WO2013054567A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2013054567A1
WO2013054567A1 PCT/JP2012/063517 JP2012063517W WO2013054567A1 WO 2013054567 A1 WO2013054567 A1 WO 2013054567A1 JP 2012063517 W JP2012063517 W JP 2012063517W WO 2013054567 A1 WO2013054567 A1 WO 2013054567A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
control
sub
power converter
control mode
Prior art date
Application number
PCT/JP2012/063517
Other languages
English (en)
French (fr)
Inventor
真理 来見
森 修
喜久夫 泉
藤井 俊行
浦壁 隆浩
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2013538455A priority Critical patent/JP5645209B2/ja
Publication of WO2013054567A1 publication Critical patent/WO2013054567A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power conversion device in which an AC side is connected to a power system and performs power conversion between DC and AC.
  • a conventional power converter there is one configured by connecting in series the AC side of a single-phase sub-converter having a DC voltage smaller than the DC voltage of the main converter to the AC line of each phase of the three-phase main converter. . Then, the main converter is driven by one gate pulse in a half cycle, and the phase voltage of the power converter is generated by the sum of the phase voltages of the respective converters (see, for example, Patent Document 1).
  • a conventional power conversion device includes a system voltage level drop detection unit that detects that the system voltage is equal to or lower than a predetermined voltage level, and a detection duration measurement unit that measures a detection duration of the detection unit.
  • Patent Document 1 a plurality of power converters are combined to output a voltage, thereby reducing the size and increasing the efficiency.
  • an overcurrent is generated, and an overvoltage is generated due to fluctuations in the DC voltage of the sub-converter. Therefore, it is necessary to protect the power converter.
  • Japanese Patent Application Laid-Open No. 2004-228561 describes a technique for protecting an overcurrent by stopping the operation of the power converter when an instantaneous voltage drop of the power system occurs.
  • the power conversion apparatus that links the distributed power source to the power system stops, there is a problem that the power supply-demand balance in the power system is lost.
  • the power converter is stopped and disconnected from the power system line, it takes time to start the operation of the power converter again.
  • the present invention has been made to solve the above-described problems, and is a power conversion device configured by connecting a main power converter and a sub power converter having a relatively low DC voltage in series.
  • the purpose is to continue the operation with high reliability even when the instantaneous voltage drop of the power system and the power recovery.
  • the power conversion device includes a power converter that has an AC side connected to the power system and performs power conversion between DC and AC, and a control device that controls the power converter.
  • the power converter has one main power converter and a DC capacitor having a voltage lower than the DC voltage of the main power converter, and the AC power is connected between the AC side of the main power converter and the power system.
  • a sub power converter having a side connected in series, and generates a total voltage of the main power converter and the AC side generated voltage of the sub power converter on the AC side.
  • the control device causes a converter current, which is a phase current of the power converter, to follow a command value, and two control modes are set so that the voltage of the DC capacitor of the sub power converter becomes a set voltage.
  • the two control modes control the main power converter so as to output a voltage of one pulse in a half cycle of the system voltage, and the sub power conversion so that the converter current follows the command value.
  • a first control mode for PWM control of the converter, and the sub power converter is controlled to bypass the DC capacitor, and the main power converter is PWMed so that the converter current follows the command value.
  • the power converter according to the present invention suppresses the overvoltage by suppressing the voltage fluctuation of the DC capacitor of the sub power converter when the instantaneous voltage drop of the power system occurs, and suppresses the overcurrent by the operation of the main power converter. Can continue. For this reason, the bad influence which acts on the electric power system which is an electric power supply destination, or load equipment can be reduced, and the reliability of a power converter device improves.
  • Embodiment 1 of this invention It is an output voltage waveform diagram of the main inverter in two kinds of control modes by Embodiment 1 of this invention. It is a wave form diagram which shows the relationship between the sub DC voltage and control mode by Embodiment 1 of this invention. It is a flowchart which shows the control switching by Embodiment 1 of this invention. It is a figure explaining switching of the control mode by another example of Embodiment 1 of this invention. It is a figure which shows the main circuit structure of the power converter device by Embodiment 2 of this invention. It is a figure explaining switching of the control mode by Embodiment 3 of this invention. It is a figure explaining switching of the control mode by Embodiment 4 of this invention.
  • FIG. 1 shows a power conversion apparatus according to Embodiment 1 of the present invention, more specifically, DC power from a solar cell 1 serving as a distributed power source is converted into AC power and connected to a power system 15. It is a figure which shows the structure of the power converter device which performs electric power transmission to 15.
  • the power converter which is the main circuit of the power converter, includes a capacitor 2 connected in parallel to the solar cell 1, a DC / DC converter 3 for controlling the output of the solar cell (PV) 1 and taking out power, and a DC / DC Inverter unit comprising two series main capacitors 4a and 4b as power storage units connected to the output side of the DC converter 3, a main inverter 5 as a main power converter, and sub inverters 7a and 7b as sub power converters 10 and a smoothing filter that is connected to the AC output side of the inverter unit 10 and includes AC reactors 11 and 13 and a filter capacitor 12, and is connected to the power system 15 via the switch 14.
  • the filter capacitor 12 is three-phase connected, and the connection point thereof is connected to the connection point of the two main capacitors 4a and 4b.
  • the main inverter 5 of the inverter unit 10 is a three-phase three-level inverter that includes a plurality of self-extinguishing semiconductor switching elements 6 made of IGBTs or the like each having a diode connected in antiparallel, and includes a main capacitor 4a,
  • the DC power of 4b is converted into AC power.
  • a high-voltage side semiconductor switching element and a low-voltage side semiconductor switching element are connected in series between the DC buses, and are connected with opposite polarities between the connection point and the connection point of the two main capacitors 4a and 4b. Two semiconductor switching elements are connected.
  • the semiconductor switching element 6 used here may be GCT, GTO, a transistor, a MOSFET, or the like in addition to the IGBT.
  • the main capacitors 4a and 4b are built in the direct current side of the main inverter 5, and the main inverter 5 may be a three-phase two-level inverter.
  • One or more (two in this case) sub-inverters 7a and 7b are connected in series to each phase AC line of the main inverter 5 to form the sub-inverter unit 7.
  • Each of the sub-inverters 7a and 7b is a single-phase full-bridge inverter provided with sub-capacitors 8a and 8b as DC capacitors for holding a DC voltage, and semiconductor switching elements 9 each consisting of four MOSFETs.
  • the sub-inverters 7a and 7b are connected in series in a two-stage configuration to increase the number of output voltage levels and output a voltage with less harmonics. Three or more multistage configurations may be used.
  • the output voltages of the sub-inverters 7a and 7b of each phase are superimposed on the output voltages of the respective phases of the main inverter 5, and the smoothing filter 11 calculates the voltage sum of the output voltage of the main inverter 5 and the output voltages of the sub-inverters 7a and 7b.
  • the switch 14 performs a shut-off operation when an abnormality occurs.
  • the voltage (sub DC voltage) Vs of the sub capacitors 8a and 8b which is the DC voltage of each of the sub inverters 7a and 7b, is changed to the voltage (main DC voltage) Vm of the main capacitors 4a and 4b which is the DC voltage of the main inverter 5. It is set small compared to.
  • the power conversion device includes a control device 20 that controls the DC / DC converter 3 and the inverter unit 10. Further, the power conversion device includes a voltage sensor that detects the voltage Vb and current ib output from the solar cell 1, a current sensor, a voltage sensor that detects the main DC voltage Vm of the main inverter 5, and the sub inverters 7 a and 7 b.
  • a voltage sensor that detects the DC voltage Vs a current sensor that detects an inverter current i (iu, iv, iw) as a converter current that is a current of each phase of the inverter unit 10, and a system voltage VA of the power system 15
  • the control device 20 controls the DC / DC converter 3 and the inverter unit 10 based on the detected voltage and current.
  • the control device 20 controls the DC / DC converter 3 to control the output of the solar cell 1, the main DC voltage control unit 22 that controls the main DC voltage Vm, and the inverter current i.
  • An inverter current control unit 23 a gate pulse generation unit 24 that has a first gate pulse generation unit 24a and a second gate pulse generation unit 24b and generates a gate pulse signal as a control signal to the inverter unit 10; Is provided.
  • the control device 20 includes a system voltage recovery detection unit 25 that detects recovery from an instantaneous voltage drop (hereinafter referred to as instantaneous voltage drop) of the system voltage VA, and a sub DC voltage abnormality detection unit that detects abnormality of the sub DC voltage Vs.
  • instantaneous voltage drop an instantaneous voltage drop
  • sub DC voltage abnormality detection unit that detects abnormality of the sub DC voltage Vs.
  • a control mode switching unit 27 for generating a mode switching signal 27a for switching between two control modes, and a first gate pulse generating unit 24a and a second gate pulse generation of the gate pulse generating unit 24 by the mode switching signal 27a.
  • the control device 20 has two types of control modes: a normal mode that is a normal mode that is the first control mode, and a voltage reduction mode that is the second control mode when the system voltage VA is instantaneously reduced.
  • the inverter unit 10 is controlled, the first gate pulse generation unit 24a generates a gate pulse signal to the inverter unit 10 in the normal mode, and the second gate pulse generation unit 24b to the inverter unit 10 in the voltage drop mode.
  • the gate pulse signal is generated.
  • the detected values of the output voltage Vb, the output current ib, and the main DC voltage Vm of the solar cell 1 are input to the solar cell output control unit 21.
  • the solar cell 1 A drive signal to the DC / DC converter 3 is generated so as to output the maximum power and the DC / DC converter 3 is controlled.
  • the Vm upper limit value is set higher than the main DC voltage command value Vm * by a predetermined voltage, and when the main DC voltage Vm exceeds the Vm upper limit value, the solar cell output control unit 21 causes the solar cell 1 to reduce the output power.
  • a drive signal to the DC / DC converter 3 is generated to suppress an increase in the main DC voltage Vm.
  • the detected main DC voltage Vm is also input to the main DC voltage control unit 22, and the main DC voltage control unit 22 makes the main DC voltage Vm follow the main DC voltage command value Vm *.
  • a command value i * of an inverter current i that is a phase current is generated. Specifically, first, the amplitude of the inverter current command value i * is determined so that the main DC voltage Vm follows the main DC voltage command value Vm * , and then the power factor of the power system 15 becomes 1. Then, the phase of the inverter current command value i * is determined to generate the command value i * .
  • the inverter current control unit 23 receives the detected values of the system voltage VA and the inverter current i and the inverter current command value i * , and the output of the inverter unit 10 so that the inverter current i follows the inverter current command value i *.
  • a voltage command Vo * is generated, and the output voltage command Vo * is input to the first and second gate pulse generators 24a and 24b.
  • the gate pulse switching unit 28 switches and selects the first gate pulse generation unit 24a and the second gate pulse generation unit 24b according to the mode switching signal 27a.
  • the first gate pulse generation unit 24a In the voltage drop mode, the second gate pulse generator 24 b is selected and connected to the gate drive circuit 29.
  • the output voltage command Vo * from the inverter current controller 23 and the detected value of the sub DC voltage Vs of each of the sub-inverters 7a and 7b are input. And the output voltage of the main inverter 5 and each of the sub-inverters 7a and 7b is determined based on the set sub DC voltage command value Vs *, and each gate pulse signal is generated.
  • the output voltage Vo of the inverter unit 10 which is the voltage sum of the output voltage of the main inverter 5 and the output voltages of the sub-inverters 7a and 7b follows the output voltage command Vo *, and the sub-inverters 7a and 7b.
  • a gate pulse signal to the main inverter 5 and each of the sub inverters 7a and 7b is generated so that the sub DC voltage Vs matches the set sub DC voltage command value Vs * .
  • the first gate pulse generation unit 24a in the normal mode generates a gate pulse signal to the main inverter 5 so that the main inverter 5 outputs a voltage of one pulse in a half cycle in accordance with the system voltage cycle, and A gate pulse signal for PWM control of the inverters 7a and 7b is generated.
  • the gate pulse signals to the sub inverters 7a and 7b are set so that the sub inverters 7a and 7b bypass the sub capacitors 8a and 8b to set the output voltage to 0.
  • a gate pulse signal for PWM control of the main inverter 5 by the output voltage command Vo * is generated.
  • the gate drive circuit 29 generates a signal 29a for driving the gates of the semiconductor switching elements 6 and 9 based on the gate pulse signal 28a to the main inverter 5 and the sub-inverters 7a and 7b, thereby generating the semiconductor switching elements. 6 and 9 are driven.
  • the detected system voltage VA is also input to the system voltage recovery detection unit 25, and the system voltage recovery detection unit 25 detects that the system voltage VA is equal to or higher than a predetermined voltage, that is, recovers from an instantaneous drop.
  • the system return signal 25a is output.
  • the detection value of the sub DC voltage Vs of each of the sub inverters 7a and 7b is also input to the sub DC voltage abnormality detection unit 26.
  • the sub DC voltage abnormality detection unit 26 that detects the abnormality of the sub DC voltage Vs determines the determination voltage for switching the control mode, that is, the voltage upper limit Vmax and the voltage lower limit Vmin in the normal mode, overvoltage, and shortage.
  • the control mode switching unit 27 When the operating voltage range that is wider than the predetermined voltage range and not less than VLL and not more than VHH is out of range, the trip signal 26 b is output to the gate drive circuit 29.
  • control mode switching unit 27 the system restoration signal 25a from the system voltage restoration detection unit 25 and the voltage abnormality signal 26a from the sub DC voltage abnormality detection unit 26 are input, and the mode switching signal 27a is changed based on these signals. Generate. At this time, the control mode switching unit 27 switches from the normal mode to the voltage drop mode when the voltage abnormality signal 26a is input, and switches from the voltage drop mode to the normal mode when the system recovery signal 25a is input. 27a is generated. Further, a trip signal 27b is output to the gate drive circuit 29 under the conditions described later.
  • the DC / DC converter 3 controls the electric power extracted from the solar cell 1, and the inverter unit 10 causes the direct current of the main inverter 5 so that the output power of the solar cell 1 matches the electric power sent to the power system 15.
  • Current control is performed so that the power factor is 1 with respect to the power system 15 while maintaining the voltage (main DC voltage Vm) and the DC voltage (sub DC voltage Vs) of the sub inverters 7a and 7b constant.
  • the main DC voltage Vm has a detected value as many as the number of sub-inverters 7a and 7b, and the sub DC voltage Vs is controlled by Vm * and Vs * . In the above description, Vm and Vs are indicated for convenience.
  • the main DC voltage Vm when the main DC voltage Vm is equal to or lower than the Vm upper limit value, the DC / DC converter 3 operates so that the solar cell 1 outputs the maximum power, and the inverter unit 10 includes the output power of the solar cell 1 and the power system 15. It operates so that the power connected to Therefore, in the voltage drop mode in which the output power of the solar cell 1 is linked to the power system 15 when the power system 15 is instantaneously reduced, the main DC voltage Vm is controlled to be constant by increasing the inverter current i compared to the normal mode. .
  • the main DC voltage of the main inverter 5 Vm increases without being maintained at the main DC voltage command value Vm * .
  • the solar cell output control unit 21 generates a drive signal to the DC / DC converter 3 so that the solar cell 1 decreases the output power as described above. An increase in the DC voltage Vm is suppressed.
  • each sub-inverter 7a, 7b includes a single-phase full-bridge circuit including four semiconductor switching elements 9 (SHA1, SLA1, SHB1, SLB1), (SHA2, SLA2, SHB2, SLB2), Sub capacitors 8a and 8b for holding a DC voltage are provided.
  • the voltage of the sub-capacitors 8a and 8b is V
  • a three-level voltage value of ⁇ V, 0, + V ⁇ is applied between the AC terminals of the sub-inverters 7a and 7b depending on the combination of ON / OFF of the semiconductor switching element. can do.
  • the sub inverters 7a and 7b output by PWM control in the normal mode, and the current i flows through the sub capacitors 8a and 8b through the path shown in FIG. 3 in the voltage drop mode.
  • SLA1, SLB1, SLA2, and SLB2 are turned on, and SHA1, SHB1, SHA2, and SHB2 are turned off.
  • a current flows without passing through the sub capacitors 8a and 8b, and the sub capacitors 8a and 8b can suppress the voltage fluctuation of the sub DC voltage Vs at the time of the instantaneous drop.
  • the control in the voltage drop mode of each of the sub-inverters 7a and 7b may be performed by turning on SHA1, SHB1, SHA2, and SHB2, and turning off SLA1, SLB1, SLA2, and SLB2.
  • FIG. 4 is a diagram illustrating a circuit configuration for one phase of the inverter unit 10.
  • the sub-inverter unit 7 (sub-inverter 7) will be described with a single-stage configuration.
  • 5 is a voltage waveform of each phase of the inverter unit 10 in the normal mode
  • FIG. 6 is a voltage waveform of each phase of the inverter unit 10 in the voltage reduction mode.
  • FIG. 7 is a detailed diagram of each phase voltage waveform of the main inverter 5.
  • the phase voltage Vinv (for one phase of Vo) output from the inverter unit 10 is the output voltage Vinvm of each phase of the main inverter 5 and the output voltage Vinvs of the sub-inverter 7 of each phase.
  • the phase voltage Vinv is controlled to be substantially equal to the system voltage VA.
  • the main inverter 5 In the normal mode, as shown in FIG. 5, the main inverter 5 outputs a voltage of one pulse in a half cycle corresponding to the cycle of the system voltage VA, and the sub inverter 7 outputs a voltage by PWM control, The output voltage Vinv of 10 is controlled to a waveform close to a sine wave similar to the system voltage VA.
  • the main DC voltage Vm (Vmp, Vmn) of the main inverter 5 is controlled to the main DC voltage command value Vm * lower than the maximum voltage value Vp of the system voltage VA, and the output voltage Vinvm of the main inverter 5 is as shown in FIG.
  • the voltage waveform is as shown in (a). As shown in FIG.
  • the DC voltage level of the main inverter 5 is smaller than the maximum voltage value Vp of the system voltage VA.
  • the output voltage Vinvs by the PWM control of the sub inverter 7 is added to the output voltage Vinvm of the main inverter 5.
  • the sub-inverter 7 is controlled so that the charge amount and discharge amount of the sub-capacitor 8 are made equal in a half cycle or one cycle to follow a fixed command value Vs * .
  • the main DC voltage command value Vm * is preferably set lower than the maximum voltage value Vp of the system voltage VA, but the same control is possible even if it is equal to or higher than the maximum voltage value Vp.
  • the main inverter 5 outputs a voltage of one pulse in a half cycle in accordance with the cycle of the system voltage VA, and the sub inverter 7 outputs a voltage by PWM control.
  • switching control of the main inverter 5 at a low frequency and the sub inverter 7 at a high frequency may be performed.
  • the main inverter 5 outputs a voltage substantially equal to the system voltage VA by PWM control, and the sub inverter 7 bypasses the sub capacitor 8 and sets the output voltage to 0.
  • the output voltage Vinvm of the main inverter 5 becomes the output voltage Vinv of the inverter unit 10 and has a voltage waveform as shown in FIG.
  • the sub-inverter 7 bypasses the sub-capacitor 8 so that current flows and the sub-capacitor 8 is not charged / discharged, so that voltage fluctuation of the sub DC voltage Vs at the time of a sag can be suppressed.
  • the sub inverters 7a and 7b may maintain the sub DC voltage Vs at the command value Vs * to control the inverter current i. It becomes difficult and the sub DC voltage Vs fluctuates.
  • the sub DC voltage abnormality detection unit 26 outputs the voltage range (Vmin to Vmax) for switching from the normal mode to the voltage drop mode and the trip signal 26b to stop the inverter unit 10 from protection. And the sub DC voltage Vs (detected value) is determined (see FIG. 2).
  • the control of the inverter unit 10 is switched from the normal mode to the voltage reduction mode. Further, when the system voltage recovery detection unit 25 detects that the system voltage VA is equal to or higher than the predetermined voltage and has recovered from the instantaneous drop, the system returns from the voltage drop mode to the normal mode. Even when the control of the inverter unit 10 is switched from the normal mode to the voltage drop mode, when the sub DC voltage Vs further fluctuates and becomes less than VLL or exceeds VHH, the control device 20 stops protecting the inverter unit 10, The power converter is disconnected from the power system 15. Specifically, the trip signal 26b is output from the sub DC voltage abnormality detection unit 26 to the gate drive circuit 29, and all the semiconductor switching elements 6 and 9 in the main inverter 5 and the sub inverters 7a and 7b are turned off.
  • FIG. 8 is a waveform diagram showing the relationship between the sub DC voltage Vs and the control mode.
  • FIG. 8A shows a case where the sub DC voltage Vs increases and shifts from the normal mode to the voltage drop mode.
  • FIG. 8B shows a case where the sub DC voltage Vs decreases and the normal mode is changed to the voltage drop mode. Indicates the case of migration. In either case, when the system voltage VA returns from the instantaneous drop, the voltage drop mode returns to the normal mode.
  • FIG. 9 is a flowchart showing control mode switching and protection stop processing of the inverter unit 10.
  • the sub DC voltage abnormality detection unit 26 determines whether the sub DC voltage Vs is abnormal (step S1). If the sub DC voltage Vs is a normal level in the voltage range (Vmin to Vmax) in step S1, the normal mode is continued (step S2). In step S1, if the sub DC voltage Vs is a protection stop level that deviates from the operating voltage range (VLL to VHH), the trip signal 26b is output to stop protection of the inverter unit 10, and the power converter is disconnected from the power system 15. (Step S3).
  • step S1 if the sub DC voltage Vs is within the operating voltage range (VLL to VHH) and is out of the voltage range (Vmin to Vmax), the sub DC voltage abnormality detection unit 26 supplies the control mode switching unit 27 with a voltage abnormality.
  • the signal 26a is output, and the control mode switching unit 27 switches from the normal mode to the voltage drop mode (step S4).
  • the abnormality determination of the sub DC voltage Vs is performed for all phases, and when an abnormality is detected even for one phase, the control mode is switched or the protection is stopped.
  • the system voltage VA detects the all-phase recovery from the instantaneous drop and outputs the system recovery signal 25a (step S5).
  • the control mode switching unit 27 the voltage drop mode is detected in step S4. The time after switching to the time, i.e., the operation continuation time in the voltage drop mode is monitored, and when it exceeds a predetermined time (step S6), the trip signal 27b is output to stop the inverter unit 10 from being protected. The converter is disconnected from the power system 15 (step S7).
  • step S5 when the system return signal 25a is output within the above-described fixed time in the voltage reduction mode, the control mode switching unit 27 causes the control mode switching frequency within the predetermined time to be within the set number of times.
  • Step S8 if the control mode has been repeatedly switched over the set number of times, the trip signal 27b is output to stop protection of the inverter unit 10, and the power converter is disconnected from the power system 15. (Step 9). If the number of control mode switching within a predetermined time is within the set number in step S8, the control mode switching unit 27 switches from the voltage drop mode to the normal mode (step S10).
  • the sub DC voltage abnormality detection unit 26 determines whether the sub DC voltage Vs is abnormal and returns to the normal level within the voltage range (Vmin to Vmax) (step S11). If the voltage Vs does not return to the normal level, the time after switching to the normal mode is monitored in step S10, and if the predetermined mask time t is exceeded (step S13), the trip signal 27b is output and the inverter unit 10 is turned on. The protection is stopped and the power converter is disconnected from the power system 15 (step S13).
  • control mode is switched at the same time for all phases, but only the phase in which an abnormality has occurred may be switched.
  • the phase may be shifted to the normal mode from the phase that has returned to a predetermined voltage or higher.
  • the inverter unit 10 when the sub DC voltage Vs is at the normal level, the inverter unit 10 is operated in the normal mode, the main inverter 5 outputs a voltage of one pulse in a half cycle, and the sub inverter 7 is PWM. A voltage is output by control, and the sum of these outputs is used as the output of the inverter unit 10. For this reason, the main inverter 5 that handles a relatively high voltage can reduce the DC voltage level and does not require high-frequency switching, so that a high-efficiency inverter unit 10 with low losses in the semiconductor switching elements 6 and 9 can be obtained.
  • the inverter current i becomes an overcurrent, but the control mode is switched to the voltage reduction mode.
  • the sub capacitor 8 is bypassed to suppress the voltage fluctuation of the sub DC voltage Vs, the main inverter 5 is PWM controlled to suppress overcurrent, and desired current control can be continued. It becomes possible to supply power stably.
  • the control mode By switching the control mode to the voltage drop mode based on the detected value of the sub DC voltage Vs, it is possible to prevent the sub DC voltage Vs from further changing before the control mode is switched. For this reason, high-precision control can be performed promptly even when returning to the normal mode. Further, the return to the normal mode is performed by detecting the return from the instantaneous drop of the system voltage VA. When the system voltage VA is restored, the sub DC voltage Vs is quickly returned to the normal level by the control in the normal mode, and the operation in the normal mode can be continued. Since the main inverter 5 that handles a relatively high voltage in this way is PWM-controlled only for a short period, an increase in switching loss can be suppressed. Further, since the sub DC voltage Vs of the sub capacitor 8 is controlled by the control of the inverter unit 10, the sub capacitor 8 can stabilize the voltage without providing another power source outside, and the inverter unit 10 can be downsized.
  • the inverter unit 10 is protected when the operation continuation time in the voltage drop mode has passed a certain time or when the number of control mode switching within a predetermined time is repeated more than the set number of times. Stop. Thereby, it is possible to prevent the operation of the power converter from being continued in an abnormal state. Further, in order to provide a mask time t after switching from the voltage drop mode to the normal mode and prohibit re-transition to the voltage drop mode, a voltage caused by a transient change in the sub DC voltage Vs that occurs immediately after the control mode switch. It is possible to prevent the transition to the lower mode again.
  • the control device 20 performs control calculation using proportional integral control in the main DC voltage control unit 22, the inverter current control unit 23, and the gate pulse generation unit 24, but switches between the normal mode and the voltage drop mode. Sometimes resets the output of the integrator used for proportional integral control. As a result, it is possible to avoid the occurrence of an abnormality in the control due to an error in the controller that occurs when the control mode is switched.
  • the DC / DC converter 3 is controlled so that the solar cell 1 outputs the maximum power at that time, when the main DC voltage Vm increases and exceeds the upper limit value, the output power of the solar cell 1 is suppressed. Adjust as follows. Thereby, the main DC voltage Vm can be controlled to the DC voltage command value Vm * , and the operation of the power converter can be continued with high reliability. In this case, the output power of the solar cell 1 is suppressed for a short time, and the DC / DC converter 3 is controlled so as to extract as much power as possible from the solar cell 1.
  • the detected value of the sub DC voltage Vs when the detected value of the sub DC voltage Vs is out of the predetermined voltage range, the abnormality of the sub DC voltage Vs is detected.
  • the detected value of the sub DC voltage Vs and its command value Vs * Abnormality detection may be performed using the deviation (Vs ⁇ Vs * ).
  • the voltage range of the deviation (Vs ⁇ Vs * ) that can be controlled in the normal mode (first control mode) is set, and the deviation (Vs ⁇ Vs * ) is out of the voltage range. Then, the abnormality of the sub DC voltage Vs is detected, and the control mode is switched to the voltage drop mode (second control mode).
  • the solar cell 1 is used as the distributed power source.
  • another DC power source such as a battery may be used.
  • the DC / DC converter 3 is controlled so as to extract DC power from the distributed power source.
  • the main inverter 5 has a three-phase structure, but may be a single-phase inverter.
  • FIG. 11 shows the mains of the power converter according to Embodiment 2 of the present invention, more specifically, the converter that converts AC power from the power system 31 into DC power and supplies the DC load 32 with power. It is a figure which shows the structure of the converter circuit 30 which is a circuit (power converter).
  • Converter circuit 30 includes a main converter 33 as a main power converter and a sub-converter unit 34.
  • the sub-converter unit 34 includes a sub-converter 35 as a sub power converter connected in series to each phase AC line of the power system 31, and is connected in series to each phase AC line of the main converter 33.
  • an AC reactor 38 is connected to the power system 31 side of the converter circuit 30, and the power system 31 is further connected via a switch 39.
  • the DC voltage from the main converter 33 is output to the DC load 32 via the main capacitors 37a and 37b.
  • the main converter 33 is a three-phase three-level converter that includes a plurality of self-extinguishing semiconductor switching elements each composed of an IGBT or the like, each of which has a diode connected in antiparallel, and a high voltage is connected between the DC buses in each phase. Side semiconductor switching element and low voltage side semiconductor switching element are connected in series, and two semiconductor switching elements connected in opposite polarities are connected between the connection point and the connection point of the two main capacitors 37a and 37b. .
  • the semiconductor switching element used here may be GCT, GTO, transistor, MOSFET or the like in addition to IGBT.
  • the main capacitors 37a and 37b are built in the DC side of the main converter 33, and the main converter 33 may be a three-phase two-level inverter.
  • Each sub-converter 35 is a single-phase full-bridge converter including a sub-capacitor 36 serving as a DC capacitor that holds a DC voltage, and semiconductor switching elements each including four MOSFETs.
  • the sub-converter 35 is connected in a single stage configuration, it may be connected in series with two or more multi-stage configurations to increase the number of output voltage levels and output a voltage with less harmonics. good.
  • the converter circuit 30 has a three-phase configuration, it may be a single-phase converter circuit.
  • the control device 20 similar to that in the first embodiment is used to switch between two control modes of the normal mode and the voltage drop mode, and the converter current i that is the phase current is the power factor.
  • the control is performed so that the sub DC voltage Vs of the sub capacitor 36 becomes the set command value Vs * .
  • the harmonic current flowing out to the electric power system 31 can be suppressed, the voltage fluctuation of the sub DC voltage Vs can be suppressed even during the instantaneous drop, the overcurrent can be suppressed, and the desired current control can be continued.
  • the operation can be continued, and the same effect as in the first embodiment can be obtained.
  • Embodiment 3 FIG.
  • the control mode is switched by detecting the abnormality of the sub DC voltage Vs, and the control mode is switched by detecting a voltage abnormality such as an instantaneous drop of the system voltage VA. .
  • the voltage range of the system voltage VA that can be controlled in the normal mode is set.
  • the control device 20 detects that the system voltage VA is out of the set voltage range.
  • An abnormality of the voltage VA is detected and the control mode is switched to the voltage drop mode.
  • the return to the normal mode is performed by detecting that the system voltage VA has returned to the set voltage range, as shown in FIG.
  • Other configurations and controls are the same as those in the first embodiment.
  • the control mode can be switched before the sub DC voltage Vs changes, and the sub DC voltage Vs can be prevented from changing before the control mode is switched. For this reason, when returning to the normal mode, highly accurate control can be performed more quickly.
  • the voltage abnormality of the system voltage VA is not limited to the instantaneous voltage drop but may be a voltage rise. In this case, the abnormality is detected and the control mode is switched to the voltage drop mode, and the return is detected to return to the normal mode.
  • the abnormality of the system voltage VA may differ from the reference sine wave not only in the voltage value but also in the frequency and phase, and the abnormality detection for switching the control mode is based on the frequency and phase of the system voltage VA. You can go.
  • Embodiment 4 FIG.
  • the control mode is switched by detecting the abnormality of the sub DC voltage Vs, and further, the control mode is detected by detecting the voltage abnormality of the main DC voltage Vm of the main inverter 5.
  • the voltage range of the main DC voltage Vm that can be controlled in the normal mode is set.
  • the control device 20 sets the voltage range in which the main DC voltage Vm of the main inverter 5 is set.
  • an abnormality in the main DC voltage Vm is detected and the control mode is switched to the voltage drop mode.
  • the other configuration and control are the same as in the first embodiment, and the return to the normal mode is performed by detecting the return of the system voltage VA as in the first embodiment. Accordingly, it is possible to detect a voltage abnormality of the main DC voltage Vm before the sub DC voltage Vs fluctuates and to switch the control mode, and to suppress the sub DC voltage Vs from fluctuating before the control mode is switched. For this reason, when returning to the normal mode, highly accurate control can be performed more quickly.
  • the return to the normal mode may be performed by detecting that the main DC voltage Vm of the main inverter 5 has returned to the set voltage range, as shown in FIG. 13B.
  • abnormality detection may be performed using a deviation (Vm ⁇ Vm * ) between the main DC voltage Vm and its command value Vm * .
  • the deviation (Vm ⁇ Vm * ) between the main DC voltage Vm and its command value Vm * is restored within the set voltage range. You may do this by detecting things.
  • abnormality detection may be performed using the detected value of the current i (inverter current i) of each phase of the inverter unit 10.
  • a current range of the current i that can be controlled in the normal mode is set.
  • the control device 20 gives an abnormality if the current i is out of the set current range. Detect and switch the control mode to the voltage drop mode. As a result, it is possible to quickly detect the overcurrent and to switch the control mode, and it is possible to suppress the fluctuation of the sub DC voltage Vs before the control mode is switched.
  • the return to the normal mode may be performed by detecting that the current i has returned within the set current range, as shown in FIG.
  • the current i used for abnormality detection may be a current detected on the power system 15 side of the switch 14.
  • the detected value of the current i is not limited to the peak value, and may be an instantaneous value, an effective value, an average value, or the like.
  • the junction temperature of the semiconductor switching element or the semiconductor element which is a diode in the inverter unit 10 is measured, and when the junction temperature becomes higher than the set upper limit, the abnormality is detected and the control mode is set to the voltage.
  • the mode may be switched to the decrease mode.
  • the junction temperature of the semiconductor element rises.
  • the control mode is switched, it is possible to suppress the fluctuation of the sub DC voltage Vs before switching, and to improve the reliability of the semiconductor element.
  • each control calculation unit main DC voltage control unit 22, inverter current control unit 23, The controlled variable calculated by the gate pulse generator 24
  • the control apparatus 20 may generate an abnormality detection signal based on the control amount in a control calculating part, and may switch control mode.
  • the control device 20 changes the control mode to the voltage drop mode. Switch to.
  • the return to the normal mode may be performed when the control amount in the control calculation unit returns to the normal level and the abnormality detection signal is turned off, as shown in FIG.
  • the above-described abnormality detection method can be performed by combining a plurality of types, and can detect the abnormality more quickly and switch the control mode.
  • FIG. 18 the control mode is switched by detecting an abnormality in the inverter unit 10 or the control device 20, but the control device 20 receives an external switching signal that is a switching command from the outside and switches the control mode. Designed as possible. As shown in FIG. 18 (a), the control device 20 switches the control mode from the normal mode to the voltage drop mode by an external switching signal, and then turns off the external switching signal as shown in FIG. 18 (b). Return the control mode to normal mode. With such a configuration, when the power conversion device is operated in cooperation with another device, the control mode can be switched by a command from the host system, and operation with a high degree of freedom is possible.

Abstract

 メインインバータ(5)と直流電圧が比較的低いサブインバータ(7)との交流側を直列接続してインバータ部(10)を構成し電力系統(15)に連系する。制御装置(20)は、系統電圧VAの正常時の通常モードにおいて、メインインバータ(5)から系統半周期に1パルスの電圧を出力させ、サブインバータ(7)をPWM制御して、インバータ電流iを制御すると共に、サブインバータ(7)のサブ直流電圧Vsを指令値に追従させる。系統電圧VAに瞬低が発生してサブ直流電圧Vsが異常レベルになると電圧低下モードに切り替え、サブインバータ(7)のサブコンデンサ(8)をバイパス制御し、メインインバータ(5)をPWM制御する。そして、系統電圧VAの復帰を検出して通常モードに戻す。

Description

電力変換装置
 本発明は、交流側が電力系統に接続され、直流/交流間で電力変換を行う電力変換装置に関するものである。
 従来の電力変換装置として、3相のメインコンバータの各相の交流線に、メインコンバータの直流電圧より小さい直流電圧を有する単相のサブコンバータの交流側を直列接続して構成されるものがある。そして、メインコンバータを半周期に1パルスのゲートパルスにて駆動し、各コンバータの相電圧の和で電力変換装置の相電圧を発生する(例えば、特許文献1参照)。
 また、従来の別例による電力変換装置は、系統電圧が所定の電圧レベル以下となったことを検知する系統電圧レベル低下検知手段と、該検知手段の検知持続時間を測定する検知持続時間測定手段とを具備し、系統電圧レベル低下検知手段がレベル低下を検知し、かつ検知持続時間測定手段による測定時間が所定時間以上であったとき、系統の瞬時電圧低下を検出することを特徴とし、検知持続時間測定手段は電圧ゼロクロスポイント付近で無効にする。また、インバータのゲート信号を遮断するゲートブロック手段を具備し、瞬時電圧低下が起こったときインバータのゲート信号を遮断することにより出力を停止して装置を過電流から保護し、復電したとき前記インバータにゲート信号を送出して運転を再開する(例えば、特許文献2参照)。
国際公開WO2007-129456号公報 特開2003-153433号公報
 上記特許文献1記載の電力変換装置では、複数の電力変換器を組み合わせて電圧を出力することで小型化、高効率化を図るものである。しかしながら、接続された電力系統の瞬時電圧低下時には、過電流の発生、またサブコンバータの直流電圧の変動による過電圧が発生するため電力変換装置の保護が必要となる。
 上記特許文献2には、電力系統の瞬時電圧低下時に電力変換装置の運転を停止して過電流から保護する技術が記載されている。しかしながら、分散電源を電力系統に連系する電力変換装置が停止すると、電力系統での電力の需給バランスが崩れるという問題点があった。また、一旦電力変換装置を停止して電力系統のラインから解列すると、再び電力変換装置の運転を開始するのに時間を要するものであった。
 この発明は、上記のような問題点を解消するために成されたものであって、主電力変換器と直流電圧が比較的低い副電力変換器とを直列接続して構成される電力変換装置を、電力系統の瞬時電圧低下時および復電時にも信頼性良く運転継続することを目的とする。
 この発明による電力変換装置は、交流側が電力系統に接続され、直流/交流間で電力変換を行う電力変換器と、上記電力変換器を制御する制御装置とを備える。上記電力変換器は、1つの主電力変換器と、該主電力変換器の直流電圧より低電圧の直流コンデンサを有し、上記主電力変換器の交流側と上記電力系統との間に、交流側が直列接続された副電力変換器とを備えて、上記主電力変換器および上記副電力変換器の交流側発生電圧の合計電圧を交流側に発生する。上記制御装置は、上記電力変換器の相電流である変換器電流を指令値に追従させ、上記副電力変換器の上記直流コンデンサの電圧が設定された電圧となるように、2種の制御モードを有して上記主電力変換器および上記副電力変換器への制御信号を生成する。上記2種の制御モードは、系統電圧の半周期に1パルスの電圧を出力するように上記主電力変換器を制御すると共に、上記変換器電流が上記指令値に追従するように上記副電力変換器をPWM制御する第1の制御モードと、上記直流コンデンサをバイパスさせるように上記副電力変換器を制御すると共に、上記変換器電流が上記指令値に追従するように上記主電力変換器をPWM制御する第2の制御モードとである。そして、上記制御装置は、上記直流コンデンサの電圧が所定の電圧範囲を外れると上記第1の制御モードから上記第2の制御モードに切り替えるものである。
 この発明による電力変換装置は、電力系統の瞬時電圧低下時に、副電力変換器の直流コンデンサの電圧変動を抑制して過電圧を抑制すると共に主電力変換器の動作により過電流を抑制して運転を継続できる。このため、電力供給先である電力系統や負荷機器に及ぼす悪影響を低減でき、電力変換装置の信頼性が向上する。
この発明の実施の形態1による電力変換装置の構成を示す図である。 この発明の実施の形態1によるサブ直流電圧の制御モード切り替えレベルを示す図である。 この発明の実施の形態1によるサブインバータの構成および動作を示す図である。 この発明の実施の形態1によるインバータ部の一相分の回路構成を示す図である。 この発明の実施の形態1によるインバータ部の通常モードの動作を説明する各部の波形図である。 この発明の実施の形態1によるインバータ部の電圧低下モードの動作を説明する各部の波形図である。 この発明の実施の形態1による2種の制御モードでのメインインバータの出力電圧波形図である。 この発明の実施の形態1によるサブ直流電圧と制御モードとの関係を示す波形図である。 この発明の実施の形態1による制御切り替えを示すフローチャートである。 この発明の実施の形態1の別例による制御モードの切り替えを説明する図である。 この発明の実施の形態2による電力変換装置の主回路構成を示す図である。 この発明の実施の形態3による制御モードの切り替えを説明する図である。 この発明の実施の形態4による制御モードの切り替えを説明する図である。 この発明の実施の形態4の別例による制御モードの切り替えを説明する図である。 この発明の実施の形態4の別例による制御モードの切り替えを説明する図である。 この発明の実施の形態4の別例による制御モードの切り替えを説明する図である。 この発明の実施の形態4の別例による制御モードの切り替えを説明する図である。 この発明の実施の形態5による制御モードの切り替えを説明する図である。
実施の形態1.
 以下、この発明の実施の形態1による電力変換装置を図に基づいて説明する。
 図1は、この発明の実施の形態1による電力変換装置、より具体的には、分散電源としての太陽電池1からの直流電力を交流電力に変換して電力系統15に連系し、電力系統15への電力送電を行う電力変換装置の構成を示す図である。
 電力変換装置の主回路である電力変換器は、太陽電池1に並列接続されたコンデンサ2と、太陽電池(PV)1を出力制御して電力を取り出す為のDC/DCコンバータ3と、DC/DCコンバータ3の出力側に接続された電力貯蔵部としての2直列のメインコンデンサ4a、4bと、主電力変換器としてのメインインバータ5および副電力変換器としてのサブインバータ7a、7bから成るインバータ部10と、インバータ部10の交流出力側に接続され、交流リアクトル11、13およびフィルタコンデンサ12から成る平滑フィルタとを備え、開閉器14を介して電力系統15に連系される。また、フィルタコンデンサ12は三相結線されて、その接続点と2つのメインコンデンサ4a、4bの接続点とが接続される。
 インバータ部10のメインインバータ5は、それぞれダイオードが逆並列接続されたIGBT等から成る自己消弧型の半導体スイッチング素子6を複数個備えて構成される三相3レベルインバータであり、メインコンデンサ4a、4bの直流電力を交流電力に変換する。各相において、直流母線間に高圧側半導体スイッチング素子と低圧側半導体スイッチング素子とを直列接続し、その接続点と2つのメインコンデンサ4a、4bの接続点との間に、互いに逆極性に接続された2つの半導体スイッチング素子を接続する。
 なお、ここで用いる半導体スイッチング素子6はIGBT以外にも、GCT、GTO、トランジスタ、MOSFET等でもよい。なお、メインコンデンサ4a、4bはメインインバータ5の直流側に内蔵され、またメインインバータ5は、三相2レベルインバータでも良い。
 メインインバータ5の各相交流線には、サブインバータ7a、7bが、それぞれ1以上(この場合2個)直列接続されてサブインバータ部7を構成する。各サブインバータ7a、7bは、直流電圧を保持する直流コンデンサとしてのサブコンデンサ8a、8bと、それぞれ4個のMOSFET等から成る半導体スイッチング素子9とを備えた単相フルブリッジインバータである。
 なお、ここでは、サブインバータ7a、7bは2段構成で直列に接続して出力電圧のレベル数を多くし、高調波の少ない電圧が出力できるような構成としているが、1段構成でも、また3以上の多段構成であっても良い。
 各相のサブインバータ7a、7bの出力電圧は、メインインバータ5の各相出力電圧に重畳され、メインインバータ5の出力電圧と各サブインバータ7a、7bの出力電圧との電圧和を、平滑フィルタ11~13を介して電力系統15に出力する。また、開閉器14は異常時に遮断動作を行う。
 なお、各サブインバータ7a、7bの直流電圧であるサブコンデンサ8a、8bの電圧(サブ直流電圧)Vsは、メインインバータ5の直流電圧であるメインコンデンサ4a、4bの電圧(メイン直流電圧)Vmに比べて小さく設定されている。
 また、電力変換装置は、DC/DCコンバータ3およびインバータ部10を制御する制御装置20を備える。さらに電力変換装置は、太陽電池1が出力する電圧Vb、電流ibを検出する電圧センサ、電流センサと、メインインバータ5のメイン直流電圧Vmを検出する電圧センサと、各サブインバータ7a、7bのサブ直流電圧Vsを検出する電圧センサと、インバータ部10の各相の電流である変換器電流としてのインバータ電流i(iu、iv、iw)を検出する電流センサと、電力系統15の系統電圧VAを検出する電圧センサとを備え、制御装置20は、検出されたこれらの電圧、電流に基づいてDC/DCコンバータ3およびインバータ部10を制御する。
 制御装置20は、DC/DCコンバータ3を制御して太陽電池1の出力制御を行う太陽電池出力制御部21と、メイン直流電圧Vmを制御するメイン直流電圧制御部22と、インバータ電流iを制御するインバータ電流制御部23と、第1のゲートパルス生成部24aおよび第2のゲートパルス生成部24bを有してインバータ部10への制御信号としてのゲートパルス信号を生成するゲートパルス生成部24とを備える。さらに制御装置20は、系統電圧VAの瞬時電圧低下(以下、瞬低と称す)からの復帰を検出する系統電圧復帰検出部25と、サブ直流電圧Vsの異常を検出するサブ直流電圧異常検出部26と、2種の制御モードを切り替えるモード切替信号27aを生成する制御モード切替部27と、モード切替信号27aによりゲートパルス生成部24の第1のゲートパルス生成部24aと第2のゲートパルス生成部24bとを切り替えるゲートパルス切替部28と、メインインバータ5および各サブインバータ7a、7b内の各半導体スイッチング素子6、9のゲートを駆動する信号29aを生成するゲートドライブ回路29とを備える。
 このように構成される電力変換装置の制御装置20の動作を以下に説明する。
 なお制御装置20は、第1の制御モードとなる通常時の通常モードと、第2の制御モードとなる、系統電圧VAの瞬低時の電圧低下モードとの2種の制御モードを有してインバータ部10を制御し、第1のゲートパルス生成部24aは通常モードでのインバータ部10へのゲートパルス信号を生成し、第2のゲートパルス生成部24bは電圧低下モードでのインバータ部10へのゲートパルス信号を生成する。
 太陽電池出力制御部21には、太陽電池1の出力電圧Vb、出力電流ibおよびメイン直流電圧Vmの各検出値が入力され、メイン直流電圧VmがVm上限値以下の時は、太陽電池1が最大電力を出力するようにDC/DCコンバータ3への駆動信号を生成してDC/DCコンバータ3を制御する。Vm上限値は、メイン直流電圧指令値Vmより所定電圧分高く設定され、メイン直流電圧VmがVm上限値を超えると、太陽電池出力制御部21は、太陽電池1が出力電力を低下させるようにDC/DCコンバータ3への駆動信号を生成し、メイン直流電圧Vmの増加を抑制する。
 検出されたメイン直流電圧Vmはメイン直流電圧制御部22にも入力され、メイン直流電圧制御部22では、メイン直流電圧Vmがメイン直流電圧指令値Vmに追従するように、インバータ部10の各相の電流であるインバータ電流iの指令値iを生成する。具体的には、まず、メイン直流電圧Vmがメイン直流電圧指令値Vmに追従するようにインバータ電流指令値iの振幅を決定し、次いで電力系統15に対して力率が1になるようにインバータ電流指令値iの位相を決定して指令値iを生成する。インバータ電流制御部23では、系統電圧VAおよびインバータ電流iの各検出値とインバータ電流指令値iが入力され、インバータ電流iがインバータ電流指令値iに追従するように、インバータ部10の出力電圧指令Voを生成し、出力電圧指令Voは、第1、第2のゲートパルス生成部24a、24bに入力される。
 ゲートパルス切替部28は、モード切替信号27aにより第1のゲートパルス生成部24aと第2のゲートパルス生成部24bとを切替選択し、通常モードでは第1のゲートパルス生成部24aが、瞬低時の電圧低下モードでは第2のゲートパルス生成部24bが選択されてゲートドライブ回路29に接続される。
 第1、第2のゲートパルス生成部24a、24bでは、インバータ電流制御部23からの出力電圧指令Voと各サブインバータ7a、7bのサブ直流電圧Vsの検出値とが入力され、これらの入力と設定されたサブ直流電圧指令値Vsとに基づいて、メインインバータ5および各サブインバータ7a、7bの出力電圧を決定し、各ゲートパルス信号を生成する。この時、メインインバータ5の出力電圧と各サブインバータ7a、7bの出力電圧との電圧和であるインバータ部10の出力電圧Voが、出力電圧指令Voに追従すると共に、各サブインバータ7a、7bのサブ直流電圧Vsが設定されたサブ直流電圧指令値Vsに一致するようにメインインバータ5および各サブインバータ7a、7bへのゲートパルス信号を生成する。
 通常モードの第1のゲートパルス生成部24aでは、メインインバータ5が系統電圧周期に合わせた半周期に1パルスの電圧を出力するようにメインインバータ5へのゲートパルス信号を生成すると共に、各サブインバータ7a、7bをPWM制御するゲートパルス信号を生成する。電圧低下モードの第2のゲートパルス生成部24bでは、各サブインバータ7a、7bがサブコンデンサ8a、8bをバイパスさせて出力電圧を0とするように各サブインバータ7a、7bへのゲートパルス信号を生成すると共に、メインインバータ5を出力電圧指令VoによりPWM制御するゲートパルス信号を生成する。
 そして、ゲートドライブ回路29は、メインインバータ5および各サブインバータ7a、7bへのゲートパルス信号28aに基づいて、各半導体スイッチング素子6、9のゲートを駆動する信号29aを生成して各半導体スイッチング素子6、9を駆動する。
 また、検出された系統電圧VAは系統電圧復帰検出部25にも入力され、系統電圧復帰検出部25は系統電圧VAが所定の電圧以上であること、即ち瞬低から復帰したことを検出して系統復帰信号25aを出力する。
 各サブインバータ7a、7bのサブ直流電圧Vsの検出値はサブ直流電圧異常検出部26にも入力される。サブ直流電圧Vsの異常を検出するサブ直流電圧異常検出部26では、図2に示すように、制御モード切り替えのための判定電圧、即ち通常モードの電圧上限Vmaxおよび電圧下限Vminと、過電圧、不足電圧から保護してトリップするための過電圧保護レベルVHHおよび不足電圧保護レベルVLLとを有する。そして、サブ直流電圧Vsの検出値が、Vmin以上、Vmax以下である所定の電圧範囲を外れると、サブ直流電圧Vsの異常を検出して制御モード切替部27へ電圧異常信号26aを出力し、さらに上記所定の電圧範囲より広くVLL以上、VHH以下である運転電圧範囲を外れると、ゲートドライブ回路29へトリップ信号26bを出力する。
 制御モード切替部27では、系統電圧復帰検出部25からの系統復帰信号25aと、サブ直流電圧異常検出部26からの電圧異常信号26aとが入力され、これらの信号に基づいてモード切替信号27aを生成する。この時、制御モード切替部27は、電圧異常信号26aが入力されると通常モードから電圧低下モードに切り替え、系統復帰信号25aが入力されると電圧低下モードから通常モードに切り替えるようにモード切替信号27aを生成する。また、後述する条件でゲートドライブ回路29へトリップ信号27bを出力する。
 このように、DC/DCコンバータ3は太陽電池1から取り出す電力を制御し、インバータ部10は、太陽電池1の出力電力と電力系統15へ送り出す電力とが一致するように、メインインバータ5の直流電圧(メイン直流電圧Vm)およびサブインバータ7a、7bの直流電圧(サブ直流電圧Vs)を一定に維持しながら電力系統15に対して力率が1となるように電流制御を行う。
 なお、メイン直流電圧Vmは高圧側のVmpと低圧側のVmn、サブ直流電圧Vsはサブインバータ7a、7bの個数だけ検出値があるが、いずれもVm、Vsに制御されるものであり、上記説明では便宜上、VmとVsとで示している。
 また、メイン直流電圧VmがVm上限値以下の時は、太陽電池1が最大電力を出力するようにDC/DCコンバータ3は動作し、インバータ部10は、太陽電池1の出力電力と電力系統15へ連系する電力とが一致するように動作する。このため電力系統15の瞬低時に、太陽電池1の出力電力を電力系統15に連系する電圧低下モードでは、インバータ電流iを通常モードよりも増加させることによりメイン直流電圧Vmを一定に制御する。
 ここで、瞬低時の系統電圧VAの低下量が大きく、インバータ電流iを増加させても太陽電池1からの電力を電力系統15に対して出力しきれない場合、メインインバータ5のメイン直流電圧Vmがメイン直流電圧指令値Vmに維持できずに増加する。メイン直流電圧VmがVm上限値を超えると、太陽電池出力制御部21は、上述したように、太陽電池1が出力電力を低下させるようにDC/DCコンバータ3への駆動信号を生成し、メイン直流電圧Vmの増加を抑制する。
 次に、通常モードおよび電圧低下モードにおけるインバータ部10の動作について説明する。
 各サブインバータ7a、7bは、図3に示すように、4個の半導体スイッチング素子9(SHA1、SLA1、SHB1、SLB1)、(SHA2、SLA2、SHB2、SLB2)から成る単相フルブリッジ回路と、直流電圧を保持するサブコンデンサ8a、8bとを備える。サブコンデンサ8a、8bの電圧をVとした場合、半導体スイッチング素子のオン・オフの組合せによって{-V、0、+V}の3レベルの電圧値を各サブインバータ7a、7bの交流端子間に印加することができる。そして、各サブインバータ7a、7bは、通常モードではPWM制御により出力し、電圧低下モードでは図3に示す経路でサブコンデンサ8a、8bをバイパスして電流iが流れる。具体的には、SLA1、SLB1、SLA2、SLB2をオン、SHA1、SHB1、SHA2、SHB2をオフとする。これにより、サブコンデンサ8a、8bを介さずに電流が流れ、サブコンデンサ8a、8bは瞬低時のサブ直流電圧Vsの電圧変動を抑制することができる。
 なお、各サブインバータ7a、7bの電圧低下モードでの制御は、SHA1、SHB1、SHA2、SHB2をオン、SLA1、SLB1、SLA2、SLB2をオフとしても良い。
 図4は、インバータ部10の一相分の回路構成を示す図である。なお、便宜上、サブインバータ部7(サブインバータ7)は一段構成を図示して説明するが、二段以上の構成でも同様である。また、図5は通常モードでのインバータ部10の各相の電圧波形であり、図6は電圧低下モードでのインバータ部10の各相の電圧波形である。また、図7は、メインインバータ5の各相電圧波形の詳細図である。
 図4の回路構成からも判るように、インバータ部10が出力する相電圧Vinv(Voの一相分)は、メインインバータ5の各相の出力電圧Vinvmと各相のサブインバータ7の出力電圧Vinvsとの電圧和となる。そしてこの相電圧Vinvが、系統電圧VAとほぼ同等となるように制御される。
 通常モードにおいて、図5に示すように、メインインバータ5は、系統電圧VAの周期に合わせた半周期に1パルスの電圧を出力し、サブインバータ7はPWM制御により電圧を出力して、インバータ部10の出力電圧Vinvは系統電圧VAと同様の正弦波に近い波形に制御される。このとき、メインインバータ5のメイン直流電圧Vm(Vmp、Vmn)は、系統電圧VAの最大電圧値Vpより低いメイン直流電圧指令値Vmに制御され、メインインバータ5の出力電圧Vinvmは、図7(a)に示すような電圧波形となる。図7(a)に示すように、メインインバータ5の直流電圧レベルは、系統電圧VAの最大電圧値Vpより小さいが、メインインバータ5の出力電圧Vinvmに、サブインバータ7のPWM制御による出力電圧Vinvsが加算されて系統電圧VAと同レベルの電圧を信頼性良く出力することができる。また、サブインバータ7は、サブコンデンサ8の充電量と放電量とを半周期あるいは一周期で等しくして一定の指令値Vsに追従するように制御される。
 なお、メイン直流電圧指令値Vmは、系統電圧VAの最大電圧値Vpより低く設定するのが望ましいが、最大電圧値Vpと同程度以上であっても同様の制御が可能である。
 また、通常モードでの制御を、メインインバータ5は、系統電圧VAの周期に合わせた半周期に1パルスの電圧を出力し、サブインバータ7はPWM制御により電圧を出力するとしたが、これに限らず、メインインバータ5を低周波で、サブインバータ7を高周波でスイッチング制御するものでも良い。
 次に、電圧低下モードでは、図6に示すように、メインインバータ5はPWM制御により系統電圧VAとほぼ同等の電圧を出力し、サブインバータ7はサブコンデンサ8をバイパスさせて出力電圧を0とする。即ち、メインインバータ5の出力電圧Vinvmがインバータ部10の出力電圧Vinvとなり、図7(b)に示すような電圧波形となる。
 このときサブインバータ7では、サブコンデンサ8をバイパスして電流が流れサブコンデンサ8の充放電は無い状態となるため、瞬低時のサブ直流電圧Vsの電圧変動を抑制することができる。
 次に、インバータ部10の制御モードの切り替えおよび保護停止について詳述する。
 通常モードでインバータ部10が動作している時に電力系統15に瞬低が発生すると、サブインバータ7a、7bは、サブ直流電圧Vsを指令値Vsに維持してインバータ電流iを制御するのが困難になり、サブ直流電圧Vsが変動する。
 上述したように、サブ直流電圧異常検出部26では、通常モードから電圧低下モードへの切り替えのための電圧範囲(Vmin~Vmax)と、トリップ信号26bを出力してインバータ部10を保護停止する為の運転電圧範囲(VLL~VHH)とを有して、サブ直流電圧Vs(検出値)を判定する(図2参照)。そして、サブ直流電圧Vsが、Vmin未満になる、あるいはVmaxを超えると、インバータ部10の制御は、通常モードから電圧低下モードに切り替わる。また、系統電圧VAが所定電圧以上となり瞬低から復帰したことが系統電圧復帰検出部25により検出されると、電圧低下モードから通常モードへ復帰する。
 インバータ部10の制御が通常モードから電圧低下モードに切り替わっても、さらにサブ直流電圧Vsが変動し、VLL未満になる、あるいはVHHを超えると、制御装置20は、インバータ部10を保護停止し、電力変換器を電力系統15から解列させる。具体的には、サブ直流電圧異常検出部26からゲートドライブ回路29へトリップ信号26bを出力して、メインインバータ5およびサブインバータ7a、7b内の全ての半導体スイッチング素子6、9をオフにする。
 図8は、サブ直流電圧Vsと制御モードとの関係を示す波形図である。図8(a)は、サブ直流電圧Vsが増大して通常モードから電圧低下モードに移行した場合を示し、図8(b)は、サブ直流電圧Vsが減少して通常モードから電圧低下モードに移行した場合を示す。いずれの場合も、系統電圧VAが瞬低から復帰すると電圧低下モードから通常モードに戻る。その際、復帰タイミングによりオーバーシュートしてサブ直流電圧Vsが電圧範囲(Vmin~Vmax)を外れる場合があるが、所定の時間tをマスク時間としてサブ直流電圧Vsが電圧範囲(Vmin~Vmax)を外れていても電圧低下モードに移行させず通常モードで制御する。
 なお、VmaxはVHHより低く、VminはVLLより高く設定されているため、制御モード切り替え直後のオーバーシュートによる保護停止を防ぎ、運転を継続することが可能となる。
 図9は、インバータ部10の制御モードの切り替えおよび保護停止処理をフローチャートで示したものである。
 インバータ部10が通常モードで制御されているとき、サブ直流電圧異常検出部26において、サブ直流電圧Vsの異常を判定する(ステップS1)。ステップS1にて、サブ直流電圧Vsが電圧範囲(Vmin~Vmax)内の通常レベルであれば通常モードを継続する(ステップS2)。ステップS1にて、サブ直流電圧Vsが運転電圧範囲(VLL~VHH)を外れる保護停止レベルであればトリップ信号26bを出力してインバータ部10を保護停止し、電力変換器を電力系統15から解列させる(ステップS3)。ステップS1にて、サブ直流電圧Vsが運転電圧範囲(VLL~VHH)内であって、電圧範囲(Vmin~Vmax)を外れると、サブ直流電圧異常検出部26は制御モード切替部27へ電圧異常信号26aを出力し、制御モード切替部27は通常モードから電圧低下モードに切り替える(ステップS4)。
 なお、サブ直流電圧Vsの異常判定は全相で行い、1相でも異常が検出されると制御モードの切り替え、あるいは保護停止を行う。
 系統電圧復帰検出部25では、系統電圧VAが瞬低からの全相復帰を検出して系統復帰信号25aを出力する(ステップS5)が、制御モード切替部27では、ステップS4にて電圧低下モードに切り替わってからの時間、即ち電圧低下モードでの運転継続時間を監視し、予め設定された一定時間を超えると(ステップS6)、トリップ信号27bを出力してインバータ部10を保護停止し、電力変換器を電力系統15から解列させる(ステップS7)。
 ステップS5にて、電圧低下モードでの運転継続時間が上記一定時間内で、系統復帰信号25aが出力されると、制御モード切替部27では、所定時間内での制御モード切り替え回数が設定回数以内かどうかを判定し(ステップS8)、設定回数を超えて制御モードが繰り返し切り替えられていると、トリップ信号27bを出力してインバータ部10を保護停止し、電力変換器を電力系統15から解列させる(ステップ9)。ステップS8にて、所定時間内での制御モード切り替え回数が設定回数以内であれば、制御モード切替部27は電圧低下モードから通常モードに切り替える(ステップS10)。
 サブ直流電圧異常検出部26では、サブ直流電圧Vsの異常と共に電圧範囲(Vmin~Vmax)内の通常レベルへの復帰を判定している(ステップS11)が、制御モード切替部27では、サブ直流電圧Vsが通常レベルへ復帰しないと、ステップS10にて通常モードに切り替わってからの時間を監視し、所定のマスク時間tを超えると(ステップS13)、トリップ信号27bを出力してインバータ部10を保護停止し、電力変換器を電力系統15から解列させる(ステップS13)。
 なお、上記説明では、全相同時に制御モードを切り替えたが、異常が発生した相のみの切り替えてもよい。系統電圧VAの復帰についても所定の電圧以上に復帰した相から通常モードへ移行しても良い。
 以上のようにこの実施の形態では、サブ直流電圧Vsが通常レベルの時には、インバータ部10は通常モードで運転され、メインインバータ5は半周期に1パルスの電圧を出力し、サブインバータ7はPWM制御により電圧を出力して、これらの出力和をインバータ部10の出力とする。このため、比較的高い電圧を扱うメインインバータ5は、直流電圧レベルを低くできると共に高周波スイッチングが不要で、各半導体スイッチング素子6、9での損失の低い高効率なインバータ部10が得られる。
 また系統電圧VAに瞬低が発生してサブ直流電圧Vsが変動するとインバータ電流iが過電流となるものであるが、制御モードを電圧低下モードに切り替える。これにより、サブコンデンサ8をバイパスしてサブ直流電圧Vsの電圧変動を抑制し、メインインバータ5をPWM制御して過電流を抑制し所望の電流制御が継続でき、電力変換装置は電力系統15に安定的に電力供給することが可能になる。
 サブ直流電圧Vsの検出値に基づいて制御モードを電圧低下モードに切り替えることにより、制御モード切り替え前にサブ直流電圧Vsがさらに変動するのが防止できる。このため、通常モードへの復帰時にも、速やかに高精度な制御が行える。
 また、通常モードへの復帰は、系統電圧VAの瞬低からの復帰を検出して行う。系統電圧VAが復帰すると、通常モードでの制御によりサブ直流電圧Vsも速やかに通常レベルに戻り通常モードでの運転を継続できる。
 このように比較的高い電圧を扱うメインインバータ5をPWM制御するのは、短い期間のみであるため、スイッチング損失の増大を抑制できる。また、インバータ部10の制御によりサブコンデンサ8のサブ直流電圧Vsが制御されるため、サブコンデンサ8は他の電源を外部に備えずに電圧を安定化でき、インバータ部10の小型化が図れる。
 また、インバータ部10の制御において、電圧低下モードでの運転継続時間が一定時間を経過すると、あるいは、所定時間内の制御モードの切り替え回数が設定回数を超えて繰り返されると、インバータ部10を保護停止させる。これにより、異常状態での電力変換器の運転継続を防止することができる。
 また、電圧低下モードから通常モードに切り替え後にマスク時間tを設けて、電圧低下モードへの再移行を禁止させるため、制御モード切替直後に発生する過渡的なサブ直流電圧Vsの変動に起因する電圧低下モードへの再移行を防止することができる。
 また、制御装置20は、メイン直流電圧制御部22、インバータ電流制御部23およびゲートパルス生成部24において、比例積分制御を用いて制御演算を行っているが、通常モードと電圧低下モードとの切り替え時に、比例積分制御に用いる積分器の出力をリセットする。これにより、制御モード切り替えで発生する制御器の誤差によって制御に異常が発生するのを回避することができる。
 さらに、太陽電池1がその時点の最大電力を出力するようにDC/DCコンバータ3は制御されるが、メイン直流電圧Vmが増加して上限値を超えると、太陽電池1の出力電力を抑制するように調整する。これにより、メイン直流電圧Vmを直流電圧指令値Vmに制御でき、信頼性良く電力変換器の運転を継続することができる。この場合、太陽電池1の出力電力を抑制するのは短時間であり、DC/DCコンバータ3は可能な限りより高い電力を太陽電池1から取り出すように制御される。
 なお、上記実施の形態では、サブ直流電圧Vsの検出値が所定の電圧範囲を外れると、サブ直流電圧Vsの異常を検出したが、サブ直流電圧Vsの検出値とその指令値Vsとの偏差(Vs-Vs)を用いて異常検出を行っても良い。この場合、図10に示すように、通常モード(第1の制御モード)の制御が可能な偏差(Vs-Vs)の電圧範囲を設定し、偏差(Vs-Vs)が電圧範囲を外れると、サブ直流電圧Vsの異常を検出して制御モードを電圧低下モード(第2の制御モード)に切り替える。
 また、上記実施の形態では分散電源に太陽電池1を用いたが、バッテリなど他の直流電源でも良く、その場合もDC/DCコンバータ3は分散電源からの直流電力を取り出すように制御される。
 また、上記実施の形態1では、メインインバータ5は三相構成のものを示したが、単相インバータであっても良い。
実施の形態2.
 上記実施の形態1では、太陽電池1からの直流電力をインバータ部10を介して電力系統15に連系する、いわゆる系統連系インバータについて記載したが、上記実施の形態1と同様の構成の制御装置20を、交流電力を直流電力に変換して、例えばモータドライブ装置などの直流負荷へ電力を供給するコンバータ装置に適用しても良い。
 図11は、この発明の実施の形態2による電力変換装置、より具体的には、電力系統31からの交流電力を直流電力に変換し、直流負荷32に対して電力を供給するコンバータ装置の主回路(電力変換器)であるコンバータ回路30の構成を示す図である。
 コンバータ回路30は、主電力変換器としてのメインコンバータ33とサブコンバータ部34とを備える。サブコンバータ部34は、電力系統31の各相交流線にそれぞれ1以上直列接続された副電力変換器としてのサブコンバータ35から成り、メインコンバータ33の各相交流線に直列接続している。
 また、コンバータ回路30の電力系統31側には交流リアクトル38が接続され、さらに開閉器39を介して電力系統31が接続される。そしてメインコンバータ33からの直流電圧がメインコンデンサ37a、37bを介して直流負荷32に出力される。
 メインコンバータ33は、それぞれダイオードが逆並列接続されたIGBT等から成る自己消弧型の半導体スイッチング素子を複数個備えて構成される三相3レベルコンバータであり、各相において、直流母線間に高圧側半導体スイッチング素子と低圧側半導体スイッチング素子とを直列接続し、その接続点と2つのメインコンデンサ37a、37bの接続点との間に、互いに逆極性に接続された2つの半導体スイッチング素子を接続する。
 なお、ここで用いる半導体スイッチング素子はIGBT以外にも、GCT、GTO、トランジスタ、MOSFET等でもよい。なお、メインコンデンサ37a、37bはメインコンバータ33の直流側に内蔵され、またメインコンバータ33は、三相2レベルインバータでも良い。
 各サブコンバータ35は、直流電圧を保持する直流コンデンサとしてのサブコンデンサ36と、それぞれ4個のMOSFET等から成る半導体スイッチング素子とを備えた単相フルブリッジコンバータである。
 なお、ここでは、サブコンバータ35は1段構成で接続しているが、2以上の多段構成で直列に接続して出力電圧のレベル数を多くし、高調波の少ない電圧を出力できる構成としても良い。
 また、コンバータ回路30は三相構成のものを示したが、単相のコンバータ回路であってもよい。
 この実施の形態においても、上記実施の形態1と同様の制御装置20を用いて、通常モードと電圧低下モードとの2種の制御モードを切り替えて、相電流である変換器電流iが力率1になるように制御すると共に、サブコンデンサ36のサブ直流電圧Vsが設定された指令値Vsとなるように制御する。このため、電力系統31へ流出する高調波電流を抑制でき、上記瞬低時にもサブ直流電圧Vsの電圧変動を抑制して過電流を抑制し所望の電流制御が継続できて、コンバータ回路30の運転を継続でき、上記実施の形態1と同様の効果が得られる。
実施の形態3.
 この実施の形態3では、上記実施の形態1と同様にサブ直流電圧Vsの異常を検出して制御モードを切り替えると共に、さらに系統電圧VAの瞬低等の電圧異常を検出して制御モードを切り替える。
 この場合、図12(a)に示すように、通常モードの制御が可能な系統電圧VAの電圧範囲を設定する。そして制御装置20は、サブ直流電圧Vsの検出値が所定の電圧範囲内、即ち通常モードの電圧範囲内(Vmin~Vmax)にある時に、系統電圧VAが設定された電圧範囲を外れると、系統電圧VAの異常を検出して制御モードを電圧低下モードに切り替える。
 また、通常モードへの復帰は、図12(b)に示すように、系統電圧VAが設定された電圧範囲内に復帰した事を検出して行う。その他の構成および制御については、上記実施の形態1と同様である。
 これにより、系統電圧VAが急峻に変動した際、サブ直流電圧Vsが変動する前に制御モードを切り替える事ができ、制御モード切り替え前にサブ直流電圧Vsが変動するのが抑制できる。このため、通常モードへの復帰時に、より速やかに高精度な制御が行える。
 なお、系統電圧VAの電圧異常は、瞬低に限らず、電圧上昇の場合もあり、その場合も異常を検出して制御モードを電圧低下モードに切り替え、復帰を検出して通常モードに戻す。
 また、系統電圧VAの異常は、電圧値だけでなく、周波数、位相についても基準の正弦波と異なる事があり、制御モード切替のための異常検出は、系統電圧VAの周波数や位相に基づいて行っても良い。
実施の形態4.
 この実施の形態4では、上記実施の形態1と同様に、サブ直流電圧Vsの異常を検出して制御モードを切り替えると共に、さらにメインインバータ5のメイン直流電圧Vmの電圧異常を検出して制御モードを切り替える。
 この場合、図13(a)に示すように、通常モードの制御が可能なメイン直流電圧Vmの電圧範囲を設定する。そして制御装置20は、サブ直流電圧Vsの検出値が所定の電圧範囲内、即ち通常モードの電圧範囲内(Vmin~Vmax)にある時に、メインインバータ5のメイン直流電圧Vmが設定された電圧範囲を外れると、メイン直流電圧Vmの異常を検出して制御モードを電圧低下モードに切り替える。その他の構成および制御については、上記実施の形態1と同様であり、通常モードへの復帰についても、上記実施の形態1と同様に、系統電圧VAの復帰を検出して行う。
 これにより、サブ直流電圧Vsが変動する前にメイン直流電圧Vmの電圧異常を検出して制御モードを切り替える事ができ、制御モード切り替え前にサブ直流電圧Vsが変動するのが抑制できる。このため、通常モードへの復帰時に、より速やかに高精度な制御が行える。
 なお、通常モードへの復帰について、図13(b)に示すように、メインインバータ5のメイン直流電圧Vmが設定された電圧範囲内に復帰した事を検出して行っても良い。
 また、メイン直流電圧Vmの代わりに、図14(a)に示すように、メイン直流電圧Vmとその指令値Vmとの偏差(Vm-Vm)を用いて異常検出を行っても良い。
 この場合も、通常モードへの復帰について、図14(b)に示すように、メイン直流電圧Vmとその指令値Vmとの偏差(Vm-Vm)が設定された電圧範囲内に復帰した事を検出して行っても良い。
 さらにまた、インバータ部10の各相の電流i(インバータ電流i)の検出値を用いて異常検出を行っても良い。この場合、図15(a)に示すように、通常モードの制御が可能な電流iの電流範囲を設定する。そして制御装置20は、サブ直流電圧Vsの検出値が所定の電圧範囲内、即ち通常モードの電圧範囲内(Vmin~Vmax)にある時に、電流iが設定された電流範囲を外れると、異常を検出して制御モードを電圧低下モードに切り替える。これにより過電流を速やかに検出して制御モードの切り替えが可能になり、制御モード切り替え前にサブ直流電圧Vsが変動するのが抑制できる。
 この場合も、通常モードへの復帰について、図15(b)に示すように、電流iが設定された電流範囲内に復帰した事を検出して行っても良い。
  なお、異常検出に用いる電流iは、開閉器14よりも電力系統15側で検出される電流であっても良い。また、電流iの検出値は、ピーク値に限らず瞬時値、実効値、平均値などでも良い。
 また図16に示すように、インバータ部10内の半導体スイッチング素子やダイオードである半導体素子の接合温度を測定して、接合温度が設定された上限よりも高くなると異常を検出して制御モードを電圧低下モードに切り替えても良い。インバータ部10の各相の電流iが過電流になると、半導体素子の接合温度が上昇するものであり、接合温度の上昇を検出することで、異常を検出して制御モードの切り替えが可能になる。この場合も、制御装置20は、サブ直流電圧Vsの検出値が所定の電圧範囲内、即ち通常モードの電圧範囲内(Vmin~Vmax)にある時に、半導体素子の接合温度が上限よりも高くなる制御モードを切り替えるため、切り替え前にサブ直流電圧Vsが変動するのが抑制できると共に、半導体素子の信頼性を向上できる。
 また、系統電圧VAの瞬低などにより制御装置20が、通常モードでの制御に支障を来す場合、制御装置23内の各制御演算部(メイン直流電圧制御部22、インバータ電流制御部23、ゲートパルス生成部24)で演算される制御量が異常な値となる。このため、図17(a)に示すように、制御装置20は、制御演算部における制御量に基づいて異常検出信号を発生させ、制御モードを切り替えても良い。この場合、制御装置20は、サブ直流電圧Vsの検出値が所定の電圧範囲内、即ち通常モードの電圧範囲内(Vmin~Vmax)にある時に、制御量が異常になると制御モードを電圧低下モードに切り替える。これにより速やかに異常検出して制御モードの切り替えが可能になり、制御モード切り替え前にサブ直流電圧Vsが変動するのが抑制できる。
 この場合も、通常モードへの復帰について、図17(b)に示すように、制御演算部における制御量が通常レベルに復帰して異常検出信号がオフすることで行っても良い。
 また、上述した異常検出の手法は、複数種を組み合わせて多重化して行う事ができ、より速く異常検出して制御モードを切り替える事ができる。
実施の形態5.
 上記各実施の形態では、インバータ部10や制御装置20の異常検出により制御モードを切り替えたが、制御装置20は、外部からの切替指令である外部切替信号を受信して制御モードを切り替える事を可能な様に設計される。制御装置20は、図18(a)に示すように、外部切替信号により制御モードを通常モードから電圧低下モードに切り替え、その後、図18(b)に示すように、外部切替信号がオフすると、制御モードを通常モードに復帰させる。このような構成にする事で、電力変換装置を他装置と連係して運転する際、上位のシステムからの指令により制御モードを切り替え可能になり、自由度の高い運転が可能になる。
 なお、この発明は、その発明の範囲内において、上記各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。

Claims (12)

  1.  交流側が電力系統に接続され、直流/交流間で電力変換を行う電力変換器と、上記電力変換器を制御する制御装置とを備え、
     上記電力変換器は、1つの主電力変換器と、該主電力変換器の直流電圧より低電圧の直流コンデンサを有し、上記主電力変換器の交流側と上記電力系統との間に、交流側が直列接続された副電力変換器とを備えて、上記主電力変換器および上記副電力変換器の交流側発生電圧の合計電圧を交流側に発生し、
     上記制御装置は、上記電力変換器の相電流である変換器電流を指令値に追従させ、上記副電力変換器の上記直流コンデンサの電圧が設定された電圧となるように、2種の制御モードを有して上記主電力変換器および上記副電力変換器への制御信号を生成し、
     上記2種の制御モードは、系統電圧の半周期に1パルスの電圧を出力するように上記主電力変換器を制御すると共に、上記変換器電流が上記指令値に追従するように上記副電力変換器をPWM制御する第1の制御モードと、上記直流コンデンサをバイパスさせるように上記副電力変換器を制御すると共に、上記変換器電流が上記指令値に追従するように上記主電力変換器をPWM制御する第2の制御モードとであり、
     上記制御装置は、上記直流コンデンサの電圧が所定の電圧範囲を外れると上記第1の制御モードから上記第2の制御モードに切り替える、
     電力変換装置。
  2.  上記制御装置は、上記系統電圧が基準電圧範囲内であることを検出して、上記第2の制御モードから上記第1の制御モードへの切り替えを行う、
     請求項1に記載の電力変換装置。
  3.  上記制御装置は、上記第2の制御モードから上記第1の制御モードへの切り替え後、上記第2の制御モードへの切り替えを、所定の時間、禁止する、
     請求項2に記載の電力変換装置。
  4.  上記制御装置は、上記第2の制御モードが所定時間継続すると、上記電力変換器を停止し、上記電力系統から解列させる、
     請求項2に記載の電力変換装置。
  5.  上記制御装置は、所定の時間内で上記2種の制御モード間の切り替え回数が、設定回数を超えると、上記電力変換器を停止し、上記電力系統から解列させる、
     請求項2~4のいずれか1項に記載の電力変換装置。
  6.  上記制御装置は、上記直流コンデンサの電圧が、上記制御モード切り替えの為の上記所定の電圧範囲より広い運転電圧範囲を外れると、上記電力変換器を停止し、上記電力系統から解列させる、
     請求項1~4のいずれか1項に記載の電力変換装置。
  7.  上記制御装置は、上記主電力変換器および上記副電力変換器への上記制御信号を比例積分制御を用いて生成し、上記2種の制御モード間の切り替え時に、上記比例積分制御に用いる積分器をリセットする、
     請求項1~4のいずれか1項に記載の電力変換装置。
  8.  上記制御装置は、上記直流コンデンサの電圧が上記所定の電圧範囲内にある時に、上記系統電圧の異常を検出して、上記第1の制御モードから上記第2の制御モードに切り替える、
     請求項1~4のいずれか1項に記載の電力変換装置。
  9.  上記制御装置は、上記直流コンデンサの電圧が上記所定の電圧範囲内にある時に、上記主電力変換器の直流電圧あるいは上記変換器電流の異常を検出して、上記第1の制御モードから上記第2の制御モードに切り替える、
     請求項1~4のいずれか1項に記載の電力変換装置。
  10.  上記制御装置は、上記主電力変換器および上記副電力変換器内の半導体素子の接合温度を監視し、上記直流コンデンサの電圧が上記所定の電圧範囲内にある時に、上記半導体素子の接合温度の異常を検出して、上記第1の制御モードから上記第2の制御モードに切り替える、
     請求項1~4のいずれか1項に記載の電力変換装置。
  11.  上記制御装置は、上記直流コンデンサの電圧が上記所定の電圧範囲内にある時に、上記主電力変換器および上記副電力変換器への上記制御信号生成時に演算する制御量の異常を検出して、上記第1の制御モードから上記第2の制御モードに切り替える、
     請求項1~4のいずれか1項に記載の電力変換装置。
  12.  上記制御装置は、外部から上記制御モードの切替指令を受信すると、該切替指令に従って上記制御モードを切り替える、
     請求項1~4のいずれか1項に記載の電力変換装置。
PCT/JP2012/063517 2011-10-14 2012-05-25 電力変換装置 WO2013054567A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013538455A JP5645209B2 (ja) 2011-10-14 2012-05-25 電力変換装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011226630 2011-10-14
JP2011-226630 2011-10-14

Publications (1)

Publication Number Publication Date
WO2013054567A1 true WO2013054567A1 (ja) 2013-04-18

Family

ID=48081629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063517 WO2013054567A1 (ja) 2011-10-14 2012-05-25 電力変換装置

Country Status (2)

Country Link
JP (1) JP5645209B2 (ja)
WO (1) WO2013054567A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106165278A (zh) * 2014-04-07 2016-11-23 保时捷股份公司 电能存储器系统
JP2017127104A (ja) * 2016-01-13 2017-07-20 トヨタ自動車株式会社 電源装置
CN108604868A (zh) * 2016-02-06 2018-09-28 陈威伦 一种单级三相电源转换装置及输电装置
JP2018186661A (ja) * 2017-04-26 2018-11-22 株式会社東芝 電力変換装置
WO2019182161A1 (ja) * 2018-03-23 2019-09-26 国立大学法人東北大学 電力変換システム、電力変換装置、電力変換方法、発電システム、有効電力授受システム、電力系統、電力授受システム、負荷システム及び送配電システム
JP2020167810A (ja) * 2019-03-28 2020-10-08 国立大学法人東北大学 電力変換システム、発電システム、有効電力授受システム及び電力系統

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135781A (ja) * 1993-11-09 1995-05-23 Hitachi Ltd 直列多重インバータ装置の制御方法
JP2004007941A (ja) * 2002-04-05 2004-01-08 Mitsubishi Electric Corp 電力変換装置
JP2005033895A (ja) * 2003-07-10 2005-02-03 Toshiba Corp 電力変換装置
WO2008102552A1 (ja) * 2007-02-22 2008-08-28 Mitsubishi Electric Corporation 電力変換装置
WO2010058536A1 (ja) * 2008-11-18 2010-05-27 三菱電機株式会社 電力変換装置
WO2010067467A1 (ja) * 2008-12-12 2010-06-17 三菱電機株式会社 電力変換装置
JP2011010511A (ja) * 2009-06-29 2011-01-13 Mitsubishi Electric Corp 電力変換装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135781A (ja) * 1993-11-09 1995-05-23 Hitachi Ltd 直列多重インバータ装置の制御方法
JP2004007941A (ja) * 2002-04-05 2004-01-08 Mitsubishi Electric Corp 電力変換装置
JP2005033895A (ja) * 2003-07-10 2005-02-03 Toshiba Corp 電力変換装置
WO2008102552A1 (ja) * 2007-02-22 2008-08-28 Mitsubishi Electric Corporation 電力変換装置
WO2010058536A1 (ja) * 2008-11-18 2010-05-27 三菱電機株式会社 電力変換装置
WO2010067467A1 (ja) * 2008-12-12 2010-06-17 三菱電機株式会社 電力変換装置
JP2011010511A (ja) * 2009-06-29 2011-01-13 Mitsubishi Electric Corp 電力変換装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106165278B (zh) * 2014-04-07 2021-09-10 保时捷股份公司 电能存储器系统
CN106165278A (zh) * 2014-04-07 2016-11-23 保时捷股份公司 电能存储器系统
JP2017511112A (ja) * 2014-04-07 2017-04-13 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c. F. Porsche Aktiengesellschaft 電気エネルギー貯蔵システム
US10218189B2 (en) 2014-04-07 2019-02-26 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Electrical energy storage system
KR20160138574A (ko) * 2014-04-07 2016-12-05 독터. 인제니어. 하.체. 에프. 포르쉐 악티엔게젤샤프트 전기 에너지 저장 시스템
KR101885978B1 (ko) * 2014-04-07 2018-08-06 독터. 인제니어. 하.체. 에프. 포르쉐 악티엔게젤샤프트 전기 에너지 저장 시스템
JP2017127104A (ja) * 2016-01-13 2017-07-20 トヨタ自動車株式会社 電源装置
CN108604868A (zh) * 2016-02-06 2018-09-28 陈威伦 一种单级三相电源转换装置及输电装置
EP3413453A4 (en) * 2016-02-06 2019-10-09 Weilun Chen DEVICE FOR SINGLE-STAGE THREE-PHASE CURRENT CONVERSION AND CURRENT TRANSMISSION DEVICE
CN108604868B (zh) * 2016-02-06 2021-11-26 陈威伦 一种单级三相电源转换装置及输电装置
JP2018186661A (ja) * 2017-04-26 2018-11-22 株式会社東芝 電力変換装置
WO2019182161A1 (ja) * 2018-03-23 2019-09-26 国立大学法人東北大学 電力変換システム、電力変換装置、電力変換方法、発電システム、有効電力授受システム、電力系統、電力授受システム、負荷システム及び送配電システム
JPWO2019182161A1 (ja) * 2018-03-23 2021-03-11 国立大学法人東北大学 電力変換システム、電力変換装置、電力変換方法、発電システム、有効電力授受システム、電力系統、電力授受システム、負荷システム及び送配電システム
JP7168240B2 (ja) 2018-03-23 2022-11-09 国立大学法人東北大学 電力変換装置、発電システム、電力授受システム、負荷システム及び送配電システム
JP2020167810A (ja) * 2019-03-28 2020-10-08 国立大学法人東北大学 電力変換システム、発電システム、有効電力授受システム及び電力系統
JP7216411B2 (ja) 2019-03-28 2023-02-01 国立大学法人東北大学 電力変換システム、発電システム、有効電力授受システム及び電力系統

Also Published As

Publication number Publication date
JPWO2013054567A1 (ja) 2015-03-30
JP5645209B2 (ja) 2014-12-24

Similar Documents

Publication Publication Date Title
RU2599731C2 (ru) Схема накопителя энергии постоянного тока и способ ее работы
JP3249380B2 (ja) 電力変換装置
JP6526344B2 (ja) 電力変換装置および電力システム
US8649196B2 (en) Power converting apparatus with an output voltage that is the sum of voltages generated by individual inverters
US10998830B2 (en) Power conversion device and three-phase power conversion device
JP5645209B2 (ja) 電力変換装置
US7964990B2 (en) Power supply apparatus
JP5223711B2 (ja) 無停電電源装置
JP5565527B2 (ja) 電力変換装置
WO2007097051A1 (ja) 系統連系用電力変換装置
WO2007129456A1 (ja) 電力変換装置
Torabzad et al. Z-source inverter based dynamic voltage restorer
KR20140087450A (ko) 고장전류 감소기능을 가지는 컨버터
JP5734083B2 (ja) 電力変換装置
JP5490263B2 (ja) 電力変換装置
JP2020010567A (ja) 系統連系インバータ装置
JP5805059B2 (ja) 電力変換装置
JP2013172530A (ja) 電力変換装置
JP5302905B2 (ja) 電力変換装置
WO2020136698A1 (ja) 電力変換装置
JP5490801B2 (ja) 自励式無効電力補償装置
Li et al. Dual buck based power decoupling circuit for single phase inverter/rectifier
JP2013176240A (ja) 電力変換装置
JP5528730B2 (ja) 電力変換装置
JP5294908B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839398

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013538455

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12839398

Country of ref document: EP

Kind code of ref document: A1