WO2010058536A1 - 電力変換装置 - Google Patents
電力変換装置 Download PDFInfo
- Publication number
- WO2010058536A1 WO2010058536A1 PCT/JP2009/006015 JP2009006015W WO2010058536A1 WO 2010058536 A1 WO2010058536 A1 WO 2010058536A1 JP 2009006015 W JP2009006015 W JP 2009006015W WO 2010058536 A1 WO2010058536 A1 WO 2010058536A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- voltage
- output
- inverter
- power
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/49—Combination of the output voltage waveforms of a plurality of converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0095—Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/4835—Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/487—Neutral point clamped inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/501—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode sinusoidal output voltages being obtained by the combination of several pulse-voltages having different amplitude and width
Definitions
- the present invention relates to a power conversion device that converts DC power into AC power, and in particular, power conversion that converts DC power of a DC power source having a floating capacitance such as a solar battery into AC power of three-phase output and outputs it to a load. It relates to the device.
- a conventional power conversion device that converts DC power from solar cells into three-phase output AC power, and connects to a three-phase system with one phase grounded to send AC power to the system. Some conversion devices are shown below. Connected between the output terminals of the solar cell, three sets of half-bridge inverters composed of two series switching elements, a single-phase inverter connected in series to each AC output line, and two series of voltage dividers for the voltage of the solar cell A capacitor, and each output terminal of each single-phase inverter is connected to each phase of the three-phase system.
- the half-bridge inverter is operated for one pulse in a half cycle, and each single-phase inverter performs PWM control so as to compensate for the shortage from the system voltage, and outputs to the system by the output sum of the half-bridge inverter and the single-phase inverter. .
- the input DC voltage of the half-bridge inverter can be reduced, PWM control with a large voltage is not required, switching loss can be reduced, and the capacity of the output filter can also be reduced (see, for example, Patent Document 1).
- a three-phase two-level inverter is used as the inverter connected to the solar cell, and the DC power supply bus potential fluctuates during the inverter operation.
- the system has wiring with the V phase and midpoint grounded, and when the fluctuation of the DC power supply bus potential occurs, the floating capacitance of the DC power supply and the fluctuation of the potential cause the floating capacitance and the path of the grounding point of the system. Zero phase current is generated. This zero-phase current causes a problem that the earth leakage circuit breaker operates to stop the apparatus.
- the present invention has been made to solve the above-described problems, and is a power conversion device having a small device configuration, a low cost, and a high conversion efficiency, and a floating capacitance of a DC power supply.
- the purpose of this is to suppress the zero-phase current passing through and prevent malfunction of the earth leakage breaker.
- a power converter includes a three-phase three-level inverter connected between the positive and negative terminals of a first DC power source, and one or a plurality of single-phase connected in series to each phase AC output line of the three-phase three-level inverter.
- a phase inverter and a control device are provided, and the sum of the output voltage of the three-phase three-level inverter and the output voltage of each single-phase inverter is output to a load via a smoothing filter.
- the voltage of the second DC power source that is the DC input power source of the single-phase inverter is smaller than the one-level voltage of the three-phase three-level inverter.
- control device includes the three-phase three-level inverter so that each phase of the three-phase three-level inverter outputs one pulse voltage as a main voltage pulse with respect to a half cycle of each phase output voltage to the load. And controlling each single-phase inverter by PWM so that each phase output voltage to the load has a zero or constant DC potential from the reference potential of the first DC power supply, Each phase is controlled to be a sine wave having the same peak value with a phase different by 2 ⁇ / 3.
- the power conversion device has high accuracy in controlling the output voltage to be a sine wave having the same peak value, with each phase being different by 2 ⁇ / 3 with respect to a predetermined DC potential point of the first DC power supply. And the fluctuation of the bus potential of the first DC power supply can be eliminated. For this reason, it can be set as the apparatus structure which does not have an alternating current component between the neutral potential of a three-phase output, and one electric potential of a 1st DC power supply, and the zero phase which flows through the floating electrostatic capacitance of a 1st DC power supply Current can be suppressed, and malfunction of the earth leakage breaker can be prevented.
- the input DC voltage of the three-phase three-level inverter may be low, and there is no need for PWM control with a large voltage. For this reason, it becomes a power converter device with high conversion efficiency with a small device configuration and low cost.
- FIG. 1 It is a figure which shows the structure of the power converter device by Embodiment 1 of this invention. It is a voltage waveform diagram explaining the operation
- Embodiment 1 is a diagram showing a configuration of a power conversion device according to Embodiment 1 of the present invention.
- the power conversion device includes a three-phase inverter circuit 1 and an output control device 13 which are main circuits.
- the three-phase inverter circuit 1 converts the DC power from the first DC power source 2 into three-phase AC power and outputs it to the load 7.
- the first DC power source 2 It is a direct current power source such as a solar battery having a capacity 17.
- the load 7 is grounded at a load ground point 16.
- the three-phase inverter circuit 1 includes a three-phase three-level inverter 3 that uses the voltage of the first DC power supply 2 as a bus voltage, and a single-phase inverter 4 that is connected in series to each phase AC output line of the three-phase three-level inverter 3. And a three-phase smoothing filter 6 that is connected to the subsequent stage of the single-phase inverter 4 and includes a reactor and a capacitor (not shown).
- Each phase of the three-phase three-level inverter 3 is composed of four semiconductor switching elements 8 made of IGBT or the like each having a diode connected in antiparallel, and two clamp diodes 9.
- the three-phase three-level inverter 3 includes a first series capacitor 10 and a second series capacitor 11 as two series capacitors that divide the first DC power supply 2, and includes the first series capacitor 10 and the second series capacitor 10.
- the connection point with the series capacitor 11 is connected to the connection point between the two clamp diodes 9 of each phase. That is, the connection point between the first series capacitor 10 and the second series capacitor 11 is a neutral point that is a potential point that divides the voltage of the first DC power supply 2 into two, and constitutes the upper and lower arms of each phase.
- the connection point between the two semiconductor switching elements 8 is clamped at the neutral point potential.
- Each single-phase inverter 4 includes a full-bridge inverter 12 composed of four semiconductor switching elements, and a DC capacitor 5 as a second DC power source that holds a voltage.
- the output voltage of the single-phase inverter 4 of each phase is superimposed on the output voltage of each phase of the three-phase three-level inverter 3, and the voltage sum of the output voltage of the three-phase three-level inverter 3 and the output voltage of each single-phase inverter 4 Is output to the load 7 through the smoothing filter 6.
- the voltage of the DC capacitor 5 of each single-phase inverter 4 is set to be smaller than 1/2 of the voltage of the first DC power supply 2 (or the voltage of the first and second series capacitors 10 and 11). Yes.
- the voltage of the DC capacitor 5 is smaller than the one-level voltage of the three-phase three-level inverter 3.
- FIG. 1 for convenience, among the three single-phase inverters 4, only one phase of the circuit configuration is illustrated and the other phases are omitted.
- the three-phase three-level inverter 3 and each single-phase inverter 4 are driven by a three-phase three-level inverter control signal 14 and a single-phase inverter control signal 15 output from an output control device 13 that can be operated by a CPU, DSP, FPGA, or the like. Be controlled.
- FIG. 2 shows a voltage waveform (three-phase three-level inverter) output by one phase output from the three-phase inverter circuit 1, for example, a phase voltage command 20 that is a U-phase voltage command, and a U-phase of the three-phase three-level inverter 3. Voltage 21). Note that the phase voltage command 20 is a sine wave in which each phase is different by 2 ⁇ / 3 and has the same peak value.
- the DC voltage output from the first DC power supply 2 is charged in the series body of the first series capacitor 10 and the second series capacitor 11.
- the voltages of the first DC power supply 2, the first series capacitor 10, and the second series capacitor 11 are detected, and each detected voltage value is transmitted to the output control device 13.
- each phase of the three-phase three-level inverter 3 takes the DC voltage of the first series capacitor 10 and the second series capacitor 11 as input voltage,
- the peak value corresponding to each voltage value of the series capacitor 10 and the voltage value of the second series capacitor 11 (or a voltage value that is half the voltage of the first DC power supply 2), in this case, a voltage of 200V Pulses are output at a rate of one pulse per half cycle with respect to the phase voltage command 20.
- the voltage pulse of one pulse in this half cycle is referred to as a main voltage pulse 21a.
- one pulse of the main voltage pulse 21a is output on the positive side and one pulse on the negative side of the phase voltage command 20.
- the main voltage pulse 21a is output so that the power balance of the half cycle (or one cycle) of the single-phase inverter 4 becomes 0. Details of this control will be described later.
- FIG. 3 shows an output voltage command (single-phase inverter voltage command 22) of the single-phase inverter 4.
- This single-phase inverter voltage command 22 is obtained by subtracting the three-phase three-level inverter voltage 21 of each phase from the phase voltage command 20 of the three-phase inverter circuit 1.
- Each single-phase inverter 4 has a difference between a phase voltage command 20 required for the three-phase inverter circuit 1 and an output voltage of each phase of the three-phase three-level inverter 3 by a single-phase inverter control signal 15 from the output control device 13.
- the output is controlled by high frequency PWM so as to compensate.
- each single-phase inverter 4 is controlled so that each phase output current to the load 7 becomes a sine wave in this PWM control.
- FIG. 4 shows a single-phase inverter voltage command of the single-phase inverter 4 for each phase
- 22a is a U-phase single-phase inverter voltage command
- 22b is a V-phase single-phase inverter voltage command
- 22c is a W-phase single-phase inverter voltage command.
- the waveform peak value is ⁇ 125V
- the bus voltage of each single-phase inverter 4 is required to be 125V or more in order to output the voltage command voltage.
- FIG. 5 shows each phase output voltage of the three-phase inverter circuit 1 which is the voltage sum of the output voltage of the three-phase three-level inverter 3 and the output voltage of each single-phase inverter 4.
- Reference numeral 23 denotes each phase output voltage
- 24 denotes an average voltage waveform of each phase output voltage 23.
- Each phase output voltage waveform 24 to the load 7 is the same voltage waveform as the phase voltage command 20 of each phase, that is, a neutral point that is a connection point between the first series capacitor 10 and the second series capacitor 11.
- Each phase is a sine wave having the same peak value, with each phase being different by 2 ⁇ / 3 with respect to the potential.
- the main voltage pulse 21a of the three-phase three-level inverter 3 and the power balance of the single-phase inverter 4 will be described below with reference to FIG.
- the main voltage pulse 21a is output so that the half-cycle or single-cycle power balance of the single-phase inverter 4 becomes zero. Since the single-phase inverter 4 outputs so as to compensate for the difference between the phase voltage command 20 and the output voltage of each phase of the three-phase three-level inverter 3, the three-phase three-level inverter 3 outputs the power output by the phase voltage command 20 It is sufficient to output the same power as the main voltage pulse 21a.
- the peak voltage of the phase voltage command 20 is Vp
- the DC voltage here, the first voltage input to the three-phase inverter circuit 1
- Ed is 1/2 of the voltage of the DC power supply 2 or the sum of the voltage of the first series capacitor 10 and the voltage of the second series capacitor 11
- ⁇ 1 (0 ⁇ 1 ⁇ / 2) is a phase in which the main voltage pulse 21a rises.
- the output control device 13 performs the above calculation, sends a three-phase three-level inverter control signal 14 based on the calculation result to the three-phase three-level inverter 3, and controls the output of the three-phase three-level inverter 3.
- the phase ⁇ 1 at which the main voltage pulse 21a rises is calculated. Determining this phase ⁇ 1 is the same as determining the pulse width ( ⁇ 2 ⁇ 1).
- a three-phase three-level inverter 3 is used as an inverter connected to the first DC power supply 2, and the entire three-phase inverter circuit 1 is connected to the first series capacitor 10 and the second series capacitor 11.
- the neutral point which is a point
- each phase was controlled to be a sine wave having the same peak value with a phase different by 2 ⁇ / 3.
- the neutral point potential becomes stable
- the bus potential of the first DC power supply 2 does not fluctuate
- the output voltage control that can obtain a desired voltage waveform can be realized with high accuracy
- the three-phase output voltage total Becomes 0.
- a zero-phase current that flows through the floating capacitance 17 of the first DC power supply 2 without having an AC component between the neutral potential of the three-phase output and one potential of the first DC power supply 2. Can be suppressed.
- the zero-phase current is normally detected as a leakage current in the leakage breaker arranged in the front stage of the load 7, but the zero-phase current can be suppressed, so that the malfunction of the leakage breaker can be prevented and the leakage current is reduced. Therefore, the power conversion efficiency of the three-phase inverter circuit 1 is improved.
- the three-phase inverter circuit 1 outputs a voltage that is the sum of the output voltage of the three-phase three-level inverter 3 and the output voltage of each single-phase inverter 4, the three-phase inverter circuit 1 is the first DC input voltage of the three-phase inverter circuit 1. A voltage higher than the voltage of the DC power source 2 can be output. Further, each phase of the three-phase three-level inverter 3 is operated by one pulse in a half cycle, so that almost no switching loss occurs. Since the DC voltage of the single-phase inverter 4 that is PWM controlled at a high frequency is selected to be a relatively small value, the switching loss due to PWM control is small, and the capacity of the smoothing filter 6 may be small. For this reason, the three-phase inverter circuit 1 has a small, low-cost and high conversion efficiency device configuration.
- the three-phase inverter circuit 1 is controlled so that the half-cycle or one-cycle power balance of each single-phase inverter 4 becomes 0, the DC capacitor 5 of each single-phase inverter 4 is externally connected. It is possible to make a simple configuration without a DC power source for transmitting and receiving power.
- the three-phase, three-level inverter 3 has the pulse width (or rising phase) of the main voltage pulse 21a so that the power equivalent to the power output by the phase voltage command 20 is output by the main voltage pulse 21a.
- the pulse width can be determined by other methods.
- the half-cycle or one-cycle power integrated value of the single-phase inverter 4 is calculated, and the pulse width of the main voltage pulse 21a is obtained so that the power integrated value becomes zero. The relationship between the pulse width of the main voltage pulse 21a of the three-phase three-level inverter 3 and the output power of the single-phase inverter 4 will be described below with reference to FIGS. FIG.
- FIG. 6 is a comparative example in which the half-cycle integrated power value of the single-phase inverter 4 is positive.
- FIG. 7 shows that the main voltage pulse 21a has a wider pulse width than the case of FIG. The case where the electric power integration value of a period is set to 0 is shown. For convenience, only a half-cycle waveform is shown.
- the three-phase three-level inverter 3 For each phase output voltage waveform 24 of the three-phase inverter circuit 1, the three-phase three-level inverter 3 generates one main voltage pulse 21a in a half cycle. Output. Then, as shown in FIGS. 6 (b) and 7 (b), a single phase is obtained so that a voltage waveform of the difference between the main voltage pulse 21a of the three-phase three-level inverter 3 and each phase output voltage waveform 24 is obtained.
- the inverter 4 outputs an average voltage 22d by PWM control. For example, when the three-phase three-level inverter 3 is a solar power conditioner, the output current to the load 7 is often a power factor of 1. When the power factor is 1, the current waveform of the output current 25 is a sine wave having the same phase as each phase output voltage waveform 24.
- the output power 26 of the single-phase inverter 4 that is the product of the output voltage 22d and the output current 25 has the waveforms shown in FIGS. 6 (c) and 7 (c).
- FIG. 6C since the integrated value of the half cycle of the output power 26 of the single phase inverter 4 is positive, the DC capacitor 5 of the single phase inverter 4 requires an external power source.
- FIG.7 (c) the pulse width of the main voltage pulse 21a is expanded, In this case, the negative output power 26 of the single phase inverter 4 increases, and the half-cycle integrated power value becomes zero.
- the pulse width of the main voltage pulse 21a is determined so that the half-cycle or single-cycle power integrated value of the single-phase inverter 4 becomes zero. Since the power balance of each single-phase inverter 4 is controlled so that the half-cycle or one-cycle power balance becomes zero, the DC capacitor 5 of each single-phase inverter 4 can have a simple configuration that does not have a DC power supply for transmitting and receiving power from the outside. .
- Embodiment 3 the pulse width of the main voltage pulse 21a is determined so that the half-cycle or one-cycle power balance of the single-phase inverter 4 is zero.
- a fine adjustment of the pulse width of the main voltage pulse 21a is shown.
- each voltage detector 32 (see FIG. 10) is provided to measure the voltage of each DC capacitor 5 of each single-phase inverter 4.
- the three-phase inverter circuit 1 is output by determining the pulse width of the main voltage pulse 21a so that the half-cycle or single-cycle power balance of the single-phase inverter 4 becomes zero. Control.
- Each voltage detector 32 detects the voltage of each DC capacitor 5 of each single-phase inverter 4, and the detected voltage value of each DC capacitor 5 is transmitted to the output control device 13.
- the pulse width of the main voltage pulse 21a of the corresponding phase is shortened, and when the voltage value is larger than the reference value, the pulse width is increased.
- the three-phase three-level inverter 3 is controlled so that the voltage value of the DC capacitor 5 becomes longer and approaches the reference value.
- the half-cycle or single-cycle integrated power value of the single-phase inverter 4 increases when the pulse width of the main voltage pulse 21a is shortened and when the pulse width of the main voltage pulse 21a is increased. To reduce. For this reason, when the voltage value of the DC capacitor 5 is larger than the reference value, the pulse width of the main voltage pulse 21a of the corresponding phase is shortened, thereby increasing the power integrated value of the single-phase inverter 4 and Reduce the voltage. Further, when the voltage value of the DC capacitor 5 is smaller than the reference value, the integrated value of the main voltage pulse 21a of the corresponding phase is lengthened, thereby reducing the integrated power value of the single-phase inverter 4 and the voltage of the DC capacitor 5 Increase
- FIG. 8 is a diagram showing a configuration of a power conversion device according to Embodiment 4 of the present invention.
- a plurality of (two in this case) single-phase inverters 4, 4 a are connected in series to each phase AC output line of the three-phase three-level inverter 3.
- the two single-phase inverters 4 and 4a in each phase have the same configuration, and for convenience, only one single-phase inverter 4 is illustrated as a circuit configuration, and the others are omitted.
- the three-phase three-level inverter 3 and each single-phase inverter 4, 4 a are a three-phase three-level inverter control signal 14 output from an output control device 13 a that can be operated by a CPU, DSP, FPGA, etc., and single-phase inverter control.
- the drive is controlled by signals 15 and 15a.
- Other configurations are the same as those shown in FIG. 1 of the first embodiment.
- Each phase of the three-phase three-level inverter 3 outputs the main voltage pulse 21a at a rate of one pulse per half cycle with respect to the phase voltage command 20 as in the first embodiment.
- the main voltage pulse 21a is output with a pulse width determined so that the power balance of the half cycle (or one cycle) of the single-phase inverter 4 becomes zero.
- Each single-phase inverter 4, 4 a is output under high-frequency PWM control so as to compensate for the difference between the phase voltage command 20 required for the three-phase inverter circuit 1 and the output voltage of each phase of the three-phase three-level inverter 3.
- the difference between the phase voltage command 20 and the output voltage of each phase of the three-phase three-level inverter 3 is compensated by the sum of the output voltages of the two single-phase inverters 4 and 4a in each phase.
- Each single-phase inverter 4, 4 a is controlled so that the output current becomes a sine wave in this PWM control.
- FIG. 9 shows each phase output voltage of the three-phase inverter circuit 1 which is the voltage sum of the output voltage of the three-phase three-level inverter 3 and the output voltages of the two single-phase inverters 4 and 4a.
- Reference numeral 23a denotes each phase output voltage
- 24 denotes an average voltage waveform of each phase output voltage 23.
- each phase output voltage waveform 24 to the load 7 has the same voltage waveform as the phase voltage command 20 of each phase, that is, the first series capacitor 10 and the second series capacitor 11.
- Each phase becomes a sine wave having the same peak value with a phase that is different by 2 ⁇ / 3 with respect to the potential of the neutral point that is a connection point with the reference point.
- the neutral point potential is stable, the bus potential of the first DC power supply 2 does not fluctuate, and the output voltage control for obtaining a desired voltage waveform is highly accurate.
- the total output voltage of the three phases becomes zero. Therefore, a zero-phase current that flows through the floating capacitance 17 of the first DC power supply 2 without having an AC component between the neutral potential of the three-phase output and one potential of the first DC power supply 2. Can be suppressed.
- a plurality of (two in this case) single-phase inverters 4 and 4a are connected in series to each phase AC output line of the three-phase three-level inverter 3, the voltage output from each single-phase inverter 4 and 4a is reduced. And switching loss is reduced. Further, when the number of series of single-phase inverters 4 and 4a is increased, the frequency of the carrier wave may be lowered, and the switching loss is further reduced.
- one single-phase inverter 4 has an output of a few pulses or less in a half cycle, and only the other single-phase inverter 4a is output by high-frequency PWM control. Also good. At this time, the DC voltage of the single-phase inverter 4a to be PWM controlled may be lower than the DC voltage of the single-phase inverter 4.
- FIG. 10 is a diagram showing a configuration of a power conversion device according to Embodiment 5 of the present invention.
- the voltage detector 30 provided in parallel to measure the voltage of the first series capacitor 10 and the voltage detection provided in parallel to measure the voltage of the second series capacitor 11 are measured.
- a voltage detector 32 provided for measuring the voltage of each DC capacitor 5 of each single-phase inverter 4.
- the voltage values 30a to 32a detected by these voltage detectors 30 to 32 are transmitted to the output control device 13, and the output control device 13 performs a three-phase three-level inverter based on the detected voltage values 30a to 32a. 3 and each single-phase inverter 4 are controlled.
- Other configurations are the same as those shown in FIG. 1 of the first embodiment.
- the three-phase three-level inverter 3 outputs only one main voltage pulse 21a in a half cycle, but in the fifth embodiment, the three-phase three-level inverter 3 operates differently.
- 11 to 14 are voltage waveforms for explaining the operation of the three-phase inverter circuit 1 according to the fifth embodiment.
- the waveform potential is a potential with reference to a neutral point, which is a connection point between the first series capacitor 10 and the second series capacitor 11.
- 11 and 12 show a comparative example
- FIGS. 13 and 14 show voltage waveforms of the three-phase inverter circuit 1 according to the fifth embodiment.
- phase voltage command 20 (each phase output voltage waveform 24) of the three-phase inverter circuit 1 and the voltage waveform output by each phase of the three-phase three-level inverter 3 (three The phase 3 level inverter voltage 21) is shown in FIG.
- the voltage of the main voltage pulse 21a output to the positive side of the phase voltage command 20 is the voltage value 30a of the first series capacitor 10
- the voltage of the main voltage pulse 21a output to the negative side of the phase voltage command 20 (Absolute value) is the voltage value 31 a of the second series capacitor 11.
- the voltage of the first DC power supply 2 is higher than the normal case shown in FIG.
- the pulse width of the main voltage pulse 21a is determined so that the half-cycle or one-cycle power balance of the single-phase inverter 4 becomes 0. Therefore, the DC input voltage of the three-phase three-level inverter 3 is large. Then, as shown in the figure, the pulse width becomes shorter.
- the output voltage command (single-phase inverter voltage command 22) of the single-phase inverter 4 is shown in FIG. Show.
- the single-phase inverter voltage command 22 is obtained by subtracting the three-phase three-level inverter voltage 21 from the phase voltage command 20 of the three-phase inverter circuit 1.
- the single-phase inverter 4 needs to generate a difference voltage between the phase voltage command 20 of the three-phase inverter circuit 1 and the three-phase three-level inverter voltage 21, and this difference voltage is generated by the first and second series capacitors 10. , 11 increases and the pulse width of the main voltage pulse 21a becomes shorter.
- a voltage 36 exceeding the output voltage limit value 35 of the single-phase inverter 4 is required in the vicinity of the rising portion and the falling portion of the main voltage pulse 21a.
- the magnitude of the output voltage limit value 35 is the voltage value 32 a of the DC capacitor 5 of the single-phase inverter 4.
- FIG. 13 is a diagram showing an output voltage command (single-phase inverter voltage command 37) of the single-phase inverter 4 according to this embodiment
- FIG. 14 shows each phase of the three-phase three-level inverter 3 according to this embodiment.
- the output voltage waveform (three-phase three-level inverter voltage) is shown. Since the single-phase inverter 4 cannot output the voltage 36 exceeding the output voltage limit value 35 as shown in FIG. 12, during the period when the voltage 36 exceeding the output voltage limit value 35 is required, as shown in FIG. The shortage of the output voltage of the single-phase inverter 4 is borne by the three-phase three-level inverter 3.
- the three-phase three-level inverter 3 outputs a partial PWM voltage 38, which is a voltage by PWM control, in the vicinity of the rising portion and the falling portion of the main voltage pulse 21a, and the output voltage of the single-phase inverter 4 Then output the insufficient voltage.
- the partial PWM voltage 38 is output according to the voltage values 30 a and 31 a of the first and second series capacitors 10 and 11 and the voltage value 32 a of the DC capacitor 5. That is, when the voltage of the first and second series capacitors 10 and 11 is not so high or the voltage of the DC capacitor 5 is sufficiently high, the main voltage pulse 21a of the three-phase three-level inverter 3 and the output of the single-phase inverter 4 When a sinusoidal voltage waveform can be obtained only by a combination with the voltage, the same control as in the first embodiment is adopted, and the control is switched to the control for outputting the partial PWM voltage 38 when necessary.
- the partial PWM voltage 38 is in the vicinity of the rising portion and the vicinity of the falling portion of the main voltage pulse 21a in which each phase of the three-phase three-level inverter 3 outputs one pulse in a half cycle. Can be output. Therefore, even if the voltage of the first DC power supply 2 increases and the voltages of the first and second series capacitors 10 and 11 increase, a sine wave voltage waveform similar to the phase voltage command 20 is obtained. For this reason, the neutral point potential becomes stable, there is no fluctuation of the bus potential of the first DC power supply 2, and a desired voltage waveform can be obtained more stably and with high accuracy. For this reason, the suppression of the zero-phase current flowing through the floating capacitance 17 of the first DC power supply 2 can be realized stably and reliably.
- the period in which the three-phase three-level inverter 3 outputs the partial PWM voltage 38 is described as the period in which the single-phase inverter 4 is required to have the voltage 36 exceeding the output voltage limit value 35. Is controlled as follows with a margin. That is, the value obtained by subtracting the absolute value of the differential voltage between the phase voltage command 20 (each phase output voltage waveform) and the three-phase three-level inverter voltage 21 composed only of the main voltage pulse 21 a from the voltage value 32 a of the DC capacitor 5 is The partial PWM voltage 38 is output during a period that is less than or equal to the predetermined value.
- the differential voltage between the phase voltage command 20 (each phase output voltage waveform) and the three-phase three-level inverter voltage 21 composed only of the main voltage pulse 21a can be reliably output from the single-phase inverter 4, and the phase voltage command A sinusoidal voltage waveform similar to 20 is obtained.
- the pulse width and part of the main voltage pulse 21a output by the three-phase three-level inverter 3 are set so that the half-cycle or one-cycle output power balance of each single-phase inverter becomes zero.
- the output period of the PWM voltage 38 is controlled.
- the voltage output period of the three-phase three-level inverter 3 is finely adjusted, and feedback control is performed so that the voltage of the DC capacitor 5 of each single-phase inverter 4 becomes the reference value. good.
- the voltage output period of the three-phase three-level inverter 3 consists of the pulse width of the main voltage pulse 21a and the output period of the partial PWM voltage 38, and when the voltage value of the DC capacitor 5 is larger than the reference value, the three-phase The voltage output period of the corresponding phase of the three-level inverter 3 is shortened, and when it is larger than the reference value, the voltage output period is lengthened.
- each single-phase inverter 4 is deviated from 0, for example, when switching between the control of only the main voltage pulse 21a and the control of generating the partial PWM voltage 38, etc.
- the control to return to 0 becomes possible. For this reason, shortage of output voltage of the single-phase inverter 4, overcharge of the DC capacitor 5, and insulation breakdown of the single-phase inverter 4 due to overcharge can be prevented, and the three-phase inverter circuit 1 with stable output can be obtained. Can do.
- FIG. 15 is a diagram showing a configuration of a power conversion device according to Embodiment 6 of the present invention.
- a booster circuit 40 that boosts the voltage of the first DC power supply 2 is provided in the three-phase inverter circuit 1, and the output voltage of the booster circuit 40 is used as the DC input voltage of the three-phase three-level inverter 3.
- the step-up circuit 40 includes, for example, a reactor 41, a switch 42 connected between the high-voltage side bus and the low-voltage side bus of the first DC power supply 2, and first and second series capacitors that pass a one-way current.
- the output voltage When the first DC power source 2 is a power source using natural energy such as a solar cell, the output voltage always changes due to a change in weather or the like. In a solar cell, the output voltage decreases when it is cloudy in the morning and evening.
- the AC voltage that can be output from the three-phase three-level inverter 3 is determined by the voltage value 30 a of the first series capacitor 10 and the voltage value 31 a of the second series capacitor 11, which are bus voltage values of the three-phase three-level inverter 3. .
- FIG. 16 is a diagram showing the relationship between the voltage of the first DC power supply 2 and the pulse width of the main voltage pulse 21 a output from the three-phase three-level inverter 3.
- the output voltage to the load 7 was three-phase, 200 Vrms.
- the booster circuit 40 boosts the voltage to 256.51V.
- the pulse width of the main voltage pulse 21 a is shortened, and when it becomes 362.7 V or higher, the control is switched to output the partial PWM voltage 38.
- the voltage of the first DC power supply 2 is boosted by the booster circuit 40, and the voltage value 30a of the first series capacitor 10 that becomes the DC input voltage of the three-phase three-level inverter 3 and the second series.
- the voltage value 31a of the capacitor 11 is increased to a voltage at which a desired AC voltage can be output. For this reason, the first DC power supply 2 can output the waveform of the three-phase inverter circuit 1 from a low voltage, and the operable range of the three-phase inverter circuit 1 is expanded.
- control shown in the fifth embodiment is used, but each of the first to fourth embodiments may be applied.
- Embodiment 7 FIG. Next, a power converter according to Embodiment 7 of the present invention will be described with reference to FIG. As shown in FIG. 17, a capacitor 44 having a capacitance greater than or equal to the amount of charge output by the three-phase inverter circuit 1 is connected in series between each phase output of the three-phase inverter circuit 1 and the load 7. The low voltage side of the output terminal of the first DC power supply 2 is grounded to the ground at the ground point 45.
- Other configurations are the same as the configurations shown in FIG. 1 of the first embodiment, but may be applied to the other embodiments.
- each phase of the three-phase inverter circuit 1 When the first DC power supply 2 is grounded, the output voltage of each phase of the three-phase inverter circuit 1 is 1/2 the voltage value of the first DC power supply 2 or the voltage value of the second series capacitor 11. Is output as a neutral point potential, a waveform added by the DC voltage is output.
- the capacitors 44 since the capacitors 44 are provided in each phase, these capacitors 44 cut the DC component and output only the AC component to the load 7. Since the DC voltage component output to the load 7 is cut off in this way, it can be output to the system serving as the load 7 and connected to the system.
- Embodiment 8 FIG. Next, a power conversion device according to embodiment 8 of the present invention will be described with reference to FIG.
- an insulating transformer 46 capable of insulation is disposed between the three-phase inverter circuit 1 and the load 7, and the low-voltage side of the output terminal of the first DC power supply 2 is grounded to the ground at the ground point 45. Is done.
- the insulating transformer 46 may have a general boosting function based on the turn ratio. In this case, since the zero-phase current path is interrupted by the insulating transformer 46, no zero-phase current flows.
- the output voltage of each phase of the three-phase inverter circuit 1 is 1/2 the voltage value of the first DC power supply 2 or the voltage value of the second series capacitor 11.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
Description
太陽電池の出力端子間に接続され、2直列スイッチング素子から成る3組のハーフブリッジインバータと、その各交流出力線にそれぞれ直列接続された単相インバータと、太陽電池の電圧を分圧する2直列のコンデンサとを備え、各単相インバータの各出力端を3相系統の各相に接続する。そして、ハーフブリッジインバータは半周期に1パルス運転し、各単相インバータは系統電圧からの不足分を補うようにPWM制御して、ハーフブリッジインバータと単相インバータとの出力和で系統に出力する。このため、ハーフブリッジインバータの入力直流電圧を低減できると共に、大きな電圧によるPWM制御の必要がなく、スイッチング損失を低減でき、かつ出力フィルタの容量も低減できる(例えば、特許文献1参照)。
また、三相3レベルインバータと単相インバータとを組み合わせて出力するため、三相3レベルインバータの入力直流電圧は低いもので良く、大きな電圧によるPWM制御の必要もない。このため、装置構成が小型で低コストで、変換効率の高い電力変換装置となる。
以下、この発明の実施の形態1による電力変換装置を図に基づいて説明する。
図1は、この発明の実施の形態1による電力変換装置の構成を示す図である。電力変換装置は、主回路である三相インバータ回路1と出力制御装置13とを備える。三相インバータ回路1は、第1の直流電源2からの直流電力を三相交流電力に変換して負荷7に出力するもので、第1の直流電源2は、アースとの間に浮遊静電容量17を持つ太陽電池などの直流電源である。負荷7は負荷接地点16で接地される。
三相インバータ回路1は、第1の直流電源2の電圧を母線電圧とする三相3レベルインバータ3と、三相3レベルインバータ3の各相交流出力線にそれぞれ直列接続された単相インバータ4と、単相インバータ4の後段に接続され、図示しないリアクトルおよびコンデンサから成る三相の平滑フィルタ6とを備える。
なお、各単相インバータ4の直流コンデンサ5の電圧は、第1の直流電源2の電圧の1/2(あるいは第1、第2の直列コンデンサ10、11の電圧)に比べて小さく設定されている。即ち、直流コンデンサ5の電圧は、三相3レベルインバータ3の1レベルの電圧より小さい。また、図1では、便宜上、3つの各単相インバータ4の内、1相のみの回路構成を図示し他の相を省略した。
三相3レベルインバータ3および各単相インバータ4は、CPUやDSP、FPGAなどによる演算が可能な出力制御装置13から出力される三相3レベルインバータ制御信号14、単相インバータ制御信号15により駆動制御される。
図2に、三相インバータ回路1が出力する1相分、例えばU相の電圧指令である相電圧指令20と、三相3レベルインバータ3のU相が出力する電圧波形(三相3レベルインバータ電圧21)とを示す。なお、相電圧指令20は、各相が2π/3ずつ異なる位相で、同じ波高値を有する正弦波である。
第1の直流電源2により出力される直流電圧は、第1の直列コンデンサ10と第2の直列コンデンサ11との直列体に充電される。第1の直流電源2、第1の直列コンデンサ10、および第2の直列コンデンサ11の電圧は検出され、各検出電圧値は出力制御装置13へ伝送される。
図4は、各相の単相インバータ4の単相インバータ電圧指令を示し、22aはU相単相インバータ電圧指令、22bはV相単相インバータ電圧指令、22cはW相単相インバータ電圧指令である。この場合、波形ピーク値は±125Vであり、この電圧指令の電圧を出力するためには各単相インバータ4の母線電圧は125V以上必要になる。
負荷7への各相出力電圧波形24は、各相の相電圧指令20と同様の電圧波形となり、即ち、第1の直列コンデンサ10と第2の直列コンデンサ11との接続点である中性点の電位を基準に、各相が2π/3ずつ異なる位相で、同じ波高値を有する正弦波となる。
上述したように、主電圧パルス21aは、単相インバータ4の半周期あるいは1周期の電力収支が0となるように出力される。相電圧指令20と三相3レベルインバータ3の各相の出力電圧との差を補うように単相インバータ4は出力するため、三相3レベルインバータ3は、相電圧指令20により出力される電力と同等の電力を主電圧パルス21aにより出力すれば良い。
出力電流の位相を出力電圧の位相に一致するよう制御する(力率1運転)場合、相電圧指令20のピーク電圧をVp、三相インバータ回路1に入力する直流電圧(ここでは、第1の直流電源2の電圧、あるいは、第1の直列コンデンサ10の電圧と第2の直列コンデンサ11の電圧との和)の1/2をEdとすると、Vpは次の式(1)で表せる。但し、θ1(0<θ1<π/2)は主電圧パルス21aが立ち上がる位相である。
上記実施の形態1では、三相3レベルインバータ3は、相電圧指令20により出力される電力と同等の電力を主電圧パルス21aにより出力するように、主電圧パルス21aのパルス幅(あるいは立ち上がり位相)を決定したが、他の手法でパルス幅を決定することもできる。この実施の形態では、単相インバータ4の半周期あるいは1周期の電力積算値を演算して、その電力積算値が0となるように主電圧パルス21aのパルス幅を求める。
三相3レベルインバータ3の主電圧パルス21aのパルス幅と、単相インバータ4の出力電力との関係を、図6、図7に基づいて以下に説明する。図6は、単相インバータ4の半周期の電力積算値が正となる比較例の場合で、図7は、図6の場合より主電圧パルス21aのパルス幅を拡げ、単相インバータ4の半周期の電力積算値を0とした場合を示す。なお、便宜上、半周期の波形のみを図示している。
そして、図6(b)、図7(b)に示すように、三相3レベルインバータ3の主電圧パルス21aと各相出力電圧波形24との差の電圧波形が得られるように、単相インバータ4はPWM制御により平均的な電圧22dを出力する。例えば、三相3レベルインバータ3が太陽光パワーコンデショナの場合、負荷7への出力電流は力率1の場合が多い。力率1の場合、出力電流25の電流波形は、各相出力電圧波形24と同じ位相の正弦波となる。
上記実施の形態1、2では、単相インバータ4の半周期あるいは1周期の電力収支が0となるように主電圧パルス21aのパルス幅を決定した。この実施の形態では、主電圧パルス21aのパルス幅を微調整するものを示す。この場合、各単相インバータ4の各直流コンデンサ5の電圧を測定するために各電圧検出器32(図10参照)を備える。
まず、上記実施の形態1、2と同様に、単相インバータ4の半周期あるいは1周期の電力収支が0となるように主電圧パルス21aのパルス幅を決定して三相インバータ回路1を出力制御する。この出力制御において、何らかの原因、例えば入力直流電圧の急変や、負荷7の急変等で単相インバータ4の電力収支のバランスが崩れると、単相インバータ4の直流コンデンサ5の電圧が変動する。
次に、この発明の実施の形態4による電力変換装置を図に基づいて説明する。
図8は、この発明の実施の形態4による電力変換装置の構成を示す図である。この実施の形態の三相インバータ回路1では、三相3レベルインバータ3の各相交流出力線にそれぞれ複数台(この場合2台)の単相インバータ4、4aを直列接続する。各相2台の単相インバータ4、4aは、同様の構成であり、便宜上、1つの単相インバータ4のみ回路構成を図示し、他を省略した。
そして、三相3レベルインバータ3および各単相インバータ4、4aは、CPUやDSP、FPGAなどによる演算が可能な出力制御装置13aから出力される三相3レベルインバータ制御信号14、単相インバータ制御信号15、15aにより駆動制御される。
その他の構成は、上記実施の形態1の図1で示した構成と同様である。
三相3レベルインバータ3の各相は、上記実施の形態1と同様に、相電圧指令20に対して半周期に1パルスの割合で主電圧パルス21aを出力する。この主電圧パルス21aは、単相インバータ4の半周期(あるいは1周期)の電力収支が0となるようにパルス幅が決定されて出力される。
各単相インバータ4、4aは、三相インバータ回路1に要求される相電圧指令20と三相3レベルインバータ3の各相の出力電圧との差を補うように高周波PWM制御されて出力する。この場合、各相において2台の単相インバータ4、4aの出力電圧の和で、相電圧指令20と三相3レベルインバータ3の各相の出力電圧との差を補う。また各単相インバータ4、4aは、このPWM制御において出力電流が正弦波となるように制御される。
図9に、三相3レベルインバータ3の出力電圧と2台の単相インバータ4、4aの出力電圧との電圧和である三相インバータ回路1の各相出力電圧を示す。23aは各相出力電圧、24は各相出力電圧23の平均の電圧波形を示す。この場合、直列接続された2台の単相インバータ4、4aは、例えばキャリア波の位相を180°ずらすことによりスイッチングのタイミングをずらして出力している。
負荷7への各相出力電圧波形24は、上記実施の形態1と同様に、各相の相電圧指令20と同様の電圧波形となり、即ち、第1の直列コンデンサ10と第2の直列コンデンサ11との接続点である中性点の電位を基準に、各相が2π/3ずつ異なる位相で、同じ波高値を有する正弦波となる。
また、三相3レベルインバータ3の各相交流出力線にそれぞれ複数台(この場合2台)の単相インバータ4、4aを直列接続するため、各単相インバータ4、4aが出力する電圧を低減でき、スイッチング損失が低減する。また、単相インバータ4、4aの直列数を増加するとキャリア波の周波数を下げてもよく、さらにスイッチング損失が低減する。
次に、この発明の実施の形態5による電力変換装置を図に基づいて説明する。
図10は、この発明の実施の形態5による電力変換装置の構成を示す図である。この実施の形態では、第1の直列コンデンサ10の電圧を測定するために並列に設けられた電圧検出器30と、第2の直列コンデンサ11の電圧を測定するために並列に設けられた電圧検出器31と、各単相インバータ4の各直流コンデンサ5の電圧を測定するために設けられた各電圧検出器32とを備える。これらの電圧検出器30~32にて検出された電圧値30a~32aは、出力制御装置13に伝送され、出力制御装置13は検出された電圧値30a~32aに基づいて、三相3レベルインバータ3および各単相インバータ4を制御する。
その他の構成は、上記実施の形態1の図1で示した構成と同様である。
上述したように、主電圧パルス21aのパルス幅は、単相インバータ4の半周期あるいは1周期の電力収支が0に成るように決定されるため、三相3レベルインバータ3の直流入力電圧が大きくなると、図に示すように、パルス幅は短くなる。
単相インバータ4は、3相インバータ回路1の相電圧指令20と三相3レベルインバータ電圧21との差電圧を発生する必要があるが、この差電圧は、第1、第2の直列コンデンサ10、11の電圧値30a、31aが高くなって主電圧パルス21aのパルス幅が短くなると増大する。このため、図に示すように、主電圧パルス21aの立ち上がり部分の近傍および立下り部分の近傍の期間に、単相インバータ4の出力電圧限界値35を超える電圧36が要求される。なお、出力電圧限界値35の大きさは、単相インバータ4の直流コンデンサ5の電圧値32aである。
単相インバータ4は、図12で示したような出力電圧限界値35を超える電圧36を出力できないため、出力電圧限界値35を超える電圧36が要求される期間では、図14に示すように、単相インバータ4の出力電圧の不足分を三相3レベルインバータ3に負担させる。即ち、主電圧パルス21aの立ち上がり部分の近傍および立下り部分の近傍の期間に、三相3レベルインバータ3はPWM制御による電圧である部分PWM電圧38を出力して、単相インバータ4の出力電圧では不足する電圧分を出力する。
これにより、主電圧パルス21aのみの制御と部分PWM電圧38を発生させる制御との切り換え時などで、各単相インバータ4の半周期あるいは1周期の電力収支が0からずれた場合にも、速やかに0に戻す制御が可能になる。このため、単相インバータ4の出力電圧不足や、直流コンデンサ5の過充電、および過充電による単相インバータ4の絶縁破壊などを防ぐことができ、安定した出力の三相インバータ回路1を得ることができる。
次に、この発明の実施の形態6による電力変換装置を図に基づいて説明する。
図15は、この発明の実施の形態6による電力変換装置の構成を示す図である。この実施の形態では、三相インバータ回路1に第1の直流電源2の電圧を昇圧する昇圧回路40を設け、昇圧回路40の出力電圧を三相3レベルインバータ3の直流入力電圧とする。昇圧回路40は、例えば、リアクトル41、第1の直流電源2の高圧側母線と低圧側母線との間に接続されたスイッチ42、および一方向の電流を流して第1、第2の直列コンデンサ10、11を充電するダイオード43で構成される。
その他の構成は、上記実施の形態5の図10で示した構成と同様で、三相3レベルインバータ3と各単相インバータ4とは、上記実施の形態5と同様に制御される。
図16は、第1の直流電源2の電圧と三相3レベルインバータ3が出力する主電圧パルス21aのパルス幅の関係を示す図である。負荷7への出力電圧は三相、200Vrmsとした。図16に示すように、第1の直流電源電圧が256.51Vより低い電圧の時、昇圧回路40により256.51Vまで昇圧する。第1の直流電源電圧が256.51V以上になると、主電圧パルス21aのパルス幅を短くし、362.7V以上になると部分PWM電圧38を出力する制御に切り替える。
次に、この発明の実施の形態7による電力変換装置を図17に基づいて説明する。
図17に示すように、三相インバータ回路1の各相出力と負荷7との間に、三相インバータ回路1が出力する電荷量以上の静電容量を持つコンデンサ44を直列接続して備え、第1の直流電源2の出力端子の低圧側が接地点45でアースに接地される。その他の構成は上記実施の形態1の図1で示した構成と同様であるが、他の上記各実施の形態に適用しても良い。
次に、この発明の実施の形態8による電力変換装置を図18に基づいて説明する。
図18に示すように、三相インバータ回路1と負荷7との間に、絶縁が可能な絶縁トランス46を配置し、第1の直流電源2の出力端子の低圧側が接地点45でアースに接地される。この絶縁トランス46は巻き数比による一般的な昇圧機能を備えてもよい。この場合、零相電流経路は絶縁トランス46により遮断されるため、零相電流は流れない。
第1の直流電源2を接地した場合、三相インバータ回路1の各相の出力電圧は、第1の直流電源2の電圧の1/2の電圧値、あるいは第2の直列コンデンサ11の電圧値を中性点電位として出力するため、その直流電圧分だけ加算された波形を出力する。この実施の形態では、絶縁トランス46を備えたため、絶縁トランス46により直流成分がカットされ、交流成分だけを負荷7に出力する。このように負荷7へ出力される直流電圧成分を遮断するため、負荷7となる系統に出力して系統に連系できる。また、絶縁トランス46で昇圧すると、高い交流電圧が出力可能になる。
Claims (14)
- 第1の直流電源の正負端子間に接続された三相3レベルインバータと、該三相3レベルインバータの各相交流出力線にそれぞれ1あるいは複数直列接続された単相インバータと、制御装置とを備え、
上記三相3レベルインバータの出力電圧と上記各単相インバータの出力電圧との総和を平滑フィルタを介して負荷に出力するものであり、
上記単相インバータの直流入力電源である第2の直流電源の電圧は、上記三相3レベルインバータの1レベルの電圧より小さく、
上記制御装置は、
上記三相3レベルインバータの各相が上記負荷への各相出力電圧の半周期に対して1パルスの電圧を主電圧パルスとして出力するように上記三相3レベルインバータを制御すると共に、上記各単相インバータをPWM制御して、上記負荷への各相出力電圧を、上記第1の直流電源の基準電位からゼロあるいは一定の直流電位を有した点を基準とし、各相が2π/3ずつ異なる位相で同じ波高値を有する正弦波になるよう制御することを特徴とする電力変換装置。 - 上記三相3レベルインバータの直流入力である上記第1の直流電源の電圧を分圧する2直列のコンデンサを備え、
上記三相3レベルインバータは、上記2直列のコンデンサの中間点に電位を固定するクランプダイオードを備えた中性点クランプ式インバータであることを特徴とする請求項1に記載の電力変換装置。 - 上記制御装置は、上記負荷への各相出力電流が正弦波となるように上記各単相インバータをPWM制御することを特徴とする請求項1に記載の電力変換装置。
- 上記制御装置は、上記各単相インバータの半周期あるいは1周期の出力電力収支が0となるように、上記三相3レベルインバータが出力する上記主電圧パルスのパルス幅を制御することを特徴とする請求項1~3のいずれか1項に記載の電力変換装置。
- 上記各単相インバータの上記各第2の直流電源を直流コンデンサにて構成したことを特徴とする請求項4に記載の電力変換装置。
- 上記制御装置は、上記各単相インバータの上記第2の直流電源の電圧値が基準値よりも大きい時は対応する相の上記主電圧パルスのパルス幅を短くし、上記第2の直流電源の電圧値が基準値よりも小さい時は対応する相の上記主電圧パルスのパルス幅を長くすることを特徴とする請求項5に記載の電力変換装置。
- 上記制御装置は、上記主電圧パルスの立ち上がり部分の近傍および立下り部分の近傍の期間に、上記三相3レベルインバータをPWM制御することを特徴とする請求項1~3のいずれか1項に記載の電力変換装置。
- 上記制御装置が上記三相3レベルインバータをPWM制御する期間は、上記負荷への各相出力電圧と上記主電圧パルスによる相電圧との差電圧の絶対値を、上記第2の直流電源の電圧値から減算した値が所定値以下となる期間であることを特徴とする請求項7に記載の電力変換装置。
- 上記制御装置は、上記各単相インバータの半周期あるいは1周期の出力電力収支が0となるように、上記三相3レベルインバータの上記主電圧パルスおよびPWM制御による電圧出力期間を制御することを特徴とする請求項7に記載の電力変換装置。
- 上記各単相インバータの上記各第2の直流電源を直流コンデンサにて構成したことを特徴とする請求項9に記載の電力変換装置。
- 上記制御装置は、上記各単相インバータの上記第2の直流電源の電圧値が基準値よりも大きい時は対応する相の上記三相3レベルインバータの電圧出力期間を短くし、上記第2の直流電源の電圧値が基準値よりも小さい時は対応する相の上記三相3レベルインバータの電圧出力期間を長くすることを特徴とする請求項10に記載の電力変換装置。
- 上記第1の直流電源の出力端子の一方を接地し、上記各単相インバータと上記負荷との間にコンデンサを直列接続して、上記負荷へ出力される各相の直流電圧成分を遮断することを特徴とする請求項1~3のいずれか1項に記載の電力変換装置。
- 上記第1の直流電源の電圧を昇圧する昇圧回路を設け、該昇圧回路の出力電圧を上記三相3レベルインバータの直流入力とすることを特徴とする請求項1~3のいずれか1項に記載の電力変換装置。
- 上記負荷の前段に絶縁トランスを設け、該絶縁トランスを介して上記負荷に交流電力を出力することを特徴とする請求項1~3のいずれか1項に記載の電力変換装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980146061.6A CN102217182B (zh) | 2008-11-18 | 2009-11-11 | 电力变换装置 |
EP09827317.0A EP2357721B1 (en) | 2008-11-18 | 2009-11-11 | Power conversion device |
US13/127,132 US8625307B2 (en) | 2008-11-18 | 2009-11-11 | DC to AC power converting apparatus |
JP2010539128A JP5097828B2 (ja) | 2008-11-18 | 2009-11-11 | 電力変換装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008294257 | 2008-11-18 | ||
JP2008-294257 | 2008-11-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010058536A1 true WO2010058536A1 (ja) | 2010-05-27 |
Family
ID=42197979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/006015 WO2010058536A1 (ja) | 2008-11-18 | 2009-11-11 | 電力変換装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8625307B2 (ja) |
EP (1) | EP2357721B1 (ja) |
JP (1) | JP5097828B2 (ja) |
CN (1) | CN102217182B (ja) |
WO (1) | WO2010058536A1 (ja) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101881801A (zh) * | 2010-07-21 | 2010-11-10 | 上海正泰电源系统有限公司 | 一种光伏逆变器漏电流检测方法 |
JP2011120325A (ja) * | 2009-12-01 | 2011-06-16 | Mitsubishi Electric Corp | 電力変換装置 |
JP2011254565A (ja) * | 2010-05-31 | 2011-12-15 | Mitsubishi Electric Corp | 電力変換装置 |
WO2013054567A1 (ja) * | 2011-10-14 | 2013-04-18 | 三菱電機株式会社 | 電力変換装置 |
WO2013080465A1 (ja) * | 2011-11-30 | 2013-06-06 | パナソニック 株式会社 | インバータ装置の制御方法及びインバータ装置 |
WO2014061519A1 (ja) * | 2012-10-17 | 2014-04-24 | 株式会社村田製作所 | インバータ装置 |
WO2014125697A1 (ja) * | 2013-02-15 | 2014-08-21 | 三菱電機株式会社 | 三相電力変換装置 |
CN104578886A (zh) * | 2015-01-23 | 2015-04-29 | 阳光电源股份有限公司 | 一种三电平光伏逆变器脉宽调制方法和调制器 |
DE112010005608B4 (de) * | 2010-05-28 | 2018-02-01 | Mitsubishi Electric Corp. | Leistungsumwandlungseinrichtung |
JP2018186661A (ja) * | 2017-04-26 | 2018-11-22 | 株式会社東芝 | 電力変換装置 |
WO2022029869A1 (ja) | 2020-08-04 | 2022-02-10 | 三菱電機株式会社 | 電力変換装置 |
CN114670685A (zh) * | 2022-04-20 | 2022-06-28 | 福州大学 | 单相车载集成三电平npc充电电源模块 |
WO2022180709A1 (ja) | 2021-02-25 | 2022-09-01 | 三菱電機株式会社 | 電力変換装置 |
CN115913002A (zh) * | 2022-11-25 | 2023-04-04 | 江苏国科智能电气有限公司 | 一种无刷直流电机三电平逆变器及其控制方法 |
JP2023059015A (ja) * | 2021-10-14 | 2023-04-26 | 本田技研工業株式会社 | 電力変換装置、電力変換装置の制御方法、およびプログラム |
JP7271808B1 (ja) * | 2022-04-04 | 2023-05-11 | 三菱電機株式会社 | 電力変換装置、および飛行物体 |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9007789B2 (en) * | 2011-12-12 | 2015-04-14 | Chen Na | Electric circuit for high voltage power conversion |
CN102545681B (zh) * | 2012-01-18 | 2014-04-23 | 南京航空航天大学 | 可消除低频谐波的阶梯波合成式三相逆变器及控制方法 |
JP2013158093A (ja) * | 2012-01-27 | 2013-08-15 | Fuji Electric Co Ltd | 3レベル電力変換装置 |
US9281760B2 (en) * | 2012-04-26 | 2016-03-08 | Mitsubishi Electric Corporation | Power module and three-level power converter using the same |
DK2672624T3 (en) * | 2012-06-05 | 2014-12-01 | Siemens Ag | Power regulator and generator system |
US8730696B2 (en) * | 2012-07-16 | 2014-05-20 | Delta Electronics, Inc. | Multi-level voltage converter |
JP6079407B2 (ja) * | 2013-04-22 | 2017-02-15 | 富士電機株式会社 | マルチレベル変換回路 |
JP6176121B2 (ja) * | 2014-01-10 | 2017-08-09 | 住友電気工業株式会社 | 電力変換装置及び三相交流電源装置 |
CN106105005B (zh) * | 2014-08-25 | 2018-07-13 | 富士电机株式会社 | 电力变换装置 |
JP6426462B2 (ja) * | 2014-12-24 | 2018-11-21 | 株式会社東芝 | 電力変換装置およびその制御方法 |
TWI547088B (zh) * | 2015-01-29 | 2016-08-21 | 台達電子工業股份有限公司 | 直流交流轉換裝置及其操作方法 |
WO2016129464A1 (ja) * | 2015-02-10 | 2016-08-18 | 株式会社 東芝 | 電力変換装置の制御装置、制御プログラム及び電力変換装置 |
RU2671947C1 (ru) * | 2015-06-23 | 2018-11-08 | Ниссан Мотор Ко., Лтд. | Инвертор с возможностью заряда |
US9742311B2 (en) | 2015-10-02 | 2017-08-22 | Hamilton Sundstrand Corporation | Systems and methods for controlling inverters |
JP6753137B2 (ja) * | 2016-05-12 | 2020-09-09 | 富士電機株式会社 | 昇圧チョッパ回路 |
WO2018061184A1 (ja) * | 2016-09-30 | 2018-04-05 | 東芝三菱電機産業システム株式会社 | 無停電電源装置 |
JP6390806B1 (ja) * | 2017-08-02 | 2018-09-19 | 株式会社明電舎 | インバータ装置 |
US10491138B1 (en) * | 2019-02-07 | 2019-11-26 | Hamilton Sundstrand Corporation | Multilevel inverters and methods of controlling multilevel inverters |
US10516347B1 (en) * | 2019-03-27 | 2019-12-24 | Omron Automotive Electronics Co., Ltd. | Load detection method and apparatus |
US11888386B2 (en) | 2019-05-23 | 2024-01-30 | Mitsubishi Electric Corporation | Power conversion device |
CN112335167B (zh) * | 2019-06-04 | 2024-08-20 | 株式会社Tmeic | 电力转换装置及电力转换控制装置 |
JP6682049B1 (ja) * | 2019-06-25 | 2020-04-15 | 三菱電機株式会社 | 電力変換装置 |
CN111371338A (zh) * | 2020-04-14 | 2020-07-03 | 上海宝准电源科技有限公司 | 自适应npc三电平变流器中点电位平衡控制策略 |
JP7275404B2 (ja) * | 2020-09-28 | 2023-05-17 | 三菱電機株式会社 | 電力変換装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006081362A (ja) * | 2004-09-13 | 2006-03-23 | Mitsubishi Electric Corp | 電力変換装置 |
JP2007037355A (ja) * | 2005-07-29 | 2007-02-08 | Mitsubishi Electric Corp | 電力変換装置 |
JP2007169730A (ja) * | 2005-12-22 | 2007-07-05 | Nippon Reliance Kk | 交流電源装置およびその装置におけるアーク防止方法 |
JP2008092651A (ja) * | 2006-09-29 | 2008-04-17 | Mitsubishi Electric Corp | 電力変換装置および電力変換システム |
US20080102552A1 (en) | 2006-10-30 | 2008-05-01 | Warren Farnworth | Wafer level method of locating focal plane of imager devices |
JP2008278560A (ja) * | 2007-04-25 | 2008-11-13 | Toyota Motor Corp | 電源制御装置、電源装置の制御方法、および電源装置の制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002165461A (ja) | 2000-11-28 | 2002-06-07 | Meidensha Corp | トランスレスインバータ電源 |
JP4052195B2 (ja) * | 2003-07-31 | 2008-02-27 | トヨタ自動車株式会社 | 電圧変換装置および電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体 |
DE112005000289B8 (de) * | 2004-02-03 | 2023-03-16 | Toyota Jidosha Kabushiki Kaisha | Hybrid-Brennstoffzellensystem und Spannungsumwandlungs-Steuerverfahren dafür |
KR20080109878A (ko) * | 2006-04-25 | 2008-12-17 | 미쓰비시덴키 가부시키가이샤 | 전력 변환 장치 |
CN101636897B (zh) | 2007-02-22 | 2012-05-23 | 三菱电机株式会社 | 电力变换装置 |
JP4898898B2 (ja) | 2007-02-22 | 2012-03-21 | 三菱電機株式会社 | 3相電力変換装置 |
-
2009
- 2009-11-11 WO PCT/JP2009/006015 patent/WO2010058536A1/ja active Application Filing
- 2009-11-11 CN CN200980146061.6A patent/CN102217182B/zh not_active Expired - Fee Related
- 2009-11-11 JP JP2010539128A patent/JP5097828B2/ja not_active Expired - Fee Related
- 2009-11-11 US US13/127,132 patent/US8625307B2/en active Active
- 2009-11-11 EP EP09827317.0A patent/EP2357721B1/en not_active Not-in-force
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006081362A (ja) * | 2004-09-13 | 2006-03-23 | Mitsubishi Electric Corp | 電力変換装置 |
JP2007037355A (ja) * | 2005-07-29 | 2007-02-08 | Mitsubishi Electric Corp | 電力変換装置 |
JP2007169730A (ja) * | 2005-12-22 | 2007-07-05 | Nippon Reliance Kk | 交流電源装置およびその装置におけるアーク防止方法 |
JP2008092651A (ja) * | 2006-09-29 | 2008-04-17 | Mitsubishi Electric Corp | 電力変換装置および電力変換システム |
US20080102552A1 (en) | 2006-10-30 | 2008-05-01 | Warren Farnworth | Wafer level method of locating focal plane of imager devices |
JP2008278560A (ja) * | 2007-04-25 | 2008-11-13 | Toyota Motor Corp | 電源制御装置、電源装置の制御方法、および電源装置の制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2357721A4 |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011120325A (ja) * | 2009-12-01 | 2011-06-16 | Mitsubishi Electric Corp | 電力変換装置 |
DE112010005608B4 (de) * | 2010-05-28 | 2018-02-01 | Mitsubishi Electric Corp. | Leistungsumwandlungseinrichtung |
JP2011254565A (ja) * | 2010-05-31 | 2011-12-15 | Mitsubishi Electric Corp | 電力変換装置 |
CN101881801A (zh) * | 2010-07-21 | 2010-11-10 | 上海正泰电源系统有限公司 | 一种光伏逆变器漏电流检测方法 |
CN101881801B (zh) * | 2010-07-21 | 2012-07-11 | 上海正泰电源系统有限公司 | 一种光伏逆变器漏电流检测方法 |
WO2013054567A1 (ja) * | 2011-10-14 | 2013-04-18 | 三菱電機株式会社 | 電力変換装置 |
JPWO2013054567A1 (ja) * | 2011-10-14 | 2015-03-30 | 三菱電機株式会社 | 電力変換装置 |
JPWO2013080465A1 (ja) * | 2011-11-30 | 2015-04-27 | パナソニックIpマネジメント株式会社 | インバータ装置の制御方法及びインバータ装置 |
WO2013080465A1 (ja) * | 2011-11-30 | 2013-06-06 | パナソニック 株式会社 | インバータ装置の制御方法及びインバータ装置 |
US9479079B2 (en) | 2011-11-30 | 2016-10-25 | Panasonic Intellectual Property Management Co., Ltd. | Control method for inverter device, and inverter device |
WO2014061519A1 (ja) * | 2012-10-17 | 2014-04-24 | 株式会社村田製作所 | インバータ装置 |
US9419542B2 (en) | 2012-10-17 | 2016-08-16 | Murata Manufacturing Co., Ltd. | Inverter device |
JP5949932B2 (ja) * | 2012-10-17 | 2016-07-13 | 株式会社村田製作所 | インバータ装置 |
WO2014125697A1 (ja) * | 2013-02-15 | 2014-08-21 | 三菱電機株式会社 | 三相電力変換装置 |
JP5932126B2 (ja) * | 2013-02-15 | 2016-06-08 | 三菱電機株式会社 | 三相電力変換装置 |
CN104578886B (zh) * | 2015-01-23 | 2017-06-13 | 阳光电源股份有限公司 | 一种三电平光伏逆变器脉宽调制方法和调制器 |
CN104578886A (zh) * | 2015-01-23 | 2015-04-29 | 阳光电源股份有限公司 | 一种三电平光伏逆变器脉宽调制方法和调制器 |
JP2018186661A (ja) * | 2017-04-26 | 2018-11-22 | 株式会社東芝 | 電力変換装置 |
WO2022029869A1 (ja) | 2020-08-04 | 2022-02-10 | 三菱電機株式会社 | 電力変換装置 |
US12107487B2 (en) | 2020-08-04 | 2024-10-01 | Mitsubishi Electric Corporation | Power conversion device |
WO2022180709A1 (ja) | 2021-02-25 | 2022-09-01 | 三菱電機株式会社 | 電力変換装置 |
JP2023059015A (ja) * | 2021-10-14 | 2023-04-26 | 本田技研工業株式会社 | 電力変換装置、電力変換装置の制御方法、およびプログラム |
JP7376548B2 (ja) | 2021-10-14 | 2023-11-08 | 本田技研工業株式会社 | 電力変換装置、電力変換装置の制御方法、およびプログラム |
JP7271808B1 (ja) * | 2022-04-04 | 2023-05-11 | 三菱電機株式会社 | 電力変換装置、および飛行物体 |
WO2023195041A1 (ja) * | 2022-04-04 | 2023-10-12 | 三菱電機株式会社 | 電力変換装置、および飛行物体 |
CN114670685A (zh) * | 2022-04-20 | 2022-06-28 | 福州大学 | 单相车载集成三电平npc充电电源模块 |
CN115913002A (zh) * | 2022-11-25 | 2023-04-04 | 江苏国科智能电气有限公司 | 一种无刷直流电机三电平逆变器及其控制方法 |
CN115913002B (zh) * | 2022-11-25 | 2023-10-13 | 江苏国科智能电气有限公司 | 一种无刷直流电机三电平逆变器及其控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102217182A (zh) | 2011-10-12 |
US20110211381A1 (en) | 2011-09-01 |
EP2357721A4 (en) | 2014-12-24 |
CN102217182B (zh) | 2014-09-10 |
JPWO2010058536A1 (ja) | 2012-04-19 |
EP2357721A1 (en) | 2011-08-17 |
EP2357721B1 (en) | 2016-03-30 |
US8625307B2 (en) | 2014-01-07 |
JP5097828B2 (ja) | 2012-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5097828B2 (ja) | 電力変換装置 | |
US8508957B2 (en) | Power conversion device for converting DC power to AC power | |
US8994216B2 (en) | Power conversion apparatus | |
JP4783294B2 (ja) | 系統連系用電力変換装置 | |
US20090244936A1 (en) | Three-phase inverter | |
US9673732B2 (en) | Power converter circuit | |
US8400792B2 (en) | Power conversion apparatus | |
US10998830B2 (en) | Power conversion device and three-phase power conversion device | |
EP3785363A1 (en) | Voltage level multiplier module for multilevel power converters | |
US9484746B2 (en) | Power converter circuit with AC output | |
US20140062198A1 (en) | Solar photovoltaic three-phase micro-inverter and a solar photovoltaic generation system | |
US8923027B2 (en) | Five-level DC-AC converter | |
JP6087531B2 (ja) | 電力変換装置 | |
JP5254922B2 (ja) | 電力変換装置 | |
AU2010202748B2 (en) | Systems, methods and apparatus for converting direct current (DC) power to alternating current (AC) power | |
WO2014030181A1 (ja) | 電力変換装置 | |
Singh et al. | A new single-source nine-level quadruple boost inverter (nqbi) for pv application | |
JP2008178158A (ja) | 電力変換装置 | |
JP5291180B2 (ja) | 電力変換装置 | |
JP4365171B2 (ja) | 電力変換装置及びそれを用いたパワーコンディショナ | |
KR101403868B1 (ko) | 정현파 펄스 폭 변조 승압 초퍼를 이용한 태양광 발전용 파워 컨디셔너 | |
KR20200140332A (ko) | 전력 변환 장치 | |
WO2011128942A1 (ja) | 電力変換装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980146061.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09827317 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010539128 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13127132 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009827317 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |