WO2014125697A1 - 三相電力変換装置 - Google Patents

三相電力変換装置 Download PDF

Info

Publication number
WO2014125697A1
WO2014125697A1 PCT/JP2013/081652 JP2013081652W WO2014125697A1 WO 2014125697 A1 WO2014125697 A1 WO 2014125697A1 JP 2013081652 W JP2013081652 W JP 2013081652W WO 2014125697 A1 WO2014125697 A1 WO 2014125697A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
voltage
zero
power converter
amplitude
Prior art date
Application number
PCT/JP2013/081652
Other languages
English (en)
French (fr)
Inventor
貴昭 ▲高▼原
亮太 近藤
村上 哲
山田 正樹
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112013006680.7T priority Critical patent/DE112013006680T5/de
Priority to US14/758,668 priority patent/US9595887B2/en
Priority to JP2015500096A priority patent/JP5932126B2/ja
Publication of WO2014125697A1 publication Critical patent/WO2014125697A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters

Definitions

  • the present invention relates to a three-phase power converter that converts power between three-phase AC power and DC power.
  • a conventional three-phase power converter there is one that converts DC power of a distributed power source such as a solar cell into AC power of three-phase output and outputs it to a load.
  • This conventional three-phase power converter has a three-phase three-level inverter connected between the positive and negative terminals of a first DC power supply, and a DC voltage smaller than the one-level voltage of the three-phase three-level inverter as inputs, 1 or a plurality of single-phase inverters connected in series to each phase AC output line of a three-phase three-level inverter.
  • Each phase of the three-phase three-level inverter outputs one pulse voltage for a half cycle of each phase output voltage to the load, each single-phase inverter outputs by PWM control, and the three-phase three-level inverter
  • the sum of the output voltage of the level inverter and the output voltage of each single-phase inverter is output to the load through the smoothing filter.
  • the single-phase inverter is based on an output voltage command in which a three-phase common zero-phase voltage is superimposed on each phase difference voltage obtained by subtracting the output voltage of the three-phase three-level inverter of each phase from the sine wave voltage of each phase.
  • the zero-phase voltage common to the three phases is calculated by calculating an average voltage obtained by taking an average value of the maximum value and the minimum value at each time point in each phase difference voltage, and reversing the polarity (for example, Patent Document 1). reference).
  • the DC voltage of the single-phase inverter is reduced by superimposing the three-phase common zero-phase voltage on the output voltage of each single-phase inverter.
  • the superimposed zero-phase voltage is uniquely determined based on the difference voltage between the sine wave voltage and the output voltage of the three-phase three-level inverter, and there is no degree of freedom in control design. There is a problem that the voltage setting is also limited.
  • the present invention has been made to solve the above problems, and can easily generate a zero-phase voltage component to be superimposed on an output voltage of a single-phase inverter while changing the voltage level thereof. Therefore, the purpose is to improve the degree of freedom in design and to reduce the DC voltage of the single-phase inverter.
  • a three-phase power conversion device includes a single-phase inverter that includes a direct-current capacitor and a plurality of semiconductor switching elements, each having an AC output terminal connected in series to each phase of the three-phase AC line, And a control device that performs PWM control of the single-phase inverter, and further includes an AC voltage detection circuit that detects the phase and voltage of the three-phase AC voltage from the three-phase AC line.
  • the said control apparatus adds the zero phase component common to three phases to each phase basic command based on the said phase and voltage from the said AC voltage detection circuit,
  • generation part which produces
  • the voltage command generator calculates the amplitude of the zero-phase component and applies the amplitude to a preset reference zero-phase voltage to determine the zero-phase component synchronized with the phase of the three-phase AC voltage To do.
  • the three-phase power converter according to the present invention is configured as described above, the zero-phase voltage component added to the output voltage of each single-phase inverter can be easily generated with its voltage level being variable. For this reason, while maintaining the three-phase balanced line voltage in the three-phase AC output, the degree of freedom in design can be improved and the DC voltage of the single-phase inverter can be reduced. As a result, it is possible to effectively promote lowering the breakdown voltage of each element of the single-phase inverter, and a small and highly efficient three-phase power converter can be obtained with high reliability.
  • FIG. 1 shows the main circuit structure of the three-phase power converter device by Embodiment 1 of this invention. It is a figure explaining the control structure of the three-phase power converter device by Embodiment 1 of this invention. It is a wave form diagram of each part explaining operation
  • FIG. 1 is a schematic configuration diagram of a main circuit of a three-phase power converter according to Embodiment 1 of the present invention.
  • a three-phase power converter includes an inverter circuit 100 connected to a three-phase AC line from an AC power source 1 that is a three-phase AC voltage source, and a three-phase converter 5 as a three-phase power converter.
  • a smoothing capacitor 6 as a capacitor connected to the DC side of the three-phase converter 5.
  • the three-phase AC line is constituted by each phase AC input lines 2a to 2c (hereinafter simply referred to as each phase AC lines 2a to 2c) from the AC power source 1, and the inverter circuit 100 includes a single-phase inverter 100a for each phase. To 100c.
  • Each phase AC line 2a to 2c is connected to each phase reactor La to Lc as a current limiting circuit, and the AC side of each single phase inverter 100a to 100c is connected in series to the subsequent stage.
  • Each single-phase inverter 100a to 100c is composed of semiconductor switching elements 3a to 3d and a DC capacitor 4.
  • semiconductor switching elements 3a to 3d an IGBT (Insulated Gate Bipolar Transistor) in which diodes are connected in antiparallel, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) in which a diode is built in between a source and a drain, or the like is used.
  • the reactors La to Lc of each phase may be connected to the subsequent stage of the single phase inverters 100a to 100c.
  • the three-phase converter 5 is composed of semiconductor switching elements (5a, 5b), (5c, 5d), (5e, 5f) as semiconductor elements in which each phase is two series, and each phase AC terminal A, B, C is connected to each single-phase inverter 100a to 100c via each phase AC line 2a to 2c, and the positive electrode and the negative electrode of smoothing capacitor 6 are connected to the DC side.
  • semiconductor switching elements 5a to 5f an IGBT in which a diode is connected in antiparallel or a MOSFET in which a diode is built in between the source and the drain is used.
  • FIG. 2 shows a control configuration of the three-phase power conversion apparatus in which the main circuit is configured in this way.
  • the three-phase power converter detects a voltage sensor 10 that detects the voltage Vin of the AC power supply 1, and detects an AC input current (hereinafter referred to as AC current i) flowing through the reactor L (La to Lc).
  • Current sensor 11 voltage sensor 12 for detecting voltage Vsub of DC capacitor 4 of each single-phase inverter 100a to 100c, and voltage sensor 13 for detecting voltage Vdc of smoothing capacitor 6.
  • the control device 200 then detects the semiconductor switching elements 3a to 3d and 5a to 5f in the single-phase inverters 100a to 100c and the three-phase converter 5 based on the detection results of the voltage sensors 10, 12, 13 and the current sensor 11.
  • Drive signals 20a and 15a are generated to control the output of each of the single-phase inverters 100a to 100c and the three-phase converter 5.
  • the control device 200 includes a balance control unit 14 that performs balance control so that each DC capacitor voltage Vsub of the inverter circuit 100 is equal, and an AC that detects information on the phase and voltage of the AC power supply voltage Vin.
  • Voltage detection circuit 15, Vsub control unit 16 that controls DC capacitor voltage Vsub, Vdc control unit 17 that controls smoothing capacitor voltage Vdc, current control unit 18 that controls AC current i, and voltage command for inverter circuit 100 For generation, a zero-phase component generation unit (hereinafter referred to as Vo generation unit) 19 that generates a zero-phase component Vo, which will be described later, and a PWM circuit 20 that generates a drive signal to the inverter circuit 100 are provided.
  • the current control unit 18 and the Vo generation unit 19 constitute a voltage command generation unit.
  • the AC power supply voltage Vin detected by the voltage sensor 10 is input to the AC voltage detection circuit 15, and the AC voltage detection circuit 15 receives the AC phase ⁇ and AC voltage amplitude of each phase, which is the phase and voltage information of the AC power supply voltage Vin. Vp is detected.
  • the detected signal based on the AC phase ⁇ is output to the three-phase converter 5 as a drive signal 15a, and the semiconductor switching elements 5a to 5f of the three-phase converter 5 are driven for each positive and negative half wave of the AC power supply voltage Vin of each phase.
  • the Vsub control unit 16 receives the DC capacitor voltage Vsub of each single-phase inverter 100a to 100c detected by the voltage sensor 12, and the smoothing capacitor so that the DC capacitor voltage Vsub becomes equal to the set command value Vsub *.
  • a command value Vdc * of the voltage Vdc is generated and output.
  • the smoothing capacitor voltage Vdc detected by the voltage sensor 13 and the command value Vdc * from the Vsub control unit 16 are input to the Vdc control unit 17 so that the smoothing capacitor voltage Vdc becomes equal to the command value Vdc * .
  • An amplitude command value 17a of the alternating current i is generated and output.
  • Each DC capacitor voltage Vsub from the voltage sensor 12 is also input to the balance control unit 14, and the balance control unit 14 averages the amplitude correction value 14a of each phase of the AC current i so as to average each DC capacitor voltage Vsub. Is generated and output.
  • the current controller 18 receives the AC current i detected by the current sensor 11, the AC phase ⁇ from the AC voltage detection circuit 15, the amplitude command value 17a of the AC current i, and the amplitude correction value 14a. . Then, the current control unit 18 generates a sine wave current command i * based on the amplitude Ip obtained by correcting the amplitude command value 17a with the amplitude correction value 14a and the AC phase ⁇ , and AC is generated in the generated current command i * .
  • the basic command Vx * of the output voltage of each single-phase inverter 100a to 100c is generated and output so that the current i follows.
  • the Vo generator 19 receives the AC phase ⁇ , the AC voltage amplitude Vp, and the smoothing capacitor voltage Vdc from the AC voltage detection circuit 15, and generates and outputs a zero-phase component Vo.
  • the output zero-phase component Vo is added to the basic command Vx * of each phase from the current control unit 18, and the voltage command V * of each single-phase inverter 100a to 100c is generated.
  • the PWM circuit 20 generates a drive signal 20a for PWM control of each single-phase inverter 100a to 100c based on the input voltage command V * , and controls each semiconductor switching element 3a to 3d in each single-phase inverter 100a to 100c. To drive.
  • FIG. 3 is a waveform diagram of each part for explaining the operation of the three-phase power converter.
  • 4 to 7 are diagrams for explaining the operation of the single-phase inverter 100a.
  • FIGS. 8 and 9 are diagrams for explaining the operation of one phase (A phase) of the three-phase converter 5.
  • FIG. 10 is a waveform diagram for explaining a voltage command for the single-phase inverter 100a
  • FIGS. 11 and 12 are a waveform diagram and a control block diagram for explaining generation of the voltage command for the single-phase inverter 100a.
  • FIG. 3A shows a voltage waveform of the AC power supply voltage (A phase voltage) Vin input from the AC power supply 1.
  • the semiconductor switching element 5a of the three-phase converter 5 is controlled to be on, the semiconductor switching element 5b is controlled to be off, and the semiconductor is when the AC power supply voltage Vin is negative.
  • the switching element 5b is controlled to be in the on state and the semiconductor switching element 5a is controlled to be in the off state, so that the potential V1A of the A-phase AC terminal A of the three-phase converter 5 is equal to the voltage Vdc of the smoothing capacitor 6 as shown in FIG. Is a voltage waveform that is output in a half cycle.
  • the smoothing capacitor voltage Vdc is higher than the AC power supply voltage Vin.
  • the potentials V1B and V1C of the AC terminal B and AC terminal C of the three-phase converter 5 are the voltages shown in FIGS. 3 (c) and 3 (d), respectively. It becomes a waveform.
  • the potential at the neutral point N (hereinafter referred to as neutral point potential VN) is the average of the three-phase AC terminal potentials V1A, V1B, and V1C, and has the waveform shown in FIG.
  • the voltage V1A-N at the AC terminal A with reference to the neutral point potential VN has the voltage waveform shown in FIG.
  • 3G is a difference voltage obtained by subtracting the voltage V1A-N at the AC terminal A from the AC power supply voltage Vin, and becomes the basic command Vx * of the output voltage of the single-phase inverter 100a.
  • the single-phase inverter 100a controls the A-phase current i by PWM control so that the A-phase input power factor from the AC power supply 1 is approximately 1.
  • the output voltage on the AC side is superimposed on the voltage V1A-N at the AC terminal A.
  • the voltage of the single-phase inverter 100a is the voltage at the AC output end on the AC power supply 1 side with reference to the potential at the AC output end on the three-phase converter 5 side.
  • the operation of the single phase inverter 100a will be described.
  • the A-phase voltage and current of the AC power supply 1 are positive
  • the semiconductor switching element 3a is on and the semiconductor switching element 3b is off
  • current flows through the single-phase inverter 100a through the current path shown in FIG.
  • the semiconductor switching element 3c is on and the semiconductor switching element 3d is off
  • the current passes through the semiconductor switching element 3a and the semiconductor switching element 3c and bypasses the DC capacitor 4.
  • the semiconductor switching element 3c is off and the semiconductor switching element 3d is on, the current charges the DC capacitor 4 through the semiconductor switching element 3a and is output through the semiconductor switching element 3d.
  • the single-phase inverter 100a is PWM-controlled by combining four types of control for each positive and negative polarity.
  • the operation of the three-phase converter 5 will be described.
  • the semiconductor switching element 5a when the A-phase voltage and current of the AC power supply 1 are positive, the semiconductor switching element 5a is turned on, and the current from the AC power supply 1 passes through the single-phase inverter 100a and passes through the semiconductor switching element 5a. Flows toward the positive electrode of the smoothing capacitor 6.
  • the semiconductor switching element 5b when the A phase voltage and current of the AC power supply 1 are negative, the semiconductor switching element 5b is turned on, and the current flowing from the negative electrode of the smoothing capacitor 6 via the semiconductor switching element 5b is simply It flows toward AC power supply 1 through phase inverter 100a.
  • the current control unit 18 in the control device 200 is configured so that the alternating current i follows the current command i * , that is, the input power factor of the A phase from the alternating current power supply 1 is approximately 1.
  • a basic command Vx * of the output voltage of each single-phase inverter 100a to 100c is generated.
  • the basic command Vx * (see FIG. 3G) is a command for outputting a differential voltage obtained by subtracting the voltage V1A-N at the AC terminal A from the AC power supply voltage Vin.
  • the single-phase inverter 100a operates to discharge the DC capacitor 4 when outputting a positive voltage and charge the DC capacitor 4 when outputting a negative voltage, but is controlled so that the charge amount and the discharge amount are balanced in one AC cycle. The Thereby, it is not necessary to supply power to the DC capacitor 4 from another external power source.
  • single-phase inverter 100a is the basic command Vx * the zero-phase component Vo is the output control by the voltage command V * that have been added, since the zero-phase component Vo little effect on power, voltage by the basic command Vx *
  • the discharge power P dch and the charge power P ch in the case of outputting is calculated.
  • FIGS. 11A to 11C show a basic command V * , a zero-phase component Vo, and a voltage command V * of the single-phase inverter 100a.
  • the absolute value becomes maximum at ⁇ V ⁇ at a point where the phase is ⁇ , 2 ⁇ .
  • the phase is shifted by 2 ⁇ / 3, but the same voltage waveform is obtained.
  • the voltage command V is obtained by adding the three-phase common zero-phase component Vo generated by the Vo generation unit 19 to the basic command Vx * of each phase output from the current control unit 18. * Is generated.
  • the zero-phase component Vo has the same frequency, the same phase, the same frequency, the same phase, in each basic command Vx * of the single-phase inverters 100a to 100c so that the voltage command V * after addition maintains the line voltage and maintains the three-phase equilibrium state. They are added with the same amplitude.
  • the zero-phase component Vo is a voltage component that is added in common to all the basic commands Vx * of each phase as described above to reduce the peak (absolute value), and therefore, the frequency of the AC power supply voltage Vin is 6N (N: It has a voltage waveform whose polarity is inverted every ⁇ / 3 at a frequency that is a positive integer) times.
  • the reference zero-phase voltage Voo is a sine waveform with a frequency six times the frequency of the AC power supply voltage Vin.
  • the amplitude a is calculated so that the peak (absolute value) of the voltage command V * is reduced.
  • the voltage command V * obtained by adding the zero-phase component Vo to the basic command Vx * changes between V ⁇ + a and V ⁇ + a, and the voltage command is obtained by calculating the amplitude a so that both absolute values are smaller than ⁇ V ⁇ .
  • the V * peak is reduced.
  • the amplitude a is calculated as follows so that the absolute value of the minimum voltage value V ⁇ + a of the voltage command V * is equal to the maximum voltage value V ⁇ + a.
  • the DC capacitor voltage Vsub of the single-phase inverters 100a can be effectively reduced.
  • the amplitude a is 0 ⁇ a ⁇ ((2/3) Vdc ⁇ Vp ⁇ sin ( ⁇ / 3)) (Hereinafter referred to as the amplitude range), the peak of the voltage command V * can be reduced, and the DC voltage of the single-phase inverter 100a can be reduced.
  • the amplitude a is calculated within the amplitude range so that the peak of the voltage command V * (the absolute value of V ⁇ + a or V ⁇ + a) is equal to or less than the voltage value of Vsub with respect to the set DC capacitor voltage Vsub.
  • phase A of the AC power supply 1 and the single-phase inverter 100a of the inverter circuit 100 have been described above, but the same applies to the other two-phase and single-phase inverters 100b and 100c.
  • the control device 200 calculates the amplitude a of the zero-phase component Vo from the AC phase ⁇ , the AC voltage amplitude Vp, and the smoothing capacitor voltage Vdc, and sets a reference zero that is set in advance.
  • a zero-phase component Vo is generated by applying the amplitude a to the phase voltage Voo.
  • the voltage command V * is generated by adding the three-phase common zero-phase component Vo to the basic commands Vx * of the single-phase inverters 100a to 100c.
  • the control device 200 can reduce the peak of the voltage command V * and reduce the DC voltage of the single-phase inverters 100a to 100c.
  • the amplitude a can be calculated based on information ( ⁇ , Vp, Vdc) used for normal control of the three-phase power converter, the zero-phase component Vo can be easily generated and the voltage level can be varied.
  • the reference zero-phase voltage Voo is ⁇ cos 6 ⁇ , but can be set using the following equation.
  • n is an integer of 0 or more and has a voltage waveform whose polarity is inverted every ⁇ / 3 at a frequency 6N (N: positive integer) times the frequency of the AC power supply voltage Vin.
  • the AC voltage amplitude Vp is shown as information on the voltage detected by the AC voltage detection circuit 15, other voltage values such as an effective value may be used.
  • the amplitude a of the zero-phase component Vo is determined within the amplitude range based on the semiconductor switching elements 3a to 3d used in the single-phase inverters 100a to 100c and the withstand voltage of the smoothing capacitor 6, thereby reducing the low-frequency of each element. The breakdown voltage can be effectively promoted.
  • the three-phase power converter is not limited to the three-phase converter 5 according to the above embodiment, but may be a three-phase converter using a diode element or a three-phase three-level converter. Furthermore, in the above-described embodiment, the three-phase power converter is shown that converts three-phase AC power from the AC power source 1 to DC power. However, the DC power from the smoothing capacitor 6 is converted to AC power. A three-phase power converter that outputs to the AC power supply 1 may be used.
  • the inverter circuit 100 composed of the single-phase inverters 100a to 100c can be applied to a three-phase power conversion device having another circuit configuration.
  • the generation of the basic command Vx * is different, but the amplitude a is calculated using the AC phase ⁇ and AC voltage amplitude Vp of each phase, and the amplitude a is set to the preset reference zero-phase voltage Voo.
  • the applied three-phase common zero-phase component Vo can be generated in the same manner, and the same effect as in the first embodiment can be obtained by the voltage command V * obtained by adding the zero-phase component Vo to each basic command Vx * .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

 三相電力変換装置は、交流出力端が三相交流線路の各相にそれぞれ直列接続された単相インバータ(100a~100c)と、電圧指令Vに基づき各単相インバータ(100a~100c)をPWM制御する制御装置(200)と、さらに三相交流電圧の位相および電圧振幅を検出する交流電圧検出回路(15)を備える。制御装置(200)は、三相共通の零相成分Voを各相基本指令Vxに加算して電圧指令Vを生成する。零相成分Voは、設定された基準零相電圧Vooに、位相および電圧振幅に基づいて演算した振幅aを適用して生成され、各単相インバータ(100a~100c)の電圧指令Vのピークを低減する。

Description

三相電力変換装置
 本発明は、三相交流電力と直流電力との間で電力変換する三相電力変換装置に関するものである。
 従来の三相電力変換装置として、太陽電池などの分散電源の直流電力を三相出力の交流電力に変換して負荷に出力するものがある。この従来の三相電力変換装置は、第1の直流電源の正負端子間に接続された三相3レベルインバータと、該三相3レベルインバータの1レベルの電圧より小さい直流電圧を入力とし、該三相3レベルインバータの各相交流出力線にそれぞれ1あるいは複数直列接続された単相インバータとを備える。上記三相3レベルインバータの各相は、上記負荷への各相出力電圧の半周期に対して1パルスの電圧を出力し、上記各単相インバータはPWM制御により出力して、上記三相3レベルインバータの出力電圧と上記各単相インバータの出力電圧との総和を平滑フィルタを介して負荷に出力する。そして上記単相インバータは、各相の正弦波電圧から各相の三相3レベルインバータの出力電圧を減算して得られる各相差電圧に三相共通の零相電圧を重畳した出力電圧指令に基づいて出力する。上記三相共通の零相電圧は、上記各相差電圧における各時点の最大値と最小値との平均値を採った平均電圧を演算し、その極性を反転させて演算する(例えば、特許文献1参照)。
国際公開WO2010/103600号公報
 上記のような従来の三相電力変換装置では、各単相インバータの出力電圧に三相共通の零相電圧を重畳して単相インバータの直流電圧の低減化を図るものである。しかしながら、重畳する零相電圧は、正弦波電圧と三相3レベルインバータの出力電圧との差電圧に基づいて一意的に決定されるもので、制御設計の自由度がなく、単相インバータの直流電圧の設定も限定されるという問題点があった。
 この発明は、上記のような問題を解消するために成されたものであって、単相インバータの出力電圧に重畳させる零相電圧成分を、その電圧レベルを可変にし、かつ容易に生成することにより、設計上の自由度を向上して単相インバータの直流電圧の低減化を図ることを目的とする。
 この発明による三相電力変換装置は、直流コンデンサおよび複数の半導体スイッチング素子をそれぞれ備え、交流出力端が三相交流線路の各相にそれぞれ直列接続された単相インバータと、電圧指令に基づき上記各単相インバータをPWM制御する制御装置とを備え、さらに上記三相交流線路から三相交流電圧の位相および電圧を検出する交流電圧検出回路を備える。そして、上記制御装置は、上記交流電圧検出回路からの上記位相および電圧に基づいて、三相に共通する零相成分を各相基本指令に加算して上記電圧指令を生成する電圧指令生成部を備え、上記電圧指令生成部は、上記零相成分の振幅を演算し、予め設定された基準零相電圧に上記振幅を適用して上記三相交流電圧の位相に同期する上記零相成分を決定するものである。
 この発明による三相電力変換装置は上記のように構成されているため、各単相インバータの出力電圧に加算される零相電圧成分を、その電圧レベルを可変にし、かつ容易に生成できる。このため、三相交流出力において三相平衡した線間電圧を保ちつつ、設計上の自由度を向上して単相インバータの直流電圧を低減できる。これにより、単相インバータの各素子の低耐圧化が効果的に促進でき、小型で高効率な三相電力変換装置が信頼性良く得られる。
この発明の実施の形態1による三相電力変換装置の主回路構成を示す図である。 この発明の実施の形態1による三相電力変換装置の制御構成を説明する図である。 この発明の実施の形態1による三相電力変換装置の動作を説明する各部の波形図である。 この発明の実施の形態1による単相インバータの動作を説明する図である。 この発明の実施の形態1による単相インバータの動作を説明する図である。 この発明の実施の形態1による単相インバータの動作を説明する図である。 この発明の実施の形態1による単相インバータの動作を説明する図である。 この発明の実施の形態1による三相コンバータの動作を説明する図である。 この発明の実施の形態1による三相コンバータの動作を説明する図である。 この発明の実施の形態1による単相インバータの電圧指令を説明する波形図である。 この発明の実施の形態1による単相インバータの電圧指令の生成を説明する波形図である。 この発明の実施の形態1による単相インバータの電圧指令の生成を説明する制御ブロック図である。
実施の形態1.
 以下、この発明の実施の形態1による三相電力変換装置として、交流電源からの三相交流電力を直流電力に変換する三相電力変換装置を図に基づいて説明する。
 図1は、この発明の実施の形態1による三相電力変換装置の主回路の概略構成図である。図1に示すように、三相電力変換装置は、三相交流電圧源である交流電源1からの三相交流線路に接続されるインバータ回路100と、三相電力変換器としての三相コンバータ5と、三相コンバータ5の直流側に接続されたコンデンサとしての平滑コンデンサ6とを備える。三相交流線路は、交流電源1からの各相交流入力線2a~2c(以下、単に各相交流線2a~2cと称す)にて構成され、インバータ回路100は、各相の単相インバータ100a~100cから構成される。各相交流線2a~2cは、限流回路としての各相のリアクトルLa~Lcに接続され、その後段に各単相インバータ100a~100cの交流側がそれぞれ直列接続される。
 各単相インバータ100a~100cは、半導体スイッチング素子3a~3dおよび直流コンデンサ4から構成される。半導体スイッチング素子3a~3dは、ダイオードが逆並列に接続されたIGBT(Insulated Gate Bipolar Transistor)や、ソース・ドレイン間にダイオードが内蔵されたMOSFET(Metal Oxide Semiconductor Field Effect Transistor)などを用いる。なお、各相のリアクトルLa~Lcは単相インバータ100a~100cの後段に接続しても良い。
 また、三相コンバータ5は、各相が2直列の半導体素子としての半導体スイッチング素子(5a,5b)、(5c,5d)、(5e,5f)で構成され、各相交流端A、B、Cが各相交流線2a~2cを介して各単相インバータ100a~100cに接続され、直流側に平滑コンデンサ6の正極並びに負極が接続される。この場合、半導体スイッチング素子5a~5fには、ダイオードが逆並列に接続されたIGBTや、ソース・ドレイン間にダイオードが内蔵されたMOSFETを用いる。
 このように主回路が構成される三相電力変換装置の制御構成を図2に示す。図2に示すように、三相電力変換装置は、交流電源1の電圧Vinを検出する電圧センサ10、リアクトルL(La~Lc)に流れる交流入力電流(以下、交流電流iと称す)を検出する電流センサ11、各単相インバータ100a~100cの直流コンデンサ4の電圧Vsubを検出する電圧センサ12、および平滑コンデンサ6の電圧Vdcを検出する電圧センサ13を備える。そして、制御装置200は、これら電圧センサ10,12,13および電流センサ11の検出結果に基づいて各単相インバータ100a~100cおよび三相コンバータ5内の各半導体スイッチング素子3a~3d、5a~5fへの駆動信号20a、15aを生成して各単相インバータ100a~100cおよび三相コンバータ5を出力制御する。
 図2に示すように、制御装置200は、インバータ回路100の各直流コンデンサ電圧Vsubが均等になるようにバランス制御するバランス制御部14と、交流電源電圧Vinの位相および電圧の情報を検出する交流電圧検出回路15と、直流コンデンサ電圧Vsubを制御するVsub制御部16と、平滑コンデンサ電圧Vdcを制御するVdc制御部17と、交流電流iを制御する電流制御部18と、インバータ回路100の電圧指令生成のために後述する零相成分Voを生成する零相成分生成部(以下、Vo生成部)19と、インバータ回路100への駆動信号を生成するPWM回路20とを備える。なお、電流制御部18とVo生成部19とで電圧指令生成部を構成する。
 電圧センサ10により検出された交流電源電圧Vinは交流電圧検出回路15に入力され、交流電圧検出回路15は、交流電源電圧Vinの位相および電圧の情報である各相の交流位相θと交流電圧振幅Vpとを検出する。検出された交流位相θによる信号は、駆動信号15aとして三相コンバータ5に出力され、各相の交流電源電圧Vinの正負の半波ごとに三相コンバータ5の各半導体スイッチング素子5a~5fを駆動する。
 Vsub制御部16には、電圧センサ12により検出された、各単相インバータ100a~100cの直流コンデンサ電圧Vsubが入力され、直流コンデンサ電圧Vsubが設定された指令値Vsubと等しくなるように平滑コンデンサ電圧Vdcの指令値Vdcを生成して出力する。
 Vdc制御部17には、電圧センサ13により検出された平滑コンデンサ電圧Vdcと、Vsub制御部16からの指令値Vdcとが入力され、平滑コンデンサ電圧Vdcが指令値Vdcと等しくなるように、交流電流iの振幅指令値17aを生成して出力する。
 また、電圧センサ12からの各直流コンデンサ電圧Vsubはバランス制御部14にも入力され、バランス制御部14は、各直流コンデンサ電圧Vsubを平均化するように交流電流iの各相の振幅補正値14aを生成して出力する。
 電流制御部18には、電流センサ11により検出された交流電流iと、交流電圧検出回路15からの交流位相θと、交流電流iの振幅指令値17aと、振幅補正値14aとが入力される。そして、電流制御部18は、振幅指令値17aを振幅補正値14aで補正した振幅Ipと交流位相θとに基づいて正弦波の電流指令iを生成し、生成された電流指令iに交流電流iが追従するように、各単相インバータ100a~100cの出力電圧の基本指令Vxを生成して出力する。
 Vo生成部19は、交流電圧検出回路15からの交流位相θ、交流電圧振幅Vpと、平滑コンデンサ電圧Vdcとが入力され、零相成分Voを生成して出力する。出力された零相成分Voは、電流制御部18からの各相の基本指令Vxに加算され、各単相インバータ100a~100cの電圧指令Vが生成される。
 PWM回路20は、入力される電圧指令Vに基づいて各単相インバータ100a~100cをPWM制御する駆動信号20aを生成し、各単相インバータ100a~100c内の各半導体スイッチング素子3a~3dを駆動する。
 上記のような制御される三相電力変換装置の動作について、三相内の一相、例えばA相について、以下に説明する。他の二相(B相、C相)についても、2π/3ずつ位相がずれているが、同様の動作を行なう。
 図3は三相電力変換装置の動作を説明する各部の波形図である。図4~図7は単相インバータ100aの動作を説明する図であり、図8、図9は三相コンバータ5の一相分(A相)の動作を説明する図である。また、図10は単相インバータ100aの電圧指令を説明する波形図、図11および図12は、単相インバータ100aの電圧指令の生成を説明する波形図および制御ブロック図である。
 図3(a)は、交流電源1から入力される交流電源電圧(A相の相電圧)Vinの電圧波形である。A相の交流電源電圧Vinの極性が正極性の時に、三相コンバータ5の半導体スイッチング素子5aがオン状態、半導体スイッチング素子5bがオフ状態に制御され、また交流電源電圧Vinが負極性の時に半導体スイッチング素子5bがオン状態、半導体スイッチング素子5aがオフ状態に制御されて、三相コンバータ5のA相の交流端Aの電位V1Aは図3(b)に示すように、平滑コンデンサ6の電圧Vdcを半周期で出力する電圧波形となる。この場合、平滑コンデンサ電圧Vdcは交流電源電圧Vinより高いものとする。
 他の二相(B相、C相)についても同様で、三相コンバータ5の交流端B、交流端Cの電位V1B、V1Cは、それぞれ図3(c)、図3(d)に示す電圧波形となる。これにより、中性点Nの電位(以下、中性点電位VNと称す)は、三相の交流端電位V1A、V1B、V1Cの平均となり、図3(e)に示す波形となる。そして、中性点電位VNを基準とした交流端Aの電圧V1A-Nは、図3(f)に示す電圧波形となる。
 図3(g)に示す電圧波形は、交流電源電圧Vinから交流端Aの電圧V1A-Nを差し引いた差電圧であり、単相インバータ100aの出力電圧の基本指令Vxとなる。単相インバータ100aの制御、動作についての詳細は後述するが、単相インバータ100aは、交流電源1からのA相の入力力率が概ね1となるようにPWM制御によりA相の電流iを制御して出力し、交流側の出力電圧を、交流端Aの電圧V1A-Nに重畳する。なお、単相インバータ100aの電圧は、三相コンバータ5側の交流出力端の電位を基準とした、交流電源1側の交流出力端の電圧である。
 次に、単相インバータ100aの動作について説明する。
 交流電源1のA相の電圧、電流が正極性の時、半導体スイッチング素子3aがオン、半導体スイッチング素子3bがオフの場合、図4に示す電流経路で単相インバータ100aに電流が流れる。半導体スイッチング素子3cがオン、半導体スイッチング素子3dがオフの場合、電流は半導体スイッチング素子3aと半導体スイッチング素子3cとを通り、直流コンデンサ4をバイパスする。また、半導体スイッチング素子3cがオフ、半導体スイッチング素子3dがオンの場合、電流は半導体スイッチング素子3aを通って直流コンデンサ4を充電し、半導体スイッチング素子3dを通って出力される。
 交流電源1のA相の電圧、電流が正極性の時、半導体スイッチング素子3aがオフ、半導体スイッチング素子3bがオンの場合、図5に示す電流経路で単相インバータ100aに電流が流れる。半導体スイッチング素子3cがオン、半導体スイッチング素子3dがオフの場合、電流は半導体スイッチング素子3bを通って直流コンデンサ4を放電し、半導体スイッチング素子3cを通って出力される。また、半導体スイッチング素子3cがオフ、半導体スイッチング素子3dがオンの場合、電流は半導体スイッチング素子3bと半導体スイッチング素子3dとを通り、直流コンデンサ4をバイパスする。
 交流電源1のA相の電圧、電流が負極性の時も同様に、半導体スイッチング素子3a~3dのスイッチングによる制御の組み合わせで、図6、図7に示すように、直流コンデンサ4の充放電とバイパスが制御される。
 このように、正負の各極性においてそれぞれ4種の制御を組み合わせて単相インバータ100aはPWM制御される。
 次に、三相コンバータ5の動作について説明する。
 図8に示すように、交流電源1のA相の電圧、電流が正極性の時、半導体スイッチング素子5aをオンし、交流電源1からの電流は、単相インバータ100aを経て、半導体スイッチング素子5aを介して平滑コンデンサ6の正極に向かって流れる。また図9に示すように、交流電源1のA相の電圧、電流が負極性の時、半導体スイッチング素子5bをオンし、平滑コンデンサ6の負極から半導体スイッチング素子5bを介して流れる電流は、単相インバータ100aを経て交流電源1に向かって流れる。
 次に、単相インバータ100aの出力電圧制御について以下に詳細に説明する。
 上述したように、制御装置200内の電流制御部18は、交流電流iが電流指令iに追従するように、即ち、交流電源1からのA相の入力力率が概ね1となるように各単相インバータ100a~100cの出力電圧の基本指令Vxを生成する。この基本指令Vx(図3(g)参照)は、交流電源電圧Vinから交流端Aの電圧V1A-Nを差し引いた差電圧を出力させる指令となる。
 単相インバータ100aは、正電圧を出力時に直流コンデンサ4を放電し、負電圧を出力時に直流コンデンサ4を充電する動作となるが、交流1周期において、充電量と放電量が釣り合うように制御される。これにより、他の外部電源から直流コンデンサ4への電力供給を不要としている。
 交流電源1の1周期において、正の半波と負の半波の動作は対照であるため、ここでは図10、図11を用いて正の半波のみ考える。
 入力される交流電流iが力率1の正弦波に制御されているとすると、単相インバータ100aの放電電力Pdchと充電電力Pchとは、以下の式(1)、式(2)で表される。なお、θ、Vpは、交流電源電圧Vin(A相)の交流位相、交流電圧振幅であり、Ipは交流電流iの振幅であり、θは交流電源電圧Vinと電圧V1A-Nとが一致する位相である。また、単相インバータ100aは、基本指令Vxに零相成分Voが加算された電圧指令Vにより出力制御されるが、零相成分Voは電力に殆ど影響しないため、基本指令Vxにより電圧を出力した場合での放電電力Pdchと充電電力Pchとを演算している。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 上記のように、交流1周期において単相インバータ100aは充電量と放電量が釣り合うように制御されるため、Pdch=Pchとなり、交流電圧振幅Vpと平滑コンデンサ電圧Vdcとの関係は、次の式(3)で表わされる。
Vdc=(π/2)Vp  ・・・(3)
 このように、平滑コンデンサ電圧Vdcの値を設定することで、単相インバータ100aは充放電をバランスさせ直流コンデンサ電圧Vsubを一定に制御できる。
 次に、単相インバータ100aの電圧指令Vの生成について以下に詳述する。
 図11(a)~図11(c)は、単相インバータ100aの基本指令V、零相成分Vo、電圧指令Vを示す。
 交流電源1の正の半波において、基本指令Vxは、最小値であるVα(=(-1/3)Vdc)と、最大値であるVβ(=Vp・sin(π/3)-(1/3)Vdc)との間で変化し、絶対値が最大となるのは、位相が0、πの地点のVαである。そして、続く負の半波では、基本指令Vxは、-Vβ(=-Vp・sin(π/3)+(1/3)Vdc)と-Vα(=(1/3)Vdc)との間で変化し、絶対値が最大となるのは、位相がπ、2πの地点の-Vαである。
 他の二相(B相、C相)の基本指令Vxにおいても、2π/3ずつ位相がずれているが、同様の電圧波形となる。
 そして、図12に示すように、電流制御部18が出力する各相の基本指令Vxに、Vo生成部19にて生成された三相共通の零相成分Voを加算することで電圧指令Vが生成される。零相成分Voは、加算後の電圧指令Vが線間電圧を維持して三相平衡状態を保つように、単相インバータ100a~100cの各基本指令Vxに、同一周波数、同位相、同振幅で加算される。
 零相成分Voは、上述したような各相の基本指令Vxの全てに共通に加算されてピーク(絶対値)を低減させる電圧成分であるため、交流電源電圧Vinの周波数の6N(N:正の整数)倍の周波数で、π/3毎に極性が反転する電圧波形を有する。
 Vo生成部19は、予め設定された基準零相電圧Vooを保持し、交流電圧検出回路15からの位相θ、交流電圧振幅Vpと、平滑コンデンサ電圧Vdcとから、零相成分Voの振幅aを演算し、基準零相電圧Vooに振幅aを適用して零相成分Vo(=a・Voo)を生成する。
 この場合、基準零相電圧Vooは交流電源電圧Vinの周波数の6倍の周波数による正弦波形で、
cos6θ(0≦θ<π/3,2π/3≦θ<π,4π/3≦θ<5π/3)
-cos6θ(π/3≦θ<2π/3,π≦θ<4π/3,5π/3≦θ<2π)
で与えられ、零相成分Voは、±a・cos6θとなる。
 振幅aは、電圧指令Vのピーク(絶対値)が低減するように演算される。
 基本指令Vxに零相成分Voが加算された電圧指令Vは、Vα+aとVβ+aとの間で変化し、双方の絶対値が-Vαより小さくなるように振幅aを演算することで電圧指令Vのピークが低減する。これにより、単相インバータ100aの直流コンデンサ電圧Vsubの必要最低電圧を-Vα(=(1/3)Vdc)より低減することができる。
 この場合、電圧指令Vの最小電圧値であるVα+aと、最大電圧値であるVβ+aとの絶対値が等しくなるように振幅aを以下のように演算する。
即ち、
-((-1/3)Vdc+a)=Vp・sin(π/3)-(1/3)Vdc+a
となることから
a=1/2((2/3)Vdc-Vp・sin(π/3))
 電圧指令Vの最小電圧値と最大電圧値との絶対値が等しいとき、電圧指令Vのピークを最も低減でき、単相インバータ100aの直流コンデンサ電圧Vsubを効果的に低減できる。
 なお振幅aを、
0<a<((2/3)Vdc-Vp・sin(π/3))
の範囲(以下、振幅範囲と称す)で設定することで、電圧指令Vのピークを低減でき、単相インバータ100aの直流電圧を低減できる。
 また、設定された直流コンデンサ電圧Vsubに対して、電圧指令Vのピーク(Vα+a、あるいはVβ+aの絶対値)がVsubの電圧値以下となるように、上記振幅範囲内で振幅aを演算する。これにより単相インバータ100aの直流電圧を信頼性良く低減できる。
 以上、交流電源1のA相およびインバータ回路100の単相インバータ100aについて説明したが、他の2相、単相インバータ100b、100cについても同様である。
 以上のように、この実施の形態では、制御装置200は、交流位相θ、交流電圧振幅Vpと、平滑コンデンサ電圧Vdcとから、零相成分Voの振幅aを演算し、予め設定された基準零相電圧Vooに振幅aを適用した零相成分Voを生成する。そして単相インバータ100a~100cの各基本指令Vxに三相共通の零相成分Voを加算して電圧指令Vを生成する。制御装置200が振幅aを上記振幅範囲内で決定することで電圧指令Vのピークを低減でき、単相インバータ100a~100cの直流電圧を低減できる。また、三相電力変換装置の通常制御に用いる情報(θ、Vp、Vdc)に基づいて振幅aを演算できるため、零相成分Voは容易に生成でき、かつ電圧レベルが可変となる。
 これにより、三相交流出力において三相平衡した線間電圧を保ちつつ、設計上の自由度を向上して単相インバータ100a~100cの直流電圧を低減できる。このため、単相インバータ100a~100cの各素子の低耐圧化が効果的に促進できる。一般に、素子耐圧の低下に伴い、導通損失が減少して高効率化でき、また半導体スイッチング素子のオン・オフ時の電圧が低減でき、更なる高効率化を促進できる。同時に、半導体スイッチング素子のオン・オフ時の電圧低減により低ノイズ化が可能となる。このように、小型で高効率な三相電力変換装置が信頼性良く得られる。
 なお上記実施の形態では、基準零相電圧Vooを±cos6θとしたが、以下に示す式を用いて設定できる。この場合、nは0以上の整数で交流電源電圧Vinの周波数の6N(N:正の整数)倍の周波数で、π/3毎に極性が反転する電圧波形を有する。
cos6nθ(0≦θ<π/3,2π/3≦θ<π,4π/3≦θ<5π/3)
-cos6nθ(π/3≦θ<2π/3,π≦θ<4π/3,5π/3≦θ<2π)
 なお、nが0の時、基準零相電圧Vooは±1となり、この場合、零相成分Voは、π/3毎に振幅である定数値a、-aを交互に変化する波形となる。
 また、交流電圧検出回路15が検出する電圧の情報として交流電圧振幅Vpを示したが、実効値など他の電圧値でも良い。
 また、零相成分Voの振幅aは、単相インバータ100a~100cに使用する半導体スイッチング素子3a~3dや、平滑コンデンサ6の耐圧に基づいて上記振幅範囲内で決定することで、各素子の低耐圧化が効果的に促進できる。
 また、三相電力変換器は、上記実施の形態による三相コンバータ5に限らず、ダイオード素子による三相コンバータでも良いし、三相3レベルコンバータでも良い。
 さらに、上記実施の形態では、三相電力変換装置として、交流電源1からの三相交流電力を直流電力に変換するものを示したが、平滑コンデンサ6からの直流電力を交流電力に変換して交流電源1に出力する三相電力変換装置であっても良い。
 さらにまた、単相インバータ100a~100cにて構成されるインバータ回路100は、他の回路構成による三相電力変換装置にも適用できる。その場合、基本指令Vxの生成が異なるものであるが、各相の交流位相θ、交流電圧振幅Vpとを用いて振幅aを演算し、予め設定された基準零相電圧Vooに振幅aを適用した三相共通の零相成分Voを同様に生成でき、各基本指令Vxに零相成分Voを加算した電圧指令Vにより、上記実施の形態1と同様の効果が得られる。
 なお、この発明は、発明の範囲内において、実施の形態を適宜、変形、省略することが可能である。

Claims (8)

  1. 直流コンデンサおよび複数の半導体スイッチング素子をそれぞれ備え、交流出力端が三相交流線路の各相にそれぞれ直列接続された単相インバータと、
    電圧指令に基づき上記各単相インバータをPWM制御する制御装置とを備えた三相電力変換装置において、
    上記三相交流線路から三相交流電圧の位相および電圧を検出する交流電圧検出回路を備え、
    上記制御装置は、上記交流電圧検出回路からの上記位相および電圧に基づいて、三相に共通する零相成分を各相基本指令に加算して上記電圧指令を生成する電圧指令生成部を備え、
    上記電圧指令生成部は、上記零相成分の振幅を演算し、予め設定された基準零相電圧に上記振幅を適用して上記三相交流電圧の位相に同期する上記零相成分を決定する、
    三相電力変換装置。
  2. 上記電圧指令生成部は、上記電圧指令のピークの大きさが上記各単相インバータの上記直流コンデンサの電圧以下となるように上記振幅を演算する、
    請求項1に記載の三相電力変換装置。
  3. 複数の半導体素子を備えて交流・直流間で電力変換し各相交流端が上記三相交流線路を介して上記各単相インバータに接続された三相電力変換器と、
    該三相電力変換器の直流側に接続されたコンデンサとを備え、
    上記三相交流線路は三相の交流電源に接続され、上記各単相インバータは、上記三相電力変換器と上記交流電源との間で上記三相交流線路に直列接続され、
    上記三相電力変換器の各相の出力交流電圧に上記各単相インバータの出力電圧を重畳して上記交流電源に出力する、
    請求項1または請求項2に記載の三相電力変換装置。
  4. 上記コンデンサの電圧を検出する検出器を備え、
    上記交流電圧検出回路は、上記三相交流電圧として上記交流電源の電圧を検出し、
    上記電圧指令生成部は、上記コンデンサの電圧と上記交流電圧検出回路からの上記位相および電圧に基づいて、上記零相成分の振幅を演算する、
    請求項3に記載の三相電力変換装置。
  5. 上記電圧指令生成部は、上記交流電源の各相電圧と上記三相電力変換器の各相の出力交流電圧との差分を出力するように上記各相基本指令を生成し、上記電圧指令の最大電圧値と最小電圧値との絶対値が等しくなるように上記零相成分の振幅を演算する、
    請求項4に記載の三相電力変換装置。
  6. 上記電圧指令生成部は、上記各単相インバータ内の上記半導体スイッチング素子の素子耐圧、および上記コンデンサの素子耐圧に基づき上記零相成分の振幅を決定する、
    請求項3または請求項4に記載の三相電力変換装置。
  7. 上記零相成分は、上記三相交流電圧の周波数の6N倍の周波数で、上記三相交流電圧の(1/6)周期毎に極性が反転する電圧波形を有する、
    請求項3から請求項6のいずれか1項に記載の三相電力変換装置。
  8. 上記零相成分の上記電圧波形は、(1/6)周期毎に極性が反転する定数値あるいは正弦波形である、
    請求項7に記載の三相電力変換装置。
PCT/JP2013/081652 2013-02-15 2013-11-25 三相電力変換装置 WO2014125697A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112013006680.7T DE112013006680T5 (de) 2013-02-15 2013-11-25 Dreiphasen-Spannungs-Umsetzungsvorrichtung
US14/758,668 US9595887B2 (en) 2013-02-15 2013-11-25 Three-phase power conversion device
JP2015500096A JP5932126B2 (ja) 2013-02-15 2013-11-25 三相電力変換装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-027465 2013-02-15
JP2013027465 2013-02-15

Publications (1)

Publication Number Publication Date
WO2014125697A1 true WO2014125697A1 (ja) 2014-08-21

Family

ID=51353716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081652 WO2014125697A1 (ja) 2013-02-15 2013-11-25 三相電力変換装置

Country Status (4)

Country Link
US (1) US9595887B2 (ja)
JP (1) JP5932126B2 (ja)
DE (1) DE112013006680T5 (ja)
WO (1) WO2014125697A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10263534B2 (en) 2016-02-08 2019-04-16 Mitsubishi Electric Corporation Power conversion device
WO2020235101A1 (ja) * 2019-05-23 2020-11-26 三菱電機株式会社 電力変換装置
JP6861917B1 (ja) * 2020-07-28 2021-04-21 三菱電機株式会社 電力変換装置
CN114221562A (zh) * 2020-09-03 2022-03-22 上海电力大学 一种电压源型变换器的动态贴下限直流侧电压控制方法
JP7409470B1 (ja) 2022-11-29 2024-01-09 株式会社明電舎 セル多重インバータ
JP7409471B1 (ja) 2022-11-29 2024-01-09 株式会社明電舎 セル多重インバータ
WO2024105841A1 (ja) * 2022-11-17 2024-05-23 三菱電機株式会社 電力変換装置、および飛行物体

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013006680T5 (de) * 2013-02-15 2015-10-29 Mitsubishi Electric Corporation Dreiphasen-Spannungs-Umsetzungsvorrichtung
JP6147363B2 (ja) * 2014-01-06 2017-06-14 三菱電機株式会社 電力変換装置
WO2018029303A1 (en) * 2016-08-11 2018-02-15 Abb Schweiz Ag Two stage control of converter system with floating cells
AT524638A1 (de) * 2017-01-05 2022-07-15 Int Power Electronics Consulting Ipec Gmbh Dreiphasen-Hoch-Tiefsetz-Gleichrichtersystem mit sinusförmigem Eingangsstrom und geregelter gleichtaktfreier Ausgangsspannung
JP6558506B2 (ja) * 2017-01-11 2019-08-14 株式会社村田製作所 電力変換器
JP7177500B2 (ja) * 2018-02-07 2022-11-24 国立大学法人東北大学 電力変換装置、発電システム、モータドライブシステム及び電力連系システム
US20220181989A1 (en) * 2019-08-30 2022-06-09 Mitsubishi Electric Corporation Power converter and air conditioner
EP4220931A4 (en) * 2020-09-28 2023-11-08 Mitsubishi Electric Corporation POWER CONVERTER
US11424692B2 (en) * 2020-12-23 2022-08-23 Hamilton Sundstrand Corporation Multi-level single-phase AC-to-DC converter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109688A (ja) * 2004-09-10 2006-04-20 Meidensha Corp 多相直列多重電力変換装置のpwm制御方法
JP2007037355A (ja) * 2005-07-29 2007-02-08 Mitsubishi Electric Corp 電力変換装置
WO2010058536A1 (ja) * 2008-11-18 2010-05-27 三菱電機株式会社 電力変換装置
WO2010103600A1 (ja) * 2009-03-09 2010-09-16 三菱電機株式会社 電力変換装置
JP2010220321A (ja) * 2009-03-13 2010-09-30 Omron Corp パワーコンディショナおよび太陽光発電システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5097453B2 (ja) 2007-06-06 2012-12-12 三菱電機株式会社 電力変換装置
JP5477408B2 (ja) * 2012-03-02 2014-04-23 株式会社安川電機 電力変換装置
JP5993675B2 (ja) * 2012-09-14 2016-09-14 株式会社日立製作所 電力変換装置,電力変換システム及び電力変換装置の制御方法
DE112013006680T5 (de) * 2013-02-15 2015-10-29 Mitsubishi Electric Corporation Dreiphasen-Spannungs-Umsetzungsvorrichtung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109688A (ja) * 2004-09-10 2006-04-20 Meidensha Corp 多相直列多重電力変換装置のpwm制御方法
JP2007037355A (ja) * 2005-07-29 2007-02-08 Mitsubishi Electric Corp 電力変換装置
WO2010058536A1 (ja) * 2008-11-18 2010-05-27 三菱電機株式会社 電力変換装置
WO2010103600A1 (ja) * 2009-03-09 2010-09-16 三菱電機株式会社 電力変換装置
JP2010220321A (ja) * 2009-03-13 2010-09-30 Omron Corp パワーコンディショナおよび太陽光発電システム

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10263534B2 (en) 2016-02-08 2019-04-16 Mitsubishi Electric Corporation Power conversion device
JP7146078B2 (ja) 2019-05-23 2022-10-03 三菱電機株式会社 電力変換装置
WO2020235101A1 (ja) * 2019-05-23 2020-11-26 三菱電機株式会社 電力変換装置
US11888386B2 (en) 2019-05-23 2024-01-30 Mitsubishi Electric Corporation Power conversion device
WO2022024218A1 (ja) * 2020-07-28 2022-02-03 三菱電機株式会社 電力変換装置
JP6861917B1 (ja) * 2020-07-28 2021-04-21 三菱電機株式会社 電力変換装置
CN114221562A (zh) * 2020-09-03 2022-03-22 上海电力大学 一种电压源型变换器的动态贴下限直流侧电压控制方法
CN114221562B (zh) * 2020-09-03 2023-08-29 上海电力大学 一种电压源型变换器的动态贴下限直流侧电压控制方法
WO2024105841A1 (ja) * 2022-11-17 2024-05-23 三菱電機株式会社 電力変換装置、および飛行物体
JP7409470B1 (ja) 2022-11-29 2024-01-09 株式会社明電舎 セル多重インバータ
JP7409471B1 (ja) 2022-11-29 2024-01-09 株式会社明電舎 セル多重インバータ
WO2024116504A1 (ja) * 2022-11-29 2024-06-06 株式会社明電舎 セル多重インバータ
WO2024116505A1 (ja) * 2022-11-29 2024-06-06 株式会社明電舎 セル多重インバータ

Also Published As

Publication number Publication date
JP5932126B2 (ja) 2016-06-08
US9595887B2 (en) 2017-03-14
US20150357937A1 (en) 2015-12-10
JPWO2014125697A1 (ja) 2017-02-02
DE112013006680T5 (de) 2015-10-29

Similar Documents

Publication Publication Date Title
JP5932126B2 (ja) 三相電力変換装置
US10193434B2 (en) Power conversion device and three-phase AC power supply device
US9419542B2 (en) Inverter device
JP5891940B2 (ja) 3レベルユニットインバータ
WO2007129456A1 (ja) 電力変換装置
JP2014018015A (ja) 電圧型電力変換装置の制御装置及び制御方法
CN109769404B (zh) 系统互连逆变器装置及其运转方法
US11817768B2 (en) Power conversion device that can suppress interference between control of input current from an AC power supply and voltage control for a DC capacitor
US11218107B2 (en) Control device for power converter
JP6957196B2 (ja) 電力変換装置
JP5939411B2 (ja) 電力変換装置
JP5192258B2 (ja) クランプ式電力変換装置
JP5374336B2 (ja) 電力変換装置
JP5291180B2 (ja) 電力変換装置
JP4365376B2 (ja) 電力変換装置
WO2017159117A1 (ja) 電力変換装置
JP6502870B2 (ja) 電力変換装置
JP6207796B2 (ja) 電力変換装置
JP6440067B2 (ja) 電力変換装置
JP2013162538A (ja) 電力変換装置
JP2005137166A (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874962

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500096

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14758668

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013006680

Country of ref document: DE

Ref document number: 1120130066807

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13874962

Country of ref document: EP

Kind code of ref document: A1