WO2007097051A1 - 系統連系用電力変換装置 - Google Patents

系統連系用電力変換装置 Download PDF

Info

Publication number
WO2007097051A1
WO2007097051A1 PCT/JP2006/311417 JP2006311417W WO2007097051A1 WO 2007097051 A1 WO2007097051 A1 WO 2007097051A1 JP 2006311417 W JP2006311417 W JP 2006311417W WO 2007097051 A1 WO2007097051 A1 WO 2007097051A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
switching elements
power
capacitors
series
Prior art date
Application number
PCT/JP2006/311417
Other languages
English (en)
French (fr)
Inventor
Naoki Nishio
Hirokazu Nakabayashi
Hiroshi Ito
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to JP2006540058A priority Critical patent/JP4783294B2/ja
Priority to EP06757124A priority patent/EP1858149A4/en
Priority to US11/667,126 priority patent/US7872887B2/en
Publication of WO2007097051A1 publication Critical patent/WO2007097051A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/906Solar cell systems

Definitions

  • the present invention relates to a grid interconnection power converter that converts DC power generated by a DC power generation facility into AC power and supplies the AC power to a commercial power system, and in particular, a commercial power system in which one phase is a grounding wire.
  • the present invention relates to a grid interconnection power conversion device applied to the system.
  • FIG. 10 is a block diagram showing a configuration example (No. 1) of a conventional grid interconnection power converter.
  • FIG. 11 is a main part waveform diagram for explaining the operation of the grid interconnection power converter shown in FIG. Figure 10 shows a configuration example of a full-bridge interconnected inverter. That is, in FIG. 10, when the DC power source E, which is a DC power generation facility, is a solar cell, the ground capacitance (stray capacitance) is between the positive electrode side and the ground and between the negative electrode side and the ground. Each in between.
  • the system power supply U is a commercial power system in which one phase is a grounding wire. In this commercial power system, the ground phase side Ug of the system power supply U is grounded, and the ground phase side Ug is grounded. A system is adopted in which the electric wire is wired to the customer along with the electric power supply wire on the ungrounded phase side Ua.
  • the high voltage side bus P is connected to the positive terminal (voltage Vi +) of the DC power source E, and the low voltage side bus N is connected to the negative terminal (voltage Vi 1).
  • the high voltage side bus P and the low voltage side bus N Between them, a smoothing capacitor CI is connected, and two sets of two switching elements connected in series “S1, S2J“ S3, S4 ”are connected in parallel. Each switching element has a freewheeling diode D connected in antiparallel!
  • the switching elements S1 to S4 are, for example, IGBTs (Insulated Gate Bipolar Transistors), and are turned on / off by a PWM signal from an operation control circuit (not shown).
  • This is an overall inverter S inverter control unit composed of the switching elements S1 to S4 and an operation control circuit (not shown) for driving and controlling them.
  • one end of the rear tuttle L1 is connected to the series connection end (inverter output end) of the switching elements SI and S2 connected in series on the system power supply U side, and the other end of the rear tuttle L1 is connected to the capacitor C2.
  • One end is connected to the ungrounded phase side Ua of the system power supply U.
  • one end of the rear tuttle L2 is connected to the series connection end (inverter output end) of the switching elements S3 and S4 connected in series on the DC power supply E side, and the other end of the rear tuttle L2 is connected to the capacitor C2. Is connected to the other end of the power supply U and the ground phase Ug of the system power supply U.
  • Rear tuttle L1 and capacitor C2 and rear tuttle L2 and capacitor C2 constitute low-pass filters, respectively.
  • the ungrounded phase system voltage (referred to as "Ua”) is a sine wave that is symmetrical up and down with respect to the grounded phase system voltage (referred to as “Ug”). is there.
  • the switching elements S1 to S4 in the inverter control unit consist of a set of switching elements “S1, S4” and a set of switching elements “S2, S3”, which are positive half cycle and negative half cycle of the ungrounded phase system voltage Ua.
  • the on-off operation is alternately performed by a predetermined PWM signal in synchronization with the cycle to switch the voltage between the buses, and the high-frequency components are removed by the low-pass filters “L1, C2J“ L2, C2 ”. It becomes an AC voltage that is a smooth sine wave similar to the side system voltage Ua, and is output to the system by directing power.
  • the inverter control unit operates using the series connection end of the switching elements S3 and S4 connected in series across the DC power supply E side as a reference point, but the system voltage fluctuates. As a result, the output at the inverter control unit also fluctuates and the bus voltage changes. Since the series connection end of the switching elements S3 and S4 is the virtual midpoint of the DC power supply E, the virtual midpoint of the DC power supply E is the output of the inverter when the ground phase side Ug of the system power supply U is used as a reference. Will fluctuate. This means that the ground voltage of DC power supply E fluctuates with the system cycle.
  • the DC power source E has a large ground capacity (floating capacity) like a solar cell
  • the AC current (leakage current) power system that charges and discharges the electrostatic capacity ⁇ the freewheeling diode D connected to each switching element of the inverter control unit ⁇ the floating of the solar cell It flows on the route of capacity ⁇ ground.
  • an earth leakage detector and an earth leakage breaker are installed between the low-pass filter “L1, C2J“ L2, C2 ”and the system, and if the detected leakage current exceeds a certain value, the earth leakage breaker Since the power supply device for linking is disconnected from the system power by performing a cut-off operation, if the DC power supply E is a solar cell, the earth leakage breaker will operate due to its large ground capacity. happenss. And since the solar cell itself is exposed to rain and snow, if its ground capacity increases with the increase of wet locations, the leakage current increases accordingly, and the leakage breaker described above The blocking operation is likely to occur.
  • FIG. 12 is a block diagram showing a configuration example (No. 2) of the conventional grid interconnection power converter.
  • FIG. 13 is a main part waveform diagram for explaining the operation of the grid interconnection power converter shown in FIG. Fig. 12 shows a configuration example of a grid-connected inverter using a half bridge. That is, in FIG. 12, two capacitors C3 and C4 connected in series are connected between the high-voltage side bus P and the low-voltage side bus N, and two switching elements ⁇ S1, S2 '' connected in series Is connected. The two capacitors C3 and C4 have almost equal capacitance values
  • one end of the rear tuttle L3 is connected to the series connection end (inverter output end) of the switching elements SI and S2 connected in series, and the other end of the rear tuttle L3 is connected to one end of the capacitor C5 and the system power supply U. Is connected to the ungrounded phase side Ua. The other end of the capacitor C5 and the ground phase Ug of the system power supply U are connected to the series connection end of the two capacitors C3 and C4 connected in series. Rear tuttle L3 and capacitor C5 form a low-pass filter. ing.
  • Switching elements SI and S2 in the inverter control unit perform an on-off operation alternately with a predetermined PWM signal in synchronization with the positive half cycle and the negative half cycle of the ungrounded phase system voltage Ua.
  • the high-frequency component is removed by the low-pass filter ⁇ L3, C5 '', and the AC voltage is a smooth sine wave similar to the ungrounded phase system voltage Ua, which is output toward the system.
  • the inverter control unit operates with the series connection end of the switching elements SI and S2 connected in series as a reference point, but the capacitors CI and C2 connected in series equally divide the voltage of the DC power supply E. Therefore, the potential at the series connection end of capacitors CI and C2 is the intermediate voltage of DC power supply E. Therefore, in the configuration in which the series connection ends of capacitors CI and C2 and the ground phase side Ug of system power supply U are connected, the voltage between the buses is stable even if the system voltage fluctuates, and the inverter output terminal force is not A voltage equivalent to the ground phase system voltage Ua is output.
  • the ground voltage of the DC power source E becomes a DC voltage, so that even if the DC power source E has a ground capacity, the above leakage current does not flow, and the leakage breaker is There is no worry of blocking operation.
  • the voltage of the DC power source E needs to be considerably larger than the positive and negative peak values of the system voltage. is there. For example, if the system voltage is 230 VAC, the voltage of the DC power supply E needs to be 630 VDC or more, which is “22” times that.
  • the voltage of the DC power supply E in the half-bridge interconnection inverter must be double that of the DC power supply E in the full-bridge interconnection inverter shown in Fig. 10, and the withstand voltage of the switching element used Will need twice as much.
  • a switching element with a high withstand voltage has a large power loss. Therefore, in a half-bridge interconnected inverter, there is a problem that power conversion efficiency is remarkably lowered.
  • FIG. 14 is a block diagram showing a configuration example (No. 3) of the conventional grid interconnection power converter.
  • FIG. 15 is a main part waveform diagram for explaining the operation of the grid interconnection power converter shown in FIG.
  • FIG. 14 shows a case where a transformer T is provided in place of the rear tuttles LI and L2 in the configuration shown in FIG.
  • the operation of the inverter control unit is the same as that of the inverter control unit shown in FIG. 10. Since the inverter control unit and the system power supply U are insulated by the transformer T, the voltage of the system fluctuates. However, since the bus voltage does not change, the leakage current as described above does not flow. However, since power loss occurs due to the transformer T, the power conversion efficiency is significantly reduced.
  • the transformer T is generally large and heavy, there is a problem that it is difficult to reduce the size and weight of the device.
  • the voltage of the DC power supply is equally divided by the two series connection capacitors, and the intermediate voltage of the DC power supply is given.
  • leakage current can be eliminated even with a DC power source with a large earth capacity, such as a solar cell.
  • a three-level inverter is known as an inverter that uses two series-connected capacitors that equally share the voltage of the DC power supply.
  • the three-level inverter is an inverter device that switches between three voltage levels: high voltage, low voltage, and intermediate voltage, and the circuit configuration is more complex than a two-level inverter that alternately controls output of high voltage and OV.
  • the voltage command value is a predetermined voltage command.
  • a technique for performing pulse width modulation by switching between two carrier signals depending on whether the value is larger than the value is disclosed.
  • Patent Document 1 Japanese Patent Laid-Open No. 9163755
  • the generated voltage fluctuates depending on environmental conditions such as sunlight and air temperature as in the case of solar cells.
  • environmental conditions such as sunlight and air temperature as in the case of solar cells.
  • the voltage at each terminal of the two series-connected capacitors also changes due to fluctuations in the output power of the inverter due to fluctuations in the system equipment that is the inverter load.
  • leakage current is unavoidably present in the capacitor, and there is a difference between the two capacitors, not equality. Occur.
  • a booster circuit is provided.
  • one inverter circuit directly connects the inverter. If the voltage across the series circuit of two series-connected capacitors that are direct current power supplies is boosted, the booster circuit requires a device with a high breakdown voltage, and it is difficult to increase efficiency. .
  • the present invention has been made in view of the above, and in a commercial power system in which one phase is a grounding wire, even if the DC power generation equipment has a large ground capacity, the leakage current is high.
  • the purpose is to obtain a power converter for grid interconnection that can perform grid interconnection with reverse power flow while keeping the current and voltage of the alternating current power and voltage stable and positive / negative balance.
  • Another object of the present invention is to provide a grid-connected power conversion device that enables the operation of repeating the operation and its stop in the above-described invention without damaging the switching element.
  • the present invention is directed to a commercial power system in which one of the two phases to be distributed to a consumer is a grounding wire, and direct current power generated by a direct current power generation facility is connected to alternating current power.
  • a grid-connected power conversion device that converts and supplies power to a power source between the positive electrode side and the negative electrode side of the DC power generation facility so that the DC voltage output by the DC power generation facility is equally divided.
  • connection end force of the series circuit with two switching elements on the positive electrode end side and the series circuit with two switching elements on the negative electrode end side constitutes the S inverter output terminal
  • current detection means for detecting an alternating current flowing through one of the power supply wire and the grounding wire, or a system voltage detection means for directly detecting an AC voltage in the grounding wire; The current detected by the current detection means in the process of outputting the AC power corresponding to the frequency and voltage of the commercial power system by controlling the on / off of the four switching elements in a predetermined order.
  • the difference value force between the current value and the target current value becomes smaller, or the difference value force between the voltage value detected by the system voltage detection means and the target voltage value becomes smaller.
  • the four switching elements of the inverter section do not need to use high breakdown voltage elements, high power conversion efficiency can be obtained.
  • the series connection end of two capacitors is connected to the system grounding wire, and the potential of the grounding wire is maintained at the midpoint voltage by the action of the two clamping diodes.
  • leakage current can be prevented from flowing. Since the output current and output voltage to the system are monitored and PWM control is performed so that the fluctuations are within a certain range, even if the voltage across the series capacitor, which is a direct DC power supply, changes, the output to the system Stability of current and output voltage can be achieved.
  • a commercial power system in which one phase is a grounding wire is output with high power conversion efficiency and without flowing leakage current even when the DC power generation equipment has a large ground capacity.
  • the effect is that grid connection that reverses the power flow can be achieved by stabilizing the current and voltage of AC power.
  • FIG. 1 is a block diagram showing a configuration of a grid interconnection power converter according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing a configuration example of the operation control circuit shown in FIG.
  • FIG. 3 is a main part waveform diagram for explaining the operation of the grid interconnection power converter shown in FIG. 1.
  • FIG. 4 is a block diagram showing a configuration of a grid interconnection power converter according to Embodiment 2 of the present invention.
  • FIG. 5 is a block diagram showing a configuration of a grid interconnection power converter according to Embodiment 3 of the present invention.
  • FIG. 6 is a block diagram showing a configuration of a grid interconnection power converter according to Embodiment 4 of the present invention.
  • FIG. 7 is a block diagram showing a configuration of a grid interconnection power converter according to Embodiment 5 of the present invention.
  • FIG. 8 is a block diagram showing a configuration of a grid interconnection power converter according to Embodiment 6 of the present invention.
  • FIG. 9 is a main part waveform diagram for explaining the operation of the grid interconnection power converter shown in FIG. 8.
  • FIG. 10 is a block diagram showing a configuration example (No. 1) of a conventional grid interconnection power converter.
  • FIG. 11 is a main part waveform diagram for explaining the operation of the grid interconnection power converter shown in FIG.
  • FIG. 12 is a block diagram showing a configuration example (part 2) of a conventional grid-connected power converter.
  • FIG. 12 is a block diagram showing a configuration example (part 2) of a conventional grid-connected power converter.
  • FIG. 13 is a main part waveform diagram for explaining the operation of the grid interconnection power converter shown in FIG. 12.
  • FIG. 14 is a block diagram showing a configuration example (No. 3) of a conventional grid interconnection power converter.
  • FIG. 15 is a principal waveform diagram for explaining the operation of the grid interconnection power converter shown in FIG. 14.
  • FIG. 1 is a block diagram showing the configuration of the grid interconnection power converter according to Embodiment 1 of the present invention.
  • the grid interconnection power converter is hereinafter simply referred to as “power converter”.
  • a DC power source E is a power generation facility that may cause fluctuations in the generated DC power. This includes fuel cells in addition to solar cells that are affected by sunlight, temperature, and humidity. It also includes power generation equipment that can output DC power by applying a converter to AC generators such as wind power generators and geothermal power generators.
  • the system power supply U is a commercial power system having single-phase grounding.
  • the ground phase side Ug is grounded on the system power supply U side, and the grounding wire connected to the ground phase side Ug is connected together with the power supply wire connected to the non-ground phase side Ua.
  • a method of wiring to customers is adopted.
  • This type of commercial power system with single-phase grounding includes (1) a single-phase grounding single-phase two-wire power distribution system, and (2) neutral-point grounding single-phase three-wire neutral and single-wire (3) ⁇ connection, one-phase grounding, three-phase grounding wire and one-line power distribution system, (4) Y-connection, neutral point grounding, three-phase neutral wire and each phase
  • the case where the voltage of the DC power supply E is higher than the voltage (crest value) of the system power supply U is handled.
  • the DC power supply E is arranged between the DC power supply E and the system power supply U.
  • the power conversion device 10a includes two capacitors CI and C2, four switching elements SI, S2, S3, and S4 that form a three-level inverter, two die-capacitors Dl and D2, and a smoothing circuit 12.
  • An operation control circuit 14 and a CT (current detector) 16 are provided.
  • the four switching elements S1 to S4 are, for example, IGBTs, and the freewheeling diodes D are connected in antiparallel.
  • the two capacitors CI and C2 are connected between the high voltage side bus P connected to the positive terminal (voltage Vi +) of the DC power source E and the low voltage side bus N connected to the negative terminal (voltage Vi-). Connected in series Has been. Since the voltage across the series circuit of these two capacitors CI and C2 has almost the same capacitance value as the direct DC power supply of the three-level inverter, the series connection terminal Y is the output voltage of the DC power supply E. This is the neutral point (reference point) that gives the intermediate potential (ViO). In this embodiment, the series connection end Y of the two capacitors CI and C2 is connected to the ground phase side Ug of the system power supply U through the ground line G.
  • the four switching elements S1 to S4 are connected in series between the high voltage side bus P and the low voltage side bus N, in other words, between both ends of the series circuit of the two capacitors CI and C2. ing.
  • the two switching elements SI and S2 connected in series between the high voltage side bus P and the inverter output terminal P2 function as a positive side arm and are
  • the two switching elements S3 and S4 connected in series between the voltage side bus N and the inverter output terminal P2 function as the negative side arm.
  • a midpoint clamping diode D1 is connected between the midpoint of this positive arm (that is, the series connection end of switching elements SI and S2) and the series connection end Y of two capacitors CI and C2. It is provided with a polarity that connects the anode to the series connection end Y. Also, the midpoint clamp diode D2 is connected in series with the power sword between the middle point of the negative arm (that is, the series connection end of the switching elements S3 and S4) and the series connection end Y of the two capacitors CI and C2. It is provided with the polarity connected to the connection end Y.
  • the smoothing circuit 12 is a low-pass filter including a rear tuttle L1 and a capacitor C3. One end of the rear tuttle L1 is connected to the inverter output terminal P2, and the other end is connected to the non-ground phase side Ua of the system power supply U. One end of the capacitor C3 is connected to the connection line between the other end of the rear tuttle L1 and the ungrounded phase side Ua of the system power supply U, and the other end is connected to the ground line G.
  • the smoothing circuit 12 smooths the AC voltage of the analog PWM signal waveform whose amplitude output to the inverter output terminal P2 changes in a sine wave shape by removing harmonics and smoothes the system. Transforms to voltage and outputs toward ungrounded phase Ua of system power supply U.
  • the CT 16 is arranged to detect an alternating current flowing through the ground line G.
  • the operation control circuit 14 applies a PWM signal and a binary level signal corresponding to each gate electrode of the four switching elements S1 to S4 to drive it on and off (see FIG. 3), and outputs the inverter output.
  • the generation of PWM signals to be applied to the gate electrodes of the four switching elements S1 to S4 is controlled so that the difference value between and (1) becomes smaller (see Fig. 2).
  • the publicly known method can be used as the synchronization method to the system, so the description thereof is omitted here.
  • FIG. 2 is a block diagram showing a configuration example of the operation control circuit shown in FIG.
  • FIG. 3 is a main part waveform diagram for explaining the operation of the power conversion apparatus shown in FIG.
  • the operation control circuit 14 shown in FIG. 1 includes, for example, as shown in FIG. 2, the gates of the four switching elements S1 to S4 so that the difference value between the current value detected by the CT 16 and the target current value becomes small.
  • an adder 14a As a configuration for controlling the generation of the PWM signal applied to the first electrode, an adder 14a, a proportional integral compensator 14b, a comparator 14c, and a sine wave generator 14d are provided.
  • the adder 14a subtracts the output current of the power conversion device 10a detected by the CT16 from the output target current (eg, 1 ampere) of the sine wave output from the sine wave generator 14d. Output.
  • the sine wave generator 14d can variably set the output target current value.
  • the proportional-integral compensator 14b outputs a result obtained by proportionally integrating the current difference value calculated by the adder 14a.
  • the comparator 14c compares the level of the current difference value (sine wave) compensated by the proportional-integral compensator 18b with a triangular wave signal having a carrier generator force (not shown), and at a point where the sine wave and the triangular wave intersect, a predetermined pulse is obtained.
  • a PWM signal that switches between the high level of the width and the low level of the predetermined pulse width is output to the corresponding gate electrodes of the four switching elements S1 to S4.
  • the pulse width is decreased if the output current is larger than the output target current, and the output current is smaller than the output target current. Starts to increase the pulse width! /
  • the upper row shows the positive side bus voltage (Vi +), the negative side bus voltage (Vi-) and the midpoint voltage (ViO), and the output waveform at the inverter output terminal P2 (the 3-level inverter)
  • the output analog PWM signal waveform) and the output waveform at the output terminal P4 of the smoothing circuit 12 are shown.
  • the bottom row there are four switching elements. The waveform of the PWM signal applied to the children S1 to S4 and the binary level signal are shown.
  • the period from time tl to time t2 is the positive half cycle of the system voltage, and the period from time t2 to time t3 is the negative half cycle of the system voltage.
  • the operation control circuit 14 applies PWM signals and binary level signals corresponding to the gate electrodes of the four switching elements S1 to S4 in synchronization with the positive half cycle and the negative half cycle of the system voltage. Then turn on and off.
  • the switching elements SI and S2 of the positive side arm are turned on by the level signal when the switching element S2 is at a high level.
  • the switching element S1 receives a predetermined PWM signal and performs an on-off operation.
  • the switching elements S3 and S4 of the negative arm are controlled to be turned off by the switching element S3 by a low level signal, and the switching element S4 receives the PWM signal having a phase opposite to that of the switching element S1. ⁇ Performs off operation.
  • the switching elements S3 and S4 of the negative arm are controlled to be in the ON operation state by the level signal of the high level, and the switching element S3 In response to the signal, an on / off operation is performed.
  • the switching elements SI and S2 of the positive side arm are controlled to be in an OFF operation state by the level signal of the switching element S1 being low, and the switching element S2 is turned on upon receiving a PWM signal having a phase opposite to that of the switching element S3. ⁇ Performs off operation.
  • an AC voltage having an analog PWM signal waveform whose amplitude changes in a sine wave shape is output from the inverter output terminal P2, and a smooth sine wave voltage of the system is output from the output terminal P4 of the smoothing circuit 12.
  • the comparator 14c shown in FIG. 2 reduces the pulse width of the PWM signal when the output current is larger than the output target current and reduces the pulse width of the PWM signal when the output current is smaller than the output target current. Increase the pulse width of the PWM signal!] ”Is performed in each positive and negative cycle.
  • the output current of the power converter 10a can be brought close to the output target current, and the output current to the system can be stabilized.
  • the switching element 1 and the switching element 3 both turn off, and the switching element 2 and the switching element If the direction of the current flowing through the inverter output terminal P2 is the direction toward the system power supply U at the timing when the child 4 is turned on together, the ground wire G force is also connected to the diode Dl and the switching element S2.
  • the switching element S4 is connected to the inverter output terminal P2.
  • the diodes Dl and D2 form such a current path, the midpoint voltage (ViO) of the series connection end Y of the capacitors CI and C2 connected to the series connection end of the diodes Dl and D2 is maintained.
  • the potential of the ground line G that connects the series connection end Y and the ground phase side Ug of the system power supply U is maintained at the midpoint voltage (ViO).
  • the diodes Dl and D2 perform the action of clamping the midpoint voltage (ViO).
  • the voltage applied to the switching element S1 between the collector electrode and the emitter electrode of the switching element S1 is lower than the voltage (ViO) of the ground line G due to the diode D1.
  • the maximum voltage is the terminal voltage of capacitor C1, which is half the voltage of power supply E.
  • the collector voltage of the switching element S3 becomes the upper limit of the voltage (ViO) of the ground line G due to the diode D2
  • the voltage applied between the collector electrode and the emitter electrode of the switching element S3 is the DC power supply E
  • the voltage is the maximum value of the terminal voltage of capacitor C2, which is half the voltage.
  • the voltage applied between the collector electrode and the emitter electrode of the switching element S2 is a voltage with the terminal voltage of the capacitor C2 as a maximum value.
  • the voltage applied between the collector electrode and the emitter electrode of the switching element S4 is a voltage with the terminal voltage of the capacitor C1 as a maximum value.
  • the four switching elements that perform inverter control when the DC voltage is higher than the system voltage (peak value) do not have to be configured with high withstand voltage elements. Grid connection with reverse power flow is possible under high power conversion efficiency.
  • the series connection end of a series capacitor, which is a direct DC power supply to the grounding wire of the system, the potential of the grounding wire is clamped to a constant value, so there is a large gap between the DC power generation equipment and the ground. Even in the presence of stray capacitance, it is possible to prevent leakage current from flowing.
  • the output current to the system is monitored and controlled so that the fluctuation falls within a certain range, so even if the voltage across the series capacitor, which is a direct DC power supply, changes, the output current to the system stabilizes.
  • ⁇ ⁇ can be planned.
  • FIG. 4 is a block diagram showing the configuration of the grid interconnection power converter according to Embodiment 2 of the present invention.
  • components that are the same as or equivalent to the components shown in FIG. 1 are assigned the same reference numerals.
  • the description will focus on the parts related to the second embodiment.
  • the resistor R interposed in the ground line G instead of the CT16
  • a voltage detector 22 for detecting a voltage drop at the resistor R and the detection voltage of the voltage detector 22 is input to the operation control circuit 20 having a different sign.
  • the operation control circuit 20 applies a PWM signal and a binary level signal corresponding to each gate electrode of the four switching elements S1 to S4 to drive it on and off (see Fig. 3), and outputs the inverter output.
  • the voltage value detected by the voltage detector 22 and the target in the process of outputting AC power corresponding to the frequency and voltage of the system power supply U from the power terminal P2 in synchronization with the positive half cycle and the negative half cycle of the system.
  • the generation of PWM signals applied to the gate electrodes of the four switching elements S1 to S4 is controlled so that the difference value from the voltage value becomes small.
  • the operation control circuit 20 P is applied to each gate electrode of the four switching elements S1 to S4 so that the difference value between the voltage value detected by the voltage detector 22 and the target voltage value becomes small.
  • the circuit for controlling the generation of the WM signal can be configured with the same idea as the configuration shown in FIG. 2, and the comparator 14c there outputs the output of the power converter 10b when the PWM signal is output.
  • the pulse width is decreased, and when the output voltage is lower than the output target voltage, the pulse width is increased, so that the output voltage of the power converter 10b is output as the output target voltage. It can be close to the voltage, and the output voltage to the system can be stabilized.
  • the voltage detector 22 connected to the resistor R is sufficient to detect the effect of noise if it detects a voltage of almost the same level as the ground potential of the system. Can be reduced. Since the voltage to ground of the voltage detector 22 is stable, the voltage detector 22 with less noise can be realized even if the resistor R is made small and the voltage drop there is small. Control for stabilizing the output voltage of the device 10b can be performed with higher accuracy.
  • a grid interconnection that performs reverse power flow with high power conversion efficiency can be performed. It is also possible to prevent leakage current from flowing even when a large stray capacitance exists between the DC power generation equipment and the ground.
  • the output voltage to the grid is monitored and controlled so that the fluctuations fall within a certain range, so even if the voltage across the series capacitor, which is a direct DC power supply, changes, the output voltage to the grid is stabilized. ⁇ ⁇ can be planned. In this case, since the output voltage to the system is monitored on the grounding wire side of the system, the influence of noise can be avoided and control for stabilizing the output voltage can be performed with higher accuracy.
  • FIG. 5 is a block diagram showing the configuration of the grid interconnection power converter according to Embodiment 3 of the present invention.
  • the same or similar components as those shown in FIG. 1 (Embodiment 1) are denoted by the same reference numerals.
  • the description will be focused on the part related to the third embodiment.
  • a voltage detector 24 that detects the respective terminal voltages of capacitors CI and C2 , 26, and the operation control circuit 2 in which the detection voltages of the voltage detectors 24, 26 have different signs It is entered in 8.
  • the operation control circuit 28 generates a PWM signal to be applied to each gate electrode of the four switching elements S1 to S4 so as to reduce the differential force S between the current value detected by the CT16 and the target current value.
  • a PWM signal to be applied to each gate electrode of the four switching elements S1 to S4 so as to reduce the differential force S between the current value detected by the CT16 and the target current value.
  • the amount of current output in the positive half cycle should be slightly higher than the amount of current output in the negative half cycle.
  • the discharge amount of the charge accumulated in the capacitor C1 is accumulated in the capacitor C2, and the terminal voltage of both capacitors is made closer by increasing the discharge amount of the charge. .
  • both capacitors In the first embodiment even if there is a difference in the terminal voltages of the capacitors CI and C2 due to fluctuations in the output voltage of the DC power supply E or the leakage current of the capacitor itself, both capacitors In the first embodiment, the positive and negative balance of the output current to the system to be controlled stably can be made uniform.
  • FIG. 6 is a block diagram showing the configuration of the grid interconnection power converter according to Embodiment 4 of the present invention.
  • components that are the same as or equivalent to the components shown in FIG. 4 (Embodiment 2) are assigned the same reference numerals.
  • this embodiment 4 The explanation will focus on the part related to.
  • the voltage for detecting the terminal voltages of the capacitors CI and C2 is detected by the detector. 24 and 26 are provided, and the detection voltages of the detectors 24 and 26 are input to the operation control circuit 30 in which the sign is changed.
  • the operation control circuit 30 applies to the gate electrodes of the four switching elements SI, S2, S3, and S4 so that the difference value between the voltage value detected by the pressure detection detector 22 and the target voltage value becomes small.
  • the difference value of each detection voltage of the voltage detectors 24, 26 is obtained, and the difference value is kept within a certain range.
  • the generation control of the PWM signal applied to the gate electrodes of the four switching elements SI, S2, S3, and S4 is performed in parallel to adjust the positive and negative non-uniformities of the output voltage.
  • the voltage output in the positive half cycle is slightly higher than the voltage output in the negative half cycle.
  • the pulse width in this cycle the amount of charge released accumulated in the capacitor C1 is accumulated in the capacitor C2, and the terminal voltage of both capacitors is made closer by increasing the amount of charge released.
  • FIG. 7 is a block diagram showing a configuration of a grid interconnection power converter according to Embodiment 5 of the present invention.
  • a configuration example when the voltage of the DC power supply E is lower than the voltage (peak value) of the system power supply U will be described.
  • components that are the same as or identical to the components shown in the respective embodiments described above are denoted by the same reference numerals.
  • the power conversion device 10e includes two capacitors CI, C2, four switching elements SI, S2, S3, S4 and two diodes Dl constituting a three-level inverter. , D2, a smoothing circuit 12, an operation control circuit 36, two voltage detectors 24, 26, and two boosting circuits 32, 34.
  • the switching elements S5 and S6 included in the four switching elements S1 to S4 and the two booster circuits 32 and 34 are, for example, IGBTs, and the freewheeling diode D is connected in antiparallel to each other.
  • the power converter 10e shown in FIG. 7 excludes the power of the power converter 10c shown in FIG. 5, for example, CT16, and two capacitors CI, Two booster circuits 32 and 34 are arranged in a one-to-one relationship with the two capacitors CI and C2 between the series circuit of C2, and the operation control circuit 36 with the sign changed is the booster circuits 32 and 34. It is the structure which also controlled.
  • the booster circuit 32 includes a switching element S5 including a capacitor C4 and a reactor L2 having one end connected to the positive electrode side of the DC power supply E, and a diode D connected in reverse parallel to the collector electrode connected to the other end of the rear tuttle L2.
  • the other end of the capacitor C4 and the emitter electrode of the switching element S5 are commonly connected to the series connection end Y of the capacitors CI and C2.
  • the other end of the rear tuttle L2 and the collector electrode of the switching element S5 are connected to the anode of the diode D3 for backflow prevention, and the high voltage side bus P is connected to the force sword of the diode D3. Yes.
  • the booster circuit 32 includes a switching element S6 including a capacitor C5 and a reactor L3, one end of which is connected to the positive electrode side of the DC power source E, and an anti-parallel connected diode D, the emitter electrode being connected to the other end of the rear tuttle L3.
  • the other end of the capacitor C5 and the collector electrode of the switching element S6 are commonly connected to the series connection end Y of the capacitors CI and C2.
  • the other end of the rear tuttle L3 and the collector electrode of the switching element S6 are connected to the anode of the backflow prevention diode D4, and the low voltage side bus N is connected to the anode of the diode D4.
  • the operation control circuit 36 first controls the two booster circuits 32, 34 by controlling the two boosters 32, 34, since the voltage of the DC power supply E is lower than the voltage (peak value) of the system power supply U. Boost the voltage across the C2 series circuit to the voltage (Vi +, Vi-) necessary to reverse power flow. After that, the PWM signal corresponding to each gate electrode of the four switching elements S1 to S4 and the binary level signal are applied and turned on and off to form a series circuit of two capacitors CI and C2. The power to convert the power into AC power and output it to the grid The power to perform the operation shown in Fig. 3 in the same way In the operation process, the voltage required for the reverse flow of the voltage across the series circuit of the two capacitors CI and C2 The two booster circuits 32 and 34 are controlled so as to maintain (Vi +, Vi-).
  • the DC voltage output from the DC power supply E is stabilized by the series circuit of the two capacitors C4 and C5. Since the two capacitors C4 and C5 have almost equal capacitance values, the series connection end is Provides an intermediate potential of the output voltage of DC power supply E.
  • both switching elements S5 and S6 are turned on, current flows through the rear tuttles L2 and L3, and energy is stored. After that, when the switching elements S5 and S6 are both turned off, the energy stored in the reactors L2 and L3 passes through the current path from the rear tuttle L2 to the diode D3, the two capacitors CI and C2, the diode D4, and the rear tuttle L2.
  • the two capacitors CI and C2 are charged by the current that flows when energized.
  • the operation control circuit 36 monitors the detection voltages of the two voltage detectors 24 and 26, and repeatedly performs the on / off control of the above-described contents of the two switching elements S5 and S6. Boosts the voltage across the series circuit of capacitors CI and C2 to the voltage (Vi +, Vi-) required to reversely flow. After that, monitor the detection voltages of the two voltage detectors 24 and 26 in the same way and perform the same control operation to maintain the voltages (Vi +, Vi-) necessary for reverse power flow. Note that the PWM signal is used for the on / off control of the above-described contents of the two switching elements S5 and S6, and the desired DC voltage (Vi +, Vi-) is adjusted by adjusting the pulse width. Is to be obtained.
  • the metastatic pressure of the switching element S5 should be a value corresponding to the terminal voltage of the capacitor C4.
  • the breakdown voltage of the switching element S6 is the terminal voltage of the capacitor C5. Any value corresponding to can be used. In other words, as with the four switching elements S1 to S4 that perform inverter control operations, it is not necessary to use high-voltage elements for the switching elements S5 and S6, so the cost can be reduced and boost efficiency can be improved. Can be planned.
  • the rear tuttle L2 and the rear tuttle L3 may be made independent and independent from each other, but a configuration in which both rear tuttles are magnetically coupled may be employed. it can.
  • the “Z” -shaped notation shown between the rear tuttle L2 and the rear tuttle L3 indicates that the rear tuttle L2 and the rear tuttle L3 are magnetically coupled.
  • the rear tuttles LI and L2 when the rear tuttles LI and L2 are magnetically coupled, they can be configured as a single unit, so that the booster circuits 32 and 34 can be downsized.
  • a booster circuit when the generated DC voltage of the DC power generation equipment is lower than the voltage necessary for reverse power flow, a booster circuit is provided, but the direct DC of the 3-level inverter is provided. Since it is provided in a one-to-one relationship with each capacitor rather than providing one for the series circuit of two capacitors as the power supply, each booster circuit does not require the use of high-voltage switching elements, and boosting efficiency is improved. I can plan.
  • the DC voltage generated by the DC power generation facility fluctuates, the voltage across the series circuit of two capacitors, which are direct DC power supplies, can be maintained at a desired value, so that the power that flows backward The conversion can be performed stably.
  • the DC power generation equipment is a DC power source that uses natural energy such as solar cells, there are many cases where voltage fluctuations are large and a stable DC voltage cannot be obtained. Output power can be stabilized.
  • the rear tuttle used in the two booster circuits can be configured to be magnetically coupled to each other, the two booster circuits can be reduced in size.
  • FIG. 8 is a block diagram showing the configuration of the grid interconnection power converter according to Embodiment 6 of the present invention.
  • this Embodiment 6 in each power converter described above, I will explain how to control the operation.
  • a power conversion device 10f according to the sixth embodiment shown in FIG. 8 includes an operation control circuit 38 instead of the operation control circuit 14 in the power conversion device 10a shown in FIG. 1 (Embodiment 1), for example. It has been.
  • the operation control circuit 38 has a function for controlling the operation stop according to the sixth embodiment.
  • FIG. 9 is a main part waveform diagram for explaining the operation of the power conversion device shown in FIG. Fig. 9 shows the operating state where the four switching elements S1 to S4 from the time t are on / off driven by the procedure shown in Fig. 3, and the right side starts operation from time t. The control procedure of the four switching elements S1 to S4 when stopping is shown.
  • both the switching element S1 on the DC power source E side in the positive arm and the switching element S3 on the DC power source E side in the negative arm are synchronized with the operation stop time t.
  • System power supply in the positive arm U-side switching element S2 and system power supply in the negative-side arm U-side switching element S4 are in the on-operation state in the positive half cycle
  • the switching element S4 is controlled to be in the OFF operation state
  • the switching element S2 is controlled to be in the OFF operation state. Controlling 4 to the ON operation state is repeated a predetermined number of cycles.
  • the switching element S2 is in the ON operation state in the positive half cycle in which the current flowing through the rear tuttle L1 toward the system power supply U is flowing. Dl, switching element S2, and non-grounded phase side Ua of system power supply U are formed, and a direct current path is formed, and the voltage level at inverter output terminal P2 becomes the midpoint voltage (ViO), which is stored in reactor L1. Since energy can be attenuated or extinguished, it is possible to avoid the occurrence of the abnormal voltage described above in the switching element S2.
  • ViO midpoint voltage
  • each system power supply in the positive electrode side arm and the negative electrode side arm in a direction to extinguish the energy stored in the rear tuttle of the smoothing circuit. Since the on / off control of the side switching element is performed for each cycle, the operation can be stopped without applying a large voltage to each system power supply side switching element in the positive side arm and the negative side arm. That is, it is possible to realize a power conversion device that enables operation that repeats operation and stoppage thereof without causing failure of the switching element.
  • the grid-connected power conversion device has a high power conversion efficiency and a DC power generation facility that uses a solar cell for a commercial power system in which one phase is a grounding wire. It is useful to realize a grid interconnection in which reverse current flows while maintaining the balance and positive / negative balance of the output AC power current and voltage without flowing leakage current even when having a large ground capacity.
  • the grid interconnection power conversion device is useful for carrying out the operation of repeating the operation and the stop thereof without causing the switching element to fail.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

 片相が接地用電線である商用電力系統に、高い電力変換効率で、しかも直流発電設備が大きな対地容量を持つ場合でも漏れ電流を流さずに、出力する交流電力の電流や電圧の安定化と正負バランスとを保って逆潮流する系統連系が行える系統連系用電力変換装置を得ることを目的として、前記直流発電設備である直流電源Eが出力する直流電圧を等分に分担するように正極側と負極側との間に直列に接続した2つのコンデンサC1,C2の直列接続端Yに商用電力系統からの接地用電線Gを接続し、2つのコンデンサC1,C2の直列回路の両端電圧を4つのスイッチング素子S1~S4と2つのダイオードD1,D2とによって3レベルの変換を行うインバータ部の出力電流をCT16にて監視し、CT16が検出した電流値と目標電流値との差分値が小さくなるように動作制御回路14が4つのスイッチング素子に与えるPWM信号の発生を制御するようにした。

Description

明 細 書
系統連系用電力変換装置
技術分野
[0001] この発明は、直流発電設備が発生する直流電力を交流電力に変換して商用電力 系統に供給する系統連系用電力変換装置に関し、特に片相が接地用電線である商 用電力系統に適用される系統連系用電力変換装置に関するものである。
背景技術
[0002] 近年、地球環境保護の観点から環境への影響の少な!/、太陽電池や燃料電池等に よる発電システムの開発が盛んに進められている。このような発電システムでは、発電 した直流電力をインバータ装置である系統連系用電力変換装置によって商用電力 系統の周波数及び電圧に応じた交流電力に変換し、それを商用電力系統に供給す る(つまり逆潮流する)ことが行われる。以下に、図 10〜図 15を参照して、片相が接 地用電線である商用電力系統である場合に、従来使用されている系統連系用電力 変換装置について、その概要を説明する。ここでは、直流発電設備が発生する直流 電圧は系統電圧 (波高値)よりも高 、場合、つまり昇圧回路を用いな ヽ場合につ!ヽて 説明する。
[0003] まず、図 10は、従来の系統連系用電力変換装置の構成例(その 1)を示すブロック 図である。図 11は、図 10に示す系統連系用電力変換装置の動作を説明する要部波 形図である。図 10では、フルブリッジによる連系インバータの構成例が示されている 。すなわち、図 10において、直流発電設備である直流電源 Eは、太陽電池である場 合、対地容量 (浮遊容量)がその正電極側とアースとの間およびその負電極側とァー スとの間にそれぞれ存在する。また、系統電源 Uは、片相が接地用電線である商用 電力系統であるが、この商用電力系統では、当該系統電源 Uの接地相側 Ugが接地 されるとともに、その接地相側 Ugの接地用電線が非接地相側 Uaの電力供給用電線 と共に需要家まで配線される方式が採用される。
[0004] 直流電源 Eの正極端 (電圧 Vi+)には高電圧側母線 Pが接続され、負極端 (電圧 Vi 一)には低電圧側母線 Nが接続される。この高電圧側母線 Pと低電圧側母線 Nとの 間に、平滑用のコンデンサ CIが接続され、また直列接続した 2つのスイッチング素子 の 2組「S1, S2J「S3, S4」が並列に接続されている。各スイッチング素子には、還流 ダイオード Dが逆並列に接続されて!ヽる。
[0005] スイッチング素子 S1〜S4は、例えば IGBT(Insulated Gate Bipolar Transistor: 絶縁ゲート型ノイポーラトランジスタ)であり、図示しない動作制御回路からの PWM 信号によってオン ·オフ駆動される。このスイッチング素子 S 1〜S4とそれらを駆動制 御する図示しない動作制御回路との全体力 Sインバータ制御部である。
[0006] そして、系統電源 U側において直列接続されたスイッチング素子 SI, S2の直列接 続端 (インバータ出力端)には、リアタトル L1の一端が接続され、リアタトル L1の他端 は、コンデンサ C2の一端と系統電源 Uの非接地相側 Uaとに接続されている。また、 直流電源 E側にお 、て直列接続されたスイッチング素子 S3, S4の直列接続端 (イン バータ出力端)には、リアタトル L2の一端が接続され、リアタトル L2の他端は、コンデ ンサ C2の他端と系統電源 Uの接地相側 Ugとに接続されている。リアタトル L1とコン デンサ C2およびリアタトル L2とコンデンサ C2は、それぞれローパスフィルタを構成し ている。
[0007] 図 11において、非接地相側系統電圧 (これを「Ua」と表記する)は、接地相側系統 電圧 (これを「Ug」と表記する)を基準に上下に対称な正弦波である。インバータ制御 部におけるスイッチング素子 S1〜S4は、スイッチング素子「S1, S4」の組とスィッチ ング素子「S2, S3」の組とが、非接地相側系統電圧 Uaの正の半サイクルと負の半サ イタルとに同期して交互に所定の PWM信号によってオン ·オフ動作を行って母線間 電圧をスイッチングし、ローパスフィルタ「L1, C2J「L2, C2」にて高周波成分が除去 され、非接地相側系統電圧 Uaと同様の滑らかな正弦波である交流電圧となり、系統 に向力つて出力される。
[0008] この場合、インバータ制御部では、直流電源 E側にぉ ヽて直列接続されたスィッチ ング素子 S3, S4の直列接続端を基準点として動作するが、系統電圧は変動するの で、それに伴いインバータ制御部での出力も変動して母線間電圧が変化する。スイツ チング素子 S3, S4の直列接続端は、直流電源 Eの仮想中点であるので、系統電源 Uの接地相側 Ugを基準にすると、直流電源 Eの仮想中点はインバータの出力分だ け変動することになる。これは、直流電源 Eの対地電圧が系統の周期で変動すること を意味する。
[0009] そうすると、直流電源 Eが太陽電池のように大きな対地容量 (浮遊容量)を持つ場合 には、次のような問題がある。まず、直流電源 Eが対地容量を有する場合は、その静 電容量を充放電する交流電流 (漏れ電流)力 系統→インバータ制御部の各スィッチ ング素子に接続される還流ダイオード D→太陽電池の浮遊容量→アースの経路で流 れる。
[0010] 通常、ローパスフィルタ「L1, C2J「L2, C2」と系統との間には、漏電検出器と漏電 遮断器とが設置され、検出した漏れ電流が一定値を超えると、漏電遮断器が遮断動 作を行って当該連係用電力変換装置を系統力 切り離すようになっているので、直 流電源 Eが太陽電池である場合は、その大きな対地容量によって漏電遮断器が動作 してしまうことが起こる。そして、太陽電池は、それ自体が雨や雪に曝されているので 、その対地容量が湿気を帯びた個所の増加に伴い増加すると、それに伴い漏れ電 流が増加し、上記した漏電遮断器の遮断動作が起こり易くなる。
[0011] また、接地工事が不十分な場合は、浮遊容量に高い電圧が蓄積されるので、触れ た人に危害を及ぼす可能性がある。
[0012] 次に、図 12は、従来の系統連系用電力変換装置の構成例(その 2)を示すブロック 図である。図 13は、図 12に示す系統連系用電力変換装置の動作を説明する要部波 形図である。図 12では、ハーフブリッジによる連系インバータの構成例が示されてい る。すなわち、図 12において、高電圧側母線 Pと低電圧側母線 Nとの間に、直列接 続した 2つのコンデンサ C3, C4が接続され、また直列接続した 2つのスイッチング素 子「S1, S2」が接続されている。 2つのコンデンサ C3, C4は、ほぼ等容量値を有する
[0013] そして、直列接続されたスイッチング素子 SI, S2の直列接続端 (インバータ出力端 )には、リアタトル L3の一端が接続され、リアタトル L3の他端は、コンデンサ C5の一 端と系統電源 Uの非接地相側 Uaとに接続されている。また、直列接続された 2つの コンデンサ C3, C4の直列接続端には、コンデンサ C5の他端と系統電源 Uの接地相 側 Ugとが接続されている。リアタトル L3とコンデンサ C5は、ローパスフィルタを構成し ている。
[0014] インバータ制御部におけるスイッチング素子 SI, S2は、非接地相側系統電圧 Ua の正の半サイクルと負の半サイクルとに同期して交互に所定の PWM信号によってォ ン 'オフ動作を行って母線間電圧をスイッチングし、ローパスフィルタ「L3, C5」にて 高周波成分が除去され、非接地相側系統電圧 Uaと同様の滑らかな正弦波である交 流電圧となり、系統に向かって出力される。
[0015] この場合、インバータ制御部では、直列接続されたスイッチング素子 SI, S2の直列 接続端を基準点として動作するが、直列接続されたコンデンサ CI, C2は、直流電源 Eの電圧を等分に分担するので、コンデンサ CI, C2の直列接続端の電位は、直流 電源 Eの中間電圧である。したがって、コンデンサ CI, C2の直列接続端と系統電源 Uの接地相側 Ugとを接続する構成では、系統の電圧が変動しても、母線間電圧は 安定であり、インバータ出力端力 は、非接地相側系統電圧 Uaと同等の電圧が出力 される。
[0016] これによつて、直流電源 Eの対地電圧は直流電圧となるので、直流電源 Eに対地容 量が存在しても、上記したような漏れ電流が流れることは無くなり、漏電遮断器が遮 断動作を行う心配はない。しかし、ハーフブリッジの連系インバータでは、系統電圧 の正負の波高値を出力する必要があるので、直流電源 Eの電圧は、系統電圧の正 負の波高値よりも相当に大きな値とする必要がある。例えば、系統電圧が AC230V であれば、直流電源 Eの電圧は、その「2 2」倍の DC630V以上が必要である。つ まり、ハーフブリッジの連系インバータでの直流電源 Eの電圧は、図 10に示したフル ブリッジ連系インバータでの直流電源 Eの 2倍とする必要があり、使用するスィッチン グ素子の耐電圧は 2倍のものが必要となる。一般に、耐電圧の高いスイッチング素子 は、電力損失が大きいので、ハーフブリッジの連系インバータでは、電力変換効率が 著しく低下すると 、う問題がある。
[0017] 次に、図 14は、従来の系統連系用電力変換装置の構成例(その 3)を示すブロック 図である。図 15は、図 14に示す系統連系用電力変換装置の動作を説明する要部波 形図である。図 14では、図 10に示した構成において、リアタトル LI, L2に代えて、ト ランス Tを設けた場合が示されて 、る。 [0018] この構成では、インバータ制御部の動作は図 10に示したインバータ制御部と同様 である力 インバータ制御部と系統電源 Uとの間がトランス Tによって絶縁されるので 、系統の電圧が変動しても、母線間電圧は変化しないので、上記したような漏れ電流 が流れることはない。しかし、トランス Tによる電力損失が発生するので、電力変換効 率が著しく低下する。また、トランス Tは、一般に、質量が大きく重いので、装置の小 型軽量ィ匕が困難であるという問題がある。
[0019] ところで、上記したように、ハーフブリッジの連系インバータでは、 2つの直列接続コ ンデンサによって直流電源の電圧を等分に分担し、直流電源の中間電圧を与えるの で、その直列接続端に系統の接地用電線を接続することで、太陽電池のように対地 容量の大きい直流電源であっても漏れ電流を無くすことができる。
[0020] このように直流電源の電圧を等分に分担する 2つの直列接続コンデンサを用いるィ ンバータとしては、 3レベルインバータが知られている。 3レベルインバータは、高電圧 と低電圧と中間電圧との 3つの電圧レベルをスイッチングするインバータ装置であつ て、高電圧と OVとを交互に出力制御する 2レベルインバータに比べて回路構成は複 雑になるが、(1)高調波成分を低減できるためノイズが少ない、(2)三相モーター駆 動時にモータートルクの脈動を小さくできる、(3)三相モーターの磁歪音が少ない、( 4)スイッチング素子の耐圧を低くできる等の利点があり、広く使われている。そして、 例えば特許文献 1では、三相モーターを運転するにあたって簡単な処理でどのような 振幅の電圧指令値に対しても出力電圧が得られるようにするために、電圧指令値が 所定の電圧指令値よりも大きいか否かに応じて二つのキャリア信号を切り換えてパル ス幅変調する技術が開示されて ヽる。
[0021] このような優れた特徴を有する 3レベルインバータを系統連系用に使用すれば、太 陽電池のように対地容量の大き 、直流電源であっても漏れ電流を無くすことができる のにカ卩えて、トランスレスであるので、電力変換効率の向上と装置の小型軽量化とが 図れる。
[0022] 特許文献 1 :特開平 9 163755号公報
発明の開示
発明が解決しょうとする課題 [0023] し力しながら、この発明において商用電力系統に連系させようとする直流発電シス テムでは、太陽電池のように、 日照や気温などの環境条件によってその発電電圧が 変動するので、 2つの直列接続コンデンサに印加される電圧に差異の生ずる場合が 起こる。また、 2つの直列接続コンデンサの各端子電圧は、インバータ負荷である系 統ゃ機器の変動によるインバータの出力電力の変動によっても変化する。力 tlえて、コ ンデンサには漏れ電流が不可避的に存在し、 2つのコンデンサ間では等値ではなく ばらつきがあるので、同様に 2つの直列接続コンデンサの各端子電圧に差異の生ず る場合が起こる。
[0024] したがって、 2つの直列接続コンデンサが直流電源の電圧を等分に分担することを 前提としている 3レベルインバータでは、 2つの直列接続コンデンサに印加される電 圧に差異が生ずる場合は、出力する交流電力の正負の電圧や電流のバランスが崩 れるので、対策が必要である。
[0025] また、直流発電設備である直流電源の電圧が系統の電圧よりも低!ヽ場合は、昇圧 回路を設けるが、昇圧回路を設ける場合に、 1つの昇圧回路で当該インバータの直 接的な直流電源である 2つの直列接続コンデンサの直列回路の両端電圧を昇圧す るように構成すると、そこでの昇圧回路には耐圧の高い素子が必要であり、効率アツ プを図るのが困難である。
[0026] この発明は、上記に鑑みてなされたものであり、片相が接地用電線である商用電力 系統に、高い電力変換効率で、しかも直流発電設備が大きな対地容量を持つ場合 でも漏れ電流を流さずに、出力する交流電力の電流や電圧の安定化と正負バランス とを保って逆潮流する系統連系が行える系統連系用電力変換装置を得ることを目的 とする。
[0027] また、この発明は、上記の発明において、運転とその停止とを繰り返す運用をスイツ チング素子を故障させないで可能にする系統連系用電力変換装置を得ることを目的 とする。
課題を解決するための手段
[0028] 上述した目的を達成するために、この発明は、需要家に配電する 2相のうちの片相 が接地用電線である商用電力系統に、直流発電設備が発生する直流電力を交流電 力に変換して供給する系統連系用電力変換装置であって、前記直流発電設備が出 力する直流電圧を等分に分担するように、当該直流発電設備の正極側と負極側との 間に直列に接続した 2つのコンデンサであってその直列接続端に前記接地用電線 が接続される 2つのコンデンサと、前記 2つのコンデンサの直列回路の正極端側と負 極端側との間に直列に接続した 4つのスイッチング素子のうち、当該正極端側におけ る 2つのスイッチング素子による直列回路と当該負極端側における 2つのスイッチング 素子による直列回路との接続端力 Sインバータ出力端を構成し、当該正極端側におけ る 2つのスイッチング素子の直列接続端と前記 2つのコンデンサの直列接続端との間 、及び、当該負極端側における 2つのスイッチング素子の直列接続端と前記 2つのコ ンデンサの直列接続端との間を、それぞれクランプ用のダイオードで接続したインバ ータ部と、前記インバータ部のインバータ出力端を前記商用電力系統力 の電力供 給用電線に接続する平滑回路と、前記電力供給用電線と前記接地用電線とのいず れか一方を流れる交流電流を検出する電流検出手段、または、前記接地用電線に おける交流電圧を直接検出する系統電圧検出手段と、前記 4つのスイッチング素子 を所定の順序でオン'オフ制御して前記インバータ出力端力 前記商用電力系統の 周波数及び電圧に応じた交流電力を出力する過程で、前記電流検出手段が検出し た電流値と目標電流値との差分値力 、さくなるように、または、前記系統電圧検出手 段が検出した電圧値と目標電圧値との差分値力 、さくなるように前記 4つのスィッチ ング素子に与える PWM信号の発生を制御する動作制御手段とを備えていることを 特徴とする。
この発明によれば、インバータ部の 4つのスイッチング素子は、高耐圧の素子を用 いる必要がないので、高い電力変換効率を得ることができる。また、 2つのコンデンサ の直列接続端を系統の接地用電線に接続し、その接地用電線の電位を 2つのクラン プ用ダイオードの作用によって中点電圧に維持するので、直流発電設備が太陽電 池のように大きな対地容量を持つ場合でも漏れ電流が流れな ヽようにすることができ る。そして、系統への出力電流や出力電圧を監視して変動が一定範囲内に収まるよ うに PWM制御するので、直接的な直流電源である直列コンデンサの両端電圧が変 化しても、系統への出力電流や出力電圧の安定ィ匕を図ることができる。 発明の効果
[0030] この発明によれば、片相が接地用電線である商用電力系統に、高い電力変換効率 で、しかも直流発電設備が大きな対地容量を持つ場合でも漏れ電流を流さずに、出 力する交流電力の電流や電圧の安定化を図って逆潮流する系統連系が行えるとい う効果を奏する。
図面の簡単な説明
[0031] [図 1]図 1は、この発明の実施の形態 1による系統連系用電力変換装置の構成を示 すブロック図である。
[図 2]図 2は、図 1に示す動作制御回路の構成例を示すブロック図である。
[図 3]図 3は、図 1に示す系統連系用電力変換装置の動作を説明する要部波形図で ある。
[図 4]図 4は、この発明の実施の形態 2による系統連系用電力変換装置の構成を示 すブロック図である。
[図 5]図 5は、この発明の実施の形態 3による系統連系用電力変換装置の構成を示 すブロック図である。
[図 6]図 6は、この発明の実施の形態 4による系統連系用電力変換装置の構成を示 すブロック図である。
[図 7]図 7は、この発明の実施の形態 5による系統連系用電力変換装置の構成を示 すブロック図である。
[図 8]図 8は、この発明の実施の形態 6による系統連系用電力変換装置の構成を示 すブロック図である。
[図 9]図 9は、図 8に示す系統連系用電力変換装置の動作を説明する要部波形図で ある。
[図 10]図 10は、従来の系統連系用電力変換装置の構成例(その 1)を示すブロック 図である。
[図 11]図 11は、図 10に示す系統連系用電力変換装置の動作を説明する要部波形 図である。
[図 12]図 12は、従来の系統連系用電力変換装置の構成例 (その 2)を示すブロック 図である。
[図 13]図 13は、図 12に示す系統連系用電力変換装置の動作を説明する要部波形 図である。
[図 14]図 14は、従来の系統連系用電力変換装置の構成例(その 3)を示すブロック 図である。
[図 15]図 15は、図 14に示す系統連系用電力変換装置の動作を説明する要部波形 図である。
符号の説明
10a, 10b, 10c, 10d, 10e, lOf 電力変換装置(系統連系用電力変換装置) 12 平滑回路(ローパスフィルタ)
14, 20, 28, 30, 36, 38 動作制御回路
14a 加算器
14b 比例積分補償器
14c 比較器
14d 正弦波発生器
16 電流検出器 (CT)
22, 24, 26 電圧検出器
32, 34 昇圧回路
S1〜S6 スイッチング素子
C1〜C5 コンデンサ
D 還流ダイオード
Dl, D2 クランプ用のダイオード
D3, D4 逆流阻止用のダイオード
LI, L2, L3 リアタトル
E 直流電源 (直流発電設備)
U 系統電源(商用電力系統)
Y 中点
R 抵抗器 発明を実施するための最良の形態
[0033] 以下に図面を参照して、この発明にかかる系統連系用電力変換装置の好適な実 施の形態を詳細に説明する。
[0034] 実施の形態 1.
図 1は、この発明の実施の形態 1による系統連系用電力変換装置の構成を示すブ ロック図である。なお、系統連系用電力変換装置は、以降、単に「電力変換装置」と 略称する。
[0035] 図 1にお 、て、直流電源 Eは、その発生する直流電力に変動を生ずる場合のある 発電設備である。これには、 日照や気温、湿度などの影響を受ける太陽電池の他に 、燃料電池がある。また、風力発電機や地熱発電機などの交流発電機にコンバータ を適用して直流電力を出力できるようにした発電設備も含まれる。
[0036] また、系統電源 Uは、片相接地を有する商用電力系統である。この商用電力系統 では、接地相側 Ugが当該系統電源 U側にて接地されるとともに、その接地相側 Ug に接続される接地用電線を非接地相側 Uaに接続される電力供給用電線と共に需要 家まで配線する方式が採用される。この種の片相接地を有する商用電力系統として は、(1)片相接地の単相二線による配電方式を採る系統、(2)中性点接地単相三線 の中性線と一線とによる配電方式を採る系統、(3) Δ結線一相接地三相の接地線と 一線とによる配電方式を採る系統、(4) Y結線中性点接地三相の中性線と各相と〖こ よる配電方式を採る系統などが知られて 、る。
[0037] この実施の形態 1では、直流電源 Eの電圧が系統電源 Uの電圧 (波高値)よりも高 い場合を扱うが、このような直流電源 Eと系統電源 Uとの間に配置される電力変換装 置 10aは、 2つのコンデンサ CI, C2と、 3レベルインバータを構成する 4つのスィッチ ング素子 SI, S2, S3, S4及び 2つのダイ才ード Dl, D2と、平滑回路 12と、動作帘 U 御回路 14と、 CT (電流検出器) 16とを備えている。なお、 4つのスイッチング素子 S1 〜S4は、例えば IGBTであり、それぞれ環流ダイオード Dが逆並列に接続されている
[0038] 2つのコンデンサ CI, C2は、直流電源 Eの正極端(電圧 Vi+)に接続される高電 圧側母線 Pと負極端 (電圧 Vi— )に接続される低電圧側母線 Nとの間に直列に接続 されている。この 2つのコンデンサ CI, C2の直列回路の両端電圧が 3レベルインバ ータの直接的な直流電源である力 それぞれほぼ等容量値を有するので、その直列 接続端 Yは、直流電源 Eの出力電圧の中間電位 (ViO)を与える中性点 (基準点)で ある。この実施の形態では、この 2つのコンデンサ CI, C2の直列接続端 Yが、接地 線 Gを通して系統電源 Uの接地相側 Ugに接続されている。
[0039] 4つのスイッチング素子 S1〜S4は、高電圧側母線 Pと低電圧側母線 Nとの間に、 換言すれば、 2つのコンデンサ CI, C2の直列回路の両端間に、直列に接続されて いる。そして、 4つのスイッチング素子 S1〜S4のうち、高電圧側母線 Pとインバータ出 力端 P2との間に直列に接続される 2つのスイッチング素子 SI, S2は正極側アームと して機能し、低電圧側母線 Nとインバータ出力端 P2との間に直列に接続される 2つ のスイッチング素子 S3, S4は負極側アームとして機能する。
[0040] この正極側アームの中間点(つまりスイッチング素子 SI, S2の直列接続端)と 2つ のコンデンサ CI, C2の直列接続端 Yとの間に、中点クランプ用のダイオード D1がそ のアノードを直列接続端 Yに接続する極性で設けられている。また、負極側アームの 中間点(つまりスイッチング素子 S3, S4の直列接続端)と 2つのコンデンサ CI, C2の 直列接続端 Yとの間に、中点クランプ用のダイオード D2がその力ソードを直列接続 端 Yに接続する極性で設けられて ヽる。
[0041] 平滑回路 12は、リアタトル L1とコンデンサ C3とで構成されるローパスフィルタである 。リアタトル L1の一端はインバータ出力端 P2に接続され、他端は系統電源 Uの非接 地相側 Uaに接続されている。コンデンサ C3の一端はリアタトル L1の他端と系統電源 Uの非接地相側 Uaとの接続ラインに接続され、他端は接地線 Gに接続されて 、る。 平滑回路 12は、この構成によって、インバータ出力端 P2に出力される振幅が正弦波 状に変化するアナログ PWM信号波形の交流電圧を、高調波を除去して平滑化し滑 らかな正弦波状波形の系統電圧に変成し、系統電源 Uの非接地相側 Uaに向けて出 力する。
[0042] CT16は、図 1では、接地線 Gを流れる交流電流を検出するように配置されている。
動作制御回路 14は、 4つのスイッチング素子 S1〜S4の各ゲート電極に対応する P WM信号と 2値のレベル信号とを印加してオン'オフ駆動し(図 3参照)、インバータ出 力端 P2から系統電源 Uの周波数及び電圧に応じた交流電力を系統の正の半サイク ルと負の半サイクルとに同期して出力する過程で、 CT16が検出した電流値と目標電 流値との差分値が小さくなるように 4つのスイッチング素子 S1〜S4の各ゲート電極に 印加する PWM信号の発生を制御する(図 2参照)。なお、系統への同期方法は、公 知の方法を用いることができるので、ここではその説明を割愛する。
[0043] 次に、図 1〜図 3を参照して図 1に示す電力変換装置 10aの動作を説明する。なお 、図 2は、図 1に示す動作制御回路の構成例を示すブロック図である。図 3は、図 1に 示す電力変換装置の動作を説明する要部波形図である。
[0044] 図 1に示す動作制御回路 14は、例えば図 2に示すように、 CT16が検出した電流値 と目標電流値との差分値が小さくなるように 4つのスイッチング素子 S1〜S4の各ゲー ト電極に印加する PWM信号の発生を制御する構成として、加算器 14aと比例積分 補償器 14bと比較器 14cと正弦波発生器 14dとを備えている。
[0045] 図 2において、加算器 14aは、正弦波発生器 14dから出力される正弦波の出力目 標電流 (例えば 1アンペア)から CT16が検出した当該電力変換装置 10aの出力電流 を減算して出力する。なお、正弦波発生器 14dでは、出力目標電流値を可変設定で きるようになつている。比例積分補償器 14bは、加算器 14aにて演算された電流差分 値を比例積分して補償した結果を出力する。比較器 14cは、比例積分補償器 18b〖こ て補償された電流差分値 (正弦波)と図示しないキャリア発生器力もの三角波信号と をレベル比較し、正弦波と三角波とが交わる点で所定パルス幅の高レベルと所定パ ルス幅の低レベルとを切り換えた PWM信号を 4つのスイッチング素子 S1〜S4の対 応するゲート電極に出力する。
[0046] この場合に比較器 14cでは、この PWM信号を出力する際に、出力電流が出力目 標電流よりも大きいときはパルス幅を減少させ、出力電流が出力目標電流よりも小さ V、ときはパルス幅を増加させる動作を行うようになって!/、る。
[0047] 図 3では、上段に、正極側の母線電圧 (Vi+)、負極側の母線電圧 (Vi—)及び中 点電圧 (ViO)と、インバータ出力端 P2での出力波形(当該 3レベルインバータの出力 アナログ PWM信号波形)と、平滑回路 12の出力端 P4での出力波形 (系統への滑ら かな正弦波電圧波形)との関係が示されている。また、下段に、 4つのスイッチング素 子 S1〜S4に印加される PWM信号の波形と 2値のレベル信号とが示されている。
[0048] 時刻 tlから時刻 t2までの期間が系統電圧の正の半サイクルであり、時刻 t2から時 刻 t3までの期間が系統電圧の負の半サイクルである。動作制御回路 14は、系統電 圧の正の半サイクルと負の半サイクルとに同期して、 4つのスイッチング素子 S1〜S4 の各ゲート電極に対応する PWM信号と 2値のレベル信号とを印加してオン'オフ駆 動する。
[0049] すなわち、図 3に示すように、系統電圧の正の半サイクルにおいては、正極側ァー ムのスイッチング素子 SI, S2は、スイッチング素子 S2が高レベルのレベル信号によ つてオン動作状態に制御され、スイッチング素子 S1が所定の PWM信号を受けてォ ン 'オフ動作を行う。このとき、負極側アームのスイッチング素子 S3, S4は、スィッチン グ素子 S3が低レベルのレベル信号によってオフ動作状態に制御され、スイッチング 素子 S4がスィッチング素子 S 1と逆相の PWM信号を受けてオン ·オフ動作を行う。
[0050] また、系統電圧の負の半サイクルにおいては、負極側アームのスイッチング素子 S3 , S4は、スイッチング素子 S4が高レベルのレベル信号によってオン動作状態に制御 され、スイッチング素子 S3が所定の PWM信号を受けてオン'オフ動作を行う。このと き、正極側アームのスイッチング素子 SI, S2は、スイッチング素子 S1が低レベルの レベル信号によってオフ動作状態に制御され、スイッチング素子 S2がスイッチング素 子 S3と逆相の PWM信号を受けてオン ·オフ動作を行う。
[0051] これによつて、インバータ出力端 P2から振幅が正弦波状に変化するアナログ PWM 信号波形の交流電圧が出力され、平滑回路 12の出力端 P4から系統の滑らかな正 弦波状電圧が出力される。以上の動作過程で、図 2に示した比較器 14cでは、上記 した「出力電流が出力目標電流よりも大きいときは PWM信号のパルス幅を減少させ 、出力電流が出力目標電流よりも小さいときは PWM信号のパルス幅を増力!]させる動 作」を正負の各サイクルにおいて行う。これによつて、当該電力変換装置 10aの出力 電流を出力目標電流に近づけることができ、系統への出力電流の安定ィ匕が図れるよ うになる。
[0052] そして、ダイオード Dl, D2が存在するので、以上の動作過程で、スイッチング素子 1とスイッチング素子 3とが共にオフ動作を行い、スイッチング素子 2とスイッチング素 子 4とが共にオン動作を行うタイミングにお 、て、インバータ出力端 P2を流れる電流 の向きが系統電源 U側への向きである場合には、接地線 G力もダイオード Dl、スイツ チング素子 S2を経てインバータ出力端 P2に至る電流経路が形成され、また逆に、ィ ンバータ出力端 P2を流れる電流の向きが直流電源 E側への向きである場合には、ィ ンバータ出力端 P2からスイッチング素子 S4、ダイオード D2を経て接地線 Gに至る電 流経路が形成される。
[0053] ダイオード Dl, D2がこのような電流経路を形成することで、ダイオード Dl, D2の 直列接続端と繋がるコンデンサ CI, C2の直列接続端 Yの中点電圧 (ViO)が維持さ れるので、その直列接続端 Yと系統電源 Uの接地相側 Ugとを接続する接地線 Gの 電位が中点電圧 (ViO)に維持される。このように、ダイオード Dl, D2は、中点電圧( ViO)をクランプする作用を行う。
[0054] その結果、スイッチング素子 S1のェミッタ電圧は、ダイオード D1によって接地線 G の電圧(ViO)が下限になるので、スイッチング素子 S1のコレクタ電極とェミッタ電極と の間に力かる電圧は、直流電源 Eの半分の電圧であるコンデンサ C1の端子電圧を 最大値とした電圧となる。また、スイッチング素子 S3のコレクタ電圧は、ダイオード D2 によって接地線 Gの電圧 (ViO)が上限になるので、スイッチング素子 S3のコレクタ電 極とェミッタ電極との間に力かる電圧は、直流電源 Eの半分の電圧であるコンデンサ C2の端子電圧を最大値とした電圧となる。同様に、スイッチング素子 S2のコレクタ電 極とェミッタ電極との間に力かる電圧は、コンデンサ C2の端子電圧を最大値とした電 圧となる。そして、スイッチング素子 S4のコレクタ電極とェミッタ電極との間に力かる電 圧は、コンデンサ C 1の端子電圧を最大値とした電圧となる。
[0055] 要するに、コンデンサ CI, C2の直列回路では、各コンデンサの端子電圧は、直流 電源 Eの電圧の半分であるので、 4つのスイッチング素子 S1〜S4の耐圧電圧は、直 流電源 Eが出力する高電圧に対応する必要がなぐそれぞれ直流電源 Eの半分の電 圧に対応すればよいので、コストの低減に加えて、電力変換効率の向上が図れる。
[0056] また、コンデンサ CI, C2の直列接続端と系統電源 Uの接地相側 Ugとを接続する 接地線 Gの電位が中点電圧 (ViO)に維持されるので、直流電源 Eの対地電圧は、変 動のない直流電圧となる。したがって、直流電源 Eと大地との間における対地容量が 大きい太陽電池のような場合でも、当該対地容量を介して漏れ電流が流れることはな くなる。
[0057] このように、実施の形態 1によれば、直流電圧が系統電圧 (波高値)よりも高い場合 にインバータ制御を行う 4つのスイッチング素子を高耐圧素子で構成しなくともよ 、の で、高い電力変換効率の下で逆潮流する系統連系が行える。また、直接的な直流電 源である直列コンデンサの直列接続端を系統の接地用電線に接続する場合に、そ の接地用電線の電位を一定値にクランプするので、直流発電設備と対地間に大きな 浮遊容量が存在する場合でも漏れ電流が流れな ヽようにすることができる。このとき、 系統への出力電流を監視して変動が一定範囲内に収まるように制御するので、直接 的な直流電源である直列コンデンサの両端電圧が変化しても、系統への出力電流の 安定ィ匕を図ることができる。
[0058] 実施の形態 2.
図 4は、この発明の実施の形態 2による系統連系用電力変換装置の構成を示すブ ロック図である。なお、図 4では、図 1 (実施の形態 1)に示した構成要素と同一ないし は同等である構成要素には同一の符号が付されている。ここでは、この実施の形態 2 に関わる部分を中心に説明する。
[0059] 図 4に示すように、実施の形態 2による電力変換装置 10bでは、図 1 (実施の形態 1) に示した構成において、 CT16に代えて、接地線 Gに介在させた抵抗器 Rとこの抵抗 器 Rでの降下電圧を検出する電圧検出器 22とが設けられ、電圧検出器 22の検出電 圧が符号を代えた動作制御回路 20に入力されている。
[0060] 動作制御回路 20は、 4つのスイッチング素子 S1〜S4の各ゲート電極に対応する P WM信号と 2値のレベル信号とを印加してオン'オフ駆動し(図 3参照)、インバータ出 力端 P2から系統電源 Uの周波数及び電圧に応じた交流電力を系統の正の半サイク ルと負の半サイクルとに同期して出力する過程で、電圧検出器 22が検出した電圧値 と目標電圧値との差分値が小さくなるように 4つのスイッチング素子 S1〜S4の各ゲー ト電極に印加する PWM信号の発生を制御する。
[0061] 動作制御回路 20において、電圧検出器 22が検出した電圧値と目標電圧値との差 分値が小さくなるように 4つのスイッチング素子 S1〜S4の各ゲート電極に印加する P WM信号の発生を制御する回路は、図 2に示した構成と同様の考えで構成すること ができ、そこでの比較器 14cでは、 PWM信号を出力する際に、当該当該電力変換 装置 10bの出力電圧が出力目標電圧よりも大きいときはパルス幅を減少させ、出力 電圧が出力目標電圧よりも小さいときはパルス幅を増加させる動作を行うことで、当 該電力変換装置 10bの出力電圧を出力目標電圧に近づけることができ、系統への 出力電圧の安定ィ匕が図れるようになる。
[0062] この場合、抵抗器 Rは、接地線 Gに介在させるので、抵抗器 Rに接続する電圧検出 器 22は、系統の接地電位とほぼ同じレベルの電圧を検出すればよぐ雑音の影響を 減らすことができる。電圧検出器 22の対地電圧は安定しているので、抵抗器 Rを小 型にしてそこでの降下電圧が小さくなるようにした場合でも、雑音の少ない電圧検出 器 22が実現できるので、当該電力変換装置 10bの出力電圧を安定ィ匕する制御をよ り精度よく行うことができる。
[0063] このように、実施の形態 2によれば、実施の形態 1と同様に、高い電力変換効率の 下で逆潮流する系統連系が行える。また、直流発電設備と対地間に大きな浮遊容量 が存在する場合でも漏れ電流が流れないようにすることができる。このとき、系統への 出力電圧を監視して変動が一定範囲内に収まるように制御するので、直接的な直流 電源である直列コンデンサの両端電圧が変化しても、系統への出力電圧の安定ィ匕を 図ることができる。この場合に、系統への出力電圧を系統の接地用電線側で監視す るので、雑音の影響を回避でき、出力電圧を安定化する制御をより精度よく行うことが できる。
[0064] 実施の形態 3.
図 5は、この発明の実施の形態 3による系統連系用電力変換装置の構成を示すブ ロック図である。なお、図 5では、図 1 (実施の形態 1)に示した構成要素と同一ないし は同等である構成要素には同一の符号が付されている。ここでは、この実施の形態 3 に関わる部分を中心に説明する。
[0065] 図 5に示すように、実施の形態 3による電力変換装置 10cでは、図 1 (実施の形態 1) に示した構成において、コンデンサ CI, C2の各端子電圧を検出する電圧検出器 24 , 26が設けられ、電圧検出器 24, 26の各検出電圧が符号を代えた動作制御回路 2 8に入力されている。
[0066] 動作制御回路 28は、 CT16が検出した電流値と目標電流値との差分値力 S小さくな るように 4つのスイッチング素子 S1〜S4の各ゲート電極に印加する PWM信号の発 生を制御して系統への出力電流の安定ィ匕を図る際に、電圧検出器 24, 26の各検出 電圧の差分値を求め、その差分値が一定値範囲内に収まるように 4つのスイッチング 素子 S1〜S4の各ゲート電極に印加する PWM信号の発生制御を並行して行い、出 力電流の正負バランスを調整する。
[0067] 具体的には、コンデンサ C1の端子電圧がコンデンサ C2の端子電圧よりも高い場合
(電圧検出器 24の検出電圧 >電圧検出器 26の検出電圧の場合)には、正の半サイ クルに出力する電流量が負の半サイクルに出力する電流量よりも僅かに増加するよう に、それぞれのサイクルにおけるパルス幅を調整し、コンデンサ C1に蓄積している電 荷の放出量をコンデンサ C2に蓄積して 、る電荷の放出量よりも増やすことで、両コン デンサの端子電圧を近づける。
[0068] 逆に、コンデンサ C1の端子電圧がコンデンサ C2の端子電圧よりも低 、場合 (電圧 検出器 24の検出電圧 <電圧検出器 26の検出電圧の場合)には、正の半サイクルに 出力する電流量が負の半サイクルに出力する電流量よりも僅かに減少するように、そ れぞれのサイクルにおけるパルス幅を調整し、コンデンサ C1に蓄積して!/、る電荷の 放出量をコンデンサ C2に蓄積して 、る電荷の放出量よりも減らすことで、両コンデン サの端子電圧を近づける。
[0069] このように、実施の形態 3によれば、直流電源 Eの出力電圧の変動や、コンデンサ 自体の漏れ電流などによって、コンデンサ CI, C2の各端子電圧に差異が生じても、 両コンデンサの各端子電圧が等しくなるように制御することができるので、実施の形 態 1において安定ィ匕制御する系統への出力電流の正負バランスを揃えることができ る。
[0070] 実施の形態 4.
図 6は、この発明の実施の形態 4による系統連系用電力変換装置の構成を示すブ ロック図である。なお、図 6では、図 4 (実施の形態 2)に示した構成要素と同一ないし は同等である構成要素には同一の符号が付されている。ここでは、この実施の形態 4 に関わる部分を中心に説明する。
[0071] 図 6に示すように、実施の形態 4による電力変換装置 10dでは、図 4 (実施の形態 2) に示した構成において、コンデンサ CI, C2の各端子電圧を検出する電圧を検出器 24, 26が設けられ、検出器 24, 26の各検出電圧が符号を代えた動作制御回路 30 に入力されている。
[0072] 動作制御回路 30は、検圧検出器 22が検出した電圧値と目標電圧値との差分値が 小さくなるように 4つのスイッチング素子 SI, S2, S3, S4の各ゲート電極に印加する PWM信号の発生を制御して系統への出力電圧の安定ィ匕を図る際に、電圧検出器 2 4, 26の各検出電圧の差分値を求め、その差分値が一定値範囲内に収まるように 4 つのスイッチング素子 SI, S2, S3, S4の各ゲート電極に印加する PWM信号の発 生制御を並行して行 、、出力電圧の正負ノ ンスを調整する。
[0073] 具体的には、コンデンサ C1の端子電圧がコンデンサ C2の端子電圧よりも高い場合
(電圧検出器 24の検出電圧 >電圧検出器 26の検出電圧の場合)には、正の半サイ クルに出力する電圧が負の半サイクルに出力する電圧よりも僅かに増加するように、 それぞれのサイクルにおけるパルス幅を調整し、コンデンサ C1に蓄積して ヽる電荷 の放出量をコンデンサ C2に蓄積して 、る電荷の放出量よりも増やすことで、両コンデ ンサの端子電圧を近づける。
[0074] 逆に、コンデンサ C1の端子電圧がコンデンサ C2の端子電圧よりも低い場合 (電圧 検出器 24の検出電圧 <電圧検出器 26の検出電圧の場合)には、正の半サイクルに 出力する電圧が負の半サイクルに出力する電圧よりも僅かに減少するように、それぞ れのサイクルにおけるパルス幅を調整し、コンデンサ C1に蓄積している電荷の放出 量をコンデンサ C2に蓄積して 、る電荷の放出量よりも減らすことで、両コンデンサの 端子電圧を近づける。
[0075] このように、実施の形態 4によれば、直流電源 Eの出力電圧の変動や、コンデンサ 自体の漏れ電流などによって、コンデンサ CI, C2の各端子電圧に差異が生じても、 両コンデンサの各端子電圧が等しくなるように制御することができるので、実施の形 態 2において安定ィ匕制御する系統への出力電圧の正負バランスを揃えることができ る。 [0076] 実施の形態 5.
図 7は、この発明の実施の形態 5による系統連系用電力変換装置の構成を示すブ ロック図である。この実施の形態 5では、直流電源 Eの電圧が系統電源 Uの電圧 (波 高値)よりも低い場合の構成例について説明する。なお、図 7では、以上説明した各 実施の形態において示した構成要素と同等ないしは同一である構成要素には、同一 の符号を付してある。
[0077] 図 7に示すこの実施の形態 5による電力変換装置 10eは、 2つのコンデンサ CI, C2 と、 3レベルインバータを構成する 4つのスイッチング素子 SI, S2, S3, S4及び 2つ のダイオード Dl, D2と、平滑回路 12と、動作制御回路 36と、 2つの電圧検出器 24, 26と、 2つの昇圧回路 32, 34とを備えている。なお、 4つのスイッチング素子 S1〜S4 と 2つの昇圧回路 32, 34が備えるスイッチング素子 S5, S6は、例えば IGBTであり、 それぞれ環流ダイオード Dが逆並列に接続されて!、る。
[0078] すなわち、図 7に示す電力変換装置 10eは、例えば図 5に示す電力変換装置 10c 力も CT16を除外し、直流電源 Eと 3レベルインバータの直接的な直流電源である 2 つのコンデンサ CI, C2の直列回路との間に、 2つの昇圧回路 32, 34をその 2つのコ ンデンサ CI, C2と 1対 1の関係で配置し、符号を代えた動作制御回路 36が昇圧回 路 32, 34も制御するようにした構成である。
[0079] 昇圧回路 32は、直流電源 Eの正極側に一端が接続されるコンデンサ C4及びリアク トル L2と、リアタトル L2の他端にコレクタ電極が接続され逆並列接続のダイオード D を備えるスイッチング素子 S5とを備え、コンデンサ C4の他端とスイッチング素子 S5の ェミッタ電極とは、共通にコンデンサ CI, C2の直列接続端 Yに接続されている。そし て、リアタトル L2の他端とスイッチング素子 S5のコレクタ電極との接続端は、逆流阻 止用のダイオード D3のアノードに接続され、ダイオード D3の力ソードに高電圧側母 線 Pが接続されている。
[0080] 昇圧回路 32は、直流電源 Eの正極側に一端が接続されるコンデンサ C5及びリアク トル L3と、リアタトル L3の他端にェミッタ電極が接続され逆並列接続のダイオード Dを 備えるスイッチング素子 S6とを備え、コンデンサ C5の他端とスイッチング素子 S6のコ レクタ電極とは、共通にコンデンサ CI, C2の直列接続端 Yに接続されている。そして 、リアタトル L3の他端とスイッチング素子 S6のコレクタ電極との接続端は、逆流阻止 用のダイオード D4のアノードに接続され、ダイオード D4のアノードに低電圧側母線 Nが接続されている。
[0081] 動作制御回路 36は、直流電源 Eの電圧が系統電源 Uの電圧 (波高値)よりも低いこ と力ら、まず、 2つの昇圧回路 32, 34を制御して 2つのコンデンサ CI, C2の直列回 路の両端電圧を逆潮流するのに必要な電圧 (Vi+、 Vi—)まで昇圧する。その後、 4 つのスイッチング素子 S1〜S4の各ゲート電極に対応する PWM信号と 2値のレベル 信号とを印加してオン'オフ駆動し 2つのコンデンサ CI, C2の直列回路が構成する 直流電源の直流電力を交流電力に変換して系統へ出力する図 3に示した動作を同 様に行う力 その動作過程においては 2つのコンデンサ CI, C2の直列回路の両端 電圧が逆潮流するのに必要な電圧 (Vi+、 Vi—)を維持するように、 2つの昇圧回路 32, 34を制御する。
[0082] ここでは、 2つの昇圧回路 32, 34での昇圧動作について説明する。直流電源 Eが 出力する直流電圧は、 2つのコンデンサ C4, C5の直列回路によって安定ィ匕されるが 、 2つのコンデンサ C4, C5は、それぞれほぼ等容量値を有するので、その直列接続 端は、直流電源 Eの出力電圧の中間電位を与える。スイッチング素子 S5, S6を共に オン動作させると、リアタトル L2, L3に電流が流れてエネルギーが蓄積される。その 後、スイッチング素子 S5, S6を共にオフ動作させると、リアタトル L2からダイオード D 3、 2つのコンデンサ CI, C2、ダイオード D4、リアタトル L2に至る電流経路を、リアク トル L2, L3に蓄積されたエネルギーに付勢されて流れる電流によって 2つのコンデ ンサ CI, C2が充電される。
[0083] 動作制御回路 36は、 2つの電圧検出器 24, 26の検出電圧を監視して、 2つのスィ ツチング素子 S5, S6の上記した内容のオン'オフ制御を繰り返し行うことで、 2つのコ ンデンサ CI, C2の直列回路の両端電圧を逆潮流するのに必要な電圧 (Vi+、 Vi— )にまで昇圧する。その後も同様に 2つの電圧検出器 24, 26の検出電圧を監視して 同様の制御動作を行い、逆潮流するのに必要な電圧 (Vi+、 Vi—)の維持に努める 。なお、 2つのスイッチング素子 S5, S6の上記した内容のオン'オフ制御には、 PW M信号が用いられ、そのパルス幅を調節することで、所望の直流電圧 (Vi+、 Vi-) が得られるようにしている。
[0084] ここで、 2つの昇圧回路 32, 34では、スイッチング素子 S5の而圧は、コンデンサ C4 の端子電圧に対応した値であればよぐスイッチング素子 S6の耐圧は、コンデンサ C 5の端子電圧に対応した値であればよい。つまり、インバータ制御動作を行う 4つのス イッチング素子 S1〜S4と同様に、スイッチング素子 S5, S6に高耐圧素子を用いる 必要がないので、コストの低減が図れるのにカ卩えて、昇圧効率の向上が図れる。
[0085] また、 2つの昇圧回路 32, 34では、リアタトル L2とリアタトル L3とを別個独立のもの とし、それぞれ無関係なリアタトルとしてもよいが、両リアタトルを磁気的に結合させた 構成も採ることができる。図 7においてリアタトル L2とリアタトル L3との間に示す「Z」字 状の表記は、リアタトル L2とリアタトル L3とが磁気的に結合していることを示している。 このように、リアタトル LI, L2を磁気的に結合させると、一体ィ匕して構成できるので、 昇圧回路 32, 34の小型化が図れる。
[0086] このように、この実施の形態 5では、直流発電設備の発生直流電圧が逆潮流するの に必要な電圧よりも低い場合は、昇圧回路を設けるが、 3レベルインバータの直接的 な直流電源である 2つのコンデンサの直列回路に対して 1つ設けるのではなぐ各コ ンデンサと 1対 1の関係で設けるので、各昇圧回路では高耐圧のスイッチング素子を 用いる必要がなく昇圧効率の向上が図れる。
[0087] また、直流発電設備の発生直流電圧が変動しても、直接的な直流電源である 2つ のコンデンサの直列回路の両端電圧を所望値に維持することができるので、逆潮流 する電力変換を安定的に実施することができる。特に、直流発電設備が太陽電池な ど自然エネルギーを利用した直流電源である場合には、電圧の変動が大きく安定し た直流電圧が得られない場合が多いが、そのような場合でも、系統への出力電力を 安定ィ匕することができる。
[0088] カロえて、 2つの昇圧回路で用いるリアタトルは、互いに磁気的に結合させた構成と することができるので、 2つの昇圧回路の小型化が図れる。
[0089] 実施の形態 6.
図 8は、この発明の実施の形態 6による系統連系用電力変換装置の構成を示すブ ロック図である。この実施の形態 6では、以上説明した各電力変換装置においてその 運転を停止する制御方法につ!、て説明する。
[0090] 図 8に示すこの実施の形態 6による電力変換装置 10fは、例えば図 1 (実施の形態 1 )に示した電力変換装置 10aにおいて、動作制御回路 14に代えて動作制御回路 38 が設けられている。動作制御回路 38は、動作制御回路 14が備える実施の形態 1に よる機能に加えて、この実施の形態 6による運転停止の制御を行う機能が追加されて いる。
[0091] 図 9を参照して、この実施の形態 6による運転停止の制御方法について説明する。
図 9は、図 8に示す電力変換装置の動作を説明する要部波形図である。図 9では、時 刻 tから左方力 4つのスイッチング素子 S 1〜S4を図 3に示した手順でオン ·オフ駆 動制御している運転状態を示し、時刻 tから右方側が、運転を停止する場合の 4つの スイッチング素子 S1〜S4の制御手順を示している。
[0092] ここで、時刻 tにおいて運転を停止する場合、平滑回路 12のリアタトル L1に電流が 流れている状態で、 4つのスイッチング素子 S1〜S4を一斉にオフ動作制御すると、 平滑回路 12のリアタトル L1にはその流れる電流を同方向に付勢するエネルギーが 蓄積されているので、スイッチング素子 S2またはスイッチング素子 S4に高電圧が印 加される場合が起こる。
[0093] 例えば、リアタトル L1を系統電源 U側に向力う電流が流れている正の半サイクルに おいて、 4つのスイッチング素子 S1〜S4を一斉にオフ動作制御すると、インバータ出 力端 P2では、電圧が低下して負極側の電圧 Vi—と同じ電圧に引き込まれるので、ス イッチング素子 S2には、最大で、正極側の電圧 Vi+と負極側の電圧 Vi—との各絶 対値を加算した高電圧が印加される可能性がある。
[0094] そこで、図 9に示すように、正極側アームにおける直流電源 E側のスイッチング素子 S1及び負極側アームにおける直流電源 E側のスイッチング素子 S3は、共に、運転 停止の時刻 tに同期してオフ動作状態に制御する力 正極側アームにおける系統電 源 U側のスイッチング素子 S2及び負極側アームにおける系統電源 U側のスィッチン グ素子 S4は、正の半サイクルにおいては、スイッチング素子 S2をオン動作状態に制 御する一方、スイッチング素子 S4をオフ動作状態に制御し、負の半サイクルにおい ては、逆にスイッチング素子 S2をオフ動作状態に制御する一方、スイッチング素子 S 4をオン動作状態に制御することを所定サイクル数だけ繰り返す。
[0095] このように制御すれば、リアタトル L1を系統電源 U側に向力う電流が流れている正 の半サイクルにおいては、スイッチング素子 S2がオン動作状態にあるので、接地線 G から、ダイオード Dl、スイッチング素子 S2、系統電源 Uの非接地相側 Uaに向力ぅ電 流経路が形成され、インバータ出力端 P2での電圧レベルが中点電圧 (ViO)となり、リ ァクトル L1に蓄積されたエネルギーを減衰な 、しは消滅させることができるので、スィ ツチング素子 S2に上記したような異常電圧が発生する事態を回避することができる。
[0096] 同様に、リアタトル L1を直流電源 EU側に向力 電流が流れている負の半サイクル においては、スイッチング素子 S4がオン動作状態にあるので、インバータ出力端 Pか ら、スイッチング素子 S4、ダイオード D2、接地線 Gに向力う電流経路が形成され、リ ァクトル L1に蓄積されたエネルギーを減衰な 、しは消滅させることができるので、スィ ツチング素子 S4に異常電圧が発生する事態を回避することができる。
[0097] このように、実施の形態 6によれば、運転を停止する場合、平滑回路のリアタトルに 蓄積されているエネルギーを消滅させる方向に、正極側アームと負極側アームとに おける各系統電源側スイッチング素子をサイクル毎にオン'オフ制御するので、その 正極側アームと負極側アームとにおける各系統電源側スイッチング素子に大きな電 圧を掛けることなく運転を停止することができる。つまり、運転とその停止とを繰り返す 運用を、スイッチング素子を故障させないで可能にする電力変換装置が実現できる。
[0098] なお、実施の形態 6では、実施の形態 1による電力変換装置への適用例を示したが 、実施の形態 2〜5による電力変換装置にも同様に適用できることは言うまでもない。 産業上の利用可能性
[0099] 以上のように、この発明にかかる系統連系用電力変換装置は、片相が接地用電線 である商用電力系統に、高い電力変換効率で、し力も直流発電設備が太陽電池のよ うに大きな対地容量を持つ場合でも漏れ電流を流さずに、出力する交流電力の電流 や電圧の安定化と正負バランスとを保って逆潮流する系統連系を実現するのに有用 である。
[0100] また、この発明にかかる系統連系用電力変換装置は、運転とその停止とを繰り返す 運用を、スイッチング素子を故障させな 、で実施するのに有用である。

Claims

請求の範囲
[1] 需要家に配電する 2相のうちの片相が接地用電線である商用電力系統に、直流発 電設備が発生する直流電力を交流電力に変換して供給する系統連系用電力変換 装置であって、
前記直流発電設備が出力する直流電圧を等分に分担するように、当該直流発電 設備の正極側と負極側との間に直列に接続した 2つのコンデンサであってその直列 接続端に前記接地用電線が接続される 2つのコンデンサと、
前記 2つのコンデンサの直列回路の正極端側と負極端側との間に直列に接続した 4つのスイッチング素子のうち、当該正極端側における 2つのスイッチング素子による 直列回路と当該負極端側における 2つのスイッチング素子による直列回路との接続 端力 ンバータ出力端を構成し、当該正極端側における 2つのスイッチング素子の直 列接続端と前記 2つのコンデンサの直列接続端との間、及び、当該負極端側におけ る 2つのスイッチング素子の直列接続端と前記 2つのコンデンサの直列接続端との間 を、それぞれクランプ用のダイオードで接続したインバータ部と、
前記インバータ部のインバータ出力端を前記商用電力系統からの電力供給用電線 に接続する平滑回路と、
前記電力供給用電線と前記接地用電線とのいずれか一方を流れる交流電流を検 出する電流検出手段、または、前記接地用電線における交流電圧を直接検出する 系統電圧検出手段と、
前記 4つのスイッチング素子を所定の順序でオン'オフ制御して前記インバータ出 力端から前記商用電力系統の周波数及び電圧に応じた交流電力を出力する過程で 、前記電流検出手段が検出した電流値と目標電流値との差分値が小さくなるように、 または、前記系統電圧検出手段が検出した電圧値と目標電圧値との差分値が小さく なるように前記 4つのスイッチング素子に与える PWM信号の発生を制御する動作制 御手段と、
を備えていることを特徴とする系統連系用電力変換装置。
[2] 需要家に配電する 2相のうちの片相が接地用電線である商用電力系統に、直流発 電設備が発生する直流電力を交流電力に変換して供給する系統連系用電力変換 装置であって、
前記直流発電設備が出力する直流電圧を等分に分担するように、当該直流発電 設備の正極側と負極側との間に直列に接続した 2つのコンデンサであってその直列 接続端に前記接地用電線が接続される 2つのコンデンサと、
前記 2つのコンデンサの直列回路の正極端側と負極端側との間に直列に接続した 4つのスイッチング素子のうち、当該正極端側における 2つのスイッチング素子による 直列回路と当該負極端側における 2つのスイッチング素子による直列回路との接続 端力 ンバータ出力端を構成し、当該正極端側における 2つのスイッチング素子の直 列接続端と前記 2つのコンデンサの直列接続端との間、及び、当該負極端側におけ る 2つのスイッチング素子の直列接続端と前記 2つのコンデンサの直列接続端との間 を、それぞれクランプ用のダイオードで接続したインバータ部と、
前記インバータ部のインバータ出力端を前記商用電力系統からの電力供給用電線 に接続する平滑回路と、
前記 2つのコンデンサの各端子電圧をそれぞれ検出する直流電圧検出手段と、 前記電力供給用電線と前記接地用電線とのいずれか一方を流れる交流電流を検 出する電流検出手段、または、前記接地用電線における交流電圧を直接検出する 系統電圧検出手段と、
前記 4つのスイッチング素子を所定の順序でオン'オフ制御して前記インバータ出 力端から前記商用電力系統の周波数及び電圧に応じた交流電力を出力する過程で 、前記電流検出手段が検出した電流値と目標電流値との差分値が小さくなるように、 または、前記系統電圧検出手段が検出した電圧値と目標電圧値との差分値が小さく なるように前記 4つのスイッチング素子に与える PWM信号の発生を制御する場合に 、前記直流電圧検出手段が検出した 2つの検出電圧の差分値が一定値範囲内に収 まるように前記 PWM信号の発生制御を並行して行う動作制御手段と、
を備えていることを特徴とする系統連系用電力変換装置。
需要家に配電する 2相のうちの片相が接地用電線である商用電力系統に、直流発 電設備が発生する直流電力を交流電力に変換して供給する系統連系用電力変換 装置であって、 前記直流発電設備の正極側に一端が接続される第 1のコンデンサ及び第 1のリアク トルと、前記第 1のリアタトルの他端に一端が接続される第 1のスイッチング素子とを備 え、前記第 1のコンデンサ及び前記第 1のスイッチング素子の各他端が前記接地用 電線に接続される第 1の昇圧回路と、
前記直流発電設備の負極側に一端が接続される第 2のコンデンサ及び第 2のリアク トルと、前記第 2のリアタトルの他端に一端が接続される第 2のスイッチング素子とを備 え、前記第 2のコンデンサ及び前記第 2のスイッチング素子の各他端が前記接地用 電線に接続される第 2の昇圧回路と、
前記第 1及び第 2の昇圧回路が昇圧する直流電圧を等分に分担するように、前記 第 1のリアタトルの他端にアノードを接続した第 1の逆流防止用ダイオードの力ソード と前記第 2のリアタトルの他端に力ソードを接続した第 2の逆流防止用ダイオードのァ ノードとの間に直列に接続される 2つのコンデンサであってその直列接続端が前記接 地用電線に接続される 2つのコンデンサと、
前記 2つのコンデンサの各端子電圧をそれぞれ検出する直流電圧検出手段と、 前記 2つのコンデンサの直列回路の正極端側と負極端側との間に直列に接続した 4つのスイッチング素子のうち、当該正極端側における 2つのスイッチング素子による 直列回路と当該負極端側における 2つのスイッチング素子による直列回路との接続 端力 ンバータ出力端を構成し、当該正極端側における 2つのスイッチング素子の直 列接続端と前記 2つのコンデンサの直列接続端との間、及び、当該負極端側におけ る 2つのスイッチング素子の直列接続端と前記 2つのコンデンサの直列接続端との間 を、それぞれクランプ用のダイオードで接続したインバータ部と、
前記インバータ部のインバータ出力端を前記商用電力系統からの電力供給用電線 に接続する平滑回路と、
前記直流電圧検出手段の各検出電圧に基づき、前記第 1及び第 2のスイッチング 素子をオン'オフ制御して前記 2つのコンデンサの直列回路の両端電圧を逆潮流す るのに必要な電圧まで昇圧する制御を行!、、前記 4つのスイッチング素子を所定の 順序でオン'オフ制御して前記インバータ出力端力 前記商用電力系統の周波数及 び電圧に応じた交流電力を出力する過程で前記 2つのコンデンサの直列回路の両 端電圧を逆潮流するのに必要な電圧に維持する制御を行う動作制御手段と、 を備えていることを特徴とする系統連系用電力変換装置。
[4] 前記第 1のリアタトルと前記第 2のリアタトルとは、互いに磁気的に結合していること を特徴とする請求項 3に記載の系統連系用電力変換装置。
[5] 前記動作制御手段は、前記インバータ部の制御にお!ヽて運転を停止する場合、正 極端側における 2つのスイッチング素子及び負極端側における 2つのスイッチング素 子のうち、当該正極端及び当該負極端にそれぞれ接続されるスイッチング素子を共 にオフ動作状態に制御する一方、前記インバータ出力端にそれぞれ接続されるスィ ツチング素子につ!、ては、系統の正の半サイクルでは正極端側におけるスイッチング 素子をオン動作状態に、負極端側におけるスイッチング素子をオフ動作状態にそれ ぞれ制御し、系統の負の半サイクルでは正極端側におけるスイッチング素子をオフ 動作状態に、負極端側におけるスイッチング素子をオン動作状態にそれぞれ制御す ることを特徴とする請求項 1に記載の系統連系用電力変換装置。
[6] 前記動作制御手段は、前記インバータ部の制御にお!ヽて運転を停止する場合、正 極端側における 2つのスイッチング素子及び負極端側における 2つのスイッチング素 子のうち、当該正極端及び当該負極端にそれぞれ接続されるスイッチング素子を共 にオフ動作状態に制御する一方、前記インバータ出力端にそれぞれ接続されるスィ ツチング素子につ!、ては、系統の正の半サイクルでは正極端側におけるスイッチング 素子をオン動作状態に、負極端側におけるスイッチング素子をオフ動作状態にそれ ぞれ制御し、系統の負の半サイクルでは正極端側におけるスイッチング素子をオフ 動作状態に、負極端側におけるスイッチング素子をオン動作状態にそれぞれ制御す ることを特徴とする請求項 2に記載の系統連系用電力変換装置。
[7] 前記動作制御手段は、前記インバータ部の制御にお!ヽて運転を停止する場合、正 極端側における 2つのスイッチング素子及び負極端側における 2つのスイッチング素 子のうち、当該正極端及び当該負極端にそれぞれ接続されるスイッチング素子を共 にオフ動作状態に制御する一方、前記インバータ出力端にそれぞれ接続されるスィ ツチング素子につ!、ては、系統の正の半サイクルでは正極端側におけるスイッチング 素子をオン動作状態に、負極端側におけるスイッチング素子をオフ動作状態にそれ ぞれ制御し、系統の負の半サイクルでは正極端側におけるスイッチング素子をオフ 動作状態に、負極端側におけるスイッチング素子をオン動作状態にそれぞれ制御す ることを特徴とする請求項 3に記載の系統連系用電力変換装置。
PCT/JP2006/311417 2006-02-27 2006-06-07 系統連系用電力変換装置 WO2007097051A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006540058A JP4783294B2 (ja) 2006-02-27 2006-06-07 系統連系用電力変換装置
EP06757124A EP1858149A4 (en) 2006-02-27 2006-06-07 POWER CONVERSION DEVICE FOR SYSTEM CONNECTION
US11/667,126 US7872887B2 (en) 2006-02-27 2006-06-07 DC-AC inverter powering a single phase commercial power system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006050038 2006-02-27
JP2006-050038 2006-02-27

Publications (1)

Publication Number Publication Date
WO2007097051A1 true WO2007097051A1 (ja) 2007-08-30

Family

ID=38437109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311417 WO2007097051A1 (ja) 2006-02-27 2006-06-07 系統連系用電力変換装置

Country Status (4)

Country Link
US (1) US7872887B2 (ja)
EP (1) EP1858149A4 (ja)
JP (1) JP4783294B2 (ja)
WO (1) WO2007097051A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7646182B2 (en) * 2006-03-29 2010-01-12 Mitsubishi Electric Corporation Power supply apparatus
CN101582592B (zh) * 2008-05-15 2013-07-10 宣昆 无变压器光伏并网逆变装置及其控制方法
DE102008034955A1 (de) * 2008-07-26 2010-02-04 Semikron Elektronik Gmbh & Co. Kg Stromrichteranordnung für Solarstromanlagen und Ansteuerverfahren hierzu
US7869226B2 (en) * 2009-03-31 2011-01-11 Tdk-Lambda Americas Inc. Achieving ZVS in a two quadrant converter using a simplified auxiliary circuit
EP2461474A1 (en) * 2009-07-30 2012-06-06 Mitsubishi Electric Corporation Utility interactive inverter device
US8488350B2 (en) * 2009-09-25 2013-07-16 Astec International Limited DC-AC inverters
EP2869449A1 (en) * 2011-03-04 2015-05-06 Mitsubishi Electric Corporation Power conversion device and refrigeration/air-conditioning system
US8750003B2 (en) * 2011-06-16 2014-06-10 Shlomo Ran Bet Esh Device and method for DC to AC conversion
TWI436574B (zh) * 2011-07-13 2014-05-01 Delta Electronics Inc 直流交流轉換器
CN102437759B (zh) * 2012-01-18 2016-01-06 朱秋花 一种高效率的并网逆变电路
WO2013107292A2 (zh) * 2012-01-18 2013-07-25 Zhu Qiuhua 一种高效率的并网逆变电路
CN102647105B (zh) * 2012-04-26 2014-09-10 华南理工大学 一种大功率直流/方波变换电路及其控制方法
DK2859644T3 (da) 2012-06-12 2017-11-13 Schneider Electric It Corp Apparat og metode til tilvejebringelse af afbrydelsesfri strøm
DE102012214177A1 (de) * 2012-08-09 2014-02-13 Robert Bosch Gmbh Stromrichter und Verfahren zur Betriebseinstellung und Inbestriebnahme eines Stromrichters
JP5955470B2 (ja) * 2013-10-30 2016-07-20 三菱電機株式会社 直流/直流変換装置および負荷駆動制御システム
TWI485968B (zh) * 2014-01-29 2015-05-21 Delta Electronics Inc 電源轉換系統及其操作方法
US9660580B2 (en) 2014-09-08 2017-05-23 Jabil Circuit, Inc. Synchronous buck inverter
WO2016207969A1 (ja) * 2015-06-23 2016-12-29 日産自動車株式会社 充電共用インバータ
JP6251838B1 (ja) * 2017-09-11 2017-12-20 高周波熱錬株式会社 出力電流合成装置及び電力供給装置
KR102553587B1 (ko) * 2018-02-22 2023-07-10 삼성전자 주식회사 전력 변환 장치 및 방법
DE112020006987T5 (de) * 2020-03-27 2023-01-12 Mitsubishi Electric Corporation Drei-Stufen-Leistungswandler und Verfahren zum Steuern eines Zwischenpotentials einer Gleichstromleistungszufuhreinheit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956172A (ja) * 1995-08-11 1997-02-25 Nippon Electric Ind Co Ltd バッテリー電源を共用化したハーフブリッジ型インバータの±直流2電源の昇圧チョッパ回路
JPH1118443A (ja) * 1997-06-23 1999-01-22 Toshiba Corp 電磁石電源装置
JP2001103768A (ja) * 1999-09-28 2001-04-13 Daihen Corp 太陽光発電用電力変換装置
JP2002112448A (ja) * 2000-09-29 2002-04-12 Canon Inc 系統連系装置およびその連系方法
JP2002335632A (ja) * 2001-05-10 2002-11-22 Mitsubishi Electric Corp 系統連系インバータ
JP2004173349A (ja) * 2002-11-18 2004-06-17 Yaskawa Electric Corp 中性点クランプ式pwmインバータ装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813171B2 (ja) * 1987-06-26 1996-02-07 株式会社ユタカ電機製作所 安定化電源装置
JP3364000B2 (ja) * 1994-05-06 2003-01-08 株式会社ユタカ電機製作所 無停電電源装置
JPH09163755A (ja) 1995-12-11 1997-06-20 Mitsubishi Electric Corp 電力変換装置の制御装置
US6404655B1 (en) * 1999-12-07 2002-06-11 Semikron, Inc. Transformerless 3 phase power inverter
WO2002080347A2 (en) * 2001-03-30 2002-10-10 Youtility Inc Enhanced conduction angle power factor correction topology
US6618274B2 (en) * 2001-10-09 2003-09-09 Innoveta Technologies Synchronous rectifier controller to eliminate reverse current flow in a DC/DC converter output
DE10249122B4 (de) 2002-10-22 2005-06-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur Unterdrückung eines Gleichstromanteiles im Ausgangstrom von Wechseltrichtern
US7064969B2 (en) 2003-02-21 2006-06-20 Distributed Power, Inc. Monopolar DC to bipolar to AC converter
DE102004037446B4 (de) * 2004-08-02 2006-11-02 Conergy Ag Trafoloser Wechselrichter für solare Netzeinspeisung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956172A (ja) * 1995-08-11 1997-02-25 Nippon Electric Ind Co Ltd バッテリー電源を共用化したハーフブリッジ型インバータの±直流2電源の昇圧チョッパ回路
JPH1118443A (ja) * 1997-06-23 1999-01-22 Toshiba Corp 電磁石電源装置
JP2001103768A (ja) * 1999-09-28 2001-04-13 Daihen Corp 太陽光発電用電力変換装置
JP2002112448A (ja) * 2000-09-29 2002-04-12 Canon Inc 系統連系装置およびその連系方法
JP2002335632A (ja) * 2001-05-10 2002-11-22 Mitsubishi Electric Corp 系統連系インバータ
JP2004173349A (ja) * 2002-11-18 2004-06-17 Yaskawa Electric Corp 中性点クランプ式pwmインバータ装置

Also Published As

Publication number Publication date
JPWO2007097051A1 (ja) 2009-07-09
JP4783294B2 (ja) 2011-09-28
EP1858149A4 (en) 2009-07-08
EP1858149A1 (en) 2007-11-21
US7872887B2 (en) 2011-01-18
US20080304301A1 (en) 2008-12-11

Similar Documents

Publication Publication Date Title
JP4783294B2 (ja) 系統連系用電力変換装置
US8625307B2 (en) DC to AC power converting apparatus
US9923484B2 (en) Method and system for operating a multilevel electric power inverter
EP2234264B1 (en) Power conditioner and solar photovoltaic power generation system
US7602626B2 (en) Power conversion apparatus
US8508957B2 (en) Power conversion device for converting DC power to AC power
EP3785363A1 (en) Voltage level multiplier module for multilevel power converters
CN104718692B (zh) 逆变器装置
US11228258B2 (en) Uninterruptible power supply apparatus
EP2234265B1 (en) Power conversion apparatus, power conditioner, and power generation system
JP6087531B2 (ja) 電力変換装置
JP2000324852A (ja) 太陽光発電用電流形インバータ装置
WO2011048457A1 (en) System and method for offsetting the input voltage unbalance in multilevel inverters or the like
JP5254922B2 (ja) 電力変換装置
JP5645209B2 (ja) 電力変換装置
US9431924B2 (en) Power source inverter for use with a photovoltaic solar panel
JP5291180B2 (ja) 電力変換装置
JP5362657B2 (ja) 電力変換装置
JP5734083B2 (ja) 電力変換装置
Kumar et al. Asymmetrical Three-Phase Multilevel Inverter for Grid-Integrated PLL-Less System
JP5490263B2 (ja) 電力変換装置
JP2020191725A (ja) 電力変換装置
RAJPAL et al. PV Based Transformer Less Eleven Level Converter Topology Connected to Grid

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006540058

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006757124

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11667126

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2006757124

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE