35 mol) of methyltrimethoxysilane, 39.66 g (0.20 mol) of phenyltrimethoxysilane, 51 of vinyltrimethoxysilane .88 g (0.35 mol), 3-trimethoxysilylpropyl succinic acid 26.23 g (0.10 mol) DAA (160.47 g) was charged, immersed in an oil bath at 40 ° C. and stirred with 55.80 g of water with 0% phosphoric acid.
  • Synthesis Example 19 Synthesis of Polysiloxane Solution (xvii) In a 500 mL three-necked flask, 47.67 g (0.35 mol) of methyltrimethoxysilane, 39.66 g (0.20 mol) of phenyltrimethoxysilane, and 78 of styryltrimethoxysilane were added. .52 g (0.35 mol), 3-trimethoxysilylpropyl succinic acid 26.23 g (0.10 mol) DAA (160.47 g) was charged, immersed in an oil bath at 40 ° C.
  • Synthesis Example 20 Synthesis of Acrylic Resin Solution (a) A 500 ml flask was charged with 3 g of 2,2′-azobis (isobutyronitrile) and 50 g of PGMEA (propylene glycol methyl ether acetate). Thereafter, 30 g of methacrylic acid, 35 g of benzyl methacrylate, and 35 g of tricyclo [5.2.1.0 2,6 ] decan-8-yl methacrylate were charged and stirred for a while at room temperature. The mixture was stirred at 5 ° C. for 5 hours.
  • Table 1 summarizes the compositions of Synthesis Examples 3 to 20.
  • the prepared siloxane resin composition was 10 cm at 500 rpm using a spin coater (1H-360S manufactured by Mikasa Co., Ltd.) on a 5 cm square Tempax glass substrate (manufactured by Asahi Techno Glass Sheet Co., Ltd.). After rotating for 1 second, spin coating by rotating at 1000 rpm for 4 seconds, and then pre-baking for 2 minutes at 90 ° C. using a hot plate (SCW-636 manufactured by Dainippon Screen Mfg. Co., Ltd.) to produce a film with a thickness of 2 ⁇ m did.
  • SCW-636 manufactured by Dainippon Screen Mfg. Co., Ltd.
  • the prepared film was exposed using a parallel light mask aligner (hereinafter referred to as PLA) (PLA-501F manufactured by Canon Inc.) as an ultrahigh pressure mercury lamp as a light source, and air was generated using an oven (IHPS-222 manufactured by ESPEC Corporation).
  • PLA parallel light mask aligner
  • IHPS-222 manufactured by ESPEC Corporation
  • the obtained cured film was measured for transmittance at 400 nm using an ultraviolet-visible spectrophotometer UV-260 (manufactured by Shimadzu Corporation).
  • the film thickness was measured at a refractive index of 1.50 using Lambda Ace STM-602 manufactured by Dainippon Screen Mfg. Co., Ltd. The same applies to the film thickness described below.
  • a cured film having a thickness of 1.5 ⁇ m was prepared on a 5 cm ⁇ 7 cm Tempax glass substrate in the same manner as in the method described in (1) above.
  • the steel wool of # 0000 was subjected to a load of 1.96133N on the cured film and reciprocated 10 times in the long side direction, and then the presence or absence of scratches on the cured film was observed. Evaluation was determined in the following 5 stages, and 4 or more was judged as acceptable. 5: The film is not damaged at all. 4: There are 1 to 10 scratches on the membrane. 3: There are 11-30 scratches on the membrane. 2: 31-50 scratches on the membrane. 1: There are 51 or more scratches on the membrane.
  • ITO substrate a glass substrate whose surface is sputtered with ITO in the same manner as described in (1) above.
  • ITO substrate a glass substrate
  • JIS K5400 8.5.2 (1990) grid tape method the adhesion between ITO and the cured film was evaluated.
  • 11 parallel straight lines of 11 vertical and horizontal directions were drawn at 1 mm intervals so as to reach the substrate of the glass plate with a cutter knife, and 100 squares of 1 mm ⁇ 1 mm were produced.
  • Pattern processability (a) Sensitivity Spin the siloxane resin composition A on a silicon wafer using a spin coater (1H-360S manufactured by Mikasa Co., Ltd.) for 10 seconds at 500 rpm and then for 4 seconds at 1000 rpm. After coating, prebaking was performed at 90 ° C. for 2 minutes using a hot plate (SCW-636 manufactured by Dainippon Screen Mfg. Co., Ltd.) to prepare a prebaked film having a thickness of 2 ⁇ m. The obtained pre-baked film was exposed with a gap of 100 ⁇ m through a gray scale mask for sensitivity measurement using PLA as an ultrahigh pressure mercury lamp as a light source.
  • a spin coater (1H-360S manufactured by Mikasa Co., Ltd.
  • prebaking was performed at 90 ° C. for 2 minutes using a hot plate (SCW-636 manufactured by Dainippon Screen Mfg. Co., Ltd.) to prepare a prebaked film having a thickness of 2 ⁇
  • the exposure amount that forms a 30 ⁇ m line-and-space pattern with a one-to-one width (hereinafter referred to as the optimum exposure amount) was defined as sensitivity.
  • the exposure amount was measured with an I-line illuminometer.
  • ITO heat resistance A cured film having a thickness of 1.5 ⁇ m is formed on a glass substrate (hereinafter referred to as “ITO substrate”) whose surface is sputtered with ITO in the same manner as described in (1) above, at 230 ° C. / 3 hours and 250 ° C./3 hours in an oven, and then evaluated by adhesion.
  • the evaluation criteria were the same as (5).
  • siloxane resin composition A filtered with a 0.45 micrometer filter and obtained the siloxane resin composition A.
  • FIG. About the obtained siloxane resin composition A, the transmittance, crack resistance, hardness, scratch resistance, ITO adhesiveness, ITO heat resistance, and pattern processability were evaluated by the above methods.
  • Example 2 A siloxane resin composition B was obtained in the same manner as in Example 1 except that the polysiloxane solution (ii) was used instead of the polysiloxane solution (i). Evaluation was performed in the same manner as in Example 1 using the obtained siloxane resin composition B.
  • Example 3 A siloxane resin composition C was obtained in the same manner as in Example 1 except that the polysiloxane solution (iii) was used instead of the polysiloxane solution (i). Evaluation was performed in the same manner as in Example 1 using the obtained siloxane resin composition C.
  • Example 4 A siloxane resin composition D was obtained in the same manner as in Example 1 except that the polysiloxane solution (iv) was used instead of the polysiloxane solution (i). Evaluation was performed in the same manner as in Example 1 using the obtained siloxane resin composition D.
  • Example 5 A siloxane resin composition E was obtained in the same manner as in Example 1 except that the polysiloxane solution (v) was used instead of the polysiloxane solution (i). Evaluation was performed in the same manner as in Example 1 using the obtained siloxane resin composition E.
  • Example 6 A siloxane resin composition F was obtained in the same manner as in Example 1 except that the polysiloxane solution (vi) was used instead of the polysiloxane solution (i). Evaluation was performed in the same manner as in Example 1 using the obtained siloxane resin composition F.
  • Example 7 A siloxane resin composition G was obtained in the same manner as in Example 1 except that the polysiloxane solution (vii) was used instead of the polysiloxane solution (i). Using the obtained siloxane resin composition G, evaluation was performed in the same manner as in Example 1.
  • Example 8 A siloxane resin composition H was obtained in the same manner as in Example 1 except that the polysiloxane solution (viii) was used instead of the polysiloxane solution (i). Using the obtained siloxane resin composition H, evaluation was performed in the same manner as in Example 1.
  • Example 9 A siloxane resin composition I was obtained in the same manner as in Example 1 except that the polysiloxane solution (ix) was used instead of the polysiloxane solution (i). Using the obtained siloxane resin composition I, evaluation was performed in the same manner as in Example 1.
  • Example 10 A siloxane resin composition J was obtained in the same manner as in Example 1 except that the polysiloxane solution (x) was used instead of the polysiloxane solution (i). Evaluation was performed in the same manner as in Example 1 using the obtained siloxane resin composition J.
  • Example 11 A siloxane resin composition K was obtained in the same manner as in Example 1 except that the polysiloxane solution (xvi) was used instead of the polysiloxane solution (i). Evaluation was performed in the same manner as in Example 1 using the obtained siloxane resin composition K.
  • Example 12 A siloxane resin composition L was obtained in the same manner as in Example 1 except that the polysiloxane solution (xvii) was used instead of the polysiloxane solution (i).
  • Example 13 Under a yellow light, 0.5166 g of 1- [4- (phenylthio) -2- (O-benzoyloxime)] (trade name “Irgacure OXE-01” manufactured by Ciba Specialty Chemicals) is converted to 2.6279 g of DAA and 2.2622 g of PGMEA.
  • Example 14 Etanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (0-acetyloxime) (trade name “Irgacure OXE-02”) 0.5166 g (manufactured by Ciba Specialty Chemical) is dissolved in 2.6645 g of DAA and 2.743 g of PGMEA, 2.6645 g of a 50 wt% PGMEA solution of “DPHA”, 2.6645 g of a 50 wt% PGMEA solution of “BPEFA”, 4-t-butyl Catechol PGMEA 1% by weight solution 1.7419 g, polysiloxane solution (iv) 7.2580 g, silicone surfactant BYK-333 (manufactured by BYK Japan Japan Co., Ltd.) PGMEA 1% by weight solution 0.2000
  • Example 15 Under a yellow light, 0.4373 g of “Irgacure 907” and 0.0230 g of 4,4-bis (diethylamino) benzophenone were dissolved in 0.2644 g of DAA and 3.1332 g of PGMEA, and 2.3016 g of a 50 wt% solution of “DPHA” in PGMEA, BPEFA "PGMEA 50 wt% solution 2.3016 g, 4-t-butylcatechol PGMEA 1 wt% solution 1.3810 g, polysiloxane solution (i) 5.7540 g," PL-2L-DAA "4.2039 g,” BYK- 333 "PGMEA 1 wt% solution 0.2000g (corresponding to a concentration of 100ppm) was added and stirred. Subsequently, it filtered with a 0.45 micrometer filter and the siloxane resin composition O was obtained. Evaluation was performed in the same manner as in Example 1 using the obtained siloxane resin
  • Example 16 A siloxane resin composition P was obtained in the same manner as in Example 13 except that the polysiloxane solution (iii) was used instead of the polysiloxane solution (i). Evaluation was performed in the same manner as in Example 1 using the obtained siloxane resin composition P.
  • Example 17 A siloxane resin composition Q was obtained in the same manner as in Example 13 except that the polysiloxane solution (iv) was used instead of the polysiloxane solution (i). Evaluation was performed in the same manner as in Example 1 using the obtained siloxane resin composition Q.
  • Example 18 A siloxane resin composition R was obtained in the same manner as in Example 13 except that the polysiloxane solution (x) was used instead of the polysiloxane solution (i). Evaluation was performed in the same manner as in Example 1 using the obtained siloxane resin composition R.
  • Example 19 Under a yellow light, 0.5166 g of “Irgacure 907” and 0.0272 g of 4,4-bis (diethylamino) benzophenone were dissolved in 2.9216 g of DAA and 2.4680 g of PGMEA, and 2.6189 g of a 50 wt% solution of “DPHA” in PGMEA, BPEFA "PGMEA 50 wt% solution 1.7189 g, 4-t-butylcatechol PGMEA 1 wt% solution 1.6314 g, polysiloxane solution (i) 3.3987 g, polysiloxane solution (xi) 3.3987 g, silicone-based surfactant 0.2000 g (corresponding to a concentration of 100 ppm) of a PGMEA 1% by weight solution of BYK-333 (manufactured by BYK Japan) was added and stirred. Subsequently, it filtered with the 0.45 micrometer filter and obtained the siloxan
  • Example 20 A siloxane resin composition T was obtained in the same manner as in Example 19 except that the polysiloxane solution (iii) was used instead of the polysiloxane solution (i). Evaluation was performed in the same manner as in Example 1 using the obtained siloxane resin composition T.
  • Example 21 A siloxane resin composition U was obtained in the same manner as in Example 19 except that the polysiloxane solution (iv) was used instead of the polysiloxane solution (i). Evaluation was performed in the same manner as in Example 1 using the obtained siloxane resin composition U.
  • Example 22 Under a yellow light, 0.5166 g of “Irgacure 907” and 0.0272 g of 4,4-bis (diethylamino) benzophenone were dissolved in 2.9216 g of DAA and 2.4680 g of PGMEA, and 5.3379 g of a 50 wt% solution of “DPHA” in PGMEA -1.6314 g of 1% by weight PGMEA solution of t-butylcatechol, 6.7974 g of polysiloxane solution (iv), and 0% of 1% by weight PGMEA solution of BYK-333 (manufactured by Big Chemie Japan) which is a silicone surfactant.
  • Example 23 Example 1 except that the polysiloxane solution (iv) is used instead of the polysiloxane solution (i), and 9,9-bis [4- (2-acryloyloxypropoxy) phenyl] fluorene is used instead of “BPEFA”. In the same manner, a siloxane resin composition W was obtained. Evaluation was performed in the same manner as in Example 1 using the obtained siloxane resin composition W.
  • Example 24 Example 19 except that the polysiloxane solution (iv) is used instead of the polysiloxane solution (i), and 9,9-bis [4- (2-acryloyloxypropoxy) phenyl] fluorene is used instead of “BPEFA”
  • a siloxane resin composition X was obtained. Evaluation was performed in the same manner as in Example 1 using the obtained siloxane resin composition X.
  • Example 25 Example 22 except that a mixture of tripentaerythritol polyacrylate, tetrapentaerythritol polyacrylate and pentapentaerythritol polyacrylate (trade name “T-PE-A”, manufactured by Guangei Chemical Industry Co., Ltd.) was used instead of “DPHA”.
  • T-PE-A tripentaerythritol polyacrylate
  • pentapentaerythritol polyacrylate trade name “T-PE-A”, manufactured by Guangei Chemical Industry Co., Ltd.
  • Example 27 A siloxane resin composition AA was obtained in the same manner as in Example 19 except that the polysiloxane solution (iv) was used instead of the polysiloxane solution (i) and “T-PE-A” was used instead of “DPHA”. It was. Evaluation was performed in the same manner as in Example 1 using the obtained siloxane resin composition AA.
  • siloxane resin composition I was obtained in the same manner as in Example 1 except that the polysiloxane solution (xii) was used instead of the polysiloxane solution (i). Using the obtained siloxane resin composition I, evaluation was performed in the same manner as in Example 1.
  • Comparative Example 2 A siloxane resin composition II was obtained in the same manner as in Example 1 except that the polysiloxane solution (xiii) was used instead of the polysiloxane solution (i). Evaluation was performed in the same manner as in Example 1 using the obtained siloxane resin composition II.
  • Comparative Example 4 An acrylic resin composition IV was obtained in the same manner as in Example 1 except that the acrylic resin solution (a) was used instead of the polysiloxane solution (i) and PGMEA was used instead of DAA. Evaluation was performed in the same manner as in Example 1 using the obtained acrylic resin composition IV.
  • compositions of Examples 1 to 25 and Comparative Examples 1 to 4 are shown in Tables 2 to 3, and the evaluation results are shown in Tables 4 to 5.
  • the cured film obtained by curing the siloxane resin composition of the present invention includes various hard coat films such as a protective film for touch panels, an insulating film for touch sensors, a planarizing film for TFTs of liquid crystals and organic EL displays, and an insulating film. , Antireflection film, antireflection film, optical filter, overcoat for color filter, column material and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Materials For Photolithography (AREA)
  • Silicon Polymers (AREA)
  • Paints Or Removers (AREA)

Abstract

パターン加工性に優れ、UV硬化および熱硬化により高硬度で耐擦傷性に優れる硬化膜を与えるシロキサン樹脂組成物を提供する。 (A)カルボキシル基とラジカル重合性基を有するポリシロキサン、(B)光ラジカル重合開始剤および(C)ラジカル重合性基を有し、Si-O-Si結合を含有しない化合物を含有することを特徴とするシロキサン樹脂組成物である。

Description

シロキサン樹脂組成物およびそれを用いたタッチパネル用保護膜
 本発明は、シロキサン樹脂組成物とそれを用いたタッチパネル用保護膜に関する。
 現在、ハードコート材料の用途は多岐にわたり、例えば、自動車部品、化粧品などの容器、シート、フィルム、光学ディスク、薄型ディスプレイなどの表面硬度向上に用いられている。ハードコート材料に求められる特性としては、硬度、耐擦傷性の他に耐熱性、耐候性、接着性などが挙げられる。ハードコート材料の代表例としては、ラジカル重合型のUV硬化型ハードコートがあり(例えば、非特許文献1参照)、その構成は、重合性基含有オリゴマー、モノマー、光重合開始剤およびその他添加剤である。UV照射によりオリゴマーおよびモノマーがラジカル重合することで架橋し、高硬度な膜を得る。このハードコート材料は硬化の所要時間が短く生産性が向上するうえに、一般的なラジカル重合機構によるネガ型感光性材料を用いることができ、製造コストが安価になるという利点を持つ。しかし、有機成分が多いため他のハードコート材料に比べ硬度、耐擦傷性が低く、UV硬化による体積収縮が原因となるクラックが発生するという課題があった。
 タッチパネルはハードコート材料の主な用途の一つである。現在主流である抵抗膜式のタッチパネルは、フィルム上にセンサーを取り付けるため高温処理ができない。このため、熱硬化を必要としないかあるいは低温硬化で硬化膜を得られる上述のUV硬化型ハードコートが好んで用いられてきた(例えば、特許文献1参照)。一方、近年注目を浴びている静電容量式タッチパネルは、高温処理可能なガラス上にITO(Indium Tin Oxide)膜を形成するため、結晶化が十分進行した透明なITO膜を形成することができる。一方で、抵抗膜式タッチパネルのような外部の衝撃を緩和する働きを有する層がないため、表面保護膜にはより高い硬度が求められる。これに対して、静電容量式タッチパネルとして、例えば、ITO膜付きガラスを基板に用い、高硬度な無機系のSiO、SiNxや透明樹脂などで形成された保護膜を有するものが開示されている(例えば、特許文献2参照)。しかし、無機系ハードコートは、SiOやSiNxをCVD(Chemical Vapor Deposition)により高温製膜して形成するか、SOG(Spin On Glass)をコーティング後に300℃近い高温処理を長時間行うことにより形成するためにエネルギー消費量が増加し、さらに回路接続を目的とした保護膜の加工を行うためプロセス数が増加するなど、製造コストが高くなる課題があった。そこで、高硬度で耐擦傷性に優れ、パターン加工が可能な感光性のハードコート材料が求められている。
 一方、UV硬化型コーティング組成物としては、(A)金属酸化物コロイドゾル、(B)少なくとも一部に特定の有機官能基を含み、分子量分布が制御されたアルコキシシラン加水分解縮合物、(C)光重合開始剤を含有する組成物が知られている(例えば、特許文献3参照)。しかしながら、これらは、パターン加工性を有しておらず、タッチパネル用保護膜として適用するには十分ではない。また、(メタ)アクリロイルオキシ基含有オルガノポリシロキサンと光増感剤を含有する光硬化性オルガノポリシロキサン組成物が開示されている(例えば、特許文献4参照)。しかしながら、かかる組成物は現像液が有機溶剤に限られ、タッチパネルの製造プロセスには適合しない。また、フェニルトリアルコキシシランとジカルボン酸無水物基含有アルコキシシランを加水分解および縮合させることによって得られるポリシロキサン、二重結合および/または三重結合を含有する化合物、光重合開始剤および溶剤を含有する樹脂組成物が開示されている(例えば、特許文献5参照)。しかしながら、かかる組成物はハードコート材料として用いるには硬度、耐擦傷性が不足していた。
  
特開2001-330707号公報 特開2007-279819号公報 特開2007-277332号公報 特開2003-227949号公報 特開2008-208342号公報
大原 昇ら著、「プラスチック基材を中心としたハードコート膜における材料設計・塗工技術と硬度の向上」、技術情報協会、2005年4月28日、301ページ
 本発明は、パターン加工性に優れ、UV硬化および熱硬化により高硬度で耐擦傷性に優れる硬化膜を与えるシロキサン樹脂組成物を提供することを目的とする。
 本発明は、(A)カルボキシル基とラジカル重合性基を有するポリシロキサン、(B)光ラジカル重合開始剤および(C)ラジカル重合性基を有し、Si-O-Si結合を含有しない化合物を含有することを特徴とするシロキサン樹脂組成物である。
 本発明のシロキサン樹脂組成物はパターン加工性に優れ、UV硬化および熱硬化により高硬度で耐擦傷性に優れる硬化膜を得ることができる。
 本発明のシロキサン樹脂組成物は、(A)カルボキシル基とラジカル重合性基を有するポリシロキサン、(B)光ラジカル重合開始剤および(C)ラジカル重合性基を有し、Si-O-Si結合を含有しない化合物を含有する。
 本発明のシロキサン樹脂組成物は、(A)カルボキシル基とラジカル重合性基を有するポリシロキサンを含有する。ポリシロキサン中にカルボキシル基を有することにより、アルカリ溶解性(現像性)を向上させ、現像後の残さを抑制して良好なパターンを形成することが可能になる。また、ラジカル重合性基を有することにより、(C)ラジカル重合性基を有し、Si-O-Si結合を含有しない化合物と(A)ポリシロキサンとの架橋反応が起こり、得られる硬化膜の架橋密度が向上するため、硬化膜の硬度を飛躍的に向上させることができる。また、少ない光照射量で硬化させることができるため、シロキサン樹脂組成物の感度を向上させることができる。また、同一ポリマー内にラジカル重合性基とカルボキシル基を有することにより、架橋を均質に進めることができ、得られる硬化膜の耐擦傷性が向上する。これらポリシロキサンを2種以上含有してもよい。
 (A)カルボキシル基とラジカル重合性基を有するポリシロキサン中のカルボキシル基の含有量は、Si原子1モルに対して0.05モル以上が好ましく、現像残渣を低減することができ、硬化膜の耐クラック性を向上させることができる。より好ましくは0.1モル以上である。また、0.8モル以下が好ましく、硬化膜の硬度をより向上させることができる。より好ましくは0.5モル以下である。また、(A)ポリシロキサンを2種以上含有する場合には、少なくとも1種が上記範囲内のカルボキシル基含有量であることが好ましい。
 ポリシロキサン中のカルボキシル基の含有量は、例えば、ポリシロキサンの29Si-核磁気共鳴スペクトルを測定し、カルボキシル基が結合したSiのピーク面積とカルボキシル基が結合していないSiのピーク面積の比から求めることができる。また、Siとカルボキシル基が直接結合していない場合、H-核磁気共鳴スペクトルよりカルボキシル基由来のピークと、シラノール基を除くその他のピークとの積分比からポリシロキサン全体のカルボキシル基含有量を算出し、前述の29Si-核磁気共鳴スペクトルの結果と合わせて間接的に結合しているカルボキシル基の含有量を算出する。その他、H-核磁気共鳴スペクトルよりカルボキシル基とシラノール基の比率を算出したのち、酸価を測定することによってもカルボキシル基の含有量を算出する事が出来る。
 (A)カルボキシル基とラジカル重合性基を有するポリシロキサン中のラジカル重合性基の含有量は、Si原子1モルに対して0.05モル以上が好ましく、0.1モル以上がより好ましい。また、0.8モル以下が好ましく、0.6モル以下がより好ましい。上記範囲であれば硬度、耐擦傷性と耐クラック性をより高いレベルで両立する硬化膜が得られる。また、(A)ポリシロキサンを2種以上含有する場合には、少なくとも1種が上記範囲内のラジカル重合性基含有量であることが好ましい。
 ポリシロキサン中のラジカル重合性基の含有量は、例えば、得られたポリマーの熱重量分析(TGA)を、大気下で900℃まで行い、灰分がSiOであることを赤外線吸光分析にて確認してから、その重量減少率からポリマー1gあたりのSi原子のモル数を算出したのち、ヨウ素価を測定することで算出することができる。
 本発明のシロキサン樹脂組成物に用いられる(A)カルボキシル基とラジカル重合性基を有するポリシロキサンの重量平均分子量(Mw)は特に制限されないが、ゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリスチレン換算で、好ましくは1,000以上、より好ましくは2,000以上である。また、好ましくは100,000以下、さらに好ましくは50,000以下である。Mwを上記範囲とすることで、良好な塗布特性が得られ、パターン形成する際の現像液への溶解性も良好となる。
本発明のシロキサン樹脂組成物に用いられる(A)カルボキシル基とラジカル重合性基を有するポリシロキサンが、同一分子内にカルボキシル基およびラジカル重合性基を含有するかどうかの判別は、GPCおよび順相分配クロマトグラフィーによって単一のピークが得られるかどうかで行う。極性の異なるポリマーの組み合わせの場合、GPCで単一ピークであっても順相分配クロマトグラフィーでは複数のピークが見られる。
 本発明のシロキサン樹脂組成物において、(A)カルボキシル基とラジカル重合性基を有するポリシロキサンの含有量に特に制限はなく、所望の膜厚や用途により任意に選ぶことができるが、シロキサン樹脂組成物中0.1~80重量%が一般的である。また、固形分中10重量%以上が好ましい。
 発明のシロキサン樹脂組成物に用いられる(A)カルボキシル基とラジカル重合性基を有するポリシロキサンは、例えば、カルボキシル基および/またはジカルボン酸無水物基を有するオルガノシラン化合物とラジカル重合性基を有するオルガノシラン化合物を含むオルガノシラン化合物を加水分解し、該加水分解物を縮合して得られる。
 (A)ポリシロキサンを構成する、カルボキシル基および/またはジカルボン酸無水物基を有するオルガノシラン化合物について、具体的に説明する。
 カルボキシル基を有するオルガノシラン化合物としては、例えば、下記一般式(2)で表されるウレア基含有オルガノシラン化合物または下記一般式(3)で表されるウレタン基含有オルガノシラン化合物が挙げられる。これらを2種以上用いてもよい。
Figure JPOXMLDOC01-appb-C000002
 上記式中、R、RおよびR10は、炭素数1~20の2価の有機基を表す。Rは、水素原子または炭素数1~3のアルキル基を表す。R~Rは、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、フェニル基、フェノキシ基、炭素数2~6のアルキルカルボニルオキシ基またはそれらの置換体を表す。ただし、R~Rのうち、少なくとも一つはアルコキシ基、フェノキシ基またはアセトキシ基である。
 上記一般式(2)~(3)におけるRおよびR10の好ましい例としては、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基、フェニレン基、-CH-C-CH-、-CH-C-などの炭化水素基が挙げられる。これらの中でも、耐熱性の観点から、フェニレン基、-CH-C-CH-、-CH-C-などの芳香族環を有する炭化水素基が好ましい。
 上記一般式(2)におけるRは、反応性の観点から、水素またはメチル基が好ましい。
 上記一般式(2)~(3)におけるRの具体例としては、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基、n-ペンチレン基などの炭化水素基や、オキシメチレン基、オキシエチレン基、オキシn-プロピレン基、オキシn-ブチレン基、オキシn-ペンチレン基などが挙げられる。これらの中でも、合成の容易性の観点から、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基、オキシメチレン基、オキシエチレン基、オキシn-プロピレン基、オキシn-ブチレン基が好ましい。
 上記一般式(2)~(3)におけるR~Rのうち、アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基などが挙げられる。合成の容易性の観点から、メチル基またはエチル基が好ましい。また、アルコキシ基の具体例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基などが挙げられる。合成の容易性の観点から、メトキシ基またはエトキシ基が好ましい。また、置換体の置換基としては、メトキシ基、エトキシ基などが挙げられる。具体的には、1-メトキシプロピル基、メトキシエトキシ基などが挙げられる。
 上記一般式(2)で表されるウレア基含有オルガノシラン化合物は、下記一般式(4)で表されるアミノカルボン酸化合物と、下記一般式(6)で表されるイソシアネート基含有オルガノシラン化合物から、公知のウレア化反応により得ることができる。また、上記一般式(3)で表されるウレタン基含有オルガノシラン化合物は、下記一般式(5)で表されるヒドロキシカルボン酸化合物と、下記一般式(6)で表されるイソシアネート基を有するオルガノシラン化合物から、公知のウレタン化反応により得ることができる。
Figure JPOXMLDOC01-appb-C000003
 上記式中、R、RおよびR10は、炭素数1~20の2価の有機基を表す。Rは、水素原子または炭素数1~3のアルキル基を表す。R~Rは、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、フェニル基、フェノキシ基、炭素数2~6のアルキルカルボニルオキシ基またはそれらの置換体を表す。ただし、R~Rのうち、少なくとも一つはアルコキシ基、フェノキシ基またはアセトキシ基である。R~R10の好ましい例は、一般式(2)~(3)におけるR~R10について先に説明したとおりである。
 カルボキシル基を有するオルガノシラン化合物のその他の具体例としては、一般式(7)に表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 上記式中、R11は、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、フェニル基、フェノキシ基、炭素数2~6のアルキルカルボニルオキシ基またはそれらの置換体を表す。ただし、複数のR11は同じでも異なっていてもよく、少なくとも一つはアルコキシ基、フェノキシ基またはアセトキシ基である。pは1~3の整数を表す。qは2~20の整数を表す。
 ジカルボン酸無水物基を有するオルガノシラン化合物の具体例としては、下記一般式(8)~(10)のいずれかで表されるオルガノシラン化合物が挙げられる。これらを2種以上用いてもよい。
Figure JPOXMLDOC01-appb-C000005
 上記式中、R12~R14、R16~R18およびR20~R22は、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、フェニル基、フェノキシ基、炭素数2~6のアルキルカルボニルオキシ基またはそれらの置換体を表す。R15、R19およびR23は、単結合、または、鎖状脂肪族炭化水素基、環状脂肪族炭化水素基、カルボニル基、エーテル基、エステル基、アミド基、芳香族基、もしくはこれらのいずれかを有する2価の基を表す。これらの基は置換されていてもよい。hおよびlは0~3の整数を表す。
 R15、R19およびR23の具体例としては、-C-、-C-、-C-、-O-、-COCHCH(OH)CHC-、-CO-、-CO-、-CONH-、以下にあげる有機基などが挙げられる。
Figure JPOXMLDOC01-appb-C000006
 上記一般式(8)で表されるオルガノシラン化合物の具体例としては、3-トリメトキシシリルプロピルコハク酸無水物、3-トリエトキシシシリルプロピルコハク酸無水物、3-トリフェノキシシリルプロピルコハク酸無水物などが挙げられる。上記一般式(9)で表されるオルガノシラン化合物の具体例としては、3-トリメトキシシシリルプロピルシクロヘキシルジカルボン酸無水物などが挙げられる。上記一般式(10)で表されるオルガノシラン化合物の具体例としては、3-トリメトキシシシリルプロピルフタル酸無水物などが挙げられる。
 ラジカル重合性基を有するオルガノシラン化合物のラジカル重合性基としては、ビニル基、α―メチルビニル基、アリル基、スチリル基、(メタ)アクリロイル基が挙げられる。中でも(メタ)アクリロイル基であることが好ましい。(メタ)アクリロイル基にする事で、硬化膜の硬度やパターン加工時の感度をより向上させることができる。(メタ)アクリロイル基とは、メタクリロイル基またはアクリロイル基を表す。
ラジカル重合性基を有するオルガノシラン化合物の具体例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ(メトキシエトキシ)シラン、ビニルメチルジメトキシシラン、ビニルメチルジエトキシシラン、ビニルメチルジ(メトキシエトキシ)シラン、アリルトリメトキシシラン、アリルトリエトキシシラン、アリルトリ(メトキシエトキシ)シラン、アリルメチルジメトキシシラン、アリルメチルジエトキシシラン、アリルメチルジ(メトキシエトキシ)シラン、スチリルトリメトキシシラン、スチリルトリエトキシシラン、スチリルトリ(メトキシエトキシ)シラン、スチリルメチルジメトキシシラン、スチリルメチルジエトキシシラン、スチリルメチルジ(メトキシエトキシ)シラン、γ-アクリロイルプロピルトリメトキシシラン、γ-アクリロイルプロピルトリエトキシシラン、γ-アクリロイルプロピルトリ(メトキシエトキシ)シラン、γ-メタクリロイルプロピルトリメトキシシラン、γ-メタクリロイルプロピルトリエトキシシラン、γ-メタクリロイルプロピルトリ(メトキシエトキシ)シラン、γ-メタクリロイルプロピルメチルジメトキシシラン、γ-メタクリロイルプロピルメチルジエトキシシラン、γ-アクリロイルプロピルメチルジメトキシシラン、γ-アクリロイルプロピルメチルジエトキシシラン、γ-メタクリロイルプロピル(メトキシエトキシ)シランなどが挙げられる。これらを2種以上用いてもよい。これらのうち、硬化膜の硬度やパターン加工時の感度をより向上させる観点から、γ-アクリロイルプロピルトリメトキシシラン、γ-アクリロイルプロピルトリエトキシシラン、γ-メタクリロイルプロピルトリメトキシシラン、γ-メタクリロイルプロピルトリエトキシシランが好ましい。
 本発明のシロキサン樹脂組成物に用いられる(A)カルボキシル基とラジカル重合性基を有するポリシロキサンが、カルボキシル基および/またはジカルボン酸無水物基を有するオルガノシラン化合物とラジカル重合性基を有するオルガノシラン化合物を含むオルガノシラン化合物を後述する金属化合物粒子存在下で加水分解し、該加水分解物を縮合して得られるものであると、硬化膜の硬度、耐擦傷性、耐クラック性がより向上する。金属化合物粒子存在下でポリシロキサンの重合を行うことで、ポリシロキサンの少なくとも一部に金属化合物粒子との化学的結合(共有結合)が生じ、金属化合物粒子が均一に分散して塗液の保存安定性や硬化膜の均質性が向上するためと考えられる。また、金属化合物粒子の種類により、得られる硬化膜の屈折率を調整することができる。なお、金属化合物粒子としては、後述の(D)金属化合物粒子として例示するものを用いることができる。
 本発明のシロキサン樹脂組成物に用いられる(A)カルボキシル基とラジカル重合性基を有するポリシロキサンは、フッ素を含有してもよい。フッ素を有することにより、硬化膜の耐擦傷性がより向上する。フッ素を有するポリシロキサンは、フッ素を有するオルガノシラン化合物を含むオルガノシラン化合物を加水分解し、該加水分解物を縮合することにより得られる。本発明における(A)成分のポリシロキサンはカルボキシル基とラジカル重合性基を有するものであるから、カルボキシル基および/またはジカルボン酸無水物基を有するオルガノシラン化合物、ラジカル重合性基を有するオルガノシラン化合物、フッ素を有するオルガノシラン化合物と、必要により他のオルガノシラン化合物を加水分解し、該加水分解物を縮合することが好ましい。フッ素を有するオルガノシランの具体例としては、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、パーフルオロプロピルトリメトキシシラン、パーフルオロプロピルトリエトキシシラン、パーフルオロペンチルトリメトキシシラン、パーフルオロペンチルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリデカフルオロオクチルトリエトキシシラン、トリデカフルオロオクチルトリプロポキシシラン、トリデカフルオロオクチルトリイソプロポキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシラン、ビス(トリフルオロメチル)ジメトキシシラン、ビス(トリフルオロプロピル)ジメトキシシラン、ビス(トリフルオロプロピル)ジエトキシシラン、トリフルオロプロピルメチルジメトキシシラン、トリフルオロプロピルメチルジエトキシシラン、トリフルオロプロピルエチルジメトキシシラン、トリフルオロプロピルエチルジエトキシシラン、ヘプタデカフルオロデシルメチルジメトキシシランなどが挙げられる。これらを2種以上用いてもよい。これらのうち、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリデカフルオロオクチルトリエトキシシランが特に好ましく用いられる。
 本発明のシロキサン樹脂組成物に用いられる(A)カルボキシル基とラジカル重合性基を有するポリシロキサンは、上記オルガノシラン化合物に加えて、他のオルガノシラン化合物を用いて合成してもよい。他のオルガノシラン化合物の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ(メトキシエトキシ)シラン、メチルトリプロポキシシラン、メチルトリイソプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ヘキシルトリメトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、3-(N,N-ジグリシジル)アミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、β-シアノエチルトリエトキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、α-グリシドキシエチルトリメトキシシラン、α-グリシドキシエチルトリエトキシシラン、β-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリエトキシシラン、α-グリシドキシプロピルトリメトキシシラン、α-グリシドキシプロピルトリエトキシシラン、β-グリシドキシプロピルトリメトキシシラン、β-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリプロポキシシシラン、γ-グリシドキシプロピルトリイソプロポキシシシラン、γ-グリシドキシプロピルトリブトキシシラン、γ-グリシドキシプロピルトリ(メトキシエトキシ)シラン、α-グリシドキシブチルトリメトキシシラン、α-グリシドキシブチルトリエトキシシラン、β-グリシドキシブチルトリメトキシシラン、β-グリシドキシブチルトリエトキシシラン、γ-グリシドキシブチルトリメトキシシラン、γ-グリシドキシブチルトリエトキシシラン、δ-グリシドキシブチルトリメトキシシラン、δ-グリシドキシブチルトリエトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリプロポキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリブトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリフェノキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、4-(3,4-エポキシシクロヘキシル)ブチルトリメトキシシラン、4-(3,4-エポキシシクロヘキシル)ブチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、グリシドキシメチルジメトキシシラン、グリシドキシメチルメチルジエトキシシラン、α-グリシドキシエチルメチルジメトキシシラン、α-グリシドキシエチルメチルジエトキシシラン、β-グリシドキシエチルメチルジメトキシシラン、β-グリシドキシエチルメチルジエトキシシラン、α-グリシドキシプロピルメチルジメトキシシラン、α-グリシドキシプロピルメチルジエトキシシラン、β-グリシドキシプロピルメチルジメトキシシラン、β-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジプロポキシシラン、β-グリシドキシプロピルメチルジブトキシシラン、γ-グリシドキシプロピルメチルジ(メトキシエトキシ)シラン、γ-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルエチルジエトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルメチルジエトキシシラン、シクロヘキシルメチルジメトキシシラン、オクタデシルメチルジメトキシシラン、テトラメトキシシラン、テトラエトキシシランなどが挙げられる。これらを2種以上使用してもよい。
 本発明のシロキサン樹脂組成物に用いられる(A)カルボキシル基とラジカル重合性基を有するポリシロキサンはオルガノシラン化合物を加水分解した後、該加水分解物を溶媒の存在下、あるいは無溶媒で縮合反応させることによって得ることができる。
 加水分解反応の各種条件、例えば酸濃度、反応温度、反応時間などは、反応スケール、反応容器の大きさ、形状などを考慮して適宜設定することができるが、例えば、溶媒中、オルガノシラン化合物に酸触媒および水を1~180分かけて添加した後、室温~110℃で1~180分反応させることが好ましい。このような条件で加水分解反応を行うことにより、急激な反応を抑制することができる。反応温度は、より好ましくは30~105℃である。
 加水分解反応は、酸触媒の存在下で行うことが好ましい。酸触媒としては、蟻酸、酢酸またはリン酸を含む酸性水溶液が好ましい。これら酸触媒の好ましい含有量は、加水分解反応時に使用される全オルガノシラン化合物100重量部に対して、好ましくは0.1重量部~5重量部である。酸触媒の量を上記範囲とすることで、加水分解反応が必要かつ十分に進行するよう容易に制御できる。
 オルガノシラン化合物の加水分解反応によりシラノール化合物を得た後、反応液をそのまま50℃以上、溶媒の沸点以下で1~100時間加熱し、縮合反応を行うことが好ましい。また、ポリシロキサンの重合度を上げるために、再加熱もしくは塩基触媒を添加してもよい。
 オルガノシラン化合物の加水分解反応および該加水分解物の縮合反応に用いられる溶媒は特に限定されず、樹脂組成物の安定性、塗れ性、揮発性などを考慮して適宜選択できる。また、溶媒を2種以上組み合わせてもよいし、無溶媒で反応を行ってもよい。溶媒の具体例としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、t-ブタノール、ペンタノール、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、3-メチル-3-メトキシ-1-ブタノール、1-t-ブトキシ-2-プロパノール、ジアセトンアルコールなどのアルコール類;エチレングリコール、プロピレングリコールなどのグリコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチルエーテルなどのエーテル類;メチルエチルケトン、アセチルアセトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、2-ヘプタノンなどのケトン類;ジメチルホルムアミド、ジメチルアセトアミドなどのアミド類;エチルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸メチル、乳酸エチル、乳酸ブチルなどのアセテート類;トルエン、キシレン、ヘキサン、シクロヘキサンなどの芳香族あるいは脂肪族炭化水素、γ-ブチロラクトン、N-メチル-2-ピロリドン、ジメチルスルホキシドなどを挙げることができる。硬化膜の透過率、耐クラック性などの点から、ジアセトンアルコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノt-ブチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、γ-ブチロラクトンなどが好ましく用いられる。
 加水分解反応によって溶媒が生成する場合には、無溶媒で加水分解させることも可能である。反応終了後に、さらに溶媒を添加することにより、樹脂組成物として適切な濃度に調整することも好ましい。また、目的に応じて加水分解後に、生成アルコールなどを加熱および/または減圧下にて適量を留出、除去し、その後好適な溶媒を添加してもよい。
 加水分解反応時に使用する溶媒の量は、全オルガノシラン化合物100重量部に対して80重量部以上、500重量部以下が好ましい。溶媒の量を上記範囲とすることで、加水分解反応が必要かつ十分に進行するよう容易に制御できる。
 また、加水分解反応に用いる水は、イオン交換水が好ましい。水の量は任意に選択可能であるが、シラン原子1モルに対して、1.0~4.0モルの範囲で用いることが好ましい。
 本発明のシロキサン樹脂組成物は、(B)光ラジカル重合開始剤を含有する。(B)光ラジカル重合開始剤は、光(紫外線、電子線を含む)により分解および/または反応し、ラジカルを発生させるものであればどのようなものでもよい。具体例としては、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2,4,6-トリメチルベンゾイルフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-(2,4,4-トリメチルペンチル)-フォスフィンオキサイド、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1,2-オクタンジオン,1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、1-フェニル-1,2-ブタジオン-2-(o-メトキシカルボニル)オキシム、1,3-ジフェニルプロパントリオン-2-(o-エトキシカルボニル)オキシム、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)、4,4-ビス(ジメチルアミノ)ベンゾフェノン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、p-ジメチルアミノ安息香酸エチル、2-エチルヘキシル-p-ジメチルアミノベンゾエート、p-ジエチルアミノ安息香酸エチル、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4,4-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アルキル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、4-ベンゾイル-N,N-ジメチル-N-[2-(1-オキソ-2-プロペニルオキシ)エチル]ベンゼンメタナミニウムブロミド、(4-ベンゾイルベンジル)トリメチルアンモニウムクロリド、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロペンアミニウムクロリド一水塩、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、2-ヒドロキシ-3-(3,4-ジメチル-9-オキソ-9H-チオキサンテン-2-イロキシ)-N,N,N-トリメチル-1-プロパナミニウムクロリド、2,2’-ビス(o-クロロフェニル)-4,5,4’,5’-テトラフェニル-1,2-ビイミダゾール、10-ブチル-2-クロロアクリドン、2-エチルアンスラキノン、ベンジル、9,10-フェナンスレンキノン、カンファーキノン、メチルフェニルグリオキシエステル、η5-シクロペンタジエニル-η6-クメニル-アイアン(1+)-ヘキサフルオロフォスフェイト(1-)、ジフェニルスルフィド誘導体、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、4-ベンゾイル-4-メチルフェニルケトン、ジベンジルケトン、フルオレノン、2,3-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニル-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、p-t-ブチルジクロロアセトフェノン、ベンジルメトキシエチルアセタール、アントラキノン、2-t-ブチルアントラキノン、2-アミノアントラキノン、β-クロルアントラキノン、アントロン、ベンズアントロン、ジベンズスベロン、メチレンアントロン、4-アジドベンザルアセトフェノン、2,6-ビス(p-アジドベンジリデン)シクロヘキサン、2,6-ビス(p-アジドベンジリデン)-4-メチルシクロヘキサノン、ナフタレンスルフォニルクロライド、キノリンスルホニルクロライド、N-フェニルチオアクリドン、ベンズチアゾールジスルフィド、トリフェニルホスフィン、四臭素化炭素、トリブロモフェニルスルホン、過酸化ベンゾイルおよびエオシン、メチレンブルーなどの光還元性の色素とアスコルビン酸、トリエタノールアミンなどの還元剤の組み合わせなどが挙げられる。これらを2種以上含有してもよい。
 これらのうち、硬化膜の硬度をより高くするためには、α-アミノアルキルフェノン化合物、アシルホスフィンオキサイド化合物、オキシムエステル化合物、アミノ基を有するベンゾフェノン化合物またはアミノ基を有する安息香酸エステル化合物が好ましい。これらの化合物は、ラジカル重合性基の架橋反応のみならず、光照射および熱硬化の際に塩基または酸としてシロキサンの架橋にも関与し、硬化膜硬度がより向上する。
 α-アミノアルキルフェノン化合物の具体例としては、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1などが挙げられる。アシルホスフィンオキサイド化合物の具体例としては、2,4,6-トリメチルベンゾイルフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-(2,4,4-トリメチルペンチル)-フォスフィンオキサイドなどが挙げられる。オキシムエステル化合物の具体例としては、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1,2-オクタンジオン,1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、1-フェニル-1,2-ブタジオン-2-(o-メトキシカルボニル)オキシム、1,3-ジフェニルプロパントリオン-2-(o-エトキシカルボニル)オキシム、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)などが挙げられる。アミノ基を有するベンゾフェノン化合物の具体例としては、4,4-ビス(ジメチルアミノ)ベンゾフェノン、4,4-ビス(ジエチルアミノ)ベンゾフェノンなどが挙げられる。アミノ基を有する安息香酸エステル化合物の具体例としては、p-ジメチルアミノ安息香酸エチル、2-エチルヘキシル-p-ジメチルアミノベンゾエート、p-ジエチルアミノ安息香酸エチルなどが挙げられる。
 (B)光ラジカル重合開始剤の含有量は、シロキサン樹脂組成物の固形分中0.01重量%以上が好ましく、0.1重量%以上がより好ましい。また、20重量%以下が好ましく、10重量%以下がより好ましい。上記範囲とすることで、ラジカル硬化を十分に進めることができ、かつ残留したラジカル重合開始剤の溶出などを防ぎ耐溶剤性を確保することができる。
 本発明のシロキサン樹脂組成物は、(C)ラジカル重合性基を有し、Si-O-Si結合を含有しない化合物を含有する。光照射により上記(B)光ラジカル重合開始剤から発生したラジカルによって(C)ラジカル重合性基を有し、Si-O-Si結合を含有しない化合物の重合が進行し、本発明のシロキサン樹脂組成物の露光部がアルカリ水溶液に対して不溶化し、ネガ型のパターンを形成することができる。(C)ラジカル重合性基としては、二重結合または三重結合が挙げられる。これらを2種以上含有してもよい。
 (C)ラジカル重合性基を有し、Si-O-Si結合を含有しない化合物の含有量は、シロキサン樹脂組成物の固形分中5重量%~85重量%が好ましく、20重量%~70重量%がより好ましい。
 二重結合を有する官能基としては、アクリル基、メタクリル基、ビニル基、スチリル基、アリル基などが挙げられる。二重結合を有する化合物の具体例としては、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジメタクリレート、トリメチロールプロパントリメタクリレート、スチレン、α-メチルスチレン、1,2-ジヒドロナフタレン、1,3-ジイソプロペニルベンゼン、3-メチルスチレン、4-メチルスチレン、2-ビニルナフタレン、ブチルアクリレート、ブチルメタクリレート、イソブチルアクリレート、ヘキシルアクリレート、イソオクチルアクリレート、1,3-ブタンジオールジアクリレート、1,3-ブタンジオールジメタクリレート、ネオペンチルグリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジアクリレート、1,6-ヘキサンジオールメタクリレート、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレートメチレンビスアクリルアミド、N,N-ジメチルアクリルアミド、2,2,6,6-テトラメチルピペリジニルメタクリレート、2,2,6,6-テトラメチルピペリジニルアクリレート、N-メチル-2,2,6,6-テトラメチルピペリジニルメタクリレート、N-メチル-2,2,6,6-テトラメチルピペリジニルアクリレート、N-ビニルピロリドン、N-ビニルカプロラクタム、N-ビニルカルバゾール、シクロヘキシルビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、シクロヘキシルアクリレート、シクロヘキシルメタクリレート、ジシクロペンテニルアクリレート、ジシクロペンテニルメタクリレート、ジシクロペンテニルオキシエチルアクリレート、ジシクロペンテニルオキシエチルメタクリレート、トリシクロデカニルアクリレート、トリシクロデカニルメタクリレート、ジメチロール-トリシクロデカンジアクリレート、ジメチロール-トリシクロデカンジメタクリレート、イソボルニルアクリレート、イソボルニルメタクリレート、エトキシ化ビスフェノールAジアクリレートなどが挙げられる。中でも、感度向上の観点から、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレートなどの多官能化合物が好ましい。また、疎水性向上の観点から、トリシクロデカニルアクリレート、トリシクロデカニルメタクリレート、ジメチロール-トリシクロデカンジアクリレート、ジメチロール-トリシクロデカンジメタクリレート、イソボルニルアクリレート、イソボルニルメタクリレートなどが好ましい。
 三重結合を有する官能基としてはエチニル基、プロパルギル基などが挙げられる。三重結合を有する化合物の具体例としては、1-ブチン、2-ブチン、エチニルベンゼン、1,4-ジエチニルベンゼン、1,3-ジエチニルベンゼン、1,2-ジエチニルベンゼン、1-エチニルナフタレン、2-エチニルナフタレン、4-エチニル無水フタル酸、酢酸プロパルギル、プロパルギル酸メチル、プロパルギル酸エチル、プロピン酸プロパルギルなどが挙げられる。重合性の観点から、二重結合を含有する化合物と組み合わせることが好ましい。
 二重結合および/または三重結合を含有する化合物の含有量は(A)カルボキシル基とラジカル重合性基を有するポリシロキサン100重量部に対して、1重量部以上が好ましく、25重量部以上がより好ましい。1重量部以上であれば、光照射による樹脂組成物の硬化を効率的に進めることができる。一方、250重量部以下が好ましく、150重量部以下がより好ましい。250重量部以下であれば、硬化膜の透過率を向上させることができる。
 (C)ラジカル重合性基を有し、Si-O-Si結合を含有しない化合物の少なくとも1種類以上は、一般式(1)で表される化合物であることが好ましい。一般式(1)で表される化合物により耐熱性および接着性が向上する。
Figure JPOXMLDOC01-appb-C000007
 (式中、Rは水素、またはメチル基を表す。Rは直鎖または分岐アルキレン基を表す。Rは炭素数1~20の有機基を表す。l、lは0~4の整数を表す。l、lは同じでも異なっていても良い。m,mは1~20の整数を表す。m,mは同じでも異なっていても良い。)
 上記式中、Rの具体例としては、エチレン基、プロピレン基、ブチレン基などが挙げられる。Rの具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、s-ブチル基、t-ブチル基などのアルキル基や、フェニル基、トリル基、メシチル基、スチリル基、ナフチル基などのアリール基が挙げられる。
 一般式(1)で表される化合物の具体例としては、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-メタクリロイルオキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-アクリロイルオキシプロポキシ)フェニル]フルオレン、9,9-ビス[4-(2-メタクリロイルオキシプロポキシ)フェニル]フルオレン、9,9-ビス[4-(3-アクリロイルオキシブトキシ)フェニル]フルオレン、9,9-ビス[4-(3-メタクリロイルオキシブトキシ)フェニル]フルオレン、9,9-ビス[4-(2-アクリロイルオキシエトキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-メタクリロイルオキシエトキシ)-3-メチルフェニル]フルオレン、(2-アクリロイルオキシプロポキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-メタクリロイルオキシプロポキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(3-アクリロイルオキシシブトキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(3-メタクリロイルオキシブトキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-アクリロイルオキシエトキシ)-3、5-ジメチルフェニル]フルオレン、9,9-ビス[4-(2-アクリロイルオキシエトキシ)-3、5-ジメチルフェニル]フルオレン、(2-アクリロイルオキシプロポキシ)-3、5-ジメチルフェニル]フルオレン、9,9-ビス[4-(2-メタクリロイルオキシプロポキシ)-3、5-ジメチルフェニル]フルオレン、9,9-ビス[4-(3-アクリロイルオキシブトキシ)-3、5-ジメチルフェニル]フルオレン、9,9-ビス[4-(3-メタクリロイルオキシブトキシ)-3、5-ジメチルフェニル]フルオレン、9,9-ビス[4-(2-アクリロイルオキシエトキシ)-3-フェニルフェニル]フルオレン、9,9-ビス[4-(2-メタクリロイルオキシエトキシ)-3-フェニルフェニル]フルオレン、9,9-ビス[4-(2-アクリロイルオキシプロポキシ)-3-フェニルフェニル]フルオレン、9,9-ビス[4-(2-メタクリロイルオキシプロポキシ)-3-フェニルフェニル]フルオレン、9,9-ビス[4-(3-アクリロイルオキシブトキシ)-3-フェニルフェニル]フルオレン、9,9-ビス[4-(3-メタクリロイルオキシブトキシ)-3-フェニルフェニル]フルオレンなどが挙げられる。これらの中でも、感度、接着性の観点から9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-アクリロイルオキシプロポキシ)フェニル]フルオレン、9,9-ビス[4-(3-アクリロイルオキシシブトキシ)フェニル]フルオレンなどが好ましい。これらを2種以上用いても良い。また、硬度、感度の観点から、多官能のラジカル重合性基を有する化合物と組み合わせることが好ましく、具体的には、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレートおよび、後述するポリ(メタ)アクリレートが挙げられる。
(C)ラジカル重合性基を有し、Si-O-Si結合を含有しない化合物は、トリペンタエリスリトールポリ(メタ)アクリレート、テトラペンタエリスリトールポリ(メタ)アクリレートおよびペンタペンタエリスリトールポリ(メタ)アクリレートからなる群から選ばれる少なくとも1種のラジカル重合性基を有する化合物であることが好ましい。ここで、(メタ)アクリレートとは、アクリレートまたはメタクリレートの総称を示す。また、「ポリ(メタ)アクリレート」とは、アクリレート基またはメタクリレート基を合計で7個以上有するものを指し、好ましくは14個以下である。これらの群からなるラジカル重合性基を有する化合物により、得られる硬化膜の硬度、耐擦傷性が向上する。
 上記の群からなるラジカル重合性基を有する化合物の具体例としては、トリペンタエリスリトールヘプタアクリレート、トリペンタエリスリトールオクタアクリレート、テトラペンタエリスリトールノナアクリレート、テトラペンタエリスリトールデカアクリレート、ペンタペンタエリスリトールウンデカアクリレート、ペンタペンタエリスリトールドデカアクリレート、トリペンタエリスリトールヘプタメタクリレート、トリペンタエリスリトールオクタメタクリレート、テトラペンタエリスリトールノナメタクリレート、テトラペンタエリスリトールデカメタクリレート、ペンタペンタエリスリトールウンデカメタクリレート、ペンタペンタエリスリトールドデカメタクリレートなどが挙げられる。これらの2種以上用いても良い。
 (C)ラジカル重合性基を有し、Si-O-Si結合を含有しない化合物は、カルボキシル基および/または水酸基を含有してもよい。カルボキシル基および/または水酸基を含有することで基板との接着性が向上し、現像時のパターン剥がれを抑制することができる。
 二重結合を含有し、カルボキシル基および/または水酸基を含有する化合物の具体例としては、アクリル酸、メタクリル酸、2-アクリロイロキシエチルコハク酸、2-アクリロイロキシエチルヘキサヒドロフタル酸、2-アクリロイロキシエチルフタル酸、1,3-アクリロイルオキシ-2-ヒドロキシプロパン、1,3-メタクリロイルオキシ-2-ヒドロキシプロパン、N-メチロールアクリルアミド、2-ヒドロキシ-3-フェノキシプロピルアクリレート、エチレングリコールジグリシジルエーテルのメタクリル酸付加物(商品名エポキシエステル40EM、共栄社化学(株)製)、エチレングリコールジグリシジルエーテルのアクリル酸付加物、プロピレングリコールジグリシジルエーテルのメタクリル酸付加物、プロピレングリコールジグリシジルエーテルのアクリル酸付加物(商品名エポキシエステル70PA、共栄社化学(株)製)、トリプロピレングリコールジグリシジルエーテルのメタクリル酸付加物、トリプロピレングリコールジグリシジルエーテルのアクリル酸付加物(商品名エポキシエステル200PA、共栄社化学(株)製)、グリセリンジグリシジルエーテルのメタクリル酸付加物、グリセリンジグリシジルエーテルのアクリル酸付加物(商品名エポキシエステル80MFA、共栄社化学(株)製)、ビスフェノールAジグリシジルエーテルのメタクリル酸付加物(商品名エポキシエステル3000M、共栄社化学(株)製)、ビスフェノールAジグリシジルエーテルのアクリル酸付加物(商品名エポキシエステル3000A、共栄社化学(株)製)、ビスフェノールAプロピレンオキサイド付加物ジグリシジルエーテルのメタクリル酸付加物(商品名エポキシエステル3002M、共栄社化学(株)製)、ビスフェノールAプロピレンオキサイド付加物ジグリシジルエーテルのアクリル酸付加物(商品名エポキシエステル3002A、共栄社化学(株)製)などが挙げられる。三重結合を含有し、カルボキシル基および/または水酸基を含有する化合物の具体例としては、プロパルギルアルコール、プロピン酸、4-エチニルフタル酸、3-(3-アミノフェニル)プロピン酸、3-フェニルプロピン酸などが挙げられる。
 二重結合および/または三重結合を含有し、カルボキシル基および/または水酸基を含有する化合物の含有量は、(A)カルボキシル基とラジカル重合性基を有するポリシロキサン100重量部に対して、1重量部以上が好ましく、3重量部以上がより好ましい。1重量以上であれば、基板との接着性がより向上する。一方、50重量部以下が好ましく、30重量部以下がより好ましい。50重量部以下であれば、耐透水性が向上する。
 また、本発明の効果を損なわない範囲で、ラジカル重合性基を有するオルガノシラン化合物を含有することができる。(メタ)アクリル基以外のラジカル重合性基を有するオルガノシラン化合物を含有することで架橋点が増加し、硬化膜の硬度がより向上する。また、ラジカル重合性基とシラン原子の間に炭素数3以上の有機基を有する場合、(メタ)アクリル部位とシロキサン部位の間に入りスペーサー的役割を担うため、耐クラック性がより向上する。
 ラジカル重合性基を有するオルガノシラン化合物の含有量に特に制限はないが、シロキサン樹脂組成物の固形分中0.1重量%以上が好ましく、硬化膜の硬度をより向上させることができる。より好ましくは1重量%以上である。一方、硬化膜の耐クラック性の観点からは30重量%以下が好ましく、15重量%以下がより好ましい。
 ラジカル重合性基を有するオルガノシラン化合物の具体例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、スチリルトリメトキシシラン、スチリルトリエトキシシラン、スチリルトリアセトキシシランなどが挙げられる。これらを2種以上使用してもよい。これらのうち、硬化膜の硬度の点から、ビニルトリメトキシシラン、ビニルトリエトキシシランが特に好ましく用いられる。
 本発明のシロキサン樹脂組成物は、さらに(D)金属化合物粒子を含有してもよい。(D)金属化合物粒子を含有することによって屈折率を所望の範囲に調整することができる。また、硬化膜の硬度、耐擦傷性、耐クラック性をより向上させることができる。(D)金属化合物粒子の数平均粒子径は1nm~200nmが好ましい。透過率の高い硬化膜を得るためには、数平均粒子径1nm~70nmであることがより好ましい。ここで、金属化合物粒子の数平均粒子径は、ガス吸着法や動的光散乱法、X線小角散乱法、透過型電子顕微鏡や走査型電子顕微鏡により測定することができる。
 (D)金属化合物粒子の例としては、シリコン化合物粒子、アルミニウム化合物粒子、スズ化合物粒子、チタン化合物粒子、ジルコニウム化合物粒子、バリウム化合物粒子などが挙げられ、用途により適当なものを選ぶことができる。例えば、高屈折率の硬化膜を得るには酸化チタン粒子などのチタン化合物粒子や、酸化ジルコニウム粒子などのジルコニウム化合物粒子が好ましく用いられる。また、低屈折率の硬化膜を得るには、中空シリカ粒子などを含有することが好ましい。
 市販されている金属化合物粒子の例としては、酸化ケイ素-酸化チタン複合粒子の“オプトレイク(登録商標)”TR-502、“オプトレイク”TR-503、“オプトレイク”TR-504、“オプトレイク”TR-513、“オプトレイク”TR-520、“オプトレイク”TR-527、“オプトレイク”TR-528、“オプトレイク”TR-529、酸化チタン粒子の“オプトレイク”TR-505((以上、商品名、触媒化成工業(株)製)、酸化ジルコニウム粒子((株)高純度化学研究所製)、酸化スズ-酸化ジルコニウム複合粒子(触媒化成工業(株)製)、酸化スズ粒子((株)高純度化学研究所製)などが挙げられる。
 また、シリカ粒子として、数平均粒子径12nmのIPA-ST、MIBK-ST、数平均粒子径45nmのIPA-ST-L、数平均粒子径100nmのIPA-ST-ZL、数平均粒子径15nmのPGM-ST(以上商品名、日産化学工業(株)製)、数平均粒子径12nmの“オスカル(登録商標)”101、数平均粒子径60nmの“オスカル”105、数平均粒子径120nmの“オスカル”106、数平均粒子径5~80nmの“カタロイド(登録商標)”-S(以上商品名、触媒化成工業(株)製)、数平均粒子径16nmの“クォートロン(登録商標)”PL-2L-PGME、数平均粒子径17nmの“クォートロン”PL-2L-BL、“クォートロン”PL-2L-DAA、数平均粒子径18~20nmの“クォートロン”PL-2L、GP-2L(以上商品名、扶桑化学工業(株)製)、数平均粒子径100nmのシリカ(SiO)SG-SO100(商品名、共立マテリアル(株)製)、数平均粒子径5~50nmの“レオロシール(登録商標)”(商品名、(株)トクヤマ製)などが挙げられる。また、中空シリカ粒子としては“オプトレイク”TR-113が挙げられる。
 金属化合物粒子の含有量に特に制限はなく、用途によって適当な量とすることができるが、シロキサン樹脂組成物の固形分中1~70重量%程度とするのが一般的である。
 本発明のシロキサン樹脂組成物は、さらに(E)カルボキシル基を含まないポリシロキサンを含有してもよい。(E)カルボキシル基を含まないポリシロキサンを含有することで、硬化膜のITOの高温熱処理時(230℃~250℃×3時間処理)の接着性を向上することができる。(E)カルボキシル基を含まないポリシロキサンの具体例としては、アルカリ可溶性の観点からフェニルトリアルコキシシラン20~70モル%、硬度の観点からメチルトリアルコキシシラン15~50モル%、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン5~40モル%を加水分解し、該加水分解物を縮合して得られるポリシロキサンが好ましく挙げられる。
 (E)カルボキシル基を含まないポリシロキサンの含有量は、シロキサン樹脂組成物の固形分中5重量%以上が好ましく、10重量%以上がより好ましい。一方、硬化膜の硬度を高く保つおよび、感光性(アルカリ可溶性)の観点からは35重量%以下が好ましく、30重量%以下がより好ましい。
 本発明のシロキサン樹脂組成物は、重合禁止剤を含有してもよい。重合禁止剤を含有することで、樹脂組成物の保存安定性が向上し、現像後の解像度が向上する。重合禁止剤の含有量は、シロキサン樹脂組成物の固形分中0.01重量%以上0.1重量%以上1重量%以下が好ましい。
 重合禁止剤の具体例としては、フェノール、カテコール、レゾルシノール、ハイドロキノン、4-t-ブチルカテコール、2,6-ジ(t-ブチル)-p-クレゾール、フェノチアジン、4-メトキシフェノールなどが挙げられる。
 本発明のシロキサン樹脂組成物は、紫外線吸収剤を含有してもよい。紫外線吸収剤を含有することで、得られる硬化膜の耐光性が向上し、パターン加工を必要とする用途では現像後の解像度が向上する。紫外線吸収剤としては特に限定はなく公知のものが使用できるが、透明性、非着色性の面から、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、トリアジン系化合物が好ましく用いられる。
 ベンゾトリアゾール系化合物の紫外線吸収剤としては、2-(2Hベンゾトリアゾール-2-イル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-tert-ペンチルフェノール、2-(2Hベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、2(2H-ベンゾトリアゾール-2-イル)-6-ドデシル-4-メチルフェノール、2-(2’-ヒドロキシ-5’-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾールなどが挙げられる。ベンゾフェノン系化合物の紫外線吸収剤としては、2-ヒドロキシ-4-メトキシベンゾフェノンなどが挙げられる。トリアジン系化合物の紫外線吸収剤としては、2-(4,6-ジフェニル-1,3,5トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノールなどが挙げられる。
 本発明のシロキサン樹脂組成物は、溶媒を含有してもよい。各成分を均一に溶解し、得られる塗布膜の透明性を向上させることができる点で、アルコール性水酸基を有する化合物またはカルボニル基を有する環状化合物が好ましく用いられる。これらを2種以上用いてもよい。また、大気圧下の沸点が110~250℃である化合物がより好ましい。沸点を110℃以上とすることで、塗膜時に適度に乾燥が進み、塗布ムラのない良好な塗膜が得られる。一方、沸点を250℃以下とした場合、膜中の残存溶剤量を少なく抑えることができ、熱硬化時の膜収縮をより低減できるため、より良好な平坦性が得られる。
 アルコール性水酸基を有し、大気圧下の沸点が110~250℃である化合物の具体例としては、アセトール、3-ヒドロキシ-3-メチル-2-ブタノン、4-ヒドロキシ-3-メチル-2-ブタノン、5-ヒドロキシ-2-ペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン(ジアセトンアルコール)、乳酸エチル、乳酸ブチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノn-プロピルエーテル、プロピレングリコールモノn-ブチルエーテル、プロピレングリコールモノt-ブチルエーテル、3-メトキシ-1-ブタノール、3-メチル-3-メトキシ-1-ブタノールなどが挙げられる。これらの中でも、保存安定性の観点からはジアセトンアルコールが好ましく、段差被覆性の点からはプロピレングリコールモノt-ブチルエーテルが特に好ましく用いられる。
 カルボニル基を有し、大気圧下の沸点が110~250℃である環状化合物の具体例としては、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、炭酸プロピレン、N-メチルピロリドン、シクロヘキサノン、シクロヘプタノンなどが挙げられる。これらの中でも、γ-ブチロラクトンが特に好ましく用いられる。
 また、本発明のシロキサン樹脂組成物は、上記以外の溶媒を含有してもよい。例えば、(A)カルボキシル基とラジカル重合性基を有するポリシロキサンの加水分解および縮合反応に用いられる溶媒として例示したアセテート類、ケトン類、エーテル類などの各種溶媒が挙げられる。
 溶媒の含有量に特に制限はなく、塗布方法などに応じて任意の量用いることができる。例えば、スピンコーティングにより膜形成を行う場合には、シロキサン樹脂組成物全体の50~95重量%とすることが一般的である。
 本発明のシロキサン樹脂組成物は、樹脂組成物の硬化を促進させる、あるいは硬化を容易ならしめる各種の硬化剤を含有してもよい。硬化剤としては特に限定はなく公知のものが使用できるが、具体例としては、窒素含有有機物、シリコーン樹脂硬化剤、各種金属アルコレート、各種金属キレート化合物、イソシアネート化合物およびその重合体、メチロール化メラミン誘導体、メチロール化尿素誘導体などが挙げられる。これらを2種以上含有してもよい。なかでも、硬化剤の安定性、得られた塗布膜の加工性などから金属キレート化合物、メチロール化メラミン誘導体、メチロール化尿素誘導体が好ましく用いられる。
 ポリシロキサンは酸により硬化が促進されるので、本発明のシロキサン樹脂組成物中に熱酸発生剤などの硬化触媒を含有してもよい。熱酸発生剤としては特に限定はなく公知のものが使用できるが、芳香族ジアゾニウム塩、スルフォニウム塩、ジアリールヨードニウム塩、トリアリールスルフォニウム塩、トリアリールセレニウム塩などの各種オニウム塩系化合物、スルホン酸エステル、ハロゲン化合物などが挙げられる。
 本発明のシロキサン樹脂組成物は、塗布時のフロー性向上のために、各種のフッ素系界面活性剤、シリコーン系界面活性剤などの各種界面活性剤を含有してもよい。界面活性剤の種類に特に制限はなく、例えば、“メガファック(登録商標)”F142D、同F172、同F173、同F183、同F445、同F470、同F475、同F477(以上、大日本インキ化学工業(株)製)、NBX-15、FTX-218((株)ネオス製)などのフッ素系界面活性剤、BYK-333、BYK-301、BYK-331、BYK-345、BYK-307(ビックケミージャパン(株)製)などのシリコーン系界面活性剤、ポリアルキレンオキシド系界面活性剤、ポリ(メタ)アクリレート系界面活性剤などを用いることができる。これらを2種以上用いてもよい。
 本発明のシロキサン樹脂組成物には、必要に応じて、溶解抑止剤、安定剤、消泡剤などの添加剤を含有することもできる。
 本発明のシロキサン樹脂組成物の固形分濃度に特に制限はなく、塗布方法などに応じて任意の量の溶媒や溶質を用いることができる。例えば、後述のようにスピンコーティングにより膜形成を行う場合には、固形分濃度を5~50重量%とすることが一般的である。
 本発明のシロキサン樹脂組成物の代表的な製造方法について以下に説明する。
 例えば、(B)光ラジカル重合開始剤とその他の添加剤を任意の溶媒に加え、撹拌して溶解させた後、前述の方法により合成した(A)ポリシロキサン溶液および(C)ラジカル重合性基を有し、Si-O-Si結合を含有しない化合物を加えさらに20分~3時間撹拌する。得られた溶液を濾過し、シロキサン樹脂組成物が得られる。
 得られたシロキサン樹脂組成物は、高速液体クロマトグラフィー(HPLC)によって各成分を分離、分取後、公知の分析方法(NMR、IR、MSなど)により各成分の構造を確認することが出来る。
 本発明のシロキサン樹脂組成物を用いた硬化膜の形成方法について例を挙げて説明する。
 本発明のシロキサン樹脂組成物を、マイクログラビアコーティング、スピンコーティング、ディップコーティング、カーテンフローコーティング、ロールコーティング、スプレーコーティング、スリットコーティングなどの公知の方法によって下地基板上に塗布し、ホットプレート、オーブンなどの加熱装置でプリベークする。プリベークは、50~150℃の範囲で30秒~30分間行い、プリベーク後の膜厚は、0.1~15μmとすることが好ましい。
 プリベーク後、ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナー(PLA)などの露光機を用いて、10~4000J/m程度(波長365nm露光量換算)の光を所望のマスクを介してあるいは介さずに照射する。露光光源に制限はなく、i線、g線、h線などの紫外線や、KrF(波長248nm)レーザー、ArF(波長193nm)レーザーなどを用いることができる。その後、この膜をホットプレート、オーブンなどの加熱装置で150~450℃の範囲で1時間程度加熱する露光後ベークを行ってもよい。
 本発明のシロキサン樹脂組成物は、PLAによる露光での感度が100~4000J/mであることが好ましい。前記のPLAによるパターニング露光での感度は、例えば以下の方法により求められる。組成物をシリコンウエハにスピンコーターを用いて任意の回転数でスピンコートし、ホットプレートを用いて120℃で2分間プリベークし、膜厚2μmの膜を作製する。作製した膜をPLA(キヤノン(株)製PLA-501F)を用いて、超高圧水銀灯を感度測定用のグレースケールマスクを介して露光した後、自動現像装置(滝沢産業(株)製AD-2000)を用いて2.38重量%水酸化テトラメチルアンモニウム水溶液で任意の時間パドル現像し、次いで水で30秒間リンスする。形成されたパターンにおいて、30μmのラインアンドスペースパターンを1対1の幅で解像する露光量を感度として求める。
 パターニング露光後、現像により露光部が溶解し、ネガ型のパターンを得ることができる。現像方法としては、シャワー、ディッピング、パドルなどの方法で現像液に5秒~10分間浸漬することが好ましい。現像液としては、公知のアルカリ現像液を用いることができる。具体例としては、アルカリ金属の水酸化物、炭酸塩、リン酸塩、ケイ酸塩、ホウ酸塩などの無機アルカリ、2-ジエチルアミノエタノール、モノエタノールアミン、ジエタノールアミンなどのアミン類、テトラメチルアンモニウムヒドロキサイド、コリンなどの4級アンモニウム塩を1種あるいは2種以上含む水溶液などが挙げられる。現像後、水でリンスすることが好ましく、続いて50~150℃の範囲で乾燥ベークを行ってもよい。その後、この膜をホットプレート、オーブンなどの加熱装置で120~280℃の範囲で1時間程度熱硬化することにより、硬化膜を得る。
 本発明のシロキサン樹脂組成物から得られる硬化膜は、解像度が20μm以下であることが好ましい。硬化膜の膜厚に特に制限はないが、0.1~15μmが好ましい。また、膜厚1.5μmにおいて硬度が4H以上、透過率が90%以上であることが好ましい。なお、透過率は波長400nmにおける透過率を指す。硬度や透過率は、露光量、熱硬化温度の選択によって調整することができる。
 本発明のシロキサン樹脂組成物を硬化して得られる硬化膜は、タッチパネル用保護膜、各種ハードコート材、反射防止フィルム、光学フィルターとして用いられる。また、ネガ型感光性を有することから、タッチセンサー用絶縁膜、液晶や有機ELディスプレイのTFT用平坦化膜、絶縁膜、反射防止膜、カラーフィルター用オーバーコート、柱材などに好適に用いられる。これらの中でも、高い硬度と耐擦傷性を有することから、タッチパネル用保護膜として好適に用いることができる。タッチパネルの方式としては、抵抗膜式、光学式、電磁誘導式、静電容量式などが挙げられる。静電容量式タッチパネルは特に高い硬度が求められることから、本発明の硬化膜を好適に用いることができる。
 以下に本発明をその実施例を用いて説明するが、本発明の様態はこれらの実施例に限定されるものではない。
 合成例1 カルボキシル基含有シラン化合物(A)の合成
 300mlのナスフラスコにp-アミノ安息香酸を23.23g、プロピレングリコールモノメチルエーテルアセテート(PGMEA)を209.05g仕込み、室温にて30分間撹拌してp-アミノ安息香酸を溶解させた。得られた溶液に、イソシアネートプロピルトリエトキシシランを46.53g、ジラウリン酸ジブチルスズを1.19g仕込み、70℃のオイルバスで1時間撹拌した。その後室温まで放冷し、析出した固体をガラスフィルターにて濾取、乾燥させ、カルボキシル基含有シラン化合物(A)を得た。収量は46.7gだった。
 合成例2 カルボキシル基含有シラン化合物(B)の合成
 300mlのナスフラスコにp-ヒドロキシ安息香酸を23.39g、PGMEAを210.5g仕込み、室温にて30分間撹拌してp-ヒドロキシ安息香酸を溶解させた。得られた溶液に、イソシアネートプロピルトリエトキシシランを46.53g、ジラウリン酸ジブチルスズを1.19g仕込み、40℃のオイルバスで3時間撹拌した。その後室温まで放冷し、析出した固体をガラスフィルターにて濾取、乾燥させ、カルボキシル基含有シラン化合物(B)を得た。収量は42.4gだった。
 合成例3 ポリシロキサン溶液(i)の合成
 500mLの三口フラスコにメチルトリメトキシシランを17.03g(0.125mol)、フェニルトリメトキシシランを19.83g(0.1mol)、カルボキシル基含有シラン化合物(A)を38.42g(0.1mol)、γ-アクリロイルプロピルトリメトキシシランを41.02g(0.175mol)、ジアセトンアルコール(DAA)を109.61g仕込み、40℃のオイルバスに漬けて撹拌しながら水27.0gにリン酸0.237g(仕込みモノマーに対して0.2重量%)を溶かしたリン酸水溶液を滴下ロートで10分かけて添加した。40℃で1時間撹拌した後、オイルバス温度を70℃に設定して1時間撹拌し、さらにオイルバスを30分かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱撹拌した(内温は100~110℃)。反応中に副生成物であるメタノール、エタノール、水が合計55g留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が40重量%となるようにDAAを加えてポリシロキサン溶液(i)を得た。なお、得られたポリマーの重量平均分子量(Mw)をGPCにより測定したところ8000(ポリスチレン換算)であった。
 合成例4 ポリシロキサン溶液(ii)の合成
 500mLの三口フラスコにメチルトリメトキシシランを17.03g(0.125mol)、フェニルトリメトキシシランを19.83g(0.1mol)、カルボキシル基含有シラン化合物(B)を38.52g(0.1mol)、γ-アクリロイルプロピルトリメトキシシランを41.02g(0.175mol)、DAAを109.61g仕込み、40℃のオイルバスに漬けて撹拌しながら水27.0gにリン酸0.237g(仕込みモノマーに対して0.2重量%)を溶かしたリン酸水溶液を滴下ロートで10分かけて添加した。次いで合成例3と同条件で加熱撹拌したところ、反応中に副生成物であるメタノール、エタノール、水が合計55g留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が40重量%となるようにDAAを加えてポリシロキサン溶液(ii)を得た。なお、得られたポリマーの重量平均分子量をGPCにより測定したところ6000(ポリスチレン換算)であった。
 合成例5 ポリシロキサン溶液(iii)の合成
 500mLの三口フラスコにメチルトリメトキシシランを34.05g(0.25mol)、フェニルトリメトキシシランを39.66g(0.20mol)、4-トリメトキシシリルブタン酸41.66g(0.20mol)、γ-アクリロイルプロピルトリメトキシシランを82.03g(0.35mol)、DAAを185.08g仕込み、40℃のオイルバスに漬けて撹拌しながら水54.0gにリン酸0.395g(仕込みモノマーに対して0.2重量%)を溶かしたリン酸水溶液を滴下ロートで10分かけて添加した。次いで合成例3と同条件で加熱撹拌したところ、反応中に副生成物であるメタノール、水が合計110g留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が40重量%となるようにDAAを加えてポリシロキサン溶液(iii)を得た。なお、得られたポリマーの重量平均分子量をGPCにより測定したところ5500(ポリスチレン換算)であった。
 合成例6 ポリシロキサン溶液(iv)の合成
 500mLの三口フラスコにメチルトリメトキシシランを47.67g(0.35mol)、フェニルトリメトキシシランを39.66g(0.20mol)、3-トリメトキシシリルプロピルコハク酸26.23g(0.10mol)、γ-アクリロイルプロピルトリメトキシシランを82.03g(0.35mol)、DAAを185.08g仕込み、40℃のオイルバスに漬けて撹拌しながら水55.8gにリン酸0.401g(仕込みモノマーに対して0.2重量%)を溶かしたリン酸水溶液を滴下ロートで10分かけて添加した。次いで合成例3と同条件で加熱撹拌したところ、反応中に副生成物であるメタノール、水が合計110g留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が40重量%となるようにDAAを加えてポリシロキサン溶液(iii)を得た。なお、得られたポリマーの重量平均分子量をGPCにより測定したところ5500(ポリスチレン換算)であった。
 合成例7 ポリシロキサン溶液(v)の合成
 500mLの三口フラスコにメチルトリメトキシシランを55.84g(0.41mol)、フェニルトリメトキシシランを39.66g(0.20mol)、3-トリメトキシシリルプロピルコハク酸10.49g(0.04mol)、γ-アクリロイルプロピルトリメトキシシランを82.04g(0.35mol)、DAAを173.57g仕込み、40℃のオイルバスに漬けて撹拌しながら水54.72gにリン酸0.376g(仕込みモノマーに対して0.2重量%)を溶かしたリン酸水溶液を滴下ロートで10分かけて添加した。次いで合成例3と同条件で加熱撹拌したところ、反応中に副生成物であるメタノール、水が合計90g留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が40重量%となるようにDAAを加えてポリシロキサン溶液(v)を得た。なお、得られたポリマーの重量平均分子量をGPCにより測定したところ70000(ポリスチレン換算)であった。
 合成例8 ポリシロキサン溶液(vi)の合成
 500mLの三口フラスコにフェニルトリメトキシシランを39.66g(0.20mol)、3-トリメトキシシリルプロピルコハク酸118.05g(0.45mol)、γ-アクリロイルプロピルトリメトキシシランを82.04g(0.35mol)、DAAを221.31g仕込み、40℃のオイルバスに漬けて撹拌しながら水62.10gにリン酸0.479g(仕込みモノマーに対して0.2重量%)を溶かしたリン酸水溶液を滴下ロートで10分かけて添加した。次いで合成例3と同条件で加熱撹拌したところ、反応中に副生成物であるメタノール、水が合計90g留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が40重量%となるようにDAAを加えてポリシロキサン溶液(vi)を得た。なお、得られたポリマーの重量平均分子量をGPCにより測定したところ70000(ポリスチレン換算)であった。
 合成例9 ポリシロキサン溶液(vii)の合成
 500mLの三口フラスコにメチルトリメトキシシランを88.53g(0.65mol)、フェニルトリメトキシシランを39.66g(0.20mol)、3-トリメトキシシリルプロピルコハク酸26.23g(0.10mol)、γ-アクリロイルプロピルトリメトキシシランを11.72g(0.05mol)、DAAを153.36g仕込み、40℃のオイルバスに漬けて撹拌しながら水55.80gにリン酸0.332g(仕込みモノマーに対して0.2重量%)を溶かしたリン酸水溶液を滴下ロートで10分かけて添加した。次いで合成例3と同条件で加熱撹拌したところ、反応中に副生成物であるメタノール、水が合計90g留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が40重量%となるようにDAAを加えてポリシロキサン溶液(vii)を得た。なお、得られたポリマーの重量平均分子量をGPCにより測定したところ50000(ポリスチレン換算)であった。
 合成例10 ポリシロキサン溶液(viii)の合成
 3-トリメトキシシリルプロピルコハク酸26.23g(0.10mol)、γ-アクリロイルプロピルトリメトキシシランを210.96g(0.90mol)、DAAを218.95g仕込み、40℃のオイルバスに漬けて撹拌しながら水55.80gにリン酸0.474g(仕込みモノマーに対して0.2重量%)を溶かしたリン酸水溶液を滴下ロートで10分かけて添加した。次いで合成例3と同条件で加熱撹拌したところ、反応中に副生成物であるメタノール、水が合計90g留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が40重量%となるようにDAAを加えてポリシロキサン溶液(viii)を得た。なお、得られたポリマーの重量平均分子量をGPCにより測定したところ80000(ポリスチレン換算)であった。
 合成例11 ポリシロキサン溶液(ix)の合成
 500mLの三口フラスコにメチルトリメトキシシランを47.67g(0.35mol)、フェニルトリメトキシシランを39.66g(0.20mol)、3-トリメトキシシリルプロピルコハク酸26.23g(0.10mol)、γ-メタクリロイルプロピルトリメトキシシランを87.29g(0.35mol)、DAAを185.40g仕込み、40℃のオイルバスに漬けて撹拌しながら水55.8gにリン酸0.401g(仕込みモノマーに対して0.2重量%)を溶かしたリン酸水溶液を滴下ロートで10分かけて添加した。次いで合成例3と同条件で加熱撹拌したところ、反応中に副生成物であるメタノール、水が合計110g留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が40重量%となるようにDAAを加えてポリシロキサン溶液(ix)を得た。なお、得られたポリマーの重量平均分子量をGPCにより測定したところ5500(ポリスチレン換算)であった。
 合成例12 ポリシロキサン溶液(x)の合成
 500mLの三口フラスコにメチルトリメトキシシランを34.05g(0.25mol)、フェニルトリメトキシシランを19.83g(0.10mol)、3-トリメトキシシリルプロピルコハク酸26.23g(0.10mol)、γ-アクリロイルプロピルトリメトキシシランを82.04g(0.35mol)、シリカ粒子「PL-2L-DAA」(固形分濃度21.9重量%、扶桑化学工業(株)製)を54.87g(Si原子換算で0.20mol)、DAAを149.68g仕込み、40℃のオイルバスに漬けて撹拌しながら水45.0gにリン酸0.348g(仕込みモノマーに対して0.2重量%)を溶かしたリン酸水溶液を滴下ロートで10分かけて添加した。次いで合成例3と同条件で加熱撹拌したところ、反応中に副生成物であるメタノール、水が合計45g留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が40重量%となるようにDAAを加えてポリシロキサン溶液(x)を得た。なお、得られたポリマーの重量平均分子量をGPCにより測定したところ5500(ポリスチレン換算)であった。
 合成例13 ポリシロキサン溶液(xi)の合成
 500mLの三口フラスコにメチルトリメトキシシランを54.48g(0.40mol)、フェニルトリメトキシシランを99.15g(0.50mol)、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランを29.61g(0.10mol)、DAAを145.86g仕込み、40℃のオイルバスに漬けて撹拌しながら水55.8gにリン酸0.089g(仕込みモノマーに対して0.05重量%)を溶かしたリン酸水溶液を滴下ロートで10分かけて添加した。次いで合成例3と同条件で加熱撹拌したところ、反応中に副生成物であるメタノール、水が合計120g留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が40重量%となるようにDAAを加えてポリシロキサン溶液(xi)を得た。なお、得られたポリマーの重量平均分子量をGPCにより測定したところ7500(ポリスチレン換算)であった。
 合成例14 ポリシロキサン溶液(xii)の合成
 500mLの三口フラスコにメチルトリメトキシシランを61.29g(0.45mol)、フェニルトリメトキシシランを39.66g(0.20mol)、γ-アクリロイルプロピルトリメトキシシランを86.94g(0.35mol)、DAAを173.44g仕込み、40℃のオイルバスに漬けて撹拌しながら水54.0gにリン酸0.376g(仕込みモノマーに対して0.2重量%)を溶かしたリン酸水溶液を滴下ロートで10分かけて添加した。次いで合成例3と同条件で加熱撹拌したところ、反応中に副生成物であるメタノール、水が合計110g留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が40重量%となるようにDAAを加えてポリシロキサン溶液(xii)を得た。なお、得られたポリマーの重量平均分子量をGPCにより測定したところ7500(ポリスチレン換算)であった。
 合成例15 ポリシロキサン溶液(xiii)の合成
 500mLの三口フラスコにメチルトリメトキシシランを30.65g(0.225mol)、フェニルトリメトキシシランを34.7g(0.175mol)、カルボキシル基含有シラン化合物(A)を38.42g(0.10mol)、DAAを95.78g仕込み、40℃のオイルバスに漬けて撹拌しながら水27.0gにリン酸0.208g(仕込みモノマーに対して0.2重量%)を溶かしたリン酸水溶液を滴下ロートで10分かけて添加した。次いで合成例3と同条件で加熱撹拌したところ、反応中に副生成物であるメタノール、水が合計45g留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が40重量%となるようにDAAを加えてポリシロキサン溶液(xiii)を得た。なお、得られたポリマーの重量平均分子量をGPCにより測定したところ5500(ポリスチレン換算)であった。
 合成例16 ポリシロキサン溶液(xiv)の合成
 500mLの三口フラスコにメチルトリメトキシシランを13.621g(0.10mol)、フェニルトリメトキシシランを39.66g(0.20mol)、γ-アクリロイルプロピルトリメトキシシランを164.08g(0.70mol)、DAAを200.64g仕込み、40℃のオイルバスに漬けて撹拌しながら水54.0gにリン酸0.435g(仕込みモノマーに対して0.2重量%)を溶かしたリン酸水溶液を滴下ロートで10分かけて添加した。次いで合成例3と同条件で加熱撹拌したところ、反応中に副生成物であるメタノール、水が合計110g留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が40重量%となるようにDAAを加えてポリシロキサン溶液(xiv)を得た。なお、得られたポリマーの重量平均分子量をGPCにより測定したところ7500(ポリスチレン換算)であった。
 合成例17 ポリシロキサン溶液(xv)の合成
 500mLの三口フラスコにメチルトリメトキシシランを81.72g(0.60mol)、フェニルトリメトキシシランを39.66g(0.20mol)、3-トリメトキシシリルプロピルコハク酸52.47g(0.20mol)DAAを160.47g仕込み、40℃のオイルバスに漬けて撹拌しながら水57.60gにリン酸0.348g(仕込みモノマーに対して0.2重量%)を溶かしたリン酸水溶液を滴下ロートで10分かけて添加した。次いで合成例3と同条件で加熱撹拌したところ、反応中に副生成物であるメタノール、水が合計100g留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が40重量%となるようにDAAを加えてポリシロキサン溶液(xv)を得た。なお、得られたポリマーの重量平均分子量をGPCにより測定したところ5500(ポリスチレン換算)であった。
合成例18 ポリシロキサン溶液(xvi)の合成
 500mLの三口フラスコにメチルトリメトキシシランを47.67g(0.35mol)、フェニルトリメトキシシランを39.66g(0.20mol)、ビニルトリメトキシシランを51.88g(0.35mol)、3-トリメトキシシリルプロピルコハク酸26.23g(0.10mol)DAAを160.47g仕込み、40℃のオイルバスに漬けて撹拌しながら水55.80gにリン酸0.331g(仕込みモノマーに対して0.2重量%)を溶かしたリン酸水溶液を滴下ロートで10分かけて添加した。次いで合成例3と同条件で加熱撹拌したところ、反応中に副生成物であるメタノール、水が合計100g留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が40重量%となるようにDAAを加えてポリシロキサン溶液(xvi)を得た。なお、得られたポリマーの重量平均分子量をGPCにより測定したところ5000(ポリスチレン換算)であった。
合成例19 ポリシロキサン溶液(xvii)の合成
 500mLの三口フラスコにメチルトリメトキシシランを47.67g(0.35mol)、フェニルトリメトキシシランを39.66g(0.20mol)、スチリルトリメトキシシランを78.52g(0.35mol)、3-トリメトキシシリルプロピルコハク酸26.23g(0.10mol)DAAを160.47g仕込み、40℃のオイルバスに漬けて撹拌しながら水55.80gにリン酸0.331g(仕込みモノマーに対して0.2重量%)を溶かしたリン酸水溶液を滴下ロートで10分かけて添加した。次いで合成例3と同条件で加熱撹拌したところ、反応中に副生成物であるメタノール、水が合計100g留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が40重量%となるようにDAAを加えてポリシロキサン溶液(xvii)を得た。なお、得られたポリマーの重量平均分子量をGPCにより測定したところ6000(ポリスチレン換算)であった。
 合成例20 アクリル樹脂溶液(a)の合成
 500mlのフラスコに2,2’-アゾビス(イソブチロニトリル)を3g、PGMEA(プロピレングリコールメチルエーテルアセテート)を50g仕込んだ。その後、メタクリル酸を30g、ベンジルメタクリレートを35g、トリシクロ[5.2.1.02,6]デカン-8-イルメタクリレートを35g仕込み、室温でしばらく撹拌し、フラスコ内を窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液にメタクリル酸グリシジルを15g、ジメチルベンジルアミンを1g、p-メトキシフェノールを0.2g、PGMEAを100g添加し、90℃で4時間加熱撹拌し、アクリル樹脂溶液(a)を得た。得られたアクリル樹脂溶液(a)に固形分濃度が40重量%になるようにPGMEAを加えた。アクリル樹脂の重量平均分子量は10000、酸価は118mgKOH/gであった。
 合成例3~20の組成をまとめて表1に示す。
Figure JPOXMLDOC01-appb-T000008
 各実施例・比較例における評価方法を以下に示す。
 (1)透過率の測定
 作製したシロキサン樹脂組成物を5cm角のテンパックスガラス基板(旭テクノガラス板(株)製)にスピンコーター(ミカサ(株)製1H-360S)を用いて500rpmで10秒回転した後、1000rpmで4秒回転してスピンコートした後、ホットプレート(大日本スクリーン製造(株)製SCW-636)を用いて90℃で2分間プリベークし、膜厚2μmの膜を作製した。作製した膜をパラレルライトマスクアライナー(以下PLAという)(キヤノン(株)製PLA-501F)を用いて超高圧水銀灯を光源として露光し、オーブン(エスペック(株)製IHPS-222)を用いて空気中220℃で1時間キュアして膜厚1.5μmの硬化膜を作製した。
 得られた硬化膜について、紫外-可視分光光度計UV-260(島津製作所(株)製)を用いて、400nmの透過率を測定した。なお、膜厚は大日本スクリーン製造(株)製ラムダエースSTM-602を用いて屈折率1.50で測定した。以下に記載する膜厚も同様である。
 (2)耐クラック性の評価
 前記(1)記載の方法で得られた膜厚1.5μmの硬化膜を、さらに空気中300℃で3時間加熱した後、光学顕微鏡で表面の2箇所を観察し、クラックの有無を観察した。各観察箇所について以下の5段階で判定し、2箇所の平均で3.5以上を合格とした。表4~5には平均値を記載した。
5:膜に全くクラックが発生していない。
4:基板四隅のうち1カ所にクラックが発生している。
3:基板四隅中のうち2カ所以上4カ所以下の範囲でクラックが発生している。
2:基板周辺部にクラックが発生している。
1:基板全面にクラックが発生している。
 (3)硬度の測定
 前記(1)記載の方法で得られた膜厚1.5μmの硬化膜について、JIS K5600-5-4(1999)に準拠して鉛筆硬度を測定した。
 (4)耐擦傷性の評価
 5cm×7cmのテンパックスガラス基板上に、前記(1)記載の方法と同様にして膜厚1.5μmの硬化膜を作製した。#0000のスチールウールを硬化膜上で1.96133Nの荷重をかけ長辺方向に10往復させた後、硬化膜の傷の有無を観察した。評価を以下の5段階で判定し、4以上を合格とした。
5:膜に全く傷が入っていない。
4:膜に1~10本の傷が入っている。
3:膜に11~30本の傷が入っている。
2:膜に31~50本の傷が入っている。
1:膜に51本以上の傷が入っている。
 (5)ITO接着性の評価
 表面にITOをスパッタリングしたガラス基板(以下、「ITO基板」)上に、前記(1)記載の方法と同様にして膜厚1.5μmの硬化膜を形成し、JIS K5400 8.5.2(1990)碁盤目テープ法に準じてITOと硬化膜の接着性を評価した。ガラス基板上のITO表面に、カッターナイフでガラス板の素地に到達するように、直交する縦横11本ずつの平行な直線を1mm間隔で引いて、1mm×1mmのマス目を100個作製した。切られたITO表面にセロハン粘着テープ(幅=18mm、粘着力=3.7N/10mm)を張り付け、消しゴム(JIS S6050合格品)で擦って密着させ、テープの一端を持ち、板に直角に保ち瞬間的に剥離した際のマス目の残存数を目視によって評価した。マス目の剥離面積により以下のように判定し、4以上を合格とした。
5:剥離面積=0%
4:剥離面積=0%超5%以下
3:剥離面積=5%超15%以下
2:剥離面積=15%超35%以下
1:剥離面積=35%超65%以下
0:剥離面積=65%超100%以下
<0:マス目以外のエリアも含め全て剥離した。
 (6)パターン加工性
 (a)感度
 シロキサン樹脂組成物Aをシリコンウエハにスピンコーター(ミカサ(株)製1H-360S)を用いて500rpmで10秒回転した後、1000rpmで4秒回転してスピンコートした後、ホットプレート(大日本スクリーン製造(株)製SCW-636)を用いて90℃で2分間プリベークし、膜厚2μmのプリベーク膜を作製した。得られたプリベーク膜に、PLAを用いて超高圧水銀灯を光源として、感度測定用のグレースケールマスクを介して100μmのギャップで露光した。その後、自動現像装置(AD-2000、滝沢産業(株)製)を用いて、0.4重量%水酸化テトラメチルアンモニウム水溶液ELM-D(三菱ガス化学(株)製)で90秒間シャワー現像し、次いで水で30秒間リンスした。
 露光、現像後、30μmのラインアンドスペースパターンを1対1の幅に形成する露光量(以下、これを最適露光量という)を感度とした。露光量はI線照度計で測定した。
 (b)解像度
 最適露光量における現像後の最小パターン寸法を測定した。
 (c)現像後残さ
 前記(a)に記載の方法でシリコンウエハ上にパターン加工した後、未露光部の溶け残り程度により以下のようにして判定した。
5:目視では解け残りが無く、顕微鏡の観察においても50μm以下の微細パターンも残渣がない。
4:目視では解け残りが無く、顕微鏡観察において50μm超のパターンには残渣がないが、50μm以下のパターンには残渣がある。
3:目視では解け残りが無いが、顕微鏡観察において50μm超のパターンに残渣がある。
2:目視で、基板端部(厚膜部)に解け残りがある。
1:目視で、未露光部全体に解け残りがある。
 (7)ITO耐熱性
 表面にITOをスパッタリングしたガラス基板(以下、「ITO基板」)上に、前記(1)記載の方法と同様にして膜厚1.5μmの硬化膜を形成し、230℃/3時間および250℃/3時間オーブンにて加熱処理し、その後の接着性により評価した。評価基準は(5)と同じとした。
 実施例1
 黄色灯下にて2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン(商品名「イルガキュア907」チバスペシャリティケミカル製)0.5166g、4,4-ビス(ジエチルアミノ)ベンゾフェノン0.0272gを、DAA2.9216g、PGMEA2.4680gに溶解させ、ジペンタエリスリトールヘキサアクリレート(商品名「“カヤラッド(登録商標)”DPHA」、新日本化薬製)のPGMEA50重量%溶液2.7189g、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン(商品名「BPEFA」大阪ガスケミカル製)のPGMEA50重量%溶液2.7189g、4-t-ブチルカテコールのPGMEA1重量%溶液1.6314g、ポリシロキサン溶液(i)6.7974g、シリコーン系界面活性剤であるBYK-333(ビックケミージャパン(株)製)のPGMEA1重量%溶液0.2000g(濃度100ppmに相当)を加え、撹拌した。次いで0.45μmのフィルターでろ過を行い、シロキサン樹脂組成物Aを得た。得られたシロキサン樹脂組成物Aについて、前記方法で透過率、耐クラック性、硬度、耐擦傷性、ITO接着性、ITO耐熱性、パターン加工性を評価した。
 実施例2
 ポリシロキサン溶液(i)の替わりにポリシロキサン溶液(ii)を用いる以外は実施例1と同様に行い、シロキサン樹脂組成物Bを得た。得られたシロキサン樹脂組成物Bを用いて、実施例1と同様にして評価を行った。
 実施例3
 ポリシロキサン溶液(i)の替わりにポリシロキサン溶液(iii)を用いる以外は実施例1と同様に行い、シロキサン樹脂組成物Cを得た。得られたシロキサン樹脂組成物Cを用いて、実施例1と同様にして評価を行った。
 実施例4
 ポリシロキサン溶液(i)の替わりにポリシロキサン溶液(iv)を用いる以外は実施例1と同様に行い、シロキサン樹脂組成物Dを得た。得られたシロキサン樹脂組成物Dを用いて、実施例1と同様にして評価を行った。
 実施例5
 ポリシロキサン溶液(i)の替わりにポリシロキサン溶液(v)を用いる以外は実施例1と同様に行い、シロキサン樹脂組成物Eを得た。得られたシロキサン樹脂組成物Eを用いて、実施例1と同様にして評価を行った。
 実施例6
 ポリシロキサン溶液(i)の替わりにポリシロキサン溶液(vi)を用いる以外は実施例1と同様に行い、シロキサン樹脂組成物Fを得た。得られたシロキサン樹脂組成物Fを用いて、実施例1と同様にして評価を行った。
 実施例7
 ポリシロキサン溶液(i)の替わりにポリシロキサン溶液(vii)を用いる以外は実施例1と同様に行い、シロキサン樹脂組成物Gを得た。得られたシロキサン樹脂組成物Gを用いて、実施例1と同様にして評価を行った。
 実施例8
 ポリシロキサン溶液(i)の替わりにポリシロキサン溶液(viii)を用いる以外は実施例1と同様に行い、シロキサン樹脂組成物Hを得た。得られたシロキサン樹脂組成物Hを用いて、実施例1と同様にして評価を行った。
 実施例9
 ポリシロキサン溶液(i)の替わりにポリシロキサン溶液(ix)を用いる以外は実施例1と同様に行い、シロキサン樹脂組成物Iを得た。得られたシロキサン樹脂組成物Iを用いて、実施例1と同様にして評価を行った。
 実施例10
 ポリシロキサン溶液(i)の替わりにポリシロキサン溶液(x)を用いる以外は実施例1と同様に行い、シロキサン樹脂組成物Jを得た。得られたシロキサン樹脂組成物Jを用いて、実施例1と同様にして評価を行った。
実施例11
 ポリシロキサン溶液(i)の替わりにポリシロキサン溶液(xvi)を用いる以外は実施例1と同様に行い、シロキサン樹脂組成物Kを得た。得られたシロキサン樹脂組成物Kを用いて、実施例1と同様にして評価を行った。
実施例12
 ポリシロキサン溶液(i)の替わりにポリシロキサン溶液(xvii)を用いる以外は実施例1と同様に行い、シロキサン樹脂組成物Lを得た。得られたシロキサン樹脂組成物Lを用いて、実施例1と同様にして評価を行った。
実施例13
 黄色灯下にて1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)](商品名「イルガキュアOXE-01」チバスペシャリティケミカル製)0.5166gを、DAA2.7279g、PGMEA2.2622gに溶解させ、「DPHA」のPGMEA50重量%溶液2.8481g、「BPEFA」のPGMEA50重量%溶液2.8481g、4-t-ブチルカテコールのPGMEA1重量%溶液1.7088g、ポリシロキサン溶液(iv)7.1201g、シリコーン系界面活性剤であるBYK-333(ビックケミージャパン(株)製)のPGMEA1重量%溶液0.2000g(濃度100ppmに相当)を加え、撹拌した。次いで0.45μmのフィルターでろ過を行い、シロキサン樹脂組成物Mを得た。得られたシロキサン樹脂組成物Mを用いて、実施例1と同様にして評価を行った。
実施例14
 黄色灯下にてエタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)(商品名「イルガキュアOXE-02」チバスペシャリティケミカル製)0.5166gを、DAA2.6452g、PGMEA2.1743gに溶解させ、「DPHA」のPGMEA50重量%溶液2.6452g、「BPEFA」のPGMEA50重量%溶液2.6452g、4-t-ブチルカテコールのPGMEA1重量%溶液1.7419g、ポリシロキサン溶液(iv)7.2580g、シリコーン系界面活性剤であるBYK-333(ビックケミージャパン(株)製)のPGMEA1重量%溶液0.2000g(濃度100ppmに相当)を加え、撹拌した。次いで0.45μmのフィルターでろ過を行い、シロキサン樹脂組成物Nを得た。得られたシロキサン樹脂組成物Nを用いて、実施例1と同様にして評価を行った。
 実施例15
 黄色灯下にて「イルガキュア907」0.4373g、4,4-ビス(ジエチルアミノ)ベンゾフェノン0.0230gをDAA0.2644g、PGMEA3.1332gに溶解させ、「DPHA」のPGMEA50重量%溶液2.3016g、「BPEFA」のPGMEA50重量%溶液2.3016g、4-t-ブチルカテコールのPGMEA1重量%溶液1.3810g、ポリシロキサン溶液(i)5.7540g、「PL-2L-DAA」4.2039g、「BYK-333」のPGMEA1重量%溶液0.2000g(濃度100ppmに相当)を加え、撹拌した。次いで0.45μmのフィルターでろ過を行い、シロキサン樹脂組成物Oを得た。得られたシロキサン樹脂組成物Oを用いて、実施例1と同様にして評価を行った。
 実施例16
 ポリシロキサン溶液(i)の替わりにポリシロキサン溶液(iii)を用いる以外は実施例13と同様に行い、シロキサン樹脂組成物Pを得た。得られたシロキサン樹脂組成物Pを用いて、実施例1と同様にして評価を行った。
 実施例17
 ポリシロキサン溶液(i)の替わりにポリシロキサン溶液(iv)を用いる以外は実施例13と同様に行い、シロキサン樹脂組成物Qを得た。得られたシロキサン樹脂組成物Qを用いて、実施例1と同様にして評価を行った。
 実施例18
 ポリシロキサン溶液(i)の替わりにポリシロキサン溶液(x)を用いる以外は実施例13と同様に行い、シロキサン樹脂組成物Rを得た。得られたシロキサン樹脂組成物Rを用いて、実施例1と同様にして評価を行った。
 実施例19
 黄色灯下にて「イルガキュア907」0.5166g、4,4-ビス(ジエチルアミノ)ベンゾフェノン0.0272gをDAA2.9216g、PGMEA2.4680gに溶解させ、「DPHA」のPGMEA50重量%溶液2.7189g、「BPEFA」のPGMEA50重量%溶液2.7189g、4-t-ブチルカテコールのPGMEA1重量%溶液1.6314g、ポリシロキサン溶液(i)3.3987g、ポリシロキサン溶液(xi)3.3987g、シリコーン系界面活性剤であるBYK-333(ビックケミージャパン(株)製)のPGMEA1重量%溶液を0.2000g(濃度100ppmに相当)加え、撹拌した。次いで0.45μmのフィルターでろ過を行い、シロキサン樹脂組成物Sを得た。得られたシロキサン樹脂組成物Sを用いて、実施例1と同様にして評価を行った。
 実施例20
 ポリシロキサン溶液(i)の替わりにポリシロキサン溶液(iii)を用いる以外は実施例19と同様に行い、シロキサン樹脂組成物Tを得た。得られたシロキサン樹脂組成物Tを用いて、実施例1と同様にして評価を行った。
実施例21
 ポリシロキサン溶液(i)の替わりにポリシロキサン溶液(iv)を用いる以外は実施例19と同様に行い、シロキサン樹脂組成物Uを得た。得られたシロキサン樹脂組成物Uを用いて、実施例1と同様にして評価を行った。
実施例22
黄色灯下にて「イルガキュア907」0.5166g、4,4-ビス(ジエチルアミノ)ベンゾフェノン0.0272gをDAA2.9216g、PGMEA2.4680gに溶解させ、「DPHA」のPGMEA50重量%溶液5.4379g、4-t-ブチルカテコールのPGMEA1重量%溶液1.6314g、ポリシロキサン溶液(iv)6.7974g、シリコーン系界面活性剤であるBYK-333(ビックケミージャパン(株)製)のPGMEA1重量%溶液を0.2000g(濃度100ppmに相当)加え、撹拌した。次いで0.45μmのフィルターでろ過を行い、シロキサン樹脂組成物Vを得た。得られたシロキサン樹脂組成物Vを用いて、実施例1と同様にして評価を行った。
実施例23
 ポリシロキサン溶液(i)の替わりにポリシロキサン溶液(iv)を用い、「BPEFA」の替わりに9,9-ビス[4-(2-アクリロイルオキシプロポキシ)フェニル]フルオレンを用いる以外は実施例1と同様に行い、シロキサン樹脂組成物Wを得た。得られたシロキサン樹脂組成物Wを用いて、実施例1と同様にして評価を行った。
実施例24
 ポリシロキサン溶液(i)の替わりにポリシロキサン溶液(iv)を用い、「BPEFA」の替わりに9,9-ビス[4-(2-アクリロイルオキシプロポキシ)フェニル]フルオレンを用いる以外は実施例19と同様に行い、シロキサン樹脂組成物Xを得た。得られたシロキサン樹脂組成物Xを用いて、実施例1と同様にして評価を行った。
実施例25
 「DPHA」の替わりにトリペンタエリスリトールポリアクリレートおよびテトラペンタエリスリトールポリアクリレートおよびペンタペンタエリスリトールポリアクリレートの混合物(商品名「T-PE-A」、広栄化学工業製)を用いる以外は実施例22と同様に行い、シロキサン樹脂組成物Yを得た。得られたシロキサン樹脂組成物Yを用いて、実施例1と同様にして評価を行った。
実施例26
 ポリシロキサン溶液(i)の替わりにポリシロキサン溶液(iv)を用い、「DPHA」の替わりに「T-PE-A」を用いる以外は実施例1と同様に行い、シロキサン樹脂組成物Zを得た。得られたシロキサン樹脂組成物Zを用いて、実施例1と同様にして評価を行った。
実施例27
 ポリシロキサン溶液(i)の替わりにポリシロキサン溶液(iv)を用い、「DPHA」の替わりに「T-PE-A」を用いる以外は実施例19と同様に行い、シロキサン樹脂組成物AAを得た。得られたシロキサン樹脂組成物AAを用いて、実施例1と同様にして評価を行った。
 比較例1
 ポリシロキサン溶液(i)の替わりにポリシロキサン溶液(xii)を用いる以外は実施例1と同様に行い、シロキサン樹脂組成物Iを得た。得られたシロキサン樹脂組成物Iを用いて、実施例1と同様にして評価を行った。
 比較例2
 ポリシロキサン溶液(i)の替わりにポリシロキサン溶液(xiii)を用いる以外は実施例1と同様に行い、シロキサン樹脂組成物IIを得た。得られたシロキサン樹脂組成物IIを用いて、実施例1と同様にして評価を行った。
 比較例3
 黄色灯下にて「イルガキュア907」0.5166g、4,4-ビス(ジエチルアミノ)ベンゾフェノン0.0272gをDAA2.9216g、PGMEA2.4680gに溶解させ、「DPHA」のPGMEA50重量%溶液2.7189g、「BPEFA」のPGMEA50重量%溶液2.7189g、4-t-ブチルカテコールのPGMEA1重量%溶液1.6314g、ポリシロキサン溶液(xiv)3.3987g、ポリシロキサン溶液(xv)3.3987g、シリコーン系界面活性剤であるBYK-333(ビックケミージャパン(株)製)のPGMEA1重量%溶液を0.2000g(濃度100ppmに相当)加え、撹拌した。次いで0.45μmのフィルターでろ過を行い、シロキサン樹脂組成物IIIを得た。得られたシロキサン樹脂組成物IIIを用いて、実施例1と同様にして評価を行った。
 比較例4
 ポリシロキサン溶液(i)の替わりにアクリル樹脂溶液(a)を用い、DAAの替わりにPGMEAを用いる以外は実施例1と同様に行い、アクリル樹脂組成物IVを得た。得られたアクリル樹脂組成物IVを用いて、実施例1と同様にして評価を行った。
 実施例1~25および比較例1~4の組成を表2~3に、評価結果を表4~5に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 本発明のシロキサン樹脂組成物を硬化して得られる硬化膜は、タッチパネルの保護膜などの各種ハードコート膜の他、タッチセンサー用絶縁膜、液晶や有機ELディスプレイのTFT用平坦化膜、絶縁膜、反射防止膜、反射防止フィルム、光学フィルター、カラーフィルター用オーバーコート、柱材などに好適に用いられる。

Claims (10)

  1. (A)カルボキシル基とラジカル重合性基を有するポリシロキサン、(B)光ラジカル重合開始剤および(C)ラジカル重合性基を有し、Si-O-Si結合を含有しない化合物を含有することを特徴とするシロキサン樹脂組成物。
  2. 前記(A)カルボキシル基とラジカル重合性基を有するポリシロキサンのラジカル重合性基が(メタ)アクリロイル基であることを特徴とする請求項1記載のシロキサン樹脂組成物。
  3. 前記(A)カルボキシル基とラジカル重合性基を有するポリシロキサンが、カルボキシル基および/またはジカルボン酸無水物基を有するオルガノシラン化合物とラジカル重合性基を有するオルガノシラン化合物を含むオルガノシラン化合物を加水分解し、該加水分解物を縮合して得られるポリシロキサンであることを特徴とする請求項1または2記載のシロキサン樹脂組成物。
  4. 前記(C)ラジカル重合性基を有し、Si-O-Si結合を含有しない化合物が、一般式(1)で表される化合物である請求項1~3いずれか記載のシロキサン樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは水素、またはメチル基を表す。Rは直鎖または分岐アルキレン基を表す。Rは炭素数1~20の有機基を表す。l、lは0~4の整数を表す。l、lは同じでも異なっていても良い。m、mは1~20の整数を表す。m、mは同じでも異なっていても良い。)
  5. 前記(C)ラジカル重合性基を有し、Si-O-Si結合を含有しない化合物が、トリペンタエリスリトールポリ(メタ)アクリレート、テトラペンタエリスリトールポリ(メタ)アクリレートおよびペンタペンタエリスリトールポリ(メタ)アクリレートからなる群から選ばれる少なくとも1種のラジカル重合性基を有する化合物である請求項1~3いずれか記載のシロキサン樹脂組成物。
  6. 前記(A)カルボキシル基とラジカル重合性基を有するポリシロキサンが、カルボキシル基および/またはジカルボン酸無水物基を有するオルガノシラン化合物とラジカル重合性基を有するオルガノシラン化合物を含むオルガノシラン化合物を金属化合物粒子存在下で加水分解し、該加水分解物を縮合して得られるポリシロキサンであることを特徴とする請求項1~5いずれか記載のシロキサン樹脂組成物。
  7. さらに(D)金属化合物粒子を含有することを特徴とする請求項1~6いずれか記載のシロキサン樹脂組成物。
  8. さらに(E)カルボキシル基を含まないポリシロキサンを含有することを特徴とする請求項1~7いずれか記載のシロキサン樹脂組成物。
  9. 請求項1~8いずれか記載のシロキサン樹脂組成物を硬化して得られるタッチパネル用保護膜。
  10. JIS K5600-5-4(1999)に準拠して測定した鉛筆硬度が硬化膜1.5μmあたり4H以上であることを特徴とする請求項9記載のタッチパネル用保護膜。
PCT/JP2009/069421 2008-11-27 2009-11-16 シロキサン樹脂組成物およびそれを用いたタッチパネル用保護膜 WO2010061744A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009548920A JP5589387B2 (ja) 2008-11-27 2009-11-16 シロキサン樹脂組成物およびそれを用いたタッチパネル用保護膜
CN2009801475664A CN102227455B (zh) 2008-11-27 2009-11-16 硅氧烷树脂组合物和使用该组合物的接触面板用保护膜
EP09828992.9A EP2360194B1 (en) 2008-11-27 2009-11-16 Siloxane resin composition and protective film for touch panel using same
US13/130,843 US8492450B2 (en) 2008-11-27 2009-11-16 Siloxane resin composition and protective film for touch panel using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-302277 2008-11-27
JP2008302277 2008-11-27

Publications (1)

Publication Number Publication Date
WO2010061744A1 true WO2010061744A1 (ja) 2010-06-03

Family

ID=42225622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069421 WO2010061744A1 (ja) 2008-11-27 2009-11-16 シロキサン樹脂組成物およびそれを用いたタッチパネル用保護膜

Country Status (7)

Country Link
US (1) US8492450B2 (ja)
EP (1) EP2360194B1 (ja)
JP (1) JP5589387B2 (ja)
KR (1) KR101643262B1 (ja)
CN (1) CN102227455B (ja)
TW (1) TWI450932B (ja)
WO (1) WO2010061744A1 (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001033926A (ja) * 1999-07-15 2001-02-09 Fuji Photo Film Co Ltd 画像形成装置
JP2012057136A (ja) * 2010-09-13 2012-03-22 Sakai Chem Ind Co Ltd 透明被膜形成用樹脂組成物、積層体、及び透明被膜の製造方法
JP2012082393A (ja) * 2010-09-17 2012-04-26 Jsr Corp ポリシロキサン組成物、並びにその硬化膜及びその形成方法
JP2012214590A (ja) * 2011-03-31 2012-11-08 Dainippon Printing Co Ltd 光硬化性樹脂組成物
WO2013031985A1 (ja) 2011-08-31 2013-03-07 旭化成イーマテリアルズ株式会社 感光性アルカリ可溶シリコーン樹脂組成物
EP2630193A1 (en) * 2010-10-19 2013-08-28 Ablestik (Shanghai) Limited Hybrid silicone composition for light emitting device
WO2013147028A1 (ja) * 2012-03-30 2013-10-03 大日本印刷株式会社 樹脂組成物、それを用いたタッチパネルセンサ用透明膜およびタッチパネル
JP2014034596A (ja) * 2012-08-07 2014-02-24 Osaka Gas Chem Kk 傾斜膜形成用組成物およびこの組成物により形成される傾斜膜
JP2014126811A (ja) * 2012-12-27 2014-07-07 Nippon Shokubai Co Ltd 硬化性樹脂組成物及びその用途
JP2015067733A (ja) * 2013-09-30 2015-04-13 大日本印刷株式会社 樹脂組成物、それを用いたタッチパネル用透明膜およびタッチパネル
WO2015129818A1 (ja) * 2014-02-28 2015-09-03 日産化学工業株式会社 反応性シルセスキオキサン化合物を含む重合性組成物
KR20150118091A (ko) 2013-02-14 2015-10-21 도레이 카부시키가이샤 네거티브형 감광성 착색 조성물, 경화막, 터치패널용 차광 패턴 및 터치패널의 제조 방법
JP2016040353A (ja) * 2014-08-12 2016-03-24 日本曹達株式会社 有機無機複合体及びその形成用組成物
JP2016121311A (ja) * 2014-12-25 2016-07-07 Jsr株式会社 硬化膜形成用組成物、硬化膜、表示素子及び硬化膜の形成方法
JP2016122153A (ja) * 2014-12-25 2016-07-07 株式会社カネカ 新規感光性樹脂組成物とその応用
KR20160091433A (ko) 2012-09-11 2016-08-02 후지필름 가부시키가이샤 전사 재료, 정전용량형 입력 장치의 제조 방법, 정전용량형 입력 장치, 및 이것을 구비한 화상 표시 장치
KR20160129102A (ko) 2012-11-30 2016-11-08 후지필름 가부시키가이샤 전사 필름 및 투명 적층체, 그 제조 방법, 정전 용량형 입력 장치 및 화상 표시 장치
JPWO2015002183A1 (ja) * 2013-07-02 2017-02-23 東レ株式会社 ポジ型感光性樹脂組成物、それを硬化させてなる硬化膜およびそれを具備する光学デバイス
JP2017097378A (ja) * 2011-12-26 2017-06-01 東レ株式会社 感光性樹脂組成物および半導体素子の製造方法
WO2017188047A1 (ja) * 2016-04-25 2017-11-02 東レ株式会社 樹脂組成物、その硬化膜およびその製造方法ならびに固体撮像素子
US10031631B2 (en) 2014-02-19 2018-07-24 Fujifilm Corporation Transfer film, method for producing transfer film, transparent laminate, method for producing transparent laminate, capacitance-type input device, and image display device
US10254906B2 (en) 2014-10-24 2019-04-09 Fujifilm Corporation Transfer film, method for manufacturing same, method for manufacturing laminate, method for manufacturing capacitance-type input device, and method for manufacturing image display device
WO2019189387A1 (ja) * 2018-03-30 2019-10-03 東レ株式会社 ポジ型感光性樹脂組成物、その硬化膜およびそれを具備する固体撮像素子
JP7134238B2 (ja) 2018-10-26 2022-09-09 ワッカー ケミー アクチエンゲゼルシャフト 硬化性オルガノポリシロキサン組成物

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI432898B (zh) * 2011-12-05 2014-04-01 Chi Mei Corp 彩色濾光片用藍色感光性樹脂組成物及其應用
TWI443465B (zh) * 2012-04-23 2014-07-01 Chi Mei Corp 感光性聚矽氧烷組成物、保護膜及具有保護膜的元件
TWI459137B (zh) * 2012-05-10 2014-11-01 Chi Mei Corp 彩色濾光片用感光性樹脂組成物及其應用
CN102827543B (zh) * 2012-08-16 2015-03-04 复旦大学 一种电阻屏加硬液的制备方法
KR101523819B1 (ko) * 2012-09-04 2015-05-28 (주)엘지하우시스 실록산 화합물을 포함하는 반사 방지 코팅 조성물, 이를 이용한 반사 방지 필름
JP6098787B2 (ja) * 2012-09-25 2017-03-22 グンゼ株式会社 タッチパネル付き表示装置
KR101986122B1 (ko) * 2012-11-16 2019-06-07 부산대학교 산학협력단 실록산계 다가 알코올 및 이를 포함하는 열경화성 수지조성물
WO2014113617A1 (en) 2013-01-21 2014-07-24 Innovative Finishes LLC Refurbished component, electronic device including the same, and method of refurbishing a component of an electronic device
WO2014119372A1 (ja) * 2013-01-29 2014-08-07 東レ株式会社 基板及びそれを用いたタッチパネル部材
CN105378615B (zh) * 2013-07-25 2019-05-31 东丽株式会社 触控面板用负型感光性白色组合物、触控面板及触控面板的制造方法
JP5876450B2 (ja) * 2013-08-26 2016-03-02 信越化学工業株式会社 高分子化合物、化学増幅型ネガ型レジスト材料、光硬化性ドライフィルム及びその製造方法、積層体、及びパターン形成方法
TWI484296B (zh) * 2013-12-03 2015-05-11 Chi Mei Corp 感光性樹脂組成物、彩色濾光片及其製造方法、液晶顯示裝置
CN106414629B (zh) * 2014-04-25 2020-12-22 江苏软讯科技有限公司 辐射固化型硬涂层组合物
WO2015172163A1 (en) * 2014-04-25 2015-11-12 Uni-Pixel Displays, Inc. Radiation-curable optically clear coating composition for touch sensors
KR101845081B1 (ko) 2014-11-28 2018-04-04 삼성에스디아이 주식회사 윈도우 필름용 조성물, 이로부터 형성된 플렉시블 윈도우 필름 및 이를 포함하는 플렉시블 디스플레이 장치
KR101758438B1 (ko) * 2014-12-02 2017-07-17 삼성에스디아이 주식회사 윈도우 필름용 조성물, 이로부터 형성된 플렉시블 윈도우 필름 및 이를 포함하는 플렉시블 디스플레이 장치
KR101908163B1 (ko) 2014-12-03 2018-10-16 삼성에스디아이 주식회사 윈도우 필름용 조성물, 이로부터 형성된 플렉시블 윈도우 필름 및 이를 포함하는 플렉시블 디스플레이 장치
KR101835866B1 (ko) 2014-12-17 2018-03-08 삼성에스디아이 주식회사 윈도우 필름용 조성물, 이로부터 형성된 플렉시블 윈도우 필름 및 이를 포함하는 플렉시블 디스플레이 장치
KR101835867B1 (ko) 2014-12-23 2018-03-08 삼성에스디아이 주식회사 윈도우 필름용 조성물, 이로부터 형성된 플렉시블 윈도우 필름 및 이를 포함하는 플렉시블 디스플레이 장치
KR20170110070A (ko) * 2015-01-30 2017-10-10 도레이 카부시키가이샤 수지 조성물, 그것을 사용한 고체 촬상 소자 및 그 제조 방법
JP6718152B2 (ja) * 2015-04-10 2020-07-08 日産化学株式会社 反応性シルセスキオキサン化合物を含む重合性樹脂組成物
CN107849190B (zh) * 2015-08-18 2020-04-24 日产化学工业株式会社 包含反应性倍半硅氧烷化合物及芳香族乙烯基化合物的聚合性组合物
KR102384000B1 (ko) * 2016-01-06 2022-04-08 동우 화인켐 주식회사 감광성 수지 조성물 및 이를 이용한 액정표시장치
US10787535B2 (en) * 2016-04-11 2020-09-29 Nissan Chemical Corporation Polymerizable composition containing reactive silsesquioxane compound containing phenanthrene ring
WO2017208936A1 (ja) * 2016-05-30 2017-12-07 日産化学工業株式会社 反応性ポリシロキサン及びそれを含む重合性組成物
WO2017208748A1 (ja) * 2016-05-30 2017-12-07 日産化学工業株式会社 重合性シラン化合物
CN106445265A (zh) * 2016-10-14 2017-02-22 深圳市宇顺工业智能科技有限公司 电容式触摸屏及其制作方法
CN106675359B (zh) * 2016-12-15 2018-12-07 顺德职业技术学院 紫外光加热双固化型抗指纹涂料及其在电子产品外观上的应用
JP6455636B1 (ja) * 2017-05-24 2019-01-23 東レ株式会社 ネガ型感光性樹脂組成物および硬化膜
WO2018216571A1 (ja) * 2017-05-24 2018-11-29 東レ株式会社 透明樹脂組成物、透明被膜および透明樹脂被覆ガラス基板
WO2019102655A1 (ja) * 2017-11-21 2019-05-31 東レ株式会社 シロキサン樹脂組成物、硬化膜および表示装置
JP7227738B2 (ja) * 2018-11-07 2023-02-22 サカタインクス株式会社 皮膜形成用組成物、該皮膜形成用組成物を塗工してなるガラス基材、及び、該ガラス基材を用いてなるタッチパネル
JP7161067B2 (ja) * 2019-10-18 2022-10-25 富士フイルム株式会社 透明積層体、画像表示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0948950A (ja) * 1995-05-29 1997-02-18 Sumitomo Chem Co Ltd 表面コート剤、その硬化膜およびその硬化膜被覆の合成樹脂成形品
JP2000017028A (ja) * 1998-04-30 2000-01-18 Jsr Corp 硬化性樹脂組成物および反射防止膜
JP2001330707A (ja) 2000-05-19 2001-11-30 Nof Corp 導電性減反射材、製造方法および用途
JP2003227949A (ja) 2002-02-06 2003-08-15 Shin Etsu Chem Co Ltd 光導波路形成材料及び光導波路の製造方法
JP2005036018A (ja) * 2003-05-20 2005-02-10 Jsr Corp 硬化性組成物およびその硬化膜
JP2006348196A (ja) * 2005-06-17 2006-12-28 Jsr Corp 硬化性組成物およびその硬化膜
JP2007277332A (ja) 2006-04-04 2007-10-25 Atomix Co Ltd 紫外線硬化型コーティング用組成物およびこれを被覆してなる樹脂被覆品
JP2007279819A (ja) 2006-04-03 2007-10-25 Sharp Corp タッチパネル付き表示装置
JP2008208342A (ja) 2007-01-31 2008-09-11 Toray Ind Inc 樹脂組成物、硬化膜、および硬化膜を有するカラーフィルタ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10114561A1 (de) * 2001-03-24 2002-09-26 Wella Ag Verwendung von Mitteln enthaltend Kreatin, Kreatin und/oder deren Derivaten zur Verstärkung und Strukturverbesserung von keratinischen Fasern
US20050036018A1 (en) * 2001-05-23 2005-02-17 Hirokazu Yanagihara Ink set for inket printing
US20030227949A1 (en) * 2002-06-05 2003-12-11 Mark Meyers Integrated, temperature insensitive wavelength locker for use in laser packages
KR20060052679A (ko) * 2003-05-20 2006-05-19 디에스엠 아이피 어셋츠 비.브이. 경화성 조성물 및 그의 경화 필름
JP5125507B2 (ja) * 2005-04-13 2013-01-23 Jsr株式会社 樹脂組成物、硬化膜及び積層体
US7781493B2 (en) * 2005-06-20 2010-08-24 Dow Global Technologies Inc. Protective coating for window glass
JP4756977B2 (ja) * 2005-09-28 2011-08-24 大阪瓦斯株式会社 重合性組成物およびその硬化物
JP2009526467A (ja) * 2006-02-09 2009-07-16 エルジー エレクトロニクス インコーポレイティド オブジェクトベースオーディオ信号の符号化及び復号化方法とその装置
US7450360B2 (en) * 2006-05-31 2008-11-11 Silicon Laboratories Inc. Multi-mode regulator
DE102006054158A1 (de) * 2006-11-16 2008-05-21 Wacker Chemie Ag Ultrahydrophobe Beschichtungen
USD595853S1 (en) * 2007-02-27 2009-07-07 Zimmer Spine, Inc. Spinal implant
JP2008268938A (ja) * 2007-03-29 2008-11-06 Fujifilm Corp 保護フィルム、偏光板、及び液晶表示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0948950A (ja) * 1995-05-29 1997-02-18 Sumitomo Chem Co Ltd 表面コート剤、その硬化膜およびその硬化膜被覆の合成樹脂成形品
JP2000017028A (ja) * 1998-04-30 2000-01-18 Jsr Corp 硬化性樹脂組成物および反射防止膜
JP2001330707A (ja) 2000-05-19 2001-11-30 Nof Corp 導電性減反射材、製造方法および用途
JP2003227949A (ja) 2002-02-06 2003-08-15 Shin Etsu Chem Co Ltd 光導波路形成材料及び光導波路の製造方法
JP2005036018A (ja) * 2003-05-20 2005-02-10 Jsr Corp 硬化性組成物およびその硬化膜
JP2006348196A (ja) * 2005-06-17 2006-12-28 Jsr Corp 硬化性組成物およびその硬化膜
JP2007279819A (ja) 2006-04-03 2007-10-25 Sharp Corp タッチパネル付き表示装置
JP2007277332A (ja) 2006-04-04 2007-10-25 Atomix Co Ltd 紫外線硬化型コーティング用組成物およびこれを被覆してなる樹脂被覆品
JP2008208342A (ja) 2007-01-31 2008-09-11 Toray Ind Inc 樹脂組成物、硬化膜、および硬化膜を有するカラーフィルタ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OHARA NOBORU ET AL.: "Material design . coating technique and hardness improvement in hard coating filmonplasticsubstrate", 28 April 2005, TECHNICALINFORMATIONINSTITUTE CO., LTD., pages: 301
See also references of EP2360194A4

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001033926A (ja) * 1999-07-15 2001-02-09 Fuji Photo Film Co Ltd 画像形成装置
JP2012057136A (ja) * 2010-09-13 2012-03-22 Sakai Chem Ind Co Ltd 透明被膜形成用樹脂組成物、積層体、及び透明被膜の製造方法
JP2012082393A (ja) * 2010-09-17 2012-04-26 Jsr Corp ポリシロキサン組成物、並びにその硬化膜及びその形成方法
EP2630193A4 (en) * 2010-10-19 2014-04-02 Ablestik Shanghai Ltd HYBRID SILICONE COMPOSITION FOR LIGHT-EMITTING DEVICE
EP2630193A1 (en) * 2010-10-19 2013-08-28 Ablestik (Shanghai) Limited Hybrid silicone composition for light emitting device
CN103314056A (zh) * 2010-10-19 2013-09-18 爱博斯迪科化学(上海)有限公司 用于发光装置的杂化聚硅氧烷组合物
CN103314056B (zh) * 2010-10-19 2015-06-17 爱博斯迪科化学(上海)有限公司 用于发光装置的杂化聚硅氧烷组合物
JP2013543030A (ja) * 2010-10-19 2013-11-28 エイブルスティック・(シャンハイ)・リミテッド 発光デバイス用ハイブリッドシリコーン組成物
JP2012214590A (ja) * 2011-03-31 2012-11-08 Dainippon Printing Co Ltd 光硬化性樹脂組成物
WO2013031985A1 (ja) 2011-08-31 2013-03-07 旭化成イーマテリアルズ株式会社 感光性アルカリ可溶シリコーン樹脂組成物
JP2017097378A (ja) * 2011-12-26 2017-06-01 東レ株式会社 感光性樹脂組成物および半導体素子の製造方法
JP2013213864A (ja) * 2012-03-30 2013-10-17 Dainippon Printing Co Ltd 樹脂組成物、それを用いたタッチパネルセンサ用透明膜およびタッチパネル
KR20140138815A (ko) 2012-03-30 2014-12-04 가부시키가이샤 디엔피 파인 케미칼 수지 조성물, 그것을 사용한 터치 패널 센서용 투명막 및 터치 패널
US9430071B2 (en) 2012-03-30 2016-08-30 Dnp Fine Chemicals Co., Ltd. Resin composition, and transparent membrane for touch panel sensors and touch panel using same
WO2013147028A1 (ja) * 2012-03-30 2013-10-03 大日本印刷株式会社 樹脂組成物、それを用いたタッチパネルセンサ用透明膜およびタッチパネル
JP2014034596A (ja) * 2012-08-07 2014-02-24 Osaka Gas Chem Kk 傾斜膜形成用組成物およびこの組成物により形成される傾斜膜
KR20160091433A (ko) 2012-09-11 2016-08-02 후지필름 가부시키가이샤 전사 재료, 정전용량형 입력 장치의 제조 방법, 정전용량형 입력 장치, 및 이것을 구비한 화상 표시 장치
US9710117B2 (en) 2012-09-11 2017-07-18 Fujifilm Corporation Transfer material, manufacturing method of electrostatic capacitance type input device, electrostatic capacitance type input device, and image display device including the same
KR20160129102A (ko) 2012-11-30 2016-11-08 후지필름 가부시키가이샤 전사 필름 및 투명 적층체, 그 제조 방법, 정전 용량형 입력 장치 및 화상 표시 장치
US10336043B2 (en) 2012-11-30 2019-07-02 Fujifilm Corporation Transfer film, transparent laminate, method for producing transparent laminate, capacitive input device, and image display device
US10507630B2 (en) 2012-11-30 2019-12-17 Fujifilm Corporation Transfer film, transparent laminate, method for producing transfer film, method for producing transparent laminate, capacitive input device, and image display device
JP2014126811A (ja) * 2012-12-27 2014-07-07 Nippon Shokubai Co Ltd 硬化性樹脂組成物及びその用途
KR20150118091A (ko) 2013-02-14 2015-10-21 도레이 카부시키가이샤 네거티브형 감광성 착색 조성물, 경화막, 터치패널용 차광 패턴 및 터치패널의 제조 방법
JPWO2015002183A1 (ja) * 2013-07-02 2017-02-23 東レ株式会社 ポジ型感光性樹脂組成物、それを硬化させてなる硬化膜およびそれを具備する光学デバイス
JP2015067733A (ja) * 2013-09-30 2015-04-13 大日本印刷株式会社 樹脂組成物、それを用いたタッチパネル用透明膜およびタッチパネル
US10031631B2 (en) 2014-02-19 2018-07-24 Fujifilm Corporation Transfer film, method for producing transfer film, transparent laminate, method for producing transparent laminate, capacitance-type input device, and image display device
JPWO2015129818A1 (ja) * 2014-02-28 2017-03-30 日産化学工業株式会社 反応性シルセスキオキサン化合物を含む重合性組成物
WO2015129818A1 (ja) * 2014-02-28 2015-09-03 日産化学工業株式会社 反応性シルセスキオキサン化合物を含む重合性組成物
US10308750B2 (en) 2014-02-28 2019-06-04 Nissan Chemical Industries, Ltd. Polymerizable composition containing reactive silsesquioxane compound
JP2016040353A (ja) * 2014-08-12 2016-03-24 日本曹達株式会社 有機無機複合体及びその形成用組成物
US10254906B2 (en) 2014-10-24 2019-04-09 Fujifilm Corporation Transfer film, method for manufacturing same, method for manufacturing laminate, method for manufacturing capacitance-type input device, and method for manufacturing image display device
JP2016122153A (ja) * 2014-12-25 2016-07-07 株式会社カネカ 新規感光性樹脂組成物とその応用
JP2016121311A (ja) * 2014-12-25 2016-07-07 Jsr株式会社 硬化膜形成用組成物、硬化膜、表示素子及び硬化膜の形成方法
JPWO2017188047A1 (ja) * 2016-04-25 2019-02-28 東レ株式会社 樹脂組成物、その硬化膜およびその製造方法ならびに固体撮像素子
WO2017188047A1 (ja) * 2016-04-25 2017-11-02 東レ株式会社 樹脂組成物、その硬化膜およびその製造方法ならびに固体撮像素子
JP7027886B2 (ja) 2016-04-25 2022-03-02 東レ株式会社 樹脂組成物、その硬化膜およびその製造方法ならびに固体撮像素子
WO2019189387A1 (ja) * 2018-03-30 2019-10-03 東レ株式会社 ポジ型感光性樹脂組成物、その硬化膜およびそれを具備する固体撮像素子
JP6648857B1 (ja) * 2018-03-30 2020-02-14 東レ株式会社 ポジ型感光性樹脂組成物、その硬化膜およびそれを具備する固体撮像素子
TWI784152B (zh) * 2018-03-30 2022-11-21 日商東麗股份有限公司 正型感光性樹脂組成物、硬化膜的製造方法、硬化膜以及固體攝像元件
US11789363B2 (en) 2018-03-30 2023-10-17 Toray Industries, Inc. Positive photosensitive resin composition, cured film therefrom, and solid state image sensor comprising the same
JP7134238B2 (ja) 2018-10-26 2022-09-09 ワッカー ケミー アクチエンゲゼルシャフト 硬化性オルガノポリシロキサン組成物
US11965094B2 (en) 2018-10-26 2024-04-23 Wacker Chemie Ag Curable organopolysiloxane compositions

Also Published As

Publication number Publication date
CN102227455B (zh) 2013-11-06
KR20110097767A (ko) 2011-08-31
CN102227455A (zh) 2011-10-26
TW201033289A (en) 2010-09-16
EP2360194A1 (en) 2011-08-24
US20110230584A1 (en) 2011-09-22
KR101643262B1 (ko) 2016-07-27
JPWO2010061744A1 (ja) 2012-04-26
TWI450932B (zh) 2014-09-01
JP5589387B2 (ja) 2014-09-17
EP2360194B1 (en) 2015-03-11
EP2360194A4 (en) 2012-08-29
US8492450B2 (en) 2013-07-23

Similar Documents

Publication Publication Date Title
JP5589387B2 (ja) シロキサン樹脂組成物およびそれを用いたタッチパネル用保護膜
JP5407210B2 (ja) シロキサン樹脂組成物およびそれを用いた硬化膜
JP5212571B2 (ja) タッチパネル部材
JP5671936B2 (ja) ネガ型感光性樹脂組成物およびそれを用いた硬化膜
JP5459315B2 (ja) シランカップリング剤、ネガ型感光性樹脂組成物、硬化膜、およびタッチパネル用部材
JP5423004B2 (ja) ネガ型感光性樹脂組成物およびそれを用いたタッチパネル用材料
JP5504689B2 (ja) ネガ型感光性樹脂組成物およびそれを用いたタッチパネル用材料
JP6417669B2 (ja) 感光性樹脂組成物、保護膜及び絶縁膜並びにタッチパネルの製造方法
WO2013146130A1 (ja) シランカップリング剤、感光性樹脂組成物、硬化膜及びタッチパネル部材
WO2014156520A1 (ja) 感光性樹脂組成物、保護膜又は絶縁膜、タッチパネル及びその製造方法
JP5327345B2 (ja) ネガ型感光性樹脂組成物、硬化膜、およびタッチパネル用部材。
JP2008248239A (ja) シロキサン樹脂組成物、それを用いた硬化膜および光学デバイス
WO2013157643A1 (ja) ラジカル架橋性基を有するポリシロキサン組成物
WO2011129312A1 (ja) ネガ型感光性樹脂組成物、硬化膜、およびタッチパネル用部材
WO2013147028A1 (ja) 樹脂組成物、それを用いたタッチパネルセンサ用透明膜およびタッチパネル
JP6055914B2 (ja) 絶縁材料用組成物
JP7119390B2 (ja) ネガ型感光性樹脂組成物およびそれを用いた硬化膜
JP4487770B2 (ja) 硬化性樹脂組成物及び反射防止材
JP2022064302A (ja) ネガ型シロキサン樹脂組成物、硬化膜および素子
JP2018120069A (ja) ネガ型感光性樹脂組成物、硬化膜およびタッチパネル部材
KR102490287B1 (ko) 감광성 실록산 수지 조성물, 경화막 및 터치패널용 부재

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980147566.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009548920

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117010450

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13130843

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009828992

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4470/CHENP/2011

Country of ref document: IN