WO2014156520A1 - 感光性樹脂組成物、保護膜又は絶縁膜、タッチパネル及びその製造方法 - Google Patents

感光性樹脂組成物、保護膜又は絶縁膜、タッチパネル及びその製造方法 Download PDF

Info

Publication number
WO2014156520A1
WO2014156520A1 PCT/JP2014/055591 JP2014055591W WO2014156520A1 WO 2014156520 A1 WO2014156520 A1 WO 2014156520A1 JP 2014055591 W JP2014055591 W JP 2014055591W WO 2014156520 A1 WO2014156520 A1 WO 2014156520A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
resin composition
mol
photosensitive resin
Prior art date
Application number
PCT/JP2014/055591
Other languages
English (en)
French (fr)
Inventor
谷垣勇剛
藤原健典
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201480018021.4A priority Critical patent/CN105122137B/zh
Priority to KR1020157026759A priority patent/KR20150135320A/ko
Priority to JP2014515390A priority patent/JP6295950B2/ja
Publication of WO2014156520A1 publication Critical patent/WO2014156520A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • C08F230/085Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0388Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0755Non-macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a photosensitive resin composition, a protective film or an insulating film, a touch panel, and a manufacturing method thereof.
  • the sensor substrate of the capacitive touch panel has wiring in which ITO (Indium Tin Oxide) or metal (silver, molybdenum, aluminum, or the like) is patterned on glass.
  • ITO Indium Tin Oxide
  • metal silver, molybdenum, aluminum, or the like
  • an insulating film, ITO A structure having a protective film for protecting a metal is common.
  • the protective film is formed of high-hardness inorganic SiO 2 or SiN x or a photosensitive transparent material (Patent Document 1), and the insulating film is often formed of a photosensitive transparent material.
  • inorganic materials are formed by high-temperature deposition of SiO 2 or SiN x by CVD (Chemical Vapor Deposition), and the number of processes increases because pattern processing is performed using a resist. was there.
  • the touch panel with high reliability cannot be obtained because it has poor moisture and heat resistance and corrodes the underlying metal wiring.
  • Photosensitive transparent materials can be expected to reduce costs by reducing the number of processes, but the hardness is insufficient and the heat and heat resistance is low, as with inorganic materials. I had it.
  • the cured film obtained from the photosensitive transparent material is exposed to various acidic or alkaline chemicals such as an etching solution for processing ITO or the underlying metal wiring, but if the cured film has low chemical resistance, Peeling or floating occurs at the interface between the cured film and the underlying metal wiring or substrate, which may cause ITO disconnection.
  • acidic or alkaline chemicals such as an etching solution for processing ITO or the underlying metal wiring
  • the coating liquid of the photosensitive transparent material when stored at room temperature, there is a problem that the material changes in quality during storage and the adhesion to the substrate and chemical resistance are lowered. Therefore, it has high hardness, excellent transparency, moisture and heat resistance, adhesion and chemical resistance, can be patterned with alkaline developer, and has good storage stability of coating liquid, and adhesion and chemical resistance during storage Therefore, there has been a strong demand for a photosensitive transparent material that does not deteriorate the properties.
  • a UV curable coating composition containing an alkali-soluble resin, a radical polymerizable compound, a photopolymerization initiator and other additives is known.
  • the composition is used for, for example, a color resist by containing a colorant in addition to being used for an overcoat material for a color filter and a spacer material (Patent Documents 2 and 3).
  • a photosensitive transparent material containing a polyfunctional epoxy compound Patent Document 3
  • a photosensitive transparent material containing a metal chelate compound such as a zirconium compound
  • 3 Photosensitive transparent material containing a silane compound having one or four hydrolyzable alkoxy groups
  • Patent Document 5 Photosensitive transparent material containing a silane compound having one or four hydrolyzable alkoxy groups
  • Patent Document 6 containing a polymer having a (meth) acryl equivalent of 100 to 300 g / eq, a chelate compound, and a silane coupling
  • Photosensitive transparent material Patent Document 6
  • photosensitive transparent material Patent Document 7
  • an alcohol exchange reaction catalyst and a silane coupling agent having two or more hydrolyzable silyl groups or silanol groups
  • the cured film obtained has high hardness, excellent transparency, heat and humidity resistance, adhesion and chemical resistance, can be patterned with an alkaline developer, and has good storage stability of the coating liquid during storage.
  • an alkaline developer there is no known photosensitive transparent material that satisfies the requirement that adhesion and chemical resistance do not deteriorate.
  • the present invention is capable of obtaining a cured film having high hardness, excellent transparency, moist heat resistance, adhesion and chemical resistance, and having good storage stability of the coating liquid and adhesion during storage.
  • Another object of the present invention is to provide a photosensitive resin composition capable of alkali development, which has a plurality of performances such that chemical resistance does not deteriorate.
  • the present invention is a photosensitive resin composition containing (A) an alkali-soluble resin, (D) a metal chelate compound, and (E) a silane compound.
  • Photosensitive resin composition which is an alkali-soluble resin having a heavy bond equivalent, wherein (D) the metal chelate compound is a compound having a specific structure, and (E) the silane compound is a tetrafunctional silane or silane oligomer having a specific structure. Offer things.
  • the photosensitive resin composition of the present invention it is possible to obtain a cured film having high hardness and excellent transparency, moisture and heat resistance, adhesion and chemical resistance. Moreover, according to the photosensitive resin composition of the present invention, it is possible to prepare a coating liquid that has good storage stability and does not deteriorate adhesion and chemical resistance during storage.
  • the photosensitive resin composition of the present invention contains (A) an alkali-soluble resin, (D) a metal chelate compound, and (E) a silane compound, and the (A) alkali-soluble resin is an ethylenically unsaturated double. Having a bonding group, a double bond equivalent of 300 to 5,000 g / mol, the (D) metal chelate compound is a compound represented by the general formula (1), and the (E) silane compound is A silane oligomer obtained by condensing a tetrafunctional silane represented by the general formula (2) or a tetrafunctional silane represented by the general formula (2).
  • M represents titanium, zirconium, aluminum, or magnesium
  • R 1 represents hydrogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, or 6 to 6 carbon atoms
  • R 4 to R 7 are each independently And hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 6 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
  • the photosensitive resin composition of the present invention contains (A) an alkali-soluble resin.
  • the alkali-soluble resin has an ethylenically unsaturated double bond group.
  • the double bond equivalent of the alkali-soluble resin is 300 to 5,000 g / mol, preferably 300 to 2,000 g / mol, and more preferably 300 to 1,500 g / mol.
  • the double bond equivalent means the resin weight per 1 mol of the ethylenically unsaturated double bond group, and the unit is g / mol.
  • the double bond equivalent can be calculated by measuring the iodine value.
  • (A) alkali-soluble resins include acrylic resins, polysiloxanes, polyimides, polyamic acids, polyamides, novolac resins, and epoxy resins, but from the ease of introduction of ethylenically unsaturated double bond groups, (A-1) Acrylic resin or (A-2) polysiloxane is preferred. That is, the (A) alkali-soluble resin is preferably selected from (A-1) acrylic resin and (A-2) polysiloxane. (A) As for alkali-soluble resin, multiple types of said resin may be contained.
  • (A-1) As the acrylic resin, (A-1) an acrylic resin having a carboxy group is preferable. (A-1) Since the acrylic resin has a carboxy group, pattern processing with an alkaline developer becomes possible. (A-1)
  • the carboxylic acid equivalent of the acrylic resin is preferably 280 to 1,400 g / mol, more preferably 300 to 1,100 g / mol, and further preferably 400 to 950 g / mol.
  • the carboxylic acid equivalent of the acrylic resin means the weight of the acrylic resin per 1 mol of the carboxy group, and the unit is g / mol. From the value of carboxylic acid equivalent, the number of carboxy groups in the acrylic resin can be determined.
  • the carboxylic acid equivalent of the acrylic resin is within the above range, the pattern processability with an alkaline developer is improved, and the pattern shape after development is improved. If the carboxylic acid equivalent is less than 280, the film loss during development is large, and the pattern shape after development may deteriorate. On the other hand, when the carboxylic acid equivalent exceeds 1400, the pattern processability with an alkaline developer is lowered, which may cause a residue after development.
  • the weight average molecular weight (hereinafter “Mw”) of the acrylic resin is preferably 2,000 to 100,000 in terms of polystyrene measured by gel permeation chromatography (hereinafter “GPC”). 5,000 to 40,000 is more preferable.
  • Mw weight average molecular weight
  • GPC gel permeation chromatography
  • Mw is in the above range, leveling properties during coating, pattern processability with an alkaline developer, resolution after development, and storage stability of the coating solution are improved.
  • Mw is less than 2,000, tack-free performance is deteriorated, the moisture resistance of the coating film after exposure is lowered, film loss during development is increased, and resolution after development may be reduced.
  • Mw exceeds 100,000 the leveling property at the time of application is poor and uneven coating occurs, the pattern workability with an alkaline developer is remarkably lowered, and the storage stability of the coating solution may be lowered.
  • (A-1) As the acrylic resin, an acrylic resin obtained by radical copolymerization with a (meth) acrylic compound having a carboxy group or a carboxylic anhydride group or another (meth) acrylic ester is preferable.
  • the radical polymerization initiator used for radical copolymerization include azo compounds such as 2,2′-azobis (isobutyronitrile) or 2,2′-azobis (2,4-dimethylvaleronitrile), or lauroyl peroxide.
  • Organic peroxides such as di-t-butyl peroxide, bis (4-t-butylcyclohexane-1-yl) peroxydicarbonate, t-butyl 2-ethylperoxyhexanoate, methyl ethyl ketone peroxide, benzoyl peroxide or cumene hydroperoxide An oxide is mentioned.
  • the conditions for radical copolymerization can be appropriately set. For example, after sufficiently purging the inside of the reaction vessel with nitrogen by bubbling or vacuum degassing, a copolymer component and a radical polymerization initiator are added in a solvent, and 60 The reaction is preferably carried out at ⁇ 110 ° C. for 30 to 500 minutes. When a (meth) acrylic compound having an acid anhydride group is used as a copolymerization component, it is preferable to add a theoretical amount of water and react at 30 to 60 ° C. for 30 to 60 minutes. Moreover, you may use chain transfer agents, such as a thiol compound, as needed.
  • Examples of the (meth) acrylic compound having a carboxy group or an acid anhydride group include (meth) acrylic acid, (meth) acrylic anhydride, itaconic acid, itaconic anhydride, mono (2-acryloxyethyl) succinate. ), Mono (2-acryloxyethyl) phthalate or mono (2-acryloxyethyl) tetrahydrophthalate.
  • (meth) acrylic acid esters examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, cyclopentyl (meth) acrylate, (meth ) Cyclohexyl acrylate, cyclohexenyl (meth) acrylate, (4-methoxy) cyclohexyl (meth) acrylate, (2-isopropyloxycarbonyl) ethyl (meth) acrylate, (meth) acrylic acid (2-cyclopentyloxycarbonyl) ) Ethyl, (meth) acrylic acid (2-cyclohexyloxycarbonyl) ethyl, (meth) acrylic acid (2-cyclohexylenylcarbonyl) ethyl, (meth) acrylic acid [2- (4-methoxycyclohexyl) oxycarbonyl]
  • aromatic vinyl compounds such as styrene, 4-methylstyrene, 2-methylstyrene, 3-methylstyrene or ⁇ -methylstyrene may be used.
  • Styrene is preferred because the heat and humidity resistance and heat resistance are improved.
  • (A-1) acrylic resin having an ethylenically unsaturated double bond group a radical copolymer of a (meth) acrylic compound having a carboxy group or an acid anhydride group and another (meth) acrylic ester Furthermore, those obtained by a ring-opening addition reaction of an unsaturated compound having an epoxy group in addition to an ethylenically unsaturated double bond group are preferred.
  • the catalyst used for the ring-opening addition reaction of an unsaturated compound having an epoxy group include triethylamine, dimethylaniline, tetramethylethylenediamine, 2,4,6-tris (dimethylaminomethyl) phenol, dimethylbenzylamine or tri-n.
  • -Amine-based catalysts such as octyl 7 amine, quaternary ammonium salts such as tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium fluoride, alkylureas such as tetramethylurea, alkylguanidines such as tetramethylguanidine, bis ( Tin-based catalysts such as 2-ethylhexanoic acid) tin (II) or di-n-butyltin (IV) dilaurate, titanium-based catalysts such as tetrakis (2-ethylhexanoic acid) titanium (IV), Phosphorus catalysts such as nylphosphine or triphenylphosphine oxide, chromium catalysts such as tris (acetylacetonato) chromium (III), chromium (III) chloride, chromium (III) octenoate
  • Examples of the unsaturated compound having an epoxy group include glycidyl (meth) acrylate, ( ⁇ -ethyl) glycidyl (meth) acrylate, (meth) acrylic acid ( ⁇ -n-propyl) glycidyl, and (meth) acrylic acid.
  • (A-1) When the acrylic resin has a carboxy group, the (A-1) acrylic resin having no epoxy group is preferred. (A-1) If the acrylic resin has both a carboxy group and an epoxy group, the carboxy group and the epoxy group may react during storage of the coating solution, resulting in a decrease in adhesion or chemical resistance during storage. The storage stability of the coating liquid decreases.
  • (A-1) acrylic resins having no epoxy group include (meth) acrylic compounds having a carboxy group or an acid anhydride group, other (meth) acrylic esters having no epoxy group, and aromatics having no epoxy group An acrylic resin obtained by radical copolymerization with one or more copolymerization components selected from group vinyl compounds is preferred.
  • the polysiloxane is preferably one obtained by hydrolyzing an organosilane and subjecting it to dehydration condensation by heating or a reaction using an acid or a base.
  • the organosiloxane represented by the general formula (3) What is obtained by hydrolyzing and dehydrating and condensing organosilane containing silane and / or organosilane represented by the general formula (4) is more preferable.
  • R 8 each independently represents hydrogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms.
  • R 9 to R 13 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 6 carbon atoms, or an alkyl group having 6 to 15 carbon atoms.
  • R 8 is preferably independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 4 to 7 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or an aryl group having 6 to 10 carbon atoms.
  • R 9 to R 13 are preferably each independently hydrogen, an alkyl group having 1 to 4 carbon atoms, an acyl group having 2 to 4 carbon atoms, or an aryl group having 6 to 10 carbon atoms.
  • Examples of the alkyl group represented by R 8 in the general formula (3) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a t-butyl group, an n-hexyl group, and an n-decyl group. Can be mentioned.
  • a cycloalkyl group of R ⁇ 8 > of General formula (3) a cyclopentyl group or a cyclohexyl group is mentioned, for example.
  • substituents examples include a halogen, an epoxy group, a glycidyl group, an oxetanyl group, a carboxy group, an amino group, a mercapto group, an isocyanate group, or a succinic anhydride residue.
  • Examples of the substituent of the alkyl group represented by R 8 in the general formula (3) include a trifluoromethyl group, a 3,3,3-trifluoropropyl group, a 3-glycidoxypropyl group, and 2- (3,4- (Epoxycyclohexyl) ethyl group, [(3-ethyl-3-oxetanyl) methoxy] propyl group, 1-carboxy-2-carboxypentyl group, 3-aminopropyl group, 3-mercaptopropyl group, 3-isocyanatopropyl group, or The group of the structure is mentioned.
  • Examples of the alkenyl group of R 8 in the general formula (3) and the substituted product thereof include a vinyl group, an allyl group, a 3- (meth) acryloxypropyl group, and a 2- (meth) acryloxyethyl group.
  • Examples of the aryl group represented by R 8 in the general formula (3) and the substituted product thereof include phenyl group, 4-tolyl group, 4-hydroxyphenyl group, 4-methoxyphenyl group, 4-t-butylphenyl group, 1- Naphthyl group, 2-naphthyl group, 4-styryl group, 2-phenylethyl group, 1- (4-hydroxyphenyl) ethyl group, 2- (4-hydroxyphenyl) ethyl group or 4-hydroxy-5- (4- A hydroxyphenylcarbonyloxy) pentyl group.
  • Examples of the alkyl group of R 9 to R 13 in the general formulas (3) and (4) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
  • Examples of the acyl group of R 9 to R 13 in the general formulas (3) and (4) include an acetyl group.
  • Examples of the aryl group of R 9 to R 13 in the general formulas (3) and (4) include a phenyl group, a 4-tolyl group, a 4-hydroxyphenyl group, a 4-methoxyphenyl group, and a 4-t-butylphenyl group. Or a 1-naphthyl group is mentioned.
  • the content ratio of the monofunctional silane unit represented by the general formula (3) in the polysiloxane is preferably 0 to 10 mol%, more preferably 0 to 5 mol% in terms of Si atom mol ratio.
  • the Si atomic mole ratio derived from the monofunctional silane represented by the general formula (3) exceeds 10 mol%, the Mw of the polysiloxane may be lowered.
  • the content ratio of the bifunctional silane unit represented by the general formula (3) in the polysiloxane is preferably 0 to 60 mol%, more preferably 0 to 40 mol% in terms of Si atom mol ratio.
  • the content ratio of the trifunctional silane unit represented by the general formula (3) in the polysiloxane is preferably 50 to 100 mol%, more preferably 60 to 100 mol% in terms of Si atom mol ratio. If the Si atom mol ratio derived from the trifunctional silane represented by the general formula (3) is less than 50 mol%, the hardness of the cured film may be lowered.
  • the content ratio of units can be determined by combining 1 H-nuclear magnetic resonance (hereinafter “NMR”), 13 C-NMR, 29 Si-NMR, IR, TOF-MS, elemental analysis, ash content measurement, and the like. .
  • the organosilane represented by the general formula (3) is preferably an organosilane having an aromatic group.
  • A-2 Since the polysiloxane has a structure derived from an organosilane having an aromatic group, the pattern shape after development is improved due to the steric hindrance and hydrophobicity of the aromatic group, and crack resistance during thermal curing is improved. In addition, the heat and moisture resistance and chemical resistance of the cured film can be improved.
  • organosilane represented by the general formula (3) and having an aromatic group examples include phenyltrimethoxysilane, phenyltriethoxysilane, 4-tolyltrimethoxysilane, 4-hydroxyphenyltrimethoxysilane, and 4-methoxyphenyl.
  • the content ratio of the organosilane unit represented by the general formula (3) and having an aromatic group in the polysiloxane is preferably 3 to 70 mol%, more preferably 5 to 60 mol% in terms of Si atom mol ratio. 10 to 50 mol% is more preferable. If the Si atom molar ratio derived from the organosilane represented by the general formula (3) and having an aromatic group is less than 3 mol%, the pattern shape after development deteriorates, crack resistance during heat curing, Moisture heat resistance or chemical resistance may decrease. On the other hand, when it exceeds 70 mol%, the pattern processability with an alkali developer or the hardness of the cured film may be lowered.
  • the content ratio of the organosilane unit represented by the general formula (3) and having an aromatic group in the polysiloxane is 1 H-NMR, 13 C-NMR, 29 Si-NMR, IR, TOF. -MS, elemental analysis, and ash content measurement can be combined.
  • an organosilane having an ethylenically unsaturated double bond group is also preferable.
  • A-2 Since the polysiloxane has an ethylenically unsaturated double bond group derived from organosilane, UV curing at the time of exposure is promoted and the sensitivity is improved, and the crosslinking density after heat curing is improved, The hardness of the cured film can be improved.
  • organosilane represented by the general formula (3) and having an ethylenically unsaturated double bond group examples include vinyltrimethoxysilane, vinyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, and 3-methacryloxypropyl.
  • vinyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acrylic Roxypropylmethyldimethoxysilane or 4-styryltrimethoxysilane is preferred.
  • an organosilane having an acidic group is also preferable.
  • A-2 Since the polysiloxane has an organosilane-derived acidic group, generation of residues after development can be suppressed and resolution after development can be improved.
  • the acidic group a group exhibiting an acidity of less than pH 6 is preferable. Examples of the group having an acidity of less than pH 6 include a carboxy group, a carboxylic acid anhydride group, a sulfonic acid group, a phenolic hydroxyl group, a hydroxyimide group, or a silanol group. From the viewpoint of improving the resolution after development, a carboxy group or a carboxylic anhydride group is preferred.
  • organosilane represented by the general formula (3) and having an acidic group examples include 3-trimethoxysilylpropyl succinic acid, 3-triethoxysilylpropyl succinic acid, 3-trimethoxysilylpropionic acid, 3-triethoxy Silylpropionic acid, 4-trimethoxysilylbutyric acid, 4-triethoxysilylbutyric acid, 5-trimethoxysilylvaleric acid, 5-triethoxysilylvaleric acid, 3-trimethoxysilylpropylsuccinic anhydride, 3-triethoxysilyl Propyl succinic anhydride, 4- (3-trimethoxysilylpropyl) cyclohexane-1,2-dicarboxylic anhydride, 4- (3-triethoxysilylpropyl) cyclohexane-1,2-dicarboxylic anhydride, 4- (3-trimethoxysilylpropyl) phthalic anhydride,
  • the content ratio of the organosilane unit represented by the general formula (3) and having an acidic group in the polysiloxane is 1 H-NMR, 13 C-NMR, 29 Si-NMR, IR, TOF— It can be determined by combining MS, elemental analysis, ash content measurement, and the like.
  • the carboxylic acid equivalent of the polysiloxane is preferably 280 to 1,400 g / mol, more preferably 300 to 1,100 g / mol, and further preferably 400 to 950 g / mol.
  • the carboxylic acid equivalent of polysiloxane means the weight of polysiloxane per 1 mol of carboxy groups, and the unit is g / mol. From the carboxylic acid equivalent value, the number of carboxy groups in the polysiloxane can be determined.
  • the carboxylic acid equivalent of the polysiloxane is in the above range, the pattern processability with an alkaline developer is improved, and the pattern shape after development is good.
  • the carboxylic acid equivalent is less than 280, the film loss during development is large, and the pattern shape after development may deteriorate.
  • the carboxylic acid equivalent exceeds 1,400, pattern processability with an alkaline developer is lowered, which may cause generation of a residue after development.
  • the (A-2) polysiloxane having no epoxy group is preferred.
  • the carboxy group and the epoxy group may react during storage of the coating solution, and adhesion or chemical resistance will decrease during storage. The storage stability of the coating liquid decreases.
  • one or more organosiloxanes selected from the organosilane represented by the general formula (3) and the organosilane represented by the general formula (4) having no epoxy group A polysiloxane obtained by hydrolyzing and dehydrating and condensing the organosilane represented by the general formula (3) having a carboxy group or an acid anhydride group together with silane is preferable.
  • organosilanes represented by the general formula (3) include, for example, methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-propoxysilane, methyltriisopropoxysilane, methyltri-n-butoxysilane, ethyl Trimethoxysilane, ethyltriethoxysilane, ethyltri-n-propoxysilane, ethyltriisopropoxysilane, ethyltri-n-butoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, isopropyltrimethoxysilane, isopropyltri Ethoxysilane, n-butyltrimethoxysilane, n-butyltriethoxysilane, n-hexyltrimethoxysilane, n-hexyltriethoxysilane,
  • the organosilane unit represented by the general formula (4) By containing the organosilane unit represented by the general formula (4), it is possible to suppress generation of residues after development and improve resolution after development without impairing the heat resistance and transparency of the cured film. . Moreover, the glass transition temperature of polysiloxane becomes high, the reflow of the pattern at the time of thermosetting is suppressed, the pattern shape after thermosetting becomes favorable, and the resolution can be improved.
  • organosilane represented by the general formula (4) examples include tetrafunctional silanes such as tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane and tetraacetoxysilane.
  • Silane Silane, methyl silicate 51 (manufactured by Fuso Chemical Industry Co., Ltd.), M silicate 51, silicate 40 or silicate 45 (all of which are manufactured by Tama Chemical Industry Co., Ltd.) or methyl silicate 51, methyl silicate 53A, ethyl silicate 40 or Examples of the silicate compound include ethyl silicate 48 (all of which are manufactured by Colcoat Co., Ltd.). From the viewpoint of improving the chemical resistance of the cured film by improving the pattern shape after heat curing.
  • Tetraethoxysilane, teto -n- propoxysilane, (manufactured by Fuso Chemical Co.) Methyl Silicate 51, M Silicate 51 (manufactured by Tama Chemicals Co.,) or methyl silicate 51 (manufactured by Colcoat Co.) is preferred.
  • the content ratio of the organosilane unit represented by the general formula (4) in the polysiloxane is preferably 0 to 30 mol%, more preferably 0 to 20 mol% in terms of Si atom mol ratio.
  • Si atom mol ratio derived from the organosilane represented by the general formula (4) exceeds 30 mol%, the crack resistance during thermosetting may be lowered.
  • the content ratio of the organosilane unit represented by the general formula (4) in the polysiloxane is 1 H-NMR, 13 C-NMR, 29 Si-NMR, IR, TOF-MS, elemental analysis. It can be determined by combining the method and ash content measurement.
  • the Mw of the polysiloxane is preferably from 500 to 100,000, more preferably from 500 to 50,000, and even more preferably from 500 to 20,000 in terms of polystyrene measured by GPC.
  • Mw is in the above range, leveling properties during coating, pattern processability with an alkaline developer, resolution after development, and storage stability of the coating solution are improved. If Mw is less than 500, tack-free performance is deteriorated, the moisture resistance of the coating film after exposure is lowered, film loss during development is increased, and resolution after development may be lowered. On the other hand, if Mw exceeds 100,000, the leveling property at the time of application is poor and uneven coating occurs, the pattern workability with an alkaline developer is remarkably lowered, and the storage stability of the coating solution may be lowered.
  • a solvent and water, and a catalyst as necessary are added to a mixture containing organosilane, and the temperature is 50 to 150 ° C., preferably 90 to 130 ° C.
  • a method of heating and stirring for 0.5 to 100 hours can be mentioned.
  • hydrolysis by-products alcohols such as methanol
  • condensation by-products water
  • Examples of the solvent used for the hydrolysis and dehydration condensation of organosilane include the same solvents as described below.
  • the amount of the solvent added is preferably 10 to 1,000 parts by weight when the total of the inorganic particles to be reacted with organosilane and organosilane is 100 parts by weight.
  • the amount of water added is preferably 0.5 to 2 mol with respect to 1 mol of the hydrolyzable group.
  • an acid catalyst or a base catalyst is preferable.
  • the acid catalyst include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, phosphoric acid, acetic acid, trifluoroacetic acid, formic acid, polyvalent carboxylic acid, anhydrides thereof, and ion exchange resins.
  • the base catalyst examples include triethylamine, tri-n-propylamine, tri-n-butylamine, tri-n-pentylamine, tri-n-hexylamine, tri-n-heptylamine, tri-n-octylamine, Examples include diethylamine, triethanolamine, diethanolamine, sodium hydroxide, potassium hydroxide, alkoxysilane having an amino group, or an ion exchange resin.
  • the addition amount of the catalyst is preferably 0.01 to 10 parts by weight when the total of the inorganic particles to be reacted with organosilane and organosilane is 100 parts by weight.
  • the (A-2) polysiloxane does not contain the above catalyst, and therefore the catalyst may be removed afterwards.
  • a method for removing the catalyst water washing or treatment with an ion exchange resin is preferable from the viewpoint of ease of operation and removability.
  • the water washing is a method in which the obtained polysiloxane solution (A-2) is diluted with an appropriate hydrophobic solvent, washed several times with water, and the obtained organic layer is concentrated with an evaporator or the like.
  • the treatment with an ion exchange resin refers to a method in which the obtained (A-2) polysiloxane solution is brought into contact with an appropriate ion exchange resin.
  • polysiloxane polysiloxane obtained by reacting organosilane represented by general formula (3) and / or organosilane represented by general formula (4) with inorganic particles (Hereinafter, “inorganic particle-containing polysiloxane”) may be used.
  • inorganic particle-containing polysiloxane (A-2) in which polysiloxane is bonded to inorganic particles having poor solubility in an alkaline developer, the alkali solubility of the inorganic particles is improved. Pattern workability is not reduced.
  • the hydrophobicity of the inorganic particles not only improves the contrast between the exposed and unexposed areas during development, but also increases the glass transition temperature of (A-2) polysiloxane. Reflow can be suppressed, and the pattern shape after development becomes good. Furthermore, since the inorganic particles have a small shrinkage rate at the time of thermosetting, the generation of shrinkage stress can be suppressed, and the crack resistance at the time of thermosetting can be improved.
  • Inorganic particles are particles made of a metal compound or a semiconductor compound.
  • the metal or semiconductor include an element selected from the group consisting of silicon, lithium, sodium, magnesium, potassium, calcium, strontium, barium, lanthanum, tin, titanium, zirconium, niobium, and aluminum.
  • the metal compound or semiconductor compound include halides, oxides, nitrides, hydroxides, carbonates, sulfates, nitrates, and metasilicates of the above metals or semiconductors.
  • Reacting organosilane and inorganic particles means that organosilane is hydrolyzed in the presence of inorganic particles and dehydrated to obtain polysiloxane containing inorganic particles.
  • the number average particle diameter of the inorganic particles is preferably 1 to 200 nm, more preferably 5 to 70 nm. If the number average particle diameter is less than 1 nm, the effect of improving crack resistance during thermosetting may be insufficient. On the other hand, if the number average particle diameter exceeds 200 nm, the solubility in an alkali developer is lowered, so that the pattern processability in the alkali developer is lowered, causing a residue after development, and light scattering occurs. Therefore, the sensitivity or transparency of the cured film may be reduced.
  • the number average particle diameter of the inorganic particles is measured by laser scattering due to Brownian motion of the inorganic particles in the solution using a submicron particle size distribution measuring device (N4-PLUS; manufactured by Beckman Coulter, Inc.). (Dynamic light scattering method).
  • inorganic particles include silica particles, lithium fluoride particles, lithium chloride particles, lithium bromide particles, lithium oxide particles, lithium carbonate particles, lithium sulfate particles, lithium nitrate particles, lithium metasilicate particles, lithium hydroxide particles, Sodium fluoride particles, sodium chloride particles, sodium bromide particles, sodium carbonate particles, sodium hydrogen carbonate particles, sodium sulfate particles, sodium nitrate particles, sodium metasilicate particles, sodium hydroxide particles, magnesium fluoride particles, magnesium chloride particles, Magnesium bromide particles, magnesium oxide particles, magnesium carbonate particles, magnesium sulfate particles, magnesium nitrate particles, magnesium hydroxide particles, potassium fluoride particles, potassium chloride particles, potassium bromide particles, potassium carbonate particles, potassium sulfate particles Particles, potassium nitrate particles, calcium fluoride particles, calcium chloride particles, calcium bromide particles, calcium oxide particles, calcium carbonate particles, calcium sulfate particles, calcium nitrate particles, calcium
  • the inorganic particles preferably have a functional group capable of reacting with the resin such as a hydroxy group on the surface. If the reactivity between the inorganic particles and the resin of the matrix is good, the inorganic particles are incorporated into the polysiloxane at the time of thermosetting, and the generation of shrinkage stress at the time of thermosetting is suppressed, so the crack resistance at the time of thermosetting is reduced. improves.
  • silica particles examples include methanol silica sol having a number average particle diameter (hereinafter, “particle diameter”) of 10 to 20 nm using methanol (MA) as a dispersion medium, and a particle diameter of 10 to 20 nm using isopropyl alcohol (IPA) as a dispersion medium.
  • particle diameter a number average particle diameter of 10 to 20 nm using methanol (MA) as a dispersion medium
  • IPA isopropyl alcohol
  • IPA-ST EG-ST having a particle diameter of 10 to 20 nm using ethylene glycol (EG) as a dispersion medium
  • NPC-ST-30 having a particle diameter of 10 to 20 nm using n-propyl cellosolve (NPC) as a dispersion medium
  • dimethyl DMAC-ST having a particle diameter of 10 to 20 nm using acetamide (DMAC) as a dispersion medium
  • MEK-ST having a particle diameter of 10 to 20 nm using methyl ethyl ketone (MEK) as a dispersion medium
  • MIBK methyl isobutyl ketone
  • PGM-ST having a particle diameter of 10 to 20 nm as a dispersion medium
  • IPA-ST-L having a particle diameter of 45 to 100 nm using IPA as a dispersion medium
  • IPA-ST-ZL having a particle diameter of 70 to 100 nm using IPA as a dispersion medium
  • Snowtex (registered trademark) OXS having a particle size of 4 to 6 nm in which the dispersion solution is water
  • the same OS having a particle size of 8 to 11 nm in which the dispersion solution is water
  • the same O having a particle size of 10 to 20 nm in which the dispersion solution is water
  • the same OL with a particle size of 40-50 nm in which the dispersion solution is water
  • the solution is water, the same XL with a particle size of 40-60 nm, the dispersion solution is water, the
  • MP-1040 having a particle size of about 100 nm or MP-2040 having a particle size of about 200 nm in which the dispersion solution is water (all of which are manufactured by Nissan Chemical Industries, Ltd.), particle size 5 using IPA as a dispersion medium OSCAL (registered trademark) -1421 of -10 nm, -1432 of particle diameter 10-20 nm using IPA as a dispersion medium, -1132 of particle diameter 10-20 nm using MA as a dispersion medium, ethylene glycol monomethyl ether (EGME) -1632 having a particle diameter of 10 to 20 nm using a dispersion medium, -1842 having a particle diameter of 10 to 20 nm using MIBK as a dispersion medium, ⁇ -butyrolactone (GBL The same -101 with a particle diameter of 10 to 20 nm using ED as a dispersion medium, -1727BM with a particle diameter of 110 to 130 nm using EG as a dispersion medium,
  • CATALOID registered trademark
  • -S having a particle diameter of 5 to 80 nm which is water (all of which are manufactured by JGC Catalysts & Chemicals Co., Ltd.), Quattron (registered trademark) PL- having a particle diameter of 5 to 10 nm which is a water dispersion.
  • PL-1 with a particle size of 10 to 15 nm in which the dispersion solution is water
  • PL-2L with a particle size of 15 to 20 nm in which the dispersion solution is water
  • the same PL with a particle size of 30 to 40 nm in which the dispersion solution is water -3
  • PL-7 having a particle diameter of 70 to 85 nm in which the dispersion solution is water
  • PL-10H having a particle diameter of 80 to 100 nm in which the dispersion solution is water, and a particle diameter of 10 using IPA as a dispersion medium.
  • the same PL-1-IPA of 15 nm, the same PL-2L-IPA of 15 to 20 nm in diameter using IPA as a dispersion medium, and the same PL-2L-MA and PGME of 15 to 20 nm in diameter using MA as a dispersion medium are dispersed.
  • DAA diacetone alcohol
  • PL-2L-BL having a particle diameter of 15 to 20 nm using the same PL-2L-BL or toluene (Tol) as a dispersion medium (all are manufactured by Fuso Chemical Industry Co., Ltd.), and the particle diameter is 100 nm.
  • silica (SiO 2) SG-SO100 Korean No. 1
  • silica-lithium oxide composite particles examples include lithium silicate 45 (manufactured by Nissan Chemical Industries, Ltd.).
  • tin oxide-titanium oxide composite particles examples include Optolake (registered trademark) TR-502 or TR-504 (all of which are manufactured by JGC Catalysts & Chemicals, Inc.).
  • silicon oxide-titanium oxide composite particles examples include Optolake (registered trademark) TR-503, TR-513, TR-520, TR-521, TR-527, TR-528, and TR- 529, TR-543 or TR-544 (all of which are manufactured by JGC Catalysts & Chemicals, Inc.).
  • titanium oxide particles examples include Optolake (registered trademark) TR-505 (manufactured by JGC Catalysts & Chemicals Co., Ltd.), Tainok (registered trademark) A-6, M-6, and AM-15 (or above, either Manufactured by Taki Chemical Co., Ltd.), nSol (registered trademark) 101-20I, 101-20L, 101-20BL or 107-20I (all of which are manufactured by Nanogram Co., Ltd.), TTO-51 (A ), TTO-51 (B), TTO-55 (A), TTO-55 (B), TTO-55 (C), TTO-55 (D), TTO-V-4 or TTO-W-5 (or above) , All manufactured by Ishihara Sangyo Co., Ltd.), RTTAP15WT% -E10, RTTDNB15WT% -E11, RTTDNB15WT% -E12, RTTDNB15WT% -E13, RTTIBA15
  • Zirconium oxide particles include Nano-Use (registered trademark) ZR-30BL, ZR-30BS, ZR-30BH, ZR-30AL, ZR-30AH or OZ-30M (all of which are Nissan Chemical Industries, Ltd.) Or ZSL-M20, ZSL-10T, ZSL-10A or ZSL-20N (all of which are manufactured by Daiichi Rare Element Chemical Co., Ltd.).
  • tin oxide particles examples include Cerames (registered trademark) S-8 or S-10 (all of which are manufactured by Taki Chemical Co., Ltd.).
  • Examples include niobium oxide particle Vilaral (registered trademark) Nb-X10 (manufactured by Taki Chemical Co., Ltd.).
  • examples of other inorganic particles include tin oxide-zirconium oxide composite particles (manufactured by Catalyst Kasei Kogyo Co., Ltd.), tin oxide particles or zirconium oxide particles (all of which are manufactured by Kojundo Chemical Laboratory Co., Ltd.).
  • the photosensitive resin composition of the present invention may contain inorganic particles other than the inorganic particles constituting the inorganic particle-containing polysiloxane.
  • the content of inorganic particles in the solid content of the photosensitive resin composition of the present invention is usually 5 to 80% by weight, preferably 7 to 70% by weight, more preferably 10 to 60% by weight, and more preferably 15 to 50%. More preferred is weight percent. If the content of the inorganic particles is less than 5% by weight, the pattern shape after development may be deteriorated, or crack resistance at the time of thermosetting, reflow suppression of the pattern, or resolution after thermosetting may be insufficient. is there. On the other hand, if it exceeds 80% by weight, it may cause a residue after development and the transparency of the cured film may be lowered.
  • content of an inorganic particle means the total amount of the inorganic particle which comprises inorganic particle containing polysiloxane, and the other inorganic particle.
  • content of an inorganic particle is content which occupies for solid content of the photosensitive resin composition of this invention except a solvent.
  • the photosensitive resin composition of the present invention preferably contains (B) a radical polymerizable compound as described later, and the present invention when the photosensitive resin composition of the present invention contains (B) a radical polymerizable compound.
  • the content of the (A) alkali-soluble resin in the photosensitive resin composition is as follows.
  • the total hardness of the (A) alkali-soluble resin and (B) radical polymerizable compound is 100 parts by weight, and the hardness and resistance of the cured film are as follows. From the viewpoint of improving chemical properties, 10 to 80 parts by weight is preferable, 20 to 70 parts by weight is more preferable, and 30 to 60 parts by weight is even more preferable.
  • (A) alkali-soluble resin is inorganic particle containing polysiloxane, it is set as 100 weight part including the weight of the inorganic particle which comprises inorganic particle containing polysiloxane.
  • the photosensitive resin composition of the present invention preferably contains (B) a radical polymerizable compound.
  • the radically polymerizable compound refers to a compound having a plurality of ethylenically unsaturated double bond groups in the molecule, but is preferably a radically polymerizable compound having a (meth) acrylic group that facilitates radical polymerization. .
  • polymerization of the (meth) acryl group of the (B) radical polymerizable compound proceeds, and the exposed portion of the photosensitive resin composition is insolubilized in the aqueous alkali solution, thereby forming a pattern.
  • the radicals generated from the photopolymerization initiator (C) promote the polymerization of the radical polymerizable compound (B).
  • the sensitivity during exposure and the hardness of the cured film are improved.
  • the double bond equivalent of the radical polymerizable compound is preferably 80 to 400 g / mol from the viewpoints of sensitivity during exposure and hardness of the cured film.
  • radical polymerizable compound examples include diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, trimethylolpropane di ( (Meth) acrylate, trimethylolpropane tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, 1,3-butanediol di (meth) acrylate, neopentyl glycol di ( (Meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1 10-decanediol di (meth)
  • the content of the (B) radical polymerizable compound in the photosensitive resin composition of the present invention is 20 to 90 when the total of (A) the alkali-soluble resin and (B) the radical polymerizable compound is 100 parts by weight. From the viewpoint of improving the hardness and chemical resistance of the cured film, it is preferably 30 to 80 parts by weight, and more preferably 40 to 70 parts by weight.
  • (A) alkali-soluble resin is inorganic particle containing polysiloxane
  • it is set as 100 weight part including the weight of the inorganic particle which comprises inorganic particle containing polysiloxane.
  • the photosensitive resin composition of the present invention may contain (B-1) a polyfunctional radical polymerizable compound and (B-2) a trifunctional or tetrafunctional radical polymerizable compound as the (B) radical polymerizable compound.
  • B-1 The polyfunctional radically polymerizable compound refers to a compound having 5 or more ethylenically unsaturated double bond groups in the molecule.
  • B-2) The trifunctional or tetrafunctional radically polymerizable compound refers to a compound having three or four ethylenically unsaturated double bond groups in the molecule.
  • the photosensitive resin composition of the present invention further contains a photopolymerization initiator (C) described later, (B-1) a polyfunctional radical polymerizable compound and (B-1) a radical generated from the photopolymerization initiator, (B-2)
  • the polymerization of the trifunctional or tetrafunctional radically polymerizable compound is promoted, and the sensitivity at the time of exposure and the hardness of the cured film are improved.
  • the double bond equivalent of (B-1) polyfunctional radical polymerizable compound and (B-2) trifunctional or tetrafunctional radical polymerizable compound is 80 to 400 g / in from the viewpoint of sensitivity during exposure and hardness of the cured film. mol is preferred.
  • Hardness, chemical resistance and vacuum resistance of the cured film obtained by containing both (B-1) a polyfunctional radical polymerizable compound and (B-2) a trifunctional or tetrafunctional radical polymerizable compound Can be improved.
  • This is due to the use of a plurality of radically polymerizable compounds (B) having different numbers of ethylenically unsaturated double bond groups, and they are free without being originally crosslinked due to structural distortion or steric hindrance. This is considered to be because the cross-linking points that are cross-linked are efficiently cross-linked so as to fill the gaps. Therefore, it is estimated that a crosslinking density improves and the hardness, chemical resistance, and vacuum resistance of the obtained cured film improve.
  • Examples of (B-1) polyfunctional radical polymerizable compounds include dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tripentaerythritol hepta (meth) acrylate, and tripentaerythritol octa (meth).
  • Examples include acrylate, tetrapentaerythritol nona (meth) acrylate, tetrapentaerythritol deca (meth) acrylate, pentapentaerythritol undeca (meth) acrylate or pentapentaerythritol dodeca (meth) acrylate, but the hardness of the cured film and chemical resistance Dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tripentaerythritol Descriptor (meth) acrylate or tripentaerythritol octa (meth) acrylate.
  • Trifunctional or tetrafunctional radically polymerizable compounds include, for example, trimethylolpropane tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, ethoxylated Examples include glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate or tris ((meth) acryloxyethyl) isocyanuric acid.
  • trimethylolpropane tri (meth) acrylate ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tri Meth) acrylate, pentaerythritol tetra (meth) acrylate or tris ((meth) acryloxyethyl) isocyanurate are preferred.
  • the content of the (B-1) polyfunctional radical polymerizable compound in the photosensitive resin composition of the present invention is preferably 30 to 99% by weight, more preferably 40 to 90% by weight, based on the total amount of the (B) radical polymerizable compound. 50 to 80% by weight is more preferable.
  • (B-1) If the content of the polyfunctional radically polymerizable compound is less than 30% by weight, the hardness, chemical resistance and vacuum resistance of the cured film may be lowered. On the other hand, if it exceeds 99% by weight, the effect of improving the hardness, chemical resistance and vacuum resistance of the cured film may be insufficient.
  • the content of the (B-2) trifunctional or tetrafunctional radical polymerizable compound in the photosensitive resin composition of the present invention is preferably 1 to 70% by weight based on the total amount of the (B) radical polymerizable compound, and is 10 to 60% by weight. % Is more preferable, and 20 to 50% by weight is more preferable. (B-2) If the content of the trifunctional or tetrafunctional radically polymerizable compound is less than 1% by weight, the effect of improving the hardness, chemical resistance and vacuum resistance of the cured film may be insufficient. On the other hand, if it exceeds 70% by weight, the hardness, chemical resistance and vacuum resistance of the cured film may be lowered.
  • the photosensitive resin composition of the present invention may further contain a radical polymerizable compound having a fluorene skeleton.
  • the radically polymerizable compound having a fluorene skeleton is a (B) radically polymerizable compound, which means a compound having a fluorene skeleton and a plurality of ethylenically unsaturated double bond groups in the molecule.
  • a radically polymerizable compound having a fluorene skeleton a radically polymerizable compound having a (meth) acryl group, which facilitates radical polymerization, is preferable.
  • the photosensitive resin composition of the present invention further contains a photopolymerization initiator (C) described later, the radicals generated from the photopolymerization initiator (C) accelerate the polymerization of the radical polymerizable compound having a fluorene skeleton. As a result, the sensitivity during exposure and the hardness of the cured film are improved.
  • the chemical resistance, moist heat resistance and heat resistance of the resulting cured film can be improved. It is presumed that the chemical resistance, moist heat resistance and heat resistance of the resulting cured film are improved by the hydrophobicity and chemical stability of the radically polymerizable compound having a fluorene skeleton.
  • the double bond equivalent of the radically polymerizable compound having a fluorene skeleton is preferably 200 to 500 g / mol from the viewpoints of sensitivity during exposure and hardness of the cured film.
  • fluorene skeleton-containing radical polymerizable compound examples include Ogsol (registered trademark) EA-50P, EA-0200, EA-0250P, EA-500, EA-1000, EA-F5003, EA-F5503.
  • EA-F5510 (all of which are manufactured by Osaka Gas Chemical Co., Ltd.), 9,9-bis [4- (2- (meth) acryloxyethoxy) phenyl] fluorene, 9,9-bis [4- ( 3- (meth) acryloxypropoxy) phenyl] fluorene, 9,9-bis [4- (2- (meth) acryloxyethoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (2- (Meth) acryloxyethoxy) -3,5-dimethylphenyl] fluorene or 9,9-bis (4- (meth) acryloxyphenyl) fluorene And the like.
  • the content of the radical polymerizable compound having a fluorene skeleton in the photosensitive resin composition of the present invention is (A) when 100 parts by weight of the alkali-soluble resin, or (B) when the radical polymerizable compound is contained.
  • the total of (A) alkali-soluble resin and (B) radical polymerizable compound is 100 parts by weight, 0.1 to 20 parts by weight is preferable, and 1 to 10 parts by weight is more preferable. If the content of the radically polymerizable compound having a fluorene skeleton is less than 0.1 parts by weight, the effect of improving chemical resistance, moist heat resistance or heat resistance may be insufficient.
  • alkali-soluble resin is inorganic particle containing polysiloxane, it is set as 100 weight part including the weight of the inorganic particle which comprises inorganic particle containing polysiloxane.
  • the photosensitive resin composition of the present invention may further contain a radical polymerizable compound having a carboxy group.
  • the radically polymerizable compound having a carboxy group is (B) a radically polymerizable compound, which means a compound having a carboxy group and a plurality of ethylenically unsaturated double bond groups in the molecule.
  • the radically polymerizable compound having a carboxy group is preferably a radically polymerizable compound having a (meth) acrylic group, which facilitates radical polymerization.
  • the photosensitive resin composition of the present invention further contains a photopolymerization initiator (C) described later, polymerization of a radical polymerizable compound having a carboxy group is accelerated by radicals generated from the photopolymerization initiator (C). As a result, the sensitivity during exposure and the hardness of the cured film are improved.
  • C photopolymerization initiator
  • the radically polymerizable compound which has a carboxy group by containing the radically polymerizable compound which has a carboxy group, generation
  • the carboxy group contained in the radically polymerizable compound having a carboxy group improves the solubility in an alkaline developer, so that it is presumed that generation of a residue after development is suppressed.
  • the double bond equivalent of the radical polymerizable compound is preferably 80 to 400 g / mol from the viewpoints of sensitivity during exposure and hardness of the cured film.
  • Carboxy group-containing radically polymerizable compounds are produced by reacting a hydroxy group-containing unsaturated compound having a hydroxy group and a plurality of ethylenically unsaturated double bond groups in the molecule with a compound having an acid anhydride group in the molecule. Can be obtained.
  • Examples of the hydroxy group-containing unsaturated compound having one or more hydroxy groups and a plurality of ethylenically unsaturated double bond groups in the molecule include trimethylolpropane di (meth) acrylate and ditrimethylolpropane di (meth) acrylate.
  • Examples of the compound having an acid anhydride group in the molecule include succinic anhydride, maleic anhydride, glutaric anhydride, itaconic anhydride, phthalic anhydride, and tetrahydrophthalic anhydride, with succinic anhydride being preferred.
  • radical polymerizable compound having a carboxy group examples include Aronix (registered trademark) M-510 and M-520 (both are manufactured by Toagosei Co., Ltd.), succinic acid mono [2,2,2-tris ((Meth) acryloxymethyl) ethyl] or mono [2,2-bis ((meth) acryloxymethyl) -3- [2,2,2-tris ((meth) acryloxymethyl) ethyloxy] propyl succinate ].
  • the content of the radical polymerizable compound having a carboxy group in the photosensitive resin composition of the present invention is 1 to 4 when the total of (A) the alkali-soluble resin and (B) the radical polymerizable compound is 100 parts by weight. 40 parts by weight is preferable, and 5 to 30 parts by weight is more preferable. If the content of the radical polymerizable compound having a carboxy group is less than 1 part by weight, the effect of inhibiting the generation of residues after development may be insufficient. On the other hand, if it exceeds 40 parts by weight, it may cause a decrease in hardness of the cured film and a decrease in chemical resistance.
  • (A) alkali-soluble resin is inorganic particle containing polysiloxane, it is set as 100 weight part including the weight of the inorganic particle which comprises inorganic particle containing polysiloxane.
  • the photosensitive resin composition of the present invention preferably contains (C) a photopolymerization initiator.
  • Examples of the (C) photopolymerization initiator include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-dimethylamino-2- (4-methylbenzyl)- 1- (4-morpholinophenyl) -butan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one or 3,6-bis (2-methyl-2) ⁇ -aminoalkylphenone compounds such as -morpholinopropionyl) -9-octyl-9H-carbazole, 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide or Bis (2,6-dimethoxybenzoyl)-(2,4,4-trimethylpentyl) phosphine oxide Any acylphosphine oxide compound, 1-phenylpropane
  • an ⁇ -aminoalkylphenone compound an acylphosphine oxide compound, an oxime ester compound, a benzophenone compound having an amino group, or A benzoic acid ester compound having an amino group is preferred.
  • benzophenone compound having an amino group examples include 4,4'-bis (dimethylamino) benzophenone and 4,4'-bis (diethylamino) benzophenone.
  • benzoic acid ester compound having an amino group examples include ethyl 4-dimethylaminobenzoate, 4-dimethylaminobenzoic acid (2-ethylhexyl), and ethyl 4-diethylaminobenzoate.
  • the content of the (C) photopolymerization initiator in the photosensitive resin composition of the present invention is (A) when 100 parts by weight of the alkali-soluble resin, or (B) when containing a radical polymerizable compound ( When the total of A) alkali-soluble resin and (B) radical polymerizable compound is 100 parts by weight, it is preferably 0.1 to 20 parts by weight, more preferably 1 to 10 parts by weight. (C) If the content of the photopolymerization initiator is less than 0.1 parts by weight, UV curing does not proceed sufficiently, film loss during development is large, and resolution after development may be reduced.
  • the photosensitive resin composition of the present invention contains (D) a metal chelate compound.
  • a metal chelate compound refers to a compound having a central metal and a ligand coordinated to the metal at two or more sites.
  • the metal chelate compound reacts with the resin or the like by heat and is incorporated as part of the three-dimensional network structure formed during thermosetting. That is, when relatively large atoms are taken into the cured film, the film density of the cured film increases, and the permeability of moisture and chemicals decreases. I think that.
  • a metal chelate compound from the viewpoint of adhesiveness of a cured film, a titanium chelate compound, a zirconium chelate compound, an aluminum chelate compound or a magnesium chelate compound can be mentioned. Zirconium chelate compounds are more preferred.
  • metal chelate compounds can be easily obtained by reacting a metal alkoxide with a chelating agent.
  • a chelating agent examples include ⁇ -diketones such as acetylacetone, benzoylacetone or dibenzoylmethane, or ⁇ -ketoesters such as ethyl acetoacetate or ethyl benzoylacetate.
  • the (D) metal chelate compound of the present invention is a compound represented by the general formula (1).
  • M represents titanium, zirconium, aluminum, or magnesium
  • R 1 represents hydrogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, or 6 to 6 carbon atoms.
  • R 1 is preferably hydrogen, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 4 to 7 carbon atoms, or an aryl group having 6 to 10 carbon atoms
  • R 2 and R 3 are each independently hydrogen, An alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 4 to 7 carbon atoms, an aryl group having 6 to 10 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a hydroxy group is preferable.
  • Examples of the compound represented by the general formula (1) include tetrakis (acetylacetonato) titanium (IV), diisopropoxybis (ethylacetoacetate) titanium (IV), and diisopropoxybis (acetylacetonate).
  • Titanium chelate compounds such as titanium (IV), tetrakis (acetylacetonato) zirconium (IV), di-n-butoxybis (ethylacetoacetate) zirconium (IV) or tri-n-butoxymono (acetylacetonato) zirconium (IV
  • Zirconium chelate compounds such as tris (acetylacetonate) aluminum (III), tris (ethylacetoacetate) aluminum (III), mono (acetylacetonato) bis (ethylacetoacetate) aluminum (II) ), Diisopropoxymono (ethylacetoacetate) aluminum (III) or Preneact® AL-M ((diisopropoxymono (9-octadecanylacetoacetate) aluminum (III), Kawaken Fine Chemicals ( ), Etc., or bis (acetylacetonato) magnesium (II), bis (ethylacetoacetate) magnesium (II
  • the content of the (D) metal chelate compound in the photosensitive resin composition of the present invention is (A) when 100 parts by weight of the alkali-soluble resin, or (B) when containing a radical polymerizable compound (A ) When the total of the alkali-soluble resin and the (B) radical polymerizable compound is 100 parts by weight, 0.1 to 10 parts by weight is preferable, and 0.5 to 5 parts by weight is more preferable. (D) If the content of the metal chelate compound is less than 0.1 parts by weight, the effect of improving chemical resistance or moist heat resistance may be insufficient. On the other hand, if it exceeds 10 parts by weight, it may cause a decrease in transparency and generation of a residue after development, and the storage stability of the coating liquid may decrease. In addition, when (A) alkali-soluble resin is inorganic particle containing polysiloxane, it is set as 100 weight part including the weight of the inorganic particle which comprises inorganic particle containing polysiloxane.
  • the photosensitive resin composition of the present invention contains (E) a silane compound.
  • a silane compound is a silane oligomer obtained by condensing the tetrafunctional silane represented by the general formula (2) or the tetrafunctional silane represented by the general formula (2).
  • a silane compound has an alkoxy silyl group from a viewpoint of the adhesiveness of a cured film, and a chemical-resistant improvement.
  • the adhesiveness of the obtained cured film, chemical resistance, heat-and-moisture resistance, and the storage stability of the coating liquid can be improved.
  • the silane compound Since the silane compound has many hydrolyzable silyl groups, it functions as a cross-linking agent, the film density of the cured film is increased, and the permeability of moisture and chemicals is decreased. It is considered that the chemical resistance and the heat and humidity resistance of the material are improved. Further, the silanol group can form a covalent bond or a coordinate bond with a hydroxy group on the surface of the underlying substrate. Therefore, it is estimated that the interaction between the cured film and the underlying substrate is increased, and the adhesion and chemical resistance of the resulting cured film are improved.
  • R 4 to R 7 each independently represents hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 6 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
  • R 4 to R 7 are preferably each independently hydrogen, an alkyl group having 1 to 4 carbon atoms, an acyl group having 2 to 4 carbon atoms, or an aryl group having 6 to 10 carbon atoms.
  • the silane compound is a silane oligomer obtained by condensing the tetrafunctional silane represented by the general formula (2), by condensing only the tetrafunctional silane represented by the general formula (2) It may be a silane oligomer obtained, or a silane oligomer obtained by condensing a tetrafunctional silane represented by the general formula (2) and another silane compound, that is, represented by the general formula (2). It may be a silane oligomer having a structure derived from tetrafunctional silane.
  • the tetrafunctional silane represented by the general formula (2) and other silane compounds may be subjected to dehydration condensation by hydrolyzing part or all of the hydrolyzable silyl groups that they have.
  • Examples of the (E) silane compound include tetrafunctional silanes such as tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane and tetraacetoxysilane, and methyl silicate 51 ( Fuso Chemical Industry Co., Ltd.), M silicate 51, silicate 40 or silicate 45 (all of which are manufactured by Tama Chemical Industry Co., Ltd.) or methyl silicate 51, methyl silicate 53A, ethyl silicate 40 or ethyl silicate 48 (or more, All of them include silicate compounds such as those manufactured by Colcoat Co., Ltd.
  • tetramethoxysilane tetraethoxysilane, tetra-n- Propoxysilane, methylsil Over preparative 51 (Fuso Chemical Co., Ltd.), M Silicate 51 (Tama Chemical Industries, Ltd.) or methyl silicate 51 (Colcoat Co., Ltd.) are preferable, tetramethoxysilane is preferred.
  • the content of the (E) silane compound in the photosensitive resin composition of the present invention is (A) when (A) the alkali-soluble resin is 100 parts by weight, or (B) when it contains a radical polymerizable compound.
  • the total of the alkali-soluble resin and the (B) radical polymerizable compound is 100 parts by weight, it is preferably 0.1 to 30 parts by weight, and more preferably 1 to 25 parts by weight.
  • content of a silane compound is less than 0.1 weight part, the effect of adhesiveness, chemical-resistance, heat-and-moisture resistance, or the storage stability improvement of a coating liquid may be inadequate.
  • (A) alkali-soluble resin is inorganic particle containing polysiloxane, it is set as 100 weight part including the weight of the inorganic particle which comprises inorganic particle containing polysiloxane.
  • the photosensitive resin composition of the present invention is further selected from the group consisting of (F) amino group, amide group, ureido group, ketimine group, isocyanate group, mercapto group, isocyanuric ring skeleton, (meth) acryl group and styryl group. It is preferable to contain a silane compound having a substituent (hereinafter referred to as “(F) specific silane compound”). (F) It is preferable that a specific silane compound has an alkoxy silyl group from a viewpoint of the adhesiveness of a cured film, and a chemical-resistant improvement.
  • the adhesion and chemical resistance of the resulting cured film can be improved.
  • Functional groups such as amino groups, amide groups, ureido groups, ketimine groups, isocyanate groups, mercapto groups, isocyanuric ring skeletons, (meth) acrylic groups, and styryl groups possessed by specific silane compounds can react with resins, etc. It functions as a site that can be coordinated to the surface of the underlying substrate depending on the functional group.
  • the hydrolyzable silyl group possessed by the specific silane compound is converted into a silanol group by hydrolysis, and this silanol group can form a covalent bond with a hydroxy group on the surface of the underlying substrate.
  • Specific silane compounds include, for example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2- Aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2- Aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, 3- (4-aminophenyl) propyltrimethoxysilane, Nt-butyl-2- (3-trimethoxysilylpropyl) succinimide, 2- (3 -Trimethoxysilylpropyl) -4
  • the content of the specific silane compound (F) in the photosensitive resin composition of the present invention is (A) when 100 parts by weight of the alkali-soluble resin, or (B) when containing a radical polymerizable compound (When the total of A) alkali-soluble resin and (B) radical polymerizable compound is 100 parts by weight, 0.1 to 10 parts by weight is preferable, and 0.5 to 7 parts by weight is more preferable. (F) If the content of the specific silane compound is less than 0.1 parts by weight, the effect of improving adhesion or chemical resistance may be insufficient. On the other hand, if it exceeds 10 parts by weight, it may cause residue after development, and the storage stability of the coating liquid may be lowered. In addition, when (A) alkali-soluble resin is inorganic particle containing polysiloxane, it is set as 100 weight part including the weight of the inorganic particle which comprises inorganic particle containing polysiloxane.
  • the photosensitive resin composition of the present invention may contain a solvent.
  • the solvent is preferably a compound having an alcoholic hydroxyl group, a compound having a carbonyl group or a compound having three or more ether bonds from the viewpoint of uniformly dissolving each component and improving the transparency of the resulting cured film.
  • a compound having a boiling point of 110 to 250 ° C. under atmospheric pressure is more preferable.
  • Examples of the compound having an alcoholic hydroxyl group and a boiling point of 110 to 250 ° C. under atmospheric pressure include hydroxyacetone, 4-hydroxy-2-butanone, 3-hydroxy-3-methyl-2-butanone, 4- Hydroxy-3-methyl-2-butanone, 5-hydroxy-2-pentanone, 4-hydroxy-2-pentanone, 4-hydroxy-4-methyl-2-pentanone (diacetone alcohol), methyl lactate, ethyl lactate, lactic acid n-propyl, n-butyl lactate, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-n-butyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propi Glycol mono-n-propyl ether, propylene glycol mono-n-butyl ether, propylene glycol mono-t-butyl ether, diethylene glycol
  • diacetone alcohol ethyl lactate, ethylene glycol monomethyl ether, propylene glycol mono Chirueteru, diethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, 3-methoxy-1-butanol, 3-methoxy-3-methyl-1-butanol or tetrahydrofurfuryl alcohol.
  • Examples of the compound having a carbonyl group and having a boiling point of 110 to 250 ° C. under atmospheric pressure include, for example, n-butyl acetate, isobutyl acetate, 3-methoxy-n-butyl acetate, 3-methyl-3-methoxy-n -Butyl acetate, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, methyl n-butyl ketone, methyl isobutyl ketone, diisobutyl ketone, 2-heptanone, acetylacetone, cyclopentanone, cyclohexanone, cycloheptanone, ⁇ -butyrolactone, ⁇ - Examples include valerolactone, ⁇ -valerolactone, propylene carbonate, N-methylpyrrolidone, N, N′-dimethylformamide, N, N′-dimethylacetamide or 1,3-dimethyl-2-imi
  • Examples of the compound having three or more ether bonds and a boiling point of 110 to 250 ° C. under atmospheric pressure include diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol di-n-propyl ether, dipropylene glycol.
  • Examples thereof include dimethyl ether, dipropylene glycol diethyl ether, dipropylene glycol ethyl methyl ether and dipropylene glycol di-n-propyl ether. From the viewpoint of applicability, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether or dipropylene glycol dimethyl ether is preferable.
  • the content of the solvent in the photosensitive resin composition of the present invention may be appropriately adjusted according to the coating method and the like. For example, when film formation is performed by spin coating, 50% of the entire photosensitive resin composition is used. Generally, it is set to ⁇ 95% by weight.
  • the photosensitive resin composition of the present invention may further contain a maleimide compound.
  • a maleimide compound a general maleimide or maleimide derivative can be used.
  • the photosensitive resin composition contains a maleimide compound, the chemical resistance and heat and moisture resistance of the resulting cured film can be improved without impairing the storage stability of the coating liquid.
  • the structure derived from maleimide in the maleimide compound is coordinated to the (D) metal chelate compound, and the reactivity is lowered and stabilized. I think that.
  • the maleimide compound contributes to the stabilization of the photosensitive resin composition and suppresses the progress of the reaction during storage of the coating liquid, thereby suppressing the decrease in adhesion or chemical resistance. It is presumed that the maleimide compound reacts with a resin or the like by heat to be taken in as a part of a three-dimensional network structure and the crosslinking density is improved. Moreover, it is thought that the chemical resistance of the obtained cured film improves because the structure derived from the maleimide of the maleimide compound functions as a site capable of coordinating with the underlying substrate surface. Furthermore, it is considered that the heat and humidity resistance of the resulting cured film is improved by improving the crosslinking density.
  • the maleimide compound preferably has an aromatic cyclic skeleton or an aliphatic cyclic skeleton. It is considered that the chemical resistance, moist heat resistance and heat resistance of the obtained cured film are further improved by the hydrophobicity and chemical stability of the aromatic cyclic skeleton or the aliphatic cyclic skeleton.
  • maleimide compounds include maleimide, N-methylmaleimide, N-ethylmaleimide, Nn-propylmaleimide, N-isopropylmaleimide, Nn-butylmaleimide, Nt-butylmaleimide, Nn-hexyl.
  • N-cyclopentylmaleimide N-cyclohexylmaleimide, N- (2,4-dimethylcyclohexyl) maleimide, N-phenylmaleimide, N- (4-methylphenyl) maleimide, N- (3-methylphenyl) maleimide, N- (2-methylphenyl) maleimide, N- (2,6-dimethylphenyl) maleimide, N- (2,6-diethylphenyl) maleimide, N- (4-styryl) maleimide N- (4-methoxyphenyl) maleimide, N (3-methoxyphenyl) maleimide, N- (2-methoxyphenyl) maleimide, N- (4-methoxycarbonylphenyl) maleimide, N- (4-hydroxyphenyl) maleimide, N- (3-hydroxyphenyl) maleimide, N -(2-hydroxyphenyl) maleimide, N- (4-carboxyphenyl) maleimide,
  • the content of the maleimide compound in the photosensitive resin composition of the present invention is (A) an alkali-soluble resin when (A) the alkali-soluble resin is 100 parts by weight, or (B) when it contains a radical polymerizable compound. And (B) When the total amount of the radical polymerizable compounds is 100 parts by weight, it is preferably 0.1 to 20 parts by weight, more preferably 1 to 15 parts by weight. If the content of the maleimide compound is less than 0.1 parts by weight, the effect of improving chemical resistance, moist heat resistance or heat resistance may be insufficient. On the other hand, if it exceeds 20 parts by weight, it may cause generation of a residue after development.
  • (A) alkali-soluble resin is inorganic particle containing polysiloxane, it is set as 100 weight part including the weight of the inorganic particle which comprises inorganic particle containing polysiloxane.
  • the maleimide compound is more preferably a bismaleimide compound.
  • the bismaleimide compound is a compound having two maleimide-derived structures, and has two sites each incorporated as a part of a three-dimensional network structure and two sites capable of coordination with the underlying substrate surface. For this reason, it is considered that the crosslink density and the adhesion to the underlying substrate surface are further improved, and the chemical resistance and heat-and-moisture resistance of the resulting cured film can be further improved.
  • the bismaleimide compound preferably has an aromatic cyclic skeleton or an aliphatic cyclic skeleton. It is considered that the chemical resistance, moist heat resistance and heat resistance of the obtained cured film are further improved by the hydrophobicity and chemical stability of the aromatic cyclic skeleton or the aliphatic cyclic skeleton.
  • the bismaleimide compound examples include 1,2-bis (maleimido) ethane, 1,3-bis (maleimido) propane, 1,4-bis (maleimido) butane, 1,5-bis (maleimido) pentane, 6-bis (maleimido) hexane, 2,2,4-trimethyl-1,6-bis (maleimido) hexane, N, N′-1,3-phenylenebis (maleimide), 4-methyl-N, N′- 1,3-phenylenebis (maleimide), N, N′-1,4-phenylenebis (maleimide), 3-methyl-N, N′-1,4-phenylenebis (maleimide), 4,4′-bis (Maleimido) diphenylmethane, 3,3′-diethyl-5,5′-dimethyl-4,4′-bis (maleimido) diphenylmethane or 2,2-bis [4- (4-maleimidophenol) P) propane].
  • the content of the bismaleimide compound in the photosensitive resin composition of the present invention is (A) alkali-soluble when (A) the alkali-soluble resin is 100 parts by weight, or when (B) a radical polymerizable compound is contained.
  • the total of the resin and the (B) radical polymerizable compound is 100 parts by weight, it is preferably 0.1 to 20 parts by weight, and more preferably 1 to 15 parts by weight. If the content of the bismaleimide compound is less than 0.1 parts by weight, the effect of improving chemical resistance, moist heat resistance or heat resistance may be insufficient. On the other hand, if it exceeds 20 parts by weight, it may cause generation of a residue after development.
  • (A) alkali-soluble resin is inorganic particle containing polysiloxane, it is set as 100 weight part including the weight of the inorganic particle which comprises inorganic particle containing polysiloxane.
  • the photosensitive resin composition of the present invention may further contain a fluorene compound.
  • a fluorene compound By containing a fluorene compound, the chemical resistance, heat-and-moisture resistance, and heat resistance of the cured film obtained can be improved. It is presumed that the fluorene compound is taken in as a part of the three-dimensional network structure by reacting with a resin or the like by heat. And it is estimated that the chemical resistance of the obtained cured film, heat-and-moisture resistance, and heat resistance improve with the hydrophobicity and chemical stability which the fluorene skeleton of a fluorene compound has.
  • fluorene compound examples include Ogsol (registered trademark) PG, PG-100, EG, EG-200, EG-210 (all of which are manufactured by Osaka Gas Chemical Co., Ltd.), ONCOAT (registered trademark).
  • EX-1010, EX-1011, EX-1012, EX-1020, EX-1020, EX-1030, EX-1040, EX-1050, EX-1051, EX-1020M80 or EX-1020M70 All of the above are manufactured by Nagase ChemteX Corporation), 9,9-bis [4- (2-glycidoxyethoxy) phenyl] fluorene, 9,9-bis [4- (3-glycidoxypropoxy) phenyl ] Fluorene, 9,9-bis [4- (2-glycidoxyethoxy) -3-methylphenyl] fluorene, 9,9-bis [4- (2-glycyl) Doxyethoxy) -3,5-dimethylphenyl] fluorene, 9,9-bis (4-glycidoxyphenyl) fluorene, 9,9-bis (4-glycidoxy-3-methylphenyl) fluorene, 9,9-bis ( 4-glycidoxy-3,5-d
  • OGSOL registered trademark
  • PG registered trademark
  • PG-100 EG
  • EG-200 EG-210
  • EG-250 all of which are Osaka Gas Chemical Co., Ltd.
  • EX-1010 (registered trademark) EX-1010, EX-1011, EX-1012, EX-1020, EX-1030, EX-1040, EX-1050, EX-1051, EX-1020M80 or EX-1020M70 (all of which are manufactured by Nagase ChemteX Corporation), 9,9-bis [4- (2-glycidoxyethoxy) phenyl] fluorene, 9,9-bis [4- (3-glycidoxypropoxy) phenyl] fluorene, 9,9-bis [4- (2-glycidoxyethoxy) -3-methylphenyl] fluorene, 9, -Bis [4- (2-glycidoxyethoxy) -3,5-dimethylphenyl] fluorene, 9,9-bis (4-glycidoxyphenyl) fluorene, 9,9-bis [4- (2-hydroxy Ethoxy) phenyl] fluorene, 9,9-bis [4- (3-hydroxyprop
  • the content of the fluorene compound in the photosensitive resin composition of the present invention is (A) an alkali-soluble resin when (A) the alkali-soluble resin is 100 parts by weight, or (B) a radically polymerizable compound is contained.
  • the total amount of the radically polymerizable compound (B) is 100 parts by weight, it is preferably 1 to 30 parts by weight, and more preferably 5 to 25 parts by weight. If the content of the fluorene compound is less than 1 part by weight, the effect of improving chemical resistance, moist heat resistance or heat resistance may be insufficient. On the other hand, if it exceeds 30 parts by weight, it may cause residue after development, and the storage stability of the coating liquid may be lowered.
  • (A) alkali-soluble resin is inorganic particle containing polysiloxane, it is set as 100 weight part including the weight of the inorganic particle which comprises inorganic particle containing polysiloxane.
  • the photosensitive resin composition of the present invention may further contain a polyfunctional epoxy compound.
  • a polyfunctional epoxy compound By containing a polyfunctional epoxy compound, the chemical resistance, moist heat resistance and heat resistance of the resulting cured film can be improved. It is presumed that the epoxy part of the polyfunctional epoxy compound is taken in as a part of the three-dimensional network structure by reacting with a resin or the like by heat. And it is estimated that the chemical resistance of the obtained cured film, heat-and-moisture resistance, and heat resistance improve with the hydrophobicity and chemical stability which the aromatic cyclic skeleton of a polyfunctional epoxy compound has.
  • polyfunctional epoxy compound examples include 1,1-bis (4-glycidoxyphenyl) -1- [4- [1- (4-glycidoxyphenyl) -1-methylethyl] phenyl] ethane, , 2-bis (4-glycidoxyphenyl) propane, 1,1-bis (4-glycidoxyphenyl) -1-phenylethane, 1,1,1-tris (4-glycidoxyphenyl) methane, 1,1,1-tris (4-glycidoxyphenyl) ethane, 1,1-bis (4-glycidoxyphenyl) -1- (1-naphthyl) ethane, 1,1-bis (4-glycide) Xylphenyl) -1- (2-naphthyl) ethane, 1,1-bis (4-glycidoxy-1-naphthyl) -1- (4-glycidoxyphenyl) ethane, 1,1-bis (5-gly
  • the content of the polyfunctional epoxy compound in the photosensitive resin composition of the present invention is (A) when alkali-soluble resin is 100 parts by weight, or when (B) a radical polymerizable compound is contained, (A) alkali When the total of the soluble resin and the (B) radical polymerizable compound is 100 parts by weight, it is preferably 1 to 30 parts by weight, and more preferably 5 to 25 parts by weight. If the content of the polyfunctional epoxy compound is less than 1 part by weight, the effect of improving chemical resistance, moist heat resistance or heat resistance may be insufficient. On the other hand, if it exceeds 30 parts by weight, it may cause residue after development, and the storage stability of the coating liquid may be lowered. In addition, when (A) alkali-soluble resin is inorganic particle containing polysiloxane, it is set as 100 weight part including the weight of the inorganic particle which comprises inorganic particle containing polysiloxane.
  • the photosensitive resin composition of the present invention may further contain an isocyanate compound.
  • the isocyanate compound here includes a blocked isocyanate compound in which an isocyanate group is blocked.
  • the photosensitive resin composition contains an isocyanate compound, the chemical resistance and heat-and-moisture resistance of the resulting cured film can be improved. Since the isocyanate group is a site capable of reacting with a carboxy group or the like in the resin by heat, it is presumed that the isocyanate compound functions as a crosslinking agent. And since an isocyanate compound functions as a crosslinking agent, the film density of a cured film rises and it is estimated that the chemical resistance and wet heat resistance of the obtained cured film improve.
  • isocyanate compound examples include hexamethylene diisocyanate, isophorone diisocyanate, tolylene-2,6-diisocyanate, methylenediphenyl-4,4′-diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, and 1,3-bis (isocyanate methyl).
  • tris (6-isocyanatohexyl) isocyanuric acid tris (3-isocyanatomethyl-3,5,5-trimethylcyclohexyl) isocyanuric acid or 1,3,5-tris (6 -Isocyanatohexyl) biuret is preferred.
  • the content of the isocyanate compound in the photosensitive resin composition of the present invention is (A) 100 parts by weight of the alkali-soluble resin, or (B) when it contains a radical polymerizable compound, (A) the alkali-soluble resin And (B) When the total amount of radically polymerizable compounds is 100 parts by weight, 0.1 to 10 parts by weight is preferable, and 0.5 to 7 parts by weight is more preferable. If the content of the isocyanate compound is less than 0.1 parts by weight, the effect of improving chemical resistance or moist heat resistance may be insufficient. On the other hand, if it exceeds 10 parts by weight, it may cause residue after development, and the storage stability of the coating liquid may be lowered.
  • (A) alkali-soluble resin is inorganic particle containing polysiloxane, it is set as 100 weight part including the weight of the inorganic particle which comprises inorganic particle containing polysiloxane.
  • the photosensitive resin composition of the present invention may further contain a urea compound having an ethylenically unsaturated double bond group.
  • a urea compound having an ethylenically unsaturated double bond group By containing the urea compound which has an ethylenically unsaturated double bond group, the chemical resistance and heat-and-moisture resistance of the obtained cured film can be improved.
  • the urea site is presumed to function as a site capable of reacting with a resin or the like by heat and capable of coordinating with the underlying substrate surface.
  • a crosslinked structure can be formed by radical polymerization with an ethylenically unsaturated double bond group bonded to a resin or the like.
  • the urea compound which has an ethylenically unsaturated double bond group functions as a crosslinking agent, the film density of a cured film rises, and the chemical resistance and wet heat resistance of the obtained cured film improve.
  • urea compounds having an ethylenically unsaturated double bond group include 1-allylurea, 1-vinylurea, 1-allyl-2-thiourea, 1-vinyl-2-thiourea, 1-allyl-3. -Methyl-2-thiourea, 1-allyl-3- (2-hydroxyethyl) -2-thiourea or 1-methyl-3- (4-vinylphenyl) -2-thiourea.
  • the content of the urea compound having an ethylenically unsaturated double bond group in the photosensitive resin composition of the present invention is as follows: (A) 100 parts by weight of the alkali-soluble resin, or (B) the radical polymerizable compound When contained, when the total of (A) alkali-soluble resin and (B) radical polymerizable compound is 100 parts by weight, 0.1 to 10 parts by weight is preferable, and 0.5 to 7 parts by weight is more preferable. When the content of the urea compound having an ethylenically unsaturated double bond group is less than 0.1 part by weight, the effect of improving chemical resistance or heat and moisture resistance may be insufficient.
  • (A) alkali-soluble resin is inorganic particle containing polysiloxane, it is set as 100 weight part including the weight of the inorganic particle which comprises inorganic particle containing polysiloxane.
  • the photosensitive resin composition of the present invention may further contain a polymerization inhibitor.
  • a polymerization inhibitor By containing a suitable amount of a polymerization inhibitor, generation of residues after development can be suppressed and high resolution can be ensured. It is presumed that the polymerization inhibitor can capture excessive radicals generated from the photopolymerization initiator (C) by light irradiation during exposure, and the progress of excessive radical polymerization can be suppressed.
  • polymerization inhibitor examples include di-t-butylhydroxytoluene, butylhydroxyanisole, hydroquinone, 4-methoxyphenol, 1,4-benzoquinone, and t-butylcatechol.
  • polymerization inhibitors examples include IRGANOX (registered trademark) 1010, 1035, 1076, 1098, 1135, 1330, 1726, 1425, 1520, 245, 259, and 259. 3114, 565, or 295 (all of which are manufactured by BASF).
  • the photosensitive resin composition of the present invention may further contain an ultraviolet absorber.
  • an ultraviolet absorber By containing an appropriate amount of the ultraviolet absorber, generation of residues after development can be suppressed, high resolution can be ensured, and light resistance of the resulting cured film is improved. This is presumed to be because the ultraviolet absorbent captures scattered light, reflected light, and the like, which are generated during light irradiation during exposure, and the progress of excessive radical polymerization can be suppressed. Moreover, also in the cured film obtained, it is estimated that light resistance improves because an ultraviolet absorber captures the irradiated light.
  • a benzotriazole compound As the ultraviolet absorber, a benzotriazole compound, a benzophenone compound, a triazine compound, or the like is preferable from the viewpoint of transparency and non-colorability.
  • benzotriazole compound examples include 2- (2′-hydroxyphenyl) -2H-benzotriazole, 2- (2′-hydroxy-5′-methylphenyl) -2H-benzotriazole, 2- (2′-hydroxy -5′-t-butylphenyl) -2H-benzotriazole, 2- (2′-hydroxy-3′-t-butyl-5′-methylphenyl) -2H-benzotriazole, 2- [2′-hydroxy- 3 ′, 4′-bis (1-methyl-1-phenylethyl) phenyl] -2H-benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-pentylphenyl) -2H-benzo Triazole, 2- (2′-hydroxy-5′-t-octylphenyl) -2H-benzotriazole, 2- (2′-hydroxy-3′-dodecyl) -5'-methylphenyl) -2H-benzotriazole, 2- [2'-
  • benzophenone compound examples include 2-hydroxy-4-methoxybenzophenone and 2-hydroxy-4-octyloxybenzophenone.
  • triazine compound examples include 2- (2′-hydroxy-4′-hexyloxyphenyl) -4,6-diphenyl-1,3,5-triazine, 2- [2′-hydroxy-4 ′-(2 -Hydroxy-3-dodecyloxypropoxy) phenyl] -4,6-bis (2 ', 4'-dimethylphenyl) -1,3,5-triazine, 2- [2'-hydroxy-4'-[2- Hydroxy-3- (2-ethylhexyloxy) propoxy] phenyl] -4,6-bis (2 ′, 4′-dimethylphenyl) -1,3,5-triazine or 2,4-bis (2′-hydroxy- And 4'-butoxyphenyl) -6- (2 ', 4'-dibutoxy) -1,3,5-triazine.
  • the photosensitive resin composition of the present invention may further contain a surfactant.
  • a surfactant By containing an appropriate amount of the surfactant, leveling properties at the time of coating can be improved, the occurrence of coating unevenness can be suppressed, and a uniform coating film can be obtained.
  • surfactant examples include a fluorine-based surfactant, a silicone-based surfactant, a polyalkylene oxide-based surfactant, and a poly (meth) acrylate-based surfactant.
  • fluorine-based surfactant examples include 1,1,2,2-tetrafluorooctyl (1,1,2,2-tetrafluoropropyl) ether, 1,1,2,2-tetrafluorooctyl hexyl ether, Octaethylene glycol bis (1,1,2,2-tetrafluorobutyl) ether, hexaethylene glycol (1,1,2,2,3,3-hexafluoropentyl) ether, octapropylene glycol bis (1,1, 2,2-tetrafluorobutyl) ether, hexapropylene glycol bis (1,1,2,2,3,3-hexafluoropentyl) ether, sodium perfluorododecylsulfonate, 1,1,2,2,8, 8,9,9,10,10-decafluorododecane, 1,1,2,2,3,3-hexafluorodeca N- [3- (perfluorooctanesulfonamid
  • compounds having a fluoroalkyl group or a fluoroalkylene chain at any of the terminal, main chain, and side chain such as monoperfluoroalkylethyl phosphate, can be mentioned.
  • Examples of such compounds include MegaFac (registered trademark) F-142D, F-172, F-173, F-183, F-444, F-445, F-470, and F-470.
  • F-475, F-477, F-555, or F-559 "(all of which are manufactured by Dainippon Ink & Chemicals, Inc.), Ftop (registered trademark) EF301, 303 or 352 (and above) , All manufactured by Mitsubishi Materials Electronic Chemical Co., Ltd.), Florard (registered trademark) FC-430 or FC-431 (all of which are manufactured by Sumitomo 3M), Asahi Guard (registered trademark) AG710 ”(Asahi Glass ( Manufactured by the same company), Surflon (registered trademark) S-382, “SC-101, SC-102, SC-103, SC-104, SC-105, or SC-106 (above, This is also manufactured by AGC Seimi Chemical Co., Ltd.), BM-1000 or BM-1100 (both manufactured by Yusho Co., Ltd.), or NBX-15, FTX-218 or DFX-218 (all manufactured by Co., Ltd.) Neos).
  • silicone surfactant examples include SH28PA, SH7PA, SH21PA, SH30PA or ST94PA (all of which are manufactured by Toray Dow Corning Co., Ltd.) or BYK-301, BYK-307, BYK-331, BYK-333. Another example is BYK-345 (all of which are manufactured by Big Chemie Japan Co., Ltd.).
  • the content of the surfactant in the photosensitive resin composition of the present invention is generally preferably 0.0001 to 1% by weight of the entire photosensitive resin composition, and is preferable.
  • the photosensitive resin composition of the present invention may further contain various curing agents that promote thermal curing of the resin composition.
  • the curing agent include nitrogen-containing organic compounds, silicone resin curing agents, metal alkoxides, methylol group-containing melamine derivatives, and methylol group-containing urea derivatives.
  • the photosensitive resin composition of the present invention preferably has negative photosensitivity.
  • negative photosensitivity coloring during thermosetting can be suppressed, and a cured film with higher transparency can be obtained.
  • the crosslinking reaction easily proceeds during UV curing, and it is possible to obtain a cured film excellent in hardness, moist heat resistance, artificial sweat resistance, adhesion, chemical resistance and vacuum resistance. It becomes.
  • a typical production method of the photosensitive resin composition of the present invention will be described. For example, an arbitrary (C) photopolymerization initiator, (D) a metal chelate compound, and other solid additives are weighed, an arbitrary solvent is added, and the mixture is stirred and dissolved. Next, add other liquid additives and stir. Next, (A) an alkali-soluble resin and (B) a radical polymerizable compound are added and stirred. Further, (E) a silane compound is added and stirred for 20 minutes to 3 hours to obtain a uniform solution. Then, the photosensitive resin composition of this invention is obtained by filtering the obtained solution.
  • the photosensitive resin composition of the present invention is applied on a substrate.
  • a substrate for example, a substrate in which a metal oxide such as ITO, a metal such as molybdenum, silver, copper, or aluminum, or CNT (Carbon Nano Tube) is formed on a glass as an electrode or a wiring is used.
  • the application method include micro gravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, and slit coating.
  • the coating film thickness varies depending on the coating method, solid content concentration and viscosity of the photosensitive resin composition, but is usually applied so that the film thickness after coating and pre-baking is 0.1 to 15 ⁇ m.
  • the substrate coated with the photosensitive resin composition is prebaked to prepare a prebaked film of the photosensitive resin composition.
  • Prebaking is preferably performed at 50 to 150 ° C. for 30 seconds to several hours using an oven, a hot plate, or infrared rays. If necessary, after pre-baking at 80 ° C. for 2 minutes, pre-baking at 120 ° C. for 2 minutes may be used for pre-baking in two or more stages.
  • exposure is performed using an exposure machine such as a stepper, mirror projection mask aligner (MPA), or parallel light mask aligner (PLA).
  • an exposure machine such as a stepper, mirror projection mask aligner (MPA), or parallel light mask aligner (PLA).
  • MPA mirror projection mask aligner
  • PPA parallel light mask aligner
  • the active actinic radiation to be irradiated at the time of exposure ultraviolet rays, visible rays, electron beams, X-rays, KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser or the like can be used, but mercury lamp j-ray (wavelength 313 nm). I-line (wavelength 365 nm), h-line (wavelength 405 nm) or g-line (wavelength 436 nm) is preferably used.
  • the exposure amount is usually about 10 to 4000 J / m 2 (i-line illuminometer value), and exposure can be performed through a mask having
  • baking before development may be performed.
  • the baking temperature is preferably 50 to 180 ° C, more preferably 60 to 150 ° C.
  • the baking time is preferably 10 seconds to several hours.
  • the exposed film is developed for an arbitrary time using an automatic developing device or the like, so that the unexposed portion is removed with a developer and a relief pattern is obtained.
  • a known alkali developer is generally used.
  • the developer include organic alkaline developer or ammonia, tetramethylammonium hydroxide, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine.
  • An aqueous solution of an alkaline compound such as dimethylaminoethyl acetate, dimethylaminoethanol, dimethylaminoethyl methacrylate, cyclohexylamine, ethylene diamine or hexamethylene diamine is mentioned. preferable.
  • the same solvents as those contained in the photosensitive resin composition alcohols, ketones, ethers, N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N, N-dimethylformamide N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphortriamide or ⁇ -butyrolactone may be used.
  • solvents methanol, ethanol, isopropyl alcohol, water, methyl carbitol, ethyl carbitol, toluene, xylene, ethyl lactate, ethyl pyruvate, propylene glycol monomethyl ether acetate, methyl-3-methoxypropionate,
  • a mixed solution in combination with a poor solvent for the photosensitive resin composition such as ethyl-3-ethoxypropionate, 2-heptanone, cyclopentanone, cyclohexanone, or ethyl acetate may be used.
  • the above-described developer is directly applied to the exposed film, the developer is sprayed and emitted, the exposed film is immersed in the developer, and the exposed film is exposed. It can be performed by a method such as applying ultrasonic waves while being immersed in the developer.
  • the exposed film is preferably brought into contact with the developer for 5 seconds to 10 minutes.
  • rinsing treatment may be performed by adding alcohols such as ethanol or isopropyl alcohol, esters such as propylene glycol monomethyl ether acetate, or acids such as carbon dioxide, hydrochloric acid or acetic acid to water.
  • Methanol, ethanol, isopropyl alcohol, ethyl lactate, ethyl pyruvate, propylene glycol monomethyl ether acetate, methyl-3-methoxypropionate, ethyl-3- Ethoxypropionate, 2-heptanone or ethyl acetate is preferred.
  • middle baking may be performed as necessary. By performing middle baking, effects such as improvement in resolution after thermosetting and control of the pattern shape after thermosetting can be expected.
  • Middle baking uses an oven, a hot plate, infrared rays, or the like, and the baking temperature is preferably 60 to 250 ° C, more preferably 70 to 220 ° C.
  • the baking time is preferably 10 seconds to several hours.
  • a cured film of the photosensitive resin composition of the present invention is obtained by heating at a temperature of 120 to 280 ° C. for 10 minutes to several hours.
  • This heat treatment can be performed in an air atmosphere or an inert gas atmosphere such as nitrogen.
  • this heat treatment may be performed stepwise, or may be performed continuously for 5 minutes to 5 hours.
  • the thickness of the cured film obtained by thermosetting the photosensitive resin composition of the present invention is preferably 0.1 to 15 ⁇ m. Further, when the film thickness is 1.5 ⁇ m, the hardness is preferably 4H or more and the transmittance is preferably 90% or more, and more preferably 95% or more. In addition, the transmittance
  • the cured film obtained by thermosetting the photosensitive resin composition of the present invention includes various types such as a protective film for a touch panel, various hard coat materials, a flattening film for TFT, an overcoat for a color filter, an antireflection film, or a passivation film. It can be used for various insulating films such as protective films, optical filters, touch panel insulating films, TFT insulating films, or color filter photo spacers. Among these, since it has high hardness, transparency, chemical resistance, and heat resistance, it can be suitably used as a protective film for a touch panel or an insulating film for a touch panel. Examples of the touch panel system include a resistance film type, an optical type, an electromagnetic induction type, and a capacitance type. In particular, since a particularly high hardness is required for a capacitive touch panel, the cured film of the present invention can be used particularly suitably.
  • the cured film obtained by thermosetting the photosensitive resin composition of the present invention has high moisture and heat resistance, it can be suitably used as a metal wiring protective film.
  • a metal wiring protective film By forming the cured film of the present invention on the metal wiring, deterioration due to metal corrosion or the like (conductivity, decrease in resistance value, etc.) can be prevented.
  • the metal wiring to be protected include one or more selected from the group consisting of molybdenum, silver, copper, aluminum, chromium, titanium, ITO, IZO (Indium Zinc Oxide), AZO (Aluminum Zinc Oxide), ZnO 2 and CNT.
  • the metal wiring to contain is mentioned.
  • the cured film obtained by thermosetting the photosensitive resin composition of the present invention is a protective film or insulating film for metal wiring containing at least one selected from the group consisting of molybdenum, silver, copper, aluminum and CNT. Preferably used.
  • Synthesis Example 2 Synthesis of acrylic resin solution (A-02) 0.821 g (1 mol%) of 2,2′-azobis (isobutyronitrile), 32.46 g of PGMEA, and 44.05 g (50 mol%) of benzyl methacrylate ), 21.52 g (50 mol%) of methacrylic acid, 14.22 g (20 mol%) of glycidyl methacrylate, 0.676 g (1 mol%) of dimethylbenzylamine, and 0.186 g (0.3 mol%) of 4-methoxyphenol. And 65.90 g of PGMEA was used for polymerization in the same manner as in Synthesis Example 1 to obtain an acrylic resin solution (A-02). PGMEA was added to the obtained acrylic resin solution (A-02) so that the solid content concentration was 35% by weight. The Mw of the acrylic resin was 33,000, the carboxylic acid equivalent was 490, and the double bond equivalent was 800.
  • Synthesis Example 4 Synthesis of Acrylic Resin Solution (A-04) 0.821 g (1 mol%) of 2,2′-azobis (isobutyronitrile), 23.34 g of PGMEA, and 21.52 g (50 mol%) of methacrylic acid 10.01 g (20 mol%) of methyl methacrylate, 15.62 g (30 mol%) of styrene, 14.22 g (20 mol%) of glycidyl methacrylate, 0.676 g (1 mol%) of dimethylbenzylamine, 4-methoxy Using 0.186 g (0.3 mol%) of phenol and 47.39 g of PGMEA, polymerization was performed in the same manner as in Synthesis Example 1 to obtain an acrylic resin solution (A-04). PGMEA was added to the obtained acrylic resin solution (A-04) so that the solid content concentration was 35% by weight. The Mw of the acrylic resin was 20,000, the carboxylic acid equivalent was 500, and the double bond equivalent was 610.
  • Synthesis Example 5 Synthesis of acrylic resin solution (A-05) 2,21'-azobis (isobutyronitrile) 0.821 g (1 mol%), PGMEA 23.54 g, methacrylic acid 21.52 g (50 mol%) 26.04 g (50 mol%) of styrene, 14.22 g (20 mol%) of glycidyl methacrylate, 0.676 g (1 mol%) of dimethylbenzylamine, 0.186 g (0.3 mol%) of 4-methoxyphenol, Using 47.80 g of PGMEA, polymerization was performed in the same manner as in Synthesis Example 1 to obtain an acrylic resin solution (A-05). PGMEA was added to the obtained acrylic resin solution (A-05) so that the solid content concentration was 35% by weight. The Mw of the acrylic resin was 12,000, the carboxylic acid equivalent was 490, and the double bond equivalent was 610.
  • Synthesis Example 6 Synthesis of acrylic resin solution (A-06) 0.821 g (1 mol%) of 2,2′-azobis (isobutyronitrile), 23.98 g of PGMEA, and 28.41 g (66 mol%) of methacrylic acid , 4.41 g (4 mol%) of tricyclo [5.2.1.0 2,6 ] decan-8-yl methacrylate, 15.62 g (30 mol%) of styrene, and 25.59 g (36 mol%) of glycidyl methacrylate.
  • Synthesis Example 7 Synthesis of acrylic resin solution (A-07) 0.821 g (1 mol%) of 2,2′-azobis (isobutyronitrile), 32.61 g of PGMEA, and 17.22 g (40 mol%) of methacrylic acid , 33.05 g (30 mol%) of tricyclo [5.2.1.0 2,6 ] decan-8-yl methacrylate, 15.62 g (30 mol%) of styrene, and 7.11 g (10 mol%) of glycidyl methacrylate.
  • Synthesis Example 8 Synthesis of acrylic resin solution (A-08) 0.821 g (1 mol%) of 2,2′-azobis (isobutyronitrile), 33.28 g of PGMEA, and 16.36 g (38 mol%) of methacrylic acid 35.25 g (32 mol%) of tricyclo [5.2.1.0 2,6 ] decan-8-yl methacrylate, 15.62 g (30 mol%) of styrene, 5.69 g (8 mol%) of glycidyl methacrylate.
  • Synthesis Example 9 Synthesis of acrylic resin solution (A-09) 0.821 g (1 mol%) of 2,2′-azobis (isobutyronitrile), 34.94 g of PGMEA, and 14.20 g (33 mol%) of methacrylic acid , 40.76 g (37 mol%) of tricyclo [5.2.1.0 2,6 ] decan-8-yl methacrylate, 15.62 g (30 mol%) of styrene and 2.13 g (3 mol%) of glycidyl methacrylate.
  • Synthesis Example 10 Synthesis of acrylic resin solution (A-10) 0.821 g (1 mol%) of 2,2′-azobis (isobutyronitrile), 35.27 g of PGMEA, and 13.77 g (32 mol%) of methacrylic acid , 41.86 g (38 mol%) of tricyclo [5.2.1.0 2,6 ] decan-8-yl methacrylate, 15.62 g (30 mol%) of styrene, and 1.42 g (2 mol%) of glycidyl methacrylate.
  • the inside of the flask was sufficiently purged with nitrogen by bubbling, and then heated and stirred at 70 ° C. for 5 hours.
  • 14.22 g (20 mol%) of glycidyl methacrylate, 0.676 g (1 mol%) of dimethylbenzylamine, 0.186 g (0.3 mol%) of 4-methoxyphenol, and 55 of PGMEA were added to the obtained solution.
  • .54 g was added and stirred with heating at 90 ° C. for 4 hours to obtain an acrylic resin solution (A-11).
  • PGMEA was added to the obtained acrylic resin solution (A-11) so that the solid content concentration was 35% by weight.
  • the Mw of the acrylic resin was 14,000, the carboxylic acid equivalent was 460, and the double bond equivalent was 690.
  • Synthesis Example 12 Synthesis of acrylic resin solution (A-12) 0.821 g (1 mol%) of 2,2′-azobis (isobutyronitrile), 22.04 g of PGMEA, and 38.74 g (90 mol%) of methacrylic acid 1.10 g (1 mol%) of tricyclo [5.2.1.0 2,6 ] decan-8-yl methacrylate, 4.69 g (9 mol%) of styrene, and 42.65 g (60 mol%) of glycidyl methacrylate.
  • Synthesis Example 13 Synthesis of polysiloxane solution (A-13) In a three-necked flask, 23.84 g (35 mol%) of methyltrimethoxysilane, 19.83 g (20 mol%) of phenyltrimethoxysilane, 3-trimethoxysilylpropyl succinic acid 13.12 g (10 mol%) of anhydride, 41.01 g (35 mol%) of 3-acryloxypropyltrimethoxysilane, and 62.14 g of DAA were charged. Nitrogen was flowed into the flask at 0.05 L / min, and the mixed solution was heated to 40 ° C. in an oil bath while stirring.
  • an aqueous phosphoric acid solution in which 0.196 g of phosphoric acid was dissolved in 27.93 g of water was added over 10 minutes.
  • the silane compound was hydrolyzed by stirring at 40 ° C. for 30 minutes. Thereafter, the bath temperature was set to 70 ° C. and stirred for 1 hour, and then the bath temperature was raised to 115 ° C. About 1 hour after the start of temperature increase, the internal temperature of the solution reached 100 ° C., and was then heated and stirred for 1-3 hours (internal temperature was 100-110 ° C.).
  • the resin solution obtained by heating and stirring for 1 to 3 hours was cooled in an ice bath, and then 2% by weight of an anion exchange resin and a cation exchange resin were added to the resin solution, followed by stirring for 12 hours. After stirring, the anion exchange resin and the cation exchange resin were removed by filtration to obtain a polysiloxane solution (A-13).
  • the resulting polysiloxane solution (A-13) had a solid content concentration of 40% by weight, a moisture content of 1.6% by weight, a polysiloxane Mw of 5,500, a carboxylic acid equivalent of 780, and a double bond equivalent.
  • 440 The resulting polysiloxane solution (A-13) had a solid content concentration of 40% by weight, a moisture content of 1.6% by weight, a polysiloxane Mw of 5,500, a carboxylic acid equivalent of 780, and a double bond equivalent.
  • Synthesis Example 14 Synthesis of Polysiloxane Solution (A-14) 13.62 g (20 mol%) of methyltrimethoxysilane, 34.70 g (35 mol%) of phenyltrimethoxysilane, 3-trimethoxysilylpropyl succinic anhydride 13.12 g (10 mol%), 41.01 g (35 mol%) of 3-acryloxypropyltrimethoxysilane, 66.62 g of DAA, 27.93 g of water and 0.205 g of phosphoric acid were used. Polymerization was conducted in the same manner to obtain a polysiloxane solution (A-14).
  • the resulting polysiloxane solution (A-14) had a solid content concentration of 38% by weight, a moisture content of 2.4% by weight, a polysiloxane Mw of 5,000, a carboxylic acid equivalent of 820, and a double bond equivalent.
  • A-14 had a solid content concentration of 38% by weight, a moisture content of 2.4% by weight, a polysiloxane Mw of 5,000, a carboxylic acid equivalent of 820, and a double bond equivalent.
  • Synthesis Example 15 Synthesis of polysiloxane solution (A-15) 23.84 g (35 mol%) of methyltrimethoxysilane, 49.67 g (20 mol%) of 1-naphthyltrimethoxysilane (50 wt% IPA solution), 3 -13.12 g (10 mol%) of trimethoxysilylpropyl succinic anhydride, 41.01 g (35 mol%) of 3-acryloxypropyltrimethoxysilane, 66.95 g of DAA, 27.93 g of water, and phosphoric acid Using 0.206 g, polymerization was carried out in the same manner as in Synthesis Example 13 to obtain a polysiloxane solution (A-15).
  • the resulting polysiloxane solution (A-15) had a solid content of 39% by weight, a moisture content of 1.8% by weight, a polysiloxane Mw of 5,300, a carboxylic acid equivalent of 830, and a double bond equivalent.
  • A-15 had a solid content of 39% by weight, a moisture content of 1.8% by weight, a polysiloxane Mw of 5,300, a carboxylic acid equivalent of 830, and a double bond equivalent.
  • Synthesis Example 16 Synthesis of Polysiloxane Solution (A-16) 23.84 g (35 mol%) of methyltrimethoxysilane, 19.83 g (20 mol%) of phenyltrimethoxysilane, 3-trimethoxysilylpropyl succinic anhydride 13.12 g (10 mol%), 43.46 g (35 mol%) of 3-methacryloxypropyltrimethoxysilane, 64.50 g of DAA, 27.93 g of water and 0.200 g of phosphoric acid were used. Polymerization was conducted in the same manner to obtain a polysiloxane solution (A-16).
  • the resulting polysiloxane solution (A-16) had a solid content concentration of 39% by weight, a moisture content of 1.9% by weight, a polysiloxane Mw of 5,300, a carboxylic acid equivalent of 800, and a double bond equivalent.
  • A-16 had a solid content concentration of 39% by weight, a moisture content of 1.9% by weight, a polysiloxane Mw of 5,300, a carboxylic acid equivalent of 800, and a double bond equivalent.
  • Synthesis Example 17 Synthesis of polysiloxane solution (A-17) 17.03 g (25 mol%) of methyltrimethoxysilane, 19.83 g (20 mol%) of phenyltrimethoxysilane, 3-trimethoxysilylpropyl succinic anhydride 13.12 g (10 mol%), 41.01 g (35 mol%) of 3-acryloxypropyltrimethoxysilane, 7.61 g (10 mol%) of tetramethoxysilane, 61.80 g of DAA, 28.83 g of water, phosphorus Polymerization was carried out in the same manner as in Synthesis Example 13 using 0.197 g of acid to obtain a polysiloxane solution (A-17).
  • the resulting polysiloxane solution (A-17) had a solid content concentration of 41% by weight, a moisture content of 1.6% by weight, a polysiloxane Mw of 5,700, a carboxylic acid equivalent of 780, and a double bond equivalent.
  • a solid content concentration of 41% by weight a moisture content of 1.6% by weight
  • a polysiloxane Mw of 5,700 a carboxylic acid equivalent of 780
  • a double bond equivalent was 440.
  • Synthesis Example 18 Synthesis of polysiloxane solution (A-18) 17.03 g (25 mol%) of methyltrimethoxysilane, 19.83 g (20 mol%) of phenyltrimethoxysilane, 3-trimethoxysilylpropyl succinic anhydride 26.23 g (20 mol%), 41.01 g (35 mol%) of 3-acryloxypropyltrimethoxysilane, 69.50 g of DAA, 28.83 g of water, and 0.208 g of phosphoric acid were used. Polymerization was conducted in the same manner to obtain a polysiloxane solution (A-18).
  • the resulting polysiloxane solution (A-18) has a solid content concentration of 42% by weight, a moisture content of 1.4% by weight, a polysiloxane Mw of 5,900, a carboxylic acid equivalent of 430, and a double bond equivalent.
  • Synthesis Example 19 Synthesis of polysiloxane solution (A-19) 17.03 g (25 mol%) of methyltrimethoxysilane, 19.83 g (20 mol%) of phenyltrimethoxysilane, 3-trimethoxysilylpropyl succinic anhydride 13.12 g (10 mol%), 3-acryloxypropyltrimethoxysilane 52.72 g (45 mol%), DAA 66.86 g, water 27.93 g and phosphoric acid 0.205 g were used. Polymerization was conducted in the same manner to obtain a polysiloxane solution (A-19).
  • the resulting polysiloxane solution (A-19) had a solid content concentration of 42% by weight, a moisture content of 1.7% by weight, a polysiloxane Mw of 5,800, a carboxylic acid equivalent of 830, and a double bond equivalent.
  • a solid content concentration of 42% by weight a moisture content of 1.7% by weight
  • a polysiloxane Mw of 5,800 a carboxylic acid equivalent of 830
  • a double bond equivalent was 370.
  • Synthesis Example 20 Synthesis of Polysiloxane Solution (A-20) 34.06 g (50 mol%) of methyltrimethoxysilane, 19.83 g (20 mol%) of phenyltrimethoxysilane, 3-trimethoxysilylpropyl succinic anhydride 13.12 g (10 mol%), 23.43 g (20 mol%) of 3-acryloxypropyltrimethoxysilane, 55.06 g of DAA, 27.93 g of water, and 0.181 g of phosphoric acid were used. Polymerization was conducted in the same manner to obtain a polysiloxane solution (A-20).
  • the resulting polysiloxane solution (A-20) has a solid content concentration of 39% by weight, a moisture content of 1.8% by weight, a polysiloxane Mw of 5,000, a carboxylic acid equivalent of 700, and a double bond equivalent. Was 700.
  • Synthesis Example 21 Synthesis of Polysiloxane Solution (A-21) 40.87 g (60 mol%) of methyltrimethoxysilane, 19.83 g (20 mol%) of phenyltrimethoxysilane, 3-trimethoxysilylpropyl succinic anhydride Using Synthesis Example 13 using 13.12 g (10 mol%), 11.72 g (10 mol%) 3-acryloxypropyltrimethoxysilane, 50.34 g DAA, 27.93 g water, and 0.171 g phosphoric acid Polymerization was conducted in the same manner to obtain a polysiloxane solution (A-21).
  • the resulting polysiloxane solution (A-21) has a solid content concentration of 38% by weight, a moisture content of 1.9% by weight, a polysiloxane Mw of 4,600, a carboxylic acid equivalent of 650, and a double bond equivalent.
  • a solid content concentration of 38% by weight 38% by weight
  • a moisture content of 1.9% by weight a polysiloxane Mw of 4,600
  • a carboxylic acid equivalent of 650 a double bond equivalent.
  • Synthesis Example 22 Synthesis of polysiloxane solution (A-22) 42.91 g (63 mol%) of methyltrimethoxysilane, 19.83 g (20 mol%) of phenyltrimethoxysilane, 3-trimethoxysilylpropyl succinic anhydride 13.12 g (10 mol%), 8.20 g (7 mol%) of 3-acryloxypropyltrimethoxysilane, 48.93 g of DAA, 27.93 g of water and 0.168 g of phosphoric acid were used. Polymerization was conducted in the same manner to obtain a polysiloxane solution (A-22).
  • the resulting polysiloxane solution (A-22) has a solid content concentration of 38% by weight, a moisture content of 1.8% by weight, polysiloxane Mw of 4,500, carboxylic acid equivalent of 640, double bond equivalent. Was 1,830.
  • Synthesis Example 23 Synthesis of polysiloxane solution (A-23) 45.63 g (67 mol%) of methyltrimethoxysilane, 19.83 g (20 mol%) of phenyltrimethoxysilane, 3-trimethoxysilylpropyl succinic anhydride 13.12 g (10 mol%), 3.51 g (3 mol%) of 3-acryloxypropyltrimethoxysilane, 47.04 g of DAA, 27.93 g of water and 0.164 g of phosphoric acid were used. Polymerization was conducted in the same manner to obtain a polysiloxane solution (A-23).
  • the resulting polysiloxane solution (A-23) has a solid content concentration of 37% by weight, a moisture content of 2.0% by weight, a polysiloxane Mw of 4,400, a carboxylic acid equivalent of 620, and a double bond equivalent.
  • A-23 has a solid content concentration of 37% by weight, a moisture content of 2.0% by weight, a polysiloxane Mw of 4,400, a carboxylic acid equivalent of 620, and a double bond equivalent.
  • Synthesis Example 24 Synthesis of Polysiloxane Solution (A-24) 46.31 g (68 mol%) of methyltrimethoxysilane, 19.83 g (20 mol%) of phenyltrimethoxysilane, 3-trimethoxysilylpropyl succinic anhydride 13.12 g (10 mol%), 2.34 g (2 mol%) of 3-acryloxypropyltrimethoxysilane, 46.57 g of DAA, 27.93 g of water and 0.163 g of phosphoric acid were used. Polymerization was conducted in the same manner to obtain a polysiloxane solution (A-24).
  • the resulting polysiloxane solution (A-24) has a solid content concentration of 37% by weight, a moisture content of 2.0% by weight, a polysiloxane Mw of 4,300, a carboxylic acid equivalent of 620, and a double bond equivalent. Was 6,150.
  • Synthesis Example 25 Synthesis of polysiloxane solution (A-25) 17.03 g (25 mol%) of methyltrimethoxysilane, 19.83 g (20 mol%) of phenyltrimethoxysilane, 3-trimethoxysilylpropyl succinic anhydride 13.12 g (10 mol%), 41.01 g (35 mol%) of 3-acryloxypropyltrimethoxysilane, 12.32 g (10 mol%) of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and DAA Using 66.33 g, 28.83 g of water, and 0.207 g of phosphoric acid, polymerization was performed in the same manner as in Synthesis Example 13 to obtain a polysiloxane solution (A-25).
  • the resulting polysiloxane solution (A-25) had a solid content concentration of 42% by weight, a moisture content of 1.5% by weight, a polysiloxane Mw of 5,800, a carboxylic acid equivalent of 830, and a double bond equivalent.
  • Synthesis Example 26 Synthesis of polysiloxane solution (A-26) 4.77 g (7 mol%) of methyltrimethoxysilane, 19.83 g (20 mol%) of phenyltrimethoxysilane, 3-trimethoxysilylpropyl succinic anhydride 13.12 g (10 mol%), 3-acryloxypropyltrimethoxysilane 73.81 g (63 mol%), DAA 75.35 g, water 27.93 g and phosphoric acid 0.223 g were used. Polymerization was conducted in the same manner to obtain a polysiloxane solution (A-26).
  • the resulting polysiloxane solution (A-26) had a solid content concentration of 44% by weight, a moisture content of 1.5% by weight, a polysiloxane Mw of 6,400, a carboxylic acid equivalent of 910, and a double bond equivalent.
  • A-26 had a solid content concentration of 44% by weight, a moisture content of 1.5% by weight, a polysiloxane Mw of 6,400, a carboxylic acid equivalent of 910, and a double bond equivalent.
  • Synthesis Example 27 Synthesis of Silane Compound Solution (E-1) A three-necked flask was charged with 30.44 g (100 mol%) of tetramethoxysilane and 19.97 g of DAA. Air was passed through the flask at 0.05 L / min, and the mixed solution was heated to 40 ° C. in an oil bath while stirring. While further stirring the mixed solution, an aqueous phosphoric acid solution in which 0.061 g of phosphoric acid was dissolved in 14.42 g of water was added over 10 minutes. After completion of the addition, the silane compound was hydrolyzed by stirring at 40 ° C. for 30 minutes. Thereafter, the bath temperature was raised to 50 ° C. and stirred at 50 ° C. for 1 hour.
  • the solution obtained by stirring for 1 hour was cooled in an ice bath, and then 2% by weight of an anion exchange resin and a cation exchange resin were added to the solution, followed by stirring for 12 hours. After stirring, the anion exchange resin and cation exchange resin were removed by filtration to obtain a silane compound solution (E-1).
  • the resulting silane compound solution (E-1) had a solid content concentration of 19% by weight and a moisture content of 10% by weight.
  • Synthesis Example 28 Synthesis of Silane Compound Solution (E-2) A three-necked flask was charged with 23.53 g (100 mol%) of M silicate 51 (manufactured by Tama Chemical Industry Co., Ltd.) and 19.96 g of DAA. Air was passed through the flask at 0.05 L / min, and the mixed solution was heated to 40 ° C. in an oil bath while stirring. While further stirring the mixed solution, an aqueous phosphoric acid solution in which 0.047 g of phosphoric acid was dissolved in 9.01 g of water was added over 10 minutes. After completion of the addition, the silane compound was hydrolyzed by stirring at 40 ° C. for 30 minutes. Thereafter, the bath temperature was raised to 50 ° C.
  • M silicate 51 manufactured by Tama Chemical Industry Co., Ltd.
  • silane compound solution (E-2) had a solid content concentration of 22% by weight and a moisture content of 8.0% by weight.
  • compositions of Synthesis Examples 1 to 26 are collectively shown in Tables 1 and 2.
  • Example 1 The evaluation method in Example 1 is shown below.
  • Apparatus Nuclear magnetic resonance apparatus (JNM-GX270; manufactured by JEOL Ltd.) Measurement method: Gated decoupling method Measurement nuclear frequency: 53.6669 MHz ( 29 Si nucleus) Spectrum width: 20000Hz Pulse width: 12 ⁇ s (45 ° pulse) Pulse repetition time: 30.0 s Solvent: acetone-d6 Reference material: Tetramethylsilane Measurement temperature: Room temperature Sample rotation speed: 0.0 Hz (7) Pretreatment of substrate Glass substrate on which three layers of Mo / Al / Mo are formed by sputtering (manufactured by Sanyo Vacuum Industry Co., Ltd .; hereinafter referred to as “MAM substrate”), glass substrate on which ITO is formed by sputtering (Sanyo Vacuum Industry Co., Ltd .; hereinafter referred to as “ITO substrate”) was cleaned with UV-O 3 for 100 seconds using a tabletop optical surface treatment device (PL16-110; manufactured by Sen Special Light Source Co., Ltd.).
  • Tempax glass substrate manufactured by AGC Techno Glass Co., Ltd.
  • glass substrate on which a single layer Cr film was formed by sputtering single layer Cr film-formed substrate; manufactured by Kuramoto Seisakusho; hereinafter referred to as “Cr substrate”.
  • Sensitivity A post-development film of the photosensitive resin composition was produced on the Cr substrate by the method described in Example 1 below. After development, the resolution pattern is observed using an FPD inspection microscope (MX-61L; manufactured by Olympus Corporation), and the exposure amount (i-line illuminance) for forming a 30 ⁇ m line-and-space pattern in a 1: 1 width The total value, hereinafter referred to as “optimum exposure amount”) was defined as sensitivity.
  • Hardness A cured film of the photosensitive resin composition was produced on the Cr substrate by the method described in Example 1 below. The hardness of the produced cured film was measured based on “JIS K5600-5-4 (1999)” using a manual pencil scratch hardness tester (850-56; manufactured by Coating Tester Co., Ltd.).
  • a +: Discolored area of MAM surface 0% and no change in appearance of cured film surface
  • a part of the photosensitive resin composition prepared by the method described in Example 1 below was allowed to stand at 23 ° C. for 7 days. After the elapse of 7 days, a cured film of the photosensitive resin composition was prepared on the MAM substrate by the method described in Example 1 below and allowed to stand at 23 ° C. for 7 days. The prepared cured film was measured for adhesion of the cured film to the substrate based on “JIS K5600-5-6 (1999)” in the same manner as described above.
  • a cured film of a photosensitive resin composition was prepared on an ITO substrate by the method described in Example 1 below.
  • the adhesion of the cured film to the substrate was measured by the same method as in (13) above based on “JIS K5600-5-6 (1999)”.
  • a part of the photosensitive resin composition prepared by the method described in Example 1 below was allowed to stand at 23 ° C. for 7 days. After 7 days, a cured film of the photosensitive resin composition was prepared on the ITO substrate after being left for 7 days at 23 ° C. by the method described in Example 1 below.
  • a part of the photosensitive resin composition prepared by the method described in Example 1 was left at 23 ° C. for 7 days. After 7 days, a cured film of the photosensitive resin composition was prepared on the ITO substrate after being left for 7 days at 23 ° C. by the method described in Example 1 below.
  • Example 1 Under a yellow light, 0.332 g of OXE-01 and 0.0663 g of ZC-150 were weighed, 2.046 g of PGMEA, 2.730 g of MB, and 1.750 g of DAA were added and dissolved by stirring. Next, 0.150 g of a 5 wt% PGMEA solution of BYK-333 was added and stirred. Next, 9.472 g of the acrylic resin solution (A-01) obtained in Synthesis Example 1 (35 wt% PGMEA solution) and 4.144 g of 80 wt% PGMEA solution of DPHA were added and stirred.
  • a negative photosensitive resin composition 1 2.652 g of a 5 wt% MB solution of KBM-903 and 1.658 g of a 20 wt% PGMEA solution of KBM-04 were added and stirred to obtain a uniform solution. Then, the obtained solution was filtered with a 0.2 ⁇ m filter to prepare a negative photosensitive resin composition 1.
  • the prepared photosensitive resin composition 1 was applied on a substrate by spin coating at an arbitrary rotation number using a spin coater (MS-A100; manufactured by Mikasa Co., Ltd.), and then hot plate (SCW-636; Dainippon). Prebaked at 100 ° C. for 3 minutes using Screen Manufacturing Co., Ltd. to prepare a prebaked film having a thickness of about 2.0 ⁇ m.
  • MS-A100 manufactured by Mikasa Co., Ltd.
  • SCW-636 hot plate
  • Pattern exposure was performed with j-line (wavelength 313 nm), i-line (wavelength 365 nm), h-line (wavelength 405 nm) and g-line (wavelength 436 nm) of an ultra-high pressure mercury lamp.
  • Examples 2 to 68 and Comparative Examples 1 to 10 In the same manner as the photosensitive resin composition 1, photosensitive resin compositions 2 to 78 were prepared with the compositions shown in Tables 3 to 8. Using each of the obtained photosensitive resin compositions, the photosensitive characteristics and the characteristics of the cured film were evaluated in the same manner as in Example 1. The results are summarized in Tables 9-14.
  • Example 69 A touch panel member was produced according to the following procedure.
  • a film thickness of 150 nm is obtained by sputtering a glass substrate having a thickness of about 1 mm for 12.5 minutes using a sputtering apparatus at an RF power of 1.4 kW and a degree of vacuum of 6.65 ⁇ 10 ⁇ 1 Pa. Then, an ITO film having a surface resistance of 15 ⁇ / ⁇ was formed. Next, a positive photoresist OFPR-800 was applied onto ITO by spin coating at an arbitrary rotation number using a spin coater, and then pre-baked at 80 ° C. for 20 minutes using a hot plate to obtain a film thickness of 1.1 ⁇ m. A resist film was obtained.
  • the cured film obtained by thermosetting the photosensitive resin composition of the present invention includes various hard coat films such as a touch panel protective film, an insulating film for touch sensors, a planarizing film for TFTs of liquid crystals and organic EL displays, It is suitably used for metal wiring protective films, insulating films, antireflection films, antireflection films, optical filters, overcoats for color filters, pillar materials, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Materials For Photolithography (AREA)

Abstract

本発明は、高硬度であり、透明性、耐湿熱性、密着性及び耐薬品性に優れた硬化膜を得ることが可能であり、かつ塗液の保管安定性が良好で保管中に密着性及び耐薬品性が低下しない、という複数の性能を併せ持つ、アルカリ現像可能な感光性樹脂組成物を提供することを目的とし、(A)アルカリ可溶性樹脂、(D)金属キレート化合物、及び、(E)シラン化合物、を含有する感光性樹脂組成物であり、上記(A)アルカリ可溶性樹脂が、特定範囲の二重結合当量のアルカリ可溶性樹脂であり、上記(D)金属キレート化合物が、特定構造の化合物であり、上記(E)シラン化合物が、特定構造の四官能シラン又はシランオリゴマーである、感光性樹脂組成物を提供する。

Description

感光性樹脂組成物、保護膜又は絶縁膜、タッチパネル及びその製造方法
 本発明は、感光性樹脂組成物、保護膜又は絶縁膜、タッチパネル及びその製造方法に関する。
 近年、スマートフォンやタブレット端末の普及とともに静電容量式タッチパネルが注目を浴びている。静電容量式タッチパネルのセンサー基板は、ガラス上にITO(Indium Tin Oxide)や金属(銀、モリブデン又はアルミニウムなど)がパターニングされた配線を有し、その他、配線の交差部に絶縁膜、ITO及び金属を保護する保護膜を有する構造が一般的である。一般に、保護膜は高硬度な無機系のSiO若しくはSiN又は感光性透明材料などで形成され(特許文献1)、絶縁膜は感光性透明材料によって形成される場合が多い。しかし無機系材料は、SiOやSiNをCVD(Chemical Vapor Deposition)により高温製膜して形成する上、レジストを用いたパターン加工を行うためプロセス数が増加するなど、製造コストが高くなる課題があった。さらには、耐湿熱性に乏しく、下地の金属配線が腐食するなど、信頼性の高いタッチパネルを得ることができないものであった。
 感光性透明材料についてはプロセス数の減少によるコスト削減は見込めるものの、硬度が不十分な上、無機系材料同様に耐湿熱性が低く、信頼性試験において、下地の金属配線が腐食するなどの課題を抱えていた。
 感光性透明材料から得られる硬化膜は、ITOや下地の金属配線を加工するためのエッチング液など、酸性又はアルカリ性の各種薬液に晒されることになるが、硬化膜の耐薬品性が低いと、硬化膜と下地の金属配線や基板との界面で剥がれや浮きが発生してITOの断線などの原因となる。
 さらに感光性透明材料の塗液を室温下にて保管すると、保管中に材料が変質し、基板との密着性や耐薬品性が低下するという課題もあった。そのため、高硬度であり、透明性、耐湿熱性、密着性及び耐薬品性に優れ、アルカリ現像液でパターン加工が可能で、かつ塗液の保管安定性が良好で保管中に密着性及び耐薬品性が低下しない感光性透明材料が強く求められていた。
 感光性透明材料としては、アルカリ可溶性樹脂、ラジカル重合性化合物、光重合開始剤及びその他添加剤を含有する、UV硬化型コーティング組成物が知られている。該組成物は、例えば、カラーフィルター用オーバーコート材及びスペーサー材に使用されるほか、さらに着色剤を含有することでカラーレジストにも使用される(特許文献2、3)。上記のような問題点を改善すべく、多官能エポキシ化合物を含有する感光性透明材料(特許文献3)、ジルコニウム化合物のような金属キレート化合物を含有する感光性透明材料(特許文献4)、3個又は4個の加水分解性アルコキシ基を有するシラン化合物を含有する感光性透明材料(特許文献5)、(メタ)アクリル当量が100~300g/eqのポリマーとキレート化合物やシランカップリングとを含有する感光性透明材料(特許文献6)又はアルコール交換反応触媒と加水分解性シリル基やシラノール基を2つ以上有するシランカップリング剤とを含有する感光性透明材料(特許文献7)が開発されている。
特開2007-279819号公報 特開2006-30809号公報 特開2010-24434号公報 国際公開第2011/129210号 特開2007-225812号公報 国際公開第2004/39856号 特開2011-102027号公報
 しかしながら、得られる硬化膜が高硬度であり、透明性、耐湿熱性、密着性及び耐薬品性に優れ、アルカリ現像液でパターン加工が可能で、かつ塗液の保管安定性が良好で保管中に密着性及び耐薬品性が低下しないという要求を、何れも満足する感光性透明材料は一切知られていないのが現状であった。
 そこで本発明は、高硬度であり、透明性、耐湿熱性、密着性及び耐薬品性に優れた硬化膜を得ることが可能であり、かつ塗液の保管安定性が良好で保管中に密着性及び耐薬品性が低下しない、という複数の性能を併せ持つ、アルカリ現像可能な感光性樹脂組成物を提供することを目的とする。
 本発明は、(A)アルカリ可溶性樹脂、(D)金属キレート化合物、及び、(E)シラン化合物、を含有する感光性樹脂組成物であり、上記(A)アルカリ可溶性樹脂が、特定範囲の二重結合当量のアルカリ可溶性樹脂であり、上記(D)金属キレート化合物が、特定構造の化合物であり、上記(E)シラン化合物が、特定構造の四官能シラン又はシランオリゴマーである、感光性樹脂組成物を提供する。
 本発明の感光性樹脂組成物によれば、高硬度であり、透明性、耐湿熱性、密着性及び耐薬品性に優れた硬化膜を得ることができる。また本発明の感光性樹脂組成物によれば、保管安定性が良好で保管中に密着性及び耐薬品性が低下することのない、塗液を調製することが可能となる。
タッチパネル部材の製造過程を示す概略上面図である。 タッチパネル部材を示す概略断面図である。
 本発明の感光性樹脂組成物は、(A)アルカリ可溶性樹脂、(D)金属キレート化合物、及び、(E)シラン化合物、を含有し、上記(A)アルカリ可溶性樹脂がエチレン性不飽和二重結合基を有し、二重結合当量が300~5,000g/molであり、上記(D)金属キレート化合物が、一般式(1)で表される化合物であり、上記(E)シラン化合物が、一般式(2)で表される四官能シラン又は一般式(2)で表される四官能シランを縮合させることによって得られるシランオリゴマーであることを特徴とする。
Figure JPOXMLDOC01-appb-C000002
(一般式(1)において、Mは、チタン、ジルコニウム、アルミニウム又はマグネシウムを表し、Rは、水素、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基又は炭素数6~15のアリール基を表し、R及びRは、それぞれ独立して、水素、炭素数1~20のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基、炭素数1~6のアルコキシ基又はヒドロキシ基を表し、n及びmは、0~4の整数を表し、n+m=2~4である。一般式(2)において、R~Rは、それぞれ独立して、水素、炭素数1~6のアルキル基、炭素数2~6のアシル基又は炭素数6~15のアリール基を表す。)
 本発明の感光性樹脂組成物は、(A)アルカリ可溶性樹脂を含有する。(A)アルカリ可溶性樹脂はエチレン性不飽和二重結合基を有する。(A)アルカリ可溶性樹脂がエチレン性不飽和二重結合基を有することで、露光時のUV硬化が促進されて感度が向上するとともに、熱硬化後の架橋密度が向上し、硬化膜の硬度を向上させることができる。(A)アルカリ可溶性樹脂の二重結合当量としては、300~5,000g/molであり、300~2,000g/molが好ましく、300~1,500g/molがより好ましい。ここで二重結合当量とは、エチレン性不飽和二重結合基1mol当たりの樹脂重量をいい、単位はg/molである。二重結合当量はヨウ素価を測定することで算出できる。二重結合当量が上記範囲であると、熱硬化時の耐クラック性、硬化膜の硬度、耐薬品性及び塗液の保管安定性が向上する。二重結合当量が300に満たないと、塗液の保管安定性又は熱硬化時の耐クラック性が低下する場合がある。一方、二重結合当量が5,000を超えると、硬化膜の硬度又は耐薬品性が低下する場合がある。
 (A)アルカリ可溶性樹脂としては、例えば、アクリル樹脂、ポリシロキサン、ポリイミド、ポリアミック酸、ポリアミド、ノボラック樹脂又はエポキシ樹脂などが挙げられるが、エチレン性不飽和二重結合基の導入の容易さから、(A-1)アクリル樹脂又は(A-2)ポリシロキサンが好ましい。すなわち、(A)アルカリ可溶性樹脂は、(A-1)アクリル樹脂及び(A-2)ポリシロキサンから選ばれることが好ましい。(A)アルカリ可溶性樹脂は、上記の樹脂が複数種類含まれていても構わない。
 (A-1)アクリル樹脂としては、カルボキシ基を有する(A-1)アクリル樹脂が好ましい。(A-1)アクリル樹脂がカルボキシ基を有することにより、アルカリ現像液でのパターン加工が可能となる。(A-1)アクリル樹脂のカルボン酸当量としては、280~1,400g/molが好ましく、300~1,100g/molがより好ましく、400~950g/molがさらに好ましい。ここでアクリル樹脂のカルボン酸当量とは、カルボキシ基1mol当たりのアクリル樹脂重量をいい、単位はg/molである。カルボン酸当量の値から、アクリル樹脂中のカルボキシ基の数を求めることができる。アクリル樹脂のカルボン酸当量が上記範囲であると、アルカリ現像液でのパターン加工性が向上し現像後のパターン形状が良好となる。カルボン酸当量が280に満たないと、現像時の膜減りが大きく、現像後のパターン形状が悪化する場合がある。一方、カルボン酸当量が1400を超えると、アルカリ現像液でのパターン加工性が低下し、現像後の残渣発生の原因となる場合がある。
 (A-1)アクリル樹脂の重量平均分子量(以下、「Mw」)としては、ゲルパーミエーションクロマトグラフィー(以下、「GPC」)で測定されるポリスチレン換算で、2,000~100,000が好ましく、5,000~40,000がより好ましい。Mwが上記範囲であると、塗布時のレベリング性、アルカリ現像液でのパターン加工性、現像後の解像度及び塗液の保管安定性が向上する。Mwが2,000に満たないと、タックフリー性能が悪化し、露光後の塗膜の耐湿性が低下し、現像時の膜減りが大きくなり、現像後の解像度が低下する場合がある。一方、Mwが100,000を超えると、塗布時のレベリング性が悪く塗布ムラが発生し、アルカリ現像液でのパターン加工性が著しく低下し、塗液の保管安定性が低下する場合がある。
 (A-1)アクリル樹脂としては、カルボキシ基若しくはカルボン酸無水物基を有する(メタ)アクリル化合物又はその他の(メタ)アクリル酸エステルとをラジカル共重合させたアクリル樹脂が好ましい。ラジカル共重合に用いるラジカル重合開始剤としては、例えば、2,2'-アゾビス(イソブチロニトリル)若しくは2,2'-アゾビス(2,4-ジメチルバレロニトリル)などのアゾ化合物又は過酸化ラウロイル、過酸化ジ-t-ブチル、ペルオキシ二炭酸ビス(4-t-ブチルシクロヘキサン-1-イル)、2-エチルペルオキシヘキサン酸t-ブチル、メチルエチルケトンペルオキシド、過酸化ベンゾイル若しくはクメンヒドロペルオキシドなどの有機過酸化物が挙げられる。
 ラジカル共重合の条件は適宜設定することができるが、例えば、バブリングや減圧脱気などによって反応容器内を十分窒素置換した後、溶媒中、共重合成分とラジカル重合開始剤とを添加し、60~110℃で30~500分反応させることが好ましい。共重合成分として酸無水物基を有する(メタ)アクリル化合物を用いた場合には、理論量の水を加え、30~60℃で30~60分反応させることが好ましい。また、必要に応じてチオール化合物などの連鎖移動剤を用いても構わない。
 カルボキシ基又は酸無水物基を有する(メタ)アクリル化合物としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸無水物、イタコン酸、イタコン酸無水物、コハク酸モノ(2-アクリロキシエチル)、フタル酸モノ(2-アクリロキシエチル)又はテトラヒドロフタル酸モノ(2-アクリロキシエチル)が挙げられる。
 (メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸シクロヘキセニル、(メタ)アクリル酸(4-メトキシ)シクロヘキシル、(メタ)アクリル酸(2-イソプロピルオキシカルボニル)エチル、(メタ)アクリル酸(2-シクロペンチルオキシカルボニル)エチル、(メタ)アクリル酸(2-シクロヘキシルオキシカルボニル)エチル、(メタ)アクリル酸(2-シクロヘキセニルオキシカルボニル)エチル、(メタ)アクリル酸[2-(4-メトキシシクロヘキシル)オキシカルボニル]エチル、(メタ)アクリル酸ノルボルニル、(メタ)アクリル酸イソボニル、(メタ)アクリル酸トリシクロデカニル、(メタ)アクリル酸テトラシクロデカニル、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸(アダマンチル)メチル又は(メタ)アクリル酸(1-メチル)アダマンチルが挙げられる。
 その他の共重合成分として、スチレン、4-メチルスチレン、2-メチルスチレン、3-メチルスチレン又はα-メチルスチレンなどの芳香族ビニル化合物を用いても構わないが、得られる硬化膜の耐薬品性、耐湿熱性及び耐熱性が向上することから、スチレンが好ましい。
 エチレン性不飽和二重結合基を有する(A-1)アクリル樹脂としては、カルボキシ基又は酸無水物基を有する(メタ)アクリル化合物とその他の(メタ)アクリル酸エステルとをラジカル共重合したものに、さらに、エチレン性不飽和二重結合基に加えてエポキシ基を有する不飽和化合物を開環付加反応して得られるものが好ましい。エポキシ基を有する不飽和化合物の開環付加反応に用いる触媒としては、例えば、トリエチルアミン、ジメチルアニリン、テトラメチルエチレンジアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、ジメチルベンジルアミン若しくはトリ-n-オクチル7アミンなどのアミン系触媒、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムフルオリドなどの4級アンモニウム塩若しくはテトラメチル尿素などのアルキル尿素、テトラメチルグアニジンなどのアルキルグアニジン、ビス(2-エチルヘキサン酸)スズ(II)若しくはジラウリン酸ジ-n-ブチルスズ(IV)などのスズ系触媒、テトラキス(2-エチルヘキサン酸)チタン(IV)などのチタン系触媒、トリフェニルホスフィン若しくはトリフェニルホスフィンオキシドなどのリン系触媒、トリス(アセチルアセトナート)クロム(III)、塩化クロム(III)、オクテン酸クロム(III)若しくはナフテン酸クロム(III)などのクロム系触媒又はオクテン酸コバルト(II)などのコバルト系触媒が挙げられる。
 エポキシ基を有する不飽和化合物としては、例えば、(メタ)アクリル酸グリシジル、(メタ)アクリル酸(α-エチル)グリシジル、(メタ)アクリル酸(α-n-プロピル)グリシジル、(メタ)アクリル酸(α-n-ブチル)グリシジル、(メタ)アクリル酸(3,4-エポキシ)n-ブチル、(メタ)アクリル酸(3,4-エポキシ)ヘプチル、(メタ)アクリル酸(α-エチル-6,7-エポキシ)ヘプチル、アリルグリシジルエーテル、ビニルグリシジルエーテル、2-ビニルベンジルグリシジルエーテル、3-ビニルベンジルグリシジルエーテル、4-ビニルベンジルグリシジルエーテル、α-メチル-2-ビニルベンジルグリシジルエーテル、α-メチル-3-ビニルベンジルグリシジルエーテル、α-メチル-4-ビニルベンジルグリシジルエーテル、2,3-ビス(グリシジルオキシメチル)スチレン、2,4-ビス(グリシジルオキシメチル)スチレン、2,5-ビス(グリシジルオキシメチル)スチレン、2,6-ビス(グリシジルオキシメチル)スチレン、2,3,4-トリス(グリシジルオキシメチル)スチレン、2,3,5-トリス(グリシジルオキシメチル)スチレン、2,3,6-トリス(グリシジルオキシメチル)スチレン、3,4,5-トリス(グリシジルオキシメチル)スチレン又は2,4,6-トリス(グリシジルオキシメチルスチレン)が挙げられる。
 (A-1)アクリル樹脂がカルボキシ基を有する場合、エポキシ基を有しない(A-1)アクリル樹脂が好ましい。(A-1)アクリル樹脂がカルボキシ基とエポキシ基の両方を有すると、塗液の保管中にカルボキシ基とエポキシ基とが反応する可能性があり、保管中に密着性又は耐薬品性が低下するなど、塗液の保管安定性が低下する。エポキシ基を有しない(A-1)アクリル樹脂としては、カルボキシ基又は酸無水物基を有する(メタ)アクリル化合物と、エポキシ基を有しないその他(メタ)アクリル酸エステル及びエポキシ基を有しない芳香族ビニル化合物から選ばれる一種以上の共重合成分とを、ラジカル共重合させたアクリル樹脂が好ましい。
 (A-2)ポリシロキサンとしては、オルガノシランを加水分解し、加熱又は酸若しくは塩基などを用いた反応により、脱水縮合させることによって得られるものが好ましく、一般式(3)で表されるオルガノシラン及び/又は一般式(4)で表されるオルガノシランを含有するオルガノシランを、加水分解し、脱水縮合させることによって得られるものがより好ましい。
Figure JPOXMLDOC01-appb-C000003
(一般式(3)及び(4)において、Rは、それぞれ独立して、水素、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数2~10のアルケニル基又は炭素数6~15のアリール基を表し、R~R13は、それぞれ独立して、水素、炭素数1~6のアルキル基、炭素数2~6のアシル基又は炭素数6~15のアリール基を表す。nは1~3の整数を表し、mは1~8の整数を表す。)
 Rは、それぞれ独立して、水素、炭素数1~6のアルキル基、炭素数4~7のシクロアルキル基、炭素数2~8のアルケニル基又は炭素数6~10のアリール基が好ましい。R~R13は、それぞれ独立して、水素、炭素数1~4のアルキル基、炭素数2~4のアシル基又は炭素数6~10のアリール基が好ましい。
 一般式(3)のRのアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-ヘキシル基又はn-デシル基が挙げられる。一般式(3)のRのシクロアルキル基としては、例えば、シクロペンチル基又はシクロヘキシル基が挙げられる。また、その置換基としては、例えば、ハロゲン、エポキシ基、グリシジル基、オキセタニル基、カルボキシ基、アミノ基、メルカプト基、イソシアネート基又はコハク酸無水物残基が挙げられる。一般式(3)のRのアルキル基の置換体としては、例えば、トリフルオロメチル基、3,3,3-トリフルオロプロピル基、3-グリシドキシプロピル基、2-(3,4-エポキシシクロヘキシル)エチル基、[(3-エチル-3-オキセタニル)メトキシ]プロピル基、1-カルボキシ-2-カルボキシペンチル基、3-アミノプロピル基、3-メルカプトプロピル基、3-イソシアネートプロピル基又は下記の構造の基が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 一般式(3)のRのアルケニル基及びその置換体としては、例えば、ビニル基、アリル基、3-(メタ)アクリロキシプロピル基又は2-(メタ)アクリロキシエチル基が挙げられる。一般式(3)のRのアリール基及びその置換体としては、例えば、フェニル基、4-トリル基、4-ヒドロキシフェニル基、4-メトキシフェニル基、4-t-ブチルフェニル基、1-ナフチル基、2-ナフチル基、4-スチリル基、2-フェニルエチル基、1-(4-ヒドロキシフェニル)エチル基、2-(4-ヒドロキシフェニル)エチル基又は4-ヒドロキシ-5-(4-ヒドロキシフェニルカルボニルオキシ)ペンチル基が挙げられる。
 一般式(3)及び(4)のR~R13のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基又はn-ブチル基が挙げられる。一般式(3)及び(4)のR~R13のアシル基としては、例えば、アセチル基が挙げられる。一般式(3)及び(4)のR~R13のアリール基としては、例えば、フェニル基、4-トリル基、4-ヒドロキシフェニル基、4-メトキシフェニル基、4-t-ブチルフェニル基又は1-ナフチル基が挙げられる。
 一般式(3)において、n=1の場合は三官能シラン、n=2の場合は二官能シラン、n=3の場合は一官能シランである。
 (A-2)ポリシロキサンに占める、一般式(3)で表される一官能シラン単位の含有比率は、Si原子mol比で0~10mol%が好ましく、0~5mol%がより好ましい。一般式(3)で表される一官能シラン由来のSi原子mol比が10mol%を超えると、ポリシロキサンのMwが低くなる場合がある。(A-2)ポリシロキサンに占める、一般式(3)で表される二官能シラン単位の含有比率は、Si原子mol比で0~60mol%が好ましく、0~40mol%がより好ましい。一般式(3)で表される二官能シラン由来のSi原子mol比が60mol%を超えると、ポリシロキサンのガラス転移温度が低くなり、熱硬化時にパターンがリフローし、熱硬化後の解像度が低下する場合がある。(A-2)ポリシロキサンに占める、一般式(3)で表される三官能シラン単位の含有比率は、Si原子mol比で50~100mol%が好ましく、60~100mol%がより好ましい。一般式(3)で表される三官能シラン由来のSi原子mol比が50mol%に満たないと、硬化膜の硬度が低下する場合がある。
 (A-2)ポリシロキサンに占める、一般式(3)で表される一官能シラン単位、一般式(3)で表される二官能シラン単位又は一般式(3)で表される三官能シラン単位の含有比率は、H-核磁気共鳴(以下、「NMR」)、13C-NMR、29Si-NMR、IR、TOF-MS、元素分析法及び灰分測定などを組み合わせて求めることができる。
 一般式(3)で表されるオルガノシランとしては、芳香族基を有するオルガノシランが好ましい。(A-2)ポリシロキサンが芳香族基を有するオルガノシラン由来の構造を有することで、芳香族基の立体障害や疎水性により、現像後のパターン形状が良好となり、熱硬化時の耐クラック性、硬化膜の耐湿熱性及び耐薬品性を向上させることができる。
 一般式(3)で表されかつ芳香族基を有するオルガノシランとしては、例えば、フェニルトリメトキシシラン、フェニルトリエトキシシラン、4-トリルトリメトキシシラン、4-ヒドロキシフェニルトリメトキシシラン、4-メトキシフェニルトリメトキシシラン、4-t-ブチルフェニルトリメトキシシラン、1-ナフチルトリメトキシシラン、2-ナフチルトリメトキシシラン、4-スチリルトリメトキシシラン、2-フェニルエチルトリメトキシシラン、4-ヒドロキシベンジルトリメトキシシラン、1-(4-ヒドロキシフェニル)エチルトリメトキシシラン、2-(4-ヒドロキシフェニル)エチルトリメトキシシラン若しくは4-ヒドロキシ-5-(4-ヒドロキシフェニルカルボニルオキシ)ペンチルトリメトキシシランなどの三官能シラン又はジフェニルジメトキシシラン若しくはジフェニルジエトキシシランなどの二官能シランが挙げられるが、現像後のパターン形状を良好なものとし、熱硬化時の耐クラック性、硬化膜の耐湿熱性及び耐薬品性を向上させる観点からは、フェニルトリメトキシシラン、4-トリルトリメトキシシラン、4-ヒドロキシフェニルトリメトキシシラン、4-メトキシフェニルトリメトキシシラン、1-ナフチルトリメトキシシラン、2-ナフチルトリメトキシシラン、4-スチリルトリメトキシシラン、2-フェニルエチルトリメトキシシラン又は4-ヒドロキシベンジルトリメトキシシランが好ましく、1-ナフチルトリメトキシシラン又は2-ナフチルトリメトキシシランがより好ましい。また、熱硬化時の耐クラック性向上の観点からは、ジフェニルジメトキシシラン又はジフェニルジエトキシシランが好ましい。
 (A-2)ポリシロキサンに占める、一般式(3)で表されかつ芳香族基を有するオルガノシラン単位の含有比率は、Si原子mol比で3~70mol%が好ましく、5~60mol%がより好ましく、10~50mol%がさらに好ましい。一般式(3)で表されかつ芳香族基を有するオルガノシラン由来のSi原子mol比が3mol%に満たないと、現像後のパターン形状が悪化し、熱硬化時の耐クラック性、硬化膜の耐湿熱性又は耐薬品性が低下する場合がある。一方、70mol%を超えると、アルカリ現像液でのパターン加工性又は硬化膜の硬度が低下する場合がある。
 (A-2)ポリシロキサンに占める、一般式(3)で表されかつ芳香族基を有するオルガノシラン単位の含有比率は、H-NMR、13C-NMR、29Si-NMR、IR、TOF-MS、元素分析法及び灰分測定などを組み合わせて求めることができる。
 一般式(3)で表されるオルガノシランとしては、エチレン性不飽和二重結合基を有するオルガノシランも好ましい。(A-2)ポリシロキサンがオルガノシラン由来のエチレン性不飽和二重結合基を有することで、露光時のUV硬化が促進されて感度が向上するとともに、熱硬化後の架橋密度が向上し、硬化膜の硬度を向上させることができる。
 一般式(3)で表されかつエチレン性不飽和二重結合基を有するオルガノシランとしては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルメチルジメトキシシラン、3-アクリロキシプロピルメチルジエトキシシラン若しくは4-スチリルトリメトキシシランなどの三官能シラン又はメチルビニルジメトキシシラン若しくはジビニルジエトキシシランなどの二官能シランが挙げられるが、硬化膜の硬度及び耐薬品性向上の観点から、ビニルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルメチルジメトキシシラン又は4-スチリルトリメトシキシランが好ましい。
 一般式(3)で表されるオルガノシランとしては、酸性基を有するオルガノシランも好ましい。(A-2)ポリシロキサンがオルガノシラン由来の酸性基を有することで、現像後の残渣発生を抑制し、現像後の解像度を向上させることができる。酸性基としては、pH6未満の酸性度を示す基が好ましい。pH6未満の酸性度を示す基としては、例えば、カルボキシ基、カルボン酸無水物基、スルホン酸基、フェノール性水酸基、ヒドロキシイミド基又はシラノール基が挙げられるが、アルカリ現像液でのパターン加工性及び現像後の解像度向上の観点から、カルボキシ基又はカルボン酸無水物基が好ましい。
 一般式(3)で表されかつ酸性基を有するオルガノシランとしては、例えば、3-トリメトキシシリルプロピルコハク酸、3-トリエトキシシリルプロピルコハク酸、3-トリメトキシシリルプロピオン酸、3-トリエトキシシリルプロピオン酸、4-トリメトキシシリル酪酸、4-トリエトキシシリル酪酸、5-トリメトキシシリル吉草酸、5-トリエトキシシリル吉草酸、3-トリメトキシシリルプロピルコハク酸無水物、3-トリエトキシシリルプロピルコハク酸無水物、4-(3-トリメトキシシリルプロピル)シクロヘキサン-1,2-ジカルボン酸無水物、4-(3-トリエトキシシリルプロピル)シクロヘキサン-1,2-ジカルボン酸無水物、4-(3-トリメトキシシリルプロピル)フタル酸無水物、4-(3-トリエトキシシリルプロピル)フタル酸無水物、3-メルカプトプロピルトリメトキシシラン、4-ヒドロキシフェニルトリメトキシシラン、4-メトキシフェニルトリメトキシシラン、4-ヒドロキシベンジルトリメトキシシラン、1-(4-ヒドロキシフェニル)エチルトリメトキシシラン、2-(4-ヒドロキシフェニル)エチルトリメトキシシラン若しくは4-ヒドロキシ-5-(4-ヒドロキシフェニルカルボニルオキシ)ペンチルトリメトキシシランなどの三官能シラン又は3-ジメチルメトキシシリルプロピオン酸、3-ジメチルエトキシシリルプロピオン酸、4-ジメチルメトキシシリル酪酸、4-ジメチルエトキシシリル酪酸、5-ジメチルメトキシシリル吉草酸、5-ジメチルエトキシシリル吉草酸、3-ジメチルメトキシシリルプロピルコハク酸無水物、3-ジメチルエトキシシリルプロピルコハク酸無水物、4-(3-ジメチルメトキシシリルプロピル)シクロヘキサン-1,2-ジカルボン酸無水物、4-(3-ジメチルエトキシシリルプロピル)シクロヘキサン-1,2-ジカルボン酸無水物、4-(3-ジメチルメトキシシリルプロピル)フタル酸無水物若しくは4-(3-ジメチルエトキシシリルプロピル)フタル酸無水物などの一官能シランが挙げられるが、アルカリ現像液でのパターン加工性と現像後の解像度向上の観点から、3-トリメトキシシリルプロピルコハク酸、3-トリエトキシシリルプロピルコハク酸、3-トリメトキシシリルプロピオン酸、3-トリエトキシシリルプロピオン酸、4-トリメトキシシリル酪酸、4-トリエトキシシリル酪酸、5-トリメトキシシリル吉草酸、5-トリエトキシシリル吉草酸、3-トリメトキシシリルプロピルコハク酸無水物、3-トリエトキシシリルプロピルコハク酸無水物、4-(3-トリメトキシシリルプロピル)シクロヘキサン-1,2-ジカルボン酸無水物、4-(3-トリエトキシシリルプロピル)シクロヘキサン-1,2-ジカルボン酸無水物、4-(3-トリメトキシシリルプロピル)フタル酸無水物若しくは4-(3-トリエトキシシリルプロピル)フタル酸無水物などの三官能シラン又は3-ジメチルメトキシシリルプロピオン酸、3-ジメチルエトキシシリルプロピオン酸、4-ジメチルメトキシシリル酪酸、4-ジメチルエトキシシリル酪酸、5-ジメチルメトキシシリル吉草酸、5-ジメチルエトキシシリル吉草酸、3-ジメチルメトキシシリルプロピルコハク酸無水物、3-ジメチルエトキシシリルプロピルコハク酸無水物、4-(3-ジメチルメトキシシリルプロピル)シクロヘキサン-1,2-ジカルボン酸無水物、4-(3-ジメチルエトキシシリルプロピル)シクロヘキサン-1,2-ジカルボン酸無水物、4-(3-ジメチルメトキシシリルプロピル)フタル酸無水物若しくは4-(3-ジメチルエトキシシリルプロピル)フタル酸無水物などの一官能シランが好ましく、3-トリメトキシシリルプロピルコハク酸、3-トリエトキシシリルプロピルコハク酸、3-トリメトキシシリルプロピオン酸、3-トリエトキシシリルプロピオン酸、4-トリメトキシシリル酪酸、4-トリエトキシシリル酪酸、3-トリメトキシシリルプロピルコハク酸無水物、3-トリエトキシシリルプロピルコハク酸無水物、4-(3-トリメトキシシリルプロピル)シクロヘキサン-1,2-ジカルボン酸無水物又は4-(3-トリエトキシシリルプロピル)シクロヘキサン-1,2-ジカルボン酸無水物がより好ましい。
 (A-2)ポリシロキサンに占める、一般式(3)で表されかつ酸性基を有するオルガノシラン単位の含有比率は、H-NMR、13C-NMR、29Si-NMR、IR、TOF-MS、元素分析法及び灰分測定などを組み合わせて求めることができる。
 (A-2)ポリシロキサンのカルボン酸当量としては、280~1,400g/molが好ましく、300~1,100g/molがより好ましく、400~950g/molがさらに好ましい。ここでポリシロキサンのカルボン酸当量とは、カルボキシ基1mol当たりのポリシロキサン重量をいい、単位はg/molである。カルボン酸当量の値から、ポリシロキサン中のカルボキシ基の数を求めることができる。ポリシロキサンのカルボン酸当量が上記範囲であると、アルカリ現像液でのパターン加工性が向上し現像後のパターン形状が良好なものとなる。カルボン酸当量が280に満たないと、現像時の膜減りが大きく、現像後のパターン形状が悪化する場合がある。一方、カルボン酸当量が1,400を超えると、アルカリ現像液でのパターン加工性が低下し、現像後の残渣発生の原因となる場合がある。
 (A-2)ポリシロキサンがカルボキシ基を有する場合、エポキシ基を有しない(A-2)ポリシロキサンが好ましい。(A-2)ポリシロキサンがカルボキシ基とエポキシ基の両方を有すると、塗液の保管中にカルボキシ基とエポキシ基が反応する可能性があり、保管中に密着性又は耐薬品性が低下するなど、塗液の保管安定性が低下する。エポキシ基を有しない(A-2)ポリシロキサンとしては、エポキシ基を有しない一般式(3)で表されるオルガノシラン及び一般式(4)で表されるオルガノシランから選ばれる一種以上のオルガノシランとともに、カルボキシ基又は酸無水物基を有する一般式(3)で表されるオルガノシランを加水分解し、脱水縮合させることによって得られるポリシロキサンが好ましい。
 一般式(3)で表される、その他のオルガノシランとしては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ-n-プロポキシシラン、メチルトリイソプロポキシシラン、メチルトリ-n-ブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリ-n-プロポキシシラン、エチルトリイソプロポキシシラン、エチルトリ-n-ブトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、n-ブチルトリメトキシシラン、n-ブチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘキシルトリエトキシシラン、デシルトリメトキシシラン、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリエトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、[(3-エチル-3-オキセタニル)メトキシ]プロピルトリメトキシシラン、[(3-エチル-3-オキセタニル)メトキシ]プロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン若しくは3-アミノプロピルトリエトキシシランなどの三官能シラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジアセトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジ-n-プロピルジメトキシシラン、ジ-n-プロピルジエトキシシラン、ジイソプロピルジメトキシシラン、ジイソプロピルジエトキシシラン、ジ-n-ブチルジメトキシシラン、(3-グリシドキシプロピル)メチルジメトキシシラン、(3-グリシドキシプロピル)メチルジエトキシシラン、ジシクロペンチルジメトキシシラン若しくはシクロヘキシルメチルジメトキシシランなどの二官能シラン又はトリメチルメトキシシラン、トリ-n-ブチルエトキシシラン、(3-グリシドキシプロピル)ジメチルメトキシシラン若しくは(3-グリシドキシプロピル)ジメチルエトキシシランなどの一官能シランが挙げられるが、熱硬化時の耐クラック性向上の観点からは、一官能シラン又は二官能シランが好ましく、硬化膜の硬度向上の観点からは、三官能シランが好ましい。
 一般式(4)で表されるオルガノシラン単位を含有させることで、硬化膜の耐熱性及び透明性を損なうことなく、現像後の残渣発生を抑制し、現像後の解像度を向上させることができる。また、ポリシロキサンのガラス転移温度が高くなり、熱硬化時のパターンのリフローが抑制され、熱硬化後のパターン形状が良好となり、解像度を向上させることができる。
 一般式(4)で表されるオルガノシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトライソプロポキシシラン、テトラ-n-ブトキシシラン若しくはテトラアセトキシシランなどの四官能シラン、メチルシリケート51(扶桑化学工業(株)製)、Mシリケート51、シリケート40若しくはシリケート45(以上、何れも多摩化学工業(株)製)又はメチルシリケート51、メチルシリケート53A、エチルシリケート40若しくはエチルシリケート48(以上、何れもコルコート(株)製)などのシリケート化合物が挙げられるが、熱硬化後のパターン形状を良好なものとし、硬化膜の耐薬品性を向上させる観点から、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、メチルシリケート51(扶桑化学工業(株)製)、Mシリケート51(多摩化学工業(株)製)又はメチルシリケート51(コルコート(株)製)が好ましい。
 (A-2)ポリシロキサンに占める、一般式(4)で表されるオルガノシラン単位の含有比率は、Si原子mol比で0~30mol%が好ましく、0~20mol%がより好ましい。一般式(4)で表されるオルガノシラン由来のSi原子mol比が30mol%を超えると、熱硬化時の耐クラック性が低下する場合がある。
 (A-2)ポリシロキサンに占める、一般式(4)で表されるオルガノシラン単位の含有比率は、H-NMR、13C-NMR、29Si-NMR、IR、TOF-MS、元素分析法及び灰分測定などを組み合わせて求めることができる。
 (A-2)ポリシロキサンのMwとしては、GPCで測定されるポリスチレン換算で、500~100,000が好ましく、500~50,000がより好ましく、500~20,000がさらに好ましい。Mwが上記範囲であると、塗布時のレベリング性、アルカリ現像液でのパターン加工性、現像後の解像度及び塗液の保管安定性が向上する。Mwが500に満たないと、タックフリー性能が悪化し、露光後の塗膜の耐湿性が低下し、現像時の膜減りが大きくなり、現像後の解像度が低下する場合がある。一方、Mwが100,000を超えると、塗布時のレベリング性が悪く塗布ムラが発生し、アルカリ現像液でのパターン加工性が著しく低下し、塗液の保管安定性が低下する場合がある。
 オルガノシランを加水分解し、脱水縮合する方法としては、例えば、オルガノシランを含む混合物に、溶媒及び水、さらに必要に応じて触媒を添加し、50~150℃、好ましくは90~130℃で、0.5~100時間加熱撹拌する方法が挙げられる。なお、加熱撹拌中、必要に応じて加水分解副生物(メタノールなどのアルコール)や縮合副生物(水)を蒸留により留去しても構わない。
 オルガノシランの加水分解及び脱水縮合に用いる溶媒としては、後述する溶剤と同様のものが挙げられる。溶媒の添加量は、オルガノシラン及びオルガノシランと反応させる無機粒子の合計を100重量部とした場合において、10~1,000重量部が好ましい。水の添加量は、加水分解性基1molに対して0.5~2molが好ましい。
 必要に応じて添加される触媒としては、酸触媒又は塩基触媒が好ましい。酸触媒としては、例えば、塩酸、硝酸、硫酸、フッ化水素酸、リン酸、酢酸、トリフルオロ酢酸、ギ酸若しくは多価カルボン酸又はこれらの無水物あるいはイオン交換樹脂が挙げられる。塩基触媒としては、例えば、トリエチルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン、トリ-n-ペンチルアミン、トリ-n-ヘキシルアミン、トリ-n-ヘプチルアミン、トリ-n-オクチルアミン、ジエチルアミン、トリエタノールアミン、ジエタノールアミン、水酸化ナトリウム、水酸化カリウム、アミノ基を有するアルコキシシラン又はイオン交換樹脂が挙げられる。触媒の添加量は、オルガノシラン及びオルガノシランと反応させる無機粒子の合計を100重量部とした場合において、0.01~10重量部が好ましい。
 本発明の感光性樹脂組成物の保管安定性の観点から、(A-2)ポリシロキサンは上記触媒を含有しないことが好ましいため、事後的に触媒を除去しても構わない。触媒を除去する方法としては、操作の簡便さ及び除去性の観点から、水洗浄又はイオン交換樹脂による処理が好ましい。ここで水洗浄とは、得られた(A-2)ポリシロキサンの溶液を適当な疎水性溶剤で希釈した後、水で数回洗浄し、得られた有機層をエバポレーターなどで濃縮する方法をいう。またイオン交換樹脂による処理とは、得られた(A-2)ポリシロキサンの溶液を適当なイオン交換樹脂に接触させる方法をいう。
 (A-2)ポリシロキサンとしては、一般式(3)で表されるオルガノシラン及び/又は一般式(4)で表されるオルガノシランと、無機粒子と、を反応させることによって得られるポリシロキサン(以下、「無機粒子含有ポリシロキサン」)を用いても構わない。アルカリ現像液に対する溶解性が乏しい無機粒子に、(A-2)ポリシロキサンが結合している、無機粒子含有ポリシロキサンを用いることで、無機粒子のアルカリ可溶性が向上するため、アルカリ現像液でのパターン加工性が低下することがない。また、無機粒子の疎水性により、現像時の露光部と未露光部とのコントラストが向上するばかりでなく、(A-2)ポリシロキサンのガラス転移温度が高くなるため、熱硬化時のパターンのリフローが抑制でき、現像後のパターン形状が良好となる。さらには、無機粒子は熱硬化時の収縮率が小さいため、収縮応力の発生を抑制でき、熱硬化時の耐クラック性を向上させることができる。
 無機粒子とは金属化合物又は半導体化合物からなる粒子をいう。金属又は半導体としては、例えば、ケイ素、リチウム、ナトリウム、マグネシウム、カリウム、カルシウム、ストロンチウム、バリウム、ランタン、スズ、チタン、ジルコニウム、ニオブ及びアルミニウムからなる群から選ばれる元素が挙げられる。金属化合物又は半導体化合物としては、例えば、上記金属若しくは半導体のハロゲン化物、酸化物、窒化物、水酸化物、炭酸塩、硫酸塩、硝酸塩又はメタケイ酸塩が挙げられる。
 オルガノシランと無機粒子とを反応させるとは、無機粒子の存在下でオルガノシランを加水分解し、脱水縮合させて、無機粒子含有ポリシロキサンを得ることをいう。
 無機粒子の数平均粒子径は、1~200nmが好ましく、5~70nmがより好ましい。数平均粒子径が1nmに満たないと、熱硬化時の耐クラック性向上の効果が不十分な場合がある。一方、数平均粒子径が200nmを超えると、アルカリ現像液に対する溶解性が低下するため、アルカリ現像液でのパターン加工性が低下して現像後の残渣発生の原因となり、また光散乱が発生するため、感度又は硬化膜の透明性が低下する場合がある。ここで、無機粒子の数平均粒子径は、サブミクロン粒度分布測定装置(N4-PLUS;べックマン・コールター(株)製)を用いて、溶液中の無機粒子のブラウン運動によるレーザー散乱を測定する(動的光散乱法)ことで求めることができる。
 無機粒子としては、例えば、シリカ粒子、フッ化リチウム粒子、塩化リチウム粒子、臭化リチウム粒子、酸化リチウム粒子、炭酸リチウム粒子、硫酸リチウム粒子、硝酸リチウム粒子、メタケイ酸リチウム粒子、水酸化リチウム粒子、フッ化ナトリウム粒子、塩化ナトリウム粒子、臭化ナトリウム粒子、炭酸ナトリウム粒子、炭酸水素ナトリウム粒子、硫酸ナトリウム粒子、硝酸ナトリウム粒子、メタケイ酸ナトリウム粒子、水酸化ナトリウム粒子、フッ化マグネシウム粒子、塩化マグネシウム粒子、臭化マグネシウム粒子、酸化マグネシウム粒子、炭酸マグネシウム粒子、硫酸マグネシウム粒子、硝酸マグネシウム粒子、水酸化マグネシウム粒子、フッ化カリウム粒子、塩化カリウム粒子、臭化カリウム粒子、炭酸カリウム粒子、硫酸カリウム粒子、硝酸カリウム粒子、フッ化カルシウム粒子、塩化カルシウム粒子、臭化カルシウム粒子、酸化カルシウム粒子、炭酸カルシウム粒子、硫酸カルシウム粒子、硝酸カルシウム粒子、水酸化カルシウム粒子、フッ化ストロンチウム粒子、フッ化バリウム粒子、フッ化ランタン粒子、酸化スズ-酸化チタン複合粒子、酸化ケイ素-酸化チタン複合粒子、酸化チタン粒子、酸化ジルコニウム粒子、酸化スズ粒子、酸化ニオブ粒子、酸化スズ-酸化ジルコニウム複合粒子、酸化アルミニウム粒子又はチタン酸バリウム粒子が挙げられるが、(A-2)ポリシロキサンとの相溶性の観点から、シリカ粒子、酸化スズ-酸化チタン複合粒子、酸化ケイ素-酸化チタン複合粒子、酸化チタン粒子、酸化ジルコニウム粒子、酸化スズ粒子、酸化ニオブ粒子、酸化スズ-酸化ジルコニウム複合粒子、酸化アルミニウム粒子又はチタン酸バリウム粒子が好ましい。
 また、マトリックスの樹脂と反応しやすくするため、無機粒子はその表面にヒドロキシ基など、樹脂と反応可能な官能基を有することが好ましい。無機粒子とマトリックスの樹脂との反応性が良好であると、熱硬化時にポリシロキサン中に無機粒子が組み込まれ、熱硬化時の収縮応力の発生が抑えられるため、熱硬化時の耐クラック性が向上する。
 シリカ粒子としては、例えば、メタノール(MA)を分散媒とした数平均粒子径(以下、「粒子径」)10~20nmのメタノールシリカゾル、イソプロピルアルコール(IPA)を分散媒とした粒子径10~20nmのIPA-ST、エチレングリコール(EG)を分散媒とした粒子径10~20nmのEG-ST、n-プロピルセロソルブ(NPC)を分散媒とした粒子径10~20nmのNPC-ST-30、ジメチルアセトアミド(DMAC)を分散媒とした粒子径10~20nmのDMAC-ST、メチルエチルケトン(MEK)を分散媒とした粒子径10~20nmのMEK-ST、メチルイソブチルケトン(MIBK)を分散媒とした粒子径10~20nmのMIBK-ST、キシレン(Xy)とn-ブチルアルコール(nBA)の混合溶媒を分散媒とした粒子径10~20nmのXBA-ST、プロピレングリコールモノメチルエーテルアセテート(PGMEA)を分散媒とした粒子径10~20nmのPMA-ST、プロピレングリコールモノメチルエーテル(PGME)を分散媒とした粒子径10~20nmのPGM-ST、IPAを分散媒とした粒子径45~100nmのIPA-ST-L、IPAを分散媒とした粒子径70~100nmのIPA-ST-ZL、分散溶液が水である粒子径4~6nmのスノーテックス(登録商標)OXS、分散溶液が水である粒子径8~11nmの同OS、分散溶液が水である粒子径10~20nmの同O、分散溶液が水である粒子径20~30nmの同O-50、分散溶液が水である粒子径40~50nmの同OL、分散溶液が水である粒子径40~60nmの同XL、分散溶液が水である粒子径50~80nmの同YL、分散溶液が水である粒子径70~100nmの同ZL、分散溶液が水である粒子径が約100nmの同MP-1040若しくは分散溶液が水である粒子径が約200nmの同MP-2040(以上、何れも日産化学工業(株)製)、IPAを分散媒とした粒子径5~10nmのOSCAL(登録商標)-1421、IPAを分散媒とした粒子径10~20nmの同-1432、MAを分散媒とした粒子径10~20nmの同-1132、エチレングリコールモノメチルエーテル(EGME)を分散媒とした粒子径10~20nmの同-1632、MIBKを分散媒とした粒子径10~20nmの同-1842、γ-ブチロラクトン(GBL)を分散媒とした粒子径10~20nmの同-101、EGを分散媒とした粒子径110~130nmの同-1727BM、EGを分散媒とした粒子径150~170nmの同-1727TH若しくは分散溶液が水である粒子径5~80nmのCATALOID(登録商標)-S(以上、何れも日揮触媒化成工業(株)製)、分散溶液が水である粒子径5~10nmのクォートロン(登録商標)PL-06L、分散溶液が水である粒子径10~15nmの同PL-1、分散溶液が水である粒子径15~20nmの同PL-2L、分散溶液が水である粒子径30~40nmの同PL-3、分散溶液が水である粒子径70~85nmの同PL-7、分散溶液が水である粒子径80~100nmの同PL-10H、IPAを分散媒とした粒子径10~15nmの同PL-1-IPA、IPAを分散媒とした粒子径15~20nmの同PL-2L-IPA、MAを分散媒とした粒子径15~20nmの同PL-2L-MA、PGMEを分散媒とした粒子径15~20nmの同PL-2L-PGME、ジアセトンアルコール(DAA)を分散媒とした粒子径15~20nmの同PL-2L-DAA、GBLを分散媒とした粒子径15~20nmの同PL-2L-BL若しくはトルエン(Tol)を分散媒とした粒子径15~20nmの同PL-2L-Tol(以上、何れも扶桑化学工業(株)製)、粒子径が100nmであるシリカ(SiO)SG-SO100(共立マテリアル(株)製)又は粒子径が5~50nmであるレオロシール(登録商標)((株)トクヤマ製)が挙げられるが、アルカリ現像液でのパターン加工性の観点から、メタノールシリカゾル、IPA-ST、EG-ST、MEK-ST、PMA-ST、PGM-ST、スノーテックス(登録商標)OXS、同OS、同O若しくは同O-50(以上、何れも日産化学工業(株)製)、OSCAL(登録商標)-1421、同-1432、同-1132若しくは同-1632(以上、何れも日揮触媒化成工業(株)製)又はクォートロン(登録商標)PL-06L、同PL-1、同PL-2L、同PL-3、同PL-1-IPA、同PL-2L-IPA、同PL-2L-MA、同PL-2L-PGME若しくは同PL-2L-DAA(以上、何れも扶桑化学工業(株)製)が好ましい。
 シリカ-酸化リチウム複合粒子としては、例えば、リチウムシリケート45(日産化学工業(株)製)が挙げられる。
 酸化スズ-酸化チタン複合粒子としては、例えば、オプトレイク(登録商標)TR-502又は同TR-504(以上、何れも日揮触媒化成工業(株)製)が挙げられる。
 酸化ケイ素-酸化チタン複合粒子としては、例えば、オプトレイク(登録商標)TR-503、同TR-513、同TR-520、同TR-521、同TR-527、同TR-528、同TR-529、同TR-543又は同TR-544(以上、何れも日揮触媒化成工業(株)製)が挙げられる。
 酸化チタン粒子としては、例えば、オプトレイク(登録商標)TR-505(日揮触媒化成工業(株)製)、タイノック(登録商標)A-6、同M-6若しくは同AM-15(以上、何れも多木化学(株)製)、nSol(登録商標)101-20I、同101-20L、同101-20BL若しくは同107-20I(以上、何れもナノグラム(株)製)、TTO-51(A)、TTO-51(B)、TTO-55(A)、TTO-55(B)、TTO-55(C)、TTO-55(D)、TTO-V-4若しくはTTO-W-5(以上、何れも石原産業(株)製)、RTTAP15WT%-E10、RTTDNB15WT%-E11、RTTDNB15WT%-E12、RTTDNB15WT%-E13、RTTIBA15WT%-E6、RTIPA15WT%-NO8、RTIPA15WT%-NO9、RTIPA20WT%-N11、RTIPA20WT%-N13、RTIPA20WT%-N14若しくはRTIPA20WT%-N16(以上、何れもシーアイ化成(株)製)又はHT331B、HT431B、HT631B、HT731B若しくはHT830X(以上、何れも東邦チタニウム(株)製)が挙げられる。
 酸化ジルコニウム粒子としては、ナノユース(登録商標)ZR-30BL、同ZR-30BS、同ZR-30BH、同ZR-30AL、同ZR-30AH若しくは同OZ-30M(以上、何れも日産化学工業(株)製)又はZSL-M20、ZSL-10T、ZSL-10A若しくはZSL-20N(以上、何れも第一稀元素化学工業(株)製)が挙げられる。
 酸化スズ粒子としては、セラメース(登録商標)S-8又は同S-10(以上、何れも多木化学(株)製)が挙げられる。
 酸化ニオブ粒子のバイラール(登録商標)Nb-X10(多木化学(株)製)が挙げられる。
 その他の無機粒子としては、酸化スズ-酸化ジルコニウム複合粒子(触媒化成工業(株)製)、酸化スズ粒子又は酸化ジルコニウム粒子(以上、何れも(株)高純度化学研究所製)が挙げられる。
 本発明の感光性樹脂組成物は、無機粒子含有ポリシロキサンを構成する無機粒子以外の、無機粒子を含有しても構わない。
 本発明の感光性樹脂組成物の固形分に占める無機粒子の含有量は、通常5~80重量%であるが、7~70重量%が好ましく、10~60重量%がより好ましく、15~50重量%がさらに好ましい。無機粒子の含有量が5重量%に満たないと、現像後のパターン形状が悪化する場合や、熱硬化時の耐クラック性、パターンのリフロー抑制又は熱硬化後の解像度が不十分となる場合がある。一方、80重量%を超えると、現像後の残渣発生の原因となり、硬化膜の透明性が低下する場合がある。なお無機粒子の含有量とは、無機粒子含有ポリシロキサンを構成する無機粒子と、それ以外の無機粒子との合計量をいう。なお本発明の感光性樹脂組成物が溶剤を含有する場合、無機粒子の含有量は、溶剤を除く、本発明の感光性樹脂組成物の固形分に占める含有量である。
 本発明の感光性樹脂組成物は、後述のとおり(B)ラジカル重合性化合物を含有することが好ましく、本発明の感光性樹脂組成物が(B)ラジカル重合性化合物を含有した時の本発明の感光性樹脂組成物に占める(A)アルカリ可溶性樹脂の含有量は、(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100重量部とした場合において、硬化膜の硬度及び耐薬品性向上の観点から、10~80重量部が好ましく、20~70重量部がより好ましく、30~60重量部がさらに好ましい。なお(A)アルカリ可溶性樹脂が無機粒子含有ポリシロキサンの場合、無機粒子含有ポリシロキサンを構成する無機粒子の重量を含めて100重量部とする。
 本発明の感光性樹脂組成物は、(B)ラジカル重合性化合物を含有することが好ましい。(B)ラジカル重合性化合物とは、分子中に複数のエチレン性不飽和二重結合基を有する化合物をいうが、ラジカル重合の進行しやすい、(メタ)アクリル基を有するラジカル重合性化合物が好ましい。光照射により、(B)ラジカル重合性化合物が有する(メタ)アクリル基の重合が進行し、感光性樹脂組成物の露光部がアルカリ水溶液に対して不溶化して、パターンを形成することができる。本発明の感光性樹脂組成物が、さらに後述する(C)光重合開始剤を含有する場合、(C)光重合開始剤から発生するラジカルによって、(B)ラジカル重合性化合物の重合が促進され、露光時の感度及び硬化膜の硬度が向上する。(B)ラジカル重合性化合物の二重結合当量は、露光時の感度及び硬化膜の硬度の観点から、80~400g/molが好ましい。
 (B)ラジカル重合性化合物としては、例えば、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート、エトキシ化グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、テトラペンタエリスリトールノナ(メタ)アクリレート、テトラペンタエリスリトールデカ(メタ)アクリレート、ペンタペンタエリスリトールウンデカ(メタ)アクリレート、ペンタペンタエリスリトールドデカ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、トリス((メタ)アクリロキシエチル)イソシアヌル酸又はビス((メタ)アクリロキシエチル)イソシアヌル酸が挙げられるが、露光時の感度向上及び硬化膜の硬度向上の観点から、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、トリス((メタ)アクリロキシエチル)イソシアヌル酸又はビス((メタ)アクリロキシエチル)イソシアヌル酸が好ましい。
 本発明の感光性樹脂組成物に占める(B)ラジカル重合性化合物の含有量は、(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100重量部とした場合において、20~90重量部とすることが好ましく、硬化膜の硬度及び耐薬品性向上の観点から、30~80重量部がより好ましく、40~70重量部がさらに好ましい。なお(A)アルカリ可溶性樹脂が無機粒子含有ポリシロキサンの場合、無機粒子含有ポリシロキサンを構成する無機粒子の重量を含めて100重量部とする。
 本発明の感光性樹脂組成物は、(B)ラジカル重合性化合物として、(B-1)多官能ラジカル重合性化合物及び(B-2)三官能又は四官能ラジカル重合性化合物を含有することが好ましい。(B-1)多官能ラジカル重合性化合物とは、分子中にエチレン性不飽和二重結合基を5つ以上有する化合物をいう。(B-2)三官能又は四官能ラジカル重合性化合物とは、分子中にエチレン性不飽和二重結合基を3つ又は4つ有する化合物をいう。光照射により、(B-1)多官能ラジカル重合性化合物及び(B-2)三官能又は四官能ラジカル重合性化合物の重合が進行し、感光性樹脂組成物の露光部がアルカリ水溶液に対して不溶化して、パターンを形成することができる。本発明の感光性樹脂組成物が、さらに後述する(C)光重合開始剤を含有する場合、(C)光重合開始剤から発生するラジカルによって、(B-1)多官能ラジカル重合性化合物及び(B-2)三官能又は四官能ラジカル重合性化合物の重合が促進され、露光時の感度及び硬化膜の硬度が向上する。(B-1)多官能ラジカル重合性化合物及び(B-2)三官能又は四官能ラジカル重合性化合物の二重結合当量は、露光時の感度及び硬化膜の硬度の観点から、80~400g/molが好ましい。
 (B-1)多官能ラジカル重合性化合物、及び、(B-2)三官能又は四官能ラジカル重合性化合物の、両方を含有することで、得られる硬化膜の硬度、耐薬品性及び真空耐性を向上させることができる。これは、エチレン性不飽和二重結合基の数が異なる、複数の(B)ラジカル重合性化合物を使用することで、構造のひずみや立体障害などが原因で本来は架橋されずに遊離してしまう架橋点同士が、隙間を埋めるように効率良く架橋されるためであると考えられる。そのため架橋密度が向上し、得られる硬化膜の硬度、耐薬品性及び真空耐性が向上すると推測される。
 (B-1)多官能ラジカル重合性化合物としては、例えば、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、テトラペンタエリスリトールノナ(メタ)アクリレート、テトラペンタエリスリトールデカ(メタ)アクリレート、ペンタペンタエリスリトールウンデカ(メタ)アクリレート又はペンタペンタエリスリトールドデカ(メタ)アクリレートが挙げられるが、硬化膜の硬度、耐薬品性及び真空耐性の向上の観点から、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート又はトリペンタエリスリトールオクタ(メタ)アクリレートが好ましい。
 (B-2)三官能又は四官能ラジカル重合性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、エトキシ化グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート又はトリス((メタ)アクリロキシエチル)イソシアヌル酸が挙げられるが、硬化膜の硬度、耐薬品性及び真空耐性の向上の観点から、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート又はトリス((メタ)アクリロキシエチル)イソシアヌル酸が好ましい。
 本発明の感光性樹脂組成物に占める(B-1)多官能ラジカル重合性化合物の含有量は、(B)ラジカル重合性化合物全体の30~99重量%が好ましく、40~90重量%がより好ましく、50~80重量%がさらに好ましい。(B-1)多官能ラジカル重合性化合物の含有量が30重量%に満たないと、硬化膜の硬度、耐薬品性及び真空耐性が低下する場合がある。一方、99重量%を超えると、やはり硬化膜の硬度、耐薬品性及び真空耐性向上の効果が不十分な場合がある。
 本発明の感光性樹脂組成物に占める(B-2)三官能又は四官能ラジカル重合性化合物の含有量は、(B)ラジカル重合性化合物全体の1~70重量%が好ましく、10~60重量%がより好ましく、20~50重量%がさらに好ましい。(B-2)三官能又は四官能ラジカル重合性化合物の含有量が1重量%に満たないと、硬化膜の硬度、耐薬品性及び真空耐性向上の効果が不十分な場合がある。一方、70重量%を超えると、やはり硬化膜の硬度、耐薬品性及び真空耐性が低下する場合がある。
 本発明の感光性樹脂組成物は、さらにフルオレン骨格を有するラジカル重合性化合物を含有しても構わない。フルオレン骨格を有するラジカル重合性化合物とは、(B)ラジカル重合性化合物であり、分子中にフルオレン骨格と、複数のエチレン性不飽和二重結合基を有する化合物をいう。フルオレン骨格を有するラジカル重合性化合物としては、ラジカル重合の進行しやすい、(メタ)アクリル基を有するラジカル重合性化合物が好ましい。光照射により、フルオレン骨格を有するラジカル重合性化合物の重合が進行し、感光性樹脂組成物の露光部がアルカリ水溶液に対して不溶化して、パターンを形成することができる。本発明の感光性樹脂組成物が、さらに後述する(C)光重合開始剤を含有する場合、(C)光重合開始剤から発生するラジカルによって、フルオレン骨格を有するラジカル重合性化合物の重合が促進され、露光時の感度及び硬化膜の硬度が向上する。またフルオレン骨格を有するラジカル重合性化合物を含有することで、得られる硬化膜の耐薬品性、耐湿熱性及び耐熱性を向上させることができる。フルオレン骨格を有するラジカル重合性化合物が有する疎水性や化学的安定性により、得られる硬化膜の耐薬品性、耐湿熱性及び耐熱性が向上すると推測される。フルオレン骨格を有するラジカル重合性化合物の二重結合当量は、露光時の感度、硬化膜の硬度の観点から、200~500g/molが好ましい。
 フルオレン骨格含有ラジカル重合性化合物としては、例えば、オグソール(登録商標)EA-50P、同EA-0200、同EA-0250P、同EA-500、同EA-1000、同EA-F5003、同EA-F5503若しくは同EA-F5510(以上、何れも大阪ガスケミカル(株)製)、9,9-ビス[4-(2-(メタ)アクリロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(3-(メタ)アクリロキシプロポキシ)フェニル]フルオレン、9,9-ビス[4-(2-(メタ)アクリロキシエトキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-(メタ)アクリロキシエトキシ)-3,5-ジメチルフェニル]フルオレン又は9,9-ビス(4-(メタ)アクリロキシフェニル)フルオレンが挙げられる。
 本発明の感光性樹脂組成物に占めるフルオレン骨格を有するラジカル重合性化合物の含有量は、(A)アルカリ可溶性樹脂を100重量部とした場合、あるいは(B)ラジカル重合性化合物を含有する時は(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100重量部とした場合において、0.1~20重量部が好ましく、1~10重量部がより好ましい。フルオレン骨格を有するラジカル重合性化合物の含有量が0.1重量部に満たないと、耐薬品性、耐湿熱性又は耐熱性向上の効果が不十分な場合がある。一方、20重量部を超えると、現像後の残渣発生や、硬化膜の硬度低下の原因となる場合がある。なお(A)アルカリ可溶性樹脂が無機粒子含有ポリシロキサンの場合、無機粒子含有ポリシロキサンを構成する無機粒子の重量を含めて100重量部とする。
 本発明の感光性樹脂組成物は、さらにカルボキシ基を有するラジカル重合性化合物を含有しても構わない。カルボキシ基を有するラジカル重合性化合物とは、(B)ラジカル重合性化合物であり、分子中にカルボキシ基と、複数のエチレン性不飽和二重結合基とを有する化合物をいう。カルボキシ基を有するラジカル重合性化合物としては、ラジカル重合の進行しやすい、(メタ)アクリル基を有するラジカル重合性化合物が好ましい。光照射により、カルボキシ基を有するラジカル重合性化合物の重合が進行し、感光性樹脂組成物の露光部がアルカリ水溶液に対して不溶化して、パターンを形成することができる。本発明の感光性樹脂組成物が、さらに後述する(C)光重合開始剤を含有する場合、(C)光重合開始剤から発生するラジカルによって、カルボキシ基を有するラジカル重合性化合物の重合が促進され、露光時の感度及び硬化膜の硬度が向上する。またカルボキシ基を有するラジカル重合性化合物を含有することで、現像後の残渣発生を抑制し、現像後の解像度を向上させることができる。カルボキシ基を有するラジカル重合性化合物が有するカルボキシ基により、アルカリ現像液に対する溶解性が向上するため、現像後の残渣発生が抑制されると推測される。該ラジカル重合性化合物の二重結合当量は、露光時の感度、硬化膜の硬度の観点から、80~400g/molであることが好ましい。
 カルボキシ基含有ラジカル重合性化合物は、分子中にヒドロキシ基と複数のエチレン性不飽和二重結合基とを有するヒドロキシ基含有不飽和化合物と、分子中に酸無水物基を有する化合物とを反応させることにより得られる。
 分子中に1つ以上のヒドロキシ基と複数のエチレン性不飽和二重結合基を有するヒドロキシ基含有不飽和化合物としては、例えば、トリメチロールプロパンジ(メタ)アクリレート、ジトリメチロールプロパンジ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールジ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート又はジペンタエリスリトールペンタ(メタ)アクリレートが挙げられる。
 分子中に酸無水物基を有する化合物としては、例えば、無水コハク酸、無水マレイン酸、無水グルタル酸、無水イタコン酸、無水フタル酸又はテトラヒドロ無水フタル酸が挙げられるが、無水コハク酸が好ましい。
 カルボキシ基を有するラジカル重合性化合物としては、例えば、アロニックス(登録商標)M-510若しくは同M-520(以上、何れも東亞合成(株)製)、コハク酸モノ[2,2,2-トリス((メタ)アクリロキシメチル)エチル]又はコハク酸モノ[2,2-ビス((メタ)アクリロキシメチル)-3-[2,2,2-トリス((メタ)アクリロキシメチル)エチルオキシ]プロピル]が挙げられる。
 本発明の感光性樹脂組成物に占めるカルボキシ基を有するラジカル重合性化合物の含有量は、(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100重量部とした場合において、1~40重量部が好ましく、5~30重量部がより好ましい。カルボキシ基を有するラジカル重合性化合物の含有量が1重量部に満たないと、現像後の残渣発生抑止の効果が不十分な場合がある。一方、40重量部を超えると、硬化膜の硬度低下や、耐薬品性低下の原因となる場合がある。なお(A)アルカリ可溶性樹脂が無機粒子含有ポリシロキサンの場合、無機粒子含有ポリシロキサンを構成する無機粒子の重量を含めて100重量部とする。
 本発明の感光性樹脂組成物は、(C)光重合開始剤を含有することが好ましい。(C)光重合開始剤としては、光(紫外線及び電子線を含む)により、分解及び/又は反応して、ラジカルを発生させるものが好ましい。
 (C)光重合開始剤としては、例えば、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルホリノフェニル)-ブタン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン若しくは3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-オクチル-9H-カルバゾールなどのα-アミノアルキルフェノン化合物、2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド若しくはビス(2,6-ジメトキシベンゾイル)-(2,4,4-トリメチルペンチル)ホスフィンオキシドなどのアシルホスフィンオキシド化合物、1-フェニルプロパン-1,2-ジオン-2-(O-エトキシカルボニル)オキシム、1-[4-(フェニルチオ)フェニル]オクタン-1,2-ジオン-2-(O-ベンゾイル)オキシム、1-フェニルブタン-1,2-ジオン-2-(O-メトキシカルボニル)オキシム、1,3-ジフェニルプロパン-1,2,3-トリオン-2-(O-エトキシカルボニル)オキシム、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン-1-(O-アセチル)オキシム若しくは1-[9-エチル-6-[2-メチル-4-[1-(2,2-ジメチル-1,3-ジオキソラン-4-イル)メチルオキシ]ベンゾイル]-9H-カルバゾール-3-イル]エタノン-1-(O-アセチル)オキシムなどのオキシムエステル化合物、ベンゾフェノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4-フェニルベンゾフェノン、4,4-ジクロロベンゾフェノン、4-ヒドロキシベンゾフェノン、アルキル化ベンゾフェノン、3,3’,4,4’-テトラキス(t-ブチルパーオキシカルボニル)ベンゾフェノン、4-メチルベンゾフェノン、ジベンジルケトン若しくはフルオレノンなどのベンゾフェノン誘導体、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸(2-エチル)ヘキシル、4-ジエチルアミノ安息香酸エチル若しくは2-ベンゾイル安息香酸メチルなどの安息香酸エステル化合物、2,2-ジエトキシアセトフェノン、2,3-ジエトキシアセトフェノン、4-t-ブチルジクロロアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチルプロパン-1-オン、2-ヒドロキシ-1-[4-[4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル]フェニル]-2-メチルプロパン-1-オン、ベンザルアセトフェノン若しくは4-アジドベンザルアセトフェノンなどの芳香族ケトン化合物、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン若しくは2,4-ジクロロチオキサントンなどのチオキサントン化合物、ベンジルメトキシエチルアセタール、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、4-ベンゾイル-N,N-ジメチル-N-[2-(1-オキソ-2-プロペニルオキシ)エチル]ベンゼンメタナミニウムブロミド、(4-ベンゾイルベンジル)トリメチルアンモニウムクロリド、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロペンアミニウムクロリド一水塩、2-ヒドロキシ-3-(3,4-ジメチル-9-オキソ-9H-チオキサンテン-2-イロキシ)-N,N,N-トリメチル-1-プロパナミニウムクロリド、ナフタレンスルホニルクロリド、キノリンスルホニルクロリド、2,2’-ビス(2-クロロフェニル)-4,5,4’,5’-テトラフェニル-1,2-ビイミダゾール、10-n-ブチル-2-クロロアクリドン、N-フェニルチオアクリドン、1,7-ビス(アクリジン-9-イル)-n-ヘキサン、アントラキノン、2-エチルアントラキノン、2-t-ブチルアントラキノン、2-アミノアントラキノン、β-クロロアントラキノン、アントロン、ベンズアントロン、メチレンアントロン、9,10-フェナントレンキノン、カンファーキノン、ジベンズスベロン、メチルフェニルグリオキシエステル、η5-シクロペンタジエニル-η6-クメニル-アイアン(1+)-ヘキサフルオロホスフェート(1-)、4-ベンゾイル-4’-メチル-ジフェニルスルフィド、ジフェニルスルフィド誘導体、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、2,6-ビス(4-アジドベンジリデン)シクロヘキサン、2,6-ビス(4-アジドベンジリデン)-4-メチルシクロヘキサノン、ベンズチアゾールジスルフィド、トリフェニルホスフィン、四臭素化炭素、トリブロモフェニルスルホン又は過酸化ベンゾイルあるいはエオシン又はメチレンブルーなどの光還元性の色素と、アスコルビン酸又はトリエタノールアミンなどの還元剤との組み合わせが挙げられるが、硬化膜の硬度向上の観点から、α-アミノアルキルフェノン化合物、アシルホスフィンオキシド化合物、オキシムエステル化合物、アミノ基を有するベンゾフェノン化合物又はアミノ基を有する安息香酸エステル化合物が好ましい。
 アミノ基を有するベンゾフェノン化合物としては、例えば、4,4’-ビス(ジメチルアミノ)ベンゾフェノン又は4,4’-ビス(ジエチルアミノ)ベンゾフェノンが挙げられる。
 アミノ基を有する安息香酸エステル化合物としては、例えば、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸(2-エチルヘキシル)又は4-ジエチルアミノ安息香酸エチルが挙げられる。
 本発明の感光性樹脂組成物に占める(C)光重合開始剤の含有量は、(A)アルカリ可溶性樹脂を100重量部とした場合、あるいは(B)ラジカル重合性化合物を含有する時は(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100重量部とした場合において、0.1~20重量部が好ましく、1~10重量部がより好ましい。(C)光重合開始剤の含有量が0.1重量部に満たないと、UV硬化が十分に進行せず、現像時の膜減りが大きく、現像後の解像度が低下する場合がある。一方、20重量部を超えると、UV硬化が進行しすぎるため、現像後の残渣発生の原因となり、また残留した光重合開始剤が溶出するなどして、硬化膜の耐薬品性が低下する場合がある。なお(A)アルカリ可溶性樹脂が無機粒子含有ポリシロキサンの場合、無機粒子含有ポリシロキサンを構成する無機粒子の重量を含めて100重量部とする。
 本発明の感光性樹脂組成物は、(D)金属キレート化合物を含有する。(D)金属キレート化合物とは、中心金属と、該金属に二以上の部位で配位した配位子と、を有する化合物をいう。(D)金属キレート化合物を含有することで、得られる硬化膜の耐薬品性及び耐湿熱性を向上させることができる。これは、(D)金属キレート化合物が熱によって樹脂などと反応し、熱硬化時に形成される三次元網目構造の一部として取り込まれているためであると推測される。すなわち、比較的サイズの大きい原子が硬化膜に取り込まれることで、硬化膜の膜密度が上昇し、水分や薬液の透過性が低下するため、得られる硬化膜の耐薬品性及び耐湿熱性が向上すると考えられる。
 (D)金属キレート化合物としては、硬化膜の密着性の観点から、チタンキレート化合物、ジルコニウムキレート化合物、アルミニウムキレート化合物又はマグネシウムキレート化合物が挙げられ、硬化膜の耐湿熱性及び人工汗耐性の観点から、ジルコニウムキレート化合物がより好ましい。
 これらの金属キレート化合物は、金属アルコキシドにキレート化剤を反応させることにより容易に得ることができる。キレート化剤としては、例えば、アセチルアセトン、ベンゾイルアセトン若しくはジベンゾイルメタンなどのβ-ジケトン又はアセト酢酸エチル若しくはベンゾイル酢酸エチルなどのβ-ケトエステルが挙げられる。
 本発明の(D)金属キレート化合物は、一般式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000005
(一般式(1)において、Mは、チタン、ジルコニウム、アルミニウム又はマグネシウムを表し、Rは、水素、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基又は炭素数6~15のアリール基を表し、R及びRは、それぞれ独立して、水素、炭素数1~20のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基、炭素数1~6のアルコキシ基又はヒドロキシ基を表し、n及びmは、0~4の整数を表し、n+m=2~4である。)
 Rは、水素、炭素数1~6のアルキル基、炭素数4~7のシクロアルキル基又は炭素数6~10のアリール基が好ましく、R及びRは、それぞれ独立して、水素、炭素数1~18のアルキル基、炭素数4~7のシクロアルキル基、炭素数6~10のアリール基、炭素数1~4のアルコキシ基又はヒドロキシ基が好ましい。上記のアルキル基、シクロアルキル基、アリール基及びアルコキシ基は、無置換体又は置換体のいずれであっても構わない。Mは、ジルコニウムが好ましい。
 一般式(1)で表される化合物としては、例えば、テトラキス(アセチルアセトナート)チタン(IV)、ジイソプロポキシビス(エチルアセトアセタート)チタン(IV)若しくはジイソプロポキシビス(アセチルアセトナート)チタン(IV)などのチタンキレート化合物、テトラキス(アセチルアセトナート)ジルコニウム(IV)、ジ-n-ブトキシビス(エチルアセトアセタート)ジルコニウム(IV)若しくはトリ-n-ブトキシモノ(アセチルアセトナート)ジルコニウム(IV)などのジルコニウムキレート化合物、トリス(アセチルアセトナート)アルミニウム(III)、トリス(エチルアセトアセタート)アルミニウム(III)、モノ(アセチルアセトナート)ビス(エチルアセトアセタート)アルミウム(III)、ジイソプロポキシモノ(エチルアセトアセタート)アルミニウム(III)若しくはプレンアクト(登録商標)AL-M((ジイソプロポキシモノ(9-オクタデカニルアセトアセタート)アルミニウム(III)、川研ファインケミカル(株)製)などのアルミニウムキレート化合物又はビス(アセチルアセトナート)マグネシウム(II)、ビス(エチルアセトアセタート)マグネシウム(II)、イソプロポキシモノ(アセチルアセトナート)マグネシウム(II)若しくはイソプロポキシモノ(エチルアセトアセタート)マグネシウム(II)などのマグネシウムキレート化合物が挙げられる。
 本発明の感光性樹脂組成物に占める(D)金属キレート化合物の含有量は、(A)アルカリ可溶性樹脂を100重量部とした場合、あるいは(B)ラジカル重合性化合物を含有する時は(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100重量部とした場合において、0.1~10重量部が好ましく、0.5~5重量部がより好ましい。(D)金属キレート化合物の含有量が0.1重量部に満たないと、耐薬品性又は耐湿熱性向上の効果が不十分な場合がある。一方、10重量部を超えると、透明性の低下や、現像後の残渣発生の原因となり、また塗液の保管安定性が低下する場合がある。なお(A)アルカリ可溶性樹脂が無機粒子含有ポリシロキサンの場合、無機粒子含有ポリシロキサンを構成する無機粒子の重量を含めて100重量部とする。
 本発明の感光性樹脂組成物は、(E)シラン化合物を含有する。(E)シラン化合物は、一般式(2)で表される四官能シラン又は一般式(2)で表される四官能シランを縮合させることによって得られるシランオリゴマーである。(E)シラン化合物は、硬化膜の密着性及び耐薬品性向上の観点から、アルコキシシリル基を有することが好ましい。(E)シラン化合物を含有することで、得られる硬化膜の密着性、耐薬品性、耐湿熱性及び塗液の保管安定性を向上させることができる。(E)シラン化合物を含有しない場合、塗液の保管安定性が悪く、塗液の保管中に反応が進行して感光性樹脂組成物が変質し、密着性又は耐薬品性が低下してしまう。このことから、(E)シラン化合物が安定化に寄与し、反応の進行を抑制しているものと推測される。また、(E)シラン化合物が有する加水分解性シリル基は、加水分解によってシラノール基へと変換される。このシラノール基は脱水縮合や付加反応など、樹脂との反応が可能であるため、(E)シラン化合物が熱により樹脂などと反応することで、三次元網目構造の一部として取り込まれると推測される。(E)シラン化合物は、加水分解性シリル基を多く有しているため、架橋剤として機能して硬化膜の膜密度が上昇し、水分や薬液の透過性が低下するため、得られる硬化膜の耐薬品性及び耐湿熱性が向上すると考えられる。さらに、このシラノール基は下地の基板表面上のヒドロキシ基と共有結合又は配位結合を形成することが可能である。そのため、硬化膜と下地の基板との間の相互作用が増し、得られる硬化膜の密着性及び耐薬品性が向上すると推測される。
Figure JPOXMLDOC01-appb-C000006
(R~Rは、それぞれ独立して、水素、炭素数1~6のアルキル基、炭素数2~6のアシル基又は炭素数6~15のアリール基を表す。)
 R~Rは、それぞれ独立して、水素、炭素数1~4のアルキル基、炭素数2~4のアシル基又は炭素数6~10のアリール基が好ましい。
 (E)シラン化合物が、一般式(2)で表される四官能シランを縮合させることによって得られるシランオリゴマーである場合、一般式(2)で表される四官能シランのみを縮合させることによって得られるシランオリゴマーであっても構わないし、一般式(2)で表される四官能シランとその他のシラン化合物とを縮合させることによって得られるシランオリゴマー、すなわち、一般式(2)で表される四官能シラン由来の構造を有するシランオリゴマーであっても構わない。なお、一般式(2)で表される四官能シランやその他のシラン化合物は、それらが有する加水分解性シリル基の一部又は全てを加水分解し、脱水縮合させても構わない。
 (E)シラン化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトライソプロポキシシラン、テトラ-n-ブトキシシラン若しくはテトラアセトキシシランなどの四官能シラン、メチルシリケート51(扶桑化学工業(株)製)、Mシリケート51、シリケート40若しくはシリケート45(以上、何れも多摩化学工業(株)製)又はメチルシリケート51、メチルシリケート53A、エチルシリケート40若しくはエチルシリケート48(以上、何れもコルコート(株)製)などのシリケート化合物が挙げられるが、硬化膜の密着性、耐薬品性及び塗液の保管安定性向上の観点から、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、メチルシリケート51(扶桑化学工業(株)製)、Mシリケート51(多摩化学工業(株)製)又はメチルシリケート51(コルコート(株)製)が好ましく、テトラメトキシシランがより好ましい。
 本発明の感光性樹脂組成物に占める(E)シラン化合物の含有量は、(A)アルカリ可溶性樹脂を100重量部とした場合、あるいは(B)ラジカル重合性化合物を含有する時は(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100重量部とした場合において、0.1~30重量部が好ましく、1~25重量部がより好ましい。(E)シラン化合物の含有量が0.1重量部に満たないと、密着性、耐薬品性、耐湿熱性又は塗液の保管安定性向上の効果が不十分な場合がある。一方、30重量部を超えると、現像後の残渣発生の原因となり、また塗液の保管安定性が低下する場合がある。なお(A)アルカリ可溶性樹脂が無機粒子含有ポリシロキサンの場合、無機粒子含有ポリシロキサンを構成する無機粒子の重量を含めて100重量部とする。
 本発明の感光性樹脂組成物は、さらに(F)アミノ基、アミド基、ウレイド基、ケチミン基、イソシアネート基、メルカプト基、イソシアヌル環骨格、(メタ)アクリル基及びスチリル基からなる群から選ばれる置換基を有するシラン化合物(以下、「(F)特定のシラン化合物」)を含有することが好ましい。(F)特定のシラン化合物は、硬化膜の密着性及び耐薬品性向上の観点から、アルコキシシリル基を有することが好ましい。感光性樹脂組成物が(F)特定のシラン化合物を含有することで、得られる硬化膜の密着性及び耐薬品性を向上させることができる。(F)特定のシラン化合物が有するアミノ基、アミド基、ウレイド基、ケチミン基、イソシアネート基、メルカプト基、イソシアヌル環骨格、(メタ)アクリル基及びスチリル基などの官能基は、樹脂などと反応可能な部位であるとともに、官能基によっては下地の基板表面に配位可能な部位として機能する。また(F)特定のシラン化合物が有する加水分解性シリル基は、加水分解によってシラノール基へと変換され、このシラノール基は下地の基板表面上のヒドロキシ基と共有結合を形成することが可能である。これらの作用により、硬化膜と下地の基板との間の相互作用が増し、得られる硬化膜の密着性及び耐薬品性が向上すると推測される。
 (F)特定のシラン化合物としては、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩、3-(4-アミノフェニル)プロピルトリメトキシシラン、N-t-ブチル-2-(3-トリメトキシシリルプロピル)コハク酸イミド、2-(3-トリメトキシシリルプロピル)-4-(N-t-ブチル)アミノ-4-オキソブタン酸、1-[4-(3-トリメトキシシリルプロピル)フェニル]尿素、1-(3-トリメトキシシリルプロピル)尿素、1-(3-トリエトキシシリルプロピル)尿素、3-トリメトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン、3-トリエトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルメチルジエトキシシラン、1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌル酸、1,3,5-トリス(3-トリエトキシシリルプロピル)イソシアヌル酸、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン、4-スチリルトリメトキシシラン又は4-スチリルトリエトキシシランが挙げられる。
 本発明の感光性樹脂組成物に占める(F)特定のシラン化合物の含有量は、(A)アルカリ可溶性樹脂を100重量部とした場合、あるいは(B)ラジカル重合性化合物を含有する時は(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100重量部とした場合において、0.1~10重量部が好ましく、0.5~7重量部がより好ましい。(F)特定のシラン化合物の含有量が0.1重量部に満たないと、密着性又は耐薬品性向上の効果が不十分な場合がある。一方、10重量部を超えると、現像後の残渣発生の原因となり、また塗液の保管安定性が低下する場合がある。なお(A)アルカリ可溶性樹脂が無機粒子含有ポリシロキサンの場合、無機粒子含有ポリシロキサンを構成する無機粒子の重量を含めて100重量部とする。
 本発明の感光性樹脂組成物は、溶剤を含有しても構わない。溶剤としては、各成分を均一に溶解し、得られる硬化膜の透明性を向上させる観点から、アルコール性水酸基を有する化合物、カルボニル基を有する化合物又はエーテル結合を3つ以上有する化合物が好ましく、大気圧下の沸点が110~250℃である化合物がより好ましい。沸点を110℃以上とすることで、塗布時に適度に溶剤が揮発して塗膜の乾燥が進行し、塗布ムラのない良好な塗膜が得られる。一方、沸点を250℃以下とすることで、塗膜中の残存する溶剤量を少なく抑えることができ、熱硬化時の膜収縮量を低減できるため、より良好な平坦性が得られる。
 アルコール性水酸基を有し、大気圧下の沸点が110~250℃である化合物としては、例えば、ヒドロキシアセトン、4-ヒドロキシ-2-ブタノン、3-ヒドロキシ-3-メチル-2-ブタノン、4-ヒドロキシ-3-メチル-2-ブタノン、5-ヒドロキシ-2-ペンタノン、4-ヒドロキシ-2-ペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン(ジアセトンアルコール)、乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-プロピルエーテル、エチレングリコールモノ-n-ブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、プロピレングリコールモノ-n-ブチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-プロピルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノ-n-プロピルエーテル、3-メトキシ-1-ブタノール、3-メトキシ-3-メチル-1-ブタノール、テトラヒドロフルフリルアルコール、n-ブタノール又はn-ペンタノールが挙げられるが、塗布性の観点から、ジアセトンアルコール、乳酸エチル、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、3-メトキシ-1-ブタノール、3-メトキシ-3-メチル-1-ブタノール又はテトラヒドロフルフリルアルコールが好ましい。
 カルボニル基を有し、大気圧下の沸点が110~250℃である化合物としては、例えば、酢酸n-ブチル、酢酸イソブチル、3-メトキシ-n-ブチルアセテート、3-メチル-3-メトキシ-n-ブチルアセテート、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、メチルn-ブチルケトン、メチルイソブチルケトン、ジイソブチルケトン、2-ヘプタノン、アセチルアセトン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、炭酸プロピレン、N-メチルピロリドン、N,N’-ジメチルホルムアミド、N,N’-ジメチルアセトアミド又は1,3-ジメチル-2-イミダゾリジノンが挙げられるが、塗布性の観点から、3-メトキシ-n-ブチルアセテート、プロピレングリコールモノメチルエーテルアセテート又はγ-ブチロラクトンが好ましい。
 エーテル結合を3つ以上有し、大気圧下の沸点が110~250℃である化合物としては、例えば、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジ-n-プロピルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールエチルメチルエーテル又はジプロピレングリコールジ-n-プロピルエーテルが挙げられるが、塗布性の観点から、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル又はジプロピレングリコールジメチルエーテルが好ましい。
 本発明の感光性樹脂組成物に占める溶剤の含有量は、塗布方法などに応じて適宜調整すればよいが、例えば、スピンコーティングにより膜形成を行う場合には、感光性樹脂組成物全体の50~95重量%とすることが一般的である。
 本発明の感光性樹脂組成物は、さらにマレイミド化合物を含有しても構わない。マレイミド化合物としては、一般的なマレイミド又はマレイミド誘導体を用いることができる。感光性樹脂組成物がマレイミド化合物を含有することで、塗液の保管安定性を損なうことなく、得られる硬化膜の耐薬品性及び耐湿熱性を向上させることができる。マレイミド化合物、及び、上記の(D)金属キレート化合物の、両方を含有することで、マレイミド化合物中のマレイミド由来の構造が(D)金属キレート化合物に配位し、反応性を低下させて安定化すると考えられる。そのため、マレイミド化合物が感光性樹脂組成物の安定化に寄与し、塗液保管中の反応の進行を抑制することで、密着性又は耐薬品性の低下を抑制しているものと推測される。マレイミド化合物が熱により樹脂などと反応することで、三次元網目構造の一部として取り込まれるとともに、架橋密度が向上すると推測される。またマレイミド化合物のマレイミド由来の構造が、下地の基板表面に配位可能な部位として機能することで、得られる硬化膜の耐薬品性が向上すると考えられる。さらに、架橋密度の向上によって、得られる硬化膜の耐湿熱性が向上すると考えられる。マレイミド化合物は、芳香族環状骨格又は脂肪族環状骨格を有することが好ましい。芳香族環状骨格又は脂肪族環状骨格が有する疎水性や化学的安定性により、得られる硬化膜の耐薬品性、耐湿熱性及び耐熱性がより向上すると考えられる。
 マレイミド化合物としては、例えば、マレイミド、N-メチルマレイミド、N-エチルマレイミド、N-n-プロピルマレイミド、N-イソプロピルマレイミド、N-n-ブチルマレイミド、N-t-ブチルマレイミド、N-n-ヘキシルマレイミド、N-ドデシルマレイミド、N-シクロペンチルマレイミド、N-シクロヘキシルマレイミド、N-(2,4-ジメチルシクロヘキシル)マレイミド、N-ビニルマレイミド、N-(メタ)アクリルマレイミド、N-メトキシメチルマレイミド、N-(2-エトキシエチル)マレイミド、N-(4-ブトキシエチル)マレイミド、N-[(メタ)アクリロキシメチル]マレイミド、N-[2-(メタ)アクリロキシエチル]マレイミド、N-[3-(メタ)アクリロキシプロピル]マレイミド、N-メトキシカルボニルマレイミド、N-(3-メトキシカルボニルプロピル)マレイミド、N-(2-ヒドロキシエチル)マレイミド、N-(4-ヒドロキシ-n-ブチル)マレイミド、N-(2-カルボキシエチル)マレイミド、N-(3-カルボキシプロピル)マレイミド、N-(5-カルボキシペンチル)マレイミド、N-フェニルマレイミド、N-(4-メチルフェニル)マレイミド、N-(3-メチルフェニル)マレイミド、N-(2-メチルフェニル)マレイミド、N-(2,6-ジメチルフェニル)マレイミド、N-(2,6-ジエチルフェニル)マレイミド、N-(4-スチリル)マレイミド、N-(4-メトキシフェニル)マレイミド、N-(3-メトキシフェニル)マレイミド、N-(2-メトキシフェニル)マレイミド、N-(4-メトキシカルボニルフェニル)マレイミド、N-(4-ヒドロキシフェニル)マレイミド、N-(3-ヒドロキシフェニル)マレイミド、N-(2-ヒドロキシフェニル)マレイミド、N-(4-カルボキシフェニル)マレイミド、N-(4-アミノフェニル)マレイミド、N-(4-ニトロフェニル)マレイミド、N-(1-ナフチル)マレイミド、N-ベンジルマレイミド、N-(2-フェニルエチル)マレイミド、N-(9-アクリジニル)マレイミド、N-[4-(2-ベンズイミダゾリル)フェニル]マレイミド、3-マレイミドプロピオン酸N-スクシンイミジル、4-マレイミドブタン酸N-スクシンイミジル、11-マレイミドラウリル酸N-スクシンイミジル、6-マレイミドヘキサン酸N-スクシンイミジル、4-(N-マレイミドメチル)シクロヘキサンカルボン酸N-スクシンイミジル、4-(4-マレイミドフェニル)ブタン酸N-スクシンイミジル又は3-マレイミド安息香酸N-スクシンイミジルが挙げられるが、硬化膜の耐薬品性、耐湿熱性及び耐熱性向上の観点から、N-シクロペンチルマレイミド、N-シクロヘキシルマレイミド、N-(2,4-ジメチルシクロヘキシル)マレイミド、N-フェニルマレイミド、N-(4-メチルフェニル)マレイミド、N-(3-メチルフェニル)マレイミド、N-(2-メチルフェニル)マレイミド、N-(2,6-ジメチルフェニル)マレイミド、N-(2,6-ジエチルフェニル)マレイミド、N-(4-スチリル)マレイミド、N-(4-メトキシフェニル)マレイミド、N-(3-メトキシフェニル)マレイミド、N-(2-メトキシフェニル)マレイミド、N-(4-メトキシカルボニルフェニル)マレイミド、N-(4-ヒドロキシフェニル)マレイミド、N-(3-ヒドロキシフェニル)マレイミド、N-(2-ヒドロキシフェニル)マレイミド、N-(4-カルボキシフェニル)マレイミド、N-(4-アミノフェニル)マレイミド、N-(4-ニトロフェニル)マレイミド、N-(1-ナフチル)マレイミド、N-ベンジルマレイミド又はN-(2-フェニルエチル)マレイミドが好ましい。
 本発明の感光性樹脂組成物に占めるマレイミド化合物の含有量は、(A)アルカリ可溶性樹脂を100重量部とした場合、あるいは(B)ラジカル重合性化合物を含有する時は(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100重量部とした場合において、0.1~20重量部が好ましく、1~15重量部がより好ましい。マレイミド化合物の含有量が0.1重量部に満たないと、耐薬品性、耐湿熱性又は耐熱性向上の効果が不十分な場合がある。一方、20重量部を超えると、現像後の残渣発生の原因となる場合がある。なお(A)アルカリ可溶性樹脂が無機粒子含有ポリシロキサンの場合、無機粒子含有ポリシロキサンを構成する無機粒子の重量を含めて100重量部とする。
 また、該マレイミド化合物は、ビスマレイミド化合物であることがより好ましい。ビスマレイミド化合物は、マレイミド由来の構造を二つ有する化合物であり、三次元網目構造の一部として取り込まれる部位、及び、下地の基板表面に配位可能な部位をそれぞれ二つ有する。そのため、架橋密度や下地の基板表面との密着性がより向上し、得られる硬化膜の耐薬品性及び耐湿熱性をさらに向上させることができると考えられる。ビスマレイミド化合物は、芳香族環状骨格又は脂肪族環状骨格を有することが好ましい。芳香族環状骨格又は脂肪族環状骨格が有する疎水性や化学的安定性により、得られる硬化膜の耐薬品性、耐湿熱性及び耐熱性がより向上すると考えられる。
 ビスマレイミド化合物としては、例えば、1,2-ビス(マレイミド)エタン、1,3-ビス(マレイミド)プロパン、1,4-ビス(マレイミド)ブタン、1,5-ビス(マレイミド)ペンタン、1,6-ビス(マレイミド)ヘキサン、2,2,4-トリメチル-1,6-ビス(マレイミド)ヘキサン、N,N’-1,3-フェニレンビス(マレイミド)、4-メチル-N,N’-1,3-フェニレンビス(マレイミド)、N,N’-1,4-フェニレンビス(マレイミド)、3-メチル-N,N’-1,4-フェニレンビス(マレイミド)、4,4’-ビス(マレイミド)ジフェニルメタン、3,3’-ジエチル-5,5’-ジメチル-4,4’-ビス(マレイミド)ジフェニルメタン又は2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパンが挙げられるが、硬化膜の耐薬品性、耐湿熱性及び耐熱性向上の観点から、4,4’-ビス(マレイミド)ジフェニルメタン、3,3’-ジエチル-5,5’-ジメチル-4,4’-ビス(マレイミド)ジフェニルメタン又は2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパンが好ましい。
 本発明の感光性樹脂組成物に占めるビスマレイミド化合物の含有量は、(A)アルカリ可溶性樹脂を100重量部とした場合、あるいは(B)ラジカル重合性化合物を含有する時は(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100重量部とした場合において、0.1~20重量部が好ましく、1~15重量部がより好ましい。ビスマレイミド化合物の含有量が0.1重量部に満たないと、耐薬品性、耐湿熱性又は耐熱性向上の効果が不十分な場合がある。一方、20重量部を超えると、現像後の残渣発生の原因となる場合がある。なお(A)アルカリ可溶性樹脂が無機粒子含有ポリシロキサンの場合、無機粒子含有ポリシロキサンを構成する無機粒子の重量を含めて100重量部とする。
 本発明の感光性樹脂組成物は、さらにフルオレン化合物を含有しても構わない。フルオレン化合物を含有することで、得られる硬化膜の耐薬品性、耐湿熱性及び耐熱性を向上させることができる。フルオレン化合物が熱により樹脂などと反応することで、三次元網目構造の一部として取り込まれると推測される。そしてフルオレン化合物のフルオレン骨格が有する疎水性や化学的安定性により、得られる硬化膜の耐薬品性、耐湿熱性及び耐熱性が向上すると推測される。
 フルオレン化合物としては、例えば、オグソール(登録商標)PG、同PG-100、同EG、同EG-200、同EG-210(以上、何れも大阪ガスケミカル(株)製)、オンコート(登録商標)EX-1010、同EX-1011、同EX-1012、同EX-1020、同EX-1030、同EX-1040、同EX-1050、同EX-1051、同EX-1020M80若しくは同EX-1020M70(以上、何れもナガセケムテックス(株)製)、9,9-ビス[4-(2-グリシドキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(3-グリシドキシプロポキシ)フェニル]フルオレン、9,9-ビス[4-(2-グリシドキシエトキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-グリシドキシエトキシ)-3,5-ジメチルフェニル]フルオレン、9,9-ビス(4-グリシドキシフェニル)フルオレン、9,9-ビス(4-グリシドキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-グリシドキシ-3,5-ジメチルフェニル)フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(3-ヒドロキシプロポキシ)フェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3,5-ジメチルフェニル]フルオレン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)フルオレン、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ-3-メチルフェニル)フルオレン、9,9-ビス(4-アミノ-3,5-ジメチルフェニル)フルオレン、9,9-ビス(4-グリシドキシ-1-ナフチル)フルオレン、9,9-ビス(5-グリシドキシ-1-ナフチル)フルオレン、9,9-ビス(6-グリシドキシ-2-ナフチル)フルオレン、9,9-ビス[2-グリシドキシ-(1,1’-ビフェニル)-5-イル]フルオレン、9,9-ビス[3-グリシドキシ-(1,1’-ビフェニル)-5-イル]フルオレン又は9,9-ビス[4’-グリシドキシ-(1,1’-ビフェニル)-4-イル]フルオレンなどが挙げられるが、硬化膜の耐薬品性及び耐湿熱性向上の観点から、オグソール(登録商標)PG、同 PG-100、同EG、同EG-200、同EG-210若しくは同EG-250」(以上、何れも大阪ガスケミカル(株)製)、オンコート(登録商標)EX-1010、同EX-1011、同EX-1012、同EX-1020、同EX-1030、同EX-1040、同EX-1050、同EX-1051、同EX-1020M80若しくは同EX-1020M70(以上、何れもナガセケムテックス(株)製)、9,9-ビス[4-(2-グリシドキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(3-グリシドキシプロポキシ)フェニル]フルオレン、9,9-ビス[4-(2-グリシドキシエトキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-グリシドキシエトキシ)-3,5-ジメチルフェニル]フルオレン、9,9-ビス(4-グリシドキシフェニル)フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(3-ヒドロキシプロポキシ)フェニル]フルオレン、9,9-ビス(4-グリシドキシ-1-ナフチル)フルオレン、9,9-ビス(5-グリシドキシ-1-ナフチル)フルオレン、9,9-ビス(6-グリシドキシ-2-ナフチル)フルオレン、9,9-ビス[2-グリシドキシ-(1,1’-ビフェニル)-5-イル]フルオレン、9,9-ビス[3-グリシドキシ-(1,1’-ビフェニル)-5-イル]フルオレン又は9,9-ビス[4’-グリシドキシ-(1,1’-ビフェニル)-4-イル]フルオレンが好ましい。
 本発明の感光性樹脂組成物に占めるフルオレン化合物の含有量は、(A)アルカリ可溶性樹脂を100重量部とした場合、あるいは(B)ラジカル重合性化合物を含有する時は(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100重量部とした場合において、1~30重量部が好ましく、5~25重量部がより好ましい。フルオレン化合物の含有量が1重量部に満たないと、耐薬品性、耐湿熱性又は耐熱性向上の効果が不十分な場合がある。一方、30重量部を超えると、現像後の残渣発生の原因となり、また塗液の保管安定性が低下する場合がある。なお(A)アルカリ可溶性樹脂が無機粒子含有ポリシロキサンの場合、無機粒子含有ポリシロキサンを構成する無機粒子の重量を含めて100重量部とする。
 本発明の感光性樹脂組成物は、さらに多官能エポキシ化合物を含有しても構わない。多官能エポキシ化合物を含有することで、得られる硬化膜の耐薬品性、耐湿熱性及び耐熱性を向上させることができる。多官能エポキシ化合物のエポキシ部位が、熱により樹脂などと反応することで、三次元網目構造の一部として取り込まれると推測される。そして多官能エポキシ化合物の芳香族環状骨格が有する疎水性や化学的安定性により、得られる硬化膜の耐薬品性、耐湿熱性及び耐熱性が向上すると推測される。
 多官能エポキシ化合物としては、例えば、1,1-ビス(4-グリシドキシフェニル)-1-[4-[1-(4-グリシドキシフェニル)-1-メチルエチル]フェニル]エタン、2,2-ビス(4-グリシドキシフェニル)プロパン、1,1-ビス(4-グリシドキシフェニル)-1-フェニルエタン、1,1,1-トリス(4-グリシドキシフェニル)メタン、1,1,1-トリス(4-グリシドキシフェニル)エタン、1,1-ビス(4-グリシドキシフェニル)-1-(1-ナフチル)エタン、1,1-ビス(4-グリシドキシフェニル)-1-(2-ナフチル)エタン、1,1-ビス(4-グリシドキシ-1-ナフチル)-1-(4-グリシドキシフェニル)エタン、1,1-ビス(5-グリシドキシ-1-ナフチル)-1-(4-グリシドキシフェニル)エタン、1,1-ビス(6-グリシドキシ-2-ナフチル)-1-(4-グリシドキシフェニル)エタン、1,1-ビス[2-グリシドキシ-(1,1’-ビフェニル)-5-イル]-1-(4-グリシドキシフェニル)エタン、1,1-ビス[3-グリシドキシ-(1,1’-ビフェニル)-5-イル]-1-(4-グリシドキシフェニル)エタン又は1,1-ビス[4’-グリシドキシ-(1,1’-ビフェニル)-4-イル]-1-(4-グリシドキシフェニル)エタンが挙げられる。
 本発明の感光性樹脂組成物に占める多官能エポキシ化合物の含有量は(A)アルカリ可溶性樹脂を100重量部とした場合、あるいは(B)ラジカル重合性化合物を含有する時は、(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100重量部とした場合において、1~30重量部が好ましく、5~25重量部がより好ましい。多官能エポキシ化合物の含有量が1重量部に満たないと、耐薬品性、耐湿熱性又は耐熱性向上の効果が不十分な場合がある。一方、30重量部を超えると、現像後の残渣発生の原因となり、また塗液の保管安定性が低下する場合がある。なお(A)アルカリ可溶性樹脂が無機粒子含有ポリシロキサンの場合、無機粒子含有ポリシロキサンを構成する無機粒子の重量を含めて100重量部とする。
 本発明の感光性樹脂組成物は、さらにイソシアネート化合物を含有しても構わない。ここでいうイソシアネート化合物には、イソシアネート基がブロック化された、ブロックイソシアネート化合物が含まれる。感光性樹脂組成物がイソシアネート化合物を含有することで、得られる硬化膜の耐薬品性及び耐湿熱性を向上させることができる。イソシアネート基は、熱により樹脂中のカルボキシ基などと反応可能な部位であるため、該イソシアネート化合物が架橋剤として機能すると推測される。そしてイソシアネート化合物が架橋剤として機能することで、硬化膜の膜密度が上昇し、得られる硬化膜の耐薬品性及び耐湿熱性が向上すると推測される。
 イソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、トリレン-2,6-ジイソシアネート、メチレンジフェニル-4,4’-ジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、1,3-ビス(イソシアネートメチル)ベンゼン、1,3-ビス(イソシアネートメチル)シクロヘキサン、ノルボルナンジイソシアネート、ナフタレン-1,5-ジイソシアネート、ポリメチレンポリフェニルポリイソシアネート、2-イソシアネートエチル(メタ)アクリレート、2-[[[[(1-メチルプロピリデン)アミノ]オキシ]カルボニル]アミノ]エチル(メタ)アクリレート、2-[[(3,5-ジメチルピラゾリル)カルボニル]アミノ]エチル(メタ)アクリレート、1,1-(ビス(メタ)アクリロキシメチル)エチルイソシアネート、トリス(6-イソシアネートヘキシル)イソシアヌル酸、トリス(3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシル)イソシアヌル酸、1,3,5-トリス(6-イソシアネートヘキシル)ビウレット、デュラネート(登録商標)MF-K60B、同SBN-70D、同MF-B60B、同17B-60P、同17B-60PX、同TPA-B80E、同TPA-B80X、同E402-B80B若しくは同E402-B80T(以上、何れも旭化成ケミカルズ(株)製)又はAqua BI200、Aqua BI220、BI7950、BI7951、BI7960、BI7961、BI7962、BI7990、BI7991若しくはBI7992(以上、何れもBaxenden製)が挙げられるが、硬化膜の硬度向上の観点から、2-イソシアネートエチル(メタ)アクリレート、2-[[[[(1-メチルプロピリデン)アミノ]オキシ]カルボニル]アミノ]エチル(メタ)アクリレート、2-[[(3,5-ジメチルピラゾリル)カルボニル]アミノ]エチル(メタ)アクリレート又は1,1-(ビス(メタ)アクリロキシメチル)エチルイソシアネートが好ましい。また、硬化膜の耐湿熱性向上の観点から、トリス(6-イソシアネートヘキシル)イソシアヌル酸、トリス(3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシル)イソシアヌル酸又は1,3,5-トリス(6-イソシアネートヘキシル)ビウレットが好ましい。
 本発明の感光性樹脂組成物に占めるイソシアネート化合物の含有量は(A)アルカリ可溶性樹脂を100重量部とした場合、あるいは(B)ラジカル重合性化合物を含有する時は、(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100重量部とした場合において、0.1~10重量部が好ましく、0.5~7重量部がより好ましい。イソシアネート化合物の含有量が0.1重量部に満たないと、耐薬品性又は耐湿熱性向上の効果が不十分な場合がある。一方、10重量部を超えると、現像後の残渣発生の原因となり、また塗液の保管安定性が低下する場合がある。なお(A)アルカリ可溶性樹脂が無機粒子含有ポリシロキサンの場合、無機粒子含有ポリシロキサンを構成する無機粒子の重量を含めて100重量部とする。
 本発明の感光性樹脂組成物は、さらにエチレン性不飽和二重結合基を有するウレア化合物を含有しても構わない。エチレン性不飽和二重結合基を有するウレア化合物を含有することで、得られる硬化膜の耐薬品性及び耐湿熱性を向上させることができる。ウレア部位は、熱により樹脂などと反応可能な部位であるとともに、下地の基板表面に配位可能な部位として機能すると推測される。また、エチレン性不飽和二重結合性基を有することで、樹脂などに結合するエチレン性不飽和二重結合基と、ラジカル重合により架橋構造を形成できると推測される。そしてエチレン性不飽和二重結合基を有するウレア化合物が架橋剤として機能することで、硬化膜の膜密度が上昇し、得られる硬化膜の耐薬品性及び耐湿熱性が向上すると推測される。
 エチレン性不飽和二重結合基を有するウレア化合物としては、例えば、1-アリル尿素、1-ビニル尿素、1-アリル-2-チオ尿素、1-ビニル-2-チオ尿素、1-アリル-3-メチル-2-チオ尿素、1-アリル-3-(2-ヒドロキシエチル)-2-チオ尿素又は1-メチル-3-(4-ビニルフェニル)-2-チオ尿素が挙げられる。
 本発明の感光性樹脂組成物に占めるエチレン性不飽和二重結合基を有するウレア化合物の含有量は、(A)アルカリ可溶性樹脂を100重量部とした場合、あるいは(B)ラジカル重合性化合物を含有する時は(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100重量部とした場合において、0.1~10重量部が好ましく、0.5~7重量部がより好ましい。エチレン性不飽和二重結合基を有するウレア化合物の含有量が0.1重量部に満たないと、耐薬品性又は耐湿熱性向上の効果が不十分な場合がある。一方、10重量部を超えると、現像後の残渣発生の原因となり、また塗液の保管安定性が低下する場合がある。なお(A)アルカリ可溶性樹脂が無機粒子含有ポリシロキサンの場合、無機粒子含有ポリシロキサンを構成する無機粒子の重量を含めて100重量部とする。
 本発明の感光性樹脂組成物は、さらに重合禁止剤を含有しても構わない。重合禁止剤を適量含有することで、現像後の残渣発生を抑制し、高解像度を確保することができる。露光時の光照射により、(C)光重合開始剤から発生する過剰のラジカルを重合禁止剤が捕捉し、過度なラジカル重合の進行を抑制できるためと推測される。
 重合禁止剤としては、例えば、ジ-t-ブチルヒドロキシトルエン、ブチルヒドロキシアニソール、ハイドロキノン、4-メトキシフェノール、1,4-ベンゾキノン又はt-ブチルカテコールなどが挙げられる。また、市販の重合禁止剤としては、例えば、IRGANOX(登録商標)1010、同1035、同1076、同1098、同1135、同1330、同1726、同1425、同1520、同245、同259、同3114、同565又は同295(以上、何れもBASF製)が挙げられる。
 本発明の感光性樹脂組成物は、さらに紫外線吸収剤を含有しても構わない。紫外線吸収剤を適量含有することで、現像後の残渣発生を抑制し、高解像度を確保することができるとともに、得られる硬化膜の耐光性が向上する。露光時の光照射の際に発生する、散乱光や反射光などを紫外線吸収剤が捕捉し、過度なラジカル重合の進行を抑制できるためと推測される。また、得られる硬化膜においても、照射される光を紫外線吸収剤が捕捉することで、耐光性が向上すると推測される。
 紫外線吸収剤としては、透明性及び非着色性の観点から、ベンゾトリアゾール化合物、ベンゾフェノン化合物又はトリアジン化合物などが好ましい。
 ベンゾトリアゾール化合物としては、例えば、2-(2’-ヒドロキシフェニル)-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メチルフェニル)-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-ブチルフェニル)-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-3’,4’-ビス(1-メチル-1-フェニルエチル)フェニル]-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ペンチルフェニル)-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-ドデシル-5’-メチルフェニル)-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(1,1,3,3-テトラメチルブチル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-3’-(1-メチル-1-フェニルエチル)-5’-(1,1,3,3-テトラメチルブチル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(2-メタクリロキシエチル)フェニル]-2H-ベンゾトリアゾール又は[3-(2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシ-5-t-ブチルフェニル]プロピオン酸オクチルが挙げられる。
 ベンゾフェノン化合物としては、例えば、2-ヒドロキシ-4-メトキシベンゾフェノン又は2-ヒドロキシ-4-オクチルオキシベンゾフェノンが挙げられる。
 トリアジン化合物としては、例えば、2-(2’-ヒドロキシ-4’-ヘキシルオキシフェニル)-4,6-ジフェニル-1,3,5-トリアジン、2-[2’-ヒドロキシ-4’-(2-ヒドロキシ-3-ドデシルオキシプロポキシ)フェニル]-4,6-ビス(2’,4’-ジメチルフェニル)-1,3,5-トリアジン、2-[2’-ヒドロキシ-4’-[2-ヒドロキシ-3-(2-エチルヘキシルオキシ)プロポキシ]フェニル]-4,6-ビス(2’,4’-ジメチルフェニル)-1,3,5-トリアジン又は2,4-ビス(2’-ヒドロキシ-4’-ブトキシフェニル)-6-(2’,4’-ジブトキシ)-1,3,5-トリアジンが挙げられる。
 本発明の感光性樹脂組成物は、さらに界面活性剤を含有しても構わない。界面活性剤を適量含有することで、塗布時のレベリング性が向上して塗布ムラの発生を抑制でき、均一な塗布膜を得ることができる。
 界面活性剤としては、例えば、フッ素系界面活性剤、シリコーン系界面活性剤、ポリアルキレンオキシド系界面活性剤又はポリ(メタ)アクリレート系界面活性剤が挙げられる。
 フッ素系界面活性剤としては、例えば、1,1,2,2-テトラフルオロオクチル(1,1,2,2-テトラフルオロプロピル)エーテル、1,1,2,2-テトラフルオロオクチルヘキシルエーテル、オクタエチレングリコールビス(1,1,2,2-テトラフルオロブチル)エーテル、ヘキサエチレングリコール(1,1,2,2,3,3-ヘキサフルオロペンチル)エーテル、オクタプロピレングリコールビス(1,1,2,2-テトラフルオロブチル)エーテル、ヘキサプロピレングリコールビス(1,1,2,2,3,3-ヘキサフルオロペンチル)エーテル、パーフルオロドデシルスルホン酸ナトリウム、1,1,2,2,8,8,9,9,10,10-デカフルオロドデカン、1,1,2,2,3,3-ヘキサフルオロデカン、N-[3-(パーフルオロオクタンスルホンアミド)プロピル]-N,N’-ジメチル-N-カルボキシメチレンアンモニウムベタイン、パーフルオロアルキルスルホンアミドプロピルトリメチルアンモニウム塩、パーフルオロアルキル-N-エチルスルホニルグリシン塩又はリン酸ビス(N-パーフルオロオクチルスルホニル-N-エチルアミノエチル)が挙げられる。また、モノパーフルオロアルキルエチルリン酸エステルなどの末端、主鎖及び側鎖のいずれかの部位にフルオロアルキル基又はフルオロアルキレン鎖を有する化合物が挙げられる。そのような化合物としては、例えば、メガファック(登録商標)F-142D、同F-172、同F-173、同F-183、同F-444、同F-445、同F-470、同F-475、同F-477、同F-555若しくは同F-559」(以上、何れも大日本インキ化学工業(株)製)、エフトップ(登録商標)EF301、同303若しくは同352(以上、何れも三菱マテリアル電子化成(株)製)、フロラード(登録商標)FC-430若しくは同FC-431(以上、何れも住友スリーエム(株)製)、アサヒガード(登録商標)AG710」(旭硝子(株)製)、サーフロン(登録商標)S-382、「同SC-101、同SC-102、同SC-103、同SC-104、同SC-105若しくは同SC-106(以上、何れもAGCセイミケミカル(株)製)、BM-1000若しくはBM-1100(以上、何れも裕商(株)製)又はNBX-15、FTX-218若しくはDFX-218(以上、何れも(株)ネオス製)が挙げられる。
 シリコーン系界面活性剤しては、例えば、SH28PA、SH7PA、SH21PA、SH30PA若しくはST94PA(以上、何れも東レ・ダウコーニング(株)製)又はBYK-301、BYK-307、BYK-331、BYK-333若しくはBYK-345(以上、何れもビックケミー・ジャパン(株)製)が挙げられる。
 本発明の感光性樹脂組成物に占める界面活性剤の含有量は、感光性樹脂組成物全体の0.0001~1重量%とすることが一般的であり、好ましい。
 本発明の感光性樹脂組成物は、さらに該樹脂組成物の熱硬化を促進させる各種の硬化剤を含有しても構わない。硬化剤としては、例えば、窒素含有有機化合物、シリコーン樹脂硬化剤、金属アルコキシド、メチロール基含有メラミン誘導体又はメチロール基含有尿素誘導体が挙げられる。
 本発明の感光性樹脂組成物は、ネガ型の感光性を有することが好ましい。ネガ型の感光性を有することで、熱硬化時の着色が抑えられ、より高透明性な硬化膜を得ることが可能となる。さらに、ネガ型の感光性を有することで、UV硬化時に架橋反応が進行しやすく、硬度、耐湿熱性、人工汗耐性、密着性、耐薬品性及び真空耐性により優れた硬化膜を得ることが可能となる。
 本発明の感光性樹脂組成物の、代表的な製造方法について説明する。例えば、任意の(C)光重合開始剤、(D)金属キレート化合物、その他の固形添加剤を秤量し、任意の溶剤を加え、撹拌して溶解させる。次に、その他の液体添加剤を加え、撹拌する。次いで、(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物を加え、撹拌する。さらに、(E)シラン化合物を加え、20分~3時間撹拌して均一な溶液とする。その後、得られた溶液をろ過することで、本発明の感光性樹脂組成物が得られる。(B-1)多官能ラジカル重合性化合物及び(B-2)三官能又は四官能ラジカル重合性化合物を含有させる場合は、(B)ラジカル重合性化合物と一緒に加えることができる。また、(F)特定のシラン化合物を含有させる場合は、(E)シラン化合物と一緒に加えることができる。
 本発明の感光性樹脂組成物を用いて、パターン形成された硬化膜を形成する方法について、例を挙げて説明する。
 まず、本発明の感光性樹脂組成物を基板上に塗布する。基板としては、例えば、ガラス上にITOなどの金属酸化物、モリブデン、銀、銅若しくはアルミニウムなどの金属、又はCNT(Carbon Nano Tube)が電極若しくは配線として形成されている基板が用いられる。塗布方法としては、例えば、マイクログラビアコーティング、スピンコーティング、ディップコーティング、カーテンフローコーティング、ロールコーティング、スプレーコーティング、スリットコーティングが挙げられる。塗布膜厚は、塗布方法、感光性樹脂組成物の固形分濃度や粘度などによって異なるが、通常は塗布、プリベーク後の膜厚が0.1~15μmになるように塗布する。
 次に、感光性樹脂組成物が塗布された基板をプリベークし、感光性樹脂組成物のプリベーク膜を作製する。プリベークは、オーブン、ホットプレート又は赤外線などを使用し、50~150℃で30秒~数時間行うのが好ましい。必要に応じて、80℃で2分間プリベークした後、120℃で2分間プリベークするなど、2段又はそれ以上の多段でプリベークしても構わない。
 プリベーク後、ステッパー、ミラープロジェクションマスクアライナー(MPA)又はパラレルライトマスクアライナー(PLA)などの露光機を用いて露光する。露光時に照射する活性化学線としては、紫外線、可視光線、電子線、X線、KrF(波長248nm)レーザー又はArF(波長193nm)レーザーなどを用いることができるが、水銀灯のj線(波長313nm)、i線(波長365nm)、h線(波長405nm)又はg線(波長436nm)を用いるのが好ましい。また露光量は通常10~4000J/m程度(i線照度計の値)であり、必要に応じて所望のパターンを有するマスクを介して露光することができる。
 必要に応じて、現像前ベークをしても構わない。現像前ベークを行うことによって、現像後の解像度向上又は現像条件の許容幅増大などの効果が期待できる。この際のベーク温度としては、50~180℃が好ましく、60~150℃がより好ましい。ベーク時間は、10秒~数時間が好ましい。上記範囲内であれば反応が良好に進行し、現像時間も短くて済むという利点がある。
 次に、露光後の膜を、自動現像装置などを用いて任意の時間現像することで、未露光部が現像液で除去され、レリーフ・パターンが得られる。
 現像液としては、公知のアルカリ現像液が一般的に用いられる。現像液としては、例えば、有機系のアルカリ現像液又はアンモニア、水酸化テトラメチルアンモニウム、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン若しくはヘキサメチレンジアミンなどのアルカリ性を示す化合物の水溶液が挙げられるが、環境面から、アルカリ性を示す化合物の水溶液すなわちアルカリ水溶液が好ましい。
 また、現像液として、感光性樹脂組成物が含有する溶剤と同一の、アルコール類、ケトン類、エーテル類、N-メチル-2-ピロリドン、N-アセチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルトリアミド又はγ-ブチロラクトンなどを用いても構わない。また、これらの溶剤と、メタノール、エタノール、イソプロピルアルコール、水、メチルカルビトール、エチルカルビトール、トルエン、キシレン、乳酸エチル、ピルビン酸エチル、プロピレングリコールモノメチルエーテルアセテート、メチル-3-メトキシプロピオネート、エチル-3-エトキシプロピオネート、2-ヘプタノン、シクロペンタノン、シクロヘキサノン又は酢酸エチルなど、感光性樹脂組成物の貧溶媒とを組み合わせた混合液を用いても構わない。
 現像処理は、露光後の膜に、上記の現像液をそのまま塗布する、上記の現像液を霧状にして放射する、露光後の膜を上記の現像液中に浸漬する、露光後の膜を上記の現像液中に浸漬しながら超音波をかけるなどの方法によって行うことができる。また、露光後の膜は、現像液に5秒~10分間接触させることが好ましい。
 現像処理後に、リンス液により、現像によって形成したレリーフ・パターンを洗浄することが好ましい。リンス液としては、現像液にアルカリ水溶液を用いた場合には、水が好ましい。また、エタノール若しくはイソプロピルアルコールなどのアルコール類、プロピレングリコールモノメチルエーテルアセテートなどのエステル類又は炭酸ガス、塩酸若しくは酢酸などの酸などを水に加えてリンス処理をしても構わない。
 有機溶媒でリンスをする場合、現像液との混和性が高い、メタノール、エタノール、イソプロピルアルコール、乳酸エチル、ピルビン酸エチル、プロピレングリコールモノメチルエーテルアセテート、メチル-3-メトキシプロピオネート、エチル-3-エトキシプロピオネート、2-ヘプタノン又は酢酸エチルなどが好ましい。
 現像後、必要に応じて、ミドルベークをしても構わない。ミドルベークを行うことによって、熱硬化後の解像度が向上する、熱硬化後のパターン形状が制御できるなどの効果が期待できる。ミドルベークは、オーブン、ホットプレート又は赤外線などを使用し、ベーク温度としては、60~250℃が好ましく、70~220℃がより好ましい。ベーク時間は、10秒~数時間行うのが好ましい。
 次に、120~280℃の温度で、10分~数時間加熱することで、本発明の感光性樹脂組成物の硬化膜が得られる。この加熱処理は、空気雰囲気下又は窒素などの不活性ガス雰囲気下で行うことができる。またこの加熱処理は、段階的に昇温しても構わないし、連続的に昇温し、5分間~5時間行っても構わない。例えば、130℃、200℃及び250℃で、各30分間ずつ熱処理する方法、又は、室温~250℃まで、2時間かけて直線的に昇温するなどの方法が挙げられる。
 本発明の感光性樹脂組成物を熱硬化して得られる硬化膜の膜厚は、0.1~15μmが好ましい。また、膜厚1.5μmにおいて硬度が4H以上、透過率が90%以上であることが好ましく、95%以上であることがより好ましい。なお、ここでいう透過率とは、波長400nmにおける透過率をいう。硬度や透過率は、露光量、熱硬化温度の選択によって調整することができる。
 本発明の感光性樹脂組成物を熱硬化して得られる硬化膜は、タッチパネル用保護膜、各種ハードコート材、TFT用平坦化膜、カラーフィルター用オーバーコート、反射防止フィルム若しくはパッシベーション膜などの各種保護膜、光学フィルター、タッチパネル用絶縁膜、TFT用絶縁膜などの各種絶縁膜又はカラーフィルター用フォトスペーサーなどに用いることができる。これらの中でも、高い硬度、透明性、耐薬品性及び耐熱性を有することから、タッチパネル用保護膜やタッチパネル用絶縁膜として好適に用いることができる。タッチパネルの方式としては、例えば、抵抗膜式、光学式、電磁誘導式又は静電容量式が挙げられる。中でも静電容量式タッチパネルには特に高い硬度が求められることから、本発明の硬化膜を特に好適に用いることができる。
 さらに、本発明の感光性樹脂組成物を熱硬化して得られる硬化膜は、高い耐湿熱性を有することから、金属配線保護膜として好適に用いることができる。本発明の硬化膜を金属配線上に形成することにより、金属の腐食などによる劣化(導電性、抵抗値の低下など)を防ぐことができる。保護する金属配線としては、例えば、モリブデン、銀、銅、アルミニウム、クロム、チタン、ITO、IZO(Indium Zinc Oxide)、AZO(Aluminum Zinc Oxide)、ZnO及びCNTからなる群から選ばれる一種以上を含有する金属配線が挙げられる。中でも、本発明の感光性樹脂組成物を熱硬化して得られる硬化膜は、モリブデン、銀、銅、アルミニウム及びCNTからなる群から選ばれる一種以上を含有する金属配線の保護膜又は絶縁膜として好適に用いられる。
 以下に実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの範囲に限定されない。なお、用いた化合物のうち略語を使用しているものについて、名称を以下に示す。
AcOH:酢酸
AD-TMP:ジトリメチロールプロパンテトラアクリレート(新中村化学工業(株)製)
Al-A:アルミキレートA(川研ファインケミカル(株)製;トリス(アセチルアセトナート)アルミニウム(III))
BDG:ブチルジグリコール、ジエチレングリコールモノ-n-ブチルエーテル
BYK-333:シリコーン系界面活性剤(ビックケミー・ジャパン(株)製)
DAA:ジアセトンアルコール
DMSO:ジメチルスルホキシド
DPHA:KAYARAD(登録商標)DPHA(日本化薬(株)製;ジペンタエリスリトールヘキサアクリレート)
EtOH:エタノール
HCl:塩酸
HNO:硝酸
PO:リン酸
IC-907:IRGACURE(登録商標)907(BASF製;2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン)
IPA:イソプロピルアルコール
ITO:酸化インジウムスズ
KBE-04:テトラエトキシシラン(信越化学工業(株)製)
KBM-04:テトラメトキシシラン(信越化学工業(株)製)
KBM-1403:4-スチリルトリメトキシシラン(信越化学工業(株)製)
KBM-403:3-グリシドキシプロピルトリメトキシシラン(信越化学工業(株)製)
KBM-503:3-メタクリロキシプロピルトリメトキシシラン(信越化学工業(株)製)
KBM-5103:3-アクリロキシプロピルトリメトキシシラン(信越化学工業(株)製)
KBM-803:3-メルカプトプロピルトリメトキシシラン(信越化学工業(株)製)
KBM-903:3-アミノプロピルトリメトキシシラン(信越化学工業(株)製)
KBE-9007:3-イソシアネートプロピルトリエトキシシラン(信越化学工業(株)製)
KBE-9103:3-トリエトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン(信越化学工業(株)製)
KBM-9659:1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌル酸(信越化学工業(株)製)
MAM:Mo/Al/Mo(モリブデン/アルミニウム/モリブデン)
MB:3-メトキシ-1-ブタノール
MEA:モノエタノールアミン、2-アミノエタノール
NaOH:水酸化ナトリウム
N-300:レジスト剥離液(ナガセケムテックス(株)製;MEA/BDG=30/70)
OFPR-800:ポジ型フォトレジスト(東京応化工業(株)製)
OXE-01:IRGACURE(登録商標)OXE-01(BASF製;1-[4-(フェニルチオ)フェニル]オクタン-1,2-ジオン-2-(O-ベンゾイル)オキシム)
PE-3A:ライトアクリレートPE-3A(共栄社化学(株)製;ペンタエリスリトールトリアクリレート)
PE-4A:ライトアクリレートPE-4A(共栄社化学(株)製;ペンタエリスリトールテトラアクリレート)
PGMEA:プロピレングリコールモノメチルエーテルアセテート
TC-401:オルガチックス(登録商標)TC-401(マツモトファインケミカル(株)製;テトラキス(アセチルアセトナート)チタン(IV))
THF:テトラヒドロフラン
TMAH:水酸化テトラメチルアンモニウム
TMP-A:ライトアクリレートTMP-A(共栄社化学(株)製;トリメチロールプロパントリアクリレート)
TMPU:1-(3-トリメトキシシリルプロピル)尿素
X-12-967YP:2-(3-トリメトキシシリルプロピル)-4-(N-t-ブチル)アミノ-4-オキソブタン酸(信越化学工業(株)製)
ZC-150:オルガチックス(登録商標)ZC-150(マツモトファインケミカル(株)製;テトラキス(アセチルアセトナート)ジルコニウム(IV))
ナーセムMg:ナーセム(登録商標)マグネシウム(日本化学産業(株)製;ビス(アセチルアセトナート)マグネシウム(II))
 合成例1 アクリル樹脂溶液(A-01)の合成
 フラスコに2,2’-アゾビス(イソブチロニトリル)を0.821g(1mol%)、PGMEAを34.64g仕込んだ。次に、メタクリル酸ベンジルを26.43g(30mol%)、メタクリル酸を21.52g(50mol%)、メタクリル酸トリシクロ[5.2.1.02,6]デカン-8-イルを22.03g(20mol%)仕込み、室温でしばらく撹拌して、フラスコ内をバブリングによって十分に窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液にメタクリル酸グリシジルを14.22g(20mol%)、ジメチルベンジルアミンを0.676g(1mol%)、4-メトキシフェノールを0.186g(0.3mol%)、PGMEAを70.33g添加し、90℃で4時間加熱撹拌して、アクリル樹脂溶液(A-01)を得た。得られたアクリル樹脂溶液(A-01)に、固形分濃度が35重量%になるようにPGMEAを添加した。アクリル樹脂のMwは30,000、カルボン酸当量は480であり、二重結合当量は840であった。
 合成例2 アクリル樹脂溶液(A-02)の合成
 2,2’-アゾビス(イソブチロニトリル)を0.821g(1mol%)、PGMEAを32.46g、メタクリル酸ベンジルを44.05g(50mol%)、メタクリル酸を21.52g(50mol%)、メタクリル酸グリシジルを14.22g(20mol%)、ジメチルベンジルアミンを0.676g(1mol%)、4-メトキシフェノールを0.186g(0.3mol%)、PGMEAを65.90g使用し、合成例1と同様に重合をして、アクリル樹脂溶液(A-02)を得た。得られたアクリル樹脂溶液(A-02)に、固形分濃度が35重量%になるようにPGMEAを添加した。アクリル樹脂のMwは33,000、カルボン酸当量は490であり、二重結合当量は800であった。
 合成例3 アクリル樹脂溶液(A-03)の合成
 2,2’-アゾビス(イソブチロニトリル)を0.821g(1mol%)、PGMEAを29.29g、メタクリル酸を21.52g(50mol%)、メタクリル酸トリシクロ[5.2.1.02,6]デカン-8-イルを22.03g(20mol%)、スチレンを15.62g(30mol%)、メタクリル酸グリシジルを14.22g(20mol%)、ジメチルベンジルアミンを0.676g(1mol%)、4-メトキシフェノールを0.186g(0.3mol%)、PGMEAを59.47g使用し、合成例1と同様に重合をして、アクリル樹脂溶液(A-03)を得た。得られたアクリル樹脂溶液(A-03)に、固形分濃度が35重量%になるようにPGMEAを添加した。アクリル樹脂のMwは15,000、カルボン酸当量は510であり、二重結合当量は730であった。
 合成例4 アクリル樹脂溶液(A-04)の合成
 2,2’-アゾビス(イソブチロニトリル)を0.821g(1mol%)、PGMEAを23.34g、メタクリル酸を21.52g(50mol%)、メタクリル酸メチルを10.01g(20mol%)、スチレンを15.62g(30mol%)、メタクリル酸グリシジルを14.22g(20mol%)、ジメチルベンジルアミンを0.676g(1mol%)、4-メトキシフェノールを0.186g(0.3mol%)、PGMEAを47.39g使用し、合成例1と同様に重合をして、アクリル樹脂溶液(A-04)を得た。得られたアクリル樹脂溶液(A-04)に、固形分濃度が35重量%になるようにPGMEAを添加した。アクリル樹脂のMwは20,000、カルボン酸当量は500であり、二重結合当量は610であった。
 合成例5 アクリル樹脂溶液(A-05)の合成
 2,2’-アゾビス(イソブチロニトリル)を0.821g(1mol%)、PGMEAを23.54g、メタクリル酸を21.52g(50mol%)、スチレンを26.04g(50mol%)、メタクリル酸グリシジルを14.22g(20mol%)、ジメチルベンジルアミンを0.676g(1mol%)、4-メトキシフェノールを0.186g(0.3mol%)、PGMEAを47.80g使用し、合成例1と同様に重合をして、アクリル樹脂溶液(A-05)を得た。得られたアクリル樹脂溶液(A-05)に、固形分濃度が35重量%になるようにPGMEAを添加した。アクリル樹脂のMwは12,000、カルボン酸当量は490であり、二重結合当量は610であった。
 合成例6 アクリル樹脂溶液(A-06)の合成
 2,2’-アゾビス(イソブチロニトリル)を0.821g(1mol%)、PGMEAを23.98g、メタクリル酸を28.41g(66mol%)、メタクリル酸トリシクロ[5.2.1.02,6]デカン-8-イルを4.41g(4mol%)、スチレンを15.62g(30mol%)、メタクリル酸グリシジルを25.59g(36mol%)、ジメチルベンジルアミンを0.676g(1mol%)、4-メトキシフェノールを0.186g(0.3mol%)、PGMEAを48.68g使用し、合成例1と同様に重合をして、アクリル樹脂溶液(A-06)を得た。得られたアクリル樹脂溶液(A-06)に、固形分濃度が35重量%になるようにPGMEAを添加した。アクリル樹脂のMwは16,000、カルボン酸当量は490であり、二重結合当量は410であった。
 合成例7 アクリル樹脂溶液(A-07)の合成
 2,2’-アゾビス(イソブチロニトリル)を0.821g(1mol%)、PGMEAを32.61g、メタクリル酸を17.22g(40mol%)、メタクリル酸トリシクロ[5.2.1.02,6]デカン-8-イルを33.05g(30mol%)、スチレンを15.62g(30mol%)、メタクリル酸グリシジルを7.11g(10mol%)、ジメチルベンジルアミンを0.676g(1mol%)、4-メトキシフェノールを0.186g(0.3mol%)、PGMEAを66.22g使用し、合成例1と同様に重合をして、アクリル樹脂溶液(A-07)を得た。得られたアクリル樹脂溶液(A-07)に、固形分濃度が35重量%になるようにPGMEAを添加した。アクリル樹脂のMwは14,000、カルボン酸当量は480であり、二重結合当量は1,450であった。
 合成例8 アクリル樹脂溶液(A-08)の合成
 2,2’-アゾビス(イソブチロニトリル)を0.821g(1mol%)、PGMEAを33.28g、メタクリル酸を16.36g(38mol%)、メタクリル酸トリシクロ[5.2.1.02,6]デカン-8-イルを35.25g(32mol%)、スチレンを15.62g(30mol%)、メタクリル酸グリシジルを5.69g(8mol%)、ジメチルベンジルアミンを0.676g(1mol%)、4-メトキシフェノールを0.186g(0.3mol%)、PGMEAを67.57g使用し、合成例1と同様に重合をして、アクリル樹脂溶液(A-08)を得た。得られたアクリル樹脂溶液(A-08)に、固形分濃度が35重量%になるようにPGMEAを添加した。アクリル樹脂のMwは14,000、カルボン酸当量は480であり、二重結合当量は1,810であった。
 合成例9 アクリル樹脂溶液(A-09)の合成
 2,2’-アゾビス(イソブチロニトリル)を0.821g(1mol%)、PGMEAを34.94g、メタクリル酸を14.20g(33mol%)、メタクリル酸トリシクロ[5.2.1.02,6]デカン-8-イルを40.76g(37mol%)、スチレンを15.62g(30mol%)、メタクリル酸グリシジルを2.13g(3mol%)、ジメチルベンジルアミンを0.676g(1mol%)、4-メトキシフェノールを0.186g(0.3mol%)、PGMEAを70.94g使用し、合成例1と同様に重合をして、アクリル樹脂溶液(A-09)を得た。得られたアクリル樹脂溶液(A-09)に、固形分濃度が35重量%になるようにPGMEAを添加した。アクリル樹脂のMwは13,000、カルボン酸当量は480であり、二重結合当量は4,820であった。
 合成例10 アクリル樹脂溶液(A-10)の合成
 2,2’-アゾビス(イソブチロニトリル)を0.821g(1mol%)、PGMEAを35.27g、メタクリル酸を13.77g(32mol%)、メタクリル酸トリシクロ[5.2.1.02,6]デカン-8-イルを41.86g(38mol%)、スチレンを15.62g(30mol%)、メタクリル酸グリシジルを1.42g(2mol%)、ジメチルベンジルアミンを0.676g(1mol%)、4-メトキシフェノールを0.186g(0.3mol%)、PGMEAを71.61g使用し、合成例1と同様に重合をして、アクリル樹脂溶液(A-10)を得た。得られたアクリル樹脂溶液(A-10)に、固形分濃度が35重量%になるようにPGMEAを添加した。アクリル樹脂のMwは13,000、カルボン酸当量は490であり、二重結合当量は6,580であった。
 合成例11 アクリル樹脂溶液(A-11)の合成
 フラスコに2,2’-アゾビス(イソブチロニトリル)を0.821g(1mol%)、PGMEAを27.36g仕込んだ。次に、メタクリル酸を21.52g(50mol%)、メタクリル酸トリシクロ[5.2.1.02,6]デカン-8-イルを11.02g(10mol%)、スチレンを15.62g(30mol%)、メタクリル酸グリシジルを7.11g(10mol%)仕込み、室温でしばらく撹拌して、フラスコ内をバブリングによって十分に窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液にメタクリル酸グリシジルを14.22g(20mol%)、ジメチルベンジルアミンを0.676g(1mol%)、4-メトキシフェノールを0.186g(0.3mol%)、PGMEAを55.54g添加し、90℃で4時間加熱撹拌して、アクリル樹脂溶液(A-11)を得た。得られたアクリル樹脂溶液(A-11)に、固形分濃度が35重量%になるようにPGMEAを添加した。アクリル樹脂のMwは14,000、カルボン酸当量は460であり、二重結合当量は690であった。
 合成例12 アクリル樹脂溶液(A-12)の合成
 2,2’-アゾビス(イソブチロニトリル)を0.821g(1mol%)、PGMEAを22.04g、メタクリル酸を38.74g(90mol%)、メタクリル酸トリシクロ[5.2.1.02,6]デカン-8-イルを1.10g(1mol%)、スチレンを4.69g(9mol%)、メタクリル酸グリシジルを42.65g(60mol%)、ジメチルベンジルアミンを0.676g(1mol%)、4-メトキシフェノールを0.186g(0.3mol%)、PGMEAを44.75g使用し、合成例1と同様に重合をして、アクリル樹脂溶液(A-12)を得た。得られたアクリル樹脂溶液(A-12)に、固形分濃度が35重量%になるようにPGMEAを添加した。アクリル樹脂のMwは19,000、カルボン酸当量は580であり、二重結合当量は290であった。
 合成例13 ポリシロキサン溶液(A-13)の合成
 三口フラスコにメチルトリメトキシシランを23.84g(35mol%)、フェニルトリメトキシシランを19.83g(20mol%)、3-トリメトキシシリルプロピルコハク酸無水物を13.12g(10mol%)、3-アクリロキシプロピルトリメトキシシランを41.01g(35mol%)、DAAを62.14g仕込んだ。フラスコ内に窒素を0.05L/minで流し、混合溶液を撹拌しながらオイルバスで40℃に加熱した。混合溶液をさらに撹拌しながら、水27.93gにリン酸0.196gを溶かしたリン酸水溶液を10分かけて添加した。添加終了後、40℃で30分間撹拌して、シラン化合物を加水分解させた。その後、バス温を70℃に設定して1時間撹拌した後、続いてバス温を115℃まで昇温した。昇温開始後、約1時間後に溶液の内温が100℃に到達し、そこから1~3時間加熱撹拌した(内温は100~110℃)。1~3時間加熱撹拌して得られた樹脂溶液を氷浴にて冷却した後、陰イオン交換樹脂及び陽イオン交換樹脂を、それぞれ樹脂溶液に対して2重量%加えて12時間撹拌した。撹拌後、陰イオン交換樹脂及び陽イオン交換樹脂をろ過して除去し、ポリシロキサン溶液(A-13)を得た。得られたポリシロキサン溶液(A-13)の固形分濃度は40重量%、水分率は1.6重量%、ポリシロキサンのMwは5,500、カルボン酸当量は780であり、二重結合当量は440であった。
 合成例14 ポリシロキサン溶液(A-14)の合成
 メチルトリメトキシシランを13.62g(20mol%)、フェニルトリメトキシシランを34.70g(35mol%)、3-トリメトキシシリルプロピルコハク酸無水物を13.12g(10mol%)、3-アクリロキシプロピルトリメトキシシランを41.01g(35mol%)、DAAを66.62g、水を27.93g、リン酸を0.205g使用し、合成例13と同様に重合をして、ポリシロキサン溶液(A-14)を得た。得られたポリシロキサン溶液(A-14)の固形分濃度は38重量%、水分率は2.4重量%、ポリシロキサンのMwは5,000、カルボン酸当量は820であり、二重結合当量は470であった。
 合成例15 ポリシロキサン溶液(A-15)の合成
 メチルトリメトキシシランを23.84g(35mol%)、1-ナフチルトリメトキシシラン(50重量%のIPA溶液)を49.67g(20mol%)、3-トリメトキシシリルプロピルコハク酸無水物を13.12g(10mol%)、3-アクリロキシプロピルトリメトキシシランを41.01g(35mol%)、DAAを66.95g、水を27.93g、リン酸を0.206g使用し、合成例13と同様に重合をして、ポリシロキサン溶液(A-15)を得た。得られたポリシロキサン溶液(A-15)の固形分濃度は39重量%、水分率は1.8重量%、ポリシロキサンのMwは5,300、カルボン酸当量は830であり、二重結合当量は470であった。
 合成例16 ポリシロキサン溶液(A-16)の合成
 メチルトリメトキシシランを23.84g(35mol%)、フェニルトリメトキシシランを19.83g(20mol%)、3-トリメトキシシリルプロピルコハク酸無水物を13.12g(10mol%)、3-メタクリロキシプロピルトリメトキシシランを43.46g(35mol%)、DAAを64.50g、水を27.93g、リン酸を0.200g使用し、合成例13と同様に重合をして、ポリシロキサン溶液(A-16)を得た。得られたポリシロキサン溶液(A-16)の固形分濃度は39重量%、水分率は1.9重量%、ポリシロキサンのMwは5,300、カルボン酸当量は800であり、二重結合当量は460であった。
 合成例17 ポリシロキサン溶液(A-17)の合成
 メチルトリメトキシシランを17.03g(25mol%)、フェニルトリメトキシシランを19.83g(20mol%)、3-トリメトキシシリルプロピルコハク酸無水物を13.12g(10mol%)、3-アクリロキシプロピルトリメトキシシランを41.01g(35mol%)、テトラメトキシシランを7.61g(10mol%)、DAAを61.80g、水を28.83g、リン酸を0.197g使用し、合成例13と同様に重合をして、ポリシロキサン溶液(A-17)を得た。得られたポリシロキサン溶液(A-17)の固形分濃度は41重量%、水分率は1.6重量%、ポリシロキサンのMwは5,700、カルボン酸当量は780であり、二重結合当量は440であった。
 合成例18 ポリシロキサン溶液(A-18)の合成
 メチルトリメトキシシランを17.03g(25mol%)、フェニルトリメトキシシランを19.83g(20mol%)、3-トリメトキシシリルプロピルコハク酸無水物を26.23g(20mol%)、3-アクリロキシプロピルトリメトキシシランを41.01g(35mol%)、DAAを69.50g、水を28.83g、リン酸を0.208g使用し、合成例13と同様に重合をして、ポリシロキサン溶液(A-18)を得た。得られたポリシロキサン溶液(A-18)の固形分濃度は42重量%、水分率は1.4重量%、ポリシロキサンのMwは5,900、カルボン酸当量は430であり、二重結合当量は480であった。
 合成例19 ポリシロキサン溶液(A-19)の合成
 メチルトリメトキシシランを17.03g(25mol%)、フェニルトリメトキシシランを19.83g(20mol%)、3-トリメトキシシリルプロピルコハク酸無水物を13.12g(10mol%)、3-アクリロキシプロピルトリメトキシシランを52.72g(45mol%)、DAAを66.86g、水を27.93g、リン酸を0.205g使用し、合成例13と同様に重合をして、ポリシロキサン溶液(A-19)を得た。得られたポリシロキサン溶液(A-19)の固形分濃度は42重量%、水分率は1.7重量%、ポリシロキサンのMwは5,800、カルボン酸当量は830であり、二重結合当量は370であった。
 合成例20 ポリシロキサン溶液(A-20)の合成
 メチルトリメトキシシランを34.06g(50mol%)、フェニルトリメトキシシランを19.83g(20mol%)、3-トリメトキシシリルプロピルコハク酸無水物を13.12g(10mol%)、3-アクリロキシプロピルトリメトキシシランを23.43g(20mol%)、DAAを55.06g、水を27.93g、リン酸を0.181g使用し、合成例13と同様に重合をして、ポリシロキサン溶液(A-20)を得た。得られたポリシロキサン溶液(A-20)の固形分濃度は39重量%、水分率は1.8重量%、ポリシロキサンのMwは5,000、カルボン酸当量は700であり、二重結合当量は700であった。
 合成例21 ポリシロキサン溶液(A-21)の合成
 メチルトリメトキシシランを40.87g(60mol%)、フェニルトリメトキシシランを19.83g(20mol%)、3-トリメトキシシリルプロピルコハク酸無水物を13.12g(10mol%)、3-アクリロキシプロピルトリメトキシシランを11.72g(10mol%)、DAAを50.34g、水を27.93g、リン酸を0.171g使用し、合成例13と同様に重合をして、ポリシロキサン溶液(A-21)を得た。得られたポリシロキサン溶液(A-21)の固形分濃度は38重量%、水分率は1.9重量%、ポリシロキサンのMwは4,600、カルボン酸当量は650であり、二重結合当量は1,310であった。
 合成例22 ポリシロキサン溶液(A-22)の合成
 メチルトリメトキシシランを42.91g(63mol%)、フェニルトリメトキシシランを19.83g(20mol%)、3-トリメトキシシリルプロピルコハク酸無水物を13.12g(10mol%)、3-アクリロキシプロピルトリメトキシシランを8.20g(7mol%)、DAAを48.93g、水を27.93g、リン酸を0.168g使用し、合成例13と同様に重合をして、ポリシロキサン溶液(A-22)を得た。得られたポリシロキサン溶液(A-22)の固形分濃度は38重量%、水分率は1.8重量%、ポリシロキサンのMwは4,500、カルボン酸当量は640であり、二重結合当量は1,830であった。
 合成例23 ポリシロキサン溶液(A-23)の合成
 メチルトリメトキシシランを45.63g(67mol%)、フェニルトリメトキシシランを19.83g(20mol%)、3-トリメトキシシリルプロピルコハク酸無水物を13.12g(10mol%)、3-アクリロキシプロピルトリメトキシシランを3.51g(3mol%)、DAAを47.04g、水を27.93g、リン酸を0.164g使用し、合成例13と同様に重合をして、ポリシロキサン溶液(A-23)を得た。得られたポリシロキサン溶液(A-23)の固形分濃度は37重量%、水分率は2.0重量%、ポリシロキサンのMwは4,400、カルボン酸当量は620であり、二重結合当量は4,130であった。
 合成例24 ポリシロキサン溶液(A-24)の合成
 メチルトリメトキシシランを46.31g(68mol%)、フェニルトリメトキシシランを19.83g(20mol%)、3-トリメトキシシリルプロピルコハク酸無水物を13.12g(10mol%)、3-アクリロキシプロピルトリメトキシシランを2.34g(2mol%)、DAAを46.57g、水を27.93g、リン酸を0.163g使用し、合成例13と同様に重合をして、ポリシロキサン溶液(A-24)を得た。得られたポリシロキサン溶液(A-24)の固形分濃度は37重量%、水分率は2.0重量%、ポリシロキサンのMwは4,300、カルボン酸当量は620であり、二重結合当量は6,150であった。
 合成例25 ポリシロキサン溶液(A-25)の合成
 メチルトリメトキシシランを17.03g(25mol%)、フェニルトリメトキシシランを19.83g(20mol%)、3-トリメトキシシリルプロピルコハク酸無水物を13.12g(10mol%)、3-アクリロキシプロピルトリメトキシシランを41.01g(35mol%)、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランを12.32g(10mol%)、DAAを66.33g、水を28.83g、リン酸を0.207g使用し、合成例13と同様に重合をして、ポリシロキサン溶液(A-25)を得た。得られたポリシロキサン溶液(A-25)の固形分濃度は42重量%、水分率は1.5重量%、ポリシロキサンのMwは5,800、カルボン酸当量は830であり、二重結合当量は480であった。
 合成例26 ポリシロキサン溶液(A-26)の合成
 メチルトリメトキシシランを4.77g(7mol%)、フェニルトリメトキシシランを19.83g(20mol%)、3-トリメトキシシリルプロピルコハク酸無水物を13.12g(10mol%)、3-アクリロキシプロピルトリメトキシシランを73.81g(63mol%)、DAAを75.35g、水を27.93g、リン酸を0.223g使用し、合成例13と同様に重合をして、ポリシロキサン溶液(A-26)を得た。得られたポリシロキサン溶液(A-26)の固形分濃度は44重量%、水分率は1.5重量%、ポリシロキサンのMwは6,400、カルボン酸当量は910であり、二重結合当量は290であった。
 合成例27 シラン化合物溶液(E-1)の合成
 三口フラスコにテトラメトキシシランを30.44g(100mol%)、DAAを19.97g仕込んだ。フラスコ内に空気を0.05L/minで流し、混合溶液を撹拌しながらオイルバスで40℃に加熱した。混合溶液をさらに撹拌しながら、水14.42gにリン酸0.061gを溶かしたリン酸水溶液を10分かけて添加した。添加終了後、40℃で30分間撹拌して、シラン化合物を加水分解させた。その後、バス温を50℃まで昇温し、50℃で1時間撹拌した。1時間撹拌して得られた溶液を氷浴にて冷却した後、陰イオン交換樹脂及び陽イオン交換樹脂を、それぞれ溶液に対して2重量%加えて12時間撹拌した。撹拌後、陰イオン交換樹脂及び陽イオン交換樹脂をろ過して除去し、シラン化合物溶液(E-1)を得た。得られたシラン化合物溶液(E-1)の固形分濃度は19重量%、水分率は10重量%であった。
 合成例28 シラン化合物溶液(E-2)の合成
 三口フラスコにMシリケート51(多摩化学工業(株)製)を23.53g(100mol%)、DAAを19.96g仕込んだ。フラスコ内に空気を0.05L/minで流し、混合溶液を撹拌しながらオイルバスで40℃に加熱した。混合溶液をさらに撹拌しながら、水9.01gにリン酸0.047gを溶かしたリン酸水溶液を10分かけて添加した。添加終了後、40℃で30分間撹拌して、シラン化合物を加水分解させた。その後、バス温を50℃まで昇温し、50℃で1時間撹拌した。1時間撹拌して得られた溶液を氷浴にて冷却した後、陰イオン交換樹脂及び陽イオン交換樹脂を、それぞれ溶液に対して2重量%加えて12時間撹拌した。撹拌後、陰イオン交換樹脂及び陽イオン交換樹脂をろ過して除去し、シラン化合物溶液(E-2)を得た。得られたシラン化合物溶液(E-2)の固形分濃度は22重量%、水分率は8.0重量%であった。
 合成例1~26の組成を、まとめて表1及び2に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 実施例1における評価方法を以下に示す。
 (1)樹脂溶液の固形分濃度
 重量を測定したアルミカップに樹脂溶液を1g秤量し、ホットプレート(HP-1SA;アズワン(株)製)を用いて250℃で30分間加熱して蒸発乾固させた。加熱後、固形分が残存したアルミカップの重量を測定し、加熱前後の重量の差分から残存した固形分の重量を算出し、樹脂溶液の固形分濃度を求めた。
 (2)樹脂溶液の水分率
 カールフィッシャー水分率計(MKS-520;京都電子工業(株)製)を用い、滴定試薬としてカールフィッシャー試薬(HYDRANAL(登録商標)-コンポジット5;Sigma-Aldrich製)を用いて、「JIS K0113(2005)」に基づき、容量滴定法により、水分率測定を行った。
 (3)樹脂の重量平均分子量(Mw)
 GPC分析装置(HLC-8220;東ソー(株)製)を用い、流動層としてTHFを用いてGPC測定を行い、ポリスチレン換算により求めた。
 (4)カルボン酸当量
 電位差自動滴定装置(AT-510;京都電子工業(株)製)を用い、滴定試薬として0.1mol/LのNaOH/EtOH溶液を用いて、「JIS K2501(2003)」に基づき、電位差滴定法により、酸価を測定して算出した。
 (5)二重結合当量
 「JIS K0070(1992)」に基づき、樹脂のヨウ素価を測定して算出した。
 (6)ポリシロキサン中の各オルガノシラン単位の含有比率
 29Si-NMRの測定を行い、オルガノシラン由来のSi全体の積分値に対する、特定のオルガノシラン単位由来のSiの積分値の割合を算出して、それらの含有比率を計算した。試料(液体)は、直径10mmのテフロン(登録商標)製NMRサンプル管に注入して測定に用いた。29Si-NMR測定条件を以下に示す。
装置:核磁気共鳴装置(JNM-GX270;日本電子(株)製)
測定法:ゲーテッドデカップリング法
測定核周波数:53.6693MHz(29Si核)
スペクトル幅:20000Hz
パルス幅:12μs(45°パルス)
パルス繰り返し時間:30.0s
溶媒:アセトン-d6
基準物質:テトラメチルシラン
測定温度:室温
試料回転数:0.0Hz
 (7)基板の前処理
 Mo/Al/Moの3層をスパッタにより成膜したガラス基板(三容真空工業(株)製;以下、「MAM基板」)、ITOをスパッタにより成膜したガラス基板(三容真空工業(株)製;以下、「ITO基板」)を、卓上型光表面処理装置(PL16-110;セン特殊光源(株)製)を用いて、100秒間UV-O洗浄後、超純水で洗浄し、圧縮空気のエアーガンで表面の水滴を飛ばし、ホットプレートを用いて、130℃で3分間加熱して脱水ベーク処理をして使用した。テンパックスガラス基板(AGCテクノグラス(株)製)、単層Crをスパッタにより成膜したガラス基板(単層Cr成膜基板;(株)倉元製作所製;以下、「Cr基板」)は、前処理をせずに使用した。
 (8)感度
 Cr基板上に、下記、実施例1記載の方法で、感光性樹脂組成物の現像後膜を作製した。現像後、FPD検査顕微鏡(MX-61L;オリンパス(株)製)を用いて解像パターンを観察し、30μmのライン・アンド・スペースパターンを1対1の幅に形成する露光量(i線照度計の値、以下、「最適露光量」)を感度とした。
 (9)解像度
 Cr基板上に、下記、実施例1記載の方法で、感光性樹脂組成物の硬化膜を作製した。FPD検査顕微鏡を用いて、作製した硬化膜の解像パターンを観察し、最適露光量における最小パターン寸法を解像度とした。
 (10)透過率
 テンパックスガラス基板上に、下記、実施例1記載の方法で、感光性樹脂組成物の硬化膜を作製した。紫外可視分光光度計(MultiSpec-1500;(株)島津製作所製)を用いて、まずテンパックスガラス基板のみを測定し、その紫外可視吸収スペクトルをリファレンスとした。次に、作製した硬化膜をシングルビームで測定し、ランベルト・ベールの法則に基づいて波長400nmにおける膜厚1.5μm当たりの透過率を求め、リファレンスとの差異から透過率を算出した。
 (11)硬度
 Cr基板上に、下記、実施例1記載の方法で、感光性樹脂組成物の硬化膜を作製した。手動式鉛筆引っかき硬度試験器(850-56;コーティングテスター(株)製)を用いて、「JIS K5600-5-4(1999)」に基づき、作製した硬化膜の硬度を測定した。
 (12)耐湿熱性
 MAM基板上に、下記、実施例1記載の方法で、感光性樹脂組成物の硬化膜を作製した。作製した硬化膜について、高度加速寿命測定装置(ハストチャンバー EHS-221MD)を用いたプレッシャークッカー試験(温度=121℃、湿度=100%RH、気圧=2atm)を行い、20時間放置した。プレッシャークッカー試験の20時間後、MAM基板上の、MAM表面が黒く変色した面積及び硬化膜表面の外観変化の有無を目視によって評価した。MAM表面の変色面積及び硬化膜表面の外観変化によって以下のように判定し、A+、A及びBを合格とした。
A+:MAM表面の変色面積=0%、かつ硬化膜表面の外観変化なし
A:MAM表面の変色面積<5%、硬化膜表面の外観変化なし
B:MAM表面の変色面積5~14%、硬化膜表面の外観変化なし
C:MAM表面の変色面積15~34%、硬化膜表面の外観変化なし
D:MAM表面の変色面積35~64%、硬化膜表面の外観変化なし
E:MAM表面の変色面積65~100%、硬化膜表面の外観変化なし
F:MAM表面の変色面積65~100%、硬化膜表面にクラック、あるいは硬化膜が基板から剥離。
 (13)MAM基板に対する密着性と保管安定性
 MAM基板上に、下記、実施例1記載の方法で、感光性樹脂組成物の硬化膜を作製した。
 次いで、「JIS K5600-5-6(1999)」に基づき、硬化膜の基板との密着性を測定した。具体的な測定方法を以下に記載する。MAM基板上の、硬化膜表面からMAM表面まで到達するように、カッターナイフを用いて、硬化膜に直交する縦11本×横11本の平行な直線を1mm間隔で引いて、1mm×1mmのマス目を100個作製した。次に、マス目を作製した硬化膜表面に、セロテープ(登録商標)(No.405(産業用);ニチバン(株)製;幅=18mm、厚さ=0.050mm、粘着力=3.93N/10mm、引っ張り強さ=41.6N/10mm)を貼り付け、消しゴム(「JIS S6050(2008)合格品」)で擦って密着させ、テープの一端を持ち、MAM基板に対して直角を保って瞬間的に剥離した。剥離後、マス目の剥離数を目視によって評価した。マス目の剥離面積によって以下のように判定し、3B以上を合格とした。
5B:剥離面積=0%
4B:剥離面積<5%
3B:剥離面積=5~14%
2B:剥離面積=15~34%
1B:剥離面積=35~64%
0B:剥離面積=65~100%
 下記、実施例1記載の方法で調製した、感光性樹脂組成物の一部を、23℃で7日間放置した。7日経過後、MAM基板上に、下記、実施例1記載の方法で、23℃で7日放置後の感光性樹脂組成物の硬化膜を作製した。作製した硬化膜を、上記と同様の方法で、「JIS K5600-5-6(1999)」に基づき、硬化膜の基板との密着性を測定した。
 (14)酸薬液に対する耐薬品性と保管安定性
 ITO基板上に、下記、実施例1記載の方法で、感光性樹脂組成物の硬化膜を作製した。作製した硬化膜を、40℃に加熱した酸薬液(重量比:HCl/HNO/HO=50/7.5/42.5)に240秒間浸漬し、水で2分間リンスした。次いで、上記(13)と同様の方法で、「JIS K5600-5-6(1999)」に基づき、硬化膜の基板との密着性を測定した。
 下記、実施例1記載の方法で調製した、感光性樹脂組成物の一部を、23℃で7日間放置した。7日経過後、ITO基板上に、下記、実施例1記載の方法で、23℃で7日放置後の感光性樹脂組成物の硬化膜を作製した。作製した硬化膜を、40℃に加熱した酸薬液(重量比:HCl/HNO/水=50/7.5/42.5)に240秒間浸漬し、水で2分間リンスした。次いで、上記(13)と同様の方法で、「JIS K5600-5-6(1999)」に基づき、硬化膜の基板との密着性を測定した。
 (15)アルカリ薬液に対する耐薬品性と保管安定性
 ITO基板上に、下記、実施例1記載の方法で、感光性樹脂組成物の硬化膜を作製した。作製した硬化膜を、60℃に加熱したアルカリ薬液(重量比:DMSO/MEA=30/70)に120秒間浸漬し、水で2分間リンスした。次いで、上記(13)と同様の方法で、「JIS K5600-5-6(1999)」に基づき、硬化膜の基板との密着性を測定した。
 下記、実施例1記載の方法で調製した、感光性樹脂組成物の一部を、23℃で7日間放置した。7日経過後、ITO基板上に、下記、実施例1記載の方法で、23℃で7日放置後の感光性樹脂組成物の硬化膜を作製した。作製した硬化膜を、60℃に加熱したアルカリ薬液(重量比:DMSO/MEA=30/70)に120秒間浸漬し、水で2分間リンスした。次いで、上記(13)と同様の方法で、「JIS K5600-5-6(1999)」に基づき、硬化膜の基板との密着性を測定した。
 実施例1
 黄色灯下、OXE-01を0.332g、ZC-150を0.0663g秤量し、PGMEAを2.046g、MBを2.730g、DAAを1.750g添加し、撹拌して溶解させた。次に、BYK-333の5重量%のPGMEA溶液を0.150g添加し、撹拌した。次いで、合成例1で得られたアクリル樹脂溶液(A-01)(35重量%のPGMEA溶液)を9.472g、DPHAの80重量%のPGMEA溶液を4.144g添加して撹拌した。さらに、KBM-903の5重量%のMB溶液を2.652g、KBM-04の20重量%のPGMEA溶液を1.658g添加して撹拌し、均一溶液とした。その後、得られた溶液を0.2μmのフィルターでろ過し、ネガ型の感光性樹脂組成物1を調製した。
 調製した感光性樹脂組成物1を、基板上にスピンコーター(MS-A100;ミカサ(株)製)を用いて任意の回転数でスピンコーティングにより塗布した後、ホットプレート(SCW-636;大日本スクリーン製造(株)製)を用いて100℃で3分間プリベークし、膜厚約2.0μmのプリベーク膜を作製した。
 作製したプリベーク膜を、両面アライメント片面露光装置(マスクアライナー PEM-6M;ユニオン光学(株)製)を用いて、感度測定用のグレースケールマスク(MDRM MODEL 4000-5-FS;Opto-Line International製)を介して、超高圧水銀灯のj線(波長313nm)、i線(波長365nm)、h線(波長405nm)及びg線(波長436nm)でパターニング露光した。露光後、フォトリソ用小型現像装置(AD-2000;滝沢産業(株)製)を用いて、0.4%又は2.38重量%TMAH水溶液で90秒間現像し、水で30秒間リンスした。現像後、イナートオーブン(DN43HI;ヤマト科学(株)製)を用いて、窒素雰囲気下、230℃で1時間熱硬化して、膜厚約1.5μmの硬化膜を作製した。
 実施例2~68及び比較例1~10
 感光性樹脂組成物1と同様に、感光性樹脂組成物2~78を表3~8に記載の組成にて調製した。得られた各感光性樹脂組成物を用いて、実施例1と同様に感光特性及び硬化膜の特性の評価を行った。それらの結果を、まとめて表9~14に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 実施例69
 以下の手順に従い、タッチパネル部材を作製した。
 (1)ITOの作製
 厚み約1mmのガラス基板に、スパッタリング装置を用いて、RFパワー1.4kW、真空度6.65×10-1Paで12.5分間スパッタリングすることにより、膜厚が150nmで、表面抵抗が15Ω/□のITOを成膜した。次に、ポジ型フォトレジストOFPR-800を、ITO上にスピンコーターを用いて任意の回転数でスピンコーティングにより塗布した後、ホットプレートを用いて80℃で20分間プリベークし、膜厚1.1μmのレジスト膜を得た。作製したレジスト膜を、両面アライメント片面露光装置を用いて、超高圧水銀灯のj線(波長313nm)、i線(波長365nm)、h線(波長405nm)及びg線(波長436nm)を、マスクを介してパターニング露光した後、フォトリソ用小型現像装置を用いて、2.38重量%TMAH水溶液で90秒間現像し、水で30秒間リンスした。その後、40℃に加熱したITOエッチング液(重量比:HCl/HNO/HO=18/4.5/77.5)に80秒浸漬してITOをエッチングし、水で2分間リンスした。次いで、50℃に加熱したレジスト剥離液N-300(重量比:MEA/BDG=30/70)に2分間浸漬してレジスト膜を除去し、膜厚150nmのパターン加工されたITO(図1及び図2の符号2)を有するガラス基板を作製した(図1のaに相当)。
 (2)透明絶縁膜の作製
 (1)で作製したガラス基板上に、感光性樹脂組成物1を用いて、上記、実施例1記載の方法で、感光性樹脂組成物の透明絶縁膜(図1及び図2の符号3)を作製した(図1のbに相当)。
 (3)MAM配線の作製
 (2)で作製したガラス基板上に、ターゲットとしてモリブデン及びアルミニウム、MAMエッチング液として酸薬液(重量比:HPO/HNO/AcOH/HO=65/3/5/27)を用い、(1)と同様の方法で、MAM配線(図1及び図2の符号4)を作製した(図1のcに相当)。
 (4)透明保護膜の作製
 (3)で作製したガラス基板上に、感光性樹脂組成物1を用いて、上記、実施例1記載の方法で、感光性樹脂組成物の透明保護膜を作製した。デジタルマルチメータ(CDM-09N;(株)カスタム製)を用いて接続部の導通テスト実施したところ、電流の導通が確認された(図2に相当)。
a:透明電極形成後の上面図
b:絶縁膜形成後の上面図
c:金属配線形成後の上面図
1:ガラス基板
2:透明電極
3:透明絶縁膜
4:配線電極
5:透明保護膜
 本発明の感光性樹脂組成物を熱硬化して得られる硬化膜は、タッチパネルの保護膜などの各種ハードコート膜の他、タッチセンサー用絶縁膜、液晶や有機ELディスプレイのTFT用平坦化膜、金属配線保護膜、絶縁膜、反射防止膜、反射防止フィルム、光学フィルター、カラーフィルター用オーバーコート、柱材などに好適に用いられる。
 

Claims (12)

  1.  (A)アルカリ可溶性樹脂、
     (D)金属キレート化合物、及び、
     (E)シラン化合物、を含有する感光性樹脂組成物であり、
     前記(A)アルカリ可溶性樹脂がエチレン性不飽和二重結合基を有し、二重結合当量が300~5,000g/molであり、前記(D)金属キレート化合物が、一般式(1)で表される化合物であり、前記(E)シラン化合物が、一般式(2)で表される四官能シラン又は一般式(2)で表される四官能シランを縮合させることによって得られるシランオリゴマーであることを特徴とする、感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)において、Mは、チタン、ジルコニウム、アルミニウム又はマグネシウムを表し、Rは、水素、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基又は炭素数6~15のアリール基を表し、R及びRは、それぞれ独立して、水素、炭素数1~20のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基、炭素数1~6のアルコキシ基又はヒドロキシ基を表し、n及びmは、0~4の整数を表し、n+m=2~4である。一般式(2)において、R~Rは、それぞれ独立して、水素、炭素数1~6のアルキル基、炭素数2~6のアシル基又は炭素数6~15のアリール基を表す。)
  2.  前記(A)アルカリ可溶性樹脂が、エポキシ基を有しないアルカリ可溶性樹脂である、請求項1記載の感光性樹脂組成物。
  3.  前記(A)アルカリ可溶性樹脂が、(A-1)アクリル樹脂及び(A-2)ポリシロキサンから選ばれる請求項1又は2記載の感光性樹脂組成物。
  4.  さらに(B)ラジカル重合性化合物を含有する、請求項1~3のいずれか一項記載の感光性樹脂組成物。
  5.  さらに(C)光重合開始剤を含有する、請求項1~4のいずれか一項記載の感光性樹脂組成物。
  6.  さらに(F)アミノ基、アミド基、ウレイド基、ケチミン基、イソシアネート基、メルカプト基、イソシアヌル環骨格、(メタ)アクリル基及びスチリル基からなる群から選ばれる置換基を有するシラン化合物を含有する、請求項1~5のいずれか一項記載の感光性樹脂組成物。
  7.  前記(B)ラジカル重合性化合物が、(B-1)多官能ラジカル重合性化合物及び(B-2)三官能又は四官能ラジカル重合性化合物を含有する、請求項4~6のいずれか一項記載の感光性樹脂組成物。
  8.  請求項1~7のいずれか一項記載の感光性樹脂組成物を熱硬化させてなる、金属配線の保護膜又は絶縁膜。
  9.  前記感光性樹脂組成物がネガ型の感光性を有する、請求項8記載の金属配線の保護膜又は絶縁膜。
  10.  前記金属配線が、モリブデン、銀、銅、アルミニウム及びCNTからなる群から選ばれる一種以上を含有する、請求項8又は9記載の金属配線の保護膜又は絶縁膜。
  11.  請求項8~10のいずれか一項記載の金属配線の保護膜又は絶縁膜を具備する、タッチパネル。
  12.  請求項8記載の金属配線の保護膜又は絶縁膜を用いるタッチパネルの製造方法。
     
PCT/JP2014/055591 2013-03-28 2014-03-05 感光性樹脂組成物、保護膜又は絶縁膜、タッチパネル及びその製造方法 WO2014156520A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480018021.4A CN105122137B (zh) 2013-03-28 2014-03-05 感光性树脂组合物、保护膜或绝缘膜、触摸面板及其制造方法
KR1020157026759A KR20150135320A (ko) 2013-03-28 2014-03-05 감광성 수지 조성물, 보호막 또는 절연막, 터치 패널 및 그 제조 방법
JP2014515390A JP6295950B2 (ja) 2013-03-28 2014-03-05 感光性樹脂組成物、保護膜又は絶縁膜、タッチパネル及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013068388 2013-03-28
JP2013-068388 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014156520A1 true WO2014156520A1 (ja) 2014-10-02

Family

ID=51623509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055591 WO2014156520A1 (ja) 2013-03-28 2014-03-05 感光性樹脂組成物、保護膜又は絶縁膜、タッチパネル及びその製造方法

Country Status (5)

Country Link
JP (1) JP6295950B2 (ja)
KR (1) KR20150135320A (ja)
CN (1) CN105122137B (ja)
TW (1) TWI597265B (ja)
WO (1) WO2014156520A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104789041A (zh) * 2015-04-23 2015-07-22 湖北金三峡印务有限公司 锆螯合物改性的复合碱可溶乳液及其制备的高复溶性水性油墨及方法
JP2016071379A (ja) * 2014-09-30 2016-05-09 富士フイルム株式会社 感光性組成物、硬化膜の製造方法、硬化膜、液晶表示装置、有機エレクトロルミネッセンス表示装置、タッチパネル及びタッチパネル表示装置
WO2016152373A1 (ja) * 2015-03-24 2016-09-29 富士フイルム株式会社 転写フィルム、静電容量型入力装置の電極用保護膜、積層体、積層体の製造方法および静電容量型入力装置
JP2017049587A (ja) * 2015-09-03 2017-03-09 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. ネガ型感光性樹脂組成物及びそれから形成される光硬化性パターン及び当該光硬化性パターンを備える画像表示装置
CN107272342A (zh) * 2016-03-30 2017-10-20 东友精细化工有限公司 负型感光树脂组合物
CN107850842A (zh) * 2015-08-28 2018-03-27 富士胶片株式会社 转印薄膜、静电电容型输入装置的电极保护膜、层叠体、层叠体的制造方法及静电电容型输入装置
TWI626507B (zh) * 2016-03-30 2018-06-11 東友精細化工有限公司 負型光敏性樹脂組成物
WO2019026458A1 (ja) * 2017-08-02 2019-02-07 東レ株式会社 シロキサン樹脂組成物、それを用いた接着剤、表示装置、半導体装置および照明装置
JP2019156909A (ja) * 2018-03-08 2019-09-19 味の素株式会社 樹脂組成物、シート状積層材料、プリント配線板及び半導体装置
JPWO2019130750A1 (ja) * 2017-12-27 2020-11-19 富士フイルム株式会社 転写フィルム、電極保護膜、積層体、静電容量型入力装置、及び、タッチパネルの製造方法
CN113467183A (zh) * 2020-03-30 2021-10-01 东友精细化工有限公司 绝缘膜形成用树脂组合物、利用其制造的绝缘膜、图像显示装置及绝缘膜制造方法
CN113728274A (zh) * 2019-06-11 2021-11-30 东丽株式会社 带导电层的基板、触摸面板用部件及触摸面板

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6295950B2 (ja) * 2013-03-28 2018-03-20 東レ株式会社 感光性樹脂組成物、保護膜又は絶縁膜、タッチパネル及びその製造方法
CN106802735A (zh) * 2015-11-26 2017-06-06 南昌欧菲光科技有限公司 触摸输入膜片及其制作方法
CN106802734A (zh) * 2015-11-26 2017-06-06 南昌欧菲光科技有限公司 触摸感应元件及其制作方法
KR102517695B1 (ko) * 2017-01-20 2023-04-03 제이에스알 가부시끼가이샤 감광성 조성물, 경화막 및 그의 제조 방법, 그리고 표시 소자, 발광 소자 및 수광 소자
JP6458902B1 (ja) * 2017-03-15 2019-01-30 東レ株式会社 感光性シロキサン樹脂組成物、硬化膜およびタッチパネル用部材
CN111149058B (zh) * 2017-09-22 2024-03-08 东丽株式会社 透明感光性树脂组合物及其应用、光刻间隔物和液晶显示装置及其制造方法
WO2019102655A1 (ja) * 2017-11-21 2019-05-31 東レ株式会社 シロキサン樹脂組成物、硬化膜および表示装置
WO2019123731A1 (ja) * 2017-12-22 2019-06-27 日鉄ケミカル&マテリアル株式会社 シロキサン系硬化性樹脂組成物及びハードコーティング液
MY193800A (en) * 2018-01-18 2022-10-27 Asahi Chemical Ind Photosensitive resin laminate and method for manufacturing same
CN112368336A (zh) * 2018-08-31 2021-02-12 东丽株式会社 树脂组合物、其固化膜
CN112731764A (zh) * 2020-12-29 2021-04-30 苏州理硕科技有限公司 负性光刻胶组合物和形成光刻胶图案的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002358900A (ja) * 2001-03-28 2002-12-13 Toray Ind Inc ディスプレイ用部材および感光性ペースト
JP2007225812A (ja) * 2006-02-22 2007-09-06 Sanyo Chem Ind Ltd 感光性樹脂組成物
JP2008275912A (ja) * 2007-04-27 2008-11-13 Fujifilm Corp 着色光重合性組成物並びにそれを用いたカラーフィルタ及びカラーフィルタの製造方法
WO2011129210A1 (ja) * 2010-04-14 2011-10-20 東レ株式会社 ネガ型感光性樹脂組成物、それを用いた保護膜およびタッチパネル部材
WO2011155382A1 (ja) * 2010-06-09 2011-12-15 東レ株式会社 感光性シロキサン組成物、それから形成された硬化膜および硬化膜を有する素子
WO2012029734A1 (ja) * 2010-09-02 2012-03-08 東レ株式会社 感光性組成物、それから形成された硬化膜および硬化膜を有する素子
JP2012082393A (ja) * 2010-09-17 2012-04-26 Jsr Corp ポリシロキサン組成物、並びにその硬化膜及びその形成方法
JP2012088575A (ja) * 2010-10-20 2012-05-10 Jsr Corp 感放射線性組成物、硬化膜、及びそれらの形成方法
JP2012155200A (ja) * 2011-01-27 2012-08-16 Jsr Corp 感放射線性組成物、硬化膜及びその形成方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199061A (ja) * 2007-11-12 2009-09-03 Rohm & Haas Electronic Materials Llc オーバーコートされたフォトレジストと共に用いるためのコーティング組成物
KR101273993B1 (ko) * 2010-09-17 2013-06-12 제이에스알 가부시끼가이샤 폴리실록산 조성물과 그의 제조 방법 및, 경화막과 그의 형성 방법
JP6295950B2 (ja) * 2013-03-28 2018-03-20 東レ株式会社 感光性樹脂組成物、保護膜又は絶縁膜、タッチパネル及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002358900A (ja) * 2001-03-28 2002-12-13 Toray Ind Inc ディスプレイ用部材および感光性ペースト
JP2007225812A (ja) * 2006-02-22 2007-09-06 Sanyo Chem Ind Ltd 感光性樹脂組成物
JP2008275912A (ja) * 2007-04-27 2008-11-13 Fujifilm Corp 着色光重合性組成物並びにそれを用いたカラーフィルタ及びカラーフィルタの製造方法
WO2011129210A1 (ja) * 2010-04-14 2011-10-20 東レ株式会社 ネガ型感光性樹脂組成物、それを用いた保護膜およびタッチパネル部材
WO2011155382A1 (ja) * 2010-06-09 2011-12-15 東レ株式会社 感光性シロキサン組成物、それから形成された硬化膜および硬化膜を有する素子
WO2012029734A1 (ja) * 2010-09-02 2012-03-08 東レ株式会社 感光性組成物、それから形成された硬化膜および硬化膜を有する素子
JP2012082393A (ja) * 2010-09-17 2012-04-26 Jsr Corp ポリシロキサン組成物、並びにその硬化膜及びその形成方法
JP2012088575A (ja) * 2010-10-20 2012-05-10 Jsr Corp 感放射線性組成物、硬化膜、及びそれらの形成方法
JP2012155200A (ja) * 2011-01-27 2012-08-16 Jsr Corp 感放射線性組成物、硬化膜及びその形成方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016071379A (ja) * 2014-09-30 2016-05-09 富士フイルム株式会社 感光性組成物、硬化膜の製造方法、硬化膜、液晶表示装置、有機エレクトロルミネッセンス表示装置、タッチパネル及びタッチパネル表示装置
WO2016152373A1 (ja) * 2015-03-24 2016-09-29 富士フイルム株式会社 転写フィルム、静電容量型入力装置の電極用保護膜、積層体、積層体の製造方法および静電容量型入力装置
JP2016181083A (ja) * 2015-03-24 2016-10-13 富士フイルム株式会社 転写フィルム、静電容量型入力装置の電極用保護膜、積層体、積層体の製造方法および静電容量型入力装置
CN107250958A (zh) * 2015-03-24 2017-10-13 富士胶片株式会社 转印薄膜、静电电容型输入装置的电极用保护膜、层叠体、层叠体的制造方法及静电电容型输入装置
US20170364177A1 (en) * 2015-03-24 2017-12-21 Fujifilm Corporation Transfer film, electrode protective film for electrostatic capacitance-type input device, laminate, method for manufacturing laminate, and electrostatic capacitance-type input device
CN107250958B (zh) * 2015-03-24 2020-07-28 富士胶片株式会社 转印薄膜、静电电容型输入装置及其电极用保护膜、层叠体及其制造方法
US10649590B2 (en) 2015-03-24 2020-05-12 Fujifilm Corporation Transfer film, electrode protective film for electrostatic capacitance-type input device, laminate, method for manufacturing laminate, and electrostatic capacitance-type input device
CN104789041A (zh) * 2015-04-23 2015-07-22 湖北金三峡印务有限公司 锆螯合物改性的复合碱可溶乳液及其制备的高复溶性水性油墨及方法
CN107850842A (zh) * 2015-08-28 2018-03-27 富士胶片株式会社 转印薄膜、静电电容型输入装置的电极保护膜、层叠体、层叠体的制造方法及静电电容型输入装置
JP2017049587A (ja) * 2015-09-03 2017-03-09 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. ネガ型感光性樹脂組成物及びそれから形成される光硬化性パターン及び当該光硬化性パターンを備える画像表示装置
CN107272342A (zh) * 2016-03-30 2017-10-20 东友精细化工有限公司 负型感光树脂组合物
TWI626507B (zh) * 2016-03-30 2018-06-11 東友精細化工有限公司 負型光敏性樹脂組成物
KR20200035372A (ko) * 2017-08-02 2020-04-03 도레이 카부시키가이샤 실록산 수지 조성물, 그것을 사용한 접착제, 표시 장치, 반도체 장치 및 조명 장치
JPWO2019026458A1 (ja) * 2017-08-02 2020-06-11 東レ株式会社 シロキサン樹脂組成物、それを用いた接着剤、表示装置、半導体装置および照明装置
WO2019026458A1 (ja) * 2017-08-02 2019-02-07 東レ株式会社 シロキサン樹脂組成物、それを用いた接着剤、表示装置、半導体装置および照明装置
US11319445B2 (en) 2017-08-02 2022-05-03 Toray Industries, Inc. Siloxane resin composition, adhesive using same, display device, semiconductor device, and illumination device
JP7077947B2 (ja) 2017-08-02 2022-05-31 東レ株式会社 シロキサン樹脂組成物、それを用いた接着剤、表示装置、半導体装置および照明装置
KR102487737B1 (ko) 2017-08-02 2023-01-12 도레이 카부시키가이샤 실록산 수지 조성물, 그것을 사용한 접착제, 표시 장치, 반도체 장치 및 조명 장치
JPWO2019130750A1 (ja) * 2017-12-27 2020-11-19 富士フイルム株式会社 転写フィルム、電極保護膜、積層体、静電容量型入力装置、及び、タッチパネルの製造方法
JP7477299B2 (ja) 2017-12-27 2024-05-01 富士フイルム株式会社 転写フィルム、電極保護膜、積層体、静電容量型入力装置、及び、タッチパネルの製造方法
JP2019156909A (ja) * 2018-03-08 2019-09-19 味の素株式会社 樹脂組成物、シート状積層材料、プリント配線板及び半導体装置
CN113728274A (zh) * 2019-06-11 2021-11-30 东丽株式会社 带导电层的基板、触摸面板用部件及触摸面板
CN113467183A (zh) * 2020-03-30 2021-10-01 东友精细化工有限公司 绝缘膜形成用树脂组合物、利用其制造的绝缘膜、图像显示装置及绝缘膜制造方法
CN113467183B (zh) * 2020-03-30 2024-04-23 东友精细化工有限公司 绝缘膜形成用树脂组合物、利用其制造的绝缘膜、图像显示装置及绝缘膜制造方法

Also Published As

Publication number Publication date
CN105122137B (zh) 2020-02-07
CN105122137A (zh) 2015-12-02
TW201446723A (zh) 2014-12-16
TWI597265B (zh) 2017-09-01
JP6295950B2 (ja) 2018-03-20
JPWO2014156520A1 (ja) 2017-02-16
KR20150135320A (ko) 2015-12-02

Similar Documents

Publication Publication Date Title
JP6295950B2 (ja) 感光性樹脂組成物、保護膜又は絶縁膜、タッチパネル及びその製造方法
JP6417669B2 (ja) 感光性樹脂組成物、保護膜及び絶縁膜並びにタッチパネルの製造方法
JP6319082B2 (ja) 感光性樹脂組成物、それを熱硬化させてなる保護膜又は絶縁膜、それを用いたタッチパネル及びその製造方法
JP5212571B2 (ja) タッチパネル部材
JP5589387B2 (ja) シロキサン樹脂組成物およびそれを用いたタッチパネル用保護膜
JP5459315B2 (ja) シランカップリング剤、ネガ型感光性樹脂組成物、硬化膜、およびタッチパネル用部材
JP5407210B2 (ja) シロキサン樹脂組成物およびそれを用いた硬化膜
TWI721126B (zh) 感光性樹脂組成物、硬化膜、積層體、觸控面板用構件及硬化膜之製造方法
WO2013146130A1 (ja) シランカップリング剤、感光性樹脂組成物、硬化膜及びタッチパネル部材
JP5671936B2 (ja) ネガ型感光性樹脂組成物およびそれを用いた硬化膜
JP5902539B2 (ja) 樹脂組成物、それを用いたタッチパネルセンサ用透明膜およびタッチパネル
WO2011129312A1 (ja) ネガ型感光性樹脂組成物、硬化膜、およびタッチパネル用部材
CN109071742B (zh) 树脂组合物、其固化膜及其制造方法以及固体摄像器件
JP2008248239A (ja) シロキサン樹脂組成物、それを用いた硬化膜および光学デバイス
JP7119390B2 (ja) ネガ型感光性樹脂組成物およびそれを用いた硬化膜
JP7115635B2 (ja) 樹脂組成物、遮光膜、および隔壁付き基板
JP2022064302A (ja) ネガ型シロキサン樹脂組成物、硬化膜および素子
JP2018120069A (ja) ネガ型感光性樹脂組成物、硬化膜およびタッチパネル部材
JP2012158743A (ja) 非感光性樹脂組成物、それから形成された硬化膜、および硬化膜を有するタッチパネル用素子
JP2020100819A (ja) 樹脂組成物、硬化膜およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014515390

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774492

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157026759

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14774492

Country of ref document: EP

Kind code of ref document: A1