WO2022029869A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2022029869A1
WO2022029869A1 PCT/JP2020/029771 JP2020029771W WO2022029869A1 WO 2022029869 A1 WO2022029869 A1 WO 2022029869A1 JP 2020029771 W JP2020029771 W JP 2020029771W WO 2022029869 A1 WO2022029869 A1 WO 2022029869A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
phase
inverter
output
value
Prior art date
Application number
PCT/JP2020/029771
Other languages
English (en)
French (fr)
Inventor
賢司 藤原
鉄也 小島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US18/011,850 priority Critical patent/US20230261563A1/en
Priority to PCT/JP2020/029771 priority patent/WO2022029869A1/ja
Priority to JP2022541362A priority patent/JP7305053B2/ja
Priority to EP20947835.3A priority patent/EP4195491A4/en
Publication of WO2022029869A1 publication Critical patent/WO2022029869A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current

Definitions

  • This application relates to a power conversion device.
  • Equipment mounted on aircraft is required to be a highly efficient, lightweight and compact power conversion device in order to improve fuel efficiency.
  • an inverter that converts DC power supplied from DC wiring into AC power is required to drive the AC motor.
  • the present application discloses a technique for solving the above-mentioned problems, and provides a power conversion device capable of continuous operation with the same output even if a sub-inverter constituting a gradation control inverter fails.
  • the purpose is to provide.
  • the power conversion device disclosed in the present application includes a main inverter unit having three main inverter arms for outputting U-phase, V-phase, and W-phase voltages using the voltage of the DC source as a DC bus, and three single-phase ones.
  • a sub-inverter unit having a sub-inverter is provided, the sub-inverter is individually connected in series to each output of the main inverter arm, and the sub-inverter has a short-circuit switch for short-circuiting between its input / output terminals. It is individually provided and has a control device for controlling the main inverter unit, the sub-inverter unit, and the short-circuit switch.
  • the sub-inverter operates as a gradation control inverter that outputs a voltage obtained by adding the output voltage of each of the main inverter arms of each phase and the output voltage of the sub-inverter.
  • the short-circuit switch in the phase corresponding to the failed sub-inverter is closed, the main inverter arm operates as a three-level inverter, and the sub has no failure.
  • the inverter In the phase corresponding to the inverter, it operates as a gradation control inverter that outputs a voltage obtained by adding the output voltage of the main inverter arm of each phase and the output voltage of the sub-inverter, respectively, as in the normal state.
  • the power conversion device disclosed in the present application even if the sub-inverter constituting the gradation control inverter fails, continuous operation can be performed with the same output.
  • overmodulation can be suppressed, current distortion can be suppressed, and the zero-phase voltage to be added or subtracted can be minimized, and noise can be suppressed.
  • the bus voltage is the same as in steady state, improving the cost and size of the overvoltage design.
  • FIG. It is a circuit block diagram of the power conversion apparatus according to Embodiment 1.
  • FIG. It is a waveform diagram which shows the output voltage waveform of each phase of the power conversion apparatus by Embodiment 1.
  • FIG. It is a waveform diagram which shows the output voltage waveform of each phase of the power conversion apparatus by Embodiment 1.
  • FIG. It is a waveform diagram which shows the output voltage waveform of each phase of the power conversion apparatus by Embodiment 1.
  • FIG. It is explanatory drawing which shows the operation state of the short circuit switch, and the flow of an output current when the U-phase sub-inverter by Embodiment 1 has failed.
  • FIG. 5 is a waveform diagram showing an output voltage waveform of each phase of the power conversion device when the U-phase sub-inverter according to the first embodiment fails. It is a functional block diagram of the phase compensation voltage calculation part by Embodiment 2.
  • FIG. It is a functional block diagram of the zero-phase compensation voltage calculation unit according to Embodiment 2.
  • It is a waveform diagram which shows the final output voltage target value of each phase with respect to the power conversion apparatus after zero-phase voltage compensation by Embodiment 2.
  • FIG. 3 is a functional block diagram of a phase compensation voltage calculation unit at the time of a one-phase (U-phase) failure according to the third embodiment. It is a waveform diagram which shows the final output voltage target value of each phase with respect to the power conversion apparatus after zero-phase voltage compensation by Embodiment 3.
  • FIG. 3 is a functional block diagram of a phase compensation voltage calculation unit at the time of a two-phase (U phase, V phase) failure according to the third embodiment.
  • FIG. 5 is a functional block diagram of a phase compensation voltage calculation unit at the time of a one-phase (U-phase) failure according to the fourth embodiment. It is a waveform diagram which shows the final output voltage target value of each phase with respect to the power conversion apparatus after zero-phase voltage compensation by Embodiment 4.
  • FIG. FIG. 5 is a functional block diagram of a phase compensation voltage calculation unit at the time of a two-phase (U phase, V phase) failure according to the fourth embodiment. It is a functional block diagram which shows an example of the hardware of the
  • FIG. 1 is a circuit configuration diagram of a power conversion device according to the first embodiment.
  • the power conversion device according to the first embodiment has a direct current source 1 such as a battery, and converts the direct current source 1 into alternating current necessary for driving a load 9 such as a motor, and has a large voltage and a low frequency.
  • the main inverter unit 2, the sub-inverter unit 4 having a low voltage and a high frequency, and the control device 10 for controlling the operation of the main inverter unit 2 and the sub-inverter unit 4 are provided.
  • the main inverter unit 2 and the sub-inverter unit 4 are connected in series with each other, and are configured as a gradation control inverter in which the total value of the output voltages of the main inverter unit 2 and the sub-inverter unit 4 is output.
  • the DC source 1 may be supplied by DC wiring, may be an individual DC power supply system, or may be another battery system such as a solar cell.
  • the main inverter unit 2 is a three-phase three-level inverter, and is composed of a U-phase main inverter arm 3u, a V-phase main inverter arm 3v, and a W-phase main inverter arm 3w.
  • the sign 3x is used.
  • the main inverter arm 3x of the output phase is a switching element SW1 to SW4 composed of semiconductor elements such as an IGBT (Insulated Gate Bipolar Transistor) and a MOSFET (Metal-Oxide-Silicon Field Effect Transistor), all of which have four switching capabilities. It is composed of diodes D1 and D2 having two rectifying capabilities. It should be noted that an IGBT, MOSFET, or the like can be used instead of the diode. Further, the main inverter unit 2 is not limited to the three-phase inverter as in the first embodiment, and may be an inverter having another number of output levels.
  • the sub-inverter unit 4 includes a U-phase sub-inverter 5u, a V-phase sub-inverter 5v, and a W-phase sub-inverter 5w.
  • the U-phase sub-inverter 5u, the V-phase sub-inverter 5v, and the W-phase sub-inverter 5w are individually connected to the output terminals of the U-phase main inverter arm 3u, the V-phase main inverter arm 3v, and the W-phase main inverter arm 3w.
  • the sub-inverters 5u, 5v, and 5w of each phase are generically referred to without distinction, the sign 5x is used.
  • the sub-inverters 5u, 5v, and 5w of each phase are single-phase full-bridge inverters, each bridge is provided with two switching elements SW5 composed of semiconductor elements such as IGBTs and MOSFETs, and capacitors are provided between the bridges. 8u, 8v, 8w are connected and configured.
  • the DC bus voltage VDCM applied to the main inverter section 2 is the voltage of the DC source 1, and because it is a 3-level inverter, it is divided by two series capacitors 7p and 7n at the neutral point. Among them, the DC bus voltage of the capacitor 7p on the high potential side is referred to as a half bus voltage VDCMP, and the DC bus voltage of the capacitor 7n on the low potential side is referred to as a half bus voltage VDCMN.
  • the bus voltage VDCS between the bridges of the sub-inverters 5x of each phase is smaller than the voltage of the DC source 1 which is the DC bus voltage VDC of the main inverter unit 2.
  • a U-phase short-circuit switch 6u, a V-phase short-circuit switch 6v, and a W-phase short-circuit are performed between the input / output terminals of the U-phase sub-inverter 5u, the V-phase sub-inverter 5v, and the W-phase sub-inverter 5w.
  • the switches 6w are individually provided.
  • the sign 6x is used.
  • the short-circuit switch 6x of the failed sub-inverter 5x is turned on according to the failure detection, so that the current is passed through the sub-inverter 5x. Shed.
  • the failure is detected by the control device 10 detecting an abnormality such as detecting a short-circuit current of the sub-inverter 5x of each phase or detecting a shortage of the output voltage of the phase voltage.
  • FIG. 2A to 2C show the voltage of the main inverter section 2 (FIG. 2A) when the sub-inverter 5x of each phase is normal without any failure and the short-circuit switch 6x of each phase is turned off.
  • It is a waveform diagram which shows the voltage of the sub-inverter section 4 (FIG. 2B), and the output phase voltage (FIG. 2C) of the power conversion device which is the total value of the main inverter section 2 and the sub-inverter section 4.
  • the waveform of FIG. 2A is the output voltage waveform of each phase of the main inverter section 2, where MAINU is the voltage waveform of the U-phase main inverter arm 3u, MAINV is the voltage waveform of the V-phase main inverter arm 3v, and MAINW is the W-phase main inverter arm. It is a voltage waveform of 3w.
  • the switching frequency of the switching element of the main inverter unit 2 is about the same as the power supply frequency, and in the first embodiment, switching is performed once in each cycle, positive or negative. Further, the waveform of FIG.
  • 2B is the output voltage waveform of the sub-inverter unit 4
  • SUBU is the voltage waveform of the U-phase sub-inverter 5u
  • SUBV is the voltage waveform of the V-phase sub-inverter 5v
  • SUBW is the voltage waveform of the W-phase sub-inverter 5w.
  • the sub-inverter section 4 having a small bus voltage switches at a higher frequency than the main inverter section 2. Further, the sub-inverter unit 4 outputs the difference between the target voltage of the power conversion device and the output voltage of the main inverter unit 2. Further, the waveform of FIG.
  • 2C is an output voltage waveform of the power conversion device which is the total value of the output voltages of the main inverter section 2 and the sub inverter section 4, where Vue is the U-phase output voltage waveform and Vve is the V-phase output.
  • the voltage waveform and Vwe are W-phase output voltage waveforms. As shown in FIG. 2C, it is possible to output a multi-level waveform close to a sine wave as a gradation control inverter. Here, a 7-level output voltage waveform is generated.
  • the power conversion device of the first embodiment is configured as a gradation control inverter as a whole, and the switching operation performed at high frequency is only the sub-inverter unit 4 having a low bus voltage, so that the switching loss And the noise becomes low. Therefore, since the cooler and the noise filter can be miniaturized, the gradation control inverter can be configured as a lightweight power conversion device.
  • FIG. 3 is a diagram showing an operating state when the U-phase sub-inverter 5u fails as an example.
  • the U-phase short-circuit switch 6u is turned on, so that the U-phase sub-inverter 5u is passed through, while the normal V-phase sub-inverter 5v V-phase short-circuit switch 5v and the normal W-phase sub
  • the W-phase short-circuit switch 5w of the inverter 5w is open.
  • the U-phase main inverter arm 3u corresponding to the failed U-phase sub-inverter 5u continues to have a low distortion waveform in order to reduce the load. That is, since the U-phase sub-inverter 5u is passed through, the U-phase main inverter arm 3u operates as a three-level inverter that switches at a higher frequency than the other V-phase and W-phase main inverter arms 3v and 3w.
  • V-phase and W-phase sub-inverters 5v and 5w are normal, the corresponding V-phase and W-phase main inverter arms 3v and 3w continue to operate as gradation control inverters. That is, the V-phase and W-phase main inverter arms 3v and 3w operate as a 3-level inverter having a lower frequency than the U-phase main inverter arm 3u, and the V-phase and W-phase sub-inverters 5v and 5w are used. , The DC bus voltage is smaller than VDCM, and switching is performed at a higher frequency than the V-phase and W-phase main inverter arms 3v and 3w.
  • the phase corresponding to the state in which one of the sub-inverters has failed and the short-circuit switch is closed is the failed phase
  • the phase corresponding to the state in which the short-circuit switch is open without the failed sub-inverter is set.
  • the corresponding phase is referred to as a normal phase.
  • the operation mode in which the main inverter arm of the faulty phase switches at a high frequency is referred to as the operation of the three-level inverter.
  • the operation mode in which the main inverter arm and the sub-inverter in the normal phase operate together is referred to as the operation of the gradation control inverter.
  • FIG. 4 is a waveform diagram showing an output voltage waveform of each phase of the power conversion device when the U-phase sub-inverter 5u fails.
  • the waveform in the upper part of FIG. 4 is the U-phase output voltage Vue corresponding to the failed sub-inverter 5u, and the three-level voltage having a lower number of levels than the waveform of the seven-level gradation control inverter shown in FIG. 2C.
  • the output waveform is formed by.
  • the waveform in the middle stage of FIG. 4 is the output voltage of the V phase
  • the waveform in the lower stage of FIG. 4 is the output voltage of the W phase. It continues to operate as a gradation control inverter.
  • the case where one phase fails is described, but even if the sub-inverter for two phases fails, it can be used in the same manner. Further, without using the short-circuit switch 6x, it is possible to bypass the output of the sub-inverter as zero by using a switching mode in which a surviving switch element without failure is turned on only on the low side or turned on only on the high side.
  • the main inverter arm is operated as a three-level inverter only for the faulty phase in which one of the sub-inverters has failed, and the gradation control is performed for the remaining normal phase main inverter arm.
  • the gradation control is performed for the remaining normal phase main inverter arm.
  • Embodiment 2 the overall configuration of the power conversion device is the same as that in FIG. 1, and therefore detailed description thereof will be omitted here.
  • the voltage that can be output is the half bus voltage VCMP or VDCMN of the main inverter section 2 and the sub inverter, ignoring the voltage drop due to the circuit.
  • the total value with the bus voltage VDCS of the part 4 becomes the maximum.
  • the main inverter arm 3x when the main inverter arm 3x operates as a three-level inverter through a failure of the sub-inverter 5x, the outputable voltage is the half bus voltage VCMP of the main inverter section 2 or VDCN is the largest. Therefore, when the main inverter arm 3x operates as a three-level inverter, the voltage becomes lower by the bus voltage VDCS of the failed sub-inverter 5x as compared with the case of the gradation control inverter operation, and voltage imbalance occurs.
  • the voltage imbalance that occurs when the main inverter arm 3x operates as a three-level inverter is compensated by the zero-phase voltage (hereinafter, this is referred to as the zero-phase compensation voltage), and the voltage imbalance is achieved. Perform the process to eliminate as much as possible.
  • the failure phase will be described as that of the U phase. Further, in the case where the same calculation is performed for each phase, the term X phase is used for explanation, and it is assumed that the three phases U, V, and W are applicable to the X phase.
  • FIG. 5 is a functional block diagram of the phase compensation voltage calculation unit that calculates the phase compensation voltage of each phase according to the second embodiment.
  • the phase compensation voltage calculation unit 20 is configured by, for example, inputting a preset program to a processor included in the control device 10 via a volatile storage device. The same applies to the zero-phase compensation voltage calculation unit 30 shown in FIG. 6 and the final output voltage target value calculation unit 40 shown in FIG. 7, which will be described later.
  • the X-phase output voltage target value RVX is a voltage that is the output target of the power conversion device determined by load control.
  • the half bus voltage of the main inverter section 2 is VCMP or VDCMN.
  • VDCMP is used when the output voltage target value RVX of the X phase is positive
  • VDCMN is used when the output voltage target value RVX of the X phase is negative.
  • the bus voltage may be the average value of the half bus voltage VDCMP or VDCMN.
  • the subtractor 21 calculates the difference between the output voltage target value RVX and the half bus voltage VCMP, and the difference is positive. (That is, when the output voltage target value RVX becomes equal to or higher than the bus voltage VCMP), the lower limit limiter 23 operates and the above difference DPX is output.
  • the subtractor 22 calculates the difference between the output voltage target value RVX and the half bus voltage VDCMN, and when the difference is negative (that is, the output voltage target value RVX is). (When the half bus voltage is VDCMP or less), the upper limit limiter 24 works, and the above difference DNX is output. Since the half bus voltage VDCMN has only a positive value, it is described in the expression of addition in FIG. 5 in order to calculate the difference.
  • DX the adjustment voltage obtained by adding the above difference DPX and the difference DNX with the adder 25
  • DX the adjustment voltage obtained by adding the above difference DPX and the difference DNX with the adder 25
  • the multiplexer 26 is used in FIG. 5 as the selection method, it may be used as a means for selecting an output by an If statement or the like when it is created by a program.
  • FIG. 6 is a functional block diagram of the zero-phase compensation voltage calculation unit according to the second embodiment. If the phase compensation voltage calculation unit 20 obtains the adjustment voltage DX in the X phase, the zero-phase compensation voltage calculation unit 30 determines that each phase, that is, the U-phase adjustment voltage DU, the V-phase adjustment voltage DV, and the W-phase adjustment voltage DW. The calculation results are totaled by the adders 31 and 32, and the total is output as the zero-phase compensation voltage DZERO in the power converter.
  • FIG. 7 is a functional block diagram of the final output voltage target value calculation unit that calculates the final output voltage target value of each phase from the output voltage target value for the load in the power conversion device of the second embodiment.
  • the two-phase is obtained from the target D-axis voltage, the target Q-axis voltage, the target zero-phase voltage, and the target phase signals determined for the power converter for the control of the load 9.
  • the three-phase conversion unit 41 generates an output voltage target value RVX (RVU, RVV, RVW).
  • RVX RVU, RVV, RVW
  • the adjustment voltage DX (DU, DV, DW) of each phase is calculated by the processing of the phase compensation voltage calculation unit 20 of FIG.
  • the zero-phase compensation voltage DZERO is calculated by the processing of the zero-phase compensation voltage calculation unit 30 of FIG.
  • the zero-phase compensation voltage DZERO is added to the target zero-phase voltage by the adder 42, and the two-phase three-phase conversion unit 43 performs two-phase three-phase conversion to obtain the final output voltage target value RRVX (RRVU,) of each phase. RRVV, RRVW) is calculated.
  • the zero-phase compensation voltage DZERO is in the phase period in which the voltage is insufficient by the bus voltage VDCS in the X-phase (here, the U-phase). Is added to the output voltage target value RVX of each of the three phases to output the final output voltage target value RRVX of each phase. As a result, the imbalance of the voltage of each phase is eliminated as much as possible.
  • FIG. 8 is a waveform diagram of the output voltage target value RVX of each phase before zero-phase voltage compensation.
  • FIG. 9 is a waveform diagram showing the final output voltage target value RRVX for the power conversion device after compensating the output voltage target value RVX with the zero-phase compensation voltage DZERO.
  • the maximum instantaneous voltage is about 1.414 [p. u. ], Half bus voltage VDCMP or VDCMN 1.0 [p. u. ] Is the case.
  • the U-phase sub-inverter 5u is out of order, and only the final output voltage target value RRVU of the U-phase has an absolute value of 1.0 [p. u. ] It can be seen that it is clamped.
  • the operation as a three-level inverter may be completely two-phase modulation by always turning it on instead of PWM control.
  • the threshold value in that case is also the absolute value of 1.0 [p. u. ] As the center, plus 0.1 [p. u. ] To minus 0.1 [p. u. ] Can also be used in the range up to.
  • the description is made on the premise that the faulty phase is the U phase, but the description is not limited to this, even if the faulty phase is another phase or there are two faulty phases. Available.
  • the absolute value of the output voltage target value is the bus voltage. If the voltage exceeds the output voltage target value, the zero-phase compensation voltage is added to the three-phase output voltage target value during the phase period when the DC bus voltage is insufficient with respect to the output voltage target value. Can be output. That is, the magnitude of the output to the load can be maintained. Further, since the zero-phase compensation voltage to be added can be suppressed to the compensation amount of only the faulty phase, the leakage current can be suppressed.
  • Embodiment 3 In the third embodiment, the overall configuration of the power conversion device is the same as that of FIG. 1, and therefore detailed description thereof will be omitted here.
  • the voltage imbalance that occurs when the sub-inverter fails by a method different from that of the second embodiment is compensated by the zero-phase voltage.
  • the maximum value of the voltage that can be output by the gradation control inverter in the normal phase is set as the upper limit.
  • the failure phase will be described as that of the U phase.
  • the U-phase main inverter arm 3u corresponding to the faulty phase is operated by a 3-level inverter, but when the absolute value of the U-phase output voltage target value RVU is equal to or higher than the half bus voltage VCMP of the main inverter section 2, or lower than VDCMN.
  • RVU the absolute value of the U-phase output voltage target value RVU is equal to or higher than the half bus voltage VCMP of the main inverter section 2, or lower than VDCMN.
  • the final output voltage target value RRVU of the power converter to be recalculated is the following (Equation 1).
  • the final output voltage target values RRVV and RRVW are (Equation 2) and (Equation 3).
  • RRVU RVU-Y (Equation 1)
  • RRVV RVV-Y (Equation 2)
  • RRVW RVW-Y (Equation 3)
  • the final output voltage target value RRVU of the power converter to be recalculated becomes the following (Equation 4). ..
  • the final output voltage target values RRVV and RRVW are (Equation 5) and (Equation 6).
  • RRVU RVU + Y (Equation 4)
  • RRVV RVV + Y (Equation 5)
  • RRVW RVW + Y (Equation 6)
  • FIG. 10 is a block diagram of a phase compensation voltage calculation unit that calculates the above difference voltage Y and determines the adjustment voltage DU for the U phase.
  • the phase compensation voltage calculation unit 50 is configured by, for example, inputting a preset program to the processor included in the control device 10 via the volatile storage device.
  • the difference voltage Y is obtained by first subtracting the absolute value
  • the second candidate Y2 is selected by the following (Equation 8) as the candidate for the difference voltage Y, and the third candidate Y3 is selected as the next candidate. It is calculated by (Equation 9) of.
  • VDCMAX is the sum of the half bus voltage VDCMP or VDCMN of the main inverter unit 2 and the bus voltage VDCS of the sub-inverter multiplied by the utilization rate determined by the designer.
  • the utilization rate is about 70% or more.
  • the difference voltage Y2 obtained by subtracting the absolute value
  • the second adjustment voltage Y2 is referred to as the second adjustment voltage Y2.
  • the difference voltage Y3 obtained by subtracting the absolute value
  • the minimum value selection unit 55 the lowest value (that is, the lowest value) among the first to third adjustment voltages Y1, Y2, and Y3 obtained by the above (Equation 7), (Equation 8), and (Equation 9). , Which has a small margin in compensating for the zero-phase voltage) is selected as the adjustment voltage Y.
  • the multiplexer 56 when the output voltage target value RVU of the U phase is equal to or higher than the half bus voltage VDCMP, the positive adjustment voltage Y is set as the adjustment voltage DU for the U phase, and the output voltage target value RVU of the U phase is the half bus voltage. When it is not more than VDCMN, the negative adjustment voltage ⁇ Y is output as the adjustment voltage DU for the U phase.
  • the zero-phase compensation voltage calculation unit 30 sums the calculation results of the adjustment voltage DX of each phase to obtain the zero-phase compensation voltage DZERO in the power conversion device.
  • the zero-phase compensation voltage DZERO is set to the three-phase output voltage target value RVX during the phase period in which the voltage is insufficient by the bus voltage VDCS in the U phase in the final output voltage target value calculation unit 40.
  • the final output voltage target value RRVX of each phase is output. As a result, the imbalance of the voltage of each phase is eliminated as much as possible.
  • FIG. 11 is a waveform diagram showing the final output voltage target value RRVX of each phase for the power conversion device after compensating the output voltage target value RVX with the zero phase compensation voltage DZERO.
  • the maximum instantaneous voltage is about 1.414 [p. u. ], Half bus voltage VDCMP or VDCMN 1.0 [p. u. ] Is the case.
  • the U-phase sub-inverter 5u is out of order, and the final output voltage target value RRVU of the U-phase is about 1.0 [p. u. ], And the final output voltage target values RRVV and RRVW of the V phase and the W phase without failure are about 1.414 [p. u. ] Can be restricted.
  • the configuration shown in FIG. 10 is described on the assumption that the faulty phase is the U phase, but the description is not limited to this, and the faulty phase is another phase or there are two faulty phases. But it can be used.
  • FIG. 12 is a functional block diagram of the phase compensation voltage calculation unit when the faulty phase is the U phase or the V phase as an example.
  • the phase compensation voltage calculation unit 60 for the U phase which is a faulty phase, the difference voltage is obtained by the subtractor 61 by the above-mentioned (Equation 7), and this is set as the first adjustment voltage Y1.
  • the lower limit of the first adjustment voltage Y1 is limited by the lower limit limiter 62, and the minimum value is 0.
  • the differential voltage is obtained by the above-mentioned (Equation 7) with the subtractor 65, and this is used as the second adjustment voltage Y2.
  • the lower limit of the second adjustment voltage Y2 is limited by the lower limit limiter 66, and the minimum value is 0.
  • the differential voltage is obtained by the above-mentioned (Equation 9) with the subtractor 63, and this is used as the third adjustment voltage Y3.
  • the first adjustment voltage Y1 and the second adjustment voltage Y2 are compared with the third adjustment voltage Y3, and the first of the first to third adjustment voltages Y1, Y2, and Y3 is the most.
  • a small value (that is, one having a small margin for compensating for the zero-phase voltage) is selected as the adjustment voltage Y.
  • the multiplexers 69 and 70 output a positive adjustment voltage Y when the U-phase and V-phase output voltage target values RVU and RUV are equal to or higher than the half bus voltage VDCMP, and the U-phase and V-phase output voltage target values.
  • RVU and RVV are equal to or less than the half bus voltage VDCMP
  • a negative adjustment voltage ⁇ Y is output.
  • the sum of the outputs of the multiplexers 69 and 70 by the adder 71 is finally output as the adjustment voltage DU and DV for the faulty phase. Subsequent processing is the same as in the case of FIG.
  • the third embodiment even if there is a main inverter arm operated by a three-level inverter due to a failure, in all phases up to the maximum value VDCMAX of the voltage that can be output in the normal phase. It is possible to output the same line voltage as in gradation control with the overmodulation suppressed.
  • Embodiment 4 the overall configuration of the power conversion device is the same as that in FIG. 1, and therefore detailed description thereof will be omitted here.
  • the voltage imbalance that occurs when the sub-inverter fails by a method different from that of the second embodiment and the third embodiment is compensated by the zero-phase voltage. That is, in the fourth embodiment, the maximum value (peak value) VDCPEAK of the output voltage target value RVX of the fault phase is set as the upper limit.
  • the failure phase will be described as the U phase.
  • the U-phase main inverter arm 3u corresponding to the failed phase is operated by a 3-level inverter, but the maximum value (peak value) of the output voltage target value RVU of the U phase, which is the failed phase, is VDCPEAK, which is the half bus voltage of the main inverter section 2.
  • VDCPEAK which is the half bus voltage of the main inverter section 2.
  • FIG. 13 is a block diagram of a phase compensation voltage calculation unit that calculates the above difference voltage Y and determines the adjustment voltage DX for the U phase.
  • the phase compensation voltage calculation unit 80 is configured by, for example, inputting a preset program to the processor included in the control device 10 via the volatile storage device.
  • the differential voltage obtained by subtracting the maximum value VDCPEAK of the U-phase output voltage target value RVU and the half bus voltage VDCP or VDCN with the subtractor 81 is obtained.
  • the first adjustment voltage Y1 For example, the following (Equation 10) is obtained.
  • the first adjustment voltage Y1 may be treated as a fixed value in the voltage cycle.
  • of the output voltage target values of the VDCAX and the V phase is set as the candidate for the differential voltage Y by the subtractor 82.
  • the differential voltage subtracted by the equation 8) is obtained.
  • of the output voltage target value of the VDCAX and the W phase by the subtractor 83 by the above-mentioned (Equation 9) is obtained. This is referred to as the third adjustment voltage Y3.
  • the minimum value selection unit 84 has the lowest value (that is, the lowest value) among the first to third adjustment voltages Y1, Y2, and Y3 obtained by the above (Equation 10), (Equation 8), and (Equation 9). , Which has a small margin in compensating for the zero-phase voltage) is selected as the adjustment voltage Y.
  • the positive adjusted voltage Y is set as the adjusted voltage DU for the U phase by the multiplexer 85. Further, when the output voltage target value RVU of the U phase is equal to or less than the half bus voltage VCMP, the negative adjustment voltage ⁇ Y is output as the adjustment voltage DU for the U phase.
  • the zero-phase compensation voltage calculation unit 30 sums the calculation results of the adjustment voltage DX of each phase to obtain the zero-phase compensation voltage DZERO in the power conversion device.
  • the zero-phase compensation voltage DZERO is set to the three-phase output voltage target value RVX during the phase period in which the voltage is insufficient by the bus voltage VDCS in the U phase in the final output voltage target value calculation unit 40.
  • the final output voltage target value RRVX of each phase is output. As a result, the imbalance of the voltage of each phase is eliminated as much as possible.
  • FIG. 14 is a waveform diagram showing the final output voltage target value RRVX of each phase for the power conversion device after compensating the output voltage target value RVX with the zero phase compensation voltage DZERO.
  • the maximum instantaneous voltage is about 1.414 [p. u. ], Half bus voltage VDCMP or VDCMN 1.0 [p. u. ] Is the case.
  • the configuration shown in FIG. 13 is described on the assumption that the faulty phase is the U phase, but the description is not limited to this, and the faulty phase is another phase or there are two faulty phases. But it can be used.
  • FIG. 15 is a functional block of the phase compensation voltage calculation unit when the faulty phase is the U phase or the V phase as an example.
  • the difference voltage Y1 and Y2 are obtained by the subtractor 91 by the above-mentioned (Equation 10) for the U phase and the V phase which are the faulty phases. These are referred to as a first adjustment voltage Y1 and a second adjustment voltage Y2.
  • the difference voltage Y3 is obtained by the above-mentioned (Equation 9) with the subtractor 92. This is referred to as the third adjustment voltage Y3.
  • the minimum value selection unit 93 compensates for the smallest value (that is, the zero-phase voltage) among the first to third adjustment voltages Y1, Y2, and Y3 obtained in the above (Equation 10) and (Equation 9).
  • the voltage Y with a small margin is selected as the adjustment voltage Y.
  • the multiplexers 94 and 95 output a positive adjustment voltage Y when the U-phase and V-phase output voltage target values RVU and RUV are equal to or higher than the half bus voltage VDCMP, and the U-phase and V-phase output voltage target values.
  • RVU and RVV are equal to or less than the half bus voltage VDCMP
  • a negative adjustment voltage ⁇ Y is output.
  • the sum of the outputs of the multiplexers 94 and 95 by the adder 96 is finally output as the adjustment voltages DU and DV for the faulty phase. Subsequent processing is the same as in the case of FIG.
  • the fourth embodiment even if an inverter arm operated by a three-level inverter due to a failure exists, a line equivalent to that at the time of gradation control in a state where overmodulation is suppressed in all phases.
  • the inter-voltage can be output, i.e., the magnitude of the output to the load can be maintained.
  • the amount of calculation of the required compensation voltage in the fault phase can be reduced.
  • the control device 10 is composed of a processor 100 and a storage device 101 as shown in FIG. 16 as an example of hardware.
  • the storage device includes a volatile storage device such as a random access memory and a non-volatile auxiliary storage device such as a flash memory. Further, an auxiliary storage device of a hard disk may be provided instead of the flash memory.
  • the processor 100 executes the program input from the storage device 101. In this case, the program is input to the processor 100 from the auxiliary storage measure via the volatile storage device. Further, the processor 100 may output data such as a calculation result to the volatile storage device of the storage device 101, or may store the data in the auxiliary storage device via the volatile storage device.

Abstract

直流源(1)の電圧を直流母線として各相の交流電圧を出力するメインインバータアーム(3u、3v、3w)を有するメインインバータ部2と、3つの単相のサブインバータ(5u、5v、5w)を有するサブインバータ部(4)の直列により構成される階調制御インバータであり、各サブインバータ(5u、5v、5w)の入出力端子間には短絡スイッチ(6u、6v、6w)が接続され、サブインバータ(5u)故障時には、その故障相のみサブインバータ(5u)に接続された短絡スイッチ(6u)を短絡させて電流をスルーさせ、故障相のメインインバータアーム(3u)のみ3レベルインバータとして動作させる。

Description

電力変換装置
 本願は、電力変換装置に関するものである。
 近年、電気自動車、船舶等のエンジンからモータ駆動といった電動化システムの普及が進み、さらには航空機に関してもCO2削減の動きから電動化への研究が世界各国で進められている。
 航空機に搭載される機器には燃費向上のため、高効率で軽量な小型の電力変換装置が求められる。前記電力変換装置において、ACモータを駆動するためにDC配線より供給される直流電力を交流電力に変換するインバータが必要である。
 前記インバータの高効率、小型化のための従来技術として、特許文献1のような直列多重型のマルチレベルインバータが提案されている。この直列多重型のマルチレベルインバータは、大電圧かつ低周波のメインインバータおよび小電圧かつ高周波のサブインバータが互いに直列に接続され、各出力電圧の合計値が電力変換装置として出力される。以後、この種のインバータを階調制御インバータと称する。
国際公開2010/058536号公報
 航空機に搭載される機器には非常に高い信頼性が要求され、機器が一部故障しても動作を継続できる冗長性が必要である。よって、階調制御インバータについても、それを構成する複数のインバータの一部が故障しても継続運転させる必要がある。
 本願は、上記のような課題を解決するための技術を開示するものであり、階調制御インバータを構成するサブインバータが故障した場合にも同じ出力により継続運転することが可能な電力変換装置を提供することを目的とする。
 本願に開示される電力変換装置は、直流源の電圧を直流母線としてU相、V相、W相の各電圧をそれぞれ出力する3つのメインインバータアームを有するメインインバータ部と、3つの単相のサブインバータを有するサブインバータ部とを備え、前記メインインバータアームのそれぞれの出力に対して前記サブインバータが個別に直列に接続され、かつ前記サブインバータにはその入出力端子間を短絡する短絡スイッチが個別に設けられるとともに、前記メインインバータ部、前記サブインバータ部、および前記短絡スイッチを制御する制御装置を有し、
 前記制御装置の制御により、
 前記サブインバータのいずれも故障がない正常時には、各相の前記メインインバータアームのそれぞれの出力電圧と前記サブインバータの出力電圧をそれぞれ加算した電圧を出力する階調制御インバータとして動作する一方、
前記サブインバータのいずれかが故障した場合には、故障した前記サブインバータに対応する相の前記短絡スイッチを閉じ、かつ、前記メインインバータアームを3レベルインバータとして動作し、かつ、故障のない前記サブインバータに対応する相では前記正常時と同様に各相の前記メインインバータアームのそれぞれの出力電圧と前記サブインバータの出力電圧をそれぞれ加算した電圧を出力する階調制御インバータとして動作する。
 本願に開示される電力変換装置によれば、階調制御インバータを構成するサブインバータが故障した場合にも同じ出力により継続運転することができる。また、過変調を抑制して電流歪を抑え、足し引きする零相電圧を最小にすることができ、ノイズを抑制できる。さらに定常時と母線電圧は同じであり、過電圧設計によるコストおよびサイズが改善される。
実施の形態1による電力変換装置の回路構成図である。 実施の形態1による電力変換装置の各相の出力電圧波形を示す波形図である。 実施の形態1による電力変換装置の各相の出力電圧波形を示す波形図である。 実施の形態1による電力変換装置の各相の出力電圧波形を示す波形図である。 実施の形態1によるU相のサブインバータが故障した場合の短絡スイッチの動作状態と出力電流の流れを示す説明図である。 実施の形態1によるU相のサブインバータが故障した場合の電力変換装置の各相の出力電圧波形を示す波形図である。 実施の形態2による相補償電圧演算部の機能ブロック図である。 実施の形態2による零相補償電圧演算部の機能ブロック図である。 実施の形態2による最終出力電圧目標値演算部の機能ブロック図である。 実施の形態2による負荷に対する各相の出力目標電圧値を示す波形図である。 実施の形態2による零相電圧補償後の電力変換装置に対する最終的な各相の出力電圧目標値を示す波形図である。 実施の形態3による1相(U相)故障時の相補償電圧演算部の機能ブロック図である。 実施の形態3による零相電圧補償後の電力変換装置に対する最終的な各相の出力電圧目標値を示す波形図である。 実施の形態3による2相(U相、V相)故障時の相補償電圧演算部の機能ブロック図である。 実施の形態4による1相(U相)故障時の相補償電圧演算部の機能ブロック図である。 実施の形態4による零相電圧補償後の電力変換装置に対する最終的な各相の出力電圧目標値を示す波形図である。 実施の形態4による2相(U相、V相)故障時の相補償電圧演算部の機能ブロック図である。 実施の形態による制御装置のハードウエアの一例を示す機能ブロック図である。
実施の形態1.
 図1は実施の形態1による電力変換装置の回路構成図である。
 この実施の形態1による電力変換装置は、バッテリなどの直流源1を有し、その直流源1をモータなどの負荷9の駆動に必要な交流に変換するものであり、大電圧かつ低周波のメインインバータ部2、小電圧かつ高周波のサブインバータ部4、およびメインインバータ部2およびサブインバータ部4の動作を制御する制御装置10を備える。
 そして、メインインバータ部2およびサブインバータ部4が互いに直列に接続されてメインインバータ部2およびサブインバータ部4の出力電圧の合計値が出力される階調制御インバータとして構成されている。なお、直流源1は、DC配線による供給の他、個別の直流電源システム、あるいは太陽電池などの他電池システムでもよい。
 メインインバータ部2は、3相の3レベルインバータであって、U相メインインバータアーム3u、V相メインインバータアーム3v、W相メインインバータアーム3wで構成されている。なお、各相のメインインバータアーム3u、3v、3wを区別せずに総称するときには、符合3xを用いる。
 そして、出力相のメインインバータアーム3xは、いずれも4つのスイッチング能力を有するIGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal-Oxide-Silicon Field Effect Transistor)等の半導体素子からなるスイッチング素子SW1~SW4、および2つの整流能力を有するダイオードD1、D2で構成される。なお、ダイオードの代わりにIGBT、MOSFET等を利用することもできる。また、メインインバータ部2は、この実施の形態1のような三相インバータに限らず、他の出力レベル数を持つインバータでもよい。
 一方、サブインバータ部4は、U相サブインバータ5u、V相サブインバータ5v、W相サブインバータ5wを備える。そして、U相サブインバータ5u、V相サブインバータ5v、W相サブインバータ5wは、U相メインインバータアーム3u、V相メインインバータアーム3v、W相メインインバータアーム3wの各出力端子にそれぞれ個別に接続されている。なお、各相のサブインバータ5u、5v,5wを区別せずに総称するときには、符合5xを用いる。
 この場合の各相のサブインバータ5u、5v、5wは、単相のフルブリッジインバータであり、ブリッジ毎にIGBT、MOSFET等の半導体素子からなる2つのスイッチング素子SW5を備えるとともに、ブリッジ間にそれぞれコンデンサ8u、8v、8wが接続されて構成されている。
 メインインバータ部2に加わる直流母線電圧VDCMは、直流源1の電圧であり、3レベルインバータのため、中性点で2直列のコンデンサ7p、7nで分割されている。その内、高電位側のコンデンサ7pの直流母線電圧をハーフ母線電圧VDCMPと、また、低電位側のコンデンサ7nの直流母線電圧をハーフ母線電圧VDCMNと称する。なお、各相のサブインバータ5xのブリッジ間の母線電圧VDCSは、メインインバータ部2の直流母線電圧VDCMである直流源1の電圧よりも小さい。
 さらに、この実施の形態1の特徴として、U相サブインバータ5u、V相サブインバータ5v、W相サブインバータ5wの各入出力端子間にU相短絡スイッチ6u、V相短絡スイッチ6v、W相短絡スイッチ6wをそれぞれ個別に設けていることである。なお、各相の短絡スイッチ6u、6v、6wを区別せずに総称するときには、符合6xを用いる。
 そして、いずれかのサブインバータ5x(5u、5v、5w)が故障した場合、その故障検出に応じて、故障したサブインバータ5xの短絡スイッチ6xがオンすることでサブインバータ5xをスルーして電流を流す。なお、故障の検出は、制御装置10が各相のサブインバータ5xの短絡電流の検出、あるいは、相電圧の出力電圧不足を検出するなどの異常を検出することで行われる。
 図2A~図2Cは、各相のサブインバータ5xのいずれも故障がなく正常であり、各相の短絡スイッチ6xがいずれもオフになっている場合のメインインバータ部2の電圧(図2A)、サブインバータ部4の電圧(図2B)、およびメインインバータ部2およびサブインバータ部4の合算値である電力変換装置の出力相電圧(図2C)を示す波形図である。
 図2Aの波形がメインインバータ部2の各相の出力電圧波形であり、MAINUがU相メインインバータアーム3uの電圧波形、MAINVがV相メインインバータアーム3vの電圧波形、MAINWがW相メインインバータアーム3wの電圧波形である。また、メインインバータ部2のスイッチング素子のスイッチング周波数は、電源周波数と同程度であり、この実施の形態1では1周期に正負1回ずつスイッチングを行う。
 また、図2Bの波形がサブインバータ部4の出力電圧波形であり、SUBUがU相サブインバータ5uの電圧波形、SUBVがV相サブインバータ5vの電圧波形、SUBWがW相サブインバータ5wの電圧波形である。母線電圧の小さいサブインバータ部4はメインインバータ部2よりも高周波でスイッチングを行う。また、サブインバータ部4は電力変換装置の目標電圧とメインインバータ部2の出力電圧との差分を出力する。
 また、図2Cの波形は、メインインバータ部2およびサブインバータ部4の出力電圧の合計値である電力変換装置の出力電圧波形であり、VueはU相の出力電圧波形、VveはV相の出力電圧波形、VweがW相の出力電圧波形である。
 図2Cに示すように、階調制御インバータとして正弦波に近いマルチレベルな波形を出力することができる。なお、ここでは、7レベルの出力電圧波形を生成する。
 このように、この実施の形態1の電力変換装置は、全体で階調制御インバータとして構成されており、高周波で行われるスイッチング動作は、母線電圧の低いサブインバータ部4のみであるため、スイッチング損失とノイズが低くなる。よって、冷却器とノイズフィルタを小型化できることから、階調制御インバータは、軽量な電力変換装置として構成できる。
 次に、一例として、サブインバータ部4の内、U相サブインバータ5uが故障した場合の動作について説明する。
 図3は、一例としてU相サブインバータ5uが故障した場合の動作状態を示した図である。
 U相サブインバータ5uが故障すると、U相短絡スイッチ6uがオンするので、U相サブインバータ5uはスルーされる一方、正常なV相サブインバータ5vのV相短絡スイッチ5v、および正常なW相サブインバータ5wのW相短絡スイッチ5wは開放されている。
 このとき、故障したU相サブインバータ5uに対応するU相メインインバータアーム3uは、負荷軽減のために、低歪な波形を継続する。すなわち、U相サブインバータ5uはスルーされるので、U相メインインバータアーム3uは、他のV相、W相の各メインインバータアーム3v、3wよりも高周波でスイッチングする3レベルインバータとして動作する。
 一方、V相、W相のサブインバータ5v、5wは正常なので、これに対応するV相、W相の各メインインバータアーム3v、3wは階調制御インバータとしての運転を継続する。すなわち、V相、W相の各メインインバータアーム3v、3wは、U相のメインインバータアーム3uよりも低周波の3レベルインバータとして動作するとともに、V相、W相の各サブインバータ5v、5wは、直流母線電圧VDCMよりも小さく、かつV相、W相の各メインインバータアーム3v、3wよりも高周波でスイッチングを行う。
 以下では、便宜上、この電力変換装置において、いずれかのサブインバータが故障して短絡スイッチが閉じた状態に対応する相を故障相と、故障したサブインバータが存在せず短絡スイッチが開いた状態に対応する相を正常相と称する。また、故障相のメインインバータアームが高周波でスイッチングする動作形態を3レベルインバータの動作と称する。また、正常相のメインインバータアームとサブインバータとが共に動作する動作形態を階調制御インバータの動作と称する。
 図4はU相のサブインバータ5uが故障した場合の電力変換装置の各相の出力電圧波形を示す波形図である。
 図4の上段の波形が故障したサブインバータ5uに対応したU相の出力電圧Vueであり、図2Cに示された7レベルの階調制御インバータの波形よりもレベル数の低い、3レベルの電圧で出力波形が形成されている。図4の中段の波形はV相の出力電圧であり、また図4の下段の波形はW相の出力電圧であり、図2Cと同様に、レベル数(ここでは7レベル)で波形を出力する階調制御インバータとしての動作を継続している。
 メインインバータ部2のハーフ母線電圧VDCMPもしくはVDCMNは、サブインバータ部4の母線電圧VDCSよりも高いため、故障したサブインバータ5uに対応するメインインバータアーム3uを3レベルインバータとして動作させた場合、発熱が増加する。しかし、サブインバータ5uが故障した相に関してのみメインインバータアーム3uを3レベルインバータとして動作させ、残りの正常なV相およびW相のメインインバータアーム3v、3wについては階調制御インバータの運転を継続させるので、発熱増加分を故障相に対応するメインインバータアーム(この例では3u)の発熱のみに抑制できる。このことから、冗長性を考慮した冷却器を小型化できる。
 なお、この実施の形態1では、1相が故障した場合で説明しているが、2相分のサブインバータが故障しても同様に利用できる。また、短絡スイッチ6xを用いず、故障のない生存しているスイッチ素子をロー側のみオン、もしくはハイ側のみオンのスイッチングモードを利用してサブインバータの出力をゼロとしてバイパスさせることもできる。
 以上のように、この実施の形態1によれば、いずれかのサブインバータが故障した故障相に関してのみメインインバータアームを3レベルインバータとして動作させ、残りの正常相のメインインバータアームについては階調制御インバータとしての動作を継続させる。これにより、サブインバータが故障した場合にも同出力により継続運転することができる。しかも、発熱増加分を故障相分のメインインバータアームの発熱のみに抑制できるので、冗長性を確保することができる。
実施の形態2.
 この実施の形態2において、電力変換装置の全体構成は図1の場合と同様であるので、ここでは詳しい説明は省略する。
 メインインバータ部2とサブインバータ部4が共に正常で階調制御インバータとして動作する場合の出力可能な電圧は、回路による電圧降下を無視すると、メインインバータ部2のハーフ母線電圧VDCMPもしくはVDCMNとサブインバータ部4の母線電圧VDCSとの合計値が最大となる。
 一方、サブインバータ5xの故障によりスルーされてメインインバータアーム3xが3レベルインバータとして動作する場合、その出力可能な電圧は、回路におる電圧降下を無視すると、メインインバータ部2のハーフ母線電圧VDCMPもしくはVDCMNが最大である。したがって、メインインバータアーム3xが3レベルインバータとして動作する場合は、階調制御インバータ動作の場合に比べて故障したサブインバータ5xの母線電圧VDCS分だけ低くなり、電圧の不平衡が生じる。
 そこで、この実施の形態2では、メインインバータアーム3xが3レベルインバータとして動作する場合に生じる電圧の不平衡を零相電圧で補償し(以下、これを零相補償電圧という)、電圧の不平衡をできるだけ解消する処理を行う。
 なお、ここでは、一例として、故障相はU相のものとして説明する。また、各相で同様の計算を行うケースでは、説明上、X相という呼称を利用し、上記X相にはU、V、Wの三相が当てはまるものとする。
 図5はこの実施の形態2による各相の相補償電圧を計算する相補償電圧演算部の機能ブロック図である。図5において、相補償電圧演算部20は、例えば、制御装置10が備えるプロセッサに揮発性記憶装置を介して予め設定されたプログラムが入力されることにより構成される。後述する図6に示す零相補償電圧演算部30、図7に示す最終出力電圧目標値演算部40についても同様である。
 図5において、X相の出力電圧目標値RVXは、負荷制御により決定される電力変換装置の出力目標となる電圧とする。メインインバータ部2のハーフ母線電圧は、VDCMPもしくはVDCMNである。この実施の形態2では、X相の出力電圧目標値RVXが正の場合はVDCMPを、X相の出力電圧目標値RVXが負の場合はVDCMNを利用する。なお、これに限らず、母線電圧をハーフ母線電圧VDCMPもしくはVDCMNの平均値としてもよい。
 図5の相補償電圧演算部20において、X相の出力電圧目標値RVXが正の時、減算器21で出力電圧目標値RVXとハーフ母線電圧VDCMPの差分が算出され、その差分が正の場合(すなわち出力電圧目標値RVXが母線電圧VDCMP以上になる場合)、下限リミッタ23が働き、上記の差分DPXが出力される。
 同様に、X相の出力電圧目標値RVXが負の時、減算器22で出力電圧目標値RVXとハーフ母線電圧VDCMNの差分が算出され、その差分が負の場合(すなわち出力電圧目標値RVXがハーフ母線電圧VDCMP以下になる場合)、上限リミッタ24が働き、上記の差分DNXが出力される。
 なお、ハーフ母線電圧VDCMNは正の値しか持たないため、図5では前記差分を計算するために、加算の表現で記載している。
 上記の差分DPXと差分DNXを加算器25で加算した値DX(=DPX+DNX)がX相に対する調整電圧DXとなる。ただ、階調制御インバータとして動作している時は不要である。したがって、マルチプレクサ26により、計算しているX相のインバータが3レベルインバータとして動作している場合は、加算器25で加算した値をX相の調整電圧DXとして出力する。また、階調制御インバータとして動作している場合はX相の調整電圧DXとして零を選択して出力する。なお、上記選択方法として図5ではマルチプレクサ26を用いているが、プログラムで作成する場合にはIf文などで出力を選択する手段としてもよい。
 図6は、この実施の形態2による零相補償電圧演算部の機能ブロック図である。
 零相補償電圧演算部30は、相補償電圧演算部20によりX相での調整電圧DXが得られたなら、各相すなわちU相調整電圧DU、V相調整電圧DV、W相調整電圧DWの演算結果を加算器31、32により合計し、その合計を電力変換装置における零相補償電圧DZEROとして出力する。
 図7は、この実施の形態2の電力変換装置において、負荷に対する出力電圧目標値から最終的な各相の出力電圧目標値を演算する最終出力電圧目標値演算部の機能ブロック図である。
 この最終出力電圧目標値演算部40では、負荷9の制御のために電力変換装置に対して決定される目標D軸電圧、目標Q軸電圧、目標零相電圧および目標位相の信号から、二相三相変換部41で出力電圧目標値RVX(RVU、RVV、RVW)を生成する。次に、前述の図5の相補償電圧演算部20の処理により各相の調整電圧DX(DU、DV、DW)を算出する。続いて、図6の零相補償電圧演算部30の処理により零相補償電圧DZEROを算出する。そして、加算器42で目標零相電圧に零相補償電圧DZEROを加算し、二相三相変換部43により二相三相変換することにより最終的な各相の出力電圧目標値RRVX(RRVU、RRVV、RRVW)を算出する。
 これにより、サブインバータ5xの故障によりメインインバータアーム3xが3レベルインバータとして動作する場合の当該X相(ここではU相)において母線電圧VDCS分だけ電圧が不足する位相期間に、零相補償電圧DZEROを三相の出力電圧目標値RVXにそれぞれ足し込むことで、各相の最終の出力電圧目標値RRVXを出力する。これにより、各相の電圧の不平衡が極力解消される。
 図8は零相電圧補償前の各相の出力電圧目標値RVXの波形図である。また、図9は出力電圧目標値RVXを零相補償電圧DZEROで補償した後の電力変換装置に対する最終の出力電圧目標値RRVXを示す波形図である。なお、図8および図9は、最大瞬時電圧を約1.414[p.u.]、ハーフ母線電圧VDCMPもしくはVDCMNを1.0[p.u.]とした条件の場合である。
 図9ではU相のサブインバータ5uが故障しており、そのU相の最終の出力電圧目標値RRVUのみ絶対値1.0[p.u.]でクランプしていることが分かる。なお、3レベルインバータとしての動作は、PWM制御ではなく常時オン状態にして、完全に二相変調としてもよい。その場合の閾値も前記絶対値1.0[p.u.]を中心とし、プラス0.1[p.u.]からマイナス0.1[p.u.]までの範囲で利用することもできる。
 なお、この実施の形態2では、故障相がU相の場合を前提にして説明しているが、これに限らず、故障相が他の相の場合、あるいは故障相が2相分ある場合でも利用できる。
 以上のように、この実施の形態2によれば、いずれかのサブインバータの故障により、これに対応するメインインバータアームを3レベルインバータとして動作させる場合、その出力電圧目標値の絶対値が母線電圧を越える場合は、出力電圧目標値に対して直流母線の電圧が不足する位相期間に零相補償電圧を三相の出力電圧目標値にそれぞれ足し込むので、階調制御時と同等の線間電圧を出力することができる。すなわち、負荷への出力の大きさを維持することができる。また、足し込む零相補償電圧を故障相のみの補償量まで抑制できるため、漏れ電流を抑制できる。
実施の形態3.
 この実施の形態3において、電力変換装置の全体構成は図1の場合と同様であるので、ここでは詳しい説明は省略する。
 この実施の形態3では、実施の形態2とは別の方法でサブインバータが故障した場合に生じる電圧の不平衡を零相電圧により補償する。この場合、補償可能な電圧には上限があるので、正常相の階調制御インバータが出力可能な電圧の最大値を上限として設定する。なお、ここでは、一例として、故障相はU相のものとして説明する。
 故障相に対応するU相メインインバータアーム3uは、3レベルインバータで動作させるが、U相の出力電圧目標値RVUの絶対値がメインインバータ部2のハーフ母線電圧VDCMP以上になる場合、もしくはVDCMN以下になる場合において、その差分電圧Yを零相補償用の調整電圧としてU相、V相、W相の各々の出力電圧目標値RVU、RVV、RVWから加減算する。
 例えば、U相の出力電圧目標値RVUがハーフ母線電圧VDCMPより大きいとき、再計算される電力変換装置の最終の出力電圧目標値RRVUは、下記の(式1)となる。そのとき、V相、W相も差分電圧Yが減算されるため、その最終の出力電圧目標値RRVV、RRVWは、(式2)、(式3)となる。
  RRVU=RVU-Y        (式1)
  RRVV=RVV-Y        (式2)
  RRVW=RVW-Y        (式3)
 同様に、U相電圧の出力電圧目標値RVUがハーフ母線電圧の負値-VDCMNより小さいとき、再計算される電力変換装置の最終の出力電圧目標値RRVUは、下記の(式4)となる。そのときV相、W相も差分電圧Yの電圧が減算されるため、その最終の出力電圧目標値RRVV、RRVWは、(式5)、(式6)となる。
  RRVU=RVU+Y        (式4)
  RRVV=RVV+Y        (式5)
  RRVW=RVW+Y        (式6)
 図10は上記の差分電圧Yを計算し、U相に対する調整電圧DUを決定する相補償電圧演算部のブロック図である。この相補償電圧演算部50は、例えば、制御装置10が備えるプロセッサに揮発性記憶装置を介して予め設定されたプログラムが入力されることにより構成される。
 上記差分電圧Yは、第1の候補Y1として、まずU相の出力電圧目標値の絶対値|RVU|を前記ハーフ母線電圧VDCMPもしくはVDCMNを減算器51で減算した差分電圧を求める。これを第1調整電圧とする。例えば、次の(式7)になる。さらに、差分電圧Y1は下限リミッタ52で下限が制限され、最小値は0となる。
  Y1=|RVU|-VDCMP    (式7)
 また、残りの階調制御インバータで動作する電圧の尤度を考慮し、上記差分電圧Yの候補として、第2の候補Y2を次の(式8)により、また、第3の候補Y3を次の(式9)でそれぞれ求める。
  Y2=VDCMAX-|RVV|   (式8)
  Y3=VDCMAX-|RVW|   (式9)
 なお、上記のVDCMAXは、メインインバータ部2のハーフ母線電圧VDCMPもしくはVDCMNと、サブインバータの母線電圧VDCSに設計者により定める利用率を乗じた値を合計した値である。パルス幅制御(PWM)で動作する3レベルインバータにおいて、前記利用率は概ね70%以上である。
 すなわち、相補償電圧演算部50において、上記VDCMAXとV相の出力電圧目標値の絶対値|RVV|を減算器53で上記(式8)により減算した差分電圧Y2を求める。これを第2調整電圧Y2とする。また、上記VDCMAXとW相の出力電圧目標値の絶対値|RVW|を減算器54で上記(式9)により減算した差分電圧Y3を求める。これを第3調整電圧Y3とする。
 次に、最小値選択部55で、上記(式7)、(式8)、および(式9)で得られる第1~第3調整電圧Y1、Y2、Y3の内、一番低い値(すなわち、零相電圧を補償する上で、余裕度の少ないもの)を調整電圧Yとして選択する。
 そして、上記調整電圧Yに正負の符合をつける。次に、マルチプレクサ56により、U相の出力電圧目標値RVUがハーフ母線電圧VDCMP以上のときには正の調整電圧YをU相に対する調整電圧DUとして、またU相の出力電圧目標値RVUがハーフ母線電圧VDCMN以下のときには負の調整電圧-Yを、U相に対する調整電圧DUとして出力する。
 その後の処理については、図6に示したように、零相補償電圧演算部30で各相の調整電圧DXの演算結果を合計して電力変換装置における零相補償電圧DZEROを求める。続いて、図7に示したように、最終出力電圧目標値演算部40でU相において母線電圧VDCS分だけ電圧が不足する位相期間に、零相補償電圧DZEROを三相の出力電圧目標値RVXにそれぞれ足し込むことで、各相の最終の出力電圧目標値RRVXを出力する。これにより、各相の電圧の不平衡が極力解消される。
 図11は出力電圧目標値RVXを零相補償電圧DZEROで補償した後の電力変換装置に対する最終的な各相の出力電圧目標値RRVXを示す波形図である。なお、図11は、最大瞬時電圧を約1.414[p.u.]、ハーフ母線電圧VDCMPもしくはVDCMNを1.0[p.u.]とした条件の場合である。
 図11ではU相のサブインバータ5uが故障しており、そのU相の最終の出力電圧目標値RRVUは約1.0[p.u.]まで制限することができ、故障のないV相とW相の最終の出力電圧目標値RRVV、RRVWは約1.414[p.u.]まで制限することができる。
 なお、図10に示した構成では、故障相がU相の場合を前提にして説明しているが、これに限らず、故障相が他の相の場合、あるいは故障相が2相分ある場合でも利用できる。
 図12は一例として故障相がU相、V相の場合の相補償電圧演算部の機能ブロック図である。
 相補償電圧演算部60において、故障相であるU相については、減算器61で前述の(式7)により差分電圧を求め、これを第1調整電圧Y1とする。なお、第1調整電圧Y1は下限リミッタ62で下限が制限され、最小値は0となる。同様に、故障相であるV相についても、減算器65で前述の(式7)により差分電圧を求め、これを第2調整電圧Y2とする。なお、第2調整電圧Y2は下限リミッタ66で下限が制限され、最小値は0となる。一方、正常相であるW相については、減算器63で前述の(式9)により差分電圧を求め、これを第3調整電圧Y3とする。
 そして、最小値選択部64、68で、第1調整電圧Y1および第2調整電圧Y2毎に第3調整電圧Y3と比較して第1~第3調整電圧Y1、Y2、Y3の内、一番小さい値(すなわち、零相電圧を補償する上で、余裕度の少ないもの)を上記調整電圧Yとして選択する。
 次に、マルチプレクサ69、70で、U相、V相の出力電圧目標値RVU、RUVがハーフ母線電圧VDCMP以上のときには正の調整電圧Yを出力し、またU相、V相の出力電圧目標値RVU、RVVがハーフ母線電圧VDCMP以下のときには負の調整電圧-Yを出力する。そして、マルチプレクサ69、70の出力を加算器71で合計したものを最終的に故障相に対する調整電圧DU、DVとして出力する。その後の処理は、図10の場合と同様である。
 以上のように、この実施の形態3によれば、故障により3レベルインバータで動作させるメインインバータアームが存在していても、正常相で出力可能な電圧の最大値VDCMAXを上限として全ての相において過変調を抑制した状態で階調制御時と同等の線間電圧を出力することができる。
実施の形態4.
 この実施の形態4において、電力変換装置の全体構成は図1の場合と同様であるので、ここでは詳しい説明は省略する。
 この実施の形態4では、実施の形態2および実施の形態3とは別の方法でサブインバータが故障した場合に生じる電圧の不平衡を零相電圧で補償する。すなわち、この実施の形態4では、故障相の出力電圧目標値RVXの最大値(ピーク値)VDCPEAKを上限として設定する。なお、ここでは、一例として、故障相はU相として説明する。
 故障相に対応するU相メインインバータアーム3uは、3レベルインバータで動作させるが、故障相であるU相の出力電圧目標値RVUの最大値(ピーク値)VDCPEAKがメインインバータ部2のハーフ母線電圧VDCMP以上になる場合、もしくはVDCMN以下になる場合において、その差分電圧Yを零相補償用の調整電圧としてU相、V相、W相の各々の出力電圧目標値RVU、RVV,RVWから加減算する。
 図13は上記の差分電圧Yを計算し、U相に対する調整電圧DXを決定する相補償電圧演算部のブロック図である。この相補償電圧演算部80は、例えば、制御装置10が備えるプロセッサに揮発性記憶装置を介して予め設定されたプログラムが入力されることにより構成される。
 上記の差分電圧Yの値は、第1の候補Y1として、まずU相の出力電圧目標値RVUの最大値VDCPEAKと前記ハーフ母線電圧VDCMPもしくはVDCMNを減算器81で減算した差分電圧を求める。これを第1調整電圧Y1とする。例えば、次の(式10)になる。なお、この第1調整電圧Y1は交流電圧が決まっている場合、その電圧周期では固定値として扱ってもよい。
  Y1=VDCPEAK-VDCMP (式10)
 また、残りの階調制御インバータで動作する電圧の尤度を考慮し、上記差分電圧Yの候補として、VDCMAXとV相の出力電圧目標値の絶対値|RVV|を減算器82で前述の(式8)により減算した差分電圧を求める。これを第2調整電圧Y2とする。また、VDCMAXとW相の出力電圧目標値の絶対値|RVW|を減算器83で前述の(式9)により減算した差分電圧を求める。これを第3調整電圧Y3とする。
 次に、最小値選択部84で、上記(式10)、(式8)、および(式9)で得られる第1~第3調整電圧Y1、Y2、Y3の内、一番低い値(すなわち、零相電圧を補償する上で、余裕度の少ないもの)を調整電圧Yとして選択する。
 そして、上記調整電圧Yに正負の符合をつけ、次に、マルチプレクサ85により、U相の出力電圧目標値RVUがハーフ母線電圧VDCMP以上のときには正の調整電圧YをU相に対する調整電圧DUとして、またU相の出力電圧目標値RVUがハーフ母線電圧VDCMP以下のときには負の調整電圧-Yを、U相に対する調整電圧DUとして出力する。
 その後の処理については、図6に示したように、零相補償電圧演算部30で各相の調整電圧DXの演算結果を合計して電力変換装置における零相補償電圧DZEROを求める。続いて、図7に示したように、最終出力電圧目標値演算部40でU相において母線電圧VDCS分だけ電圧が不足する位相期間に、零相補償電圧DZEROを三相の出力電圧目標値RVXにそれぞれ足し込むことで、各相の最終の出力電圧目標値RRVXを出力する。これにより、各相の電圧の不平衡が極力解消される。
 図14は出力電圧目標値RVXを零相補償電圧DZEROで補償した後の電力変換装置に対する最終的な各相の出力電圧目標値RRVXを示す波形図である。なお、この図は、最大瞬時電圧を約1.414[p.u.]、ハーフ母線電圧VDCMPもしくはVDCMNを1.0[p.u.]とした条件の場合である。
 なお、図13に示した構成では、故障相がU相の場合を前提にして説明しているが、これに限らず、故障相が他の相の場合、あるいは故障相が2相分ある場合でも利用できる。
 図15は一例として故障相がU相、V相の場合の相補償電圧演算部の機能ブロックである。
 相補償電圧演算部90において、故障相であるU相、V相については、減算器91で前述の(式10)により差分電圧Y1、Y2を求める。これを第1調整電圧Y1、第2調整電圧Y2とする。一方、正常相であるW相については、減算器92で前述の(式9)により差分電圧Y3を求める。これを第3調整電圧Y3とする。
 そして、最小値選択部93で、上記(式10)、および(式9)で得られる第1~第3調整電圧Y1、Y2、Y3の内、一番小さい値(すなわち、零相電圧を補償する上で、余裕度の少ないもの)を上記調整電圧Yとして選択する。
 次に、マルチプレクサ94、95で、U相、V相の出力電圧目標値RVU、RUVがハーフ母線電圧VDCMP以上のときには正の調整電圧Yを出力し、またU相、V相の出力電圧目標値RVU、RVVがハーフ母線電圧VDCMP以下のときには負の調整電圧-Yを出力する。そして、マルチプレクサ94、95の出力を加算器96で合計したものを最終的に故障相に対する調整電圧DU、DVとして出力する。その後の処理は、図10の場合と同様である。
 以上のように、この実施の形態4によれば、故障により3レベルインバータで動作させるインバータアームが存在していても、全ての相において過変調を抑制した状態で階調制御時と同等の線間電圧を出力することができ、すなわち、負荷への出力の大きさを維持することができる。また故障相での必要な補償電圧の演算量を減らすことができる。
 なお、上記の実施の形態において、制御装置10は、ハードウエアの一例を図16に示すように、プロセッサ100と記憶装置101から構成される。記憶装置は図示していないが、ランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを備える。
 また、フラッシュメモリの代わりにハードディスクの補助記憶装置を備えてもよい。プロセッサ100は、記憶装置101から入力されたプログラムを実行する。この場合、補助記憶措置から揮発性記憶装置を介してプロセッサ100にプログラムが入力される。また、プロセッサ100は、演算結果等のデータを記憶装置101の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。
 本願は、様々な例示的な実施の形態が記載されているが、一つ、または複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるものではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 したがって、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも一つの構成要素を変形する場合、追加する場合、または省略する場合、(さらには、少なくとも一つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合)が含まれものとする。
1 直流源、2 メインインバータ部、3x,3u,3v,3w 各相のメインインバータアーム、4 サブインバータ部、5x,5u,5v,5w 各相のサブインバータ、6x,6u,6v,6w 各相の短絡スイッチ、9 負荷、10 制御装置、20,50,60,80,90 相補償電圧演算部、30 零相補償電圧演算部、40 最終出力電圧目標値演算部。

Claims (9)

  1. 直流源の電圧を直流母線としてU相、V相、W相の各電圧をそれぞれ出力する3つのメインインバータアームを有するメインインバータ部と、3つの単相のサブインバータを有するサブインバータ部とを備え、前記メインインバータアームのそれぞれの出力に対して前記サブインバータが個別に直列に接続され、かつ前記サブインバータにはその入出力端子間を短絡する短絡スイッチが個別に設けられるとともに、前記メインインバータ部、前記サブインバータ部、および前記短絡スイッチを制御する制御装置を有し、
    前記制御装置の制御により、
    前記サブインバータのいずれも故障がない正常時には、各相の前記メインインバータアームのそれぞれの出力電圧と前記サブインバータの出力電圧をそれぞれ加算した電圧を出力する階調制御インバータとして動作する一方、
    前記サブインバータのいずれかが故障した場合には、故障した前記サブインバータに対応する相の前記短絡スイッチを閉じ、かつ、前記メインインバータアームを3レベルインバータとして動作し、かつ、故障のない前記サブインバータに対応する相では前記正常時と同様に各相の前記メインインバータアームのそれぞれの出力電圧と前記サブインバータの出力電圧をそれぞれ加算した電圧を出力する階調制御インバータとして動作する、電力変換装置。
  2. 前記3レベルインバータとして動作する前記メインインバータアームのスイッチング周波数は、前記階調制御インバータとして動作する前記メインインバータアームのスイッチング周波数よりも高い、請求項1に記載の電力変換装置。
  3. 前記メインインバータ部に加わる直流母線電圧は、前記サブインバータに加わる母線電圧よりも大きい、請求項1または請求項2に記載の電力変換装置。
  4. 前記サブインバータの故障により3レベルインバータとして動作している前記メインインバータアームは、出力電圧目標値に対して前記直流母線の電圧が不足する位相期間に零相補償電圧を三相の目標出力電圧にそれぞれ足しこむ、請求項1から請求項3のいずれか1項に記載の電力変換装置。
  5. 前記制御装置は、3相分の相補償電圧演算部を有するとともに、零相補償電圧演算部および最終出力電圧目標値演算部を備え、
    各々の前記相補償電圧演算部は、
    負荷へ出力する目標となる出力電圧目標値の絶対値が前記メインインバータ部に加わる前記直流源の母線電圧の半分の値であるハーフ母線電圧を超える場合、前記出力電圧目標値と前記ハーフ母線電圧の差分を抽出し、前記出力電圧目標値が正極性の場合には前記差分に負の極性を付与し、前記出力電圧目標値が負極性の場合には前記差分に正の極性を付与し、前記3レベルインバータとして動作している相については極性付与後の前記差分を出力し、前記階調制御インバータとして動作している相については零を出力し、
    前記零相補償電圧演算部は、各々の前記相補償電圧演算部で得られた各相の出力結果を合算した値を零相補償電圧として出力し、
    前記最終出力電圧目標値演算部は、前記零相補償電圧演算部で得られた前記零相補償電圧を三相分の前記出力電圧目標値にそれぞれ加算した値を最終出力電圧目標値として出力する、請求項1から請求項3のいずれか1項に記載の電力変換装置。
  6. 前記制御装置は、3相分の相補償電圧演算部を有するとともに、零相補償電圧演算部、および最終出力電圧目標値演算部を備え、
    各々の前記相補償電圧演算部は、
    負荷への出力目標となる出力電圧目標値の絶対値が前記メインインバータ部に加わる直流母線電圧の半分の値であるハーフ母線電圧を超える場合、前記出力電圧目標値に対して調整電圧を出力し、
    前記調整電圧は第1調整電圧、第2調整電圧、および第3調整電圧の内で最も小さい値を選択したものであり、
    前記第1調整電圧は、前記3レベルインバータとしての動作に対応する相の前記出力電圧目標値の絶対値と前記ハーフ母線電圧との差分を抽出したものであり、
    前記第2調整電圧は、前記階調制御インバータとしての動作に対応する相の前記出力電圧目標値の絶対値と、前記ハーフ母線電圧および前記直流母線電圧に最大利用率を乗算した値の合計値との差分を抽出したものであり、
    前記第3調整電圧は、前記階調制御インバータとしての動作に対応する他の相の前記出力電圧目標値の絶対値と、前記ハーフ母線電圧および前記直流母線電圧に最大利用率を乗算した値の合計値との差分を抽出したものであり、
    前記3レベルインバータとしての動作に対応する相の前記出力電圧目標値が正極性であってその絶対値が前記ハーフ母線電圧を超える場合には、抽出された前記調整電圧に負の極性を付与して出力し、前記出力電圧目標値が負極性であってその絶対値が前記ハーフ母線電圧を超える場合には、抽出された前記調整電圧に正の極性を付与して出力し、
    前記零相補償電圧演算部は、前記相補償電圧演算部で得られた各相の出力結果を合算した値を零相補償電圧として出力し、
    前記最終出力電圧目標値演算部は、前記零相補償電圧演算部で得られた前記零相補償電圧を三相分の前記出力電圧目標値にそれぞれ加算した値を最終出力電圧目標値として出力する、請求項1から請求項3のいずれか1項に記載の電力変換装置。
  7. 前記制御装置は、3相分の相補償電圧演算部を有するとともに、零相補償電圧演算部、および最終出力電圧目標値演算部を備え、
    各々の前記相補償電圧演算部は、
    負荷への出力目標となる出力電圧目標値の絶対値が前記メインインバータ部に加わる直流母線電圧の半分の値であるハーフ母線電圧を超える場合、前記出力電圧目標値に対して調整電圧を出力し、
    前記調整電圧は第1調整電圧、第2調整電圧、および第3調整電圧の内で最も小さい値を選択したものであり、
    前記第1調整電圧は、前記3レベルインバータとしての動作に対応する相の前記出力電圧目標値のピーク値と前記ハーフ母線電圧の差分を抽出したものであり、
    前記第2調整電圧は、前記階調制御インバータとしての動作に対応する相の前記出力電圧目標値の絶対値と、前記ハーフ母線電圧および前記直流母線電圧に最大利用率を乗算した値の合計値との差分を抽出したものであり、
    前記第3調整電圧は、前記階調制御インバータとしての動作に対応する他の相の前記出力電圧目標値の絶対値と、前記ハーフ母線電圧および前記直流母線電圧に最大利用率を乗算した値の合計値との差分を抽出したものであり、
    前記3レベルインバータとしての動作に対応する相の前記出力電圧目標値が正極性であってその絶対値が前記ハーフ母線電圧を超える場合には、抽出された前記調整電圧に負の極性を付与して出力し、前記出力電圧目標値が負極性であってその絶対値が前記ハーフ母線電圧を超える場合には、抽出された前記調整電圧に正の極性を付与して出力し、
    前記零相補償電圧演算部は、各々の前記相補償電圧演算部で得られた各相の出力結果を合算した値を零相補償電圧として出力し、
    前記最終出力電圧目標値演算部は、前記零相補償電圧演算部で得られた前記零相補償電圧を三相分の前記出力電圧目標値にそれぞれ加算した値を最終出力電圧目標値として出力する、請求項1から請求項3のいずれか1項に記載の電力変換装置。
  8. 前記制御装置は、3相分の相補償電圧演算部を有するとともに、零相補償電圧演算部、および最終出力電圧目標値演算部を備え、
    各々の前記相補償電圧演算部は、
    負荷への出力目標となる出力電圧目標値の絶対値が前記メインインバータ部に加わる直流母線電圧の半分の値であるハーフ母線電圧を超える場合、前記出力電圧目標値に対して調整電圧を出力し、
    前記調整電圧は第1調整電圧、第2調整電圧、および第3調整電圧の内で最も小さい値を選択したものであり、
    前記第1調整電圧は、前記3レベルインバータとしての動作に対応する相の前記出力電圧目標値の絶対値と前記ハーフ母線電圧の差分を抽出したものであり、
    前記第2調整電圧は、前記3レベルインバータとしての動作に対応する他の相の前記出力電圧目標値のピーク値と前記ハーフ母線電圧の差分を抽出したものであり、
    前記第3調整電圧は、前記階調制御インバータとしての動作に対応する相の前記出力電圧目標値の絶対値と、前記ハーフ母線電圧および前記直流母線電圧に最大利用率を乗算した値の合計値との差分を抽出したものであり、
    前記3レベルインバータとしての動作に対応する相の前記出力電圧目標値が正極性であってその絶対値が前記ハーフ母線電圧を超える場合には、抽出された前記調整電圧に負の極性を付与して出力し、前記出力電圧目標値が負極性であってその絶対値が前記ハーフ母線電圧を超える場合には、抽出された前記調整電圧に正の極性を付与して出力して、両前記調整電圧を加算し、
    前記零相補償電圧演算部は、各々の前記相補償電圧演算部で得られた各相の出力結果を合算した値を零相補償電圧として出力し、
    前記最終出力電圧目標値演算部は、前記零相補償電圧演算部で得られた前記零相補償電圧を三相分の前記出力電圧目標値にそれぞれ加算した値を最終出力電圧目標値として出力する、請求項1から請求項3のいずれか1項に記載の電力変換装置。
  9. 前記制御装置は、3相分の相補償電圧演算部を有するとともに、零相補償電圧演算部、および最終出力電圧目標値演算部を備え、
    各々の前記相補償電圧演算部は、
    負荷への出力目標となる出力電圧目標値の絶対値が前記メインインバータ部に加わる直流母線電圧の半分の値であるハーフ母線電圧を超える場合、前記出力電圧目標値に対して調整電圧を出力し、
    前記調整電圧は第1調整電圧、第2調整電圧、および第3調整電圧の内で最も小さい値を選択したものであり、
    前記第1調整電圧は、前記3レベルインバータとしての動作に対応する相の前記出力電圧目標値のピーク値と前記ハーフ母線電圧の差分を抽出したものであり、
    前記第2調整電圧は、前記3レベルインバータとしての動作に対応する他の相の前記出力電圧目標値のピーク値と前記ハーフ母線電圧の差分を抽出したものであり
    前記第3調整電圧は、前記階調制御インバータとしての動作に対応する相の前記出力電圧目標値の絶対値と、前記ハーフ母線電圧および前記直流母線電圧に最大利用率を乗算した値の合計値との差分を抽出したものであり、
    前記3レベルインバータとしての動作に対応する相の前記出力電圧目標値が正極性であってその絶対値が前記ハーフ母線電圧を超える場合には、抽出された前記調整電圧に負の極性を付与して出力し、前記出力電圧目標値が負極性であってその絶対値が前記ハーフ母線電圧を超える場合には、抽出された前記調整電圧に正の極性を付与して出力して、両前記調整電圧を加算し、
    前記零相補償電圧演算部は、各々の前記相補償電圧演算部で得られた各相の出力結果を合算した値を零相補償電圧として出力し、
    前記最終出力電圧目標値演算部は、前記零相補償電圧演算部で得られた前記零相補償電圧を三相分の前記出力電圧目標値にそれぞれ加算した値を最終出力電圧目標値として出力する、請求項1から請求項3のいずれか1項に記載の電力変換装置。
PCT/JP2020/029771 2020-08-04 2020-08-04 電力変換装置 WO2022029869A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/011,850 US20230261563A1 (en) 2020-08-04 2020-08-04 Power conversion device
PCT/JP2020/029771 WO2022029869A1 (ja) 2020-08-04 2020-08-04 電力変換装置
JP2022541362A JP7305053B2 (ja) 2020-08-04 2020-08-04 電力変換装置
EP20947835.3A EP4195491A4 (en) 2020-08-04 2020-08-04 DEVICE FOR TRANSFORMING ELECTRICAL ENERGY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/029771 WO2022029869A1 (ja) 2020-08-04 2020-08-04 電力変換装置

Publications (1)

Publication Number Publication Date
WO2022029869A1 true WO2022029869A1 (ja) 2022-02-10

Family

ID=80117902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029771 WO2022029869A1 (ja) 2020-08-04 2020-08-04 電力変換装置

Country Status (4)

Country Link
US (1) US20230261563A1 (ja)
EP (1) EP4195491A4 (ja)
JP (1) JP7305053B2 (ja)
WO (1) WO2022029869A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058536A1 (ja) 2008-11-18 2010-05-27 三菱電機株式会社 電力変換装置
JP2011083115A (ja) * 2009-10-07 2011-04-21 Mitsubishi Electric Corp 電力変換装置
JP2014007846A (ja) * 2012-06-25 2014-01-16 Mitsubishi Electric Corp 電力変換装置
JP2018023230A (ja) * 2016-08-04 2018-02-08 富士電機株式会社 電力変換装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017070064A (ja) * 2015-09-29 2017-04-06 富士電機株式会社 多重電力変換装置
JP6682049B1 (ja) * 2019-06-25 2020-04-15 三菱電機株式会社 電力変換装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058536A1 (ja) 2008-11-18 2010-05-27 三菱電機株式会社 電力変換装置
JP2011083115A (ja) * 2009-10-07 2011-04-21 Mitsubishi Electric Corp 電力変換装置
JP2014007846A (ja) * 2012-06-25 2014-01-16 Mitsubishi Electric Corp 電力変換装置
JP2018023230A (ja) * 2016-08-04 2018-02-08 富士電機株式会社 電力変換装置

Also Published As

Publication number Publication date
JP7305053B2 (ja) 2023-07-07
EP4195491A1 (en) 2023-06-14
JPWO2022029869A1 (ja) 2022-02-10
EP4195491A4 (en) 2023-08-30
US20230261563A1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
JP5849586B2 (ja) 3レベル電力変換回路システム
Hota et al. An optimized three-phase multilevel inverter topology with separate level and phase sequence generation part
JP5049964B2 (ja) 電力変換装置
JP5163734B2 (ja) 3レベルインバータ装置
KR20080109878A (ko) 전력 변환 장치
JP5493783B2 (ja) 3相インバータ装置
JP3856689B2 (ja) 中性点クランプ式電力変換器の制御装置
Chen et al. A new seven-level topology for high-power medium-voltage application
JP2018088750A (ja) 電力変換装置
Hakami et al. Dual-carrier-based PWM method for DC-link capacitor lifetime extension in three-level hybrid ANPC inverters
US9685884B2 (en) Seven-level inverter apparatus
JP5734083B2 (ja) 電力変換装置
Babaei et al. New extendable 15-level basic unit for multilevel inverters
WO2022029869A1 (ja) 電力変換装置
JP3796881B2 (ja) 3レベルインバータの制御方法とその装置
Majdoul et al. A nine-switch nine-level voltage inverter new topology with optimal modulation technique
JP5302905B2 (ja) 電力変換装置
JPH06319263A (ja) インバータ装置
Bharatiraja et al. FPGA based design and validation of asymmetrical reduced switch multilevel inverter
JP2004180422A (ja) Pwm整流装置
Mailah et al. Harmonics reduction of three phase five-level Neutral-Point-Clamped Multilevel Inverter
JP7040077B2 (ja) 電力変換装置
Khwan-on et al. A fault tolerant matrix converter motor drive under open phase faults
Chen et al. A model predictive control based fault-tolerant control strategy for T-type three-level inverters
JP3177085B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947835

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541362

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020947835

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE